1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 //===----------------------------------------------------------------------===//
33 // Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35
36 namespace {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38 CodeGenFunction &CGF;
39 CGBuilderTy &Builder;
40 AggValueSlot Dest;
41 bool IsResultUnused;
42
EnsureSlot(QualType T)43 AggValueSlot EnsureSlot(QualType T) {
44 if (!Dest.isIgnored()) return Dest;
45 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46 }
EnsureDest(QualType T)47 void EnsureDest(QualType T) {
48 if (!Dest.isIgnored()) return;
49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50 }
51
52 // Calls `Fn` with a valid return value slot, potentially creating a temporary
53 // to do so. If a temporary is created, an appropriate copy into `Dest` will
54 // be emitted, as will lifetime markers.
55 //
56 // The given function should take a ReturnValueSlot, and return an RValue that
57 // points to said slot.
58 void withReturnValueSlot(const Expr *E,
59 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64 IsResultUnused(IsResultUnused) { }
65
66 //===--------------------------------------------------------------------===//
67 // Utilities
68 //===--------------------------------------------------------------------===//
69
70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71 /// represents a value lvalue, this method emits the address of the lvalue,
72 /// then loads the result into DestPtr.
73 void EmitAggLoadOfLValue(const Expr *E);
74
75 enum ExprValueKind {
76 EVK_RValue,
77 EVK_NonRValue
78 };
79
80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81 /// SrcIsRValue is true if source comes from an RValue.
82 void EmitFinalDestCopy(QualType type, const LValue &src,
83 ExprValueKind SrcValueKind = EVK_NonRValue);
84 void EmitFinalDestCopy(QualType type, RValue src);
85 void EmitCopy(QualType type, const AggValueSlot &dest,
86 const AggValueSlot &src);
87
88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91 QualType ArrayQTy, InitListExpr *E);
92
needsGC(QualType T)93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95 return AggValueSlot::NeedsGCBarriers;
96 return AggValueSlot::DoesNotNeedGCBarriers;
97 }
98
99 bool TypeRequiresGCollection(QualType T);
100
101 //===--------------------------------------------------------------------===//
102 // Visitor Methods
103 //===--------------------------------------------------------------------===//
104
Visit(Expr * E)105 void Visit(Expr *E) {
106 ApplyDebugLocation DL(CGF, E);
107 StmtVisitor<AggExprEmitter>::Visit(E);
108 }
109
VisitStmt(Stmt * S)110 void VisitStmt(Stmt *S) {
111 CGF.ErrorUnsupported(S, "aggregate expression");
112 }
VisitParenExpr(ParenExpr * PE)113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115 Visit(GE->getResultExpr());
116 }
VisitCoawaitExpr(CoawaitExpr * E)117 void VisitCoawaitExpr(CoawaitExpr *E) {
118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119 }
VisitCoyieldExpr(CoyieldExpr * E)120 void VisitCoyieldExpr(CoyieldExpr *E) {
121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122 }
VisitUnaryCoawait(UnaryOperator * E)123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126 return Visit(E->getReplacement());
127 }
128
VisitConstantExpr(ConstantExpr * E)129 void VisitConstantExpr(ConstantExpr *E) {
130 EnsureDest(E->getType());
131
132 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
133 CGF.EmitAggregateStore(Result, Dest.getAddress(),
134 E->getType().isVolatileQualified());
135 return;
136 }
137 return Visit(E->getSubExpr());
138 }
139
140 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)141 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)142 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)143 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)144 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
145 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)146 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
147 EmitAggLoadOfLValue(E);
148 }
VisitPredefinedExpr(const PredefinedExpr * E)149 void VisitPredefinedExpr(const PredefinedExpr *E) {
150 EmitAggLoadOfLValue(E);
151 }
152
153 // Operators.
154 void VisitCastExpr(CastExpr *E);
155 void VisitCallExpr(const CallExpr *E);
156 void VisitStmtExpr(const StmtExpr *E);
157 void VisitBinaryOperator(const BinaryOperator *BO);
158 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
159 void VisitBinAssign(const BinaryOperator *E);
160 void VisitBinComma(const BinaryOperator *E);
161 void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)162 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
163 Visit(E->getSemanticForm());
164 }
165
166 void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)167 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
168 EmitAggLoadOfLValue(E);
169 }
170
171 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
172 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
173 void VisitChooseExpr(const ChooseExpr *CE);
174 void VisitInitListExpr(InitListExpr *E);
175 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
176 llvm::Value *outerBegin = nullptr);
177 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)178 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)179 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
180 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
181 Visit(DAE->getExpr());
182 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)183 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
184 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
185 Visit(DIE->getExpr());
186 }
187 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
188 void VisitCXXConstructExpr(const CXXConstructExpr *E);
189 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
190 void VisitLambdaExpr(LambdaExpr *E);
191 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
192 void VisitExprWithCleanups(ExprWithCleanups *E);
193 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)194 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
195 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
196 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
197
VisitPseudoObjectExpr(PseudoObjectExpr * E)198 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
199 if (E->isGLValue()) {
200 LValue LV = CGF.EmitPseudoObjectLValue(E);
201 return EmitFinalDestCopy(E->getType(), LV);
202 }
203
204 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
205 }
206
207 void VisitVAArgExpr(VAArgExpr *E);
208
209 void EmitInitializationToLValue(Expr *E, LValue Address);
210 void EmitNullInitializationToLValue(LValue Address);
211 // case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)212 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)213 void VisitAtomicExpr(AtomicExpr *E) {
214 RValue Res = CGF.EmitAtomicExpr(E);
215 EmitFinalDestCopy(E->getType(), Res);
216 }
217 };
218 } // end anonymous namespace.
219
220 //===----------------------------------------------------------------------===//
221 // Utilities
222 //===----------------------------------------------------------------------===//
223
224 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
225 /// represents a value lvalue, this method emits the address of the lvalue,
226 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)227 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
228 LValue LV = CGF.EmitLValue(E);
229
230 // If the type of the l-value is atomic, then do an atomic load.
231 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
232 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
233 return;
234 }
235
236 EmitFinalDestCopy(E->getType(), LV);
237 }
238
239 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)240 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
241 // Only record types have members that might require garbage collection.
242 const RecordType *RecordTy = T->getAs<RecordType>();
243 if (!RecordTy) return false;
244
245 // Don't mess with non-trivial C++ types.
246 RecordDecl *Record = RecordTy->getDecl();
247 if (isa<CXXRecordDecl>(Record) &&
248 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
249 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
250 return false;
251
252 // Check whether the type has an object member.
253 return Record->hasObjectMember();
254 }
255
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)256 void AggExprEmitter::withReturnValueSlot(
257 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
258 QualType RetTy = E->getType();
259 bool RequiresDestruction =
260 !Dest.isExternallyDestructed() &&
261 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
262
263 // If it makes no observable difference, save a memcpy + temporary.
264 //
265 // We need to always provide our own temporary if destruction is required.
266 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
267 // its lifetime before we have the chance to emit a proper destructor call.
268 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
269 (RequiresDestruction && !Dest.getAddress().isValid());
270
271 Address RetAddr = Address::invalid();
272 Address RetAllocaAddr = Address::invalid();
273
274 EHScopeStack::stable_iterator LifetimeEndBlock;
275 llvm::Value *LifetimeSizePtr = nullptr;
276 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
277 if (!UseTemp) {
278 RetAddr = Dest.getAddress();
279 } else {
280 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
281 llvm::TypeSize Size =
282 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
283 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
284 if (LifetimeSizePtr) {
285 LifetimeStartInst =
286 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
287 assert(LifetimeStartInst->getIntrinsicID() ==
288 llvm::Intrinsic::lifetime_start &&
289 "Last insertion wasn't a lifetime.start?");
290
291 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
292 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
293 LifetimeEndBlock = CGF.EHStack.stable_begin();
294 }
295 }
296
297 RValue Src =
298 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
299 Dest.isExternallyDestructed()));
300
301 if (!UseTemp)
302 return;
303
304 assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer());
305 EmitFinalDestCopy(E->getType(), Src);
306
307 if (!RequiresDestruction && LifetimeStartInst) {
308 // If there's no dtor to run, the copy was the last use of our temporary.
309 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
310 // eagerly.
