1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/FixedPointBuilder.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/MatrixBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Support/TypeSize.h"
45 #include <cstdarg>
46
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
50
51 //===----------------------------------------------------------------------===//
52 // Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
54
55 namespace {
56
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
mayHaveIntegerOverflow(llvm::ConstantInt * LHS,llvm::ConstantInt * RHS,BinaryOperator::Opcode Opcode,bool Signed,llvm::APInt & Result)62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63 BinaryOperator::Opcode Opcode, bool Signed,
64 llvm::APInt &Result) {
65 // Assume overflow is possible, unless we can prove otherwise.
66 bool Overflow = true;
67 const auto &LHSAP = LHS->getValue();
68 const auto &RHSAP = RHS->getValue();
69 if (Opcode == BO_Add) {
70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71 : LHSAP.uadd_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Sub) {
73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74 : LHSAP.usub_ov(RHSAP, Overflow);
75 } else if (Opcode == BO_Mul) {
76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77 : LHSAP.umul_ov(RHSAP, Overflow);
78 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79 if (Signed && !RHS->isZero())
80 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81 else
82 return false;
83 }
84 return Overflow;
85 }
86
87 struct BinOpInfo {
88 Value *LHS;
89 Value *RHS;
90 QualType Ty; // Computation Type.
91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92 FPOptions FPFeatures;
93 const Expr *E; // Entire expr, for error unsupported. May not be binop.
94
95 /// Check if the binop can result in integer overflow.
mayHaveIntegerOverflow__anon20de44ed0111::BinOpInfo96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100 if (!LHSCI || !RHSCI)
101 return true;
102
103 llvm::APInt Result;
104 return ::mayHaveIntegerOverflow(
105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106 }
107
108 /// Check if the binop computes a division or a remainder.
isDivremOp__anon20de44ed0111::BinOpInfo109 bool isDivremOp() const {
110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111 Opcode == BO_RemAssign;
112 }
113
114 /// Check if the binop can result in an integer division by zero.
mayHaveIntegerDivisionByZero__anon20de44ed0111::BinOpInfo115 bool mayHaveIntegerDivisionByZero() const {
116 if (isDivremOp())
117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118 return CI->isZero();
119 return true;
120 }
121
122 /// Check if the binop can result in a float division by zero.
mayHaveFloatDivisionByZero__anon20de44ed0111::BinOpInfo123 bool mayHaveFloatDivisionByZero() const {
124 if (isDivremOp())
125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126 return CFP->isZero();
127 return true;
128 }
129
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
isFixedPointOp__anon20de44ed0111::BinOpInfo133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140 }
141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142 return UnOp->getSubExpr()->getType()->isFixedPointType();
143 return false;
144 }
145 };
146
MustVisitNullValue(const Expr * E)147 static bool MustVisitNullValue(const Expr *E) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E->getType()->isNullPtrType();
152 }
153
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
getUnwidenedIntegerType(const ASTContext & Ctx,const Expr * E)155 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156 const Expr *E) {
157 const Expr *Base = E->IgnoreImpCasts();
158 if (E == Base)
159 return llvm::None;
160
161 QualType BaseTy = Base->getType();
162 if (!BaseTy->isPromotableIntegerType() ||
163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164 return llvm::None;
165
166 return BaseTy;
167 }
168
169 /// Check if \p E is a widened promoted integer.
IsWidenedIntegerOp(const ASTContext & Ctx,const Expr * E)170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171 return getUnwidenedIntegerType(Ctx, E).has_value();
172 }
173
174 /// Check if we can skip the overflow check for \p Op.
CanElideOverflowCheck(const ASTContext & Ctx,const BinOpInfo & Op)175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177 "Expected a unary or binary operator");
178
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op.mayHaveIntegerOverflow())
182 return true;
183
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186 return !UO->canOverflow();
187
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO = cast<BinaryOperator>(Op.E);
191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192 if (!OptionalLHSTy)
193 return false;
194
195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196 if (!OptionalRHSTy)
197 return false;
198
199 QualType LHSTy = *OptionalLHSTy;
200 QualType RHSTy = *OptionalRHSTy;
201
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206 return true;
207
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213 }
214
215 class ScalarExprEmitter
216 : public StmtVisitor<ScalarExprEmitter, Value*> {
217 CodeGenFunction &CGF;
218 CGBuilderTy &Builder;
219 bool IgnoreResultAssign;
220 llvm::LLVMContext &VMContext;
221 public:
222
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225 VMContext(cgf.getLLVMContext()) {
226 }
227
228 //===--------------------------------------------------------------------===//
229 // Utilities
230 //===--------------------------------------------------------------------===//
231
TestAndClearIgnoreResultAssign()232 bool TestAndClearIgnoreResultAssign() {
233 bool I = IgnoreResultAssign;
234 IgnoreResultAssign = false;
235 return I;
236 }
237
ConvertType(QualType T)238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241 return CGF.EmitCheckedLValue(E, TCK);
242 }
243
244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245 const BinOpInfo &Info);
246
EmitLoadOfLValue(LValue LV,SourceLocation Loc)247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249 }
250
EmitLValueAlignmentAssumption(const Expr * E,Value * V)251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252 const AlignValueAttr *AVAttr = nullptr;
253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254 const ValueDecl *VD = DRE->getDecl();
255
256 if (VD->getType()->isReferenceType()) {
257 if (const auto *TTy =
258 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260 } else {
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267 return;
268
269 AVAttr = VD->getAttr<AlignValueAttr>();
270 }
271 }
272
273 if (!AVAttr)
274 if (const auto *TTy =
275 dyn_cast<TypedefType>(E->getType()))
276 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277
278 if (!AVAttr)
279 return;
280
281 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
282 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
283 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
284 }
285
286 /// EmitLoadOfLValue - Given an expression with complex type that represents a
287 /// value l-value, this method emits the address of the l-value, then loads
288 /// and returns the result.
EmitLoadOfLValue(const Expr * E)289 Value *EmitLoadOfLValue(const Expr *E) {
290 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
291 E->getExprLoc());
292
293 EmitLValueAlignmentAssumption(E, V);
294 return V;
295 }
296
297 /// EmitConversionToBool - Convert the specified expression value to a
298 /// boolean (i1) truth value. This is equivalent to "Val != 0".
299 Value *EmitConversionToBool(Value *Src, QualType DstTy);
300
301 /// Emit a check that a conversion from a floating-point type does not
302 /// overflow.
303 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
304 Value *Src, QualType SrcType, QualType DstType,
305 llvm::Type *DstTy, SourceLocation Loc);
306
307 /// Known implicit conversion check kinds.
308 /// Keep in sync with the enum of the same name in ubsan_handlers.h
309 enum ImplicitConversionCheckKind : unsigned char {
310 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
311 ICCK_UnsignedIntegerTruncation = 1,
312 ICCK_SignedIntegerTruncation = 2,
313 ICCK_IntegerSignChange = 3,
314 ICCK_SignedIntegerTruncationOrSignChange = 4,
315 };
316
317 /// Emit a check that an [implicit] truncation of an integer does not
318 /// discard any bits. It is not UB, so we use the value after truncation.
319 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
320 QualType DstType, SourceLocation Loc);
321
322 /// Emit a check that an [implicit] conversion of an integer does not change
323 /// the sign of the value. It is not UB, so we use the value after conversion.
324 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
325 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
326 QualType DstType, SourceLocation Loc);
327
328 /// Emit a conversion from the specified type to the specified destination
329 /// type, both of which are LLVM scalar types.
330 struct ScalarConversionOpts {
331 bool TreatBooleanAsSigned;
332 bool EmitImplicitIntegerTruncationChecks;
333 bool EmitImplicitIntegerSignChangeChecks;
334
ScalarConversionOpts__anon20de44ed0111::ScalarExprEmitter::ScalarConversionOpts335 ScalarConversionOpts()
336 : TreatBooleanAsSigned(false),
337 EmitImplicitIntegerTruncationChecks(false),
338 EmitImplicitIntegerSignChangeChecks(false) {}
339
ScalarConversionOpts__anon20de44ed0111::ScalarExprEmitter::ScalarConversionOpts340 ScalarConversionOpts(clang::SanitizerSet SanOpts)
341 : TreatBooleanAsSigned(false),
342 EmitImplicitIntegerTruncationChecks(
343 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
344 EmitImplicitIntegerSignChangeChecks(
345 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
346 };
347 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
348 llvm::Type *SrcTy, llvm::Type *DstTy,
349 ScalarConversionOpts Opts);
350 Value *
351 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
352 SourceLocation Loc,
353 ScalarConversionOpts Opts = ScalarConversionOpts());
354
355 /// Convert between either a fixed point and other fixed point or fixed point
356 /// and an integer.
357 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
358 SourceLocation Loc);
359
360 /// Emit a conversion from the specified complex type to the specified
361 /// destination type, where the destination type is an LLVM scalar type.
362 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
363 QualType SrcTy, QualType DstTy,
364 SourceLocation Loc);
365
366 /// EmitNullValue - Emit a value that corresponds to null for the given type.
367 Value *EmitNullValue(QualType Ty);
368
369 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)370 Value *EmitFloatToBoolConversion(Value *V) {
371 // Compare against 0.0 for fp scalars.
372 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
373 return Builder.CreateFCmpUNE(V, Zero, "tobool");
374 }
375
376 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V,QualType QT)377 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
378 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
379
380 return Builder.CreateICmpNE(V, Zero, "tobool");
381 }
382
EmitIntToBoolConversion(Value * V)383 Value *EmitIntToBoolConversion(Value *V) {
384 // Because of the type rules of C, we often end up computing a
385 // logical value, then zero extending it to int, then wanting it
386 // as a logical value again. Optimize this common case.
387 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
388 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
389 Value *Result = ZI->getOperand(0);
390 // If there aren't any more uses, zap the instruction to save space.
391 // Note that there can be more uses, for example if this
392 // is the result of an assignment.
393 if (ZI->use_empty())
394 ZI->eraseFromParent();
395 return Result;
396 }
397 }
398
399 return Builder.CreateIsNotNull(V, "tobool");
400 }
401
402 //===--------------------------------------------------------------------===//
403 // Visitor Methods
404 //===--------------------------------------------------------------------===//
405
Visit(Expr * E)406 Value *Visit(Expr *E) {
407 ApplyDebugLocation DL(CGF, E);
408 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
409 }
410
VisitStmt(Stmt * S)411 Value *VisitStmt(Stmt *S) {
412 S->dump(llvm::errs(), CGF.getContext());
413 llvm_unreachable("Stmt can't have complex result type!");
414 }
415 Value *VisitExpr(Expr *S);
416
VisitConstantExpr(ConstantExpr * E)417 Value *VisitConstantExpr(ConstantExpr *E) {
418 // A constant expression of type 'void' generates no code and produces no
419 // value.
420 if (E->getType()->isVoidType())
421 return nullptr;
422
423 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
424 if (E->isGLValue())
425 return CGF.Builder.CreateLoad(Address(
426 Result, CGF.ConvertTypeForMem(E->getType()),
427 CGF.getContext().getTypeAlignInChars(E->getType())));
428 return Result;
429 }
430 return Visit(E->getSubExpr());
431 }
VisitParenExpr(ParenExpr * PE)432 Value *VisitParenExpr(ParenExpr *PE) {
433 return Visit(PE->getSubExpr());
434 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)435 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
436 return Visit(E->getReplacement());
437 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)438 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
439 return Visit(GE->getResultExpr());
440 }
VisitCoawaitExpr(CoawaitExpr * S)441 Value *VisitCoawaitExpr(CoawaitExpr *S) {
442 return CGF.EmitCoawaitExpr(*S).getScalarVal();
443 }
VisitCoyieldExpr(CoyieldExpr * S)444 Value *VisitCoyieldExpr(CoyieldExpr *S) {
445 return CGF.EmitCoyieldExpr(*S).getScalarVal();
446 }
VisitUnaryCoawait(const UnaryOperator * E)447 Value *VisitUnaryCoawait(const UnaryOperator *E) {
448 return Visit(E->getSubExpr());
449 }
450
451 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)452 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
453 return Builder.getInt(E->getValue());
454 }
VisitFixedPointLiteral(const FixedPointLiteral * E)455 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
456 return Builder.getInt(E->getValue());
457 }
VisitFloatingLiteral(const FloatingLiteral * E)458 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
459 return llvm::ConstantFP::get(VMContext, E->getValue());
460 }
VisitCharacterLiteral(const CharacterLiteral * E)461 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
462 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
463 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)464 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)467 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)470 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
471 return EmitNullValue(E->getType());
472 }
VisitGNUNullExpr(const GNUNullExpr * E)473 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
474 return EmitNullValue(E->getType());
475 }
476 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
477 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)478 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
479 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
480 return Builder.CreateBitCast(V, ConvertType(E->getType()));
481 }
482
VisitSizeOfPackExpr(SizeOfPackExpr * E)483 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
484 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
485 }
486
VisitPseudoObjectExpr(PseudoObjectExpr * E)487 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
488 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
489 }
490
491 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
492
VisitOpaqueValueExpr(OpaqueValueExpr * E)493 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
494 if (E->isGLValue())
495 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
496 E->getExprLoc());
497
498 // Otherwise, assume the mapping is the scalar directly.
499 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
500 }
501
502 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)503 Value *VisitDeclRefExpr(DeclRefExpr *E) {
504 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
505 return CGF.emitScalarConstant(Constant, E);
506 return EmitLoadOfLValue(E);
507 }
508
VisitObjCSelectorExpr(ObjCSelectorExpr * E)509 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
510 return CGF.EmitObjCSelectorExpr(E);
511 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)512 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
513 return CGF.EmitObjCProtocolExpr(E);
514 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)515 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
516 return EmitLoadOfLValue(E);
517 }
VisitObjCMessageExpr(ObjCMessageExpr * E)518 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
519 if (E->getMethodDecl() &&
520 E->getMethodDecl()->getReturnType()->isReferenceType())
521 return EmitLoadOfLValue(E);
522 return CGF.EmitObjCMessageExpr(E).getScalarVal();
523 }
524
VisitObjCIsaExpr(ObjCIsaExpr * E)525 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
526 LValue LV = CGF.EmitObjCIsaExpr(E);
527 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
528 return V;
529 }
530
VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)531 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
532 VersionTuple Version = E->getVersion();
533
534 // If we're checking for a platform older than our minimum deployment
535 // target, we can fold the check away.
536 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
537 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
538
539 return CGF.EmitBuiltinAvailable(Version);
540 }
541
542 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
543 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
544 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
545 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
546 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)547 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)548 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
550 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
551 // literals aren't l-values in C++. We do so simply because that's the
552 // cleanest way to handle compound literals in C++.
553 // See the discussion here: https://reviews.llvm.org/D64464
554 return EmitLoadOfLValue(E);
555 }
556
557 Value *VisitInitListExpr(InitListExpr *E);
558
VisitArrayInitIndexExpr(ArrayInitIndexExpr * E)559 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
560 assert(CGF.getArrayInitIndex() &&
561 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
562 return CGF.getArrayInitIndex();
563 }
564
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)565 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
566 return EmitNullValue(E->getType());
567 }
VisitExplicitCastExpr(ExplicitCastExpr * E)568 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
569 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
570 return VisitCastExpr(E);
571 }
572 Value *VisitCastExpr(CastExpr *E);
573
VisitCallExpr(const CallExpr * E)574 Value *VisitCallExpr(const CallExpr *E) {
575 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
576 return EmitLoadOfLValue(E);
577
578 Value *V = CGF.EmitCallExpr(E).getScalarVal();
579
580 EmitLValueAlignmentAssumption(E, V);
581 return V;
582 }
583
584 Value *VisitStmtExpr(const StmtExpr *E);
585
586 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)587 Value *VisitUnaryPostDec(const UnaryOperator *E) {
588 LValue LV = EmitLValue(E->getSubExpr());
589 return EmitScalarPrePostIncDec(E, LV, false, false);
590 }
VisitUnaryPostInc(const UnaryOperator * E)591 Value *VisitUnaryPostInc(const UnaryOperator *E) {
592 LValue LV = EmitLValue(E->getSubExpr());
593 return EmitScalarPrePostIncDec(E, LV, true, false);
594 }
VisitUnaryPreDec(const UnaryOperator * E)595 Value *VisitUnaryPreDec(const UnaryOperator *E) {
596 LValue LV = EmitLValue(E->getSubExpr());
597 return EmitScalarPrePostIncDec(E, LV, false, true);
598 }
VisitUnaryPreInc(const UnaryOperator * E)599 Value *VisitUnaryPreInc(const UnaryOperator *E) {
600 LValue LV = EmitLValue(E->getSubExpr());
601 return EmitScalarPrePostIncDec(E, LV, true, true);
602 }
603
604 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
605 llvm::Value *InVal,
606 bool IsInc);
607
608 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
609 bool isInc, bool isPre);
610
611
VisitUnaryAddrOf(const UnaryOperator * E)612 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
613 if (isa<MemberPointerType>(E->getType())) // never sugared
614 return CGF.CGM.getMemberPointerConstant(E);
615
616 return EmitLValue(E->getSubExpr()).getPointer(CGF);
617 }
VisitUnaryDeref(const UnaryOperator * E)618 Value *VisitUnaryDeref(const UnaryOperator *E) {
619 if (E->getType()->isVoidType())
620 return Visit(E->getSubExpr()); // the actual value should be unused
621 return EmitLoadOfLValue(E);
622 }
VisitUnaryPlus(const UnaryOperator * E)623 Value *VisitUnaryPlus(const UnaryOperator *E) {
624 // This differs from gcc, though, most likely due to a bug in gcc.
625 TestAndClearIgnoreResultAssign();
626 return Visit(E->getSubExpr());
627 }
628 Value *VisitUnaryMinus (const UnaryOperator *E);
629 Value *VisitUnaryNot (const UnaryOperator *E);
630 Value *VisitUnaryLNot (const UnaryOperator *E);
631 Value *VisitUnaryReal (const UnaryOperator *E);
632 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)633 Value *VisitUnaryExtension(const UnaryOperator *E) {
634 return Visit(E->getSubExpr());
635 }
636
637 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)638 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
639 return EmitLoadOfLValue(E);
640 }
VisitSourceLocExpr(SourceLocExpr * SLE)641 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
642 auto &Ctx = CGF.getContext();
643 APValue Evaluated =
644 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
645 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
646 SLE->getType());
647 }
648
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)649 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
650 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
651 return Visit(DAE->getExpr());
652 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)653 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
654 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
655 return Visit(DIE->getExpr());
656 }
VisitCXXThisExpr(CXXThisExpr * TE)657 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
658 return CGF.LoadCXXThis();
659 }
660
661 Value *VisitExprWithCleanups(ExprWithCleanups *E);
VisitCXXNewExpr(const CXXNewExpr * E)662 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
663 return CGF.EmitCXXNewExpr(E);
664 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)665 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
666 CGF.EmitCXXDeleteExpr(E);
667 return nullptr;
668 }
669
VisitTypeTraitExpr(const TypeTraitExpr * E)670 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
671 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
672 }
673
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)674 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675 return Builder.getInt1(E->isSatisfied());
676 }
677
VisitRequiresExpr(const RequiresExpr * E)678 Value *VisitRequiresExpr(const RequiresExpr *E) {
679 return Builder.getInt1(E->isSatisfied());
680 }
681
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)682 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684 }
685
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)686 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688 }
689
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)690 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691 // C++ [expr.pseudo]p1:
692 // The result shall only be used as the operand for the function call
693 // operator (), and the result of such a call has type void. The only
694 // effect is the evaluation of the postfix-expression before the dot or
695 // arrow.
696 CGF.EmitScalarExpr(E->getBase());
697 return nullptr;
698 }
699
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)700 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701 return EmitNullValue(E->getType());
702 }
703
VisitCXXThrowExpr(const CXXThrowExpr * E)704 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705 CGF.EmitCXXThrowExpr(E);
706 return nullptr;
707 }
708
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)709 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710 return Builder.getInt1(E->getValue());
711 }
712
713 // Binary Operators.
