1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 #include "llvm/Support/Signals.h"
52
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Core/StreamFile.h"
75 #include "lldb/Expression/IRExecutionUnit.h"
76 #include "lldb/Expression/IRInterpreter.h"
77 #include "lldb/Host/File.h"
78 #include "lldb/Host/HostInfo.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/LLDBLog.h"
88 #include "lldb/Utility/Log.h"
89 #include "lldb/Utility/ReproducerProvider.h"
90 #include "lldb/Utility/Stream.h"
91 #include "lldb/Utility/StreamString.h"
92 #include "lldb/Utility/StringList.h"
93
94 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
95 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h"
96
97 #include <cctype>
98 #include <memory>
99
100 using namespace clang;
101 using namespace llvm;
102 using namespace lldb_private;
103
104 //===----------------------------------------------------------------------===//
105 // Utility Methods for Clang
106 //===----------------------------------------------------------------------===//
107
108 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
109 ClangModulesDeclVendor &m_decl_vendor;
110 ClangPersistentVariables &m_persistent_vars;
111 clang::SourceManager &m_source_mgr;
112 StreamString m_error_stream;
113 bool m_has_errors = false;
114
115 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars,clang::SourceManager & source_mgr)116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
117 ClangPersistentVariables &persistent_vars,
118 clang::SourceManager &source_mgr)
119 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
120 m_source_mgr(source_mgr) {}
121
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)122 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
123 const clang::Module * /*null*/) override {
124 // Ignore modules that are imported in the wrapper code as these are not
125 // loaded by the user.
126 llvm::StringRef filename =
127 m_source_mgr.getPresumedLoc(import_location).getFilename();
128 if (filename == ClangExpressionSourceCode::g_prefix_file_name)
129 return;
130
131 SourceModule module;
132
133 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
134 module.path.push_back(ConstString(component.first->getName()));
135
136 StreamString error_stream;
137
138 ClangModulesDeclVendor::ModuleVector exported_modules;
139 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
140 m_has_errors = true;
141
142 for (ClangModulesDeclVendor::ModuleID module : exported_modules)
143 m_persistent_vars.AddHandLoadedClangModule(module);
144 }
145
hasErrors()146 bool hasErrors() { return m_has_errors; }
147
getErrorString()148 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
149 };
150
AddAllFixIts(ClangDiagnostic * diag,const clang::Diagnostic & Info)151 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
152 for (auto &fix_it : Info.getFixItHints()) {
153 if (fix_it.isNull())
154 continue;
155 diag->AddFixitHint(fix_it);
156 }
157 }
158
159 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
160 public:
ClangDiagnosticManagerAdapter(DiagnosticOptions & opts)161 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
162 DiagnosticOptions *options = new DiagnosticOptions(opts);
163 options->ShowPresumedLoc = true;
164 options->ShowLevel = false;
165 m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
166 m_passthrough =
167 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
168 }
169
ResetManager(DiagnosticManager * manager=nullptr)170 void ResetManager(DiagnosticManager *manager = nullptr) {
171 m_manager = manager;
172 }
173
174 /// Returns the last ClangDiagnostic message that the DiagnosticManager
175 /// received or a nullptr if the DiagnosticMangager hasn't seen any
176 /// Clang diagnostics yet.
MaybeGetLastClangDiag() const177 ClangDiagnostic *MaybeGetLastClangDiag() const {
178 if (m_manager->Diagnostics().empty())
179 return nullptr;
180 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
181 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
182 return clang_diag;
183 }
184
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)185 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
186 const clang::Diagnostic &Info) override {
187 if (!m_manager) {
188 // We have no DiagnosticManager before/after parsing but we still could
189 // receive diagnostics (e.g., by the ASTImporter failing to copy decls
190 // when we move the expression result ot the ScratchASTContext). Let's at
191 // least log these diagnostics until we find a way to properly render
192 // them and display them to the user.
193 Log *log = GetLog(LLDBLog::Expressions);
194 if (log) {
195 llvm::SmallVector<char, 32> diag_str;
196 Info.FormatDiagnostic(diag_str);
197 diag_str.push_back('\0');
198 const char *plain_diag = diag_str.data();
199 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
200 }
201 return;
202 }
203
204 // Update error/warning counters.
205 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
206
207 // Render diagnostic message to m_output.
208 m_output.clear();
209 m_passthrough->HandleDiagnostic(DiagLevel, Info);
210 m_os->flush();
211
212 lldb_private::DiagnosticSeverity severity;
213 bool make_new_diagnostic = true;
214
215 switch (DiagLevel) {
216 case DiagnosticsEngine::Level::Fatal:
217 case DiagnosticsEngine::Level::Error:
218 severity = eDiagnosticSeverityError;
219 break;
220 case DiagnosticsEngine::Level::Warning:
221 severity = eDiagnosticSeverityWarning;
222 break;
223 case DiagnosticsEngine::Level::Remark:
224 case DiagnosticsEngine::Level::Ignored:
225 severity = eDiagnosticSeverityRemark;
226 break;
227 case DiagnosticsEngine::Level::Note:
228 m_manager->AppendMessageToDiagnostic(m_output);
229 make_new_diagnostic = false;
230
231 // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
232 // We add these Fix-Its to the last error diagnostic to make sure
233 // that we later have all Fix-Its related to an 'error' diagnostic when
234 // we apply them to the user expression.
235 auto *clang_diag = MaybeGetLastClangDiag();
236 // If we don't have a previous diagnostic there is nothing to do.
237 // If the previous diagnostic already has its own Fix-Its, assume that
238 // the 'note:' Fix-It is just an alternative way to solve the issue and
239 // ignore these Fix-Its.
240 if (!clang_diag || clang_diag->HasFixIts())
241 break;
242 // Ignore all Fix-Its that are not associated with an error.
243 if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
244 break;
245 AddAllFixIts(clang_diag, Info);
246 break;
247 }
248 if (make_new_diagnostic) {
249 // ClangDiagnostic messages are expected to have no whitespace/newlines
250 // around them.
251 std::string stripped_output =
252 std::string(llvm::StringRef(m_output).trim());
253
254 auto new_diagnostic = std::make_unique<ClangDiagnostic>(
255 stripped_output, severity, Info.getID());
256
257 // Don't store away warning fixits, since the compiler doesn't have
258 // enough context in an expression for the warning to be useful.
