1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Chunks.h"
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "Writer.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23
24 using namespace llvm;
25 using namespace llvm::object;
26 using namespace llvm::support::endian;
27 using namespace llvm::COFF;
28 using llvm::support::ulittle32_t;
29
30 namespace lld {
31 namespace coff {
32
SectionChunk(ObjFile * f,const coff_section * h)33 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
34 : Chunk(SectionKind), file(f), header(h), repl(this) {
35 // Initialize relocs.
36 if (file)
37 setRelocs(file->getCOFFObj()->getRelocations(header));
38
39 // Initialize sectionName.
40 StringRef sectionName;
41 if (file) {
42 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
43 sectionName = *e;
44 }
45 sectionNameData = sectionName.data();
46 sectionNameSize = sectionName.size();
47
48 setAlignment(header->getAlignment());
49
50 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
51
52 // If linker GC is disabled, every chunk starts out alive. If linker GC is
53 // enabled, treat non-comdat sections as roots. Generally optimized object
54 // files will be built with -ffunction-sections or /Gy, so most things worth
55 // stripping will be in a comdat.
56 if (config)
57 live = !config->doGC || !isCOMDAT();
58 else
59 live = true;
60 }
61
62 // SectionChunk is one of the most frequently allocated classes, so it is
63 // important to keep it as compact as possible. As of this writing, the number
64 // below is the size of this class on x64 platforms.
65 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
66
add16(uint8_t * p,int16_t v)67 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
add32(uint8_t * p,int32_t v)68 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
add64(uint8_t * p,int64_t v)69 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
or16(uint8_t * p,uint16_t v)70 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
or32(uint8_t * p,uint32_t v)71 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
72
73 // Verify that given sections are appropriate targets for SECREL
74 // relocations. This check is relaxed because unfortunately debug
75 // sections have section-relative relocations against absolute symbols.
checkSecRel(const SectionChunk * sec,OutputSection * os)76 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
77 if (os)
78 return true;
79 if (sec->isCodeView())
80 return false;
81 error("SECREL relocation cannot be applied to absolute symbols");
82 return false;
83 }
84
applySecRel(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)85 static void applySecRel(const SectionChunk *sec, uint8_t *off,
86 OutputSection *os, uint64_t s) {
87 if (!checkSecRel(sec, os))
88 return;
89 uint64_t secRel = s - os->getRVA();
90 if (secRel > UINT32_MAX) {
91 error("overflow in SECREL relocation in section: " + sec->getSectionName());
92 return;
93 }
94 add32(off, secRel);
95 }
96
applySecIdx(uint8_t * off,OutputSection * os)97 static void applySecIdx(uint8_t *off, OutputSection *os) {
98 // Absolute symbol doesn't have section index, but section index relocation
99 // against absolute symbol should be resolved to one plus the last output
100 // section index. This is required for compatibility with MSVC.
101 if (os)
102 add16(off, os->sectionIndex);
103 else
104 add16(off, DefinedAbsolute::numOutputSections + 1);
105 }
106
applyRelX64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const107 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
108 uint64_t s, uint64_t p) const {
109 switch (type) {
110 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break;
111 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break;
112 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
113 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break;
114 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break;
115 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break;
116 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break;
117 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break;
118 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break;
119 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break;
120 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break;
121 default:
122 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
123 toString(file));
124 }
125 }
126
applyRelX86(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const127 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
128 uint64_t s, uint64_t p) const {
129 switch (type) {
130 case IMAGE_REL_I386_ABSOLUTE: break;
131 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break;
132 case IMAGE_REL_I386_DIR32NB: add32(off, s); break;
133 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break;
