1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 using namespace clang;
42 using namespace CodeGen;
43
44 /***/
45
ClangCallConvToLLVMCallConv(CallingConv CC)46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47 switch (CC) {
48 default: return llvm::CallingConv::C;
49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53 case CC_Win64: return llvm::CallingConv::Win64;
54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58 // TODO: Add support for __pascal to LLVM.
59 case CC_X86Pascal: return llvm::CallingConv::C;
60 // TODO: Add support for __vectorcall to LLVM.
61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67 case CC_Swift: return llvm::CallingConv::Swift;
68 }
69 }
70
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification.
GetThisType(ASTContext & Context,const CXXRecordDecl * RD,const CXXMethodDecl * MD)73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
74 const CXXMethodDecl *MD) {
75 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
76 if (MD)
77 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getTypeQualifiers().getAddressSpace());
78 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
79 }
80
81 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)82 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
83 return MD->getType()->getCanonicalTypeUnqualified()
84 .getAs<FunctionProtoType>();
85 }
86
87 /// Returns the "extra-canonicalized" return type, which discards
88 /// qualifiers on the return type. Codegen doesn't care about them,
89 /// and it makes ABI code a little easier to be able to assume that
90 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)91 static CanQualType GetReturnType(QualType RetTy) {
92 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
93 }
94
95 /// Arrange the argument and result information for a value of the given
96 /// unprototyped freestanding function type.
97 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)98 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
99 // When translating an unprototyped function type, always use a
100 // variadic type.
101 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
102 /*instanceMethod=*/false,
103 /*chainCall=*/false, None,
104 FTNP->getExtInfo(), {}, RequiredArgs(0));
105 }
106
addExtParameterInfosForCall(llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)107 static void addExtParameterInfosForCall(
108 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
109 const FunctionProtoType *proto,
110 unsigned prefixArgs,
111 unsigned totalArgs) {
112 assert(proto->hasExtParameterInfos());
113 assert(paramInfos.size() <= prefixArgs);
114 assert(proto->getNumParams() + prefixArgs <= totalArgs);
115
116 paramInfos.reserve(totalArgs);
117
118 // Add default infos for any prefix args that don't already have infos.
119 paramInfos.resize(prefixArgs);
120
121 // Add infos for the prototype.
122 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
123 paramInfos.push_back(ParamInfo);
124 // pass_object_size params have no parameter info.
125 if (ParamInfo.hasPassObjectSize())
126 paramInfos.emplace_back();
127 }
128
129 assert(paramInfos.size() <= totalArgs &&
130 "Did we forget to insert pass_object_size args?");
131 // Add default infos for the variadic and/or suffix arguments.
132 paramInfos.resize(totalArgs);
133 }
134
135 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
136 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,CanQual<FunctionProtoType> FPT)137 static void appendParameterTypes(const CodeGenTypes &CGT,
138 SmallVectorImpl<CanQualType> &prefix,
139 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
140 CanQual<FunctionProtoType> FPT) {
141 // Fast path: don't touch param info if we don't need to.
142 if (!FPT->hasExtParameterInfos()) {
143 assert(paramInfos.empty() &&
144 "We have paramInfos, but the prototype doesn't?");
145 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
146 return;
147 }
148
149 unsigned PrefixSize = prefix.size();
150 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
151 // parameters; the only thing that can change this is the presence of
152 // pass_object_size. So, we preallocate for the common case.
153 prefix.reserve(prefix.size() + FPT->getNumParams());
154
155 auto ExtInfos = FPT->getExtParameterInfos();
156 assert(ExtInfos.size() == FPT->getNumParams());
157 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
158 prefix.push_back(FPT->getParamType(I));
159 if (ExtInfos[I].hasPassObjectSize())
160 prefix.push_back(CGT.getContext().getSizeType());
161 }
162
163 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
164 prefix.size());
165 }
166
167 /// Arrange the LLVM function layout for a value of the given function
168 /// type, on top of any implicit parameters already stored.
169 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,const FunctionDecl * FD)170 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
171 SmallVectorImpl<CanQualType> &prefix,
172 CanQual<FunctionProtoType> FTP,
173 const FunctionDecl *FD) {
174 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
175 RequiredArgs Required =
176 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
177 // FIXME: Kill copy.
178 appendParameterTypes(CGT, prefix, paramInfos, FTP);
179 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
180
181 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
182 /*chainCall=*/false, prefix,
183 FTP->getExtInfo(), paramInfos,
184 Required);
185 }
186
187 /// Arrange the argument and result information for a value of the
188 /// given freestanding function type.
189 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,const FunctionDecl * FD)190 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
191 const FunctionDecl *FD) {
192 SmallVector<CanQualType, 16> argTypes;
193 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
194 FTP, FD);
195 }
196
getCallingConventionForDecl(const Decl * D,bool IsWindows)197 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
198 // Set the appropriate calling convention for the Function.
199 if (D->hasAttr<StdCallAttr>())
200 return CC_X86StdCall;
201
202 if (D->hasAttr<FastCallAttr>())
203 return CC_X86FastCall;
204
205 if (D->hasAttr<RegCallAttr>())
206 return CC_X86RegCall;
207
208 if (D->hasAttr<ThisCallAttr>())
209 return CC_X86ThisCall;
210
211 if (D->hasAttr<VectorCallAttr>())
212 return CC_X86VectorCall;
213
214 if (D->hasAttr<PascalAttr>())
215 return CC_X86Pascal;
216
217 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
218 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
219
220 if (D->hasAttr<AArch64VectorPcsAttr>())
221 return CC_AArch64VectorCall;
222
223 if (D->hasAttr<IntelOclBiccAttr>())
224 return CC_IntelOclBicc;
225
226 if (D->hasAttr<MSABIAttr>())
227 return IsWindows ? CC_C : CC_Win64;
228
229 if (D->hasAttr<SysVABIAttr>())
230 return IsWindows ? CC_X86_64SysV : CC_C;
231
232 if (D->hasAttr<PreserveMostAttr>())
233 return CC_PreserveMost;
234
235 if (D->hasAttr<PreserveAllAttr>())
236 return CC_PreserveAll;
237
238 return CC_C;
239 }
240
241 /// Arrange the argument and result information for a call to an
242 /// unknown C++ non-static member function of the given abstract type.
243 /// (Zero value of RD means we don't have any meaningful "this" argument type,
244 /// so fall back to a generic pointer type).
245 /// The member function must be an ordinary function, i.e. not a
246 /// constructor or destructor.
247 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)248 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
249 const FunctionProtoType *FTP,
250 const CXXMethodDecl *MD) {
251 SmallVector<CanQualType, 16> argTypes;
252
253 // Add the 'this' pointer.
254 if (RD)
255 argTypes.push_back(GetThisType(Context, RD, MD));
256 else
257 argTypes.push_back(Context.VoidPtrTy);
258
259 return ::arrangeLLVMFunctionInfo(
260 *this, true, argTypes,
261 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
262 }
263
264 /// Set calling convention for CUDA/HIP kernel.
setCUDAKernelCallingConvention(CanQualType & FTy,CodeGenModule & CGM,const FunctionDecl * FD)265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266 const FunctionDecl *FD) {
267 if (FD->hasAttr<CUDAGlobalAttr>()) {
268 const FunctionType *FT = FTy->getAs<FunctionType>();
269 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270 FTy = FT->getCanonicalTypeUnqualified();
271 }
272 }
273
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function. The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282
283 CanQualType FT = GetFormalType(MD).getAs<Type>();
284 setCUDAKernelCallingConvention(FT, CGM, MD);
285 auto prototype = FT.getAs<FunctionProtoType>();
286
287 if (MD->isInstance()) {
288 // The abstract case is perfectly fine.
289 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291 }
292
293 return arrangeFreeFunctionType(prototype, MD);
294 }
295
inheritingCtorHasParams(const InheritedConstructor & Inherited,CXXCtorType Type)296 bool CodeGenTypes::inheritingCtorHasParams(
297 const InheritedConstructor &Inherited, CXXCtorType Type) {
298 // Parameters are unnecessary if we're constructing a base class subobject
299 // and the inherited constructor lives in a virtual base.
300 return Type == Ctor_Complete ||
301 !Inherited.getShadowDecl()->constructsVirtualBase() ||
302 !Target.getCXXABI().hasConstructorVariants();
303 }
304
305 const CGFunctionInfo &
arrangeCXXStructorDeclaration(const CXXMethodDecl * MD,StructorType Type)306 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
307 StructorType Type) {
308
309 SmallVector<CanQualType, 16> argTypes;
310 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311 argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
312
313 bool PassParams = true;
314
315 GlobalDecl GD;
316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317 GD = GlobalDecl(CD, toCXXCtorType(Type));
318
319 // A base class inheriting constructor doesn't get forwarded arguments
320 // needed to construct a virtual base (or base class thereof).
321 if (auto Inherited = CD->getInheritedConstructor())
322 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
323 } else {
324 auto *DD = dyn_cast<CXXDestructorDecl>(MD);
325 GD = GlobalDecl(DD, toCXXDtorType(Type));
326 }
327
328 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
329
330 // Add the formal parameters.
331 if (PassParams)
332 appendParameterTypes(*this, argTypes, paramInfos, FTP);
333
334 CGCXXABI::AddedStructorArgs AddedArgs =
335 TheCXXABI.buildStructorSignature(MD, Type, argTypes);
336 if (!paramInfos.empty()) {
337 // Note: prefix implies after the first param.
338 if (AddedArgs.Prefix)
339 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
340 FunctionProtoType::ExtParameterInfo{});
341 if (AddedArgs.Suffix)
342 paramInfos.append(AddedArgs.Suffix,
343 FunctionProtoType::ExtParameterInfo{});
344 }
345
346 RequiredArgs required =
347 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
348 : RequiredArgs::All);
349
350 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
351 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
352 ? argTypes.front()
353 : TheCXXABI.hasMostDerivedReturn(GD)
354 ? CGM.getContext().VoidPtrTy
355 : Context.VoidTy;
356 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
357 /*chainCall=*/false, argTypes, extInfo,
358 paramInfos, required);
359 }
360
361 static SmallVector<CanQualType, 16>
getArgTypesForCall(ASTContext & ctx,const CallArgList & args)362 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
363 SmallVector<CanQualType, 16> argTypes;
364 for (auto &arg : args)
365 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
366 return argTypes;
367 }
368
369 static SmallVector<CanQualType, 16>
getArgTypesForDeclaration(ASTContext & ctx,const FunctionArgList & args)370 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
371 SmallVector<CanQualType, 16> argTypes;
372 for (auto &arg : args)
373 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
374 return argTypes;
375 }
376
377 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
getExtParameterInfosForCall(const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)378 getExtParameterInfosForCall(const FunctionProtoType *proto,
379 unsigned prefixArgs, unsigned totalArgs) {
380 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
381 if (proto->hasExtParameterInfos()) {
382 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
383 }
384 return result;
385 }
386
387 /// Arrange a call to a C++ method, passing the given arguments.