311 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
312 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
313 }
314 }
315
316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)317 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
318 assert(src.isAggregate() && "value must be aggregate value!");
319 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
320 EmitFinalDestCopy(type, srcLV, EVK_RValue);
321 }
322
323 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)324 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
325 ExprValueKind SrcValueKind) {
326 // If Dest is ignored, then we're evaluating an aggregate expression
327 // in a context that doesn't care about the result. Note that loads
328 // from volatile l-values force the existence of a non-ignored
329 // destination.
330 if (Dest.isIgnored())
331 return;
332
333 // Copy non-trivial C structs here.
334 LValue DstLV = CGF.MakeAddrLValue(
335 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
336
337 if (SrcValueKind == EVK_RValue) {
338 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
339 if (Dest.isPotentiallyAliased())
340 CGF.callCStructMoveAssignmentOperator(DstLV, src);
341 else
342 CGF.callCStructMoveConstructor(DstLV, src);
343 return;
344 }
345 } else {
346 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
347 if (Dest.isPotentiallyAliased())
348 CGF.callCStructCopyAssignmentOperator(DstLV, src);
349 else
350 CGF.callCStructCopyConstructor(DstLV, src);
351 return;
352 }
353 }
354
355 AggValueSlot srcAgg = AggValueSlot::forLValue(
356 src, CGF, AggValueSlot::IsDestructed, needsGC(type),
357 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
358 EmitCopy(type, Dest, srcAgg);
359 }
360
361 /// Perform a copy from the source into the destination.
362 ///
363 /// \param type - the type of the aggregate being copied; qualifiers are
364 /// ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)365 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
366 const AggValueSlot &src) {
367 if (dest.requiresGCollection()) {
368 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
369 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
370 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
371 dest.getAddress(),
372 src.getAddress(),
373 size);
374 return;
375 }
376
377 // If the result of the assignment is used, copy the LHS there also.
378 // It's volatile if either side is. Use the minimum alignment of
379 // the two sides.
380 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
381 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
382 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
383 dest.isVolatile() || src.isVolatile());
384 }
385
386 /// Emit the initializer for a std::initializer_list initialized with a
387 /// real initializer list.
388 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)389 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
390 // Emit an array containing the elements. The array is externally destructed
391 // if the std::initializer_list object is.
392 ASTContext &Ctx = CGF.getContext();
393 LValue Array = CGF.EmitLValue(E->getSubExpr());
394 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
395 Address ArrayPtr = Array.getAddress(CGF);
396
397 const ConstantArrayType *ArrayType =
398 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
399 assert(ArrayType && "std::initializer_list constructed from non-array");
400
401 // FIXME: Perform the checks on the field types in SemaInit.
402 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
403 RecordDecl::field_iterator Field = Record->field_begin();
404 if (Field == Record->field_end()) {
405 CGF.ErrorUnsupported(E, "weird std::initializer_list");
406 return;
407 }
408
409 // Start pointer.
410 if (!Field->getType()->isPointerType() ||
411 !Ctx.hasSameType(Field->getType()->getPointeeType(),
412 ArrayType->getElementType())) {
413 CGF.ErrorUnsupported(E, "weird std::initializer_list");
414 return;
415 }
416
417 AggValueSlot Dest = EnsureSlot(E->getType());
418 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
419 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
420 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
421 llvm::Value *IdxStart[] = { Zero, Zero };
422 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
423 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
424 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
425 ++Field;
426
427 if (Field == Record->field_end()) {
428 CGF.ErrorUnsupported(E, "weird std::initializer_list");
429 return;
430 }
431
432 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
433 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
434 if (Field->getType()->isPointerType() &&
435 Ctx.hasSameType(Field->getType()->getPointeeType(),
436 ArrayType->getElementType())) {
437 // End pointer.
438 llvm::Value *IdxEnd[] = { Zero, Size };
439 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
440 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
441 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
442 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
443 // Length.
444 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
445 } else {
446 CGF.ErrorUnsupported(E, "weird std::initializer_list");
447 return;
448 }
449 }
450
451 /// Determine if E is a trivial array filler, that is, one that is
452 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)453 static bool isTrivialFiller(Expr *E) {
454 if (!E)
455 return true;
456
457 if (isa<ImplicitValueInitExpr>(E))
458 return true;
459
460 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
461 if (ILE->getNumInits())
462 return false;
463 return isTrivialFiller(ILE->getArrayFiller());
464 }
465
466 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
467 return Cons->getConstructor()->isDefaultConstructor() &&
468 Cons->getConstructor()->isTrivial();
469
470 // FIXME: Are there other cases where we can avoid emitting an initializer?
471 return false;
472 }
473
474 /// Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,InitListExpr * E)475 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
476 QualType ArrayQTy, InitListExpr *E) {
477 uint64_t NumInitElements = E->getNumInits();
478
479 uint64_t NumArrayElements = AType->getNumElements();
480 assert(NumInitElements <= NumArrayElements);
481
482 QualType elementType =
483 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
484
485 // DestPtr is an array*. Construct an elementType* by drilling
486 // down a level.
487 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
488 llvm::Value *indices[] = { zero, zero };
489 llvm::Value *begin = Builder.CreateInBoundsGEP(
490 DestPtr.getElementType(), DestPtr.getPointer(), indices,
491 "arrayinit.begin");
492
493 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
494 CharUnits elementAlign =
495 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
496 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
497
498 // Consider initializing the array by copying from a global. For this to be
499 // more efficient than per-element initialization, the size of the elements
500 // with explicit initializers should be large enough.
501 if (NumInitElements * elementSize.getQuantity() > 16 &&
502 elementType.isTriviallyCopyableType(CGF.getContext())) {
503 CodeGen::CodeGenModule &CGM = CGF.CGM;
504 ConstantEmitter Emitter(CGF);
505 LangAS AS = ArrayQTy.getAddressSpace();
506 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
507 auto GV = new llvm::GlobalVariable(
508 CGM.getModule(), C->getType(),
509 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
510 llvm::GlobalValue::PrivateLinkage, C, "constinit",
511 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
512 CGM.getContext().getTargetAddressSpace(AS));
513 Emitter.finalize(GV);
514 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
515 GV->setAlignment(Align.getAsAlign());
516 Address GVAddr(GV, GV->getValueType(), Align);
517 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
518 return;
519 }
520 }
521
522 // Exception safety requires us to destroy all the
523 // already-constructed members if an initializer throws.
524 // For that, we'll need an EH cleanup.
525 QualType::DestructionKind dtorKind = elementType.isDestructedType();
526 Address endOfInit = Address::invalid();
527 EHScopeStack::stable_iterator cleanup;
528 llvm::Instruction *cleanupDominator = nullptr;
529 if (CGF.needsEHCleanup(dtorKind)) {
530 // In principle we could tell the cleanup where we are more
531 // directly, but the control flow can get so varied here that it
532 // would actually be quite complex. Therefore we go through an
533 // alloca.
534 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
535 "arrayinit.endOfInit");
536 cleanupDominator = Builder.CreateStore(begin, endOfInit);
537 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
538 elementAlign,
539 CGF.getDestroyer(dtorKind));
540 cleanup = CGF.EHStack.stable_begin();
541
542 // Otherwise, remember that we didn't need a cleanup.
543 } else {
544 dtorKind = QualType::DK_none;
545 }
546
547 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
548
549 // The 'current element to initialize'. The invariants on this
550 // variable are complicated. Essentially, after each iteration of
551 // the loop, it points to the last initialized element, except
552 // that it points to the beginning of the array before any
553 // elements have been initialized.
554 llvm::Value *element = begin;
555
556 // Emit the explicit initializers.
557 for (uint64_t i = 0; i != NumInitElements; ++i) {
558 // Advance to the next element.
559 if (i > 0) {
560 element = Builder.CreateInBoundsGEP(
561 llvmElementType, element, one, "arrayinit.element");
562
563 // Tell the cleanup that it needs to destroy up to this
564 // element. TODO: some of these stores can be trivially
565 // observed to be unnecessary.
566 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
567 }
568
569 LValue elementLV = CGF.MakeAddrLValue(
570 Address(element, llvmElementType, elementAlign), elementType);
571 EmitInitializationToLValue(E->getInit(i), elementLV);
572 }
573
574 // Check whether there's a non-trivial array-fill expression.
575 Expr *filler = E->getArrayFiller();
576 bool hasTrivialFiller = isTrivialFiller(filler);
577
578 // Any remaining elements need to be zero-initialized, possibly
579 // using the filler expression. We can skip this if the we're
580 // emitting to zeroed memory.