EmitMul(const BinOpInfo & Ops)714 Value *EmitMul(const BinOpInfo &Ops) {
715 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717 case LangOptions::SOB_Defined:
718 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719 case LangOptions::SOB_Undefined:
720 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722 LLVM_FALLTHROUGH;
723 case LangOptions::SOB_Trapping:
724 if (CanElideOverflowCheck(CGF.getContext(), Ops))
725 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726 return EmitOverflowCheckedBinOp(Ops);
727 }
728 }
729
730 if (Ops.Ty->isConstantMatrixType()) {
731 llvm::MatrixBuilder MB(Builder);
732 // We need to check the types of the operands of the operator to get the
733 // correct matrix dimensions.
734 auto *BO = cast<BinaryOperator>(Ops.E);
735 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
736 BO->getLHS()->getType().getCanonicalType());
737 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
738 BO->getRHS()->getType().getCanonicalType());
739 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
740 if (LHSMatTy && RHSMatTy)
741 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
742 LHSMatTy->getNumColumns(),
743 RHSMatTy->getNumColumns());
744 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
745 }
746
747 if (Ops.Ty->isUnsignedIntegerType() &&
748 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
749 !CanElideOverflowCheck(CGF.getContext(), Ops))
750 return EmitOverflowCheckedBinOp(Ops);
751
752 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
753 // Preserve the old values
754 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
755 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
756 }
757 if (Ops.isFixedPointOp())
758 return EmitFixedPointBinOp(Ops);
759 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
760 }
761 /// Create a binary op that checks for overflow.
762 /// Currently only supports +, - and *.
763 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
764
765 // Check for undefined division and modulus behaviors.
766 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
767 llvm::Value *Zero,bool isDiv);
768 // Common helper for getting how wide LHS of shift is.
769 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
770
771 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
772 // non powers of two.
773 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
774
775 Value *EmitDiv(const BinOpInfo &Ops);
776 Value *EmitRem(const BinOpInfo &Ops);
777 Value *EmitAdd(const BinOpInfo &Ops);
778 Value *EmitSub(const BinOpInfo &Ops);
779 Value *EmitShl(const BinOpInfo &Ops);
780 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)781 Value *EmitAnd(const BinOpInfo &Ops) {
782 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
783 }
EmitXor(const BinOpInfo & Ops)784 Value *EmitXor(const BinOpInfo &Ops) {
785 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
786 }
EmitOr(const BinOpInfo & Ops)787 Value *EmitOr (const BinOpInfo &Ops) {
788 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
789 }
790
791 // Helper functions for fixed point binary operations.
792 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
793
794 BinOpInfo EmitBinOps(const BinaryOperator *E);
795 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
796 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
797 Value *&Result);
798
799 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
800 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
801
802 // Binary operators and binary compound assignment operators.
803 #define HANDLEBINOP(OP) \
804 Value *VisitBin ## OP(const BinaryOperator *E) { \
805 return Emit ## OP(EmitBinOps(E)); \
806 } \
807 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
808 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
809 }
810 HANDLEBINOP(Mul)
811 HANDLEBINOP(Div)
812 HANDLEBINOP(Rem)
813 HANDLEBINOP(Add)
814 HANDLEBINOP(Sub)
815 HANDLEBINOP(Shl)
816 HANDLEBINOP(Shr)
817 HANDLEBINOP(And)
818 HANDLEBINOP(Xor)
819 HANDLEBINOP(Or)
820 #undef HANDLEBINOP
821
822 // Comparisons.
823 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
824 llvm::CmpInst::Predicate SICmpOpc,
825 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
826 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
827 Value *VisitBin##CODE(const BinaryOperator *E) { \
828 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
829 llvm::FCmpInst::FP, SIG); }
830 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
831 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
832 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
833 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
834 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
835 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
836 #undef VISITCOMP
837
838 Value *VisitBinAssign (const BinaryOperator *E);
839
840 Value *VisitBinLAnd (const BinaryOperator *E);
841 Value *VisitBinLOr (const BinaryOperator *E);
842 Value *VisitBinComma (const BinaryOperator *E);
843
VisitBinPtrMemD(const Expr * E)844 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)845 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
846
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)847 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
848 return Visit(E->getSemanticForm());
849 }
850
851 // Other Operators.
852 Value *VisitBlockExpr(const BlockExpr *BE);
853 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
854 Value *VisitChooseExpr(ChooseExpr *CE);
855 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)856 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
857 return CGF.EmitObjCStringLiteral(E);
858 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)859 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
860 return CGF.EmitObjCBoxedExpr(E);
861 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)862 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
863 return CGF.EmitObjCArrayLiteral(E);
864 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)865 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
866 return CGF.EmitObjCDictionaryLiteral(E);
867 }
868 Value *VisitAsTypeExpr(AsTypeExpr *CE);
869 Value *VisitAtomicExpr(AtomicExpr *AE);
870 };
871 } // end anonymous namespace.
872
873 //===----------------------------------------------------------------------===//
874 // Utilities
875 //===----------------------------------------------------------------------===//
876
877 /// EmitConversionToBool - Convert the specified expression value to a
878 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)879 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
880 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
881
882 if (SrcType->isRealFloatingType())
883 return EmitFloatToBoolConversion(Src);
884
885 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
886 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
887
888 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
889 "Unknown scalar type to convert");
890
891 if (isa<llvm::IntegerType>(Src->getType()))
892 return EmitIntToBoolConversion(Src);
893
894 assert(isa<llvm::PointerType>(Src->getType()));
895 return EmitPointerToBoolConversion(Src, SrcType);
896 }
897
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)898 void ScalarExprEmitter::EmitFloatConversionCheck(
899 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
900 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
901 assert(SrcType->isFloatingType() && "not a conversion from floating point");
902 if (!isa<llvm::IntegerType>(DstTy))
903 return;
904
905 CodeGenFunction::SanitizerScope SanScope(&CGF);
906 using llvm::APFloat;
907 using llvm::APSInt;
908
909 llvm::Value *Check = nullptr;
910 const llvm::fltSemantics &SrcSema =
911 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
912
913 // Floating-point to integer. This has undefined behavior if the source is
914 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
915 // to an integer).
916 unsigned Width = CGF.getContext().getIntWidth(DstType);
917 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
918
919 APSInt Min = APSInt::getMinValue(Width, Unsigned);
920 APFloat MinSrc(SrcSema, APFloat::uninitialized);
921 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
922 APFloat::opOverflow)
923 // Don't need an overflow check for lower bound. Just check for
924 // -Inf/NaN.
925 MinSrc = APFloat::getInf(SrcSema, true);
926 else
927 // Find the largest value which is too small to represent (before
928 // truncation toward zero).
929 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
930
931 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
932 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
933 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
934 APFloat::opOverflow)
935 // Don't need an overflow check for upper bound. Just check for
936 // +Inf/NaN.
937 MaxSrc = APFloat::getInf(SrcSema, false);
938 else
939 // Find the smallest value which is too large to represent (before
940 // truncation toward zero).
941 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
942
943 // If we're converting from __half, convert the range to float to match
944 // the type of src.
945 if (OrigSrcType->isHalfType()) {
946 const llvm::fltSemantics &Sema =
947 CGF.getContext().getFloatTypeSemantics(SrcType);
948 bool IsInexact;
949 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
950 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
951 }
952
953 llvm::Value *GE =
954 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
955 llvm::Value *LE =
956 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
957 Check = Builder.CreateAnd(GE, LE);
958
959 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
960 CGF.EmitCheckTypeDescriptor(OrigSrcType),
961 CGF.EmitCheckTypeDescriptor(DstType)};
962 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
963 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
964 }
965
966 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
967 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
968 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
969 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)970 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
971 QualType DstType, CGBuilderTy &Builder) {
972 llvm::Type *SrcTy = Src->getType();
973 llvm::Type *DstTy = Dst->getType();
974 (void)DstTy; // Only used in assert()
975
976 // This should be truncation of integral types.
977 assert(Src != Dst);
978 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
979 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
980 "non-integer llvm type");
981
982 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
983 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
984
985 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
986 // Else, it is a signed truncation.
987 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
988 SanitizerMask Mask;
989 if (!SrcSigned && !DstSigned) {
990 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
991 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
992 } else {
993 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
994 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
995 }
996
997 llvm::Value *Check = nullptr;
998 // 1. Extend the truncated value back to the same width as the Src.
999 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1000 // 2. Equality-compare with the original source value
1001 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1002 // If the comparison result is 'i1 false', then the truncation was lossy.
1003 return std::make_pair(Kind, std::make_pair(Check, Mask));
1004 }
1005
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType,QualType DstType)1006 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1007 QualType SrcType, QualType DstType) {
1008 return SrcType->isIntegerType() && DstType->isIntegerType();
1009 }
1010
EmitIntegerTruncationCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1011 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1012 Value *Dst, QualType DstType,
1013 SourceLocation Loc) {
1014 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1015 return;
1016
1017 // We only care about int->int conversions here.
1018 // We ignore conversions to/from pointer and/or bool.
1019 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1020 DstType))
1021 return;
1022
1023 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1024 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1025 // This must be truncation. Else we do not care.
1026 if (SrcBits <= DstBits)
1027 return;
1028
1029 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1030
1031 // If the integer sign change sanitizer is enabled,
1032 // and we are truncating from larger unsigned type to smaller signed type,
1033 // let that next sanitizer deal with it.
1034 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1035 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1036 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1037 (!SrcSigned && DstSigned))
1038 return;
1039
1040 CodeGenFunction::SanitizerScope SanScope(&CGF);
1041
1042 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1043 std::pair<llvm::Value *, SanitizerMask>>
1044 Check =
1045 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1046 // If the comparison result is 'i1 false', then the truncation was lossy.
1047
1048 // Do we care about this type of truncation?
1049 if (!CGF.SanOpts.has(Check.second.second))
1050 return;
1051
1052 llvm::Constant *StaticArgs[] = {
1053 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1054 CGF.EmitCheckTypeDescriptor(DstType),
1055 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1056 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1057 {Src, Dst});
1058 }
1059
1060 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1061 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1062 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1063 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)1064 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1065 QualType DstType, CGBuilderTy &Builder) {
1066 llvm::Type *SrcTy = Src->getType();
1067 llvm::Type *DstTy = Dst->getType();
1068
1069 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1070 "non-integer llvm type");
1071
1072 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1073 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1074 (void)SrcSigned; // Only used in assert()
1075 (void)DstSigned; // Only used in assert()
1076 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1077 unsigned DstBits = DstTy->getScalarSizeInBits();
1078 (void)SrcBits; // Only used in assert()
1079 (void)DstBits; // Only used in assert()
1080
1081 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1082 "either the widths should be different, or the signednesses.");
1083
1084 // NOTE: zero value is considered to be non-negative.
1085 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1086 const char *Name) -> Value * {
1087 // Is this value a signed type?
1088 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1089 llvm::Type *VTy = V->getType();
1090 if (!VSigned) {
1091 // If the value is unsigned, then it is never negative.
1092 // FIXME: can we encounter non-scalar VTy here?
1093 return llvm::ConstantInt::getFalse(VTy->getContext());
1094 }
1095 // Get the zero of the same type with which we will be comparing.
1096 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1097 // %V.isnegative = icmp slt %V, 0
1098 // I.e is %V *strictly* less than zero, does it have negative value?
1099 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1100 llvm::Twine(Name) + "." + V->getName() +
1101 ".negativitycheck");
1102 };
1103
1104 // 1. Was the old Value negative?
1105 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1106 // 2. Is the new Value negative?
1107 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1108 // 3. Now, was the 'negativity status' preserved during the conversion?
1109 // NOTE: conversion from negative to zero is considered to change the sign.
1110 // (We want to get 'false' when the conversion changed the sign)
1111 // So we should just equality-compare the negativity statuses.
1112 llvm::Value *Check = nullptr;
1113 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1114 // If the comparison result is 'false', then the conversion changed the sign.
1115 return std::make_pair(
1116 ScalarExprEmitter::ICCK_IntegerSignChange,
1117 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1118 }
1119
EmitIntegerSignChangeCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1120 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1121 Value *Dst, QualType DstType,
1122 SourceLocation Loc) {
1123 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1124 return;
1125
1126 llvm::Type *SrcTy = Src->getType();
1127 llvm::Type *DstTy = Dst->getType();
1128
1129 // We only care about int->int conversions here.
1130 // We ignore conversions to/from pointer and/or bool.
1131 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1132 DstType))
1133 return;
1134
1135 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1136 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1137 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1138 unsigned DstBits = DstTy->getScalarSizeInBits();
1139
1140 // Now, we do not need to emit the check in *all* of the cases.
1141 // We can avoid emitting it in some obvious cases where it would have been
1142 // dropped by the opt passes (instcombine) always anyways.
1143 // If it's a cast between effectively the same type, no check.
1144 // NOTE: this is *not* equivalent to checking the canonical types.
1145 if (SrcSigned == DstSigned && SrcBits == DstBits)
1146 return;
1147 // At least one of the values needs to have signed type.
1148 // If both are unsigned, then obviously, neither of them can be negative.
1149 if (!SrcSigned && !DstSigned)
1150 return;
1151 // If the conversion is to *larger* *signed* type, then no check is needed.
1152 // Because either sign-extension happens (so the sign will remain),
1153 // or zero-extension will happen (the sign bit will be zero.)
1154 if ((DstBits > SrcBits) && DstSigned)
1155 return;
1156 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1157 (SrcBits > DstBits) && SrcSigned) {
1158 // If the signed integer truncation sanitizer is enabled,
1159 // and this is a truncation from signed type, then no check is needed.
1160 // Because here sign change check is interchangeable with truncation check.
1161 return;
1162 }
1163 // That's it. We can't rule out any more cases with the data we have.
1164
1165 CodeGenFunction::SanitizerScope SanScope(&CGF);
1166
1167 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1168 std::pair<llvm::Value *, SanitizerMask>>
1169 Check;
1170
1171 // Each of these checks needs to return 'false' when an issue was detected.
1172 ImplicitConversionCheckKind CheckKind;
1173 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1174 // So we can 'and' all the checks together, and still get 'false',
1175 // if at least one of the checks detected an issue.
1176
1177 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1178 CheckKind = Check.first;
1179 Checks.emplace_back(Check.second);
1180
1181 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1182 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1183 // If the signed integer truncation sanitizer was enabled,
1184 // and we are truncating from larger unsigned type to smaller signed type,
1185 // let's handle the case we skipped in that check.
1186 Check =
1187 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1188 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1189 Checks.emplace_back(Check.second);
1190 // If the comparison result is 'i1 false', then the truncation was lossy.
1191 }
1192
1193 llvm::Constant *StaticArgs[] = {
1194 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1195 CGF.EmitCheckTypeDescriptor(DstType),
1196 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1197 // EmitCheck() will 'and' all the checks together.
1198 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1199 {Src, Dst});
1200 }
1201
EmitScalarCast(Value * Src,QualType SrcType,QualType DstType,llvm::Type * SrcTy,llvm::Type * DstTy,ScalarConversionOpts Opts)1202 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1203 QualType DstType, llvm::Type *SrcTy,
1204 llvm::Type *DstTy,
1205 ScalarConversionOpts Opts) {
1206 // The Element types determine the type of cast to perform.
1207 llvm::Type *SrcElementTy;
1208 llvm::Type *DstElementTy;
1209 QualType SrcElementType;
1210 QualType DstElementType;
1211 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1212 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1213 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1214 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1215 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1216 } else {
1217 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1218 "cannot cast between matrix and non-matrix types");
1219 SrcElementTy = SrcTy;
1220 DstElementTy = DstTy;
1221 SrcElementType = SrcType;
1222 DstElementType = DstType;
1223 }
1224
1225 if (isa<llvm::IntegerType>(SrcElementTy)) {
1226 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1227 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1228 InputSigned = true;
1229 }
1230
1231 if (isa<llvm::IntegerType>(DstElementTy))
1232 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1233 if (InputSigned)
1234 return Builder.CreateSIToFP(Src, DstTy, "conv");
1235 return Builder.CreateUIToFP(Src, DstTy, "conv");
1236 }
1237
1238 if (isa<llvm::IntegerType>(DstElementTy)) {
1239 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1240 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1241
1242 // If we can't recognize overflow as undefined behavior, assume that
1243 // overflow saturates. This protects against normal optimizations if we are
1244 // compiling with non-standard FP semantics.
1245 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1246 llvm::Intrinsic::ID IID =
1247 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1248 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1249 }
1250
1251 if (IsSigned)
1252 return Builder.CreateFPToSI(Src, DstTy, "conv");
1253 return Builder.CreateFPToUI(Src, DstTy, "conv");
1254 }
1255
1256 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1257 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1258 return Builder.CreateFPExt(Src, DstTy, "conv");
1259 }
1260
1261 /// Emit a conversion from the specified type to the specified destination type,
1262 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,ScalarConversionOpts Opts)1263 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1264 QualType DstType,
1265 SourceLocation Loc,
1266 ScalarConversionOpts Opts) {
1267 // All conversions involving fixed point types should be handled by the
1268 // EmitFixedPoint family functions. This is done to prevent bloating up this
1269 // function more, and although fixed point numbers are represented by
1270 // integers, we do not want to follow any logic that assumes they should be
1271 // treated as integers.
1272 // TODO(leonardchan): When necessary, add another if statement checking for
1273 // conversions to fixed point types from other types.
1274 if (SrcType->isFixedPointType()) {
1275 if (DstType->isBooleanType())
1276 // It is important that we check this before checking if the dest type is
1277 // an integer because booleans are technically integer types.
1278 // We do not need to check the padding bit on unsigned types if unsigned
1279 // padding is enabled because overflow into this bit is undefined
1280 // behavior.
1281 return Builder.CreateIsNotNull(Src, "tobool");
1282 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1283 DstType->isRealFloatingType())
1284 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1285
1286 llvm_unreachable(
1287 "Unhandled scalar conversion from a fixed point type to another type.");
1288 } else if (DstType->isFixedPointType()) {
1289 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1290 // This also includes converting booleans and enums to fixed point types.
1291 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1292
1293 llvm_unreachable(
1294 "Unhandled scalar conversion to a fixed point type from another type.");
1295 }
1296
1297 QualType NoncanonicalSrcType = SrcType;
1298 QualType NoncanonicalDstType = DstType;
1299
1300 SrcType = CGF.getContext().getCanonicalType(SrcType);
1301 DstType = CGF.getContext().getCanonicalType(DstType);
1302 if (SrcType == DstType) return Src;
1303
1304 if (DstType->isVoidType()) return nullptr;
1305
1306 llvm::Value *OrigSrc = Src;
1307 QualType OrigSrcType = SrcType;
1308 llvm::Type *SrcTy = Src->getType();
1309
1310 // Handle conversions to bool first, they are special: comparisons against 0.
1311 if (DstType->isBooleanType())
1312 return EmitConversionToBool(Src, SrcType);
1313
1314 llvm::Type *DstTy = ConvertType(DstType);
1315
1316 // Cast from half through float if half isn't a native type.
1317 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1318 // Cast to FP using the intrinsic if the half type itself isn't supported.
1319 if (DstTy->isFloatingPointTy()) {
1320 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1321 return Builder.CreateCall(
1322 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1323 Src);
1324 } else {
1325 // Cast to other types through float, using either the intrinsic or FPExt,
1326 // depending on whether the half type itself is supported
1327 // (as opposed to operations on half, available with NativeHalfType).
1328 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1329 Src = Builder.CreateCall(
1330 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1331 CGF.CGM.FloatTy),
1332 Src);
1333 } else {
1334 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1335 }
1336 SrcType = CGF.getContext().FloatTy;
1337 SrcTy = CGF.FloatTy;
1338 }
1339 }
1340
1341 // Ignore conversions like int -> uint.