388 ///
389 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
390 /// parameter.
391 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
392 /// args.
393 /// PassProtoArgs indicates whether `args` has args for the parameters in the
394 /// given CXXConstructorDecl.
395 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraPrefixArgs,unsigned ExtraSuffixArgs,bool PassProtoArgs)396 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
397 const CXXConstructorDecl *D,
398 CXXCtorType CtorKind,
399 unsigned ExtraPrefixArgs,
400 unsigned ExtraSuffixArgs,
401 bool PassProtoArgs) {
402 // FIXME: Kill copy.
403 SmallVector<CanQualType, 16> ArgTypes;
404 for (const auto &Arg : args)
405 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
406
407 // +1 for implicit this, which should always be args[0].
408 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
409
410 CanQual<FunctionProtoType> FPT = GetFormalType(D);
411 RequiredArgs Required =
412 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
413 GlobalDecl GD(D, CtorKind);
414 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415 ? ArgTypes.front()
416 : TheCXXABI.hasMostDerivedReturn(GD)
417 ? CGM.getContext().VoidPtrTy
418 : Context.VoidTy;
419
420 FunctionType::ExtInfo Info = FPT->getExtInfo();
421 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422 // If the prototype args are elided, we should only have ABI-specific args,
423 // which never have param info.
424 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425 // ABI-specific suffix arguments are treated the same as variadic arguments.
426 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427 ArgTypes.size());
428 }
429 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430 /*chainCall=*/false, ArgTypes, Info,
431 ParamInfos, Required);
432 }
433
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439 if (MD->isInstance())
440 return arrangeCXXMethodDeclaration(MD);
441
442 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443
444 assert(isa<FunctionType>(FTy));
445 setCUDAKernelCallingConvention(FTy, CGM, FD);
446
447 // When declaring a function without a prototype, always use a
448 // non-variadic type.
449 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450 return arrangeLLVMFunctionInfo(
451 noProto->getReturnType(), /*instanceMethod=*/false,
452 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453 }
454
455 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
456 }
457
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462 // It happens that this is the same as a call with no optional
463 // arguments, except also using the formal 'self' type.
464 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type. The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475 QualType receiverType) {
476 SmallVector<CanQualType, 16> argTys;
477 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478 argTys.push_back(Context.getCanonicalParamType(receiverType));
479 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480 // FIXME: Kill copy?
481 for (const auto *I : MD->parameters()) {
482 argTys.push_back(Context.getCanonicalParamType(I->getType()));
483 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484 I->hasAttr<NoEscapeAttr>());
485 extParamInfos.push_back(extParamInfo);
486 }
487
488 FunctionType::ExtInfo einfo;
489 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491
492 if (getContext().getLangOpts().ObjCAutoRefCount &&
493 MD->hasAttr<NSReturnsRetainedAttr>())
494 einfo = einfo.withProducesResult(true);
495
496 RequiredArgs required =
497 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498
499 return arrangeLLVMFunctionInfo(
500 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501 /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503
504 const CGFunctionInfo &
arrangeUnprototypedObjCMessageSend(QualType returnType,const CallArgList & args)505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506 const CallArgList &args) {
507 auto argTypes = getArgTypesForCall(Context, args);
508 FunctionType::ExtInfo einfo;
509
510 return arrangeLLVMFunctionInfo(
511 GetReturnType(returnType), /*instanceMethod=*/false,
512 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514
515 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517 // FIXME: Do we need to handle ObjCMethodDecl?
518 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519
520 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
521 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
522
523 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
524 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
525
526 return arrangeFunctionDeclaration(FD);
527 }
528
529 /// Arrange a thunk that takes 'this' as the first parameter followed by
530 /// varargs. Return a void pointer, regardless of the actual return type.
531 /// The body of the thunk will end in a musttail call to a function of the
532 /// correct type, and the caller will bitcast the function to the correct
533 /// prototype.
534 const CGFunctionInfo &
arrangeUnprototypedMustTailThunk(const CXXMethodDecl * MD)535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
536 assert(MD->isVirtual() && "only methods have thunks");
537 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
538 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
539 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
540 /*chainCall=*/false, ArgTys,
541 FTP->getExtInfo(), {}, RequiredArgs(1));
542 }
543
544 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
546 CXXCtorType CT) {
547 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
548
549 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
550 SmallVector<CanQualType, 2> ArgTys;
551 const CXXRecordDecl *RD = CD->getParent();
552 ArgTys.push_back(GetThisType(Context, RD, CD));
553 if (CT == Ctor_CopyingClosure)
554 ArgTys.push_back(*FTP->param_type_begin());
555 if (RD->getNumVBases() > 0)
556 ArgTys.push_back(Context.IntTy);
557 CallingConv CC = Context.getDefaultCallingConvention(
558 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
559 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
560 /*chainCall=*/false, ArgTys,
561 FunctionType::ExtInfo(CC), {},
562 RequiredArgs::All);
563 }
564
565 /// Arrange a call as unto a free function, except possibly with an
566 /// additional number of formal parameters considered required.
567 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
569 CodeGenModule &CGM,
570 const CallArgList &args,
571 const FunctionType *fnType,
572 unsigned numExtraRequiredArgs,
573 bool chainCall) {
574 assert(args.size() >= numExtraRequiredArgs);
575
576 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
577
578 // In most cases, there are no optional arguments.
579 RequiredArgs required = RequiredArgs::All;
580
581 // If we have a variadic prototype, the required arguments are the
582 // extra prefix plus the arguments in the prototype.
583 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
584 if (proto->isVariadic())
585 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
586
587 if (proto->hasExtParameterInfos())
588 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
589 args.size());
590
591 // If we don't have a prototype at all, but we're supposed to
592 // explicitly use the variadic convention for unprototyped calls,
593 // treat all of the arguments as required but preserve the nominal
594 // possibility of variadics.
595 } else if (CGM.getTargetCodeGenInfo()
596 .isNoProtoCallVariadic(args,
597 cast<FunctionNoProtoType>(fnType))) {
598 required = RequiredArgs(args.size());
599 }
600
601 // FIXME: Kill copy.
602 SmallVector<CanQualType, 16> argTypes;
603 for (const auto &arg : args)
604 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
605 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
606 /*instanceMethod=*/false, chainCall,
607 argTypes, fnType->getExtInfo(), paramInfos,
608 required);
609 }
610
611 /// Figure out the rules for calling a function with the given formal
612 /// type using the given arguments. The arguments are necessary
613 /// because the function might be unprototyped, in which case it's
614 /// target-dependent in crazy ways.
615 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
617 const FunctionType *fnType,
618 bool chainCall) {
619 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
620 chainCall ? 1 : 0, chainCall);
621 }
622
623 /// A block function is essentially a free function with an
624 /// extra implicit argument.
625 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
627 const FunctionType *fnType) {
628 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
629 /*chainCall=*/false);
630 }
631
632 const CGFunctionInfo &
arrangeBlockFunctionDeclaration(const FunctionProtoType * proto,const FunctionArgList & params)633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
634 const FunctionArgList ¶ms) {
635 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
636 auto argTypes = getArgTypesForDeclaration(Context, params);
637
638 return arrangeLLVMFunctionInfo(
639 GetReturnType(proto->getReturnType()),
640 /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
641 proto->getExtInfo(), paramInfos,
642 RequiredArgs::forPrototypePlus(proto, 1, nullptr));
643 }
644
645 const CGFunctionInfo &
arrangeBuiltinFunctionCall(QualType resultType,const CallArgList & args)646 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
647 const CallArgList &args) {
648 // FIXME: Kill copy.
649 SmallVector<CanQualType, 16> argTypes;
650 for (const auto &Arg : args)
651 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
652 return arrangeLLVMFunctionInfo(
653 GetReturnType(resultType), /*instanceMethod=*/false,
654 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
655 /*paramInfos=*/ {}, RequiredArgs::All);
656 }
657
658 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(QualType resultType,const FunctionArgList & args)659 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
660 const FunctionArgList &args) {
661 auto argTypes = getArgTypesForDeclaration(Context, args);
662
663 return arrangeLLVMFunctionInfo(
664 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
665 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
666 }
667
668 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(CanQualType resultType,ArrayRef<CanQualType> argTypes)669 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
670 ArrayRef<CanQualType> argTypes) {
671 return arrangeLLVMFunctionInfo(
672 resultType, /*instanceMethod=*/false, /*chainCall=*/false,
673 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
674 }
675
676 /// Arrange a call to a C++ method, passing the given arguments.
677 ///
678 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
679 /// does not count `this`.
680 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * proto,RequiredArgs required,unsigned numPrefixArgs)681 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
682 const FunctionProtoType *proto,
683 RequiredArgs required,
684 unsigned numPrefixArgs) {
685 assert(numPrefixArgs + 1 <= args.size() &&
686 "Emitting a call with less args than the required prefix?");
687 // Add one to account for `this`. It's a bit awkward here, but we don't count
688 // `this` in similar places elsewhere.
689 auto paramInfos =
690 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
691
692 // FIXME: Kill copy.
693 auto argTypes = getArgTypesForCall(Context, args);
694
695 FunctionType::ExtInfo info = proto->getExtInfo();
696 return arrangeLLVMFunctionInfo(
697 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
698 /*chainCall=*/false, argTypes, info, paramInfos, required);
699 }
700
arrangeNullaryFunction()701 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
702 return arrangeLLVMFunctionInfo(
703 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
704 None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
705 }
706
707 const CGFunctionInfo &
arrangeCall(const CGFunctionInfo & signature,const CallArgList & args)708 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
709 const CallArgList &args) {
710 assert(signature.arg_size() <= args.size());
711 if (signature.arg_size() == args.size())
712 return signature;
713
714 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
715 auto sigParamInfos = signature.getExtParameterInfos();
716 if (!sigParamInfos.empty()) {
717 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
718 paramInfos.resize(args.size());
719 }
720
721 auto argTypes = getArgTypesForCall(Context, args);
722
723 assert(signature.getRequiredArgs().allowsOptionalArgs());
724 return arrangeLLVMFunctionInfo(signature.getReturnType(),
725 signature.isInstanceMethod(),
726 signature.isChainCall(),
727 argTypes,
728 signature.getExtInfo(),
729 paramInfos,
730 signature.getRequiredArgs());
731 }
732
733 namespace clang {
734 namespace CodeGen {
735 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
736 }
737 }
738
739 /// Arrange the argument and result information for an abstract value
740 /// of a given function type. This is the method which all of the
741 /// above functions ultimately defer to.