581 if (NumInitElements != NumArrayElements &&
582 !(Dest.isZeroed() && hasTrivialFiller &&
583 CGF.getTypes().isZeroInitializable(elementType))) {
584
585 // Use an actual loop. This is basically
586 // do { *array++ = filler; } while (array != end);
587
588 // Advance to the start of the rest of the array.
589 if (NumInitElements) {
590 element = Builder.CreateInBoundsGEP(
591 llvmElementType, element, one, "arrayinit.start");
592 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
593 }
594
595 // Compute the end of the array.
596 llvm::Value *end = Builder.CreateInBoundsGEP(
597 llvmElementType, begin,
598 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
599
600 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
601 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
602
603 // Jump into the body.
604 CGF.EmitBlock(bodyBB);
605 llvm::PHINode *currentElement =
606 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
607 currentElement->addIncoming(element, entryBB);
608
609 // Emit the actual filler expression.
610 {
611 // C++1z [class.temporary]p5:
612 // when a default constructor is called to initialize an element of
613 // an array with no corresponding initializer [...] the destruction of
614 // every temporary created in a default argument is sequenced before
615 // the construction of the next array element, if any
616 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
617 LValue elementLV = CGF.MakeAddrLValue(
618 Address(currentElement, llvmElementType, elementAlign), elementType);
619 if (filler)
620 EmitInitializationToLValue(filler, elementLV);
621 else
622 EmitNullInitializationToLValue(elementLV);
623 }
624
625 // Move on to the next element.
626 llvm::Value *nextElement = Builder.CreateInBoundsGEP(
627 llvmElementType, currentElement, one, "arrayinit.next");
628
629 // Tell the EH cleanup that we finished with the last element.
630 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
631
632 // Leave the loop if we're done.
633 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
634 "arrayinit.done");
635 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
636 Builder.CreateCondBr(done, endBB, bodyBB);
637 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
638
639 CGF.EmitBlock(endBB);
640 }
641
642 // Leave the partial-array cleanup if we entered one.
643 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
644 }
645
646 //===----------------------------------------------------------------------===//
647 // Visitor Methods
648 //===----------------------------------------------------------------------===//
649
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)650 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
651 Visit(E->getSubExpr());
652 }
653
VisitOpaqueValueExpr(OpaqueValueExpr * e)654 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
655 // If this is a unique OVE, just visit its source expression.
656 if (e->isUnique())
657 Visit(e->getSourceExpr());
658 else
659 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
660 }
661
662 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)663 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
664 if (Dest.isPotentiallyAliased() &&
665 E->getType().isPODType(CGF.getContext())) {
666 // For a POD type, just emit a load of the lvalue + a copy, because our
667 // compound literal might alias the destination.
668 EmitAggLoadOfLValue(E);
669 return;
670 }
671
672 AggValueSlot Slot = EnsureSlot(E->getType());
673
674 // Block-scope compound literals are destroyed at the end of the enclosing
675 // scope in C.
676 bool Destruct =
677 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
678 if (Destruct)
679 Slot.setExternallyDestructed();
680
681 CGF.EmitAggExpr(E->getInitializer(), Slot);
682
683 if (Destruct)
684 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
685 CGF.pushLifetimeExtendedDestroy(
686 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
687 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
688 }
689
690 /// Attempt to look through various unimportant expressions to find a
691 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)692 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
693 op = op->IgnoreParenNoopCasts(ctx);
694 if (auto castE = dyn_cast<CastExpr>(op)) {
695 if (castE->getCastKind() == kind)
696 return castE->getSubExpr();
697 }
698 return nullptr;
699 }
700
VisitCastExpr(CastExpr * E)701 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
702 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
703 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
704 switch (E->getCastKind()) {
705 case CK_Dynamic: {
706 // FIXME: Can this actually happen? We have no test coverage for it.
707 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
708 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
709 CodeGenFunction::TCK_Load);
710 // FIXME: Do we also need to handle property references here?
711 if (LV.isSimple())
712 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
713 else
714 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
715
716 if (!Dest.isIgnored())
717 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
718 break;
719 }
720
721 case CK_ToUnion: {
722 // Evaluate even if the destination is ignored.
723 if (Dest.isIgnored()) {
724 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
725 /*ignoreResult=*/true);
726 break;
727 }
728
729 // GCC union extension
730 QualType Ty = E->getSubExpr()->getType();
731 Address CastPtr =
732 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
733 EmitInitializationToLValue(E->getSubExpr(),
734 CGF.MakeAddrLValue(CastPtr, Ty));
735 break;
736 }
737
738 case CK_LValueToRValueBitCast: {
739 if (Dest.isIgnored()) {
740 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
741 /*ignoreResult=*/true);
742 break;
743 }
744
745 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
746 Address SourceAddress =
747 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
748 Address DestAddress =
749 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
750 llvm::Value *SizeVal = llvm::ConstantInt::get(
751 CGF.SizeTy,
752 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
753 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
754 break;
755 }
756
757 case CK_DerivedToBase:
758 case CK_BaseToDerived:
759 case CK_UncheckedDerivedToBase: {
760 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
761 "should have been unpacked before we got here");
762 }
763
764 case CK_NonAtomicToAtomic:
765 case CK_AtomicToNonAtomic: {
766 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
767
768 // Determine the atomic and value types.
769 QualType atomicType = E->getSubExpr()->getType();
770 QualType valueType = E->getType();
771 if (isToAtomic) std::swap(atomicType, valueType);
772
773 assert(atomicType->isAtomicType());
774 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
775 atomicType->castAs<AtomicType>()->getValueType()));
776
777 // Just recurse normally if we're ignoring the result or the
778 // atomic type doesn't change representation.
779 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
780 return Visit(E->getSubExpr());
781 }
782
783 CastKind peepholeTarget =
784 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
785
786 // These two cases are reverses of each other; try to peephole them.
787 if (Expr *op =
788 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
789 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
790 E->getType()) &&
791 "peephole significantly changed types?");
792 return Visit(op);
793 }
794
795 // If we're converting an r-value of non-atomic type to an r-value
796 // of atomic type, just emit directly into the relevant sub-object.
797 if (isToAtomic) {
798 AggValueSlot valueDest = Dest;
799 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
800 // Zero-initialize. (Strictly speaking, we only need to initialize
801 // the padding at the end, but this is simpler.)
802 if (!Dest.isZeroed())
803 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
804
805 // Build a GEP to refer to the subobject.
806 Address valueAddr =
807 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
808 valueDest = AggValueSlot::forAddr(valueAddr,
809 valueDest.getQualifiers(),
810 valueDest.isExternallyDestructed(),
811 valueDest.requiresGCollection(),
812 valueDest.isPotentiallyAliased(),
813 AggValueSlot::DoesNotOverlap,
814 AggValueSlot::IsZeroed);
815 }
816
817 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
818 return;
819 }
820
821 // Otherwise, we're converting an atomic type to a non-atomic type.
822 // Make an atomic temporary, emit into that, and then copy the value out.
823 AggValueSlot atomicSlot =
824 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
825 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
826
827 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
828 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
829 return EmitFinalDestCopy(valueType, rvalue);
830 }
831 case CK_AddressSpaceConversion:
832 return Visit(E->getSubExpr());
833
834 case CK_LValueToRValue:
835 // If we're loading from a volatile type, force the destination
836 // into existence.