1342 if (SrcTy == DstTy) {
1343 if (Opts.EmitImplicitIntegerSignChangeChecks)
1344 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1345 NoncanonicalDstType, Loc);
1346
1347 return Src;
1348 }
1349
1350 // Handle pointer conversions next: pointers can only be converted to/from
1351 // other pointers and integers. Check for pointer types in terms of LLVM, as
1352 // some native types (like Obj-C id) may map to a pointer type.
1353 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1354 // The source value may be an integer, or a pointer.
1355 if (isa<llvm::PointerType>(SrcTy))
1356 return Builder.CreateBitCast(Src, DstTy, "conv");
1357
1358 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1359 // First, convert to the correct width so that we control the kind of
1360 // extension.
1361 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1362 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1363 llvm::Value* IntResult =
1364 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1365 // Then, cast to pointer.
1366 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1367 }
1368
1369 if (isa<llvm::PointerType>(SrcTy)) {
1370 // Must be an ptr to int cast.
1371 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1372 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1373 }
1374
1375 // A scalar can be splatted to an extended vector of the same element type
1376 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1377 // Sema should add casts to make sure that the source expression's type is
1378 // the same as the vector's element type (sans qualifiers)
1379 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1380 SrcType.getTypePtr() &&
1381 "Splatted expr doesn't match with vector element type?");
1382
1383 // Splat the element across to all elements
1384 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1385 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1386 }
1387
1388 if (SrcType->isMatrixType() && DstType->isMatrixType())
1389 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1390
1391 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1392 // Allow bitcast from vector to integer/fp of the same size.
1393 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1394 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1395 if (SrcSize == DstSize)
1396 return Builder.CreateBitCast(Src, DstTy, "conv");
1397
1398 // Conversions between vectors of different sizes are not allowed except
1399 // when vectors of half are involved. Operations on storage-only half
1400 // vectors require promoting half vector operands to float vectors and
1401 // truncating the result, which is either an int or float vector, to a
1402 // short or half vector.
1403
1404 // Source and destination are both expected to be vectors.
1405 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1406 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1407 (void)DstElementTy;
1408
1409 assert(((SrcElementTy->isIntegerTy() &&
1410 DstElementTy->isIntegerTy()) ||
1411 (SrcElementTy->isFloatingPointTy() &&
1412 DstElementTy->isFloatingPointTy())) &&
1413 "unexpected conversion between a floating-point vector and an "
1414 "integer vector");
1415
1416 // Truncate an i32 vector to an i16 vector.
1417 if (SrcElementTy->isIntegerTy())
1418 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1419
1420 // Truncate a float vector to a half vector.
1421 if (SrcSize > DstSize)
1422 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1423
1424 // Promote a half vector to a float vector.
1425 return Builder.CreateFPExt(Src, DstTy, "conv");
1426 }
1427
1428 // Finally, we have the arithmetic types: real int/float.
1429 Value *Res = nullptr;
1430 llvm::Type *ResTy = DstTy;
1431
1432 // An overflowing conversion has undefined behavior if either the source type
1433 // or the destination type is a floating-point type. However, we consider the
1434 // range of representable values for all floating-point types to be
1435 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1436 // floating-point type.
1437 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1438 OrigSrcType->isFloatingType())
1439 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1440 Loc);
1441
1442 // Cast to half through float if half isn't a native type.
1443 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1444 // Make sure we cast in a single step if from another FP type.
1445 if (SrcTy->isFloatingPointTy()) {
1446 // Use the intrinsic if the half type itself isn't supported
1447 // (as opposed to operations on half, available with NativeHalfType).
1448 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1449 return Builder.CreateCall(
1450 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1451 // If the half type is supported, just use an fptrunc.
1452 return Builder.CreateFPTrunc(Src, DstTy);
1453 }
1454 DstTy = CGF.FloatTy;
1455 }
1456
1457 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1458
1459 if (DstTy != ResTy) {
1460 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1461 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1462 Res = Builder.CreateCall(
1463 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1464 Res);
1465 } else {
1466 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1467 }
1468 }
1469
1470 if (Opts.EmitImplicitIntegerTruncationChecks)
1471 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1472 NoncanonicalDstType, Loc);
1473
1474 if (Opts.EmitImplicitIntegerSignChangeChecks)
1475 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1476 NoncanonicalDstType, Loc);
1477
1478 return Res;
1479 }
1480
EmitFixedPointConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1481 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1482 QualType DstTy,
1483 SourceLocation Loc) {
1484 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1485 llvm::Value *Result;
1486 if (SrcTy->isRealFloatingType())
1487 Result = FPBuilder.CreateFloatingToFixed(Src,
1488 CGF.getContext().getFixedPointSemantics(DstTy));
1489 else if (DstTy->isRealFloatingType())
1490 Result = FPBuilder.CreateFixedToFloating(Src,
1491 CGF.getContext().getFixedPointSemantics(SrcTy),
1492 ConvertType(DstTy));
1493 else {
1494 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1495 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1496
1497 if (DstTy->isIntegerType())
1498 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1499 DstFPSema.getWidth(),
1500 DstFPSema.isSigned());
1501 else if (SrcTy->isIntegerType())
1502 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1503 DstFPSema);
1504 else
1505 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1506 }
1507 return Result;
1508 }
1509
1510 /// Emit a conversion from the specified complex type to the specified
1511 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1512 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1513 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1514 SourceLocation Loc) {
1515 // Get the source element type.
1516 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1517
1518 // Handle conversions to bool first, they are special: comparisons against 0.
1519 if (DstTy->isBooleanType()) {
1520 // Complex != 0 -> (Real != 0) | (Imag != 0)
1521 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1522 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1523 return Builder.CreateOr(Src.first, Src.second, "tobool");
1524 }
1525
1526 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1527 // the imaginary part of the complex value is discarded and the value of the
1528 // real part is converted according to the conversion rules for the
1529 // corresponding real type.
1530 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1531 }
1532
EmitNullValue(QualType Ty)1533 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1534 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1535 }
1536
1537 /// Emit a sanitization check for the given "binary" operation (which
1538 /// might actually be a unary increment which has been lowered to a binary
1539 /// operation). The check passes if all values in \p Checks (which are \c i1),
1540 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)1541 void ScalarExprEmitter::EmitBinOpCheck(
1542 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1543 assert(CGF.IsSanitizerScope);
1544 SanitizerHandler Check;
1545 SmallVector<llvm::Constant *, 4> StaticData;
1546 SmallVector<llvm::Value *, 2> DynamicData;
1547
1548 BinaryOperatorKind Opcode = Info.Opcode;
1549 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1550 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1551
1552 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1553 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1554 if (UO && UO->getOpcode() == UO_Minus) {
1555 Check = SanitizerHandler::NegateOverflow;
1556 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1557 DynamicData.push_back(Info.RHS);
1558 } else {
1559 if (BinaryOperator::isShiftOp(Opcode)) {
1560 // Shift LHS negative or too large, or RHS out of bounds.
1561 Check = SanitizerHandler::ShiftOutOfBounds;
1562 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1563 StaticData.push_back(
1564 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1565 StaticData.push_back(
1566 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1567 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1568 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1569 Check = SanitizerHandler::DivremOverflow;
1570 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1571 } else {
1572 // Arithmetic overflow (+, -, *).
1573 switch (Opcode) {
1574 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1575 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1576 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1577 default: llvm_unreachable("unexpected opcode for bin op check");
1578 }
1579 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1580 }
1581 DynamicData.push_back(Info.LHS);
1582 DynamicData.push_back(Info.RHS);
1583 }
1584
1585 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1586 }
1587
1588 //===----------------------------------------------------------------------===//
1589 // Visitor Methods
1590 //===----------------------------------------------------------------------===//
1591
VisitExpr(Expr * E)1592 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1593 CGF.ErrorUnsupported(E, "scalar expression");
1594 if (E->getType()->isVoidType())
1595 return nullptr;
1596 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1597 }
1598
1599 Value *
VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr * E)1600 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1601 ASTContext &Context = CGF.getContext();
1602 llvm::Optional<LangAS> GlobalAS =
1603 Context.getTargetInfo().getConstantAddressSpace();
1604 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1605 E->ComputeName(Context), "__usn_str",
1606 static_cast<unsigned>(GlobalAS.value_or(LangAS::Default)));
1607
1608 unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1609
1610 if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1611 return GlobalConstStr;
1612
1613 llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType());
1614 llvm::PointerType *NewPtrTy =
1615 llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS);
1616 return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1617 }
1618
VisitShuffleVectorExpr(ShuffleVectorExpr * E)1619 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1620 // Vector Mask Case
1621 if (E->getNumSubExprs() == 2) {
1622 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1623 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1624 Value *Mask;
1625
1626 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1627 unsigned LHSElts = LTy->getNumElements();
1628
1629 Mask = RHS;
1630
1631 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1632
1633 // Mask off the high bits of each shuffle index.
1634 Value *MaskBits =
1635 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1636 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1637
1638 // newv = undef
1639 // mask = mask & maskbits
1640 // for each elt
1641 // n = extract mask i
1642 // x = extract val n
1643 // newv = insert newv, x, i
1644 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1645 MTy->getNumElements());
1646 Value* NewV = llvm::UndefValue::get(RTy);
1647 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1648 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1649 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1650
1651 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1652 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1653 }
1654 return NewV;
1655 }
1656
1657 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1658 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1659
1660 SmallVector<int, 32> Indices;
1661 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1662 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1663 // Check for -1 and output it as undef in the IR.
1664 if (Idx.isSigned() && Idx.isAllOnes())
1665 Indices.push_back(-1);
1666 else
1667 Indices.push_back(Idx.getZExtValue());
1668 }
1669
1670 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1671 }
1672
VisitConvertVectorExpr(ConvertVectorExpr * E)1673 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1674 QualType SrcType = E->getSrcExpr()->getType(),
1675 DstType = E->getType();
1676
1677 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1678
1679 SrcType = CGF.getContext().getCanonicalType(SrcType);
1680 DstType = CGF.getContext().getCanonicalType(DstType);
1681 if (SrcType == DstType) return Src;
1682
1683 assert(SrcType->isVectorType() &&
1684 "ConvertVector source type must be a vector");
1685 assert(DstType->isVectorType() &&
1686 "ConvertVector destination type must be a vector");
1687
1688 llvm::Type *SrcTy = Src->getType();
1689 llvm::Type *DstTy = ConvertType(DstType);
1690
1691 // Ignore conversions like int -> uint.
1692 if (SrcTy == DstTy)
1693 return Src;
1694
1695 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1696 DstEltType = DstType->castAs<VectorType>()->getElementType();
1697
1698 assert(SrcTy->isVectorTy() &&
1699 "ConvertVector source IR type must be a vector");
1700 assert(DstTy->isVectorTy() &&
1701 "ConvertVector destination IR type must be a vector");
1702
1703 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1704 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1705
1706 if (DstEltType->isBooleanType()) {
1707 assert((SrcEltTy->isFloatingPointTy() ||
1708 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1709
1710 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1711 if (SrcEltTy->isFloatingPointTy()) {
1712 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1713 } else {
1714 return Builder.CreateICmpNE(Src, Zero, "tobool");
1715 }
1716 }
1717
1718 // We have the arithmetic types: real int/float.
1719 Value *Res = nullptr;
1720
1721 if (isa<llvm::IntegerType>(SrcEltTy)) {
1722 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1723 if (isa<llvm::IntegerType>(DstEltTy))
1724 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1725 else if (InputSigned)
1726 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1727 else
1728 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1729 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1730 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1731 if (DstEltType->isSignedIntegerOrEnumerationType())
1732 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1733 else
1734 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1735 } else {
1736 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1737 "Unknown real conversion");
1738 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1739 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1740 else
1741 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1742 }
1743
1744 return Res;
1745 }
1746
VisitMemberExpr(MemberExpr * E)1747 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1748 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1749 CGF.EmitIgnoredExpr(E->getBase());
1750 return CGF.emitScalarConstant(Constant, E);
1751 } else {
1752 Expr::EvalResult Result;
1753 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1754 llvm::APSInt Value = Result.Val.getInt();
1755 CGF.EmitIgnoredExpr(E->getBase());
1756 return Builder.getInt(Value);
1757 }
1758 }
1759
1760 return EmitLoadOfLValue(E);
1761 }
1762
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1763 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1764 TestAndClearIgnoreResultAssign();
1765
1766 // Emit subscript expressions in rvalue context's. For most cases, this just
1767 // loads the lvalue formed by the subscript expr. However, we have to be
1768 // careful, because the base of a vector subscript is occasionally an rvalue,
1769 // so we can't get it as an lvalue.
1770 if (!E->getBase()->getType()->isVectorType() &&
1771 !E->getBase()->getType()->isVLSTBuiltinType())
1772 return EmitLoadOfLValue(E);
1773
1774 // Handle the vector case. The base must be a vector, the index must be an
1775 // integer value.
1776 Value *Base = Visit(E->getBase());
1777 Value *Idx = Visit(E->getIdx());
1778 QualType IdxTy = E->getIdx()->getType();
1779
1780 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1781 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1782
1783 return Builder.CreateExtractElement(Base, Idx, "vecext");
1784 }
1785
VisitMatrixSubscriptExpr(MatrixSubscriptExpr * E)1786 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1787 TestAndClearIgnoreResultAssign();
1788
1789 // Handle the vector case. The base must be a vector, the index must be an
1790 // integer value.
1791 Value *RowIdx = Visit(E->getRowIdx());
1792 Value *ColumnIdx = Visit(E->getColumnIdx());
1793
1794 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1795 unsigned NumRows = MatrixTy->getNumRows();
1796 llvm::MatrixBuilder MB(Builder);
1797 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1798 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1799 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1800
1801 Value *Matrix = Visit(E->getBase());
1802
1803 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1804 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1805 }
1806
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off)1807 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1808 unsigned Off) {
1809 int MV = SVI->getMaskValue(Idx);
1810 if (MV == -1)
1811 return -1;
1812 return Off + MV;
1813 }
1814
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1815 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1816 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1817 "Index operand too large for shufflevector mask!");
1818 return C->getZExtValue();
1819 }
1820
VisitInitListExpr(InitListExpr * E)1821 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1822 bool Ignore = TestAndClearIgnoreResultAssign();
1823 (void)Ignore;
1824 assert (Ignore == false && "init list ignored");
1825 unsigned NumInitElements = E->getNumInits();
1826
1827 if (E->hadArrayRangeDesignator())
1828 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1829
1830 llvm::VectorType *VType =
1831 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1832
1833 if (!VType) {
1834 if (NumInitElements == 0) {
1835 // C++11 value-initialization for the scalar.
1836 return EmitNullValue(E->getType());
1837 }
1838 // We have a scalar in braces. Just use the first element.
1839 return Visit(E->getInit(0));
1840 }
1841
1842 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1843
1844 // Loop over initializers collecting the Value for each, and remembering
1845 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1846 // us to fold the shuffle for the swizzle into the shuffle for the vector
1847 // initializer, since LLVM optimizers generally do not want to touch
1848 // shuffles.
1849 unsigned CurIdx = 0;
1850 bool VIsUndefShuffle = false;
1851 llvm::Value *V = llvm::UndefValue::get(VType);
1852 for (unsigned i = 0; i != NumInitElements; ++i) {
1853 Expr *IE = E->getInit(i);
1854 Value *Init = Visit(IE);
1855 SmallVector<int, 16> Args;
1856
1857 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1858
1859 // Handle scalar elements. If the scalar initializer is actually one
1860 // element of a different vector of the same width, use shuffle instead of
1861 // extract+insert.
1862 if (!VVT) {
1863 if (isa<ExtVectorElementExpr>(IE)) {
1864 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1865
1866 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1867 ->getNumElements() == ResElts) {
1868 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1869 Value *LHS = nullptr, *RHS = nullptr;
1870 if (CurIdx == 0) {
1871 // insert into undef -> shuffle (src, undef)
1872 // shufflemask must use an i32
1873 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1874 Args.resize(ResElts, -1);
1875
1876 LHS = EI->getVectorOperand();
1877 RHS = V;
1878 VIsUndefShuffle = true;
1879 } else if (VIsUndefShuffle) {
1880 // insert into undefshuffle && size match -> shuffle (v, src)
1881 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1882 for (unsigned j = 0; j != CurIdx; ++j)
1883 Args.push_back(getMaskElt(SVV, j, 0));
1884 Args.push_back(ResElts + C->getZExtValue());
1885 Args.resize(ResElts, -1);
1886
1887 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1888 RHS = EI->getVectorOperand();
1889 VIsUndefShuffle = false;
1890 }
1891 if (!Args.empty()) {
1892 V = Builder.CreateShuffleVector(LHS, RHS, Args);
1893 ++CurIdx;
1894 continue;
1895 }
1896 }
1897 }
1898 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1899 "vecinit");
1900 VIsUndefShuffle = false;
1901 ++CurIdx;
1902 continue;
1903 }
1904
1905 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1906
1907 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1908 // input is the same width as the vector being constructed, generate an
1909 // optimized shuffle of the swizzle input into the result.
1910 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1911 if (isa<ExtVectorElementExpr>(IE)) {
1912 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1913 Value *SVOp = SVI->getOperand(0);
1914 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1915
1916 if (OpTy->getNumElements() == ResElts) {
1917 for (unsigned j = 0; j != CurIdx; ++j) {
1918 // If the current vector initializer is a shuffle with undef, merge
1919 // this shuffle directly into it.
1920 if (VIsUndefShuffle) {
1921 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1922 } else {
1923 Args.push_back(j);
1924 }
1925 }
1926 for (unsigned j = 0, je = InitElts; j != je; ++j)
1927 Args.push_back(getMaskElt(SVI, j, Offset));
1928 Args.resize(ResElts, -1);
1929
1930 if (VIsUndefShuffle)
1931 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1932
1933 Init = SVOp;
1934 }
1935 }
1936
1937 // Extend init to result vector length, and then shuffle its contribution
1938 // to the vector initializer into V.
1939 if (Args.empty()) {
1940 for (unsigned j = 0; j != InitElts; ++j)
1941 Args.push_back(j);
1942 Args.resize(ResElts, -1);
1943 Init = Builder.CreateShuffleVector(Init, Args, "vext");
1944
1945 Args.clear();
1946 for (unsigned j = 0; j != CurIdx; ++j)
1947 Args.push_back(j);
1948 for (unsigned j = 0; j != InitElts; ++j)
1949 Args.push_back(j + Offset);
1950 Args.resize(ResElts, -1);
1951 }
1952
1953 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1954 // merging subsequent shuffles into this one.
1955 if (CurIdx == 0)
1956 std::swap(V, Init);
1957 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1958 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1959 CurIdx += InitElts;
1960 }
1961
1962 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1963 // Emit remaining default initializers.
1964 llvm::Type *EltTy = VType->getElementType();
1965
1966 // Emit remaining default initializers
1967 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1968 Value *Idx = Builder.getInt32(CurIdx);
1969 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1970 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1971 }
1972 return V;
1973 }
1974
ShouldNullCheckClassCastValue(const CastExpr * CE)1975 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1976 const Expr *E = CE->getSubExpr();
1977
1978 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1979 return false;
1980
1981 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1982 // We always assume that 'this' is never null.
1983 return false;
1984 }
1985
1986 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1987 // And that glvalue casts are never null.
1988 if (ICE->isGLValue())
1989 return false;
1990 }
1991
1992 return true;
1993 }
1994
1995 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1996 // have to handle a more broad range of conversions than explicit casts, as they
1997 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1998 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1999 Expr *E = CE->getSubExpr();
2000 QualType DestTy = CE->getType();
2001 CastKind Kind = CE->getCastKind();
2002
2003 // These cases are generally not written to ignore the result of
2004 // evaluating their sub-expressions, so we clear this now.