742 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,RequiredArgs required)743 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
744 bool instanceMethod,
745 bool chainCall,
746 ArrayRef<CanQualType> argTypes,
747 FunctionType::ExtInfo info,
748 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
749 RequiredArgs required) {
750 assert(llvm::all_of(argTypes,
751 [](CanQualType T) { return T.isCanonicalAsParam(); }));
752
753 // Lookup or create unique function info.
754 llvm::FoldingSetNodeID ID;
755 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
756 required, resultType, argTypes);
757
758 void *insertPos = nullptr;
759 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
760 if (FI)
761 return *FI;
762
763 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
764
765 // Construct the function info. We co-allocate the ArgInfos.
766 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
767 paramInfos, resultType, argTypes, required);
768 FunctionInfos.InsertNode(FI, insertPos);
769
770 bool inserted = FunctionsBeingProcessed.insert(FI).second;
771 (void)inserted;
772 assert(inserted && "Recursively being processed?");
773
774 // Compute ABI information.
775 if (CC == llvm::CallingConv::SPIR_KERNEL) {
776 // Force target independent argument handling for the host visible
777 // kernel functions.
778 computeSPIRKernelABIInfo(CGM, *FI);
779 } else if (info.getCC() == CC_Swift) {
780 swiftcall::computeABIInfo(CGM, *FI);
781 } else {
782 getABIInfo().computeInfo(*FI);
783 }
784
785 // Loop over all of the computed argument and return value info. If any of
786 // them are direct or extend without a specified coerce type, specify the
787 // default now.
788 ABIArgInfo &retInfo = FI->getReturnInfo();
789 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
790 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
791
792 for (auto &I : FI->arguments())
793 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
794 I.info.setCoerceToType(ConvertType(I.type));
795
796 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
797 assert(erased && "Not in set?");
798
799 return *FI;
800 }
801
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,ArrayRef<ExtParameterInfo> paramInfos,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)802 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
803 bool instanceMethod,
804 bool chainCall,
805 const FunctionType::ExtInfo &info,
806 ArrayRef<ExtParameterInfo> paramInfos,
807 CanQualType resultType,
808 ArrayRef<CanQualType> argTypes,
809 RequiredArgs required) {
810 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
811
812 void *buffer =
813 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
814 argTypes.size() + 1, paramInfos.size()));
815
816 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817 FI->CallingConvention = llvmCC;
818 FI->EffectiveCallingConvention = llvmCC;
819 FI->ASTCallingConvention = info.getCC();
820 FI->InstanceMethod = instanceMethod;
821 FI->ChainCall = chainCall;
822 FI->NoReturn = info.getNoReturn();
823 FI->ReturnsRetained = info.getProducesResult();
824 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825 FI->NoCfCheck = info.getNoCfCheck();
826 FI->Required = required;
827 FI->HasRegParm = info.getHasRegParm();
828 FI->RegParm = info.getRegParm();
829 FI->ArgStruct = nullptr;
830 FI->ArgStructAlign = 0;
831 FI->NumArgs = argTypes.size();
832 FI->HasExtParameterInfos = !paramInfos.empty();
833 FI->getArgsBuffer()[0].type = resultType;
834 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835 FI->getArgsBuffer()[i + 1].type = argTypes[i];
836 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838 return FI;
839 }
840
841 /***/
842
843 namespace {
844 // ABIArgInfo::Expand implementation.
845
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848 enum TypeExpansionKind {
849 // Elements of constant arrays are expanded recursively.
850 TEK_ConstantArray,
851 // Record fields are expanded recursively (but if record is a union, only
852 // the field with the largest size is expanded).
853 TEK_Record,
854 // For complex types, real and imaginary parts are expanded recursively.
855 TEK_Complex,
856 // All other types are not expandable.
857 TEK_None
858 };
859
860 const TypeExpansionKind Kind;
861
TypeExpansion__anon8199d0d30211::TypeExpansion862 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anon8199d0d30211::TypeExpansion863 virtual ~TypeExpansion() {}
864 };
865
866 struct ConstantArrayExpansion : TypeExpansion {
867 QualType EltTy;
868 uint64_t NumElts;
869
ConstantArrayExpansion__anon8199d0d30211::ConstantArrayExpansion870 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anon8199d0d30211::ConstantArrayExpansion872 static bool classof(const TypeExpansion *TE) {
873 return TE->Kind == TEK_ConstantArray;
874 }
875 };
876
877 struct RecordExpansion : TypeExpansion {
878 SmallVector<const CXXBaseSpecifier *, 1> Bases;
879
880 SmallVector<const FieldDecl *, 1> Fields;
881
RecordExpansion__anon8199d0d30211::RecordExpansion882 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883 SmallVector<const FieldDecl *, 1> &&Fields)
884 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885 Fields(std::move(Fields)) {}
classof__anon8199d0d30211::RecordExpansion886 static bool classof(const TypeExpansion *TE) {
887 return TE->Kind == TEK_Record;
888 }
889 };
890
891 struct ComplexExpansion : TypeExpansion {
892 QualType EltTy;
893
ComplexExpansion__anon8199d0d30211::ComplexExpansion894 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anon8199d0d30211::ComplexExpansion895 static bool classof(const TypeExpansion *TE) {
896 return TE->Kind == TEK_Complex;
897 }
898 };
899
900 struct NoExpansion : TypeExpansion {
NoExpansion__anon8199d0d30211::NoExpansion901 NoExpansion() : TypeExpansion(TEK_None) {}
classof__anon8199d0d30211::NoExpansion902 static bool classof(const TypeExpansion *TE) {
903 return TE->Kind == TEK_None;
904 }
905 };
906 } // namespace
907
908 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911 return llvm::make_unique<ConstantArrayExpansion>(
912 AT->getElementType(), AT->getSize().getZExtValue());
913 }
914 if (const RecordType *RT = Ty->getAs<RecordType>()) {
915 SmallVector<const CXXBaseSpecifier *, 1> Bases;
916 SmallVector<const FieldDecl *, 1> Fields;
917 const RecordDecl *RD = RT->getDecl();
918 assert(!RD->hasFlexibleArrayMember() &&
919 "Cannot expand structure with flexible array.");
920 if (RD->isUnion()) {
921 // Unions can be here only in degenerative cases - all the fields are same
922 // after flattening. Thus we have to use the "largest" field.
923 const FieldDecl *LargestFD = nullptr;
924 CharUnits UnionSize = CharUnits::Zero();
925
926 for (const auto *FD : RD->fields()) {
927 if (FD->isZeroLengthBitField(Context))
928 continue;
929 assert(!FD->isBitField() &&
930 "Cannot expand structure with bit-field members.");
931 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932 if (UnionSize < FieldSize) {
933 UnionSize = FieldSize;
934 LargestFD = FD;
935 }
936 }
937 if (LargestFD)
938 Fields.push_back(LargestFD);
939 } else {
940 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941 assert(!CXXRD->isDynamicClass() &&
942 "cannot expand vtable pointers in dynamic classes");
943 for (const CXXBaseSpecifier &BS : CXXRD->bases())
944 Bases.push_back(&BS);
945 }
946
947 for (const auto *FD : RD->fields()) {
948 if (FD->isZeroLengthBitField(Context))
949 continue;
950 assert(!FD->isBitField() &&
951 "Cannot expand structure with bit-field members.");
952 Fields.push_back(FD);
953 }
954 }
955 return llvm::make_unique<RecordExpansion>(std::move(Bases),
956 std::move(Fields));
957 }
958 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959 return llvm::make_unique<ComplexExpansion>(CT->getElementType());
960 }
961 return llvm::make_unique<NoExpansion>();
962 }
963
getExpansionSize(QualType Ty,const ASTContext & Context)964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965 auto Exp = getTypeExpansion(Ty, Context);
966 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968 }
969 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970 int Res = 0;
971 for (auto BS : RExp->Bases)
972 Res += getExpansionSize(BS->getType(), Context);
973 for (auto FD : RExp->Fields)
974 Res += getExpansionSize(FD->getType(), Context);
975 return Res;
976 }
977 if (isa<ComplexExpansion>(Exp.get()))
978 return 2;
979 assert(isa<NoExpansion>(Exp.get()));
980 return 1;
981 }
982
983 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)984 CodeGenTypes::getExpandedTypes(QualType Ty,
985 SmallVectorImpl<llvm::Type *>::iterator &TI) {
986 auto Exp = getTypeExpansion(Ty, Context);
987 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989 getExpandedTypes(CAExp->EltTy, TI);
990 }
991 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992 for (auto BS : RExp->Bases)
993 getExpandedTypes(BS->getType(), TI);
994 for (auto FD : RExp->Fields)
995 getExpandedTypes(FD->getType(), TI);
996 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997 llvm::Type *EltTy = ConvertType(CExp->EltTy);
998 *TI++ = EltTy;
999 *TI++ = EltTy;
1000 } else {
1001 assert(isa<NoExpansion>(Exp.get()));
1002 *TI++ = ConvertType(Ty);
1003 }
1004 }
1005
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007 ConstantArrayExpansion *CAE,
1008 Address BaseAddr,
1009 llvm::function_ref<void(Address)> Fn) {
1010 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011 CharUnits EltAlign =
1012 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013
1014 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015 llvm::Value *EltAddr =
1016 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017 Fn(Address(EltAddr, EltAlign));
1018 }
1019 }
1020
ExpandTypeFromArgs(QualType Ty,LValue LV,SmallVectorImpl<llvm::Value * >::iterator & AI)1021 void CodeGenFunction::ExpandTypeFromArgs(
1022 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1023 assert(LV.isSimple() &&
1024 "Unexpected non-simple lvalue during struct expansion.");
1025
1026 auto Exp = getTypeExpansion(Ty, getContext());
1027 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028 forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1029 [&](Address EltAddr) {
1030 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032 });
1033 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034 Address This = LV.getAddress();
1035 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036 // Perform a single step derived-to-base conversion.
1037 Address Base =
1038 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039 /*NullCheckValue=*/false, SourceLocation());
1040 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041
1042 // Recurse onto bases.
1043 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044 }
1045 for (auto FD : RExp->Fields) {
1046 // FIXME: What are the right qualifiers here?