837 if (E->getSubExpr()->getType().isVolatileQualified()) {
838 bool Destruct =
839 !Dest.isExternallyDestructed() &&
840 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
841 if (Destruct)
842 Dest.setExternallyDestructed();
843 EnsureDest(E->getType());
844 Visit(E->getSubExpr());
845
846 if (Destruct)
847 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
848 E->getType());
849
850 return;
851 }
852
853 LLVM_FALLTHROUGH;
854
855
856 case CK_NoOp:
857 case CK_UserDefinedConversion:
858 case CK_ConstructorConversion:
859 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
860 E->getType()) &&
861 "Implicit cast types must be compatible");
862 Visit(E->getSubExpr());
863 break;
864
865 case CK_LValueBitCast:
866 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
867
868 case CK_Dependent:
869 case CK_BitCast:
870 case CK_ArrayToPointerDecay:
871 case CK_FunctionToPointerDecay:
872 case CK_NullToPointer:
873 case CK_NullToMemberPointer:
874 case CK_BaseToDerivedMemberPointer:
875 case CK_DerivedToBaseMemberPointer:
876 case CK_MemberPointerToBoolean:
877 case CK_ReinterpretMemberPointer:
878 case CK_IntegralToPointer:
879 case CK_PointerToIntegral:
880 case CK_PointerToBoolean:
881 case CK_ToVoid:
882 case CK_VectorSplat:
883 case CK_IntegralCast:
884 case CK_BooleanToSignedIntegral:
885 case CK_IntegralToBoolean:
886 case CK_IntegralToFloating:
887 case CK_FloatingToIntegral:
888 case CK_FloatingToBoolean:
889 case CK_FloatingCast:
890 case CK_CPointerToObjCPointerCast:
891 case CK_BlockPointerToObjCPointerCast:
892 case CK_AnyPointerToBlockPointerCast:
893 case CK_ObjCObjectLValueCast:
894 case CK_FloatingRealToComplex:
895 case CK_FloatingComplexToReal:
896 case CK_FloatingComplexToBoolean:
897 case CK_FloatingComplexCast:
898 case CK_FloatingComplexToIntegralComplex:
899 case CK_IntegralRealToComplex:
900 case CK_IntegralComplexToReal:
901 case CK_IntegralComplexToBoolean:
902 case CK_IntegralComplexCast:
903 case CK_IntegralComplexToFloatingComplex:
904 case CK_ARCProduceObject:
905 case CK_ARCConsumeObject:
906 case CK_ARCReclaimReturnedObject:
907 case CK_ARCExtendBlockObject:
908 case CK_CopyAndAutoreleaseBlockObject:
909 case CK_BuiltinFnToFnPtr:
910 case CK_ZeroToOCLOpaqueType:
911 case CK_MatrixCast:
912
913 case CK_IntToOCLSampler:
914 case CK_FloatingToFixedPoint:
915 case CK_FixedPointToFloating:
916 case CK_FixedPointCast:
917 case CK_FixedPointToBoolean:
918 case CK_FixedPointToIntegral:
919 case CK_IntegralToFixedPoint:
920 llvm_unreachable("cast kind invalid for aggregate types");
921 }
922 }
923
VisitCallExpr(const CallExpr * E)924 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
925 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
926 EmitAggLoadOfLValue(E);
927 return;
928 }
929
930 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
931 return CGF.EmitCallExpr(E, Slot);
932 });
933 }
934
VisitObjCMessageExpr(ObjCMessageExpr * E)935 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
936 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
937 return CGF.EmitObjCMessageExpr(E, Slot);
938 });
939 }
940
VisitBinComma(const BinaryOperator * E)941 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
942 CGF.EmitIgnoredExpr(E->getLHS());
943 Visit(E->getRHS());
944 }
945
VisitStmtExpr(const StmtExpr * E)946 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
947 CodeGenFunction::StmtExprEvaluation eval(CGF);
948 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
949 }
950
951 enum CompareKind {
952 CK_Less,
953 CK_Greater,
954 CK_Equal,
955 };
956
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")957 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
958 const BinaryOperator *E, llvm::Value *LHS,
959 llvm::Value *RHS, CompareKind Kind,
960 const char *NameSuffix = "") {
961 QualType ArgTy = E->getLHS()->getType();
962 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
963 ArgTy = CT->getElementType();
964
965 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
966 assert(Kind == CK_Equal &&
967 "member pointers may only be compared for equality");
968 return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
969 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
970 }
971
972 // Compute the comparison instructions for the specified comparison kind.
973 struct CmpInstInfo {
974 const char *Name;
975 llvm::CmpInst::Predicate FCmp;
976 llvm::CmpInst::Predicate SCmp;
977 llvm::CmpInst::Predicate UCmp;
978 };
979 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
980 using FI = llvm::FCmpInst;
981 using II = llvm::ICmpInst;
982 switch (Kind) {
983 case CK_Less:
984 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
985 case CK_Greater:
986 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
987 case CK_Equal:
988 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
989 }
990 llvm_unreachable("Unrecognised CompareKind enum");
991 }();
992
993 if (ArgTy->hasFloatingRepresentation())
994 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
995 llvm::Twine(InstInfo.Name) + NameSuffix);
996 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
997 auto Inst =
998 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
999 return Builder.CreateICmp(Inst, LHS, RHS,
1000 llvm::Twine(InstInfo.Name) + NameSuffix);
1001 }
1002
1003 llvm_unreachable("unsupported aggregate binary expression should have "
1004 "already been handled");
1005 }
1006
VisitBinCmp(const BinaryOperator * E)1007 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1008 using llvm::BasicBlock;
1009 using llvm::PHINode;
1010 using llvm::Value;
1011 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1012 E->getRHS()->getType()));
1013 const ComparisonCategoryInfo &CmpInfo =
1014 CGF.getContext().CompCategories.getInfoForType(E->getType());
1015 assert(CmpInfo.Record->isTriviallyCopyable() &&
1016 "cannot copy non-trivially copyable aggregate");
1017
1018 QualType ArgTy = E->getLHS()->getType();
1019
1020 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1021 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1022 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1023 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1024 }
1025 bool IsComplex = ArgTy->isAnyComplexType();
1026
1027 // Evaluate the operands to the expression and extract their values.
1028 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1029 RValue RV = CGF.EmitAnyExpr(E);
1030 if (RV.isScalar())
1031 return {RV.getScalarVal(), nullptr};
1032 if (RV.isAggregate())
1033 return {RV.getAggregatePointer(), nullptr};
1034 assert(RV.isComplex());
1035 return RV.getComplexVal();
1036 };
1037 auto LHSValues = EmitOperand(E->getLHS()),
1038 RHSValues = EmitOperand(E->getRHS());
1039
1040 auto EmitCmp = [&](CompareKind K) {
1041 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1042 K, IsComplex ? ".r" : "");
1043 if (!IsComplex)
1044 return Cmp;
1045 assert(K == CompareKind::CK_Equal);
1046 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1047 RHSValues.second, K, ".i");
1048 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1049 };
1050 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1051 return Builder.getInt(VInfo->getIntValue());
1052 };
1053
1054 Value *Select;
1055 if (ArgTy->isNullPtrType()) {
1056 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1057 } else if (!CmpInfo.isPartial()) {
1058 Value *SelectOne =
1059 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1060 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1061 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1062 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1063 SelectOne, "sel.eq");
1064 } else {
1065 Value *SelectEq = Builder.CreateSelect(
1066 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1067 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1068 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1069 EmitCmpRes(CmpInfo.getGreater()),
1070 SelectEq, "sel.gt");
1071 Select = Builder.CreateSelect(
1072 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1073 }
1074 // Create the return value in the destination slot.
1075 EnsureDest(E->getType());
1076 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1077
1078 // Emit the address of the first (and only) field in the comparison category
1079 // type, and initialize it from the constant integer value selected above.
1080 LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1081 DestLV, *CmpInfo.Record->field_begin());
1082 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1083
1084 // All done! The result is in the Dest slot.
1085 }
1086
VisitBinaryOperator(const BinaryOperator * E)1087 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1088 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1089 VisitPointerToDataMemberBinaryOperator(E);
1090 else
1091 CGF.ErrorUnsupported(E, "aggregate binary expression");
1092 }
1093
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1094 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1095 const BinaryOperator *E) {
1096 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1097 EmitFinalDestCopy(E->getType(), LV);
1098 }
1099
1100 /// Is the value of the given expression possibly a reference to or
1101 /// into a __block variable?
isBlockVarRef(const Expr * E)1102 static bool isBlockVarRef(const Expr *E) {
1103 // Make sure we look through parens.
1104 E = E->IgnoreParens();
1105
1106 // Check for a direct reference to a __block variable.
1107 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1108 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1109 return (var && var->hasAttr<BlocksAttr>());
1110 }
1111
1112 // More complicated stuff.
1113
1114 // Binary operators.
1115 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1116 // For an assignment or pointer-to-member operation, just care
1117 // about the LHS.
1118 if (op->isAssignmentOp() || op->isPtrMemOp())
1119 return isBlockVarRef(op->getLHS());
1120
1121 // For a comma, just care about the RHS.
1122 if (op->getOpcode() == BO_Comma)
1123 return isBlockVarRef(op->getRHS());
1124
1125 // FIXME: pointer arithmetic?
1126 return false;
1127
1128 // Check both sides of a conditional operator.
1129 } else if (const AbstractConditionalOperator *op
1130 = dyn_cast<AbstractConditionalOperator>(E)) {
1131 return isBlockVarRef(op->getTrueExpr())
1132 || isBlockVarRef(op->getFalseExpr());
1133
1134 // OVEs are required to support BinaryConditionalOperators.