2005 bool Ignored = TestAndClearIgnoreResultAssign();
2006
2007 // Since almost all cast kinds apply to scalars, this switch doesn't have
2008 // a default case, so the compiler will warn on a missing case. The cases
2009 // are in the same order as in the CastKind enum.
2010 switch (Kind) {
2011 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2012 case CK_BuiltinFnToFnPtr:
2013 llvm_unreachable("builtin functions are handled elsewhere");
2014
2015 case CK_LValueBitCast:
2016 case CK_ObjCObjectLValueCast: {
2017 Address Addr = EmitLValue(E).getAddress(CGF);
2018 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2019 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2020 return EmitLoadOfLValue(LV, CE->getExprLoc());
2021 }
2022
2023 case CK_LValueToRValueBitCast: {
2024 LValue SourceLVal = CGF.EmitLValue(E);
2025 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2026 CGF.ConvertTypeForMem(DestTy));
2027 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2028 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2029 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2030 }
2031
2032 case CK_CPointerToObjCPointerCast:
2033 case CK_BlockPointerToObjCPointerCast:
2034 case CK_AnyPointerToBlockPointerCast:
2035 case CK_BitCast: {
2036 Value *Src = Visit(const_cast<Expr*>(E));
2037 llvm::Type *SrcTy = Src->getType();
2038 llvm::Type *DstTy = ConvertType(DestTy);
2039 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2040 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2041 llvm_unreachable("wrong cast for pointers in different address spaces"
2042 "(must be an address space cast)!");
2043 }
2044
2045 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2046 if (auto *PT = DestTy->getAs<PointerType>()) {
2047 CGF.EmitVTablePtrCheckForCast(
2048 PT->getPointeeType(),
2049 Address(Src,
2050 CGF.ConvertTypeForMem(
2051 E->getType()->castAs<PointerType>()->getPointeeType()),
2052 CGF.getPointerAlign()),
2053 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2054 CE->getBeginLoc());
2055 }
2056 }
2057
2058 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2059 const QualType SrcType = E->getType();
2060
2061 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2062 // Casting to pointer that could carry dynamic information (provided by
2063 // invariant.group) requires launder.
2064 Src = Builder.CreateLaunderInvariantGroup(Src);
2065 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2066 // Casting to pointer that does not carry dynamic information (provided
2067 // by invariant.group) requires stripping it. Note that we don't do it
2068 // if the source could not be dynamic type and destination could be
2069 // dynamic because dynamic information is already laundered. It is
2070 // because launder(strip(src)) == launder(src), so there is no need to
2071 // add extra strip before launder.
2072 Src = Builder.CreateStripInvariantGroup(Src);
2073 }
2074 }
2075
2076 // Update heapallocsite metadata when there is an explicit pointer cast.
2077 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2078 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2079 QualType PointeeType = DestTy->getPointeeType();
2080 if (!PointeeType.isNull())
2081 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2082 CE->getExprLoc());
2083 }
2084 }
2085
2086 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2087 // same element type, use the llvm.vector.insert intrinsic to perform the
2088 // bitcast.
2089 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2090 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2091 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2092 // vector, use a vector insert and bitcast the result.
2093 bool NeedsBitCast = false;
2094 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2095 llvm::Type *OrigType = DstTy;
2096 if (ScalableDst == PredType &&
2097 FixedSrc->getElementType() == Builder.getInt8Ty()) {
2098 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2099 ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2100 NeedsBitCast = true;
2101 }
2102 if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2103 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2104 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2105 llvm::Value *Result = Builder.CreateInsertVector(
2106 DstTy, UndefVec, Src, Zero, "castScalableSve");
2107 if (NeedsBitCast)
2108 Result = Builder.CreateBitCast(Result, OrigType);
2109 return Result;
2110 }
2111 }
2112 }
2113
2114 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2115 // same element type, use the llvm.vector.extract intrinsic to perform the
2116 // bitcast.
2117 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2118 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2119 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2120 // vector, bitcast the source and use a vector extract.
2121 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2122 if (ScalableSrc == PredType &&
2123 FixedDst->getElementType() == Builder.getInt8Ty()) {
2124 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2125 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2126 Src = Builder.CreateBitCast(Src, SrcTy);
2127 }
2128 if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2129 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2130 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2131 }
2132 }
2133 }
2134
2135 // Perform VLAT <-> VLST bitcast through memory.
2136 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2137 // require the element types of the vectors to be the same, we
2138 // need to keep this around for bitcasts between VLAT <-> VLST where
2139 // the element types of the vectors are not the same, until we figure
2140 // out a better way of doing these casts.
2141 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2142 isa<llvm::ScalableVectorType>(DstTy)) ||
2143 (isa<llvm::ScalableVectorType>(SrcTy) &&
2144 isa<llvm::FixedVectorType>(DstTy))) {
2145 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2146 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2147 CGF.EmitStoreOfScalar(Src, LV);
2148 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2149 "castFixedSve");
2150 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2151 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2152 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2153 }
2154 return Builder.CreateBitCast(Src, DstTy);
2155 }
2156 case CK_AddressSpaceConversion: {
2157 Expr::EvalResult Result;
2158 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2159 Result.Val.isNullPointer()) {
2160 // If E has side effect, it is emitted even if its final result is a
2161 // null pointer. In that case, a DCE pass should be able to
2162 // eliminate the useless instructions emitted during translating E.
2163 if (Result.HasSideEffects)
2164 Visit(E);
2165 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2166 ConvertType(DestTy)), DestTy);
2167 }
2168 // Since target may map different address spaces in AST to the same address
2169 // space, an address space conversion may end up as a bitcast.
2170 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2171 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2172 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2173 }
2174 case CK_AtomicToNonAtomic:
2175 case CK_NonAtomicToAtomic:
2176 case CK_UserDefinedConversion:
2177 return Visit(const_cast<Expr*>(E));
2178
2179 case CK_NoOp: {
2180 llvm::Value *V = Visit(const_cast<Expr *>(E));
2181 if (V) {
2182 // CK_NoOp can model a pointer qualification conversion, which can remove
2183 // an array bound and change the IR type.
2184 // FIXME: Once pointee types are removed from IR, remove this.
2185 llvm::Type *T = ConvertType(DestTy);
2186 if (T != V->getType())
2187 V = Builder.CreateBitCast(V, T);
2188 }
2189 return V;
2190 }
2191
2192 case CK_BaseToDerived: {
2193 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2194 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2195
2196 Address Base = CGF.EmitPointerWithAlignment(E);
2197 Address Derived =
2198 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2199 CE->path_begin(), CE->path_end(),
2200 CGF.ShouldNullCheckClassCastValue(CE));
2201
2202 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2203 // performed and the object is not of the derived type.
2204 if (CGF.sanitizePerformTypeCheck())
2205 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2206 Derived.getPointer(), DestTy->getPointeeType());
2207
2208 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2209 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2210 /*MayBeNull=*/true,
2211 CodeGenFunction::CFITCK_DerivedCast,
2212 CE->getBeginLoc());
2213
2214 return Derived.getPointer();
2215 }
2216 case CK_UncheckedDerivedToBase:
2217 case CK_DerivedToBase: {
2218 // The EmitPointerWithAlignment path does this fine; just discard
2219 // the alignment.
2220 return CGF.EmitPointerWithAlignment(CE).getPointer();
2221 }
2222
2223 case CK_Dynamic: {
2224 Address V = CGF.EmitPointerWithAlignment(E);
2225 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2226 return CGF.EmitDynamicCast(V, DCE);
2227 }
2228
2229 case CK_ArrayToPointerDecay:
2230 return CGF.EmitArrayToPointerDecay(E).getPointer();
2231 case CK_FunctionToPointerDecay:
2232 return EmitLValue(E).getPointer(CGF);
2233
2234 case CK_NullToPointer:
2235 if (MustVisitNullValue(E))
2236 CGF.EmitIgnoredExpr(E);
2237
2238 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2239 DestTy);
2240
2241 case CK_NullToMemberPointer: {
2242 if (MustVisitNullValue(E))
2243 CGF.EmitIgnoredExpr(E);
2244
2245 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2246 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2247 }
2248
2249 case CK_ReinterpretMemberPointer:
2250 case CK_BaseToDerivedMemberPointer:
2251 case CK_DerivedToBaseMemberPointer: {
2252 Value *Src = Visit(E);
2253
2254 // Note that the AST doesn't distinguish between checked and
2255 // unchecked member pointer conversions, so we always have to
2256 // implement checked conversions here. This is inefficient when
2257 // actual control flow may be required in order to perform the
2258 // check, which it is for data member pointers (but not member
2259 // function pointers on Itanium and ARM).
2260 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2261 }
2262
2263 case CK_ARCProduceObject:
2264 return CGF.EmitARCRetainScalarExpr(E);
2265 case CK_ARCConsumeObject:
2266 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2267 case CK_ARCReclaimReturnedObject:
2268 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2269 case CK_ARCExtendBlockObject:
2270 return CGF.EmitARCExtendBlockObject(E);
2271
2272 case CK_CopyAndAutoreleaseBlockObject:
2273 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2274
2275 case CK_FloatingRealToComplex:
2276 case CK_FloatingComplexCast:
2277 case CK_IntegralRealToComplex:
2278 case CK_IntegralComplexCast:
2279 case CK_IntegralComplexToFloatingComplex:
2280 case CK_FloatingComplexToIntegralComplex:
2281 case CK_ConstructorConversion:
2282 case CK_ToUnion:
2283 llvm_unreachable("scalar cast to non-scalar value");
2284
2285 case CK_LValueToRValue:
2286 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2287 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2288 return Visit(const_cast<Expr*>(E));
2289
2290 case CK_IntegralToPointer: {
2291 Value *Src = Visit(const_cast<Expr*>(E));
2292
2293 // First, convert to the correct width so that we control the kind of
2294 // extension.
2295 auto DestLLVMTy = ConvertType(DestTy);
2296 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2297 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2298 llvm::Value* IntResult =
2299 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2300
2301 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2302
2303 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2304 // Going from integer to pointer that could be dynamic requires reloading
2305 // dynamic information from invariant.group.
2306 if (DestTy.mayBeDynamicClass())
2307 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2308 }
2309 return IntToPtr;
2310 }
2311 case CK_PointerToIntegral: {
2312 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2313 auto *PtrExpr = Visit(E);
2314
2315 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2316 const QualType SrcType = E->getType();
2317
2318 // Casting to integer requires stripping dynamic information as it does
2319 // not carries it.
2320 if (SrcType.mayBeDynamicClass())
2321 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2322 }
2323
2324 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2325 }
2326 case CK_ToVoid: {
2327 CGF.EmitIgnoredExpr(E);
2328 return nullptr;
2329 }
2330 case CK_MatrixCast: {
2331 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2332 CE->getExprLoc());
2333 }
2334 case CK_VectorSplat: {
2335 llvm::Type *DstTy = ConvertType(DestTy);
2336 Value *Elt = Visit(const_cast<Expr *>(E));
2337 // Splat the element across to all elements
2338 llvm::ElementCount NumElements =
2339 cast<llvm::VectorType>(DstTy)->getElementCount();
2340 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2341 }
2342
2343 case CK_FixedPointCast:
2344 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2345 CE->getExprLoc());
2346
2347 case CK_FixedPointToBoolean:
2348 assert(E->getType()->isFixedPointType() &&
2349 "Expected src type to be fixed point type");
2350 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2351 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2352 CE->getExprLoc());
2353
2354 case CK_FixedPointToIntegral:
2355 assert(E->getType()->isFixedPointType() &&
2356 "Expected src type to be fixed point type");
2357 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2358 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2359 CE->getExprLoc());
2360
2361 case CK_IntegralToFixedPoint:
2362 assert(E->getType()->isIntegerType() &&
2363 "Expected src type to be an integer");
2364 assert(DestTy->isFixedPointType() &&
2365 "Expected dest type to be fixed point type");
2366 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2367 CE->getExprLoc());
2368
2369 case CK_IntegralCast: {
2370 ScalarConversionOpts Opts;
2371 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2372 if (!ICE->isPartOfExplicitCast())
2373 Opts = ScalarConversionOpts(CGF.SanOpts);
2374 }
2375 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2376 CE->getExprLoc(), Opts);
2377 }
2378 case CK_IntegralToFloating:
2379 case CK_FloatingToIntegral:
2380 case CK_FloatingCast:
2381 case CK_FixedPointToFloating:
2382 case CK_FloatingToFixedPoint: {
2383 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2384 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2385 CE->getExprLoc());
2386 }
2387 case CK_BooleanToSignedIntegral: {
2388 ScalarConversionOpts Opts;
2389 Opts.TreatBooleanAsSigned = true;
2390 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2391 CE->getExprLoc(), Opts);
2392 }
2393 case CK_IntegralToBoolean:
2394 return EmitIntToBoolConversion(Visit(E));
2395 case CK_PointerToBoolean:
2396 return EmitPointerToBoolConversion(Visit(E), E->getType());
2397 case CK_FloatingToBoolean: {
2398 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2399 return EmitFloatToBoolConversion(Visit(E));
2400 }
2401 case CK_MemberPointerToBoolean: {
2402 llvm::Value *MemPtr = Visit(E);
2403 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2404 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2405 }
2406
2407 case CK_FloatingComplexToReal:
2408 case CK_IntegralComplexToReal:
2409 return CGF.EmitComplexExpr(E, false, true).first;
2410
2411 case CK_FloatingComplexToBoolean:
2412 case CK_IntegralComplexToBoolean: {
2413 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2414
2415 // TODO: kill this function off, inline appropriate case here
2416 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2417 CE->getExprLoc());
2418 }
2419
2420 case CK_ZeroToOCLOpaqueType: {
2421 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2422 DestTy->isOCLIntelSubgroupAVCType()) &&
2423 "CK_ZeroToOCLEvent cast on non-event type");
2424 return llvm::Constant::getNullValue(ConvertType(DestTy));
2425 }
2426
2427 case CK_IntToOCLSampler:
2428 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2429
2430 } // end of switch
2431
2432 llvm_unreachable("unknown scalar cast");
2433 }
2434
VisitStmtExpr(const StmtExpr * E)2435 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2436 CodeGenFunction::StmtExprEvaluation eval(CGF);
2437 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2438 !E->getType()->isVoidType());
2439 if (!RetAlloca.isValid())
2440 return nullptr;
2441 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2442 E->getExprLoc());
2443 }
2444
VisitExprWithCleanups(ExprWithCleanups * E)2445 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2446 CodeGenFunction::RunCleanupsScope Scope(CGF);
2447 Value *V = Visit(E->getSubExpr());
2448 // Defend against dominance problems caused by jumps out of expression
2449 // evaluation through the shared cleanup block.
2450 Scope.ForceCleanup({&V});
2451 return V;
2452 }
2453
2454 //===----------------------------------------------------------------------===//
2455 // Unary Operators
2456 //===----------------------------------------------------------------------===//
2457
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc,FPOptions FPFeatures)2458 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2459 llvm::Value *InVal, bool IsInc,
2460 FPOptions FPFeatures) {
2461 BinOpInfo BinOp;
2462 BinOp.LHS = InVal;
2463 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2464 BinOp.Ty = E->getType();
2465 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2466 BinOp.FPFeatures = FPFeatures;
2467 BinOp.E = E;
2468 return BinOp;
2469 }
2470
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)2471 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2472 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2473 llvm::Value *Amount =
2474 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2475 StringRef Name = IsInc ? "inc" : "dec";
2476 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2477 case LangOptions::SOB_Defined:
2478 return Builder.CreateAdd(InVal, Amount, Name);
2479 case LangOptions::SOB_Undefined:
2480 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2481 return Builder.CreateNSWAdd(InVal, Amount, Name);
2482 LLVM_FALLTHROUGH;
2483 case LangOptions::SOB_Trapping:
2484 if (!E->canOverflow())
2485 return Builder.CreateNSWAdd(InVal, Amount, Name);
2486 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2487 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2488 }
2489 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2490 }
2491
2492 namespace {
2493 /// Handles check and update for lastprivate conditional variables.
2494 class OMPLastprivateConditionalUpdateRAII {
2495 private:
2496 CodeGenFunction &CGF;
2497 const UnaryOperator *E;
2498
2499 public:
OMPLastprivateConditionalUpdateRAII(CodeGenFunction & CGF,const UnaryOperator * E)2500 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2501 const UnaryOperator *E)
2502 : CGF(CGF), E(E) {}
~OMPLastprivateConditionalUpdateRAII()2503 ~OMPLastprivateConditionalUpdateRAII() {
2504 if (CGF.getLangOpts().OpenMP)
2505 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2506 CGF, E->getSubExpr());
2507 }
2508 };
2509 } // namespace
2510
2511 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2512 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2513 bool isInc, bool isPre) {
2514 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2515 QualType type = E->getSubExpr()->getType();
2516 llvm::PHINode *atomicPHI = nullptr;
2517 llvm::Value *value;
2518 llvm::Value *input;
2519
2520 int amount = (isInc ? 1 : -1);
2521 bool isSubtraction = !isInc;
2522
2523 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2524 type = atomicTy->getValueType();
2525 if (isInc && type->isBooleanType()) {
2526 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2527 if (isPre) {
2528 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2529 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2530 return Builder.getTrue();
2531 }
2532 // For atomic bool increment, we just store true and return it for
2533 // preincrement, do an atomic swap with true for postincrement
2534 return Builder.CreateAtomicRMW(
2535 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2536 llvm::AtomicOrdering::SequentiallyConsistent);
2537 }
2538 // Special case for atomic increment / decrement on integers, emit
2539 // atomicrmw instructions. We skip this if we want to be doing overflow
2540 // checking, and fall into the slow path with the atomic cmpxchg loop.
2541 if (!type->isBooleanType() && type->isIntegerType() &&
2542 !(type->isUnsignedIntegerType() &&
2543 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2544 CGF.getLangOpts().getSignedOverflowBehavior() !=
2545 LangOptions::SOB_Trapping) {
2546 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2547 llvm::AtomicRMWInst::Sub;
2548 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2549 llvm::Instruction::Sub;
2550 llvm::Value *amt = CGF.EmitToMemory(
2551 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2552 llvm::Value *old =
2553 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2554 llvm::AtomicOrdering::SequentiallyConsistent);
2555 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2556 }
2557 value = EmitLoadOfLValue(LV, E->getExprLoc());
2558 input = value;
2559 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2560 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2561 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2562 value = CGF.EmitToMemory(value, type);
2563 Builder.CreateBr(opBB);
2564 Builder.SetInsertPoint(opBB);
2565 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2566 atomicPHI->addIncoming(value, startBB);
2567 value = atomicPHI;
2568 } else {
2569 value = EmitLoadOfLValue(LV, E->getExprLoc());
2570 input = value;
2571 }
2572
2573 // Special case of integer increment that we have to check first: bool++.
2574 // Due to promotion rules, we get:
2575 // bool++ -> bool = bool + 1
2576 // -> bool = (int)bool + 1
2577 // -> bool = ((int)bool + 1 != 0)
2578 // An interesting aspect of this is that increment is always true.
2579 // Decrement does not have this property.
2580 if (isInc && type->isBooleanType()) {
2581 value = Builder.getTrue();
2582
2583 // Most common case by far: integer increment.