1047 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049 }
1050 } else if (isa<ComplexExpansion>(Exp.get())) {
1051 auto realValue = *AI++;
1052 auto imagValue = *AI++;
1053 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054 } else {
1055 assert(isa<NoExpansion>(Exp.get()));
1056 EmitStoreThroughLValue(RValue::get(*AI++), LV);
1057 }
1058 }
1059
ExpandTypeToArgs(QualType Ty,CallArg Arg,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)1060 void CodeGenFunction::ExpandTypeToArgs(
1061 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1062 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1063 auto Exp = getTypeExpansion(Ty, getContext());
1064 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1065 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1066 : Arg.getKnownRValue().getAggregateAddress();
1067 forConstantArrayExpansion(
1068 *this, CAExp, Addr, [&](Address EltAddr) {
1069 CallArg EltArg = CallArg(
1070 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1071 CAExp->EltTy);
1072 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1073 IRCallArgPos);
1074 });
1075 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1076 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1077 : Arg.getKnownRValue().getAggregateAddress();
1078 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1079 // Perform a single step derived-to-base conversion.
1080 Address Base =
1081 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1082 /*NullCheckValue=*/false, SourceLocation());
1083 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1084
1085 // Recurse onto bases.
1086 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1087 IRCallArgPos);
1088 }
1089
1090 LValue LV = MakeAddrLValue(This, Ty);
1091 for (auto FD : RExp->Fields) {
1092 CallArg FldArg =
1093 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1094 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1095 IRCallArgPos);
1096 }
1097 } else if (isa<ComplexExpansion>(Exp.get())) {
1098 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1099 IRCallArgs[IRCallArgPos++] = CV.first;
1100 IRCallArgs[IRCallArgPos++] = CV.second;
1101 } else {
1102 assert(isa<NoExpansion>(Exp.get()));
1103 auto RV = Arg.getKnownRValue();
1104 assert(RV.isScalar() &&
1105 "Unexpected non-scalar rvalue during struct expansion.");
1106
1107 // Insert a bitcast as needed.
1108 llvm::Value *V = RV.getScalarVal();
1109 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1110 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1111 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1112
1113 IRCallArgs[IRCallArgPos++] = V;
1114 }
1115 }
1116
1117 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign)1118 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1119 CharUnits MinAlign) {
1120 // Don't use an alignment that's worse than what LLVM would prefer.
1121 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1122 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1123
1124 return CGF.CreateTempAlloca(Ty, Align);
1125 }
1126
1127 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1128 /// accessing some number of bytes out of it, try to gep into the struct to get
1129 /// at its inner goodness. Dive as deep as possible without entering an element
1130 /// with an in-memory size smaller than DstSize.
1131 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)1132 EnterStructPointerForCoercedAccess(Address SrcPtr,
1133 llvm::StructType *SrcSTy,
1134 uint64_t DstSize, CodeGenFunction &CGF) {
1135 // We can't dive into a zero-element struct.
1136 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1137
1138 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1139
1140 // If the first elt is at least as large as what we're looking for, or if the
1141 // first element is the same size as the whole struct, we can enter it. The
1142 // comparison must be made on the store size and not the alloca size. Using
1143 // the alloca size may overstate the size of the load.
1144 uint64_t FirstEltSize =
1145 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1146 if (FirstEltSize < DstSize &&
1147 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1148 return SrcPtr;
1149
1150 // GEP into the first element.
1151 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1152
1153 // If the first element is a struct, recurse.
1154 llvm::Type *SrcTy = SrcPtr.getElementType();
1155 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1156 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1157
1158 return SrcPtr;
1159 }
1160
1161 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1162 /// are either integers or pointers. This does a truncation of the value if it
1163 /// is too large or a zero extension if it is too small.
1164 ///
1165 /// This behaves as if the value were coerced through memory, so on big-endian
1166 /// targets the high bits are preserved in a truncation, while little-endian
1167 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)1168 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1169 llvm::Type *Ty,
1170 CodeGenFunction &CGF) {
1171 if (Val->getType() == Ty)
1172 return Val;
1173
1174 if (isa<llvm::PointerType>(Val->getType())) {
1175 // If this is Pointer->Pointer avoid conversion to and from int.
1176 if (isa<llvm::PointerType>(Ty))
1177 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1178
1179 // Convert the pointer to an integer so we can play with its width.
1180 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1181 }
1182
1183 llvm::Type *DestIntTy = Ty;
1184 if (isa<llvm::PointerType>(DestIntTy))
1185 DestIntTy = CGF.IntPtrTy;
1186
1187 if (Val->getType() != DestIntTy) {
1188 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1189 if (DL.isBigEndian()) {
1190 // Preserve the high bits on big-endian targets.
1191 // That is what memory coercion does.
1192 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1193 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1194
1195 if (SrcSize > DstSize) {
1196 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1197 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1198 } else {
1199 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1200 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1201 }
1202 } else {
1203 // Little-endian targets preserve the low bits. No shifts required.
1204 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1205 }
1206 }
1207
1208 if (isa<llvm::PointerType>(Ty))
1209 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1210 return Val;
1211 }
1212
1213
1214
1215 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1216 /// a pointer to an object of type \arg Ty, known to be aligned to
1217 /// \arg SrcAlign bytes.
1218 ///
1219 /// This safely handles the case when the src type is smaller than the
1220 /// destination type; in this situation the values of bits which not
1221 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)1222 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1223 CodeGenFunction &CGF) {
1224 llvm::Type *SrcTy = Src.getElementType();
1225
1226 // If SrcTy and Ty are the same, just do a load.
1227 if (SrcTy == Ty)
1228 return CGF.Builder.CreateLoad(Src);
1229
1230 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1231
1232 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1233 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1234 SrcTy = Src.getType()->getElementType();
1235 }
1236
1237 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1238
1239 // If the source and destination are integer or pointer types, just do an
1240 // extension or truncation to the desired type.
1241 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1242 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1243 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1244 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1245 }
1246
1247 // If load is legal, just bitcast the src pointer.
1248 if (SrcSize >= DstSize) {
1249 // Generally SrcSize is never greater than DstSize, since this means we are
1250 // losing bits. However, this can happen in cases where the structure has
1251 // additional padding, for example due to a user specified alignment.
1252 //
1253 // FIXME: Assert that we aren't truncating non-padding bits when have access
1254 // to that information.
1255 Src = CGF.Builder.CreateBitCast(Src,
1256 Ty->getPointerTo(Src.getAddressSpace()));
1257 return CGF.Builder.CreateLoad(Src);
1258 }
1259
1260 // Otherwise do coercion through memory. This is stupid, but simple.
1261 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1262 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1263 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1264 CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1265 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1266 false);
1267 return CGF.Builder.CreateLoad(Tmp);
1268 }
1269
1270 // Function to store a first-class aggregate into memory. We prefer to
1271 // store the elements rather than the aggregate to be more friendly to
1272 // fast-isel.
1273 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,Address Dest,bool DestIsVolatile)1274 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1275 Address Dest, bool DestIsVolatile) {
1276 // Prefer scalar stores to first-class aggregate stores.
1277 if (llvm::StructType *STy =
1278 dyn_cast<llvm::StructType>(Val->getType())) {
1279 const llvm::StructLayout *Layout =
1280 CGF.CGM.getDataLayout().getStructLayout(STy);
1281
1282 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1283 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1284 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1285 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1286 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1287 }
1288 } else {
1289 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1290 }
1291 }
1292
1293 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1294 /// where the source and destination may have different types. The
1295 /// destination is known to be aligned to \arg DstAlign bytes.
1296 ///
1297 /// This safely handles the case when the src type is larger than the
1298 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1299 static void CreateCoercedStore(llvm::Value *Src,
1300 Address Dst,
1301 bool DstIsVolatile,
1302 CodeGenFunction &CGF) {
1303 llvm::Type *SrcTy = Src->getType();
1304 llvm::Type *DstTy = Dst.getType()->getElementType();
1305 if (SrcTy == DstTy) {
1306 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1307 return;
1308 }
1309
1310 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1311
1312 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1313 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1314 DstTy = Dst.getType()->getElementType();
1315 }
1316
1317 // If the source and destination are integer or pointer types, just do an
1318 // extension or truncation to the desired type.
1319 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1320 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1321 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1322 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1323 return;
1324 }
1325
1326 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1327
1328 // If store is legal, just bitcast the src pointer.
1329 if (SrcSize <= DstSize) {
1330 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1331 BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1332 } else {
1333 // Otherwise do coercion through memory. This is stupid, but
1334 // simple.
1335
1336 // Generally SrcSize is never greater than DstSize, since this means we are
1337 // losing bits. However, this can happen in cases where the structure has
1338 // additional padding, for example due to a user specified alignment.
1339 //
1340 // FIXME: Assert that we aren't truncating non-padding bits when have access
1341 // to that information.
1342 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1343 CGF.Builder.CreateStore(Src, Tmp);
1344 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1345 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1346 CGF.Builder.CreateMemCpy(DstCasted, Casted,
1347 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1348 false);
1349 }
1350 }
1351
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1352 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1353 const ABIArgInfo &info) {
1354 if (unsigned offset = info.getDirectOffset()) {
1355 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1356 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1357 CharUnits::fromQuantity(offset));
1358 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1359 }
1360 return addr;
1361 }
1362
1363 namespace {
1364
1365 /// Encapsulates information about the way function arguments from
1366 /// CGFunctionInfo should be passed to actual LLVM IR function.
1367 class ClangToLLVMArgMapping {
1368 static const unsigned InvalidIndex = ~0U;
1369 unsigned InallocaArgNo;
1370 unsigned SRetArgNo;
1371 unsigned TotalIRArgs;
1372
1373 /// Arguments of LLVM IR function corresponding to single Clang argument.