134 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break;
135 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break;
136 default:
137 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
138 toString(file));
139 }
140 }
141
applyMOV(uint8_t * off,uint16_t v)142 static void applyMOV(uint8_t *off, uint16_t v) {
143 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
144 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
145 }
146
readMOV(uint8_t * off,bool movt)147 static uint16_t readMOV(uint8_t *off, bool movt) {
148 uint16_t op1 = read16le(off);
149 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
150 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
151 " instruction in MOV32T relocation");
152 uint16_t op2 = read16le(off + 2);
153 if ((op2 & 0x8000) != 0)
154 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
155 " instruction in MOV32T relocation");
156 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
157 ((op1 & 0x000f) << 12);
158 }
159
applyMOV32T(uint8_t * off,uint32_t v)160 void applyMOV32T(uint8_t *off, uint32_t v) {
161 uint16_t immW = readMOV(off, false); // read MOVW operand
162 uint16_t immT = readMOV(off + 4, true); // read MOVT operand
163 uint32_t imm = immW | (immT << 16);
164 v += imm; // add the immediate offset
165 applyMOV(off, v); // set MOVW operand
166 applyMOV(off + 4, v >> 16); // set MOVT operand
167 }
168
applyBranch20T(uint8_t * off,int32_t v)169 static void applyBranch20T(uint8_t *off, int32_t v) {
170 if (!isInt<21>(v))
171 error("relocation out of range");
172 uint32_t s = v < 0 ? 1 : 0;
173 uint32_t j1 = (v >> 19) & 1;
174 uint32_t j2 = (v >> 18) & 1;
175 or16(off, (s << 10) | ((v >> 12) & 0x3f));
176 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
177 }
178
applyBranch24T(uint8_t * off,int32_t v)179 void applyBranch24T(uint8_t *off, int32_t v) {
180 if (!isInt<25>(v))
181 error("relocation out of range");
182 uint32_t s = v < 0 ? 1 : 0;
183 uint32_t j1 = ((~v >> 23) & 1) ^ s;
184 uint32_t j2 = ((~v >> 22) & 1) ^ s;
185 or16(off, (s << 10) | ((v >> 12) & 0x3ff));
186 // Clear out the J1 and J2 bits which may be set.
187 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
188 }
189
applyRelARM(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const190 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
191 uint64_t s, uint64_t p) const {
192 // Pointer to thumb code must have the LSB set.
193 uint64_t sx = s;
194 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
195 sx |= 1;
196 switch (type) {
197 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break;
198 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break;
199 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break;
200 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
201 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
202 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break;
203 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break;
204 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break;
205 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break;
206 default:
207 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
208 toString(file));
209 }
210 }
211
212 // Interpret the existing immediate value as a byte offset to the
213 // target symbol, then update the instruction with the immediate as
214 // the page offset from the current instruction to the target.
applyArm64Addr(uint8_t * off,uint64_t s,uint64_t p,int shift)215 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
216 uint32_t orig = read32le(off);
217 int64_t imm =
218 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
219 s += imm;
220 imm = (s >> shift) - (p >> shift);
221 uint32_t immLo = (imm & 0x3) << 29;
222 uint32_t immHi = (imm & 0x1FFFFC) << 3;
223 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
224 write32le(off, (orig & ~mask) | immLo | immHi);
225 }
226
227 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
228 // Optionally limit the range of the written immediate by one or more bits
229 // (rangeLimit).
applyArm64Imm(uint8_t * off,uint64_t imm,uint32_t rangeLimit)230 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
231 uint32_t orig = read32le(off);
232 imm += (orig >> 10) & 0xFFF;
233 orig &= ~(0xFFF << 10);
234 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
235 }
236
237 // Add the 12 bit page offset to the existing immediate.
238 // Ldr/str instructions store the opcode immediate scaled
239 // by the load/store size (giving a larger range for larger
240 // loads/stores). The immediate is always (both before and after
241 // fixing up the relocation) stored scaled similarly.
242 // Even if larger loads/stores have a larger range, limit the
243 // effective offset to 12 bit, since it is intended to be a
244 // page offset.