259 // FIXME: Should we try to filter out FixIts that apply to our generated
260 // code, and not the user's expression?
261 if (severity == eDiagnosticSeverityError)
262 AddAllFixIts(new_diagnostic.get(), Info);
263
264 m_manager->AddDiagnostic(std::move(new_diagnostic));
265 }
266 }
267
BeginSourceFile(const LangOptions & LO,const Preprocessor * PP)268 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
269 m_passthrough->BeginSourceFile(LO, PP);
270 }
271
EndSourceFile()272 void EndSourceFile() override { m_passthrough->EndSourceFile(); }
273
274 private:
275 DiagnosticManager *m_manager = nullptr;
276 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
277 /// Output stream of m_passthrough.
278 std::shared_ptr<llvm::raw_string_ostream> m_os;
279 /// Output string filled by m_os.
280 std::string m_output;
281 };
282
SetupModuleHeaderPaths(CompilerInstance * compiler,std::vector<std::string> include_directories,lldb::TargetSP target_sp)283 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
284 std::vector<std::string> include_directories,
285 lldb::TargetSP target_sp) {
286 Log *log = GetLog(LLDBLog::Expressions);
287
288 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
289
290 for (const std::string &dir : include_directories) {
291 search_opts.AddPath(dir, frontend::System, false, true);
292 LLDB_LOG(log, "Added user include dir: {0}", dir);
293 }
294
295 llvm::SmallString<128> module_cache;
296 const auto &props = ModuleList::GetGlobalModuleListProperties();
297 props.GetClangModulesCachePath().GetPath(module_cache);
298 search_opts.ModuleCachePath = std::string(module_cache.str());
299 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
300
301 search_opts.ResourceDir = GetClangResourceDir().GetPath();
302
303 search_opts.ImplicitModuleMaps = true;
304 }
305
306 /// Iff the given identifier is a C++ keyword, remove it from the
307 /// identifier table (i.e., make the token a normal identifier).
RemoveCppKeyword(IdentifierTable & idents,llvm::StringRef token)308 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
309 // FIXME: 'using' is used by LLDB for local variables, so we can't remove
310 // this keyword without breaking this functionality.
311 if (token == "using")
312 return;
313 // GCC's '__null' is used by LLDB to define NULL/Nil/nil.
314 if (token == "__null")
315 return;
316
317 LangOptions cpp_lang_opts;
318 cpp_lang_opts.CPlusPlus = true;
319 cpp_lang_opts.CPlusPlus11 = true;
320 cpp_lang_opts.CPlusPlus20 = true;
321
322 clang::IdentifierInfo &ii = idents.get(token);
323 // The identifier has to be a C++-exclusive keyword. if not, then there is
324 // nothing to do.
325 if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
326 return;
327 // If the token is already an identifier, then there is nothing to do.
328 if (ii.getTokenID() == clang::tok::identifier)
329 return;
330 // Otherwise the token is a C++ keyword, so turn it back into a normal
331 // identifier.
332 ii.revertTokenIDToIdentifier();
333 }
334
335 /// Remove all C++ keywords from the given identifier table.
RemoveAllCppKeywords(IdentifierTable & idents)336 static void RemoveAllCppKeywords(IdentifierTable &idents) {
337 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
338 #include "clang/Basic/TokenKinds.def"
339 }
340
341 /// Configures Clang diagnostics for the expression parser.
SetupDefaultClangDiagnostics(CompilerInstance & compiler)342 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
343 // List of Clang warning groups that are not useful when parsing expressions.
344 const std::vector<const char *> groupsToIgnore = {
345 "unused-value",
346 "odr",
347 "unused-getter-return-value",
348 };
349 for (const char *group : groupsToIgnore) {
350 compiler.getDiagnostics().setSeverityForGroup(
351 clang::diag::Flavor::WarningOrError, group,
352 clang::diag::Severity::Ignored, SourceLocation());
353 }
354 }
355
356 //===----------------------------------------------------------------------===//
357 // Implementation of ClangExpressionParser
358 //===----------------------------------------------------------------------===//
359
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info,std::vector<std::string> include_directories,std::string filename)360 ClangExpressionParser::ClangExpressionParser(
361 ExecutionContextScope *exe_scope, Expression &expr,
362 bool generate_debug_info, std::vector<std::string> include_directories,
363 std::string filename)
364 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
365 m_pp_callbacks(nullptr),
366 m_include_directories(std::move(include_directories)),
367 m_filename(std::move(filename)) {
368 Log *log = GetLog(LLDBLog::Expressions);
369
370 // We can't compile expressions without a target. So if the exe_scope is
371 // null or doesn't have a target, then we just need to get out of here. I'll
372 // lldbassert and not make any of the compiler objects since
373 // I can't return errors directly from the constructor. Further calls will
374 // check if the compiler was made and
375 // bag out if it wasn't.
376
377 if (!exe_scope) {
378 lldbassert(exe_scope &&
379 "Can't make an expression parser with a null scope.");
380 return;
381 }
382
383 lldb::TargetSP target_sp;
384 target_sp = exe_scope->CalculateTarget();
385 if (!target_sp) {
386 lldbassert(target_sp.get() &&
387 "Can't make an expression parser with a null target.");
388 return;
389 }
390
391 // 1. Create a new compiler instance.
392 m_compiler = std::make_unique<CompilerInstance>();
393
394 // When capturing a reproducer, hook up the file collector with clang to
395 // collector modules and headers.
396 if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
397 repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
398 m_compiler->setModuleDepCollector(
399 std::make_shared<ModuleDependencyCollectorAdaptor>(
400 fp.GetFileCollector()));
401 DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
402 opts.IncludeSystemHeaders = true;
403 opts.IncludeModuleFiles = true;
404 }
405
406 // Make sure clang uses the same VFS as LLDB.
407 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
408
409 lldb::LanguageType frame_lang =
410 expr.Language(); // defaults to lldb::eLanguageTypeUnknown
411 bool overridden_target_opts = false;
412 lldb_private::LanguageRuntime *lang_rt = nullptr;
413
414 std::string abi;
415 ArchSpec target_arch;
416 target_arch = target_sp->GetArchitecture();
417
418 const auto target_machine = target_arch.GetMachine();
419
420 // If the expression is being evaluated in the context of an existing stack
421 // frame, we introspect to see if the language runtime is available.