2584 } else if (type->isIntegerType()) {
2585 QualType promotedType;
2586 bool canPerformLossyDemotionCheck = false;
2587 if (type->isPromotableIntegerType()) {
2588 promotedType = CGF.getContext().getPromotedIntegerType(type);
2589 assert(promotedType != type && "Shouldn't promote to the same type.");
2590 canPerformLossyDemotionCheck = true;
2591 canPerformLossyDemotionCheck &=
2592 CGF.getContext().getCanonicalType(type) !=
2593 CGF.getContext().getCanonicalType(promotedType);
2594 canPerformLossyDemotionCheck &=
2595 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2596 type, promotedType);
2597 assert((!canPerformLossyDemotionCheck ||
2598 type->isSignedIntegerOrEnumerationType() ||
2599 promotedType->isSignedIntegerOrEnumerationType() ||
2600 ConvertType(type)->getScalarSizeInBits() ==
2601 ConvertType(promotedType)->getScalarSizeInBits()) &&
2602 "The following check expects that if we do promotion to different "
2603 "underlying canonical type, at least one of the types (either "
2604 "base or promoted) will be signed, or the bitwidths will match.");
2605 }
2606 if (CGF.SanOpts.hasOneOf(
2607 SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2608 canPerformLossyDemotionCheck) {
2609 // While `x += 1` (for `x` with width less than int) is modeled as
2610 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2611 // ease; inc/dec with width less than int can't overflow because of
2612 // promotion rules, so we omit promotion+demotion, which means that we can
2613 // not catch lossy "demotion". Because we still want to catch these cases
2614 // when the sanitizer is enabled, we perform the promotion, then perform
2615 // the increment/decrement in the wider type, and finally
2616 // perform the demotion. This will catch lossy demotions.
2617
2618 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2619 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2620 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2621 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2622 // emitted.
2623 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2624 ScalarConversionOpts(CGF.SanOpts));
2625
2626 // Note that signed integer inc/dec with width less than int can't
2627 // overflow because of promotion rules; we're just eliding a few steps
2628 // here.
2629 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2630 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2631 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2632 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2633 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2634 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2635 } else {
2636 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2637 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2638 }
2639
2640 // Next most common: pointer increment.
2641 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2642 QualType type = ptr->getPointeeType();
2643
2644 // VLA types don't have constant size.
2645 if (const VariableArrayType *vla
2646 = CGF.getContext().getAsVariableArrayType(type)) {
2647 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2648 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2649 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2650 if (CGF.getLangOpts().isSignedOverflowDefined())
2651 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2652 else
2653 value = CGF.EmitCheckedInBoundsGEP(
2654 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2655 E->getExprLoc(), "vla.inc");
2656
2657 // Arithmetic on function pointers (!) is just +-1.
2658 } else if (type->isFunctionType()) {
2659 llvm::Value *amt = Builder.getInt32(amount);
2660
2661 value = CGF.EmitCastToVoidPtr(value);
2662 if (CGF.getLangOpts().isSignedOverflowDefined())
2663 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2664 else
2665 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2666 /*SignedIndices=*/false,
2667 isSubtraction, E->getExprLoc(),
2668 "incdec.funcptr");
2669 value = Builder.CreateBitCast(value, input->getType());
2670
2671 // For everything else, we can just do a simple increment.
2672 } else {
2673 llvm::Value *amt = Builder.getInt32(amount);
2674 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2675 if (CGF.getLangOpts().isSignedOverflowDefined())
2676 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2677 else
2678 value = CGF.EmitCheckedInBoundsGEP(
2679 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2680 E->getExprLoc(), "incdec.ptr");
2681 }
2682
2683 // Vector increment/decrement.
2684 } else if (type->isVectorType()) {
2685 if (type->hasIntegerRepresentation()) {
2686 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2687
2688 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2689 } else {
2690 value = Builder.CreateFAdd(
2691 value,
2692 llvm::ConstantFP::get(value->getType(), amount),
2693 isInc ? "inc" : "dec");
2694 }
2695
2696 // Floating point.
2697 } else if (type->isRealFloatingType()) {
2698 // Add the inc/dec to the real part.
2699 llvm::Value *amt;
2700 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2701
2702 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2703 // Another special case: half FP increment should be done via float
2704 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2705 value = Builder.CreateCall(
2706 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2707 CGF.CGM.FloatTy),
2708 input, "incdec.conv");
2709 } else {
2710 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2711 }
2712 }
2713
2714 if (value->getType()->isFloatTy())
2715 amt = llvm::ConstantFP::get(VMContext,
2716 llvm::APFloat(static_cast<float>(amount)));
2717 else if (value->getType()->isDoubleTy())
2718 amt = llvm::ConstantFP::get(VMContext,
2719 llvm::APFloat(static_cast<double>(amount)));
2720 else {
2721 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2722 // from float.
2723 llvm::APFloat F(static_cast<float>(amount));
2724 bool ignored;
2725 const llvm::fltSemantics *FS;
2726 // Don't use getFloatTypeSemantics because Half isn't
2727 // necessarily represented using the "half" LLVM type.
2728 if (value->getType()->isFP128Ty())
2729 FS = &CGF.getTarget().getFloat128Format();
2730 else if (value->getType()->isHalfTy())
2731 FS = &CGF.getTarget().getHalfFormat();
2732 else if (value->getType()->isPPC_FP128Ty())
2733 FS = &CGF.getTarget().getIbm128Format();
2734 else
2735 FS = &CGF.getTarget().getLongDoubleFormat();
2736 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2737 amt = llvm::ConstantFP::get(VMContext, F);
2738 }
2739 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2740
2741 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2742 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2743 value = Builder.CreateCall(
2744 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2745 CGF.CGM.FloatTy),
2746 value, "incdec.conv");
2747 } else {
2748 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2749 }
2750 }
2751
2752 // Fixed-point types.
2753 } else if (type->isFixedPointType()) {
2754 // Fixed-point types are tricky. In some cases, it isn't possible to
2755 // represent a 1 or a -1 in the type at all. Piggyback off of
2756 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2757 BinOpInfo Info;
2758 Info.E = E;
2759 Info.Ty = E->getType();
2760 Info.Opcode = isInc ? BO_Add : BO_Sub;
2761 Info.LHS = value;
2762 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2763 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2764 // since -1 is guaranteed to be representable.
2765 if (type->isSignedFixedPointType()) {
2766 Info.Opcode = isInc ? BO_Sub : BO_Add;
2767 Info.RHS = Builder.CreateNeg(Info.RHS);
2768 }
2769 // Now, convert from our invented integer literal to the type of the unary
2770 // op. This will upscale and saturate if necessary. This value can become
2771 // undef in some cases.
2772 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2773 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2774 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2775 value = EmitFixedPointBinOp(Info);
2776
2777 // Objective-C pointer types.
2778 } else {
2779 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2780 value = CGF.EmitCastToVoidPtr(value);
2781
2782 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2783 if (!isInc) size = -size;
2784 llvm::Value *sizeValue =
2785 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2786
2787 if (CGF.getLangOpts().isSignedOverflowDefined())
2788 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2789 else
2790 value = CGF.EmitCheckedInBoundsGEP(
2791 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2792 E->getExprLoc(), "incdec.objptr");
2793 value = Builder.CreateBitCast(value, input->getType());
2794 }
2795
2796 if (atomicPHI) {
2797 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2798 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2799 auto Pair = CGF.EmitAtomicCompareExchange(
2800 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2801 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2802 llvm::Value *success = Pair.second;
2803 atomicPHI->addIncoming(old, curBlock);
2804 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2805 Builder.SetInsertPoint(contBB);
2806 return isPre ? value : input;
2807 }
2808
2809 // Store the updated result through the lvalue.
2810 if (LV.isBitField())
2811 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2812 else
2813 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2814
2815 // If this is a postinc, return the value read from memory, otherwise use the
2816 // updated value.
2817 return isPre ? value : input;
2818 }
2819
2820
2821
VisitUnaryMinus(const UnaryOperator * E)2822 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2823 TestAndClearIgnoreResultAssign();
2824 Value *Op = Visit(E->getSubExpr());
2825
2826 // Generate a unary FNeg for FP ops.
2827 if (Op->getType()->isFPOrFPVectorTy())
2828 return Builder.CreateFNeg(Op, "fneg");
2829
2830 // Emit unary minus with EmitSub so we handle overflow cases etc.
2831 BinOpInfo BinOp;
2832 BinOp.RHS = Op;
2833 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2834 BinOp.Ty = E->getType();
2835 BinOp.Opcode = BO_Sub;
2836 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2837 BinOp.E = E;
2838 return EmitSub(BinOp);
2839 }
2840
VisitUnaryNot(const UnaryOperator * E)2841 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2842 TestAndClearIgnoreResultAssign();
2843 Value *Op = Visit(E->getSubExpr());
2844 return Builder.CreateNot(Op, "neg");
2845 }
2846
VisitUnaryLNot(const UnaryOperator * E)2847 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2848 // Perform vector logical not on comparison with zero vector.
2849 if (E->getType()->isVectorType() &&
2850 E->getType()->castAs<VectorType>()->getVectorKind() ==
2851 VectorType::GenericVector) {
2852 Value *Oper = Visit(E->getSubExpr());
2853 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2854 Value *Result;
2855 if (Oper->getType()->isFPOrFPVectorTy()) {
2856 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2857 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2858 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2859 } else
2860 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2861 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2862 }
2863
2864 // Compare operand to zero.
2865 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2866
2867 // Invert value.
2868 // TODO: Could dynamically modify easy computations here. For example, if
2869 // the operand is an icmp ne, turn into icmp eq.
2870 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2871
2872 // ZExt result to the expr type.
2873 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2874 }
2875
VisitOffsetOfExpr(OffsetOfExpr * E)2876 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2877 // Try folding the offsetof to a constant.
2878 Expr::EvalResult EVResult;
2879 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2880 llvm::APSInt Value = EVResult.Val.getInt();
2881 return Builder.getInt(Value);
2882 }
2883
2884 // Loop over the components of the offsetof to compute the value.
2885 unsigned n = E->getNumComponents();
2886 llvm::Type* ResultType = ConvertType(E->getType());
2887 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2888 QualType CurrentType = E->getTypeSourceInfo()->getType();
2889 for (unsigned i = 0; i != n; ++i) {
2890 OffsetOfNode ON = E->getComponent(i);
2891 llvm::Value *Offset = nullptr;
2892 switch (ON.getKind()) {
2893 case OffsetOfNode::Array: {
2894 // Compute the index
2895 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2896 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2897 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2898 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2899
2900 // Save the element type
2901 CurrentType =
2902 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2903
2904 // Compute the element size
2905 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2906 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2907
2908 // Multiply out to compute the result
2909 Offset = Builder.CreateMul(Idx, ElemSize);
2910 break;
2911 }
2912
2913 case OffsetOfNode::Field: {
2914 FieldDecl *MemberDecl = ON.getField();
2915 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2916 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2917
2918 // Compute the index of the field in its parent.
2919 unsigned i = 0;
2920 // FIXME: It would be nice if we didn't have to loop here!
2921 for (RecordDecl::field_iterator Field = RD->field_begin(),
2922 FieldEnd = RD->field_end();
2923 Field != FieldEnd; ++Field, ++i) {
2924 if (*Field == MemberDecl)
2925 break;
2926 }
2927 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2928
2929 // Compute the offset to the field
2930 int64_t OffsetInt = RL.getFieldOffset(i) /
2931 CGF.getContext().getCharWidth();
2932 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2933
2934 // Save the element type.
2935 CurrentType = MemberDecl->getType();
2936 break;
2937 }
2938
2939 case OffsetOfNode::Identifier:
2940 llvm_unreachable("dependent __builtin_offsetof");
2941
2942 case OffsetOfNode::Base: {
2943 if (ON.getBase()->isVirtual()) {
2944 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2945 continue;
2946 }
2947
2948 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2949 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2950
2951 // Save the element type.
2952 CurrentType = ON.getBase()->getType();
2953
2954 // Compute the offset to the base.
2955 auto *BaseRT = CurrentType->castAs<RecordType>();
2956 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2957 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2958 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2959 break;
2960 }
2961 }
2962 Result = Builder.CreateAdd(Result, Offset);
2963 }
2964 return Result;
2965 }
2966
2967 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2968 /// argument of the sizeof expression as an integer.
2969 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2970 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2971 const UnaryExprOrTypeTraitExpr *E) {
2972 QualType TypeToSize = E->getTypeOfArgument();
2973 if (E->getKind() == UETT_SizeOf) {
2974 if (const VariableArrayType *VAT =
2975 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2976 if (E->isArgumentType()) {
2977 // sizeof(type) - make sure to emit the VLA size.
2978 CGF.EmitVariablyModifiedType(TypeToSize);
2979 } else {
2980 // C99 6.5.3.4p2: If the argument is an expression of type
2981 // VLA, it is evaluated.
2982 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2983 }
2984
2985 auto VlaSize = CGF.getVLASize(VAT);
2986 llvm::Value *size = VlaSize.NumElts;
2987
2988 // Scale the number of non-VLA elements by the non-VLA element size.
2989 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2990 if (!eltSize.isOne())
2991 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2992
2993 return size;
2994 }
2995 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2996 auto Alignment =
2997 CGF.getContext()
2998 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2999 E->getTypeOfArgument()->getPointeeType()))
3000 .getQuantity();
3001 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3002 }
3003
3004 // If this isn't sizeof(vla), the result must be constant; use the constant
3005 // folding logic so we don't have to duplicate it here.
3006 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3007 }
3008
VisitUnaryReal(const UnaryOperator * E)3009 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
3010 Expr *Op = E->getSubExpr();
3011 if (Op->getType()->isAnyComplexType()) {
3012 // If it's an l-value, load through the appropriate subobject l-value.
3013 // Note that we have to ask E because Op might be an l-value that
3014 // this won't work for, e.g. an Obj-C property.
3015 if (E->isGLValue())
3016 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3017 E->getExprLoc()).getScalarVal();
3018
3019 // Otherwise, calculate and project.
3020 return CGF.EmitComplexExpr(Op, false, true).first;
3021 }
3022
3023 return Visit(Op);
3024 }
3025
VisitUnaryImag(const UnaryOperator * E)3026 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3027 Expr *Op = E->getSubExpr();
3028 if (Op->getType()->isAnyComplexType()) {
3029 // If it's an l-value, load through the appropriate subobject l-value.
3030 // Note that we have to ask E because Op might be an l-value that
3031 // this won't work for, e.g. an Obj-C property.
3032 if (Op->isGLValue())
3033 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3034 E->getExprLoc()).getScalarVal();
3035
3036 // Otherwise, calculate and project.
3037 return CGF.EmitComplexExpr(Op, true, false).second;
3038 }
3039
3040 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3041 // effects are evaluated, but not the actual value.
3042 if (Op->isGLValue())
3043 CGF.EmitLValue(Op);
3044 else
3045 CGF.EmitScalarExpr(Op, true);
3046 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3047 }
3048
3049 //===----------------------------------------------------------------------===//
3050 // Binary Operators
3051 //===----------------------------------------------------------------------===//
3052
EmitBinOps(const BinaryOperator * E)3053 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3054 TestAndClearIgnoreResultAssign();
3055 BinOpInfo Result;
3056 Result.LHS = Visit(E->getLHS());
3057 Result.RHS = Visit(E->getRHS());
3058 Result.Ty = E->getType();
3059 Result.Opcode = E->getOpcode();
3060 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3061 Result.E = E;
3062 return Result;
3063 }
3064
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)3065 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3066 const CompoundAssignOperator *E,
3067 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3068 Value *&Result) {
3069 QualType LHSTy = E->getLHS()->getType();
3070 BinOpInfo OpInfo;
3071
3072 if (E->getComputationResultType()->isAnyComplexType())
3073 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3074
3075 // Emit the RHS first. __block variables need to have the rhs evaluated
3076 // first, plus this should improve codegen a little.
3077 OpInfo.RHS = Visit(E->getRHS());
3078 OpInfo.Ty = E->getComputationResultType();
3079 OpInfo.Opcode = E->getOpcode();
3080 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3081 OpInfo.E = E;
3082 // Load/convert the LHS.
3083 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3084
3085 llvm::PHINode *atomicPHI = nullptr;
3086 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3087 QualType type = atomicTy->getValueType();
3088 if (!type->isBooleanType() && type->isIntegerType() &&
3089 !(type->isUnsignedIntegerType() &&
3090 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3091 CGF.getLangOpts().getSignedOverflowBehavior() !=
3092 LangOptions::SOB_Trapping) {
3093 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3094 llvm::Instruction::BinaryOps Op;
3095 switch (OpInfo.Opcode) {
3096 // We don't have atomicrmw operands for *, %, /, <<, >>
3097 case BO_MulAssign: case BO_DivAssign:
3098 case BO_RemAssign:
3099 case BO_ShlAssign:
3100 case BO_ShrAssign:
3101 break;
3102 case BO_AddAssign:
3103 AtomicOp = llvm::AtomicRMWInst::Add;
3104 Op = llvm::Instruction::Add;
3105 break;
3106 case BO_SubAssign:
3107 AtomicOp = llvm::AtomicRMWInst::Sub;
3108 Op = llvm::Instruction::Sub;
3109 break;
3110 case BO_AndAssign:
3111 AtomicOp = llvm::AtomicRMWInst::And;
3112 Op = llvm::Instruction::And;
3113 break;
3114 case BO_XorAssign:
3115 AtomicOp = llvm::AtomicRMWInst::Xor;
3116 Op = llvm::Instruction::Xor;
3117 break;
3118 case BO_OrAssign:
3119 AtomicOp = llvm::AtomicRMWInst::Or;
3120 Op = llvm::Instruction::Or;
3121 break;
3122 default:
3123 llvm_unreachable("Invalid compound assignment type");
3124 }
3125 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3126 llvm::Value *Amt = CGF.EmitToMemory(
3127 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3128 E->getExprLoc()),
3129 LHSTy);
3130 Value *OldVal = Builder.CreateAtomicRMW(
3131 AtomicOp, LHSLV.getPointer(CGF), Amt,
3132 llvm::AtomicOrdering::SequentiallyConsistent);
3133
3134 // Since operation is atomic, the result type is guaranteed to be the
3135 // same as the input in LLVM terms.
3136 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3137 return LHSLV;
3138 }
3139 }
3140 // FIXME: For floating point types, we should be saving and restoring the
3141 // floating point environment in the loop.
3142 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3143 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3144 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3145 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3146 Builder.CreateBr(opBB);
3147 Builder.SetInsertPoint(opBB);
3148 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3149 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3150 OpInfo.LHS = atomicPHI;
3151 }
3152 else
3153 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3154
3155 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3156 SourceLocation Loc = E->getExprLoc();
3157 OpInfo.LHS =
3158 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3159
3160 // Expand the binary operator.
3161 Result = (this->*Func)(OpInfo);
3162
3163 // Convert the result back to the LHS type,
3164 // potentially with Implicit Conversion sanitizer check.
3165 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3166 Loc, ScalarConversionOpts(CGF.SanOpts));
3167
3168 if (atomicPHI) {
3169 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3170 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3171 auto Pair = CGF.EmitAtomicCompareExchange(
3172 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3173 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3174 llvm::Value *success = Pair.second;
3175 atomicPHI->addIncoming(old, curBlock);
3176 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3177 Builder.SetInsertPoint(contBB);
3178 return LHSLV;
3179 }
3180
3181 // Store the result value into the LHS lvalue. Bit-fields are handled
3182 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3183 // 'An assignment expression has the value of the left operand after the
3184 // assignment...'.
3185 if (LHSLV.isBitField())
3186 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3187 else
3188 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3189
3190 if (CGF.getLangOpts().OpenMP)
3191 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3192 E->getLHS());
3193 return LHSLV;
3194 }
3195
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))3196 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3197 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3198 bool Ignore = TestAndClearIgnoreResultAssign();
3199 Value *RHS = nullptr;
3200 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3201
3202 // If the result is clearly ignored, return now.
3203 if (Ignore)
3204 return nullptr;
3205
3206 // The result of an assignment in C is the assigned r-value.
3207 if (!CGF.getLangOpts().CPlusPlus)
3208 return RHS;
3209
3210 // If the lvalue is non-volatile, return the computed value of the assignment.
3211 if (!LHS.isVolatileQualified())
3212 return RHS;
3213
3214 // Otherwise, reload the value.