1374 struct IRArgs {
1375 unsigned PaddingArgIndex;
1376 // Argument is expanded to IR arguments at positions
1377 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1378 unsigned FirstArgIndex;
1379 unsigned NumberOfArgs;
1380
IRArgs__anon8199d0d30511::ClangToLLVMArgMapping::IRArgs1381 IRArgs()
1382 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1383 NumberOfArgs(0) {}
1384 };
1385
1386 SmallVector<IRArgs, 8> ArgInfo;
1387
1388 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1389 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1390 bool OnlyRequiredArgs = false)
1391 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1392 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1393 construct(Context, FI, OnlyRequiredArgs);
1394 }
1395
hasInallocaArg() const1396 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1397 unsigned getInallocaArgNo() const {
1398 assert(hasInallocaArg());
1399 return InallocaArgNo;
1400 }
1401
hasSRetArg() const1402 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1403 unsigned getSRetArgNo() const {
1404 assert(hasSRetArg());
1405 return SRetArgNo;
1406 }
1407
totalIRArgs() const1408 unsigned totalIRArgs() const { return TotalIRArgs; }
1409
hasPaddingArg(unsigned ArgNo) const1410 bool hasPaddingArg(unsigned ArgNo) const {
1411 assert(ArgNo < ArgInfo.size());
1412 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1413 }
getPaddingArgNo(unsigned ArgNo) const1414 unsigned getPaddingArgNo(unsigned ArgNo) const {
1415 assert(hasPaddingArg(ArgNo));
1416 return ArgInfo[ArgNo].PaddingArgIndex;
1417 }
1418
1419 /// Returns index of first IR argument corresponding to ArgNo, and their
1420 /// quantity.
getIRArgs(unsigned ArgNo) const1421 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1422 assert(ArgNo < ArgInfo.size());
1423 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1424 ArgInfo[ArgNo].NumberOfArgs);
1425 }
1426
1427 private:
1428 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1429 bool OnlyRequiredArgs);
1430 };
1431
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1432 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1433 const CGFunctionInfo &FI,
1434 bool OnlyRequiredArgs) {
1435 unsigned IRArgNo = 0;
1436 bool SwapThisWithSRet = false;
1437 const ABIArgInfo &RetAI = FI.getReturnInfo();
1438
1439 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1440 SwapThisWithSRet = RetAI.isSRetAfterThis();
1441 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1442 }
1443
1444 unsigned ArgNo = 0;
1445 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1446 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1447 ++I, ++ArgNo) {
1448 assert(I != FI.arg_end());
1449 QualType ArgType = I->type;
1450 const ABIArgInfo &AI = I->info;
1451 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1452 auto &IRArgs = ArgInfo[ArgNo];
1453
1454 if (AI.getPaddingType())
1455 IRArgs.PaddingArgIndex = IRArgNo++;
1456
1457 switch (AI.getKind()) {
1458 case ABIArgInfo::Extend:
1459 case ABIArgInfo::Direct: {
1460 // FIXME: handle sseregparm someday...
1461 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1462 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1463 IRArgs.NumberOfArgs = STy->getNumElements();
1464 } else {
1465 IRArgs.NumberOfArgs = 1;
1466 }
1467 break;
1468 }
1469 case ABIArgInfo::Indirect:
1470 IRArgs.NumberOfArgs = 1;
1471 break;
1472 case ABIArgInfo::Ignore:
1473 case ABIArgInfo::InAlloca:
1474 // ignore and inalloca doesn't have matching LLVM parameters.
1475 IRArgs.NumberOfArgs = 0;
1476 break;
1477 case ABIArgInfo::CoerceAndExpand:
1478 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1479 break;
1480 case ABIArgInfo::Expand:
1481 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1482 break;
1483 }
1484
1485 if (IRArgs.NumberOfArgs > 0) {
1486 IRArgs.FirstArgIndex = IRArgNo;
1487 IRArgNo += IRArgs.NumberOfArgs;
1488 }
1489
1490 // Skip over the sret parameter when it comes second. We already handled it
1491 // above.
1492 if (IRArgNo == 1 && SwapThisWithSRet)
1493 IRArgNo++;
1494 }
1495 assert(ArgNo == ArgInfo.size());
1496
1497 if (FI.usesInAlloca())
1498 InallocaArgNo = IRArgNo++;
1499
1500 TotalIRArgs = IRArgNo;
1501 }
1502 } // namespace
1503
1504 /***/
1505
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1506 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1507 const auto &RI = FI.getReturnInfo();
1508 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1509 }
1510
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1511 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1512 return ReturnTypeUsesSRet(FI) &&
1513 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1514 }
1515
ReturnTypeUsesFPRet(QualType ResultType)1516 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1517 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1518 switch (BT->getKind()) {
1519 default:
1520 return false;
1521 case BuiltinType::Float:
1522 return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1523 case BuiltinType::Double:
1524 return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1525 case BuiltinType::LongDouble:
1526 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1527 }
1528 }
1529
1530 return false;
1531 }
1532
ReturnTypeUsesFP2Ret(QualType ResultType)1533 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1534 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1535 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1536 if (BT->getKind() == BuiltinType::LongDouble)
1537 return getTarget().useObjCFP2RetForComplexLongDouble();
1538 }
1539 }
1540
1541 return false;
1542 }
1543
GetFunctionType(GlobalDecl GD)1544 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1545 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1546 return GetFunctionType(FI);
1547 }
1548
1549 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1550 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1551
1552 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1553 (void)Inserted;
1554 assert(Inserted && "Recursively being processed?");
1555
1556 llvm::Type *resultType = nullptr;
1557 const ABIArgInfo &retAI = FI.getReturnInfo();
1558 switch (retAI.getKind()) {
1559 case ABIArgInfo::Expand:
1560 llvm_unreachable("Invalid ABI kind for return argument");
1561
1562 case ABIArgInfo::Extend:
1563 case ABIArgInfo::Direct:
1564 resultType = retAI.getCoerceToType();
1565 break;
1566
1567 case ABIArgInfo::InAlloca:
1568 if (retAI.getInAllocaSRet()) {
1569 // sret things on win32 aren't void, they return the sret pointer.
1570 QualType ret = FI.getReturnType();
1571 llvm::Type *ty = ConvertType(ret);
1572 unsigned addressSpace = Context.getTargetAddressSpace(ret);
1573 resultType = llvm::PointerType::get(ty, addressSpace);
1574 } else {
1575 resultType = llvm::Type::getVoidTy(getLLVMContext());
1576 }
1577 break;
1578
1579 case ABIArgInfo::Indirect:
1580 case ABIArgInfo::Ignore:
1581 resultType = llvm::Type::getVoidTy(getLLVMContext());
1582 break;
1583
1584 case ABIArgInfo::CoerceAndExpand:
1585 resultType = retAI.getUnpaddedCoerceAndExpandType();
1586 break;
1587 }
1588
1589 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1590 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1591
1592 // Add type for sret argument.
1593 if (IRFunctionArgs.hasSRetArg()) {
1594 QualType Ret = FI.getReturnType();
1595 llvm::Type *Ty = ConvertType(Ret);
1596 unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1597 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1598 llvm::PointerType::get(Ty, AddressSpace);
1599 }
1600
1601 // Add type for inalloca argument.
1602 if (IRFunctionArgs.hasInallocaArg()) {
1603 auto ArgStruct = FI.getArgStruct();
1604 assert(ArgStruct);
1605 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1606 }
1607
1608 // Add in all of the required arguments.
1609 unsigned ArgNo = 0;
1610 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1611 ie = it + FI.getNumRequiredArgs();
1612 for (; it != ie; ++it, ++ArgNo) {
1613 const ABIArgInfo &ArgInfo = it->info;
1614
1615 // Insert a padding type to ensure proper alignment.
1616 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1617 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1618 ArgInfo.getPaddingType();
1619
1620 unsigned FirstIRArg, NumIRArgs;
1621 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1622
1623 switch (ArgInfo.getKind()) {
1624 case ABIArgInfo::Ignore:
1625 case ABIArgInfo::InAlloca:
1626 assert(NumIRArgs == 0);
1627 break;
1628
1629 case ABIArgInfo::Indirect: {
1630 assert(NumIRArgs == 1);
1631 // indirect arguments are always on the stack, which is alloca addr space.
1632 llvm::Type *LTy = ConvertTypeForMem(it->type);
1633 ArgTypes[FirstIRArg] = LTy->getPointerTo(
1634 CGM.getDataLayout().getAllocaAddrSpace());
1635 break;
1636 }
1637
1638 case ABIArgInfo::Extend:
1639 case ABIArgInfo::Direct: {
1640 // Fast-isel and the optimizer generally like scalar values better than
1641 // FCAs, so we flatten them if this is safe to do for this argument.
1642 llvm::Type *argType = ArgInfo.getCoerceToType();
1643 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1644 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1645 assert(NumIRArgs == st->getNumElements());
1646 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1647 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1648 } else {
1649 assert(NumIRArgs == 1);
1650 ArgTypes[FirstIRArg] = argType;
1651 }
1652 break;
1653 }
1654
1655 case ABIArgInfo::CoerceAndExpand: {
1656 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1657 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1658 *ArgTypesIter++ = EltTy;
1659 }
1660 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1661 break;
1662 }
1663
1664 case ABIArgInfo::Expand:
1665 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1666 getExpandedTypes(it->type, ArgTypesIter);
1667 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1668 break;
1669 }
1670 }
1671
1672 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1673 assert(Erased && "Not in set?");
1674
1675 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1676 }
1677
GetFunctionTypeForVTable(GlobalDecl GD)1678 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1679 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1680 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1681
1682 if (!isFuncTypeConvertible(FPT))
1683 return llvm::StructType::get(getLLVMContext());
1684
1685 const CGFunctionInfo *Info;
1686 if (isa<CXXDestructorDecl>(MD))
1687 Info =
1688 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1689 else
1690 Info = &arrangeCXXMethodDeclaration(MD);
1691 return GetFunctionType(*Info);
1692 }
1693
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695 llvm::AttrBuilder &FuncAttrs,
1696 const FunctionProtoType *FPT) {
1697 if (!FPT)
1698 return;
1699
1700 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701 FPT->isNothrow())
1702 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703 }
1704
ConstructDefaultFnAttrList(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706 bool AttrOnCallSite,
1707 llvm::AttrBuilder &FuncAttrs) {
1708 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709 if (!HasOptnone) {
1710 if (CodeGenOpts.OptimizeSize)
1711 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712 if (CodeGenOpts.OptimizeSize == 2)
1713 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714 }
1715
1716 if (CodeGenOpts.DisableRedZone)
1717 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718 if (CodeGenOpts.IndirectTlsSegRefs)
1719 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720 if (CodeGenOpts.NoImplicitFloat)
1721 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722
1723 if (AttrOnCallSite) {
1724 // Attributes that should go on the call site only.
1725 if (!CodeGenOpts.SimplifyLibCalls ||
1726 CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728 if (!CodeGenOpts.TrapFuncName.empty())
1729 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730 } else {
1731 // Attributes that should go on the function, but not the call site.
1732 if (!CodeGenOpts.DisableFPElim) {
1733 FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1734 } else if (CodeGenOpts.OmitLeafFramePointer) {
1735 FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1736 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1737 } else {
1738 FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1739 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1740 }
1741
1742 FuncAttrs.addAttribute("less-precise-fpmad",
1743 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1744
1745 if (CodeGenOpts.NullPointerIsValid)
1746 FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1747 if (!CodeGenOpts.FPDenormalMode.empty())
1748 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1749
1750 FuncAttrs.addAttribute("no-trapping-math",
1751 llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1752
1753 // Strict (compliant) code is the default, so only add this attribute to
1754 // indicate that we are trying to workaround a problem case.
1755 if (!CodeGenOpts.StrictFloatCastOverflow)
1756 FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1757
1758 // TODO: Are these all needed?