applyArm64Ldr(uint8_t * off,uint64_t imm)245 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
246 uint32_t orig = read32le(off);
247 uint32_t size = orig >> 30;
248 // 0x04000000 indicates SIMD/FP registers
249 // 0x00800000 indicates 128 bit
250 if ((orig & 0x4800000) == 0x4800000)
251 size += 4;
252 if ((imm & ((1 << size) - 1)) != 0)
253 error("misaligned ldr/str offset");
254 applyArm64Imm(off, imm >> size, size);
255 }
256
applySecRelLow12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)257 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
258 OutputSection *os, uint64_t s) {
259 if (checkSecRel(sec, os))
260 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
261 }
262
applySecRelHigh12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)263 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
264 OutputSection *os, uint64_t s) {
265 if (!checkSecRel(sec, os))
266 return;
267 uint64_t secRel = (s - os->getRVA()) >> 12;
268 if (0xfff < secRel) {
269 error("overflow in SECREL_HIGH12A relocation in section: " +
270 sec->getSectionName());
271 return;
272 }
273 applyArm64Imm(off, secRel & 0xfff, 0);
274 }
275
applySecRelLdr(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)276 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
277 OutputSection *os, uint64_t s) {
278 if (checkSecRel(sec, os))
279 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
280 }
281
applyArm64Branch26(uint8_t * off,int64_t v)282 void applyArm64Branch26(uint8_t *off, int64_t v) {
283 if (!isInt<28>(v))
284 error("relocation out of range");
285 or32(off, (v & 0x0FFFFFFC) >> 2);
286 }
287
applyArm64Branch19(uint8_t * off,int64_t v)288 static void applyArm64Branch19(uint8_t *off, int64_t v) {
289 if (!isInt<21>(v))
290 error("relocation out of range");
291 or32(off, (v & 0x001FFFFC) << 3);
292 }
293
applyArm64Branch14(uint8_t * off,int64_t v)294 static void applyArm64Branch14(uint8_t *off, int64_t v) {
295 if (!isInt<16>(v))
296 error("relocation out of range");
297 or32(off, (v & 0x0000FFFC) << 3);
298 }
299
applyRelARM64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const300 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
301 uint64_t s, uint64_t p) const {
302 switch (type) {
303 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
304 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break;
305 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
306 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
307 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break;
308 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break;
309 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break;
310 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break;
311 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break;
312 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break;
313 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break;
314 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break;
315 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
316 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break;
317 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break;
318 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break;
319 default:
320 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
321 toString(file));
322 }
323 }
324
maybeReportRelocationToDiscarded(const SectionChunk * fromChunk,Defined * sym,const coff_relocation & rel)325 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
326 Defined *sym,
327 const coff_relocation &rel) {
328 // Don't report these errors when the relocation comes from a debug info
329 // section or in mingw mode. MinGW mode object files (built by GCC) can
330 // have leftover sections with relocations against discarded comdat
331 // sections. Such sections are left as is, with relocations untouched.
332 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw)
333 return;
334
335 // Get the name of the symbol. If it's null, it was discarded early, so we
336 // have to go back to the object file.
337 ObjFile *file = fromChunk->file;
338 StringRef name;
339 if (sym) {
340 name = sym->getName();
341 } else {
342 COFFSymbolRef coffSym =
343 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
344 name = check(file->getCOFFObj()->getSymbolName(coffSym));
345 }
346
347 std::vector<std::string> symbolLocations =
348 getSymbolLocations(file, rel.SymbolTableIndex);
349
350 std::string out;
351 llvm::raw_string_ostream os(out);
352 os << "relocation against symbol in discarded section: " + name;
353 for (const std::string &s : symbolLocations)
354 os << s;
355 error(os.str());
356 }
357
writeTo(uint8_t * buf) const358 void SectionChunk::writeTo(uint8_t *buf) const {
359 if (!hasData)
360 return;
361 // Copy section contents from source object file to output file.
362 ArrayRef<uint8_t> a = getContents();
363 if (!a.empty())
364 memcpy(buf, a.data(), a.size());
365
366 // Apply relocations.
367 size_t inputSize = getSize();
368 for (const coff_relocation &rel : getRelocs()) {
369 // Check for an invalid relocation offset. This check isn't perfect, because
370 // we don't have the relocation size, which is only known after checking the
371 // machine and relocation type. As a result, a relocation may overwrite the
372 // beginning of the following input section.
373 if (rel.VirtualAddress >= inputSize) {
374 error("relocation points beyond the end of its parent section");
375 continue;
376 }
377
378 applyRelocation(buf + rel.VirtualAddress, rel);
379 }
380 }
381
applyRelocation(uint8_t * off,const coff_relocation & rel) const382 void SectionChunk::applyRelocation(uint8_t *off,
383 const coff_relocation &rel) const {
384 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
385
386 // Get the output section of the symbol for this relocation. The output
387 // section is needed to compute SECREL and SECTION relocations used in debug
388 // info.
389 Chunk *c = sym ? sym->getChunk() : nullptr;
390 OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr;
391
392 // Skip the relocation if it refers to a discarded section, and diagnose it
393 // as an error if appropriate. If a symbol was discarded early, it may be
394 // null. If it was discarded late, the output section will be null, unless
395 // it was an absolute or synthetic symbol.