422
423 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
424 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
425
426 // Make sure the user hasn't provided a preferred execution language with
427 // `expression --language X -- ...`
428 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
429 frame_lang = frame_sp->GetLanguage();
430
431 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
432 lang_rt = process_sp->GetLanguageRuntime(frame_lang);
433 LLDB_LOGF(log, "Frame has language of type %s",
434 Language::GetNameForLanguageType(frame_lang));
435 }
436
437 // 2. Configure the compiler with a set of default options that are
438 // appropriate for most situations.
439 if (target_arch.IsValid()) {
440 std::string triple = target_arch.GetTriple().str();
441 m_compiler->getTargetOpts().Triple = triple;
442 LLDB_LOGF(log, "Using %s as the target triple",
443 m_compiler->getTargetOpts().Triple.c_str());
444 } else {
445 // If we get here we don't have a valid target and just have to guess.
446 // Sometimes this will be ok to just use the host target triple (when we
447 // evaluate say "2+3", but other expressions like breakpoint conditions and
448 // other things that _are_ target specific really shouldn't just be using
449 // the host triple. In such a case the language runtime should expose an
450 // overridden options set (3), below.
451 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
452 LLDB_LOGF(log, "Using default target triple of %s",
453 m_compiler->getTargetOpts().Triple.c_str());
454 }
455 // Now add some special fixes for known architectures: Any arm32 iOS
456 // environment, but not on arm64
457 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
458 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
459 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
460 m_compiler->getTargetOpts().ABI = "apcs-gnu";
461 }
462 // Supported subsets of x86
463 if (target_machine == llvm::Triple::x86 ||
464 target_machine == llvm::Triple::x86_64) {
465 m_compiler->getTargetOpts().Features.push_back("+sse");
466 m_compiler->getTargetOpts().Features.push_back("+sse2");
467 }
468
469 // Set the target CPU to generate code for. This will be empty for any CPU
470 // that doesn't really need to make a special
471 // CPU string.
472 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
473
474 // Set the target ABI
475 abi = GetClangTargetABI(target_arch);
476 if (!abi.empty())
477 m_compiler->getTargetOpts().ABI = abi;
478
479 // 3. Now allow the runtime to provide custom configuration options for the
480 // target. In this case, a specialized language runtime is available and we
481 // can query it for extra options. For 99% of use cases, this will not be
482 // needed and should be provided when basic platform detection is not enough.
483 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this
484 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime
485 // having knowledge of clang::TargetOpts.
486 if (auto *renderscript_rt =
487 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt))
488 overridden_target_opts =
489 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
490
491 if (overridden_target_opts)
492 if (log && log->GetVerbose()) {
493 LLDB_LOGV(
494 log, "Using overridden target options for the expression evaluation");
495
496 auto opts = m_compiler->getTargetOpts();
497 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
498 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
499 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
500 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
501 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
502 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
503 StringList::LogDump(log, opts.Features, "Features");
504 }
505
506 // 4. Create and install the target on the compiler.
507 m_compiler->createDiagnostics();
508 // Limit the number of error diagnostics we emit.
509 // A value of 0 means no limit for both LLDB and Clang.
510 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
511
512 auto target_info = TargetInfo::CreateTargetInfo(
513 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
514 if (log) {
515 LLDB_LOGF(log, "Using SIMD alignment: %d",
516 target_info->getSimdDefaultAlign());
517 LLDB_LOGF(log, "Target datalayout string: '%s'",
518 target_info->getDataLayoutString());
519 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
520 LLDB_LOGF(log, "Target vector alignment: %d",
521 target_info->getMaxVectorAlign());
522 }
523 m_compiler->setTarget(target_info);
524
525 assert(m_compiler->hasTarget());
526
527 // 5. Set language options.
528 lldb::LanguageType language = expr.Language();
529 LangOptions &lang_opts = m_compiler->getLangOpts();
530
531 switch (language) {
532 case lldb::eLanguageTypeC:
533 case lldb::eLanguageTypeC89:
534 case lldb::eLanguageTypeC99:
535 case lldb::eLanguageTypeC11:
536 // FIXME: the following language option is a temporary workaround,
537 // to "ask for C, get C++."
538 // For now, the expression parser must use C++ anytime the language is a C
539 // family language, because the expression parser uses features of C++ to
540 // capture values.
541 lang_opts.CPlusPlus = true;
542 break;
543 case lldb::eLanguageTypeObjC:
544 lang_opts.ObjC = true;
545 // FIXME: the following language option is a temporary workaround,
546 // to "ask for ObjC, get ObjC++" (see comment above).
547 lang_opts.CPlusPlus = true;
548
549 // Clang now sets as default C++14 as the default standard (with
550 // GNU extensions), so we do the same here to avoid mismatches that
551 // cause compiler error when evaluating expressions (e.g. nullptr not found
552 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
553 // two lines below) so we decide to be consistent with that, but this could
554 // be re-evaluated in the future.
555 lang_opts.CPlusPlus11 = true;
556 break;
557 case lldb::eLanguageTypeC_plus_plus:
558 case lldb::eLanguageTypeC_plus_plus_11:
559 case lldb::eLanguageTypeC_plus_plus_14:
560 lang_opts.CPlusPlus11 = true;
561 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
562 LLVM_FALLTHROUGH;
563 case lldb::eLanguageTypeC_plus_plus_03:
564 lang_opts.CPlusPlus = true;
565 if (process_sp)
566 lang_opts.ObjC =
567 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
568 break;
569 case lldb::eLanguageTypeObjC_plus_plus:
570 case lldb::eLanguageTypeUnknown:
571 default:
572 lang_opts.ObjC = true;
573 lang_opts.CPlusPlus = true;
574 lang_opts.CPlusPlus11 = true;
575 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
576 break;
577 }
578
579 lang_opts.Bool = true;
580 lang_opts.WChar = true;
581 lang_opts.Blocks = true;
582 lang_opts.DebuggerSupport =
583 true; // Features specifically for debugger clients
584 if (expr.DesiredResultType() == Expression::eResultTypeId)
585 lang_opts.DebuggerCastResultToId = true;
586
587 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
588 .CharIsSignedByDefault();
589
590 // Spell checking is a nice feature, but it ends up completing a lot of types
591 // that we didn't strictly speaking need to complete. As a result, we spend a
592 // long time parsing and importing debug information.
593 lang_opts.SpellChecking = false;
594
595 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
596 if (clang_expr && clang_expr->DidImportCxxModules()) {
597 LLDB_LOG(log, "Adding lang options for importing C++ modules");
598
599 lang_opts.Modules = true;
600 // We want to implicitly build modules.
