1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "EHStreamer.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/MC/MCTargetOptions.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/LEB128.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <vector>
37
38 using namespace llvm;
39
EHStreamer(AsmPrinter * A)40 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
41
42 EHStreamer::~EHStreamer() = default;
43
44 /// How many leading type ids two landing pads have in common.
sharedTypeIDs(const LandingPadInfo * L,const LandingPadInfo * R)45 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
46 const LandingPadInfo *R) {
47 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
48 unsigned LSize = LIds.size(), RSize = RIds.size();
49 unsigned MinSize = LSize < RSize ? LSize : RSize;
50 unsigned Count = 0;
51
52 for (; Count != MinSize; ++Count)
53 if (LIds[Count] != RIds[Count])
54 return Count;
55
56 return Count;
57 }
58
59 /// Compute the actions table and gather the first action index for each landing
60 /// pad site.
computeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)61 void EHStreamer::computeActionsTable(
62 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
63 SmallVectorImpl<ActionEntry> &Actions,
64 SmallVectorImpl<unsigned> &FirstActions) {
65 // The action table follows the call-site table in the LSDA. The individual
66 // records are of two types:
67 //
68 // * Catch clause
69 // * Exception specification
70 //
71 // The two record kinds have the same format, with only small differences.
72 // They are distinguished by the "switch value" field: Catch clauses
73 // (TypeInfos) have strictly positive switch values, and exception
74 // specifications (FilterIds) have strictly negative switch values. Value 0
75 // indicates a catch-all clause.
76 //
77 // Negative type IDs index into FilterIds. Positive type IDs index into
78 // TypeInfos. The value written for a positive type ID is just the type ID
79 // itself. For a negative type ID, however, the value written is the
80 // (negative) byte offset of the corresponding FilterIds entry. The byte
81 // offset is usually equal to the type ID (because the FilterIds entries are
82 // written using a variable width encoding, which outputs one byte per entry
83 // as long as the value written is not too large) but can differ. This kind
84 // of complication does not occur for positive type IDs because type infos are
85 // output using a fixed width encoding. FilterOffsets[i] holds the byte
86 // offset corresponding to FilterIds[i].
87
88 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
89 SmallVector<int, 16> FilterOffsets;
90 FilterOffsets.reserve(FilterIds.size());
91 int Offset = -1;
92
93 for (std::vector<unsigned>::const_iterator
94 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
95 FilterOffsets.push_back(Offset);
96 Offset -= getULEB128Size(*I);
97 }
98
99 FirstActions.reserve(LandingPads.size());
100
101 int FirstAction = 0;
102 unsigned SizeActions = 0; // Total size of all action entries for a function
103 const LandingPadInfo *PrevLPI = nullptr;
104
105 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
106 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
107 const LandingPadInfo *LPI = *I;
108 const std::vector<int> &TypeIds = LPI->TypeIds;
109 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
110 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
111
112 if (NumShared < TypeIds.size()) {
113 // Size of one action entry (typeid + next action)
114 unsigned SizeActionEntry = 0;
115 unsigned PrevAction = (unsigned)-1;
116
117 if (NumShared) {
118 unsigned SizePrevIds = PrevLPI->TypeIds.size();
119 assert(Actions.size());
120 PrevAction = Actions.size() - 1;
121 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
122 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
123
124 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
125 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
126 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
127 SizeActionEntry += -Actions[PrevAction].NextAction;
128 PrevAction = Actions[PrevAction].Previous;
129 }
130 }
131
132 // Compute the actions.
133 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
134 int TypeID = TypeIds[J];
135 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
136 int ValueForTypeID =
137 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
138 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
139
140 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
141 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
142 SizeSiteActions += SizeActionEntry;
143
144 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
145 Actions.push_back(Action);
146 PrevAction = Actions.size() - 1;
147 }
148
149 // Record the first action of the landing pad site.
150 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
151 } // else identical - re-use previous FirstAction
152
153 // Information used when creating the call-site table. The action record
154 // field of the call site record is the offset of the first associated
155 // action record, relative to the start of the actions table. This value is
156 // biased by 1 (1 indicating the start of the actions table), and 0
157 // indicates that there are no actions.