396 if (!sym ||
397 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
398 maybeReportRelocationToDiscarded(this, sym, rel);
399 return;
400 }
401
402 uint64_t s = sym->getRVA();
403
404 // Compute the RVA of the relocation for relative relocations.
405 uint64_t p = rva + rel.VirtualAddress;
406 switch (config->machine) {
407 case AMD64:
408 applyRelX64(off, rel.Type, os, s, p);
409 break;
410 case I386:
411 applyRelX86(off, rel.Type, os, s, p);
412 break;
413 case ARMNT:
414 applyRelARM(off, rel.Type, os, s, p);
415 break;
416 case ARM64:
417 applyRelARM64(off, rel.Type, os, s, p);
418 break;
419 default:
420 llvm_unreachable("unknown machine type");
421 }
422 }
423
424 // Defend against unsorted relocations. This may be overly conservative.
sortRelocations()425 void SectionChunk::sortRelocations() {
426 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
427 return l.VirtualAddress < r.VirtualAddress;
428 };
429 if (llvm::is_sorted(getRelocs(), cmpByVa))
430 return;
431 warn("some relocations in " + file->getName() + " are not sorted");
432 MutableArrayRef<coff_relocation> newRelocs(
433 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
434 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
435 llvm::sort(newRelocs, cmpByVa);
436 setRelocs(newRelocs);
437 }
438
439 // Similar to writeTo, but suitable for relocating a subsection of the overall
440 // section.
writeAndRelocateSubsection(ArrayRef<uint8_t> sec,ArrayRef<uint8_t> subsec,uint32_t & nextRelocIndex,uint8_t * buf) const441 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
442 ArrayRef<uint8_t> subsec,
443 uint32_t &nextRelocIndex,
444 uint8_t *buf) const {
445 assert(!subsec.empty() && !sec.empty());
446 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
447 "subsection is not part of this section");
448 size_t vaBegin = std::distance(sec.begin(), subsec.begin());
449 size_t vaEnd = std::distance(sec.begin(), subsec.end());
450 memcpy(buf, subsec.data(), subsec.size());
451 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
452 const coff_relocation &rel = relocsData[nextRelocIndex];
453 // Only apply relocations that apply to this subsection. These checks
454 // assume that all subsections completely contain their relocations.
455 // Relocations must not straddle the beginning or end of a subsection.
456 if (rel.VirtualAddress < vaBegin)
457 continue;
458 if (rel.VirtualAddress + 1 >= vaEnd)
459 break;
460 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
461 }
462 }
463
addAssociative(SectionChunk * child)464 void SectionChunk::addAssociative(SectionChunk *child) {
465 // Insert the child section into the list of associated children. Keep the
466 // list ordered by section name so that ICF does not depend on section order.
467 assert(child->assocChildren == nullptr &&
468 "associated sections cannot have their own associated children");
469 SectionChunk *prev = this;
470 SectionChunk *next = assocChildren;
471 for (; next != nullptr; prev = next, next = next->assocChildren) {
472 if (next->getSectionName() <= child->getSectionName())
473 break;
474 }
475
476 // Insert child between prev and next.
477 assert(prev->assocChildren == next);
478 prev->assocChildren = child;
479 child->assocChildren = next;
480 }
481
getBaserelType(const coff_relocation & rel)482 static uint8_t getBaserelType(const coff_relocation &rel) {
483 switch (config->machine) {
484 case AMD64:
485 if (rel.Type == IMAGE_REL_AMD64_ADDR64)
486 return IMAGE_REL_BASED_DIR64;
487 if (rel.Type == IMAGE_REL_AMD64_ADDR32)
488 return IMAGE_REL_BASED_HIGHLOW;
489 return IMAGE_REL_BASED_ABSOLUTE;
490 case I386:
491 if (rel.Type == IMAGE_REL_I386_DIR32)
492 return IMAGE_REL_BASED_HIGHLOW;
493 return IMAGE_REL_BASED_ABSOLUTE;
494 case ARMNT:
495 if (rel.Type == IMAGE_REL_ARM_ADDR32)
496 return IMAGE_REL_BASED_HIGHLOW;
497 if (rel.Type == IMAGE_REL_ARM_MOV32T)
498 return IMAGE_REL_BASED_ARM_MOV32T;
499 return IMAGE_REL_BASED_ABSOLUTE;
500 case ARM64:
501 if (rel.Type == IMAGE_REL_ARM64_ADDR64)
502 return IMAGE_REL_BASED_DIR64;
503 return IMAGE_REL_BASED_ABSOLUTE;
504 default:
505 llvm_unreachable("unknown machine type");
506 }
507 }
508
509 // Windows-specific.