1135 } else if (const OpaqueValueExpr *op
1136 = dyn_cast<OpaqueValueExpr>(E)) {
1137 if (const Expr *src = op->getSourceExpr())
1138 return isBlockVarRef(src);
1139
1140 // Casts are necessary to get things like (*(int*)&var) = foo().
1141 // We don't really care about the kind of cast here, except
1142 // we don't want to look through l2r casts, because it's okay
1143 // to get the *value* in a __block variable.
1144 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1145 if (cast->getCastKind() == CK_LValueToRValue)
1146 return false;
1147 return isBlockVarRef(cast->getSubExpr());
1148
1149 // Handle unary operators. Again, just aggressively look through
1150 // it, ignoring the operation.
1151 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1152 return isBlockVarRef(uop->getSubExpr());
1153
1154 // Look into the base of a field access.
1155 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1156 return isBlockVarRef(mem->getBase());
1157
1158 // Look into the base of a subscript.
1159 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1160 return isBlockVarRef(sub->getBase());
1161 }
1162
1163 return false;
1164 }
1165
VisitBinAssign(const BinaryOperator * E)1166 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1167 // For an assignment to work, the value on the right has
1168 // to be compatible with the value on the left.
1169 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1170 E->getRHS()->getType())
1171 && "Invalid assignment");
1172
1173 // If the LHS might be a __block variable, and the RHS can
1174 // potentially cause a block copy, we need to evaluate the RHS first
1175 // so that the assignment goes the right place.
1176 // This is pretty semantically fragile.
1177 if (isBlockVarRef(E->getLHS()) &&
1178 E->getRHS()->HasSideEffects(CGF.getContext())) {
1179 // Ensure that we have a destination, and evaluate the RHS into that.
1180 EnsureDest(E->getRHS()->getType());
1181 Visit(E->getRHS());
1182
1183 // Now emit the LHS and copy into it.
1184 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1185
1186 // That copy is an atomic copy if the LHS is atomic.
1187 if (LHS.getType()->isAtomicType() ||
1188 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1189 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1190 return;
1191 }
1192
1193 EmitCopy(E->getLHS()->getType(),
1194 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1195 needsGC(E->getLHS()->getType()),
1196 AggValueSlot::IsAliased,
1197 AggValueSlot::MayOverlap),
1198 Dest);
1199 return;
1200 }
1201
1202 LValue LHS = CGF.EmitLValue(E->getLHS());
1203
1204 // If we have an atomic type, evaluate into the destination and then
1205 // do an atomic copy.
1206 if (LHS.getType()->isAtomicType() ||
1207 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1208 EnsureDest(E->getRHS()->getType());
1209 Visit(E->getRHS());
1210 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1211 return;
1212 }
1213
1214 // Codegen the RHS so that it stores directly into the LHS.
1215 AggValueSlot LHSSlot = AggValueSlot::forLValue(
1216 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1217 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1218 // A non-volatile aggregate destination might have volatile member.
1219 if (!LHSSlot.isVolatile() &&
1220 CGF.hasVolatileMember(E->getLHS()->getType()))
1221 LHSSlot.setVolatile(true);
1222
1223 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1224
1225 // Copy into the destination if the assignment isn't ignored.
1226 EmitFinalDestCopy(E->getType(), LHS);
1227
1228 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1229 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1230 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1231 E->getType());
1232 }
1233
1234 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1235 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1236 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1237 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1238 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1239
1240 // Bind the common expression if necessary.
1241 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1242
1243 CodeGenFunction::ConditionalEvaluation eval(CGF);
1244 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1245 CGF.getProfileCount(E));
1246
1247 // Save whether the destination's lifetime is externally managed.
1248 bool isExternallyDestructed = Dest.isExternallyDestructed();
1249 bool destructNonTrivialCStruct =
1250 !isExternallyDestructed &&
1251 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1252 isExternallyDestructed |= destructNonTrivialCStruct;
1253 Dest.setExternallyDestructed(isExternallyDestructed);
1254
1255 eval.begin(CGF);
1256 CGF.EmitBlock(LHSBlock);
1257 CGF.incrementProfileCounter(E);
1258 Visit(E->getTrueExpr());
1259 eval.end(CGF);
1260
1261 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1262 CGF.Builder.CreateBr(ContBlock);
1263
1264 // If the result of an agg expression is unused, then the emission
1265 // of the LHS might need to create a destination slot. That's fine
1266 // with us, and we can safely emit the RHS into the same slot, but
1267 // we shouldn't claim that it's already being destructed.
1268 Dest.setExternallyDestructed(isExternallyDestructed);
1269
1270 eval.begin(CGF);
1271 CGF.EmitBlock(RHSBlock);
1272 Visit(E->getFalseExpr());
1273 eval.end(CGF);
1274
1275 if (destructNonTrivialCStruct)
1276 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1277 E->getType());
1278
1279 CGF.EmitBlock(ContBlock);
1280 }
1281
VisitChooseExpr(const ChooseExpr * CE)1282 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1283 Visit(CE->getChosenSubExpr());
1284 }
1285
VisitVAArgExpr(VAArgExpr * VE)1286 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1287 Address ArgValue = Address::invalid();
1288 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1289
1290 // If EmitVAArg fails, emit an error.
1291 if (!ArgPtr.isValid()) {
1292 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1293 return;
1294 }
1295
1296 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1297 }
1298
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1299 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1300 // Ensure that we have a slot, but if we already do, remember
1301 // whether it was externally destructed.
1302 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1303 EnsureDest(E->getType());
1304
1305 // We're going to push a destructor if there isn't already one.
1306 Dest.setExternallyDestructed();
1307
1308 Visit(E->getSubExpr());
1309
1310 // Push that destructor we promised.
1311 if (!wasExternallyDestructed)
1312 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1313 }
1314
1315 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1316 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1317 AggValueSlot Slot = EnsureSlot(E->getType());
1318 CGF.EmitCXXConstructExpr(E, Slot);
1319 }
1320
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1321 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1322 const CXXInheritedCtorInitExpr *E) {
1323 AggValueSlot Slot = EnsureSlot(E->getType());
1324 CGF.EmitInheritedCXXConstructorCall(
1325 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1326 E->inheritedFromVBase(), E);
1327 }
1328
1329 void
VisitLambdaExpr(LambdaExpr * E)1330 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1331 AggValueSlot Slot = EnsureSlot(E->getType());
1332 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1333
1334 // We'll need to enter cleanup scopes in case any of the element
1335 // initializers throws an exception.
1336 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1337 llvm::Instruction *CleanupDominator = nullptr;
1338
1339 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1340 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1341 e = E->capture_init_end();
1342 i != e; ++i, ++CurField) {
1343 // Emit initialization
1344 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1345 if (CurField->hasCapturedVLAType()) {
1346 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1347 continue;
1348 }
1349
1350 EmitInitializationToLValue(*i, LV);
1351
1352 // Push a destructor if necessary.
1353 if (QualType::DestructionKind DtorKind =
1354 CurField->getType().isDestructedType()) {
1355 assert(LV.isSimple());
1356 if (CGF.needsEHCleanup(DtorKind)) {
1357 if (!CleanupDominator)
1358 CleanupDominator = CGF.Builder.CreateAlignedLoad(
1359 CGF.Int8Ty,
1360 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1361 CharUnits::One()); // placeholder
1362
1363 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1364 CGF.getDestroyer(DtorKind), false);
1365 Cleanups.push_back(CGF.EHStack.stable_begin());
1366 }
1367 }
1368 }
1369
1370 // Deactivate all the partial cleanups in reverse order, which
1371 // generally means popping them.
1372 for (unsigned i = Cleanups.size(); i != 0; --i)
1373 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1374
1375 // Destroy the placeholder if we made one.
1376 if (CleanupDominator)
1377 CleanupDominator->eraseFromParent();
1378 }
1379
VisitExprWithCleanups(ExprWithCleanups * E)1380 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1381 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1382 Visit(E->getSubExpr());
1383 }
1384
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1385 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1386 QualType T = E->getType();
1387 AggValueSlot Slot = EnsureSlot(T);
1388 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1389 }
1390
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1391 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1392 QualType T = E->getType();
1393 AggValueSlot Slot = EnsureSlot(T);
1394 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1395 }
1396
1397 /// Determine whether the given cast kind is known to always convert values
1398 /// with all zero bits in their value representation to values with all zero
1399 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1400 static bool castPreservesZero(const CastExpr *CE) {
1401 switch (CE->getCastKind()) {
1402 // No-ops.