601 lang_opts.ImplicitModules = true;
602 // To automatically import all submodules when we import 'std'.
603 lang_opts.ModulesLocalVisibility = false;
604
605 // We use the @import statements, so we need this:
606 // FIXME: We could use the modules-ts, but that currently doesn't work.
607 lang_opts.ObjC = true;
608
609 // Options we need to parse libc++ code successfully.
610 // FIXME: We should ask the driver for the appropriate default flags.
611 lang_opts.GNUMode = true;
612 lang_opts.GNUKeywords = true;
613 lang_opts.DoubleSquareBracketAttributes = true;
614 lang_opts.CPlusPlus11 = true;
615
616 // The Darwin libc expects this macro to be set.
617 lang_opts.GNUCVersion = 40201;
618
619 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
620 target_sp);
621 }
622
623 if (process_sp && lang_opts.ObjC) {
624 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
625 if (runtime->GetRuntimeVersion() ==
626 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
627 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
628 else
629 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
630 VersionTuple(10, 7));
631
632 if (runtime->HasNewLiteralsAndIndexing())
633 lang_opts.DebuggerObjCLiteral = true;
634 }
635 }
636
637 lang_opts.ThreadsafeStatics = false;
638 lang_opts.AccessControl = false; // Debuggers get universal access
639 lang_opts.DollarIdents = true; // $ indicates a persistent variable name
640 // We enable all builtin functions beside the builtins from libc/libm (e.g.
641 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
642 // additionally enabling them as expandable builtins is breaking Clang.
643 lang_opts.NoBuiltin = true;
644
645 // Set CodeGen options
646 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
647 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
648 m_compiler->getCodeGenOpts().setFramePointer(
649 CodeGenOptions::FramePointerKind::All);
650 if (generate_debug_info)
651 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
652 else
653 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
654
655 // Disable some warnings.
656 SetupDefaultClangDiagnostics(*m_compiler);
657
658 // Inform the target of the language options
659 //
660 // FIXME: We shouldn't need to do this, the target should be immutable once
661 // created. This complexity should be lifted elsewhere.
662 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
663 m_compiler->getLangOpts());
664
665 // 6. Set up the diagnostic buffer for reporting errors
666
667 auto diag_mgr = new ClangDiagnosticManagerAdapter(
668 m_compiler->getDiagnostics().getDiagnosticOptions());
669 m_compiler->getDiagnostics().setClient(diag_mgr);
670
671 // 7. Set up the source management objects inside the compiler
672 m_compiler->createFileManager();
673 if (!m_compiler->hasSourceManager())
674 m_compiler->createSourceManager(m_compiler->getFileManager());
675 m_compiler->createPreprocessor(TU_Complete);
676
677 switch (language) {
678 case lldb::eLanguageTypeC:
679 case lldb::eLanguageTypeC89:
680 case lldb::eLanguageTypeC99:
681 case lldb::eLanguageTypeC11:
682 case lldb::eLanguageTypeObjC:
683 // This is not a C++ expression but we enabled C++ as explained above.
684 // Remove all C++ keywords from the PP so that the user can still use
685 // variables that have C++ keywords as names (e.g. 'int template;').
686 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
687 break;
688 default:
689 break;
690 }
691
692 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
693 target_sp->GetPersistentExpressionStateForLanguage(
694 lldb::eLanguageTypeC))) {
695 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
696 clang_persistent_vars->GetClangModulesDeclVendor()) {
697 std::unique_ptr<PPCallbacks> pp_callbacks(
698 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
699 m_compiler->getSourceManager()));
700 m_pp_callbacks =
701 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
702 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
703 }
704 }
705
706 // 8. Most of this we get from the CompilerInstance, but we also want to give
707 // the context an ExternalASTSource.
708
709 auto &PP = m_compiler->getPreprocessor();
710 auto &builtin_context = PP.getBuiltinInfo();
711 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
712 m_compiler->getLangOpts());
713
714 m_compiler->createASTContext();
715 clang::ASTContext &ast_context = m_compiler->getASTContext();
716
717 m_ast_context = std::make_unique<TypeSystemClang>(
718 "Expression ASTContext for '" + m_filename + "'", ast_context);
719
720 std::string module_name("$__lldb_module");
721
722 m_llvm_context = std::make_unique<LLVMContext>();
723 m_code_generator.reset(CreateLLVMCodeGen(
724 m_compiler->getDiagnostics(), module_name,
725 &m_compiler->getVirtualFileSystem(), m_compiler->getHeaderSearchOpts(),
726 m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(),
727 *m_llvm_context));
728 }
729
730 ClangExpressionParser::~ClangExpressionParser() = default;
731
732 namespace {
733
734 /// \class CodeComplete
735 ///
736 /// A code completion consumer for the clang Sema that is responsible for
737 /// creating the completion suggestions when a user requests completion
738 /// of an incomplete `expr` invocation.
739 class CodeComplete : public CodeCompleteConsumer {
740 CodeCompletionTUInfo m_info;
741
742 std::string m_expr;
743 unsigned m_position = 0;
744 /// The printing policy we use when printing declarations for our completion
745 /// descriptions.
746 clang::PrintingPolicy m_desc_policy;
747
748 struct CompletionWithPriority {
749 CompletionResult::Completion completion;
750 /// See CodeCompletionResult::Priority;
751 unsigned Priority;
752
753 /// Establishes a deterministic order in a list of CompletionWithPriority.
754 /// The order returned here is the order in which the completions are
755 /// displayed to the user.
operator <__anon5837f7100111::CodeComplete::CompletionWithPriority756 bool operator<(const CompletionWithPriority &o) const {
757 // High priority results should come first.
758 if (Priority != o.Priority)
759 return Priority > o.Priority;
760
761 // Identical priority, so just make sure it's a deterministic order.
762 return completion.GetUniqueKey() < o.completion.GetUniqueKey();
763 }
764 };
765
766 /// The stored completions.
767 /// Warning: These are in a non-deterministic order until they are sorted
768 /// and returned back to the caller.
769 std::vector<CompletionWithPriority> m_completions;
770
771 /// Returns true if the given character can be used in an identifier.
772 /// This also returns true for numbers because for completion we usually
773 /// just iterate backwards over iterators.