1759 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1760 FuncAttrs.addAttribute("no-infs-fp-math",
1761 llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1762 FuncAttrs.addAttribute("no-nans-fp-math",
1763 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1764 FuncAttrs.addAttribute("unsafe-fp-math",
1765 llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1766 FuncAttrs.addAttribute("use-soft-float",
1767 llvm::toStringRef(CodeGenOpts.SoftFloat));
1768 FuncAttrs.addAttribute("stack-protector-buffer-size",
1769 llvm::utostr(CodeGenOpts.SSPBufferSize));
1770 FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1771 llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1772 FuncAttrs.addAttribute(
1773 "correctly-rounded-divide-sqrt-fp-math",
1774 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1775
1776 if (getLangOpts().OpenCL)
1777 FuncAttrs.addAttribute("denorms-are-zero",
1778 llvm::toStringRef(CodeGenOpts.FlushDenorm));
1779
1780 // TODO: Reciprocal estimate codegen options should apply to instructions?
1781 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1782 if (!Recips.empty())
1783 FuncAttrs.addAttribute("reciprocal-estimates",
1784 llvm::join(Recips, ","));
1785
1786 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1787 CodeGenOpts.PreferVectorWidth != "none")
1788 FuncAttrs.addAttribute("prefer-vector-width",
1789 CodeGenOpts.PreferVectorWidth);
1790
1791 if (CodeGenOpts.StackRealignment)
1792 FuncAttrs.addAttribute("stackrealign");
1793 if (CodeGenOpts.Backchain)
1794 FuncAttrs.addAttribute("backchain");
1795
1796 // FIXME: The interaction of this attribute with the SLH command line flag
1797 // has not been determined.
1798 if (CodeGenOpts.SpeculativeLoadHardening)
1799 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1800 }
1801
1802 if (getLangOpts().assumeFunctionsAreConvergent()) {
1803 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1804 // convergent (meaning, they may call an intrinsically convergent op, such
1805 // as __syncthreads() / barrier(), and so can't have certain optimizations
1806 // applied around them). LLVM will remove this attribute where it safely
1807 // can.
1808 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1809 }
1810
1811 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1812 // Exceptions aren't supported in CUDA device code.
1813 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1814
1815 // Respect -fcuda-flush-denormals-to-zero.
1816 if (CodeGenOpts.FlushDenorm)
1817 FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1818 }
1819
1820 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1821 StringRef Var, Value;
1822 std::tie(Var, Value) = Attr.split('=');
1823 FuncAttrs.addAttribute(Var, Value);
1824 }
1825 }
1826
AddDefaultFnAttrs(llvm::Function & F)1827 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1828 llvm::AttrBuilder FuncAttrs;
1829 ConstructDefaultFnAttrList(F.getName(),
1830 F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1831 /* AttrOnCallsite = */ false, FuncAttrs);
1832 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1833 }
1834
ConstructAttributeList(StringRef Name,const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,llvm::AttributeList & AttrList,unsigned & CallingConv,bool AttrOnCallSite)1835 void CodeGenModule::ConstructAttributeList(
1836 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1837 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1838 llvm::AttrBuilder FuncAttrs;
1839 llvm::AttrBuilder RetAttrs;
1840
1841 CallingConv = FI.getEffectiveCallingConvention();
1842 if (FI.isNoReturn())
1843 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1844
1845 // If we have information about the function prototype, we can learn
1846 // attributes from there.
1847 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1848 CalleeInfo.getCalleeFunctionProtoType());
1849
1850 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1851
1852 bool HasOptnone = false;
1853 // FIXME: handle sseregparm someday...
1854 if (TargetDecl) {
1855 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1856 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1857 if (TargetDecl->hasAttr<NoThrowAttr>())
1858 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859 if (TargetDecl->hasAttr<NoReturnAttr>())
1860 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1861 if (TargetDecl->hasAttr<ColdAttr>())
1862 FuncAttrs.addAttribute(llvm::Attribute::Cold);
1863 if (TargetDecl->hasAttr<NoDuplicateAttr>())
1864 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1865 if (TargetDecl->hasAttr<ConvergentAttr>())
1866 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1867 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1868 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1869
1870 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1871 AddAttributesFromFunctionProtoType(
1872 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1873 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1874 // These attributes are not inherited by overloads.
1875 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1876 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1877 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1878 }
1879
1880 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1881 if (TargetDecl->hasAttr<ConstAttr>()) {
1882 FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1883 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1884 } else if (TargetDecl->hasAttr<PureAttr>()) {
1885 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1886 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1887 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1888 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1889 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1890 }
1891 if (TargetDecl->hasAttr<RestrictAttr>())
1892 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1893 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1894 !CodeGenOpts.NullPointerIsValid)
1895 RetAttrs.addAttribute(llvm::Attribute::NonNull);
1896 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1897 FuncAttrs.addAttribute("no_caller_saved_registers");
1898 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1899 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1900
1901 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1902 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1903 Optional<unsigned> NumElemsParam;
1904 if (AllocSize->getNumElemsParam().isValid())
1905 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1906 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1907 NumElemsParam);
1908 }
1909 }
1910
1911 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1912
1913 if (CodeGenOpts.EnableSegmentedStacks &&
1914 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1915 FuncAttrs.addAttribute("split-stack");
1916
1917 // Add NonLazyBind attribute to function declarations when -fno-plt
1918 // is used.
1919 if (TargetDecl && CodeGenOpts.NoPLT) {
1920 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1921 if (!Fn->isDefined() && !AttrOnCallSite) {
1922 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1923 }
1924 }
1925 }
1926
1927 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1928 if (getLangOpts().OpenCLVersion <= 120) {
1929 // OpenCL v1.2 Work groups are always uniform
1930 FuncAttrs.addAttribute("uniform-work-group-size", "true");
1931 } else {
1932 // OpenCL v2.0 Work groups may be whether uniform or not.
1933 // '-cl-uniform-work-group-size' compile option gets a hint
1934 // to the compiler that the global work-size be a multiple of
1935 // the work-group size specified to clEnqueueNDRangeKernel
1936 // (i.e. work groups are uniform).
1937 FuncAttrs.addAttribute("uniform-work-group-size",
1938 llvm::toStringRef(CodeGenOpts.UniformWGSize));
1939 }
1940 }
1941
1942 if (!AttrOnCallSite) {
1943 bool DisableTailCalls = false;
1944
1945 if (CodeGenOpts.DisableTailCalls)
1946 DisableTailCalls = true;
1947 else if (TargetDecl) {
1948 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1949 TargetDecl->hasAttr<AnyX86InterruptAttr>())
1950 DisableTailCalls = true;
1951 else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1952 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1953 if (!BD->doesNotEscape())
1954 DisableTailCalls = true;
1955 }
1956 }
1957
1958 FuncAttrs.addAttribute("disable-tail-calls",
1959 llvm::toStringRef(DisableTailCalls));
1960 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1961 }
1962
1963 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1964
1965 QualType RetTy = FI.getReturnType();
1966 const ABIArgInfo &RetAI = FI.getReturnInfo();
1967 switch (RetAI.getKind()) {
1968 case ABIArgInfo::Extend:
1969 if (RetAI.isSignExt())
1970 RetAttrs.addAttribute(llvm::Attribute::SExt);
1971 else
1972 RetAttrs.addAttribute(llvm::Attribute::ZExt);
1973 LLVM_FALLTHROUGH;
1974 case ABIArgInfo::Direct:
1975 if (RetAI.getInReg())
1976 RetAttrs.addAttribute(llvm::Attribute::InReg);
1977 break;
1978 case ABIArgInfo::Ignore:
1979 break;
1980
1981 case ABIArgInfo::InAlloca:
1982 case ABIArgInfo::Indirect: {
1983 // inalloca and sret disable readnone and readonly
1984 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1985 .removeAttribute(llvm::Attribute::ReadNone);
1986 break;
1987 }
1988
1989 case ABIArgInfo::CoerceAndExpand:
1990 break;
1991
1992 case ABIArgInfo::Expand:
1993 llvm_unreachable("Invalid ABI kind for return argument");
1994 }
1995
1996 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1997 QualType PTy = RefTy->getPointeeType();
1998 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1999 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2000 .getQuantity());
2001 else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2002 !CodeGenOpts.NullPointerIsValid)
2003 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2004 }
2005
2006 bool hasUsedSRet = false;
2007 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2008
2009 // Attach attributes to sret.
2010 if (IRFunctionArgs.hasSRetArg()) {
2011 llvm::AttrBuilder SRETAttrs;
2012 if (!RetAI.getSuppressSRet())
2013 SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2014 hasUsedSRet = true;
2015 if (RetAI.getInReg())
2016 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2017 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2018 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2019 }
2020
2021 // Attach attributes to inalloca argument.
2022 if (IRFunctionArgs.hasInallocaArg()) {
2023 llvm::AttrBuilder Attrs;
2024 Attrs.addAttribute(llvm::Attribute::InAlloca);
2025 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2026 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2027 }
2028
2029 unsigned ArgNo = 0;
2030 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2031 E = FI.arg_end();
2032 I != E; ++I, ++ArgNo) {
2033 QualType ParamType = I->type;
2034 const ABIArgInfo &AI = I->info;
2035 llvm::AttrBuilder Attrs;
2036
2037 // Add attribute for padding argument, if necessary.
2038 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2039 if (AI.getPaddingInReg()) {
2040 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2041 llvm::AttributeSet::get(
2042 getLLVMContext(),
2043 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2044 }
2045 }
2046
2047 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2048 // have the corresponding parameter variable. It doesn't make
2049 // sense to do it here because parameters are so messed up.
2050 switch (AI.getKind()) {
2051 case ABIArgInfo::Extend:
2052 if (AI.isSignExt())
2053 Attrs.addAttribute(llvm::Attribute::SExt);
2054 else
2055 Attrs.addAttribute(llvm::Attribute::ZExt);
2056 LLVM_FALLTHROUGH;
2057 case ABIArgInfo::Direct:
2058 if (ArgNo == 0 && FI.isChainCall())
2059 Attrs.addAttribute(llvm::Attribute::Nest);
2060 else if (AI.getInReg())
2061 Attrs.addAttribute(llvm::Attribute::InReg);
2062 break;
2063
2064 case ABIArgInfo::Indirect: {
2065 if (AI.getInReg())
2066 Attrs.addAttribute(llvm::Attribute::InReg);
2067
2068 if (AI.getIndirectByVal())
2069 Attrs.addAttribute(llvm::Attribute::ByVal);
2070
2071 CharUnits Align = AI.getIndirectAlign();
2072
2073 // In a byval argument, it is important that the required
2074 // alignment of the type is honored, as LLVM might be creating a
2075 // *new* stack object, and needs to know what alignment to give
2076 // it. (Sometimes it can deduce a sensible alignment on its own,
2077 // but not if clang decides it must emit a packed struct, or the
2078 // user specifies increased alignment requirements.)