3215 return EmitLoadOfLValue(LHS, E->getExprLoc());
3216 }
3217
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)3218 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3219 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3220 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3221
3222 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3223 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3224 SanitizerKind::IntegerDivideByZero));
3225 }
3226
3227 const auto *BO = cast<BinaryOperator>(Ops.E);
3228 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3229 Ops.Ty->hasSignedIntegerRepresentation() &&
3230 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3231 Ops.mayHaveIntegerOverflow()) {
3232 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3233
3234 llvm::Value *IntMin =
3235 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3236 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3237
3238 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3239 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3240 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3241 Checks.push_back(
3242 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3243 }
3244
3245 if (Checks.size() > 0)
3246 EmitBinOpCheck(Checks, Ops);
3247 }
3248
EmitDiv(const BinOpInfo & Ops)3249 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3250 {
3251 CodeGenFunction::SanitizerScope SanScope(&CGF);
3252 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3253 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3254 Ops.Ty->isIntegerType() &&
3255 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3256 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3257 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3258 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3259 Ops.Ty->isRealFloatingType() &&
3260 Ops.mayHaveFloatDivisionByZero()) {
3261 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3262 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3263 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3264 Ops);
3265 }
3266 }
3267
3268 if (Ops.Ty->isConstantMatrixType()) {
3269 llvm::MatrixBuilder MB(Builder);
3270 // We need to check the types of the operands of the operator to get the
3271 // correct matrix dimensions.
3272 auto *BO = cast<BinaryOperator>(Ops.E);
3273 (void)BO;
3274 assert(
3275 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3276 "first operand must be a matrix");
3277 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3278 "second operand must be an arithmetic type");
3279 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3280 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3281 Ops.Ty->hasUnsignedIntegerRepresentation());
3282 }
3283
3284 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3285 llvm::Value *Val;
3286 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3287 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3288 if ((CGF.getLangOpts().OpenCL &&
3289 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3290 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3291 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3292 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3293 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3294 // build option allows an application to specify that single precision
3295 // floating-point divide (x/y and 1/x) and sqrt used in the program
3296 // source are correctly rounded.
3297 llvm::Type *ValTy = Val->getType();
3298 if (ValTy->isFloatTy() ||
3299 (isa<llvm::VectorType>(ValTy) &&
3300 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3301 CGF.SetFPAccuracy(Val, 2.5);
3302 }
3303 return Val;
3304 }
3305 else if (Ops.isFixedPointOp())
3306 return EmitFixedPointBinOp(Ops);
3307 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3308 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3309 else
3310 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3311 }
3312
EmitRem(const BinOpInfo & Ops)3313 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3314 // Rem in C can't be a floating point type: C99 6.5.5p2.
3315 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3316 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3317 Ops.Ty->isIntegerType() &&
3318 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3319 CodeGenFunction::SanitizerScope SanScope(&CGF);
3320 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3321 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3322 }
3323
3324 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3325 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3326 else
3327 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3328 }
3329
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)3330 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3331 unsigned IID;
3332 unsigned OpID = 0;
3333 SanitizerHandler OverflowKind;
3334
3335 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3336 switch (Ops.Opcode) {
3337 case BO_Add:
3338 case BO_AddAssign:
3339 OpID = 1;
3340 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3341 llvm::Intrinsic::uadd_with_overflow;
3342 OverflowKind = SanitizerHandler::AddOverflow;
3343 break;
3344 case BO_Sub:
3345 case BO_SubAssign:
3346 OpID = 2;
3347 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3348 llvm::Intrinsic::usub_with_overflow;
3349 OverflowKind = SanitizerHandler::SubOverflow;
3350 break;
3351 case BO_Mul:
3352 case BO_MulAssign:
3353 OpID = 3;
3354 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3355 llvm::Intrinsic::umul_with_overflow;
3356 OverflowKind = SanitizerHandler::MulOverflow;
3357 break;
3358 default:
3359 llvm_unreachable("Unsupported operation for overflow detection");
3360 }
3361 OpID <<= 1;
3362 if (isSigned)
3363 OpID |= 1;
3364
3365 CodeGenFunction::SanitizerScope SanScope(&CGF);
3366 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3367
3368 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3369
3370 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3371 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3372 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3373
3374 // Handle overflow with llvm.trap if no custom handler has been specified.
3375 const std::string *handlerName =
3376 &CGF.getLangOpts().OverflowHandler;
3377 if (handlerName->empty()) {
3378 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3379 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3380 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3381 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3382 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3383 : SanitizerKind::UnsignedIntegerOverflow;
3384 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3385 } else
3386 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3387 return result;
3388 }
3389
3390 // Branch in case of overflow.
3391 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3392 llvm::BasicBlock *continueBB =
3393 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3394 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3395
3396 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3397
3398 // If an overflow handler is set, then we want to call it and then use its
3399 // result, if it returns.
3400 Builder.SetInsertPoint(overflowBB);
3401
3402 // Get the overflow handler.
3403 llvm::Type *Int8Ty = CGF.Int8Ty;
3404 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3405 llvm::FunctionType *handlerTy =
3406 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3407 llvm::FunctionCallee handler =
3408 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3409
3410 // Sign extend the args to 64-bit, so that we can use the same handler for
3411 // all types of overflow.
3412 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3413 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3414
3415 // Call the handler with the two arguments, the operation, and the size of
3416 // the result.
3417 llvm::Value *handlerArgs[] = {
3418 lhs,
3419 rhs,
3420 Builder.getInt8(OpID),
3421 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3422 };
3423 llvm::Value *handlerResult =
3424 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3425
3426 // Truncate the result back to the desired size.
3427 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3428 Builder.CreateBr(continueBB);
3429
3430 Builder.SetInsertPoint(continueBB);
3431 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3432 phi->addIncoming(result, initialBB);
3433 phi->addIncoming(handlerResult, overflowBB);
3434
3435 return phi;
3436 }
3437
3438 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)3439 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3440 const BinOpInfo &op,
3441 bool isSubtraction) {
3442 // Must have binary (not unary) expr here. Unary pointer
3443 // increment/decrement doesn't use this path.
3444 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3445
3446 Value *pointer = op.LHS;
3447 Expr *pointerOperand = expr->getLHS();
3448 Value *index = op.RHS;
3449 Expr *indexOperand = expr->getRHS();
3450
3451 // In a subtraction, the LHS is always the pointer.
3452 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3453 std::swap(pointer, index);
3454 std::swap(pointerOperand, indexOperand);
3455 }
3456
3457 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3458
3459 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3460 auto &DL = CGF.CGM.getDataLayout();
3461 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3462
3463 // Some versions of glibc and gcc use idioms (particularly in their malloc
3464 // routines) that add a pointer-sized integer (known to be a pointer value)
3465 // to a null pointer in order to cast the value back to an integer or as
3466 // part of a pointer alignment algorithm. This is undefined behavior, but
3467 // we'd like to be able to compile programs that use it.
3468 //
3469 // Normally, we'd generate a GEP with a null-pointer base here in response
3470 // to that code, but it's also UB to dereference a pointer created that
3471 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3472 // generate a direct cast of the integer value to a pointer.
3473 //
3474 // The idiom (p = nullptr + N) is not met if any of the following are true:
3475 //
3476 // The operation is subtraction.
3477 // The index is not pointer-sized.
3478 // The pointer type is not byte-sized.
3479 //
3480 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3481 op.Opcode,
3482 expr->getLHS(),
3483 expr->getRHS()))
3484 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3485
3486 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3487 // Zero-extend or sign-extend the pointer value according to
3488 // whether the index is signed or not.
3489 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3490 "idx.ext");
3491 }
3492
3493 // If this is subtraction, negate the index.
3494 if (isSubtraction)
3495 index = CGF.Builder.CreateNeg(index, "idx.neg");
3496
3497 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3498 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3499 /*Accessed*/ false);
3500
3501 const PointerType *pointerType
3502 = pointerOperand->getType()->getAs<PointerType>();
3503 if (!pointerType) {
3504 QualType objectType = pointerOperand->getType()
3505 ->castAs<ObjCObjectPointerType>()
3506 ->getPointeeType();
3507 llvm::Value *objectSize
3508 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3509
3510 index = CGF.Builder.CreateMul(index, objectSize);
3511
3512 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3513 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3514 return CGF.Builder.CreateBitCast(result, pointer->getType());
3515 }
3516
3517 QualType elementType = pointerType->getPointeeType();
3518 if (const VariableArrayType *vla
3519 = CGF.getContext().getAsVariableArrayType(elementType)) {
3520 // The element count here is the total number of non-VLA elements.
3521 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3522
3523 // Effectively, the multiply by the VLA size is part of the GEP.
3524 // GEP indexes are signed, and scaling an index isn't permitted to
3525 // signed-overflow, so we use the same semantics for our explicit
3526 // multiply. We suppress this if overflow is not undefined behavior.
3527 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3528 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3529 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3530 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3531 } else {
3532 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3533 pointer = CGF.EmitCheckedInBoundsGEP(
3534 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3535 "add.ptr");
3536 }
3537 return pointer;
3538 }
3539
3540 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3541 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3542 // future proof.
3543 if (elementType->isVoidType() || elementType->isFunctionType()) {
3544 Value *result = CGF.EmitCastToVoidPtr(pointer);
3545 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3546 return CGF.Builder.CreateBitCast(result, pointer->getType());
3547 }
3548
3549 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3550 if (CGF.getLangOpts().isSignedOverflowDefined())
3551 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3552
3553 return CGF.EmitCheckedInBoundsGEP(
3554 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3555 "add.ptr");
3556 }
3557
3558 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3559 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3560 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3561 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3562 // efficient operations.
buildFMulAdd(llvm::Instruction * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)3563 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3564 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3565 bool negMul, bool negAdd) {
3566 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3567
3568 Value *MulOp0 = MulOp->getOperand(0);
3569 Value *MulOp1 = MulOp->getOperand(1);
3570 if (negMul)
3571 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3572 if (negAdd)
3573 Addend = Builder.CreateFNeg(Addend, "neg");
3574
3575 Value *FMulAdd = nullptr;
3576 if (Builder.getIsFPConstrained()) {
3577 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3578 "Only constrained operation should be created when Builder is in FP "
3579 "constrained mode");
3580 FMulAdd = Builder.CreateConstrainedFPCall(
3581 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3582 Addend->getType()),
3583 {MulOp0, MulOp1, Addend});
3584 } else {
3585 FMulAdd = Builder.CreateCall(
3586 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3587 {MulOp0, MulOp1, Addend});
3588 }
3589 MulOp->eraseFromParent();
3590
3591 return FMulAdd;
3592 }
3593
3594 // Check whether it would be legal to emit an fmuladd intrinsic call to
3595 // represent op and if so, build the fmuladd.
3596 //
3597 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3598 // Does NOT check the type of the operation - it's assumed that this function
3599 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)3600 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3601 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3602 bool isSub=false) {
3603
3604 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3605 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3606 "Only fadd/fsub can be the root of an fmuladd.");
3607
3608 // Check whether this op is marked as fusable.
3609 if (!op.FPFeatures.allowFPContractWithinStatement())
3610 return nullptr;
3611
3612 // We have a potentially fusable op. Look for a mul on one of the operands.
3613 // Also, make sure that the mul result isn't used directly. In that case,
3614 // there's no point creating a muladd operation.
3615 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3616 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3617 LHSBinOp->use_empty())
3618 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3619 }
3620 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3621 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3622 RHSBinOp->use_empty())
3623 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3624 }
3625
3626 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3627 if (LHSBinOp->getIntrinsicID() ==
3628 llvm::Intrinsic::experimental_constrained_fmul &&
3629 LHSBinOp->use_empty())
3630 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3631 }
3632 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3633 if (RHSBinOp->getIntrinsicID() ==
3634 llvm::Intrinsic::experimental_constrained_fmul &&
3635 RHSBinOp->use_empty())
3636 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3637 }
3638
3639 return nullptr;
3640 }
3641
EmitAdd(const BinOpInfo & op)3642 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3643 if (op.LHS->getType()->isPointerTy() ||
3644 op.RHS->getType()->isPointerTy())
3645 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3646
3647 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3648 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3649 case LangOptions::SOB_Defined:
3650 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3651 case LangOptions::SOB_Undefined:
3652 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3653 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3654 LLVM_FALLTHROUGH;
3655 case LangOptions::SOB_Trapping:
3656 if (CanElideOverflowCheck(CGF.getContext(), op))
3657 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3658 return EmitOverflowCheckedBinOp(op);
3659 }
3660 }
3661
3662 if (op.Ty->isConstantMatrixType()) {
3663 llvm::MatrixBuilder MB(Builder);
3664 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3665 return MB.CreateAdd(op.LHS, op.RHS);
3666 }
3667
3668 if (op.Ty->isUnsignedIntegerType() &&
3669 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3670 !CanElideOverflowCheck(CGF.getContext(), op))
3671 return EmitOverflowCheckedBinOp(op);
3672
3673 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3674 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3675 // Try to form an fmuladd.
3676 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3677 return FMulAdd;
3678
3679 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3680 }
3681
3682 if (op.isFixedPointOp())
3683 return EmitFixedPointBinOp(op);
3684
3685 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3686 }
3687
3688 /// The resulting value must be calculated with exact precision, so the operands
3689 /// may not be the same type.
EmitFixedPointBinOp(const BinOpInfo & op)3690 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3691 using llvm::APSInt;
3692 using llvm::ConstantInt;
3693
3694 // This is either a binary operation where at least one of the operands is
3695 // a fixed-point type, or a unary operation where the operand is a fixed-point
3696 // type. The result type of a binary operation is determined by
3697 // Sema::handleFixedPointConversions().
3698 QualType ResultTy = op.Ty;
3699 QualType LHSTy, RHSTy;
3700 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3701 RHSTy = BinOp->getRHS()->getType();
3702 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3703 // For compound assignment, the effective type of the LHS at this point
3704 // is the computation LHS type, not the actual LHS type, and the final
3705 // result type is not the type of the expression but rather the
3706 // computation result type.
3707 LHSTy = CAO->getComputationLHSType();
3708 ResultTy = CAO->getComputationResultType();
3709 } else
3710 LHSTy = BinOp->getLHS()->getType();
3711 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3712 LHSTy = UnOp->getSubExpr()->getType();
3713 RHSTy = UnOp->getSubExpr()->getType();
3714 }
3715 ASTContext &Ctx = CGF.getContext();
3716 Value *LHS = op.LHS;
3717 Value *RHS = op.RHS;
3718
3719 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3720 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3721 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3722 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3723
3724 // Perform the actual operation.
3725 Value *Result;
3726 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3727 switch (op.Opcode) {
3728 case BO_AddAssign:
3729 case BO_Add:
3730 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3731 break;
3732 case BO_SubAssign:
3733 case BO_Sub:
3734 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3735 break;
3736 case BO_MulAssign:
3737 case BO_Mul:
3738 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3739 break;
3740 case BO_DivAssign:
3741 case BO_Div:
3742 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3743 break;
3744 case BO_ShlAssign:
3745 case BO_Shl:
3746 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3747 break;
3748 case BO_ShrAssign:
3749 case BO_Shr:
3750 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3751 break;
3752 case BO_LT:
3753 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3754 case BO_GT:
3755 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3756 case BO_LE:
3757 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3758 case BO_GE:
3759 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3760 case BO_EQ:
3761 // For equality operations, we assume any padding bits on unsigned types are
3762 // zero'd out. They could be overwritten through non-saturating operations
3763 // that cause overflow, but this leads to undefined behavior.
3764 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3765 case BO_NE:
3766 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3767 case BO_Cmp:
3768 case BO_LAnd:
3769 case BO_LOr:
3770 llvm_unreachable("Found unimplemented fixed point binary operation");
3771 case BO_PtrMemD:
3772 case BO_PtrMemI:
3773 case BO_Rem:
3774 case BO_Xor:
3775 case BO_And:
3776 case BO_Or:
3777 case BO_Assign:
3778 case BO_RemAssign:
3779 case BO_AndAssign:
3780 case BO_XorAssign:
3781 case BO_OrAssign:
3782 case BO_Comma:
3783 llvm_unreachable("Found unsupported binary operation for fixed point types.");
3784 }
3785
3786 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3787 BinaryOperator::isShiftAssignOp(op.Opcode);
3788 // Convert to the result type.
3789 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3790 : CommonFixedSema,
3791 ResultFixedSema);
3792 }
3793
EmitSub(const BinOpInfo & op)3794 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3795 // The LHS is always a pointer if either side is.
3796 if (!op.LHS->getType()->isPointerTy()) {
3797 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3798 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3799 case LangOptions::SOB_Defined:
3800 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3801 case LangOptions::SOB_Undefined:
3802 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3803 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3804 LLVM_FALLTHROUGH;
3805 case LangOptions::SOB_Trapping:
3806 if (CanElideOverflowCheck(CGF.getContext(), op))
3807 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3808 return EmitOverflowCheckedBinOp(op);
3809 }
3810 }
3811
3812 if (op.Ty->isConstantMatrixType()) {
3813 llvm::MatrixBuilder MB(Builder);
3814 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3815 return MB.CreateSub(op.LHS, op.RHS);
3816 }
3817
3818 if (op.Ty->isUnsignedIntegerType() &&
3819 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3820 !CanElideOverflowCheck(CGF.getContext(), op))
3821 return EmitOverflowCheckedBinOp(op);
3822
3823 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3824 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3825 // Try to form an fmuladd.
3826 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3827 return FMulAdd;
3828 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3829 }
3830
3831 if (op.isFixedPointOp())
3832 return EmitFixedPointBinOp(op);
3833
3834 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3835 }
3836
3837 // If the RHS is not a pointer, then we have normal pointer
3838 // arithmetic.
3839 if (!op.RHS->getType()->isPointerTy())
3840 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3841
3842 // Otherwise, this is a pointer subtraction.
3843
3844 // Do the raw subtraction part.
3845 llvm::Value *LHS
3846 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3847 llvm::Value *RHS
3848 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3849 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3850
3851 // Okay, figure out the element size.
3852 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3853 QualType elementType = expr->getLHS()->getType()->getPointeeType();
3854
3855 llvm::Value *divisor = nullptr;
3856
3857 // For a variable-length array, this is going to be non-constant.
3858 if (const VariableArrayType *vla
3859 = CGF.getContext().getAsVariableArrayType(elementType)) {
3860 auto VlaSize = CGF.getVLASize(vla);
3861 elementType = VlaSize.Type;
3862 divisor = VlaSize.NumElts;
3863
3864 // Scale the number of non-VLA elements by the non-VLA element size.
3865 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3866 if (!eltSize.isOne())
3867 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3868
3869 // For everything elese, we can just compute it, safe in the
3870 // assumption that Sema won't let anything through that we can't
3871 // safely compute the size of.
3872 } else {
3873 CharUnits elementSize;
3874 // Handle GCC extension for pointer arithmetic on void* and
3875 // function pointer types.
3876 if (elementType->isVoidType() || elementType->isFunctionType())
3877 elementSize = CharUnits::One();
3878 else
3879 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3880
3881 // Don't even emit the divide for element size of 1.
3882 if (elementSize.isOne())
3883 return diffInChars;
3884
3885 divisor = CGF.CGM.getSize(elementSize);
3886 }
3887
3888 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3889 // pointer difference in C is only defined in the case where both operands
3890 // are pointing to elements of an array.
3891 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3892 }
3893
GetWidthMinusOneValue(Value * LHS,Value * RHS)3894 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3895 llvm::IntegerType *Ty;
3896 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3897 Ty = cast<llvm::IntegerType>(VT->getElementType());
3898 else
3899 Ty = cast<llvm::IntegerType>(LHS->getType());
3900 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3901 }
3902
ConstrainShiftValue(Value * LHS,Value * RHS,const Twine & Name)3903 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3904 const Twine &Name) {
3905 llvm::IntegerType *Ty;
3906 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3907 Ty = cast<llvm::IntegerType>(VT->getElementType());
3908 else
3909 Ty = cast<llvm::IntegerType>(LHS->getType());
3910
3911 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3912 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3913
3914 return Builder.CreateURem(
3915 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3916 }
3917
EmitShl(const BinOpInfo & Ops)3918 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3919 // TODO: This misses out on the sanitizer check below.