774 ///
775 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)776 static bool IsIdChar(char c) {
777 return c == '_' || std::isalnum(c) || c == '$';
778 }
779
780 /// Returns true if the given character is used to separate arguments
781 /// in the command line of lldb.
IsTokenSeparator(char c)782 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
783
784 /// Drops all tokens in front of the expression that are unrelated for
785 /// the completion of the cmd line. 'unrelated' means here that the token
786 /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd) const787 StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
788 if (cmd.empty())
789 return cmd;
790
791 // If we are at the start of a word, then all tokens are unrelated to
792 // the current completion logic.
793 if (IsTokenSeparator(cmd.back()))
794 return StringRef();
795
796 // Remove all previous tokens from the string as they are unrelated
797 // to completing the current token.
798 StringRef to_remove = cmd;
799 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
800 to_remove = to_remove.drop_back();
801 }
802 cmd = cmd.drop_front(to_remove.size());
803
804 return cmd;
805 }
806
807 /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd) const808 StringRef removeLastToken(StringRef cmd) const {
809 while (!cmd.empty() && IsIdChar(cmd.back())) {
810 cmd = cmd.drop_back();
811 }
812 return cmd;
813 }
814
815 /// Attempts to merge the given completion from the given position into the
816 /// existing command. Returns the completion string that can be returned to
817 /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion) const818 std::string mergeCompletion(StringRef existing, unsigned pos,
819 StringRef completion) const {
820 StringRef existing_command = existing.substr(0, pos);
821 // We rewrite the last token with the completion, so let's drop that
822 // token from the command.
823 existing_command = removeLastToken(existing_command);
824 // We also should remove all previous tokens from the command as they
825 // would otherwise be added to the completion that already has the
826 // completion.
827 existing_command = dropUnrelatedFrontTokens(existing_command);
828 return existing_command.str() + completion.str();
829 }
830
831 public:
832 /// Constructs a CodeComplete consumer that can be attached to a Sema.
833 ///
834 /// \param[out] expr
835 /// The whole expression string that we are currently parsing. This
836 /// string needs to be equal to the input the user typed, and NOT the
837 /// final code that Clang is parsing.
838 /// \param[out] position
839 /// The character position of the user cursor in the `expr` parameter.
840 ///
CodeComplete(clang::LangOptions ops,std::string expr,unsigned position)841 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
842 : CodeCompleteConsumer(CodeCompleteOptions()),
843 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
844 m_position(position), m_desc_policy(ops) {
845
846 // Ensure that the printing policy is producing a description that is as
847 // short as possible.
848 m_desc_policy.SuppressScope = true;
849 m_desc_policy.SuppressTagKeyword = true;
850 m_desc_policy.FullyQualifiedName = false;
851 m_desc_policy.TerseOutput = true;
852 m_desc_policy.IncludeNewlines = false;
853 m_desc_policy.UseVoidForZeroParams = false;
854 m_desc_policy.Bool = true;
855 }
856
857 /// \name Code-completion filtering
858 /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)859 bool isResultFilteredOut(StringRef Filter,
860 CodeCompletionResult Result) override {
861 // This code is mostly copied from CodeCompleteConsumer.
862 switch (Result.Kind) {
863 case CodeCompletionResult::RK_Declaration:
864 return !(
865 Result.Declaration->getIdentifier() &&
866 Result.Declaration->getIdentifier()->getName().startswith(Filter));
867 case CodeCompletionResult::RK_Keyword:
868 return !StringRef(Result.Keyword).startswith(Filter);
869 case CodeCompletionResult::RK_Macro:
870 return !Result.Macro->getName().startswith(Filter);
871 case CodeCompletionResult::RK_Pattern:
872 return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
873 }
874 // If we trigger this assert or the above switch yields a warning, then
875 // CodeCompletionResult has been enhanced with more kinds of completion
876 // results. Expand the switch above in this case.
877 assert(false && "Unknown completion result type?");
878 // If we reach this, then we should just ignore whatever kind of unknown
879 // result we got back. We probably can't turn it into any kind of useful
880 // completion suggestion with the existing code.
881 return true;
882 }
883
884 private:
885 /// Generate the completion strings for the given CodeCompletionResult.
886 /// Note that this function has to process results that could come in
887 /// non-deterministic order, so this function should have no side effects.
888 /// To make this easier to enforce, this function and all its parameters
889 /// should always be const-qualified.
890 /// \return Returns llvm::None if no completion should be provided for the
891 /// given CodeCompletionResult.
892 llvm::Optional<CompletionWithPriority>
getCompletionForResult(const CodeCompletionResult & R) const893 getCompletionForResult(const CodeCompletionResult &R) const {
894 std::string ToInsert;
895 std::string Description;
896 // Handle the different completion kinds that come from the Sema.
897 switch (R.Kind) {
898 case CodeCompletionResult::RK_Declaration: {
899 const NamedDecl *D = R.Declaration;
900 ToInsert = R.Declaration->getNameAsString();
901 // If we have a function decl that has no arguments we want to
902 // complete the empty parantheses for the user. If the function has
903 // arguments, we at least complete the opening bracket.
904 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
905 if (F->getNumParams() == 0)
906 ToInsert += "()";
907 else
908 ToInsert += "(";
909 raw_string_ostream OS(Description);
910 F->print(OS, m_desc_policy, false);
911 OS.flush();
912 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
913 Description = V->getType().getAsString(m_desc_policy);
914 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
915 Description = F->getType().getAsString(m_desc_policy);
916 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
917 // If we try to complete a namespace, then we can directly append
918 // the '::'.
919 if (!N->isAnonymousNamespace())
920 ToInsert += "::";
921 }
922 break;
923 }
924 case CodeCompletionResult::RK_Keyword:
925 ToInsert = R.Keyword;
926 break;
927 case CodeCompletionResult::RK_Macro:
928 ToInsert = R.Macro->getName().str();
929 break;
930 case CodeCompletionResult::RK_Pattern:
931 ToInsert = R.Pattern->getTypedText();
932 break;
933 }
934 // We also filter some internal lldb identifiers here. The user
935 // shouldn't see these.
936 if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
937 return llvm::None;
938 if (ToInsert.empty())
939 return llvm::None;
940 // Merge the suggested Token into the existing command line to comply
941 // with the kind of result the lldb API expects.