2079 //
2080 // This is different from indirect *not* byval, where the object
2081 // exists already, and the align attribute is purely
2082 // informative.
2083 assert(!Align.isZero());
2084
2085 // For now, only add this when we have a byval argument.
2086 // TODO: be less lazy about updating test cases.
2087 if (AI.getIndirectByVal())
2088 Attrs.addAlignmentAttr(Align.getQuantity());
2089
2090 // byval disables readnone and readonly.
2091 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2092 .removeAttribute(llvm::Attribute::ReadNone);
2093 break;
2094 }
2095 case ABIArgInfo::Ignore:
2096 case ABIArgInfo::Expand:
2097 case ABIArgInfo::CoerceAndExpand:
2098 break;
2099
2100 case ABIArgInfo::InAlloca:
2101 // inalloca disables readnone and readonly.
2102 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2103 .removeAttribute(llvm::Attribute::ReadNone);
2104 continue;
2105 }
2106
2107 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2108 QualType PTy = RefTy->getPointeeType();
2109 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2110 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2111 .getQuantity());
2112 else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2113 !CodeGenOpts.NullPointerIsValid)
2114 Attrs.addAttribute(llvm::Attribute::NonNull);
2115 }
2116
2117 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2118 case ParameterABI::Ordinary:
2119 break;
2120
2121 case ParameterABI::SwiftIndirectResult: {
2122 // Add 'sret' if we haven't already used it for something, but
2123 // only if the result is void.
2124 if (!hasUsedSRet && RetTy->isVoidType()) {
2125 Attrs.addAttribute(llvm::Attribute::StructRet);
2126 hasUsedSRet = true;
2127 }
2128
2129 // Add 'noalias' in either case.
2130 Attrs.addAttribute(llvm::Attribute::NoAlias);
2131
2132 // Add 'dereferenceable' and 'alignment'.
2133 auto PTy = ParamType->getPointeeType();
2134 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2135 auto info = getContext().getTypeInfoInChars(PTy);
2136 Attrs.addDereferenceableAttr(info.first.getQuantity());
2137 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2138 info.second.getQuantity()));
2139 }
2140 break;
2141 }
2142
2143 case ParameterABI::SwiftErrorResult:
2144 Attrs.addAttribute(llvm::Attribute::SwiftError);
2145 break;
2146
2147 case ParameterABI::SwiftContext:
2148 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2149 break;
2150 }
2151
2152 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2153 Attrs.addAttribute(llvm::Attribute::NoCapture);
2154
2155 if (Attrs.hasAttributes()) {
2156 unsigned FirstIRArg, NumIRArgs;
2157 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2158 for (unsigned i = 0; i < NumIRArgs; i++)
2159 ArgAttrs[FirstIRArg + i] =
2160 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2161 }
2162 }
2163 assert(ArgNo == FI.arg_size());
2164
2165 AttrList = llvm::AttributeList::get(
2166 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2167 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2168 }
2169
2170 /// An argument came in as a promoted argument; demote it back to its
2171 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)2172 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2173 const VarDecl *var,
2174 llvm::Value *value) {
2175 llvm::Type *varType = CGF.ConvertType(var->getType());
2176
2177 // This can happen with promotions that actually don't change the
2178 // underlying type, like the enum promotions.
2179 if (value->getType() == varType) return value;
2180
2181 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2182 && "unexpected promotion type");
2183
2184 if (isa<llvm::IntegerType>(varType))
2185 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2186
2187 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2188 }
2189
2190 /// Returns the attribute (either parameter attribute, or function
2191 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)2192 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2193 QualType ArgType, unsigned ArgNo) {
2194 // FIXME: __attribute__((nonnull)) can also be applied to:
2195 // - references to pointers, where the pointee is known to be
2196 // nonnull (apparently a Clang extension)
2197 // - transparent unions containing pointers
2198 // In the former case, LLVM IR cannot represent the constraint. In
2199 // the latter case, we have no guarantee that the transparent union
2200 // is in fact passed as a pointer.
2201 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2202 return nullptr;
2203 // First, check attribute on parameter itself.
2204 if (PVD) {
2205 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2206 return ParmNNAttr;
2207 }
2208 // Check function attributes.
2209 if (!FD)
2210 return nullptr;
2211 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2212 if (NNAttr->isNonNull(ArgNo))
2213 return NNAttr;
2214 }
2215 return nullptr;
2216 }
2217
2218 namespace {
2219 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2220 Address Temp;
2221 Address Arg;
CopyBackSwiftError__anon8199d0d30611::CopyBackSwiftError2222 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
Emit__anon8199d0d30611::CopyBackSwiftError2223 void Emit(CodeGenFunction &CGF, Flags flags) override {
2224 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2225 CGF.Builder.CreateStore(errorValue, Arg);
2226 }
2227 };
2228 }
2229
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)2230 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2231 llvm::Function *Fn,
2232 const FunctionArgList &Args) {
2233 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2234 // Naked functions don't have prologues.
2235 return;
2236
2237 // If this is an implicit-return-zero function, go ahead and
2238 // initialize the return value. TODO: it might be nice to have
2239 // a more general mechanism for this that didn't require synthesized
2240 // return statements.
2241 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2242 if (FD->hasImplicitReturnZero()) {
2243 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2244 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2245 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2246 Builder.CreateStore(Zero, ReturnValue);
2247 }
2248 }
2249
2250 // FIXME: We no longer need the types from FunctionArgList; lift up and
2251 // simplify.
2252
2253 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2254 // Flattened function arguments.
2255 SmallVector<llvm::Value *, 16> FnArgs;
2256 FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2257 for (auto &Arg : Fn->args()) {
2258 FnArgs.push_back(&Arg);
2259 }
2260 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2261
2262 // If we're using inalloca, all the memory arguments are GEPs off of the last
2263 // parameter, which is a pointer to the complete memory area.
2264 Address ArgStruct = Address::invalid();
2265 const llvm::StructLayout *ArgStructLayout = nullptr;
2266 if (IRFunctionArgs.hasInallocaArg()) {
2267 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2268 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2269 FI.getArgStructAlignment());
2270
2271 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2272 }
2273
2274 // Name the struct return parameter.
2275 if (IRFunctionArgs.hasSRetArg()) {
2276 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2277 AI->setName("agg.result");
2278 AI->addAttr(llvm::Attribute::NoAlias);
2279 }
2280
2281 // Track if we received the parameter as a pointer (indirect, byval, or
2282 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2283 // into a local alloca for us.
2284 SmallVector<ParamValue, 16> ArgVals;
2285 ArgVals.reserve(Args.size());
2286
2287 // Create a pointer value for every parameter declaration. This usually
2288 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2289 // any cleanups or do anything that might unwind. We do that separately, so
2290 // we can push the cleanups in the correct order for the ABI.
2291 assert(FI.arg_size() == Args.size() &&
2292 "Mismatch between function signature & arguments.");
2293 unsigned ArgNo = 0;
2294 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2295 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2296 i != e; ++i, ++info_it, ++ArgNo) {
2297 const VarDecl *Arg = *i;
2298 const ABIArgInfo &ArgI = info_it->info;
2299
2300 bool isPromoted =
2301 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2302 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2303 // the parameter is promoted. In this case we convert to
2304 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2305 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2306 assert(hasScalarEvaluationKind(Ty) ==
2307 hasScalarEvaluationKind(Arg->getType()));
2308
2309 unsigned FirstIRArg, NumIRArgs;
2310 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2311
2312 switch (ArgI.getKind()) {
2313 case ABIArgInfo::InAlloca: {
2314 assert(NumIRArgs == 0);
2315 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2316 CharUnits FieldOffset =
2317 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2318 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2319 Arg->getName());
2320 ArgVals.push_back(ParamValue::forIndirect(V));
2321 break;
2322 }
2323
2324 case ABIArgInfo::Indirect: {
2325 assert(NumIRArgs == 1);
2326 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2327
2328 if (!hasScalarEvaluationKind(Ty)) {
2329 // Aggregates and complex variables are accessed by reference. All we
2330 // need to do is realign the value, if requested.
2331 Address V = ParamAddr;
2332 if (ArgI.getIndirectRealign()) {
2333 Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2334
2335 // Copy from the incoming argument pointer to the temporary with the
2336 // appropriate alignment.
2337 //
2338 // FIXME: We should have a common utility for generating an aggregate
2339 // copy.
2340 CharUnits Size = getContext().getTypeSizeInChars(Ty);
2341 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2342 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2343 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2344 Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2345 V = AlignedTemp;
2346 }
2347 ArgVals.push_back(ParamValue::forIndirect(V));
2348 } else {
2349 // Load scalar value from indirect argument.
2350 llvm::Value *V =
2351 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2352
2353 if (isPromoted)
2354 V = emitArgumentDemotion(*this, Arg, V);
2355 ArgVals.push_back(ParamValue::forDirect(V));
2356 }
2357 break;
2358 }
2359
2360 case ABIArgInfo::Extend:
2361 case ABIArgInfo::Direct: {
2362
2363 // If we have the trivial case, handle it with no muss and fuss.
2364 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2365 ArgI.getCoerceToType() == ConvertType(Ty) &&
2366 ArgI.getDirectOffset() == 0) {
2367 assert(NumIRArgs == 1);
2368 llvm::Value *V = FnArgs[FirstIRArg];
2369 auto AI = cast<llvm::Argument>(V);
2370
2371 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2372 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2373 PVD->getFunctionScopeIndex()) &&
2374 !CGM.getCodeGenOpts().NullPointerIsValid)
2375 AI->addAttr(llvm::Attribute::NonNull);
2376
2377 QualType OTy = PVD->getOriginalType();
2378 if (const auto *ArrTy =
2379 getContext().getAsConstantArrayType(OTy)) {
2380 // A C99 array parameter declaration with the static keyword also
2381 // indicates dereferenceability, and if the size is constant we can
2382 // use the dereferenceable attribute (which requires the size in
2383 // bytes).
2384 if (ArrTy->getSizeModifier() == ArrayType::Static) {
2385 QualType ETy = ArrTy->getElementType();
2386 uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2387 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2388 ArrSize) {
2389 llvm::AttrBuilder Attrs;
2390 Attrs.addDereferenceableAttr(
2391 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2392 AI->addAttrs(Attrs);
2393 } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2394 !CGM.getCodeGenOpts().NullPointerIsValid) {
2395 AI->addAttr(llvm::Attribute::NonNull);
2396 }
2397 }
2398 } else if (const auto *ArrTy =
2399 getContext().getAsVariableArrayType(OTy)) {
2400 // For C99 VLAs with the static keyword, we don't know the size so
2401 // we can't use the dereferenceable attribute, but in addrspace(0)
2402 // we know that it must be nonnull.