1403 case CK_NoOp:
1404 case CK_UserDefinedConversion:
1405 case CK_ConstructorConversion:
1406 case CK_BitCast:
1407 case CK_ToUnion:
1408 case CK_ToVoid:
1409 // Conversions between (possibly-complex) integral, (possibly-complex)
1410 // floating-point, and bool.
1411 case CK_BooleanToSignedIntegral:
1412 case CK_FloatingCast:
1413 case CK_FloatingComplexCast:
1414 case CK_FloatingComplexToBoolean:
1415 case CK_FloatingComplexToIntegralComplex:
1416 case CK_FloatingComplexToReal:
1417 case CK_FloatingRealToComplex:
1418 case CK_FloatingToBoolean:
1419 case CK_FloatingToIntegral:
1420 case CK_IntegralCast:
1421 case CK_IntegralComplexCast:
1422 case CK_IntegralComplexToBoolean:
1423 case CK_IntegralComplexToFloatingComplex:
1424 case CK_IntegralComplexToReal:
1425 case CK_IntegralRealToComplex:
1426 case CK_IntegralToBoolean:
1427 case CK_IntegralToFloating:
1428 // Reinterpreting integers as pointers and vice versa.
1429 case CK_IntegralToPointer:
1430 case CK_PointerToIntegral:
1431 // Language extensions.
1432 case CK_VectorSplat:
1433 case CK_MatrixCast:
1434 case CK_NonAtomicToAtomic:
1435 case CK_AtomicToNonAtomic:
1436 return true;
1437
1438 case CK_BaseToDerivedMemberPointer:
1439 case CK_DerivedToBaseMemberPointer:
1440 case CK_MemberPointerToBoolean:
1441 case CK_NullToMemberPointer:
1442 case CK_ReinterpretMemberPointer:
1443 // FIXME: ABI-dependent.
1444 return false;
1445
1446 case CK_AnyPointerToBlockPointerCast:
1447 case CK_BlockPointerToObjCPointerCast:
1448 case CK_CPointerToObjCPointerCast:
1449 case CK_ObjCObjectLValueCast:
1450 case CK_IntToOCLSampler:
1451 case CK_ZeroToOCLOpaqueType:
1452 // FIXME: Check these.
1453 return false;
1454
1455 case CK_FixedPointCast:
1456 case CK_FixedPointToBoolean:
1457 case CK_FixedPointToFloating:
1458 case CK_FixedPointToIntegral:
1459 case CK_FloatingToFixedPoint:
1460 case CK_IntegralToFixedPoint:
1461 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1462 return false;
1463
1464 case CK_AddressSpaceConversion:
1465 case CK_BaseToDerived:
1466 case CK_DerivedToBase:
1467 case CK_Dynamic:
1468 case CK_NullToPointer:
1469 case CK_PointerToBoolean:
1470 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1471 // same representation in all involved address spaces.
1472 return false;
1473
1474 case CK_ARCConsumeObject:
1475 case CK_ARCExtendBlockObject:
1476 case CK_ARCProduceObject:
1477 case CK_ARCReclaimReturnedObject:
1478 case CK_CopyAndAutoreleaseBlockObject:
1479 case CK_ArrayToPointerDecay:
1480 case CK_FunctionToPointerDecay:
1481 case CK_BuiltinFnToFnPtr:
1482 case CK_Dependent:
1483 case CK_LValueBitCast:
1484 case CK_LValueToRValue:
1485 case CK_LValueToRValueBitCast:
1486 case CK_UncheckedDerivedToBase:
1487 return false;
1488 }
1489 llvm_unreachable("Unhandled clang::CastKind enum");
1490 }
1491
1492 /// isSimpleZero - If emitting this value will obviously just cause a store of
1493 /// zero to memory, return true. This can return false if uncertain, so it just
1494 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1495 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1496 E = E->IgnoreParens();
1497 while (auto *CE = dyn_cast<CastExpr>(E)) {
1498 if (!castPreservesZero(CE))
1499 break;
1500 E = CE->getSubExpr()->IgnoreParens();
1501 }
1502
1503 // 0
1504 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1505 return IL->getValue() == 0;
1506 // +0.0
1507 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1508 return FL->getValue().isPosZero();
1509 // int()
1510 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1511 CGF.getTypes().isZeroInitializable(E->getType()))
1512 return true;
1513 // (int*)0 - Null pointer expressions.
1514 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1515 return ICE->getCastKind() == CK_NullToPointer &&
1516 CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1517 !E->HasSideEffects(CGF.getContext());
1518 // '\0'
1519 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1520 return CL->getValue() == 0;
1521
1522 // Otherwise, hard case: conservatively return false.
1523 return false;
1524 }
1525
1526
1527 void
EmitInitializationToLValue(Expr * E,LValue LV)1528 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1529 QualType type = LV.getType();
1530 // FIXME: Ignore result?
1531 // FIXME: Are initializers affected by volatile?
1532 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1533 // Storing "i32 0" to a zero'd memory location is a noop.
1534 return;
1535 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1536 return EmitNullInitializationToLValue(LV);
1537 } else if (isa<NoInitExpr>(E)) {
1538 // Do nothing.
1539 return;
1540 } else if (type->isReferenceType()) {
1541 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1542 return CGF.EmitStoreThroughLValue(RV, LV);
1543 }
1544
1545 switch (CGF.getEvaluationKind(type)) {
1546 case TEK_Complex:
1547 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1548 return;
1549 case TEK_Aggregate:
1550 CGF.EmitAggExpr(
1551 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1552 AggValueSlot::DoesNotNeedGCBarriers,
1553 AggValueSlot::IsNotAliased,
1554 AggValueSlot::MayOverlap, Dest.isZeroed()));
1555 return;
1556 case TEK_Scalar:
1557 if (LV.isSimple()) {
1558 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1559 } else {
1560 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1561 }
1562 return;
1563 }
1564 llvm_unreachable("bad evaluation kind");
1565 }
1566
EmitNullInitializationToLValue(LValue lv)1567 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1568 QualType type = lv.getType();
1569
1570 // If the destination slot is already zeroed out before the aggregate is
1571 // copied into it, we don't have to emit any zeros here.
1572 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1573 return;
1574
1575 if (CGF.hasScalarEvaluationKind(type)) {
1576 // For non-aggregates, we can store the appropriate null constant.
1577 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1578 // Note that the following is not equivalent to
1579 // EmitStoreThroughBitfieldLValue for ARC types.
1580 if (lv.isBitField()) {
1581 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1582 } else {
1583 assert(lv.isSimple());
1584 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1585 }
1586 } else {
1587 // There's a potential optimization opportunity in combining
1588 // memsets; that would be easy for arrays, but relatively
1589 // difficult for structures with the current code.
1590 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1591 }
1592 }
1593
VisitInitListExpr(InitListExpr * E)1594 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1595 #if 0
1596 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1597 // (Length of globals? Chunks of zeroed-out space?).
1598 //
1599 // If we can, prefer a copy from a global; this is a lot less code for long
1600 // globals, and it's easier for the current optimizers to analyze.
1601 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1602 llvm::GlobalVariable* GV =
1603 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1604 llvm::GlobalValue::InternalLinkage, C, "");
1605 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1606 return;
1607 }
1608 #endif
1609 if (E->hadArrayRangeDesignator())
1610 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1611
1612 if (E->isTransparent())
1613 return Visit(E->getInit(0));
1614
1615 AggValueSlot Dest = EnsureSlot(E->getType());
1616
1617 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1618
1619 // Handle initialization of an array.
1620 if (E->getType()->isArrayType()) {
1621 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1622 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1623 return;
1624 }
1625
1626 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1627
1628 // Do struct initialization; this code just sets each individual member
1629 // to the approprate value. This makes bitfield support automatic;
1630 // the disadvantage is that the generated code is more difficult for
1631 // the optimizer, especially with bitfields.
1632 unsigned NumInitElements = E->getNumInits();
1633 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1634
1635 // We'll need to enter cleanup scopes in case any of the element
1636 // initializers throws an exception.
1637 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1638 llvm::Instruction *cleanupDominator = nullptr;
1639 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1640 cleanups.push_back(cleanup);
1641 if (!cleanupDominator) // create placeholder once needed
1642 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1643 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1644 CharUnits::One());
1645 };
1646
1647 unsigned curInitIndex = 0;
1648
1649 // Emit initialization of base classes.