942 std::string CompletionSuggestion =
943 mergeCompletion(m_expr, m_position, ToInsert);
944
945 CompletionResult::Completion completion(CompletionSuggestion, Description,
946 CompletionMode::Normal);
947 return {{completion, R.Priority}};
948 }
949
950 public:
951 /// Adds the completions to the given CompletionRequest.
GetCompletions(CompletionRequest & request)952 void GetCompletions(CompletionRequest &request) {
953 // Bring m_completions into a deterministic order and pass it on to the
954 // CompletionRequest.
955 llvm::sort(m_completions);
956
957 for (const CompletionWithPriority &C : m_completions)
958 request.AddCompletion(C.completion.GetCompletion(),
959 C.completion.GetDescription(),
960 C.completion.GetMode());
961 }
962
963 /// \name Code-completion callbacks
964 /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)965 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
966 CodeCompletionResult *Results,
967 unsigned NumResults) override {
968
969 // The Sema put the incomplete token we try to complete in here during
970 // lexing, so we need to retrieve it here to know what we are completing.
971 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
972
973 // Iterate over all the results. Filter out results we don't want and
974 // process the rest.
975 for (unsigned I = 0; I != NumResults; ++I) {
976 // Filter the results with the information from the Sema.
977 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
978 continue;
979
980 CodeCompletionResult &R = Results[I];
981 llvm::Optional<CompletionWithPriority> CompletionAndPriority =
982 getCompletionForResult(R);
983 if (!CompletionAndPriority)
984 continue;
985 m_completions.push_back(*CompletionAndPriority);
986 }
987 }
988
989 /// \param S the semantic-analyzer object for which code-completion is being
990 /// done.
991 ///
992 /// \param CurrentArg the index of the current argument.
993 ///
994 /// \param Candidates an array of overload candidates.
995 ///
996 /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc,bool Braced)997 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
998 OverloadCandidate *Candidates,
999 unsigned NumCandidates,
1000 SourceLocation OpenParLoc,
1001 bool Braced) override {
1002 // At the moment we don't filter out any overloaded candidates.
1003 }
1004
getAllocator()1005 CodeCompletionAllocator &getAllocator() override {
1006 return m_info.getAllocator();
1007 }
1008
getCodeCompletionTUInfo()1009 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
1010 };
1011 } // namespace
1012
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)1013 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
1014 unsigned pos, unsigned typed_pos) {
1015 DiagnosticManager mgr;
1016 // We need the raw user expression here because that's what the CodeComplete
1017 // class uses to provide completion suggestions.
1018 // However, the `Text` method only gives us the transformed expression here.
1019 // To actually get the raw user input here, we have to cast our expression to
1020 // the LLVMUserExpression which exposes the right API. This should never fail
1021 // as we always have a ClangUserExpression whenever we call this.
1022 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
1023 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
1024 typed_pos);
1025 // We don't need a code generator for parsing.
1026 m_code_generator.reset();
1027 // Start parsing the expression with our custom code completion consumer.
1028 ParseInternal(mgr, &CC, line, pos);
1029 CC.GetCompletions(request);
1030 return true;
1031 }
1032
Parse(DiagnosticManager & diagnostic_manager)1033 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1034 return ParseInternal(diagnostic_manager);
1035 }
1036
1037 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)1038 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1039 CodeCompleteConsumer *completion_consumer,
1040 unsigned completion_line,
1041 unsigned completion_column) {
1042 ClangDiagnosticManagerAdapter *adapter =
1043 static_cast<ClangDiagnosticManagerAdapter *>(
1044 m_compiler->getDiagnostics().getClient());
1045
1046 adapter->ResetManager(&diagnostic_manager);
1047
1048 const char *expr_text = m_expr.Text();
1049
1050 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1051 bool created_main_file = false;
1052
1053 // Clang wants to do completion on a real file known by Clang's file manager,
1054 // so we have to create one to make this work.
1055 // TODO: We probably could also simulate to Clang's file manager that there
1056 // is a real file that contains our code.
1057 bool should_create_file = completion_consumer != nullptr;
1058
1059 // We also want a real file on disk if we generate full debug info.
1060 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1061 codegenoptions::FullDebugInfo;
1062
1063 if (should_create_file) {
1064 int temp_fd = -1;
1065 llvm::SmallString<128> result_path;
1066 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1067 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1068 std::string temp_source_path = tmpdir_file_spec.GetPath();
1069 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1070 } else {
1071 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1072 }
1073
1074 if (temp_fd != -1) {
1075 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true);
1076 const size_t expr_text_len = strlen(expr_text);
1077 size_t bytes_written = expr_text_len;
1078 if (file.Write(expr_text, bytes_written).Success()) {
1079 if (bytes_written == expr_text_len) {
1080 file.Close();
1081 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1082 result_path)) {
1083 source_mgr.setMainFileID(source_mgr.createFileID(
1084 *fileEntry,
1085 SourceLocation(), SrcMgr::C_User));
1086 created_main_file = true;
1087 }
1088 }
1089 }
1090 }
1091 }
1092
1093 if (!created_main_file) {
1094 std::unique_ptr<MemoryBuffer> memory_buffer =
1095 MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1096 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1097 }
1098
1099 adapter->BeginSourceFile(m_compiler->getLangOpts(),
1100 &m_compiler->getPreprocessor());
1101
1102 ClangExpressionHelper *type_system_helper =
1103 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1104
1105 // If we want to parse for code completion, we need to attach our code
1106 // completion consumer to the Sema and specify a completion position.
1107 // While parsing the Sema will call this consumer with the provided
1108 // completion suggestions.
1109 if (completion_consumer) {
1110 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
1111 auto &PP = m_compiler->getPreprocessor();
1112 // Lines and columns start at 1 in Clang, but code completion positions are
1113 // indexed from 0, so we need to add 1 to the line and column here.