3920 if (Ops.isFixedPointOp())
3921 return EmitFixedPointBinOp(Ops);
3922
3923 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3924 // RHS to the same size as the LHS.
3925 Value *RHS = Ops.RHS;
3926 if (Ops.LHS->getType() != RHS->getType())
3927 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3928
3929 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3930 Ops.Ty->hasSignedIntegerRepresentation() &&
3931 !CGF.getLangOpts().isSignedOverflowDefined() &&
3932 !CGF.getLangOpts().CPlusPlus20;
3933 bool SanitizeUnsignedBase =
3934 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3935 Ops.Ty->hasUnsignedIntegerRepresentation();
3936 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3937 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3938 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3939 if (CGF.getLangOpts().OpenCL)
3940 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3941 else if ((SanitizeBase || SanitizeExponent) &&
3942 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3943 CodeGenFunction::SanitizerScope SanScope(&CGF);
3944 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3945 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3946 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3947
3948 if (SanitizeExponent) {
3949 Checks.push_back(
3950 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3951 }
3952
3953 if (SanitizeBase) {
3954 // Check whether we are shifting any non-zero bits off the top of the
3955 // integer. We only emit this check if exponent is valid - otherwise
3956 // instructions below will have undefined behavior themselves.
3957 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3958 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3959 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3960 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3961 llvm::Value *PromotedWidthMinusOne =
3962 (RHS == Ops.RHS) ? WidthMinusOne
3963 : GetWidthMinusOneValue(Ops.LHS, RHS);
3964 CGF.EmitBlock(CheckShiftBase);
3965 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3966 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3967 /*NUW*/ true, /*NSW*/ true),
3968 "shl.check");
3969 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3970 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3971 // Under C++11's rules, shifting a 1 bit into the sign bit is
3972 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3973 // define signed left shifts, so we use the C99 and C++11 rules there).
3974 // Unsigned shifts can always shift into the top bit.
3975 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3976 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3977 }
3978 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3979 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3980 CGF.EmitBlock(Cont);
3981 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3982 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3983 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3984 Checks.push_back(std::make_pair(
3985 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3986 : SanitizerKind::UnsignedShiftBase));
3987 }
3988
3989 assert(!Checks.empty());
3990 EmitBinOpCheck(Checks, Ops);
3991 }
3992
3993 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3994 }
3995
EmitShr(const BinOpInfo & Ops)3996 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3997 // TODO: This misses out on the sanitizer check below.
3998 if (Ops.isFixedPointOp())
3999 return EmitFixedPointBinOp(Ops);
4000
4001 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4002 // RHS to the same size as the LHS.
4003 Value *RHS = Ops.RHS;
4004 if (Ops.LHS->getType() != RHS->getType())
4005 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4006
4007 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4008 if (CGF.getLangOpts().OpenCL)
4009 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4010 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4011 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4012 CodeGenFunction::SanitizerScope SanScope(&CGF);
4013 llvm::Value *Valid =
4014 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4015 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4016 }
4017
4018 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4019 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4020 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4021 }
4022
4023 enum IntrinsicType { VCMPEQ, VCMPGT };
4024 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)4025 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4026 BuiltinType::Kind ElemKind) {
4027 switch (ElemKind) {
4028 default: llvm_unreachable("unexpected element type");
4029 case BuiltinType::Char_U:
4030 case BuiltinType::UChar:
4031 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4032 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4033 case BuiltinType::Char_S:
4034 case BuiltinType::SChar:
4035 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4036 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4037 case BuiltinType::UShort:
4038 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4039 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4040 case BuiltinType::Short:
4041 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4042 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4043 case BuiltinType::UInt:
4044 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4045 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4046 case BuiltinType::Int:
4047 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4048 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4049 case BuiltinType::ULong:
4050 case BuiltinType::ULongLong:
4051 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4052 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4053 case BuiltinType::Long:
4054 case BuiltinType::LongLong:
4055 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4056 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4057 case BuiltinType::Float:
4058 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4059 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4060 case BuiltinType::Double:
4061 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4062 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4063 case BuiltinType::UInt128:
4064 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4065 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4066 case BuiltinType::Int128:
4067 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4068 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4069 }
4070 }
4071
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc,bool IsSignaling)4072 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4073 llvm::CmpInst::Predicate UICmpOpc,
4074 llvm::CmpInst::Predicate SICmpOpc,
4075 llvm::CmpInst::Predicate FCmpOpc,
4076 bool IsSignaling) {
4077 TestAndClearIgnoreResultAssign();
4078 Value *Result;
4079 QualType LHSTy = E->getLHS()->getType();
4080 QualType RHSTy = E->getRHS()->getType();
4081 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4082 assert(E->getOpcode() == BO_EQ ||
4083 E->getOpcode() == BO_NE);
4084 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4085 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4086 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4087 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4088 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4089 BinOpInfo BOInfo = EmitBinOps(E);
4090 Value *LHS = BOInfo.LHS;
4091 Value *RHS = BOInfo.RHS;
4092
4093 // If AltiVec, the comparison results in a numeric type, so we use
4094 // intrinsics comparing vectors and giving 0 or 1 as a result
4095 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4096 // constants for mapping CR6 register bits to predicate result
4097 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4098
4099 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4100
4101 // in several cases vector arguments order will be reversed
4102 Value *FirstVecArg = LHS,
4103 *SecondVecArg = RHS;
4104
4105 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4106 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4107
4108 switch(E->getOpcode()) {
4109 default: llvm_unreachable("is not a comparison operation");
4110 case BO_EQ:
4111 CR6 = CR6_LT;
4112 ID = GetIntrinsic(VCMPEQ, ElementKind);
4113 break;
4114 case BO_NE:
4115 CR6 = CR6_EQ;
4116 ID = GetIntrinsic(VCMPEQ, ElementKind);
4117 break;
4118 case BO_LT:
4119 CR6 = CR6_LT;
4120 ID = GetIntrinsic(VCMPGT, ElementKind);
4121 std::swap(FirstVecArg, SecondVecArg);
4122 break;
4123 case BO_GT:
4124 CR6 = CR6_LT;
4125 ID = GetIntrinsic(VCMPGT, ElementKind);
4126 break;
4127 case BO_LE:
4128 if (ElementKind == BuiltinType::Float) {
4129 CR6 = CR6_LT;
4130 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4131 std::swap(FirstVecArg, SecondVecArg);
4132 }
4133 else {
4134 CR6 = CR6_EQ;
4135 ID = GetIntrinsic(VCMPGT, ElementKind);
4136 }
4137 break;
4138 case BO_GE:
4139 if (ElementKind == BuiltinType::Float) {
4140 CR6 = CR6_LT;
4141 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4142 }
4143 else {
4144 CR6 = CR6_EQ;
4145 ID = GetIntrinsic(VCMPGT, ElementKind);
4146 std::swap(FirstVecArg, SecondVecArg);
4147 }
4148 break;
4149 }
4150
4151 Value *CR6Param = Builder.getInt32(CR6);
4152 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4153 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4154
4155 // The result type of intrinsic may not be same as E->getType().
4156 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4157 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4158 // do nothing, if ResultTy is not i1 at the same time, it will cause
4159 // crash later.
4160 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4161 if (ResultTy->getBitWidth() > 1 &&
4162 E->getType() == CGF.getContext().BoolTy)
4163 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4164 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4165 E->getExprLoc());
4166 }
4167
4168 if (BOInfo.isFixedPointOp()) {
4169 Result = EmitFixedPointBinOp(BOInfo);
4170 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4171 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4172 if (!IsSignaling)
4173 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4174 else
4175 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4176 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4177 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4178 } else {
4179 // Unsigned integers and pointers.
4180
4181 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4182 !isa<llvm::ConstantPointerNull>(LHS) &&
4183 !isa<llvm::ConstantPointerNull>(RHS)) {
4184
4185 // Dynamic information is required to be stripped for comparisons,
4186 // because it could leak the dynamic information. Based on comparisons
4187 // of pointers to dynamic objects, the optimizer can replace one pointer
4188 // with another, which might be incorrect in presence of invariant
4189 // groups. Comparison with null is safe because null does not carry any
4190 // dynamic information.
4191 if (LHSTy.mayBeDynamicClass())
4192 LHS = Builder.CreateStripInvariantGroup(LHS);
4193 if (RHSTy.mayBeDynamicClass())
4194 RHS = Builder.CreateStripInvariantGroup(RHS);
4195 }
4196
4197 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4198 }
4199
4200 // If this is a vector comparison, sign extend the result to the appropriate
4201 // vector integer type and return it (don't convert to bool).
4202 if (LHSTy->isVectorType())
4203 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4204
4205 } else {
4206 // Complex Comparison: can only be an equality comparison.
4207 CodeGenFunction::ComplexPairTy LHS, RHS;
4208 QualType CETy;
4209 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4210 LHS = CGF.EmitComplexExpr(E->getLHS());
4211 CETy = CTy->getElementType();
4212 } else {
4213 LHS.first = Visit(E->getLHS());
4214 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4215 CETy = LHSTy;
4216 }
4217 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4218 RHS = CGF.EmitComplexExpr(E->getRHS());
4219 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4220 CTy->getElementType()) &&
4221 "The element types must always match.");
4222 (void)CTy;
4223 } else {
4224 RHS.first = Visit(E->getRHS());
4225 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4226 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4227 "The element types must always match.");
4228 }
4229
4230 Value *ResultR, *ResultI;
4231 if (CETy->isRealFloatingType()) {
4232 // As complex comparisons can only be equality comparisons, they
4233 // are never signaling comparisons.
4234 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4235 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4236 } else {
4237 // Complex comparisons can only be equality comparisons. As such, signed
4238 // and unsigned opcodes are the same.
4239 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4240 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4241 }
4242
4243 if (E->getOpcode() == BO_EQ) {
4244 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4245 } else {
4246 assert(E->getOpcode() == BO_NE &&
4247 "Complex comparison other than == or != ?");
4248 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4249 }
4250 }
4251
4252 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4253 E->getExprLoc());
4254 }
4255
VisitBinAssign(const BinaryOperator * E)4256 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4257 bool Ignore = TestAndClearIgnoreResultAssign();
4258
4259 Value *RHS;
4260 LValue LHS;
4261
4262 switch (E->getLHS()->getType().getObjCLifetime()) {
4263 case Qualifiers::OCL_Strong:
4264 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4265 break;
4266
4267 case Qualifiers::OCL_Autoreleasing:
4268 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4269 break;
4270
4271 case Qualifiers::OCL_ExplicitNone:
4272 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4273 break;
4274
4275 case Qualifiers::OCL_Weak:
4276 RHS = Visit(E->getRHS());
4277 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4278 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4279 break;
4280
4281 case Qualifiers::OCL_None:
4282 // __block variables need to have the rhs evaluated first, plus
4283 // this should improve codegen just a little.
4284 RHS = Visit(E->getRHS());
4285 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4286
4287 // Store the value into the LHS. Bit-fields are handled specially
4288 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4289 // 'An assignment expression has the value of the left operand after
4290 // the assignment...'.
4291 if (LHS.isBitField()) {
4292 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4293 } else {
4294 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4295 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4296 }
4297 }
4298
4299 // If the result is clearly ignored, return now.
4300 if (Ignore)
4301 return nullptr;
4302
4303 // The result of an assignment in C is the assigned r-value.
4304 if (!CGF.getLangOpts().CPlusPlus)
4305 return RHS;
4306
4307 // If the lvalue is non-volatile, return the computed value of the assignment.
4308 if (!LHS.isVolatileQualified())
4309 return RHS;
4310
4311 // Otherwise, reload the value.
4312 return EmitLoadOfLValue(LHS, E->getExprLoc());
4313 }
4314
VisitBinLAnd(const BinaryOperator * E)4315 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4316 // Perform vector logical and on comparisons with zero vectors.
4317 if (E->getType()->isVectorType()) {
4318 CGF.incrementProfileCounter(E);
4319
4320 Value *LHS = Visit(E->getLHS());
4321 Value *RHS = Visit(E->getRHS());
4322 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4323 if (LHS->getType()->isFPOrFPVectorTy()) {
4324 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4325 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4326 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4327 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4328 } else {
4329 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4330 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4331 }
4332 Value *And = Builder.CreateAnd(LHS, RHS);
4333 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4334 }
4335
4336 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4337 llvm::Type *ResTy = ConvertType(E->getType());
4338
4339 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4340 // If we have 1 && X, just emit X without inserting the control flow.
4341 bool LHSCondVal;
4342 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4343 if (LHSCondVal) { // If we have 1 && X, just emit X.
4344 CGF.incrementProfileCounter(E);
4345
4346 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4347
4348 // If we're generating for profiling or coverage, generate a branch to a
4349 // block that increments the RHS counter needed to track branch condition
4350 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4351 // "FalseBlock" after the increment is done.
4352 if (InstrumentRegions &&
4353 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4354 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4355 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4356 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4357 CGF.EmitBlock(RHSBlockCnt);
4358 CGF.incrementProfileCounter(E->getRHS());
4359 CGF.EmitBranch(FBlock);
4360 CGF.EmitBlock(FBlock);
4361 }
4362
4363 // ZExt result to int or bool.
4364 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4365 }
4366
4367 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4368 if (!CGF.ContainsLabel(E->getRHS()))
4369 return llvm::Constant::getNullValue(ResTy);
4370 }
4371
4372 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4373 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4374
4375 CodeGenFunction::ConditionalEvaluation eval(CGF);
4376
4377 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4378 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4379 CGF.getProfileCount(E->getRHS()));
4380
4381 // Any edges into the ContBlock are now from an (indeterminate number of)
4382 // edges from this first condition. All of these values will be false. Start
4383 // setting up the PHI node in the Cont Block for this.
4384 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4385 "", ContBlock);
4386 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4387 PI != PE; ++PI)
4388 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4389
4390 eval.begin(CGF);
4391 CGF.EmitBlock(RHSBlock);
4392 CGF.incrementProfileCounter(E);
4393 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4394 eval.end(CGF);
4395
4396 // Reaquire the RHS block, as there may be subblocks inserted.
4397 RHSBlock = Builder.GetInsertBlock();
4398
4399 // If we're generating for profiling or coverage, generate a branch on the
4400 // RHS to a block that increments the RHS true counter needed to track branch
4401 // condition coverage.
4402 if (InstrumentRegions &&
4403 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4404 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4405 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4406 CGF.EmitBlock(RHSBlockCnt);
4407 CGF.incrementProfileCounter(E->getRHS());
4408 CGF.EmitBranch(ContBlock);
4409 PN->addIncoming(RHSCond, RHSBlockCnt);
4410 }
4411
4412 // Emit an unconditional branch from this block to ContBlock.
4413 {
4414 // There is no need to emit line number for unconditional branch.
4415 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4416 CGF.EmitBlock(ContBlock);
4417 }
4418 // Insert an entry into the phi node for the edge with the value of RHSCond.
4419 PN->addIncoming(RHSCond, RHSBlock);
4420
4421 // Artificial location to preserve the scope information
4422 {
4423 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4424 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4425 }
4426
4427 // ZExt result to int.
4428 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4429 }
4430
VisitBinLOr(const BinaryOperator * E)4431 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4432 // Perform vector logical or on comparisons with zero vectors.
4433 if (E->getType()->isVectorType()) {
4434 CGF.incrementProfileCounter(E);
4435
4436 Value *LHS = Visit(E->getLHS());
4437 Value *RHS = Visit(E->getRHS());
4438 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4439 if (LHS->getType()->isFPOrFPVectorTy()) {
4440 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4441 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4442 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4443 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4444 } else {
4445 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4446 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4447 }
4448 Value *Or = Builder.CreateOr(LHS, RHS);
4449 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4450 }
4451
4452 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4453 llvm::Type *ResTy = ConvertType(E->getType());
4454
4455 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4456 // If we have 0 || X, just emit X without inserting the control flow.
4457 bool LHSCondVal;
4458 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4459 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4460 CGF.incrementProfileCounter(E);
4461
4462 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4463
4464 // If we're generating for profiling or coverage, generate a branch to a
4465 // block that increments the RHS counter need to track branch condition
4466 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4467 // "FalseBlock" after the increment is done.
4468 if (InstrumentRegions &&
4469 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4470 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4471 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4472 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4473 CGF.EmitBlock(RHSBlockCnt);
4474 CGF.incrementProfileCounter(E->getRHS());
4475 CGF.EmitBranch(FBlock);
4476 CGF.EmitBlock(FBlock);
4477 }
4478
4479 // ZExt result to int or bool.
4480 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4481 }
4482
4483 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4484 if (!CGF.ContainsLabel(E->getRHS()))
4485 return llvm::ConstantInt::get(ResTy, 1);
4486 }
4487
4488 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4489 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4490
4491 CodeGenFunction::ConditionalEvaluation eval(CGF);
4492
4493 // Branch on the LHS first. If it is true, go to the success (cont) block.
4494 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4495 CGF.getCurrentProfileCount() -
4496 CGF.getProfileCount(E->getRHS()));
4497
4498 // Any edges into the ContBlock are now from an (indeterminate number of)
4499 // edges from this first condition. All of these values will be true. Start
4500 // setting up the PHI node in the Cont Block for this.
4501 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4502 "", ContBlock);
4503 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4504 PI != PE; ++PI)
4505 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4506
4507 eval.begin(CGF);
4508
4509 // Emit the RHS condition as a bool value.
4510 CGF.EmitBlock(RHSBlock);
4511 CGF.incrementProfileCounter(E);
4512 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4513
4514 eval.end(CGF);
4515
4516 // Reaquire the RHS block, as there may be subblocks inserted.
4517 RHSBlock = Builder.GetInsertBlock();
4518
4519 // If we're generating for profiling or coverage, generate a branch on the
4520 // RHS to a block that increments the RHS true counter needed to track branch
4521 // condition coverage.
4522 if (InstrumentRegions &&
4523 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4524 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4525 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4526 CGF.EmitBlock(RHSBlockCnt);
4527 CGF.incrementProfileCounter(E->getRHS());
4528 CGF.EmitBranch(ContBlock);
4529 PN->addIncoming(RHSCond, RHSBlockCnt);
4530 }
4531
4532 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4533 // into the phi node for the edge with the value of RHSCond.
4534 CGF.EmitBlock(ContBlock);
4535 PN->addIncoming(RHSCond, RHSBlock);
4536
4537 // ZExt result to int.
4538 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4539 }
4540
VisitBinComma(const BinaryOperator * E)4541 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4542 CGF.EmitIgnoredExpr(E->getLHS());
4543 CGF.EnsureInsertPoint();
4544 return Visit(E->getRHS());
4545 }
4546
4547 //===----------------------------------------------------------------------===//
4548 // Other Operators
4549 //===----------------------------------------------------------------------===//
4550
4551 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4552 /// expression is cheap enough and side-effect-free enough to evaluate
4553 /// unconditionally instead of conditionally. This is used to convert control
4554 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)4555 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4556 CodeGenFunction &CGF) {
4557 // Anything that is an integer or floating point constant is fine.
4558 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4559
4560 // Even non-volatile automatic variables can't be evaluated unconditionally.
4561 // Referencing a thread_local may cause non-trivial initialization work to
4562 // occur. If we're inside a lambda and one of the variables is from the scope
4563 // outside the lambda, that function may have returned already. Reading its
4564 // locals is a bad idea. Also, these reads may introduce races there didn't
4565 // exist in the source-level program.