158 FirstActions.push_back(FirstAction);
159
160 // Compute this sites contribution to size.
161 SizeActions += SizeSiteActions;
162
163 PrevLPI = LPI;
164 }
165 }
166
167 /// Return `true' if this is a call to a function marked `nounwind'. Return
168 /// `false' otherwise.
callToNoUnwindFunction(const MachineInstr * MI)169 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
170 assert(MI->isCall() && "This should be a call instruction!");
171
172 bool MarkedNoUnwind = false;
173 bool SawFunc = false;
174
175 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
176 const MachineOperand &MO = MI->getOperand(I);
177
178 if (!MO.isGlobal()) continue;
179
180 const Function *F = dyn_cast<Function>(MO.getGlobal());
181 if (!F) continue;
182
183 if (SawFunc) {
184 // Be conservative. If we have more than one function operand for this
185 // call, then we can't make the assumption that it's the callee and
186 // not a parameter to the call.
187 //
188 // FIXME: Determine if there's a way to say that `F' is the callee or
189 // parameter.
190 MarkedNoUnwind = false;
191 break;
192 }
193
194 MarkedNoUnwind = F->doesNotThrow();
195 SawFunc = true;
196 }
197
198 return MarkedNoUnwind;
199 }
200
computePadMap(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,RangeMapType & PadMap)201 void EHStreamer::computePadMap(
202 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
203 RangeMapType &PadMap) {
204 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
205 // by try-range labels when lowered). Ordinary calls do not, so appropriate
206 // try-ranges for them need be deduced so we can put them in the LSDA.
207 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
208 const LandingPadInfo *LandingPad = LandingPads[i];
209 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
210 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
211 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
212 PadRange P = { i, j };
213 PadMap[BeginLabel] = P;
214 }
215 }
216 }
217
218 /// Compute the call-site table. The entry for an invoke has a try-range
219 /// containing the call, a non-zero landing pad, and an appropriate action. The
220 /// entry for an ordinary call has a try-range containing the call and zero for
221 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
222 /// must not be contained in the try-range of any entry - they form gaps in the
223 /// table. Entries must be ordered by try-range address.
224 void EHStreamer::
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)225 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
226 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
227 const SmallVectorImpl<unsigned> &FirstActions) {
228 RangeMapType PadMap;
229 computePadMap(LandingPads, PadMap);
230
231 // The end label of the previous invoke or nounwind try-range.
232 MCSymbol *LastLabel = nullptr;
233
234 // Whether there is a potentially throwing instruction (currently this means
235 // an ordinary call) between the end of the previous try-range and now.
236 bool SawPotentiallyThrowing = false;
237
238 // Whether the last CallSite entry was for an invoke.
239 bool PreviousIsInvoke = false;
240
241 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
242
243 // Visit all instructions in order of address.
244 for (const auto &MBB : *Asm->MF) {
245 for (const auto &MI : MBB) {
246 if (!MI.isEHLabel()) {
247 if (MI.isCall())
248 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
249 continue;
250 }
251
252 // End of the previous try-range?
253 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
254 if (BeginLabel == LastLabel)
255 SawPotentiallyThrowing = false;
256
257 // Beginning of a new try-range?
258 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
259 if (L == PadMap.end())
260 // Nope, it was just some random label.
261 continue;
262
263 const PadRange &P = L->second;
264 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
265 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
266 "Inconsistent landing pad map!");
267
268 // For Dwarf exception handling (SjLj handling doesn't use this). If some
269 // instruction between the previous try-range and this one may throw,
270 // create a call-site entry with no landing pad for the region between the
271 // try-ranges.
272 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
273 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
274 CallSites.push_back(Site);
275 PreviousIsInvoke = false;
276 }
277
278 LastLabel = LandingPad->EndLabels[P.RangeIndex];
279 assert(BeginLabel && LastLabel && "Invalid landing pad!");
280
281 if (!LandingPad->LandingPadLabel) {
282 // Create a gap.
283 PreviousIsInvoke = false;
284 } else {
285 // This try-range is for an invoke.
286 CallSiteEntry Site = {
287 BeginLabel,
288 LastLabel,
289 LandingPad,
290 FirstActions[P.PadIndex]
291 };
292
293 // Try to merge with the previous call-site. SJLJ doesn't do this
294 if (PreviousIsInvoke && !IsSJLJ) {
295 CallSiteEntry &Prev = CallSites.back();
296 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
297 // Extend the range of the previous entry.