1650 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1651 assert(E->getNumInits() >= CXXRD->getNumBases() &&
1652 "missing initializer for base class");
1653 for (auto &Base : CXXRD->bases()) {
1654 assert(!Base.isVirtual() && "should not see vbases here");
1655 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1656 Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1657 Dest.getAddress(), CXXRD, BaseRD,
1658 /*isBaseVirtual*/ false);
1659 AggValueSlot AggSlot = AggValueSlot::forAddr(
1660 V, Qualifiers(),
1661 AggValueSlot::IsDestructed,
1662 AggValueSlot::DoesNotNeedGCBarriers,
1663 AggValueSlot::IsNotAliased,
1664 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1665 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1666
1667 if (QualType::DestructionKind dtorKind =
1668 Base.getType().isDestructedType()) {
1669 CGF.pushDestroy(dtorKind, V, Base.getType());
1670 addCleanup(CGF.EHStack.stable_begin());
1671 }
1672 }
1673 }
1674
1675 // Prepare a 'this' for CXXDefaultInitExprs.
1676 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1677
1678 if (record->isUnion()) {
1679 // Only initialize one field of a union. The field itself is
1680 // specified by the initializer list.
1681 if (!E->getInitializedFieldInUnion()) {
1682 // Empty union; we have nothing to do.
1683
1684 #ifndef NDEBUG
1685 // Make sure that it's really an empty and not a failure of
1686 // semantic analysis.
1687 for (const auto *Field : record->fields())
1688 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1689 #endif
1690 return;
1691 }
1692
1693 // FIXME: volatility
1694 FieldDecl *Field = E->getInitializedFieldInUnion();
1695
1696 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1697 if (NumInitElements) {
1698 // Store the initializer into the field
1699 EmitInitializationToLValue(E->getInit(0), FieldLoc);
1700 } else {
1701 // Default-initialize to null.
1702 EmitNullInitializationToLValue(FieldLoc);
1703 }
1704
1705 return;
1706 }
1707
1708 // Here we iterate over the fields; this makes it simpler to both
1709 // default-initialize fields and skip over unnamed fields.
1710 for (const auto *field : record->fields()) {
1711 // We're done once we hit the flexible array member.
1712 if (field->getType()->isIncompleteArrayType())
1713 break;
1714
1715 // Always skip anonymous bitfields.
1716 if (field->isUnnamedBitfield())
1717 continue;
1718
1719 // We're done if we reach the end of the explicit initializers, we
1720 // have a zeroed object, and the rest of the fields are
1721 // zero-initializable.
1722 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1723 CGF.getTypes().isZeroInitializable(E->getType()))
1724 break;
1725
1726
1727 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1728 // We never generate write-barries for initialized fields.
1729 LV.setNonGC(true);
1730
1731 if (curInitIndex < NumInitElements) {
1732 // Store the initializer into the field.
1733 EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1734 } else {
1735 // We're out of initializers; default-initialize to null
1736 EmitNullInitializationToLValue(LV);
1737 }
1738
1739 // Push a destructor if necessary.
1740 // FIXME: if we have an array of structures, all explicitly
1741 // initialized, we can end up pushing a linear number of cleanups.
1742 bool pushedCleanup = false;
1743 if (QualType::DestructionKind dtorKind
1744 = field->getType().isDestructedType()) {
1745 assert(LV.isSimple());
1746 if (CGF.needsEHCleanup(dtorKind)) {
1747 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1748 CGF.getDestroyer(dtorKind), false);
1749 addCleanup(CGF.EHStack.stable_begin());
1750 pushedCleanup = true;
1751 }
1752 }
1753
1754 // If the GEP didn't get used because of a dead zero init or something
1755 // else, clean it up for -O0 builds and general tidiness.
1756 if (!pushedCleanup && LV.isSimple())
1757 if (llvm::GetElementPtrInst *GEP =
1758 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1759 if (GEP->use_empty())
1760 GEP->eraseFromParent();
1761 }
1762
1763 // Deactivate all the partial cleanups in reverse order, which
1764 // generally means popping them.
1765 assert((cleanupDominator || cleanups.empty()) &&
1766 "Missing cleanupDominator before deactivating cleanup blocks");
1767 for (unsigned i = cleanups.size(); i != 0; --i)
1768 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1769
1770 // Destroy the placeholder if we made one.
1771 if (cleanupDominator)
1772 cleanupDominator->eraseFromParent();
1773 }
1774
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1775 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1776 llvm::Value *outerBegin) {
1777 // Emit the common subexpression.
1778 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1779
1780 Address destPtr = EnsureSlot(E->getType()).getAddress();
1781 uint64_t numElements = E->getArraySize().getZExtValue();
1782
1783 if (!numElements)
1784 return;
1785
1786 // destPtr is an array*. Construct an elementType* by drilling down a level.
1787 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1788 llvm::Value *indices[] = {zero, zero};
1789 llvm::Value *begin = Builder.CreateInBoundsGEP(
1790 destPtr.getElementType(), destPtr.getPointer(), indices,
1791 "arrayinit.begin");
1792
1793 // Prepare to special-case multidimensional array initialization: we avoid
1794 // emitting multiple destructor loops in that case.
1795 if (!outerBegin)
1796 outerBegin = begin;
1797 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1798
1799 QualType elementType =
1800 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1801 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1802 CharUnits elementAlign =
1803 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1804 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1805
1806 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1807 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1808
1809 // Jump into the body.
1810 CGF.EmitBlock(bodyBB);
1811 llvm::PHINode *index =
1812 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1813 index->addIncoming(zero, entryBB);
1814 llvm::Value *element =
1815 Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1816
1817 // Prepare for a cleanup.
1818 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1819 EHScopeStack::stable_iterator cleanup;
1820 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1821 if (outerBegin->getType() != element->getType())
1822 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1823 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1824 elementAlign,
1825 CGF.getDestroyer(dtorKind));
1826 cleanup = CGF.EHStack.stable_begin();
1827 } else {
1828 dtorKind = QualType::DK_none;
1829 }
1830
1831 // Emit the actual filler expression.
1832 {
1833 // Temporaries created in an array initialization loop are destroyed
1834 // at the end of each iteration.
1835 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1836 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1837 LValue elementLV = CGF.MakeAddrLValue(
1838 Address(element, llvmElementType, elementAlign), elementType);
1839
1840 if (InnerLoop) {
1841 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1842 auto elementSlot = AggValueSlot::forLValue(
1843 elementLV, CGF, AggValueSlot::IsDestructed,
1844 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1845 AggValueSlot::DoesNotOverlap);
1846 AggExprEmitter(CGF, elementSlot, false)
1847 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1848 } else
1849 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1850 }
1851
1852 // Move on to the next element.
1853 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1854 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1855 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1856
1857 // Leave the loop if we're done.
1858 llvm::Value *done = Builder.CreateICmpEQ(
1859 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1860 "arrayinit.done");
1861 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1862 Builder.CreateCondBr(done, endBB, bodyBB);
1863
1864 CGF.EmitBlock(endBB);
1865
1866 // Leave the partial-array cleanup if we entered one.
1867 if (dtorKind)
1868 CGF.DeactivateCleanupBlock(cleanup, index);
1869 }
1870
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1871 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1872 AggValueSlot Dest = EnsureSlot(E->getType());
1873
1874 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1875 EmitInitializationToLValue(E->getBase(), DestLV);
1876 VisitInitListExpr(E->getUpdater());
1877 }
1878
1879 //===----------------------------------------------------------------------===//
1880 // Entry Points into this File
1881 //===----------------------------------------------------------------------===//
1882
1883 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1884 /// non-zero bytes that will be stored when outputting the initializer for the
1885 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1886 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1887 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1888 E = MTE->getSubExpr();
1889 E = E->IgnoreParenNoopCasts(CGF.getContext());
1890
1891 // 0 and 0.0 won't require any non-zero stores!
1892 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1893
1894 // If this is an initlist expr, sum up the size of sizes of the (present)
1895 // elements. If this is something weird, assume the whole thing is non-zero.
1896 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1897 while (ILE && ILE->isTransparent())
1898 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1899 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1900 return CGF.getContext().getTypeSizeInChars(E->getType());
1901
1902 // InitListExprs for structs have to be handled carefully. If there are
1903 // reference members, we need to consider the size of the reference, not the
1904 // referencee. InitListExprs for unions and arrays can't have references.