4566 }
4567
4568
4569 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)4570 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4571 TestAndClearIgnoreResultAssign();
4572
4573 // Bind the common expression if necessary.
4574 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4575
4576 Expr *condExpr = E->getCond();
4577 Expr *lhsExpr = E->getTrueExpr();
4578 Expr *rhsExpr = E->getFalseExpr();
4579
4580 // If the condition constant folds and can be elided, try to avoid emitting
4581 // the condition and the dead arm.
4582 bool CondExprBool;
4583 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4584 Expr *live = lhsExpr, *dead = rhsExpr;
4585 if (!CondExprBool) std::swap(live, dead);
4586
4587 // If the dead side doesn't have labels we need, just emit the Live part.
4588 if (!CGF.ContainsLabel(dead)) {
4589 if (CondExprBool)
4590 CGF.incrementProfileCounter(E);
4591 Value *Result = Visit(live);
4592
4593 // If the live part is a throw expression, it acts like it has a void
4594 // type, so evaluating it returns a null Value*. However, a conditional
4595 // with non-void type must return a non-null Value*.
4596 if (!Result && !E->getType()->isVoidType())
4597 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4598
4599 return Result;
4600 }
4601 }
4602
4603 // OpenCL: If the condition is a vector, we can treat this condition like
4604 // the select function.
4605 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4606 condExpr->getType()->isExtVectorType()) {
4607 CGF.incrementProfileCounter(E);
4608
4609 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4610 llvm::Value *LHS = Visit(lhsExpr);
4611 llvm::Value *RHS = Visit(rhsExpr);
4612
4613 llvm::Type *condType = ConvertType(condExpr->getType());
4614 auto *vecTy = cast<llvm::FixedVectorType>(condType);
4615
4616 unsigned numElem = vecTy->getNumElements();
4617 llvm::Type *elemType = vecTy->getElementType();
4618
4619 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4620 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4621 llvm::Value *tmp = Builder.CreateSExt(
4622 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4623 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4624
4625 // Cast float to int to perform ANDs if necessary.
4626 llvm::Value *RHSTmp = RHS;
4627 llvm::Value *LHSTmp = LHS;
4628 bool wasCast = false;
4629 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4630 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4631 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4632 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4633 wasCast = true;
4634 }
4635
4636 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4637 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4638 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4639 if (wasCast)
4640 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4641
4642 return tmp5;
4643 }
4644
4645 if (condExpr->getType()->isVectorType() ||
4646 condExpr->getType()->isVLSTBuiltinType()) {
4647 CGF.incrementProfileCounter(E);
4648
4649 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4650 llvm::Value *LHS = Visit(lhsExpr);
4651 llvm::Value *RHS = Visit(rhsExpr);
4652
4653 llvm::Type *CondType = ConvertType(condExpr->getType());
4654 auto *VecTy = cast<llvm::VectorType>(CondType);
4655 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4656
4657 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4658 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4659 }
4660
4661 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4662 // select instead of as control flow. We can only do this if it is cheap and
4663 // safe to evaluate the LHS and RHS unconditionally.
4664 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4665 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4666 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4667 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4668
4669 CGF.incrementProfileCounter(E, StepV);
4670
4671 llvm::Value *LHS = Visit(lhsExpr);
4672 llvm::Value *RHS = Visit(rhsExpr);
4673 if (!LHS) {
4674 // If the conditional has void type, make sure we return a null Value*.
4675 assert(!RHS && "LHS and RHS types must match");
4676 return nullptr;
4677 }
4678 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4679 }
4680
4681 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4682 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4683 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4684
4685 CodeGenFunction::ConditionalEvaluation eval(CGF);
4686 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4687 CGF.getProfileCount(lhsExpr));
4688
4689 CGF.EmitBlock(LHSBlock);
4690 CGF.incrementProfileCounter(E);
4691 eval.begin(CGF);
4692 Value *LHS = Visit(lhsExpr);
4693 eval.end(CGF);
4694
4695 LHSBlock = Builder.GetInsertBlock();
4696 Builder.CreateBr(ContBlock);
4697
4698 CGF.EmitBlock(RHSBlock);
4699 eval.begin(CGF);
4700 Value *RHS = Visit(rhsExpr);
4701 eval.end(CGF);
4702
4703 RHSBlock = Builder.GetInsertBlock();
4704 CGF.EmitBlock(ContBlock);
4705
4706 // If the LHS or RHS is a throw expression, it will be legitimately null.
4707 if (!LHS)
4708 return RHS;
4709 if (!RHS)
4710 return LHS;
4711
4712 // Create a PHI node for the real part.
4713 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4714 PN->addIncoming(LHS, LHSBlock);
4715 PN->addIncoming(RHS, RHSBlock);
4716 return PN;
4717 }
4718
VisitChooseExpr(ChooseExpr * E)4719 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4720 return Visit(E->getChosenSubExpr());
4721 }
4722
VisitVAArgExpr(VAArgExpr * VE)4723 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4724 QualType Ty = VE->getType();
4725
4726 if (Ty->isVariablyModifiedType())
4727 CGF.EmitVariablyModifiedType(Ty);
4728
4729 Address ArgValue = Address::invalid();
4730 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4731
4732 llvm::Type *ArgTy = ConvertType(VE->getType());
4733
4734 // If EmitVAArg fails, emit an error.
4735 if (!ArgPtr.isValid()) {
4736 CGF.ErrorUnsupported(VE, "va_arg expression");
4737 return llvm::UndefValue::get(ArgTy);
4738 }
4739
4740 // FIXME Volatility.
4741 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4742
4743 // If EmitVAArg promoted the type, we must truncate it.
4744 if (ArgTy != Val->getType()) {
4745 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4746 Val = Builder.CreateIntToPtr(Val, ArgTy);
4747 else
4748 Val = Builder.CreateTrunc(Val, ArgTy);
4749 }
4750
4751 return Val;
4752 }
4753
VisitBlockExpr(const BlockExpr * block)4754 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4755 return CGF.EmitBlockLiteral(block);
4756 }
4757
4758 // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)4759 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4760 Value *Src, unsigned NumElementsDst) {
4761 static constexpr int Mask[] = {0, 1, 2, -1};
4762 return Builder.CreateShuffleVector(Src,
4763 llvm::makeArrayRef(Mask, NumElementsDst));
4764 }
4765
4766 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4767 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4768 // but could be scalar or vectors of different lengths, and either can be
4769 // pointer.
4770 // There are 4 cases:
4771 // 1. non-pointer -> non-pointer : needs 1 bitcast
4772 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4773 // 3. pointer -> non-pointer
4774 // a) pointer -> intptr_t : needs 1 ptrtoint
4775 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4776 // 4. non-pointer -> pointer
4777 // a) intptr_t -> pointer : needs 1 inttoptr
4778 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4779 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4780 // allow casting directly between pointer types and non-integer non-pointer
4781 // types.
createCastsForTypeOfSameSize(CGBuilderTy & Builder,const llvm::DataLayout & DL,Value * Src,llvm::Type * DstTy,StringRef Name="")4782 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4783 const llvm::DataLayout &DL,
4784 Value *Src, llvm::Type *DstTy,
4785 StringRef Name = "") {
4786 auto SrcTy = Src->getType();
4787
4788 // Case 1.
4789 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4790 return Builder.CreateBitCast(Src, DstTy, Name);
4791
4792 // Case 2.
4793 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4794 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4795
4796 // Case 3.
4797 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4798 // Case 3b.
4799 if (!DstTy->isIntegerTy())
4800 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4801 // Cases 3a and 3b.
4802 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4803 }
4804
4805 // Case 4b.
4806 if (!SrcTy->isIntegerTy())
4807 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4808 // Cases 4a and 4b.
4809 return Builder.CreateIntToPtr(Src, DstTy, Name);
4810 }
4811
VisitAsTypeExpr(AsTypeExpr * E)4812 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4813 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4814 llvm::Type *DstTy = ConvertType(E->getType());
4815
4816 llvm::Type *SrcTy = Src->getType();
4817 unsigned NumElementsSrc =
4818 isa<llvm::VectorType>(SrcTy)
4819 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4820 : 0;
4821 unsigned NumElementsDst =
4822 isa<llvm::VectorType>(DstTy)
4823 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4824 : 0;
4825
4826 // Use bit vector expansion for ext_vector_type boolean vectors.
4827 if (E->getType()->isExtVectorBoolType())
4828 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
4829
4830 // Going from vec3 to non-vec3 is a special case and requires a shuffle
4831 // vector to get a vec4, then a bitcast if the target type is different.
4832 if (NumElementsSrc == 3 && NumElementsDst != 3) {
4833 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4834 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4835 DstTy);
4836
4837 Src->setName("astype");
4838 return Src;
4839 }
4840
4841 // Going from non-vec3 to vec3 is a special case and requires a bitcast
4842 // to vec4 if the original type is not vec4, then a shuffle vector to
4843 // get a vec3.
4844 if (NumElementsSrc != 3 && NumElementsDst == 3) {
4845 auto *Vec4Ty = llvm::FixedVectorType::get(
4846 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4847 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4848 Vec4Ty);
4849
4850 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4851 Src->setName("astype");
4852 return Src;
4853 }
4854
4855 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4856 Src, DstTy, "astype");
4857 }
4858
VisitAtomicExpr(AtomicExpr * E)4859 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4860 return CGF.EmitAtomicExpr(E).getScalarVal();
4861 }
4862
4863 //===----------------------------------------------------------------------===//
4864 // Entry Point into this File
4865 //===----------------------------------------------------------------------===//
4866
4867 /// Emit the computation of the specified expression of scalar type, ignoring
4868 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)4869 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4870 assert(E && hasScalarEvaluationKind(E->getType()) &&
4871 "Invalid scalar expression to emit");
4872
4873 return ScalarExprEmitter(*this, IgnoreResultAssign)
4874 .Visit(const_cast<Expr *>(E));
4875 }
4876
4877 /// Emit a conversion from the specified type to the specified destination type,
4878 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4879 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4880 QualType DstTy,
4881 SourceLocation Loc) {
4882 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4883 "Invalid scalar expression to emit");
4884 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4885 }
4886
4887 /// Emit a conversion from the specified complex type to the specified
4888 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4889 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4890 QualType SrcTy,
4891 QualType DstTy,
4892 SourceLocation Loc) {
4893 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4894 "Invalid complex -> scalar conversion");
4895 return ScalarExprEmitter(*this)
4896 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4897 }
4898
4899
4900 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)4901 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4902 bool isInc, bool isPre) {
4903 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4904 }
4905
EmitObjCIsaExpr(const ObjCIsaExpr * E)4906 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4907 // object->isa or (*object).isa
4908 // Generate code as for: *(Class*)object
4909
4910 Expr *BaseExpr = E->getBase();
4911 Address Addr = Address::invalid();
4912 if (BaseExpr->isPRValue()) {
4913 llvm::Type *BaseTy =
4914 ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
4915 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
4916 } else {
4917 Addr = EmitLValue(BaseExpr).getAddress(*this);
4918 }
4919
4920 // Cast the address to Class*.
4921 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4922 return MakeAddrLValue(Addr, E->getType());
4923 }
4924
4925
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)4926 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4927 const CompoundAssignOperator *E) {
4928 ScalarExprEmitter Scalar(*this);
4929 Value *Result = nullptr;
4930 switch (E->getOpcode()) {
4931 #define COMPOUND_OP(Op) \
4932 case BO_##Op##Assign: \
4933 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4934 Result)
4935 COMPOUND_OP(Mul);
4936 COMPOUND_OP(Div);
4937 COMPOUND_OP(Rem);
4938 COMPOUND_OP(Add);
4939 COMPOUND_OP(Sub);
4940 COMPOUND_OP(Shl);
4941 COMPOUND_OP(Shr);
4942 COMPOUND_OP(And);
4943 COMPOUND_OP(Xor);
4944 COMPOUND_OP(Or);
4945 #undef COMPOUND_OP
4946
4947 case BO_PtrMemD:
4948 case BO_PtrMemI:
4949 case BO_Mul:
4950 case BO_Div:
4951 case BO_Rem:
4952 case BO_Add:
4953 case BO_Sub:
4954 case BO_Shl:
4955 case BO_Shr:
4956 case BO_LT:
4957 case BO_GT:
4958 case BO_LE:
4959 case BO_GE:
4960 case BO_EQ:
4961 case BO_NE:
4962 case BO_Cmp:
4963 case BO_And:
4964 case BO_Xor:
4965 case BO_Or:
4966 case BO_LAnd:
4967 case BO_LOr:
4968 case BO_Assign:
4969 case BO_Comma:
4970 llvm_unreachable("Not valid compound assignment operators");
4971 }
4972
4973 llvm_unreachable("Unhandled compound assignment operator");
4974 }
4975
4976 struct GEPOffsetAndOverflow {
4977 // The total (signed) byte offset for the GEP.
4978 llvm::Value *TotalOffset;
4979 // The offset overflow flag - true if the total offset overflows.
4980 llvm::Value *OffsetOverflows;
4981 };
4982
4983 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4984 /// and compute the total offset it applies from it's base pointer BasePtr.
4985 /// Returns offset in bytes and a boolean flag whether an overflow happened
4986 /// during evaluation.
EmitGEPOffsetInBytes(Value * BasePtr,Value * GEPVal,llvm::LLVMContext & VMContext,CodeGenModule & CGM,CGBuilderTy & Builder)4987 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4988 llvm::LLVMContext &VMContext,
4989 CodeGenModule &CGM,
4990 CGBuilderTy &Builder) {
4991 const auto &DL = CGM.getDataLayout();
4992
4993 // The total (signed) byte offset for the GEP.
4994 llvm::Value *TotalOffset = nullptr;
4995
4996 // Was the GEP already reduced to a constant?
4997 if (isa<llvm::Constant>(GEPVal)) {
4998 // Compute the offset by casting both pointers to integers and subtracting:
4999 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5000 Value *BasePtr_int =
5001 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5002 Value *GEPVal_int =
5003 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5004 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5005 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5006 }
5007
5008 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5009 assert(GEP->getPointerOperand() == BasePtr &&
5010 "BasePtr must be the base of the GEP.");
5011 assert(GEP->isInBounds() && "Expected inbounds GEP");
5012
5013 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5014
5015 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5016 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5017 auto *SAddIntrinsic =
5018 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5019 auto *SMulIntrinsic =
5020 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5021
5022 // The offset overflow flag - true if the total offset overflows.
5023 llvm::Value *OffsetOverflows = Builder.getFalse();
5024
5025 /// Return the result of the given binary operation.
5026 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5027 llvm::Value *RHS) -> llvm::Value * {
5028 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5029
5030 // If the operands are constants, return a constant result.
5031 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5032 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5033 llvm::APInt N;
5034 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5035 /*Signed=*/true, N);
5036 if (HasOverflow)
5037 OffsetOverflows = Builder.getTrue();
5038 return llvm::ConstantInt::get(VMContext, N);
5039 }
5040 }
5041
5042 // Otherwise, compute the result with checked arithmetic.
5043 auto *ResultAndOverflow = Builder.CreateCall(
5044 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5045 OffsetOverflows = Builder.CreateOr(
5046 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5047 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5048 };
5049
5050 // Determine the total byte offset by looking at each GEP operand.
5051 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5052 GTI != GTE; ++GTI) {
5053 llvm::Value *LocalOffset;
5054 auto *Index = GTI.getOperand();
5055 // Compute the local offset contributed by this indexing step:
5056 if (auto *STy = GTI.getStructTypeOrNull()) {
5057 // For struct indexing, the local offset is the byte position of the
5058 // specified field.
5059 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5060 LocalOffset = llvm::ConstantInt::get(
5061 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5062 } else {
5063 // Otherwise this is array-like indexing. The local offset is the index
5064 // multiplied by the element size.
5065 auto *ElementSize = llvm::ConstantInt::get(
5066 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5067 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5068 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5069 }
5070
5071 // If this is the first offset, set it as the total offset. Otherwise, add
5072 // the local offset into the running total.
5073 if (!TotalOffset || TotalOffset == Zero)
5074 TotalOffset = LocalOffset;
5075 else
5076 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5077 }
5078
5079 return {TotalOffset, OffsetOverflows};
5080 }
5081
5082 Value *
EmitCheckedInBoundsGEP(llvm::Type * ElemTy,Value * Ptr,ArrayRef<Value * > IdxList,bool SignedIndices,bool IsSubtraction,SourceLocation Loc,const Twine & Name)5083 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5084 ArrayRef<Value *> IdxList,
5085 bool SignedIndices, bool IsSubtraction,
5086 SourceLocation Loc, const Twine &Name) {
5087 llvm::Type *PtrTy = Ptr->getType();
5088 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5089
5090 // If the pointer overflow sanitizer isn't enabled, do nothing.
5091 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5092 return GEPVal;
5093
5094 // Perform nullptr-and-offset check unless the nullptr is defined.
5095 bool PerformNullCheck = !NullPointerIsDefined(
5096 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5097 // Check for overflows unless the GEP got constant-folded,
5098 // and only in the default address space
5099 bool PerformOverflowCheck =
5100 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5101
5102 if (!(PerformNullCheck || PerformOverflowCheck))
5103 return GEPVal;
5104
5105 const auto &DL = CGM.getDataLayout();
5106
5107 SanitizerScope SanScope(this);
5108 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5109
5110 GEPOffsetAndOverflow EvaluatedGEP =
5111 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5112
5113 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5114 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5115 "If the offset got constant-folded, we don't expect that there was an "
5116 "overflow.");
5117
5118 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5119
5120 // Common case: if the total offset is zero, and we are using C++ semantics,
5121 // where nullptr+0 is defined, don't emit a check.
5122 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5123 return GEPVal;
5124
5125 // Now that we've computed the total offset, add it to the base pointer (with
5126 // wrapping semantics).
5127 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5128 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5129
5130 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5131
5132 if (PerformNullCheck) {
5133 // In C++, if the base pointer evaluates to a null pointer value,
5134 // the only valid pointer this inbounds GEP can produce is also
5135 // a null pointer, so the offset must also evaluate to zero.
5136 // Likewise, if we have non-zero base pointer, we can not get null pointer
5137 // as a result, so the offset can not be -intptr_t(BasePtr).
5138 // In other words, both pointers are either null, or both are non-null,
5139 // or the behaviour is undefined.
5140 //
5141 // C, however, is more strict in this regard, and gives more
5142 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5143 // So both the input to the 'gep inbounds' AND the output must not be null.
5144 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5145 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5146 auto *Valid =
5147 CGM.getLangOpts().CPlusPlus
5148 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5149 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5150 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5151 }
5152
5153 if (PerformOverflowCheck) {
5154 // The GEP is valid if:
5155 // 1) The total offset doesn't overflow, and
5156 // 2) The sign of the difference between the computed address and the base
5157 // pointer matches the sign of the total offset.
5158 llvm::Value *ValidGEP;
5159 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5160 if (SignedIndices) {
5161 // GEP is computed as `unsigned base + signed offset`, therefore:
5162 // * If offset was positive, then the computed pointer can not be
5163 // [unsigned] less than the base pointer, unless it overflowed.
5164 // * If offset was negative, then the computed pointer can not be
5165 // [unsigned] greater than the bas pointere, unless it overflowed.
5166 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5167 auto *PosOrZeroOffset =
5168 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5169 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5170 ValidGEP =
5171 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5172 } else if (!IsSubtraction) {
5173 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5174 // computed pointer can not be [unsigned] less than base pointer,
5175 // unless there was an overflow.
5176 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5177 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5178 } else {
5179 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5180 // computed pointer can not be [unsigned] greater than base pointer,
5181 // unless there was an overflow.
5182 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5183 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5184 }
5185 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5186 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5187 }
5188
5189 assert(!Checks.empty() && "Should have produced some checks.");
5190
5191 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5192 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5193 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5194 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5195
5196 return GEPVal;
5197 }
5198