298 Prev.EndLabel = Site.EndLabel;
299 continue;
300 }
301 }
302
303 // Otherwise, create a new call-site.
304 if (!IsSJLJ)
305 CallSites.push_back(Site);
306 else {
307 // SjLj EH must maintain the call sites in the order assigned
308 // to them by the SjLjPrepare pass.
309 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
310 if (CallSites.size() < SiteNo)
311 CallSites.resize(SiteNo);
312 CallSites[SiteNo - 1] = Site;
313 }
314 PreviousIsInvoke = true;
315 }
316 }
317 }
318
319 // If some instruction between the previous try-range and the end of the
320 // function may throw, create a call-site entry with no landing pad for the
321 // region following the try-range.
322 if (SawPotentiallyThrowing && !IsSJLJ) {
323 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
324 CallSites.push_back(Site);
325 }
326 }
327
328 /// Emit landing pads and actions.
329 ///
330 /// The general organization of the table is complex, but the basic concepts are
331 /// easy. First there is a header which describes the location and organization
332 /// of the three components that follow.
333 ///
334 /// 1. The landing pad site information describes the range of code covered by
335 /// the try. In our case it's an accumulation of the ranges covered by the
336 /// invokes in the try. There is also a reference to the landing pad that
337 /// handles the exception once processed. Finally an index into the actions
338 /// table.
339 /// 2. The action table, in our case, is composed of pairs of type IDs and next
340 /// action offset. Starting with the action index from the landing pad
341 /// site, each type ID is checked for a match to the current exception. If
342 /// it matches then the exception and type id are passed on to the landing
343 /// pad. Otherwise the next action is looked up. This chain is terminated
344 /// with a next action of zero. If no type id is found then the frame is
345 /// unwound and handling continues.
346 /// 3. Type ID table contains references to all the C++ typeinfo for all
347 /// catches in the function. This tables is reverse indexed base 1.
348 ///
349 /// Returns the starting symbol of an exception table.
emitExceptionTable()350 MCSymbol *EHStreamer::emitExceptionTable() {
351 const MachineFunction *MF = Asm->MF;
352 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
353 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
354 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
355
356 // Sort the landing pads in order of their type ids. This is used to fold
357 // duplicate actions.
358 SmallVector<const LandingPadInfo *, 64> LandingPads;
359 LandingPads.reserve(PadInfos.size());
360
361 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
362 LandingPads.push_back(&PadInfos[i]);
363
364 // Order landing pads lexicographically by type id.
365 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
366 return L->TypeIds < R->TypeIds;
367 });
368
369 // Compute the actions table and gather the first action index for each
370 // landing pad site.
371 SmallVector<ActionEntry, 32> Actions;
372 SmallVector<unsigned, 64> FirstActions;
373 computeActionsTable(LandingPads, Actions, FirstActions);
374
375 // Compute the call-site table.
376 SmallVector<CallSiteEntry, 64> CallSites;
377 computeCallSiteTable(CallSites, LandingPads, FirstActions);
378
379 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
380 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
381 unsigned CallSiteEncoding =
382 IsSJLJ ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_uleb128;
383 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
384
385 // Type infos.
386 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
387 unsigned TTypeEncoding;
388
389 if (!HaveTTData) {
390 // If there is no TypeInfo, then we just explicitly say that we're omitting
391 // that bit.
392 TTypeEncoding = dwarf::DW_EH_PE_omit;
393 } else {
394 // Okay, we have actual filters or typeinfos to emit. As such, we need to
395 // pick a type encoding for them. We're about to emit a list of pointers to
396 // typeinfo objects at the end of the LSDA. However, unless we're in static
397 // mode, this reference will require a relocation by the dynamic linker.
398 //
399 // Because of this, we have a couple of options:
400 //
401 // 1) If we are in -static mode, we can always use an absolute reference
402 // from the LSDA, because the static linker will resolve it.
403 //
404 // 2) Otherwise, if the LSDA section is writable, we can output the direct
405 // reference to the typeinfo and allow the dynamic linker to relocate
406 // it. Since it is in a writable section, the dynamic linker won't
407 // have a problem.