510 // Collect all locations that contain absolute addresses, which need to be
511 // fixed by the loader if load-time relocation is needed.
512 // Only called when base relocation is enabled.
getBaserels(std::vector<Baserel> * res)513 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
514 for (const coff_relocation &rel : getRelocs()) {
515 uint8_t ty = getBaserelType(rel);
516 if (ty == IMAGE_REL_BASED_ABSOLUTE)
517 continue;
518 Symbol *target = file->getSymbol(rel.SymbolTableIndex);
519 if (!target || isa<DefinedAbsolute>(target))
520 continue;
521 res->emplace_back(rva + rel.VirtualAddress, ty);
522 }
523 }
524
525 // MinGW specific.
526 // Check whether a static relocation of type Type can be deferred and
527 // handled at runtime as a pseudo relocation (for references to a module
528 // local variable, which turned out to actually need to be imported from
529 // another DLL) This returns the size the relocation is supposed to update,
530 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
531 // relocation.
getRuntimePseudoRelocSize(uint16_t type)532 static int getRuntimePseudoRelocSize(uint16_t type) {
533 // Relocations that either contain an absolute address, or a plain
534 // relative offset, since the runtime pseudo reloc implementation
535 // adds 8/16/32/64 bit values to a memory address.
536 //
537 // Given a pseudo relocation entry,
538 //
539 // typedef struct {
540 // DWORD sym;
541 // DWORD target;
542 // DWORD flags;
543 // } runtime_pseudo_reloc_item_v2;
544 //
545 // the runtime relocation performs this adjustment:
546 // *(base + .target) += *(base + .sym) - (base + .sym)
547 //
548 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
549 // IMAGE_REL_I386_DIR32, where the memory location initially contains
550 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
551 // where the memory location originally contains the relative offset to the
552 // IAT slot.
553 //
554 // This requires the target address to be writable, either directly out of
555 // the image, or temporarily changed at runtime with VirtualProtect.
556 // Since this only operates on direct address values, it doesn't work for
557 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
558 switch (config->machine) {
559 case AMD64:
560 switch (type) {
561 case IMAGE_REL_AMD64_ADDR64:
562 return 64;
563 case IMAGE_REL_AMD64_ADDR32:
564 case IMAGE_REL_AMD64_REL32:
565 case IMAGE_REL_AMD64_REL32_1:
566 case IMAGE_REL_AMD64_REL32_2:
567 case IMAGE_REL_AMD64_REL32_3:
568 case IMAGE_REL_AMD64_REL32_4:
569 case IMAGE_REL_AMD64_REL32_5:
570 return 32;
571 default:
572 return 0;
573 }
574 case I386:
575 switch (type) {
576 case IMAGE_REL_I386_DIR32:
577 case IMAGE_REL_I386_REL32:
578 return 32;
579 default:
580 return 0;
581 }
582 case ARMNT:
583 switch (type) {
584 case IMAGE_REL_ARM_ADDR32:
585 return 32;
586 default:
587 return 0;
588 }
589 case ARM64:
590 switch (type) {
591 case IMAGE_REL_ARM64_ADDR64:
592 return 64;
593 case IMAGE_REL_ARM64_ADDR32:
594 return 32;
595 default:
596 return 0;
597 }
598 default:
599 llvm_unreachable("unknown machine type");
600 }
601 }
602
603 // MinGW specific.
604 // Append information to the provided vector about all relocations that
605 // need to be handled at runtime as runtime pseudo relocations (references
606 // to a module local variable, which turned out to actually need to be
607 // imported from another DLL).
getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> & res)608 void SectionChunk::getRuntimePseudoRelocs(
609 std::vector<RuntimePseudoReloc> &res) {
610 for (const coff_relocation &rel : getRelocs()) {
611 auto *target =
612 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
613 if (!target || !target->isRuntimePseudoReloc)
614 continue;
615 int sizeInBits = getRuntimePseudoRelocSize(rel.Type);
616 if (sizeInBits == 0) {
617 error("unable to automatically import from " + target->getName() +
618 " with relocation type " +
619 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
620 toString(file));
621 continue;
622 }
623 // sizeInBits is used to initialize the Flags field; currently no
624 // other flags are defined.