1114 ++completion_line;
1115 ++completion_column;
1116 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
1117 }
1118
1119 ASTConsumer *ast_transformer =
1120 type_system_helper->ASTTransformer(m_code_generator.get());
1121
1122 std::unique_ptr<clang::ASTConsumer> Consumer;
1123 if (ast_transformer) {
1124 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1125 } else if (m_code_generator) {
1126 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1127 } else {
1128 Consumer = std::make_unique<ASTConsumer>();
1129 }
1130
1131 clang::ASTContext &ast_context = m_compiler->getASTContext();
1132
1133 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1134 *Consumer, TU_Complete, completion_consumer));
1135 m_compiler->setASTConsumer(std::move(Consumer));
1136
1137 if (ast_context.getLangOpts().Modules) {
1138 m_compiler->createASTReader();
1139 m_ast_context->setSema(&m_compiler->getSema());
1140 }
1141
1142 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1143 if (decl_map) {
1144 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1145 decl_map->InstallDiagnosticManager(diagnostic_manager);
1146
1147 clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1148
1149 if (ast_context.getExternalSource()) {
1150 auto module_wrapper =
1151 new ExternalASTSourceWrapper(ast_context.getExternalSource());
1152
1153 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1154
1155 auto multiplexer =
1156 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1157 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1158 ast_context.setExternalSource(Source);
1159 } else {
1160 ast_context.setExternalSource(ast_source);
1161 }
1162 decl_map->InstallASTContext(*m_ast_context);
1163 }
1164
1165 // Check that the ASTReader is properly attached to ASTContext and Sema.
1166 if (ast_context.getLangOpts().Modules) {
1167 assert(m_compiler->getASTContext().getExternalSource() &&
1168 "ASTContext doesn't know about the ASTReader?");
1169 assert(m_compiler->getSema().getExternalSource() &&
1170 "Sema doesn't know about the ASTReader?");
1171 }
1172
1173 {
1174 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1175 &m_compiler->getSema());
1176 ParseAST(m_compiler->getSema(), false, false);
1177 }
1178
1179 // Make sure we have no pointer to the Sema we are about to destroy.
1180 if (ast_context.getLangOpts().Modules)
1181 m_ast_context->setSema(nullptr);
1182 // Destroy the Sema. This is necessary because we want to emulate the
1183 // original behavior of ParseAST (which also destroys the Sema after parsing).
1184 m_compiler->setSema(nullptr);
1185
1186 adapter->EndSourceFile();
1187
1188 unsigned num_errors = adapter->getNumErrors();
1189
1190 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1191 num_errors++;
1192 diagnostic_manager.PutString(eDiagnosticSeverityError,
1193 "while importing modules:");
1194 diagnostic_manager.AppendMessageToDiagnostic(
1195 m_pp_callbacks->getErrorString());
1196 }
1197
1198 if (!num_errors) {
1199 type_system_helper->CommitPersistentDecls();
1200 }
1201
1202 adapter->ResetManager();
1203
1204 return num_errors;
1205 }
1206
1207 std::string
GetClangTargetABI(const ArchSpec & target_arch)1208 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1209 std::string abi;
1210
1211 if (target_arch.IsMIPS()) {
1212 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1213 case ArchSpec::eMIPSABI_N64:
1214 abi = "n64";
1215 break;
1216 case ArchSpec::eMIPSABI_N32:
1217 abi = "n32";
1218 break;
1219 case ArchSpec::eMIPSABI_O32:
1220 abi = "o32";
1221 break;
1222 default:
1223 break;
1224 }
1225 }
1226 return abi;
1227 }
1228
1229 /// Applies the given Fix-It hint to the given commit.
ApplyFixIt(const FixItHint & fixit,clang::edit::Commit & commit)1230 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1231 // This is cobbed from clang::Rewrite::FixItRewriter.
1232 if (fixit.CodeToInsert.empty()) {
1233 if (fixit.InsertFromRange.isValid()) {
1234 commit.insertFromRange(fixit.RemoveRange.getBegin(),
1235 fixit.InsertFromRange, /*afterToken=*/false,
1236 fixit.BeforePreviousInsertions);
1237 return;
1238 }
1239 commit.remove(fixit.RemoveRange);
1240 return;
1241 }
1242 if (fixit.RemoveRange.isTokenRange() ||
1243 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1244 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1245 return;
1246 }
1247 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1248 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1249 }
1250
RewriteExpression(DiagnosticManager & diagnostic_manager)1251 bool ClangExpressionParser::RewriteExpression(
1252 DiagnosticManager &diagnostic_manager) {
1253 clang::SourceManager &source_manager = m_compiler->getSourceManager();
1254 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1255 nullptr);
1256 clang::edit::Commit commit(editor);
1257 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1258
1259 class RewritesReceiver : public edit::EditsReceiver {
1260 Rewriter &rewrite;
1261
1262 public:
1263 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1264
1265 void insert(SourceLocation loc, StringRef text) override {
1266 rewrite.InsertText(loc, text);
1267 }
1268 void replace(CharSourceRange range, StringRef text) override {
1269 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1270 }
1271 };
1272
1273 RewritesReceiver rewrites_receiver(rewriter);
1274
1275 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1276 size_t num_diags = diagnostics.size();
1277 if (num_diags == 0)
1278 return false;
1279
1280 for (const auto &diag : diagnostic_manager.Diagnostics()) {
1281 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1282 if (!diagnostic)
1283 continue;
1284 if (!diagnostic->HasFixIts())
1285 continue;
1286 for (const FixItHint &fixit : diagnostic->FixIts())
1287 ApplyFixIt(fixit, commit);
1288 }
1289
1290 // FIXME - do we want to try to propagate specific errors here?
1291 if (!commit.isCommitable())
1292 return false;
1293 else if (!editor.commit(commit))
1294 return false;
1295
1296 // Now play all the edits, and stash the result in the diagnostic manager.