408 //
409 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
410 // we need to use some form of indirection. For example, on Darwin,
411 // we can output a statically-relocatable reference to a dyld stub. The
412 // offset to the stub is constant, but the contents are in a section
413 // that is updated by the dynamic linker. This is easy enough, but we
414 // need to tell the personality function of the unwinder to indirect
415 // through the dyld stub.
416 //
417 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
418 // somewhere. This predicate should be moved to a shared location that is
419 // in target-independent code.
420 //
421 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
422 }
423
424 // Begin the exception table.
425 // Sometimes we want not to emit the data into separate section (e.g. ARM
426 // EHABI). In this case LSDASection will be NULL.
427 if (LSDASection)
428 Asm->OutStreamer->SwitchSection(LSDASection);
429 Asm->EmitAlignment(2);
430
431 // Emit the LSDA.
432 MCSymbol *GCCETSym =
433 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
434 Twine(Asm->getFunctionNumber()));
435 Asm->OutStreamer->EmitLabel(GCCETSym);
436 Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
437
438 // Emit the LSDA header.
439 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
440 Asm->EmitEncodingByte(TTypeEncoding, "@TType");
441
442 MCSymbol *TTBaseLabel = nullptr;
443 if (HaveTTData) {
444 // N.B.: There is a dependency loop between the size of the TTBase uleb128
445 // here and the amount of padding before the aligned type table. The
446 // assembler must sometimes pad this uleb128 or insert extra padding before
447 // the type table. See PR35809 or GNU as bug 4029.
448 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
449 TTBaseLabel = Asm->createTempSymbol("ttbase");
450 Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
451 Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
452 }
453
454 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
455
456 // Emit the landing pad call site table.
457 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
458 MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
459 Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
460 Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
461 Asm->OutStreamer->EmitLabel(CstBeginLabel);
462
463 // SjLj / Wasm Exception handling
464 if (IsSJLJ || IsWasm) {
465 unsigned idx = 0;
466 for (SmallVectorImpl<CallSiteEntry>::const_iterator
467 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
468 const CallSiteEntry &S = *I;
469
470 // Index of the call site entry.
471 if (VerboseAsm) {
472 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
473 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
474 }
475 Asm->EmitULEB128(idx);
476
477 // Offset of the first associated action record, relative to the start of
478 // the action table. This value is biased by 1 (1 indicates the start of
479 // the action table), and 0 indicates that there are no actions.
480 if (VerboseAsm) {
481 if (S.Action == 0)
482 Asm->OutStreamer->AddComment(" Action: cleanup");
483 else
484 Asm->OutStreamer->AddComment(" Action: " +
485 Twine((S.Action - 1) / 2 + 1));
486 }
487 Asm->EmitULEB128(S.Action);
488 }
489 } else {
490 // Itanium LSDA exception handling
491
492 // The call-site table is a list of all call sites that may throw an
493 // exception (including C++ 'throw' statements) in the procedure
494 // fragment. It immediately follows the LSDA header. Each entry indicates,
495 // for a given call, the first corresponding action record and corresponding
496 // landing pad.
497 //
498 // The table begins with the number of bytes, stored as an LEB128
499 // compressed, unsigned integer. The records immediately follow the record
500 // count. They are sorted in increasing call-site address. Each record
501 // indicates:
502 //
503 // * The position of the call-site.
504 // * The position of the landing pad.
505 // * The first action record for that call site.
506 //
507 // A missing entry in the call-site table indicates that a call is not
508 // supposed to throw.
509
510 unsigned Entry = 0;
511 for (SmallVectorImpl<CallSiteEntry>::const_iterator
512 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
513 const CallSiteEntry &S = *I;
514
515 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
516
517 MCSymbol *BeginLabel = S.BeginLabel;
518 if (!BeginLabel)
519 BeginLabel = EHFuncBeginSym;
520 MCSymbol *EndLabel = S.EndLabel;
521 if (!EndLabel)
522 EndLabel = Asm->getFunctionEnd();
523
524 // Offset of the call site relative to the start of the procedure.