625 res.emplace_back(
626 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
627 }
628 }
629
isCOMDAT() const630 bool SectionChunk::isCOMDAT() const {
631 return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
632 }
633
printDiscardedMessage() const634 void SectionChunk::printDiscardedMessage() const {
635 // Removed by dead-stripping. If it's removed by ICF, ICF already
636 // printed out the name, so don't repeat that here.
637 if (sym && this == repl)
638 log("Discarded " + sym->getName());
639 }
640
getDebugName() const641 StringRef SectionChunk::getDebugName() const {
642 if (sym)
643 return sym->getName();
644 return "";
645 }
646
getContents() const647 ArrayRef<uint8_t> SectionChunk::getContents() const {
648 ArrayRef<uint8_t> a;
649 cantFail(file->getCOFFObj()->getSectionContents(header, a));
650 return a;
651 }
652
consumeDebugMagic()653 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
654 assert(isCodeView());
655 return consumeDebugMagic(getContents(), getSectionName());
656 }
657
consumeDebugMagic(ArrayRef<uint8_t> data,StringRef sectionName)658 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
659 StringRef sectionName) {
660 if (data.empty())
661 return {};
662
663 // First 4 bytes are section magic.
664 if (data.size() < 4)
665 fatal("the section is too short: " + sectionName);
666
667 if (!sectionName.startswith(".debug$"))
668 fatal("invalid section: " + sectionName);
669
670 uint32_t magic = support::endian::read32le(data.data());
671 uint32_t expectedMagic = sectionName == ".debug$H"
672 ? DEBUG_HASHES_SECTION_MAGIC
673 : DEBUG_SECTION_MAGIC;
674 if (magic != expectedMagic) {
675 warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
676 utohexstr(magic));
677 return {};
678 }
679 return data.slice(4);
680 }
681
findByName(ArrayRef<SectionChunk * > sections,StringRef name)682 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
683 StringRef name) {
684 for (SectionChunk *c : sections)
685 if (c->getSectionName() == name)
686 return c;
687 return nullptr;
688 }
689
replace(SectionChunk * other)690 void SectionChunk::replace(SectionChunk *other) {
691 p2Align = std::max(p2Align, other->p2Align);
692 other->repl = repl;
693 other->live = false;
694 }
695
getSectionNumber() const696 uint32_t SectionChunk::getSectionNumber() const {
697 DataRefImpl r;
698 r.p = reinterpret_cast<uintptr_t>(header);
699 SectionRef s(r, file->getCOFFObj());
700 return s.getIndex() + 1;
701 }
702
CommonChunk(const COFFSymbolRef s)703 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
704 // The value of a common symbol is its size. Align all common symbols smaller
705 // than 32 bytes naturally, i.e. round the size up to the next power of two.
706 // This is what MSVC link.exe does.
707 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
708 hasData = false;
709 }
710
getOutputCharacteristics() const711 uint32_t CommonChunk::getOutputCharacteristics() const {
712 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
713 IMAGE_SCN_MEM_WRITE;
714 }
715
writeTo(uint8_t * buf) const716 void StringChunk::writeTo(uint8_t *buf) const {
717 memcpy(buf, str.data(), str.size());
718 buf[str.size()] = '\0';
719 }
720
ImportThunkChunkX64(Defined * s)721 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) {
722 // Intel Optimization Manual says that all branch targets
723 // should be 16-byte aligned. MSVC linker does this too.
724 setAlignment(16);
725 }
726
writeTo(uint8_t * buf) const727 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
728 memcpy(buf, importThunkX86, sizeof(importThunkX86));
729 // The first two bytes is a JMP instruction. Fill its operand.
730 write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
731 }
732
getBaserels(std::vector<Baserel> * res)733 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
734 res->emplace_back(getRVA() + 2);
735 }
736
writeTo(uint8_t * buf) const737 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
738 memcpy(buf, importThunkX86, sizeof(importThunkX86));
739 // The first two bytes is a JMP instruction. Fill its operand.
740 write32le(buf + 2,
741 impSymbol->getRVA() + config->imageBase);
742 }
743
getBaserels(std::vector<Baserel> * res)744 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
745 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
746 }
747
writeTo(uint8_t * buf) const748 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
749 memcpy(buf, importThunkARM, sizeof(importThunkARM));
750 // Fix mov.w and mov.t operands.