1297 editor.applyRewrites(rewrites_receiver);
1298 RewriteBuffer &main_file_buffer =
1299 rewriter.getEditBuffer(source_manager.getMainFileID());
1300
1301 std::string fixed_expression;
1302 llvm::raw_string_ostream out_stream(fixed_expression);
1303
1304 main_file_buffer.write(out_stream);
1305 out_stream.flush();
1306 diagnostic_manager.SetFixedExpression(fixed_expression);
1307
1308 return true;
1309 }
1310
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1311 static bool FindFunctionInModule(ConstString &mangled_name,
1312 llvm::Module *module, const char *orig_name) {
1313 for (const auto &func : module->getFunctionList()) {
1314 const StringRef &name = func.getName();
1315 if (name.contains(orig_name)) {
1316 mangled_name.SetString(name);
1317 return true;
1318 }
1319 }
1320
1321 return false;
1322 }
1323
PrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1324 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1325 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1326 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1327 bool &can_interpret, ExecutionPolicy execution_policy) {
1328 func_addr = LLDB_INVALID_ADDRESS;
1329 func_end = LLDB_INVALID_ADDRESS;
1330 Log *log = GetLog(LLDBLog::Expressions);
1331
1332 lldb_private::Status err;
1333
1334 std::unique_ptr<llvm::Module> llvm_module_up(
1335 m_code_generator->ReleaseModule());
1336
1337 if (!llvm_module_up) {
1338 err.SetErrorToGenericError();
1339 err.SetErrorString("IR doesn't contain a module");
1340 return err;
1341 }
1342
1343 ConstString function_name;
1344
1345 if (execution_policy != eExecutionPolicyTopLevel) {
1346 // Find the actual name of the function (it's often mangled somehow)
1347
1348 if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1349 m_expr.FunctionName())) {
1350 err.SetErrorToGenericError();
1351 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1352 m_expr.FunctionName());
1353 return err;
1354 } else {
1355 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1356 m_expr.FunctionName());
1357 }
1358 }
1359
1360 SymbolContext sc;
1361
1362 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1363 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1364 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1365 sc.target_sp = target_sp;
1366 }
1367
1368 LLVMUserExpression::IRPasses custom_passes;
1369 {
1370 auto lang = m_expr.Language();
1371 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1372 Language::GetNameForLanguageType(lang));
1373 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1374 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1375 auto runtime = process_sp->GetLanguageRuntime(lang);
1376 if (runtime)
1377 runtime->GetIRPasses(custom_passes);
1378 }
1379 }
1380
1381 if (custom_passes.EarlyPasses) {
1382 LLDB_LOGF(log,
1383 "%s - Running Early IR Passes from LanguageRuntime on "
1384 "expression module '%s'",
1385 __FUNCTION__, m_expr.FunctionName());
1386
1387 custom_passes.EarlyPasses->run(*llvm_module_up);
1388 }
1389
1390 execution_unit_sp = std::make_shared<IRExecutionUnit>(
1391 m_llvm_context, // handed off here
1392 llvm_module_up, // handed off here
1393 function_name, exe_ctx.GetTargetSP(), sc,
1394 m_compiler->getTargetOpts().Features);
1395
1396 ClangExpressionHelper *type_system_helper =
1397 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1398 ClangExpressionDeclMap *decl_map =
1399 type_system_helper->DeclMap(); // result can be NULL
1400
1401 if (decl_map) {
1402 StreamString error_stream;
1403 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1404 *execution_unit_sp, error_stream,
1405 function_name.AsCString());
1406
1407 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1408 err.SetErrorString(error_stream.GetString());
1409 return err;
1410 }
1411
1412 Process *process = exe_ctx.GetProcessPtr();
1413
1414 if (execution_policy != eExecutionPolicyAlways &&
1415 execution_policy != eExecutionPolicyTopLevel) {
1416 lldb_private::Status interpret_error;
1417
1418 bool interpret_function_calls =
1419 !process ? false : process->CanInterpretFunctionCalls();
1420 can_interpret = IRInterpreter::CanInterpret(
1421 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1422 interpret_error, interpret_function_calls);
1423
1424 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1425 err.SetErrorStringWithFormat(
1426 "Can't evaluate the expression without a running target due to: %s",
1427 interpret_error.AsCString());
1428 return err;
1429 }
1430 }
1431
1432 if (!process && execution_policy == eExecutionPolicyAlways) {
1433 err.SetErrorString("Expression needed to run in the target, but the "
1434 "target can't be run");
1435 return err;
1436 }
1437
1438 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1439 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1440 "target, but the target can't be run");
1441 return err;
1442 }
1443
1444 if (execution_policy == eExecutionPolicyAlways ||
1445 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1446 if (m_expr.NeedsValidation() && process) {
1447 if (!process->GetDynamicCheckers()) {
1448 ClangDynamicCheckerFunctions *dynamic_checkers =
1449 new ClangDynamicCheckerFunctions();
1450
1451 DiagnosticManager install_diagnostics;
1452
1453 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1454 if (install_diagnostics.Diagnostics().size())
1455 err.SetErrorString(install_diagnostics.GetString().c_str());
1456 else
1457 err.SetErrorString("couldn't install checkers, unknown error");
1458
1459 return err;
1460 }
1461
1462 process->SetDynamicCheckers(dynamic_checkers);
1463
1464 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1465 "Finished installing dynamic checkers ==");
1466 }
1467
1468 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1469 process->GetDynamicCheckers())) {
1470 IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1471 function_name.AsCString());
1472
1473 llvm::Module *module = execution_unit_sp->GetModule();
1474 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1475 err.SetErrorToGenericError();
1476 err.SetErrorString("Couldn't add dynamic checks to the expression");
1477 return err;
1478 }
1479
1480 if (custom_passes.LatePasses) {
1481 LLDB_LOGF(log,
1482 "%s - Running Late IR Passes from LanguageRuntime on "
1483 "expression module '%s'",
1484 __FUNCTION__, m_expr.FunctionName());
1485
1486 custom_passes.LatePasses->run(*module);
1487 }
1488 }
1489 }
1490 }
1491
1492 if (execution_policy == eExecutionPolicyAlways ||
1493 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1494 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1495 }
1496 } else {
1497 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1498 }
1499
1500 return err;
1501 }
1502
RunStaticInitializers(lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx)1503 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1504 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1505 lldb_private::Status err;
1506
1507 lldbassert(execution_unit_sp.get());
1508 lldbassert(exe_ctx.HasThreadScope());
1509
1510 if (!execution_unit_sp.get()) {
1511 err.SetErrorString(
1512 "can't run static initializers for a NULL execution unit");
1513 return err;
1514 }
1515
1516 if (!exe_ctx.HasThreadScope()) {
1517 err.SetErrorString("can't run static initializers without a thread");
1518 return err;
1519 }
1520
1521 std::vector<lldb::addr_t> static_initializers;
1522
1523 execution_unit_sp->GetStaticInitializers(static_initializers);
1524
1525 for (lldb::addr_t static_initializer : static_initializers) {
1526 EvaluateExpressionOptions options;
1527
1528 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1529 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1530 llvm::ArrayRef<lldb::addr_t>(), options));
1531
1532 DiagnosticManager execution_errors;
1533 lldb::ExpressionResults results =
1534 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1535 exe_ctx, call_static_initializer, options, execution_errors);
1536
1537 if (results != lldb::eExpressionCompleted) {
1538 err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1539 execution_errors.GetString().c_str());
1540 return err;
1541 }
1542 }
1543
1544 return err;
1545 }
1546