525 if (VerboseAsm)
526 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
527 Asm->EmitLabelDifferenceAsULEB128(BeginLabel, EHFuncBeginSym);
528 if (VerboseAsm)
529 Asm->OutStreamer->AddComment(Twine(" Call between ") +
530 BeginLabel->getName() + " and " +
531 EndLabel->getName());
532 Asm->EmitLabelDifferenceAsULEB128(EndLabel, BeginLabel);
533
534 // Offset of the landing pad relative to the start of the procedure.
535 if (!S.LPad) {
536 if (VerboseAsm)
537 Asm->OutStreamer->AddComment(" has no landing pad");
538 Asm->EmitULEB128(0);
539 } else {
540 if (VerboseAsm)
541 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
542 S.LPad->LandingPadLabel->getName());
543 Asm->EmitLabelDifferenceAsULEB128(S.LPad->LandingPadLabel,
544 EHFuncBeginSym);
545 }
546
547 // Offset of the first associated action record, relative to the start of
548 // the action table. This value is biased by 1 (1 indicates the start of
549 // the action table), and 0 indicates that there are no actions.
550 if (VerboseAsm) {
551 if (S.Action == 0)
552 Asm->OutStreamer->AddComment(" On action: cleanup");
553 else
554 Asm->OutStreamer->AddComment(" On action: " +
555 Twine((S.Action - 1) / 2 + 1));
556 }
557 Asm->EmitULEB128(S.Action);
558 }
559 }
560 Asm->OutStreamer->EmitLabel(CstEndLabel);
561
562 // Emit the Action Table.
563 int Entry = 0;
564 for (SmallVectorImpl<ActionEntry>::const_iterator
565 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
566 const ActionEntry &Action = *I;
567
568 if (VerboseAsm) {
569 // Emit comments that decode the action table.
570 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
571 }
572
573 // Type Filter
574 //
575 // Used by the runtime to match the type of the thrown exception to the
576 // type of the catch clauses or the types in the exception specification.
577 if (VerboseAsm) {
578 if (Action.ValueForTypeID > 0)
579 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
580 Twine(Action.ValueForTypeID));
581 else if (Action.ValueForTypeID < 0)
582 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
583 Twine(Action.ValueForTypeID));
584 else
585 Asm->OutStreamer->AddComment(" Cleanup");
586 }
587 Asm->EmitSLEB128(Action.ValueForTypeID);
588
589 // Action Record
590 //
591 // Self-relative signed displacement in bytes of the next action record,
592 // or 0 if there is no next action record.
593 if (VerboseAsm) {
594 if (Action.NextAction == 0) {
595 Asm->OutStreamer->AddComment(" No further actions");
596 } else {
597 unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
598 Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction));
599 }
600 }
601 Asm->EmitSLEB128(Action.NextAction);
602 }
603
604 if (HaveTTData) {
605 Asm->EmitAlignment(2);
606 emitTypeInfos(TTypeEncoding, TTBaseLabel);
607 }
608
609 Asm->EmitAlignment(2);
610 return GCCETSym;
611 }
612
emitTypeInfos(unsigned TTypeEncoding,MCSymbol * TTBaseLabel)613 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
614 const MachineFunction *MF = Asm->MF;
615 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
616 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
617
618 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
619
620 int Entry = 0;
621 // Emit the Catch TypeInfos.
622 if (VerboseAsm && !TypeInfos.empty()) {
623 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
624 Asm->OutStreamer->AddBlankLine();
625 Entry = TypeInfos.size();
626 }
627
628 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
629 TypeInfos.rend())) {
630 if (VerboseAsm)
631 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
632 Asm->EmitTTypeReference(GV, TTypeEncoding);
633 }
634
635 Asm->OutStreamer->EmitLabel(TTBaseLabel);
636
637 // Emit the Exception Specifications.
638 if (VerboseAsm && !FilterIds.empty()) {
639 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
640 Asm->OutStreamer->AddBlankLine();
641 Entry = 0;
642 }
643 for (std::vector<unsigned>::const_iterator
644 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
645 unsigned TypeID = *I;
646 if (VerboseAsm) {
647 --Entry;
648 if (isFilterEHSelector(TypeID))
649 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
650 }
651
652 Asm->EmitULEB128(TypeID);
653 }
654 }
655