751 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase);
752 }
753
writeTo(uint8_t * buf) const754 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
755 int64_t off = impSymbol->getRVA() & 0xfff;
756 memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
757 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
758 applyArm64Ldr(buf + 4, off);
759 }
760
761 // A Thumb2, PIC, non-interworking range extension thunk.
762 const uint8_t armThunk[] = {
763 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
764 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
765 0xe7, 0x44, // L1: add pc, ip
766 };
767
getSize() const768 size_t RangeExtensionThunkARM::getSize() const {
769 assert(config->machine == ARMNT);
770 return sizeof(armThunk);
771 }
772
writeTo(uint8_t * buf) const773 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
774 assert(config->machine == ARMNT);
775 uint64_t offset = target->getRVA() - rva - 12;
776 memcpy(buf, armThunk, sizeof(armThunk));
777 applyMOV32T(buf, uint32_t(offset));
778 }
779
780 // A position independent ARM64 adrp+add thunk, with a maximum range of
781 // +/- 4 GB, which is enough for any PE-COFF.
782 const uint8_t arm64Thunk[] = {
783 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
784 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
785 0x00, 0x02, 0x1f, 0xd6, // br x16
786 };
787
getSize() const788 size_t RangeExtensionThunkARM64::getSize() const {
789 assert(config->machine == ARM64);
790 return sizeof(arm64Thunk);
791 }
792
writeTo(uint8_t * buf) const793 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
794 assert(config->machine == ARM64);
795 memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
796 applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
797 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
798 }
799
getBaserels(std::vector<Baserel> * res)800 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
801 res->emplace_back(getRVA());
802 }
803
getSize() const804 size_t LocalImportChunk::getSize() const { return config->wordsize; }
805
writeTo(uint8_t * buf) const806 void LocalImportChunk::writeTo(uint8_t *buf) const {
807 if (config->is64()) {
808 write64le(buf, sym->getRVA() + config->imageBase);
809 } else {
810 write32le(buf, sym->getRVA() + config->imageBase);
811 }
812 }
813
writeTo(uint8_t * buf) const814 void RVATableChunk::writeTo(uint8_t *buf) const {
815 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
816 size_t cnt = 0;
817 for (const ChunkAndOffset &co : syms)
818 begin[cnt++] = co.inputChunk->getRVA() + co.offset;
819 llvm::sort(begin, begin + cnt);
820 assert(std::unique(begin, begin + cnt) == begin + cnt &&
821 "RVA tables should be de-duplicated");
822 }
823
writeTo(uint8_t * buf) const824 void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
825 struct RVAFlag {
826 ulittle32_t rva;
827 uint8_t flag;
828 };
829 auto flags =
830 makeMutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
831 for (auto t : zip(syms, flags)) {
832 const auto &sym = std::get<0>(t);
833 auto &flag = std::get<1>(t);
834 flag.rva = sym.inputChunk->getRVA() + sym.offset;
835 flag.flag = 0;
836 }
837 llvm::sort(flags,
838 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
839 assert(llvm::unique(flags, [](const RVAFlag &a,
840 const RVAFlag &b) { return a.rva == b.rva; }) ==
841 flags.end() &&
842 "RVA tables should be de-duplicated");
843 }
844
845 // MinGW specific, for the "automatic import of variables from DLLs" feature.
getSize() const846 size_t PseudoRelocTableChunk::getSize() const {
847 if (relocs.empty())
848 return 0;
849 return 12 + 12 * relocs.size();
850 }
851
852 // MinGW specific.
writeTo(uint8_t * buf) const853 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
854 if (relocs.empty())
855 return;
856
857 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
858 // This is the list header, to signal the runtime pseudo relocation v2
859 // format.
860 table[0] = 0;
861 table[1] = 0;
862 table[2] = 1;
863
864 size_t idx = 3;
865 for (const RuntimePseudoReloc &rpr : relocs) {
866 table[idx + 0] = rpr.sym->getRVA();
867 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
868 table[idx + 2] = rpr.flags;
869 idx += 3;
870 }
871 }
872
873 // Windows-specific. This class represents a block in .reloc section.
874 // The format is described here.