1905 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1906 if (!RT->isUnionType()) {
1907 RecordDecl *SD = RT->getDecl();
1908 CharUnits NumNonZeroBytes = CharUnits::Zero();
1909
1910 unsigned ILEElement = 0;
1911 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1912 while (ILEElement != CXXRD->getNumBases())
1913 NumNonZeroBytes +=
1914 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1915 for (const auto *Field : SD->fields()) {
1916 // We're done once we hit the flexible array member or run out of
1917 // InitListExpr elements.
1918 if (Field->getType()->isIncompleteArrayType() ||
1919 ILEElement == ILE->getNumInits())
1920 break;
1921 if (Field->isUnnamedBitfield())
1922 continue;
1923
1924 const Expr *E = ILE->getInit(ILEElement++);
1925
1926 // Reference values are always non-null and have the width of a pointer.
1927 if (Field->getType()->isReferenceType())
1928 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1929 CGF.getTarget().getPointerWidth(0));
1930 else
1931 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1932 }
1933
1934 return NumNonZeroBytes;
1935 }
1936 }
1937
1938 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1939 CharUnits NumNonZeroBytes = CharUnits::Zero();
1940 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1941 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1942 return NumNonZeroBytes;
1943 }
1944
1945 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1946 /// zeros in it, emit a memset and avoid storing the individual zeros.
1947 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1948 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1949 CodeGenFunction &CGF) {
1950 // If the slot is already known to be zeroed, nothing to do. Don't mess with
1951 // volatile stores.
1952 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1953 return;
1954
1955 // C++ objects with a user-declared constructor don't need zero'ing.
1956 if (CGF.getLangOpts().CPlusPlus)
1957 if (const RecordType *RT = CGF.getContext()
1958 .getBaseElementType(E->getType())->getAs<RecordType>()) {
1959 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1960 if (RD->hasUserDeclaredConstructor())
1961 return;
1962 }
1963
1964 // If the type is 16-bytes or smaller, prefer individual stores over memset.
1965 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1966 if (Size <= CharUnits::fromQuantity(16))
1967 return;
1968
1969 // Check to see if over 3/4 of the initializer are known to be zero. If so,
1970 // we prefer to emit memset + individual stores for the rest.
1971 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1972 if (NumNonZeroBytes*4 > Size)
1973 return;
1974
1975 // Okay, it seems like a good idea to use an initial memset, emit the call.
1976 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1977
1978 Address Loc = Slot.getAddress();
1979 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1980 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1981
1982 // Tell the AggExprEmitter that the slot is known zero.
1983 Slot.setZeroed();
1984 }
1985
1986
1987
1988
1989 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1990 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
1991 /// the value of the aggregate expression is not needed. If VolatileDest is
1992 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1993 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1994 assert(E && hasAggregateEvaluationKind(E->getType()) &&
1995 "Invalid aggregate expression to emit");
1996 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1997 "slot has bits but no address");
1998
1999 // Optimize the slot if possible.
2000 CheckAggExprForMemSetUse(Slot, E, *this);
2001
2002 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2003 }
2004
EmitAggExprToLValue(const Expr * E)2005 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2006 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2007 Address Temp = CreateMemTemp(E->getType());
2008 LValue LV = MakeAddrLValue(Temp, E->getType());
2009 EmitAggExpr(E, AggValueSlot::forLValue(
2010 LV, *this, AggValueSlot::IsNotDestructed,
2011 AggValueSlot::DoesNotNeedGCBarriers,
2012 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2013 return LV;
2014 }
2015
2016 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2017 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2018 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2019 return AggValueSlot::DoesNotOverlap;
2020
2021 // If the field lies entirely within the enclosing class's nvsize, its tail
2022 // padding cannot overlap any already-initialized object. (The only subobjects
2023 // with greater addresses that might already be initialized are vbases.)
2024 const RecordDecl *ClassRD = FD->getParent();
2025 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2026 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2027 getContext().getTypeSize(FD->getType()) <=
2028 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2029 return AggValueSlot::DoesNotOverlap;
2030
2031 // The tail padding may contain values we need to preserve.
2032 return AggValueSlot::MayOverlap;
2033 }
2034
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2035 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2036 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2037 // If the most-derived object is a field declared with [[no_unique_address]],
2038 // the tail padding of any virtual base could be reused for other subobjects
2039 // of that field's class.
2040 if (IsVirtual)
2041 return AggValueSlot::MayOverlap;
2042
2043 // If the base class is laid out entirely within the nvsize of the derived
2044 // class, its tail padding cannot yet be initialized, so we can issue
2045 // stores at the full width of the base class.
2046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2047 if (Layout.getBaseClassOffset(BaseRD) +
2048 getContext().getASTRecordLayout(BaseRD).getSize() <=
2049 Layout.getNonVirtualSize())
2050 return AggValueSlot::DoesNotOverlap;
2051
2052 // The tail padding may contain values we need to preserve.
2053 return AggValueSlot::MayOverlap;
2054 }
2055
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2056 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2057 AggValueSlot::Overlap_t MayOverlap,
2058 bool isVolatile) {
2059 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2060
2061 Address DestPtr = Dest.getAddress(*this);
2062 Address SrcPtr = Src.getAddress(*this);
2063
2064 if (getLangOpts().CPlusPlus) {
2065 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2066 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2067 assert((Record->hasTrivialCopyConstructor() ||
2068 Record->hasTrivialCopyAssignment() ||
2069 Record->hasTrivialMoveConstructor() ||
2070 Record->hasTrivialMoveAssignment() ||
2071 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2072 "Trying to aggregate-copy a type without a trivial copy/move "
2073 "constructor or assignment operator");
2074 // Ignore empty classes in C++.
2075 if (Record->isEmpty())
2076 return;
2077 }
2078 }
2079
2080 if (getLangOpts().CUDAIsDevice) {
2081 if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2082 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2083 Src))
2084 return;
2085 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2086 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2087 Src))
2088 return;
2089 }
2090 }
2091
2092 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2093 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2094 // read from another object that overlaps in anyway the storage of the first
2095 // object, then the overlap shall be exact and the two objects shall have
2096 // qualified or unqualified versions of a compatible type."
2097 //
2098 // memcpy is not defined if the source and destination pointers are exactly
2099 // equal, but other compilers do this optimization, and almost every memcpy
2100 // implementation handles this case safely. If there is a libc that does not
2101 // safely handle this, we can add a target hook.
2102
2103 // Get data size info for this aggregate. Don't copy the tail padding if this
2104 // might be a potentially-overlapping subobject, since the tail padding might
2105 // be occupied by a different object. Otherwise, copying it is fine.
2106 TypeInfoChars TypeInfo;
2107 if (MayOverlap)
2108 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2109 else
2110 TypeInfo = getContext().getTypeInfoInChars(Ty);
2111
2112 llvm::Value *SizeVal = nullptr;
2113 if (TypeInfo.Width.isZero()) {
2114 // But note that getTypeInfo returns 0 for a VLA.
2115 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2116 getContext().getAsArrayType(Ty))) {
2117 QualType BaseEltTy;
2118 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2119 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2120 assert(!TypeInfo.Width.isZero());
2121 SizeVal = Builder.CreateNUWMul(
2122 SizeVal,
2123 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2124 }
2125 }
2126 if (!SizeVal) {
2127 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2128 }
2129
2130 // FIXME: If we have a volatile struct, the optimizer can remove what might
2131 // appear to be `extra' memory ops:
2132 //
2133 // volatile struct { int i; } a, b;
2134 //
2135 // int main() {
2136 // a = b;
2137 // a = b;
2138 // }
2139 //
2140 // we need to use a different call here. We use isVolatile to indicate when
2141 // either the source or the destination is volatile.
2142
2143 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2144 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2145
2146 // Don't do any of the memmove_collectable tests if GC isn't set.
2147 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2148 // fall through
2149 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2150 RecordDecl *Record = RecordTy->getDecl();
2151 if (Record->hasObjectMember()) {
2152 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2153 SizeVal);
2154 return;
2155 }
2156 } else if (Ty->isArrayType()) {
2157 QualType BaseType = getContext().getBaseElementType(Ty);
2158 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2159 if (RecordTy->getDecl()->hasObjectMember()) {
2160 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2161 SizeVal);
2162 return;
2163 }
2164 }
2165 }
2166
2167 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2168
2169 // Determine the metadata to describe the position of any padding in this
2170 // memcpy, as well as the TBAA tags for the members of the struct, in case
2171 // the optimizer wishes to expand it in to scalar memory operations.
2172 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2173 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2174
2175 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2176 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2177 Dest.getTBAAInfo(), Src.getTBAAInfo());
2178 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2179 }
2180 }
2181