875 //
876 // On Windows, each DLL is linked against a fixed base address and
877 // usually loaded to that address. However, if there's already another
878 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
879 // contain .reloc sections which contain offsets that need to be fixed
880 // up at runtime. If the loader finds that a DLL cannot be loaded to its
881 // desired base address, it loads it to somewhere else, and add <actual
882 // base address> - <desired base address> to each offset that is
883 // specified by the .reloc section. In ELF terms, .reloc sections
884 // contain relative relocations in REL format (as opposed to RELA.)
885 //
886 // This already significantly reduces the size of relocations compared
887 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
888 // it was invented for PCs in the late '80s or early '90s.) Offsets in
889 // .reloc are grouped by page where the page size is 12 bits, and
890 // offsets sharing the same page address are stored consecutively to
891 // represent them with less space. This is very similar to the page
892 // table which is grouped by (multiple stages of) pages.
893 //
894 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
895 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
896 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
897 // are represented like this:
898 //
899 // 0x00000 -- page address (4 bytes)
900 // 16 -- size of this block (4 bytes)
901 // 0xA030 -- entries (2 bytes each)
902 // 0xA500
903 // 0xA700
904 // 0xAA00
905 // 0x20000 -- page address (4 bytes)
906 // 12 -- size of this block (4 bytes)
907 // 0xA004 -- entries (2 bytes each)
908 // 0xA008
909 //
910 // Usually we have a lot of relocations for each page, so the number of
911 // bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk(uint32_t page,Baserel * begin,Baserel * end)912 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
913 // Block header consists of 4 byte page RVA and 4 byte block size.
914 // Each entry is 2 byte. Last entry may be padding.
915 data.resize(alignTo((end - begin) * 2 + 8, 4));
916 uint8_t *p = data.data();
917 write32le(p, page);
918 write32le(p + 4, data.size());
919 p += 8;
920 for (Baserel *i = begin; i != end; ++i) {
921 write16le(p, (i->type << 12) | (i->rva - page));
922 p += 2;
923 }
924 }
925
writeTo(uint8_t * buf) const926 void BaserelChunk::writeTo(uint8_t *buf) const {
927 memcpy(buf, data.data(), data.size());
928 }
929
getDefaultType()930 uint8_t Baserel::getDefaultType() {
931 switch (config->machine) {
932 case AMD64:
933 case ARM64:
934 return IMAGE_REL_BASED_DIR64;
935 case I386:
936 case ARMNT:
937 return IMAGE_REL_BASED_HIGHLOW;
938 default:
939 llvm_unreachable("unknown machine type");
940 }
941 }
942
MergeChunk(uint32_t alignment)943 MergeChunk::MergeChunk(uint32_t alignment)
944 : builder(StringTableBuilder::RAW, alignment) {
945 setAlignment(alignment);
946 }
947
addSection(COFFLinkerContext & ctx,SectionChunk * c)948 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
949 assert(isPowerOf2_32(c->getAlignment()));
950 uint8_t p2Align = llvm::Log2_32(c->getAlignment());
951 assert(p2Align < array_lengthof(ctx.mergeChunkInstances));
952 auto *&mc = ctx.mergeChunkInstances[p2Align];
953 if (!mc)
954 mc = make<MergeChunk>(c->getAlignment());
955 mc->sections.push_back(c);
956 }
957
finalizeContents()958 void MergeChunk::finalizeContents() {
959 assert(!finalized && "should only finalize once");
960 for (SectionChunk *c : sections)
961 if (c->live)
962 builder.add(toStringRef(c->getContents()));
963 builder.finalize();
964 finalized = true;
965 }
966
assignSubsectionRVAs()967 void MergeChunk::assignSubsectionRVAs() {
968 for (SectionChunk *c : sections) {
969 if (!c->live)
970 continue;
971 size_t off = builder.getOffset(toStringRef(c->getContents()));
972 c->setRVA(rva + off);
973 }
974 }
975
getOutputCharacteristics() const976 uint32_t MergeChunk::getOutputCharacteristics() const {
977 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
978 }
979
getSize() const980 size_t MergeChunk::getSize() const {
981 return builder.getSize();
982 }
983
writeTo(uint8_t * buf) const984 void MergeChunk::writeTo(uint8_t *buf) const {
985 builder.write(buf);
986 }
987
988 // MinGW specific.
getSize() const989 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; }
990
writeTo(uint8_t * buf) const991 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
992 if (config->is64()) {
993 write64le(buf, value);
994 } else {
995 write32le(buf, value);
996 }
997 }
998
999 } // namespace coff
1000 } // namespace lld
1001