2403 if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2404 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2405 !CGM.getCodeGenOpts().NullPointerIsValid)
2406 AI->addAttr(llvm::Attribute::NonNull);
2407 }
2408
2409 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2410 if (!AVAttr)
2411 if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2412 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2413 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2414 // If alignment-assumption sanitizer is enabled, we do *not* add
2415 // alignment attribute here, but emit normal alignment assumption,
2416 // so the UBSAN check could function.
2417 llvm::Value *AlignmentValue =
2418 EmitScalarExpr(AVAttr->getAlignment());
2419 llvm::ConstantInt *AlignmentCI =
2420 cast<llvm::ConstantInt>(AlignmentValue);
2421 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2422 +llvm::Value::MaximumAlignment);
2423 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2424 }
2425 }
2426
2427 if (Arg->getType().isRestrictQualified())
2428 AI->addAttr(llvm::Attribute::NoAlias);
2429
2430 // LLVM expects swifterror parameters to be used in very restricted
2431 // ways. Copy the value into a less-restricted temporary.
2432 if (FI.getExtParameterInfo(ArgNo).getABI()
2433 == ParameterABI::SwiftErrorResult) {
2434 QualType pointeeTy = Ty->getPointeeType();
2435 assert(pointeeTy->isPointerType());
2436 Address temp =
2437 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2438 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2439 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2440 Builder.CreateStore(incomingErrorValue, temp);
2441 V = temp.getPointer();
2442
2443 // Push a cleanup to copy the value back at the end of the function.
2444 // The convention does not guarantee that the value will be written
2445 // back if the function exits with an unwind exception.
2446 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2447 }
2448
2449 // Ensure the argument is the correct type.
2450 if (V->getType() != ArgI.getCoerceToType())
2451 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2452
2453 if (isPromoted)
2454 V = emitArgumentDemotion(*this, Arg, V);
2455
2456 // Because of merging of function types from multiple decls it is
2457 // possible for the type of an argument to not match the corresponding
2458 // type in the function type. Since we are codegening the callee
2459 // in here, add a cast to the argument type.
2460 llvm::Type *LTy = ConvertType(Arg->getType());
2461 if (V->getType() != LTy)
2462 V = Builder.CreateBitCast(V, LTy);
2463
2464 ArgVals.push_back(ParamValue::forDirect(V));
2465 break;
2466 }
2467
2468 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2469 Arg->getName());
2470
2471 // Pointer to store into.
2472 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2473
2474 // Fast-isel and the optimizer generally like scalar values better than
2475 // FCAs, so we flatten them if this is safe to do for this argument.
2476 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2477 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2478 STy->getNumElements() > 1) {
2479 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2480 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2481 llvm::Type *DstTy = Ptr.getElementType();
2482 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2483
2484 Address AddrToStoreInto = Address::invalid();
2485 if (SrcSize <= DstSize) {
2486 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2487 } else {
2488 AddrToStoreInto =
2489 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2490 }
2491
2492 assert(STy->getNumElements() == NumIRArgs);
2493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2494 auto AI = FnArgs[FirstIRArg + i];
2495 AI->setName(Arg->getName() + ".coerce" + Twine(i));
2496 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2497 Address EltPtr =
2498 Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2499 Builder.CreateStore(AI, EltPtr);
2500 }
2501
2502 if (SrcSize > DstSize) {
2503 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2504 }
2505
2506 } else {
2507 // Simple case, just do a coerced store of the argument into the alloca.
2508 assert(NumIRArgs == 1);
2509 auto AI = FnArgs[FirstIRArg];
2510 AI->setName(Arg->getName() + ".coerce");
2511 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2512 }
2513
2514 // Match to what EmitParmDecl is expecting for this type.
2515 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2516 llvm::Value *V =
2517 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2518 if (isPromoted)
2519 V = emitArgumentDemotion(*this, Arg, V);
2520 ArgVals.push_back(ParamValue::forDirect(V));
2521 } else {
2522 ArgVals.push_back(ParamValue::forIndirect(Alloca));
2523 }
2524 break;
2525 }
2526
2527 case ABIArgInfo::CoerceAndExpand: {
2528 // Reconstruct into a temporary.
2529 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2530 ArgVals.push_back(ParamValue::forIndirect(alloca));
2531
2532 auto coercionType = ArgI.getCoerceAndExpandType();
2533 alloca = Builder.CreateElementBitCast(alloca, coercionType);
2534 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2535
2536 unsigned argIndex = FirstIRArg;
2537 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2538 llvm::Type *eltType = coercionType->getElementType(i);
2539 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2540 continue;
2541
2542 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2543 auto elt = FnArgs[argIndex++];
2544 Builder.CreateStore(elt, eltAddr);
2545 }
2546 assert(argIndex == FirstIRArg + NumIRArgs);
2547 break;
2548 }
2549
2550 case ABIArgInfo::Expand: {
2551 // If this structure was expanded into multiple arguments then
2552 // we need to create a temporary and reconstruct it from the
2553 // arguments.
2554 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2555 LValue LV = MakeAddrLValue(Alloca, Ty);
2556 ArgVals.push_back(ParamValue::forIndirect(Alloca));
2557
2558 auto FnArgIter = FnArgs.begin() + FirstIRArg;
2559 ExpandTypeFromArgs(Ty, LV, FnArgIter);
2560 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2561 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2562 auto AI = FnArgs[FirstIRArg + i];
2563 AI->setName(Arg->getName() + "." + Twine(i));
2564 }
2565 break;
2566 }
2567
2568 case ABIArgInfo::Ignore:
2569 assert(NumIRArgs == 0);
2570 // Initialize the local variable appropriately.
2571 if (!hasScalarEvaluationKind(Ty)) {
2572 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2573 } else {
2574 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2575 ArgVals.push_back(ParamValue::forDirect(U));
2576 }
2577 break;
2578 }
2579 }
2580
2581 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2582 for (int I = Args.size() - 1; I >= 0; --I)
2583 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2584 } else {
2585 for (unsigned I = 0, E = Args.size(); I != E; ++I)
2586 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2587 }
2588 }
2589
eraseUnusedBitCasts(llvm::Instruction * insn)2590 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2591 while (insn->use_empty()) {
2592 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2593 if (!bitcast) return;
2594
2595 // This is "safe" because we would have used a ConstantExpr otherwise.
2596 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2597 bitcast->eraseFromParent();
2598 }
2599 }
2600
2601 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2602 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2603 llvm::Value *result) {
2604 // We must be immediately followed the cast.
2605 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2606 if (BB->empty()) return nullptr;
2607 if (&BB->back() != result) return nullptr;
2608
2609 llvm::Type *resultType = result->getType();
2610
2611 // result is in a BasicBlock and is therefore an Instruction.
2612 llvm::Instruction *generator = cast<llvm::Instruction>(result);
2613
2614 SmallVector<llvm::Instruction *, 4> InstsToKill;
2615
2616 // Look for:
2617 // %generator = bitcast %type1* %generator2 to %type2*
2618 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2619 // We would have emitted this as a constant if the operand weren't
2620 // an Instruction.
2621 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2622
2623 // Require the generator to be immediately followed by the cast.
2624 if (generator->getNextNode() != bitcast)
2625 return nullptr;
2626
2627 InstsToKill.push_back(bitcast);
2628 }
2629
2630 // Look for:
2631 // %generator = call i8* @objc_retain(i8* %originalResult)
2632 // or
2633 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2634 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2635 if (!call) return nullptr;
2636
2637 bool doRetainAutorelease;
2638
2639 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2640 doRetainAutorelease = true;
2641 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2642 .objc_retainAutoreleasedReturnValue) {
2643 doRetainAutorelease = false;
2644
2645 // If we emitted an assembly marker for this call (and the
2646 // ARCEntrypoints field should have been set if so), go looking
2647 // for that call. If we can't find it, we can't do this
2648 // optimization. But it should always be the immediately previous
2649 // instruction, unless we needed bitcasts around the call.
2650 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2651 llvm::Instruction *prev = call->getPrevNode();
2652 assert(prev);
2653 if (isa<llvm::BitCastInst>(prev)) {
2654 prev = prev->getPrevNode();
2655 assert(prev);
2656 }
2657 assert(isa<llvm::CallInst>(prev));
2658 assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2659 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2660 InstsToKill.push_back(prev);
2661 }
2662 } else {
2663 return nullptr;
2664 }
2665
2666 result = call->getArgOperand(0);
2667 InstsToKill.push_back(call);
2668
2669 // Keep killing bitcasts, for sanity. Note that we no longer care
2670 // about precise ordering as long as there's exactly one use.
2671 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2672 if (!bitcast->hasOneUse()) break;
2673 InstsToKill.push_back(bitcast);
2674 result = bitcast->getOperand(0);
2675 }
2676
2677 // Delete all the unnecessary instructions, from latest to earliest.
2678 for (auto *I : InstsToKill)
2679 I->eraseFromParent();
2680
2681 // Do the fused retain/autorelease if we were asked to.
2682 if (doRetainAutorelease)
2683 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2684
2685 // Cast back to the result type.
2686 return CGF.Builder.CreateBitCast(result, resultType);
2687 }
2688
2689 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)2690 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2691 llvm::Value *result) {
2692 // This is only applicable to a method with an immutable 'self'.
2693 const ObjCMethodDecl *method =
2694 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2695 if (!method) return nullptr;
2696 const VarDecl *self = method->getSelfDecl();
2697 if (!self->getType().isConstQualified()) return nullptr;
2698
2699 // Look for a retain call.
2700 llvm::CallInst *retainCall =
2701 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2702 if (!retainCall ||
2703 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2704 return nullptr;
2705
2706 // Look for an ordinary load of 'self'.
2707 llvm::Value *retainedValue = retainCall->getArgOperand(0);
2708 llvm::LoadInst *load =
2709 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2710 if (!load || load->isAtomic() || load->isVolatile() ||
2711 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2712 return nullptr;
2713
2714 // Okay! Burn it all down. This relies for correctness on the
2715 // assumption that the retain is emitted as part of the return and
2716 // that thereafter everything is used "linearly".
2717 llvm::Type *resultType = result->getType();
2718 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2719 assert(retainCall->use_empty());
2720 retainCall->eraseFromParent();
2721 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2722
2723 return CGF.Builder.CreateBitCast(load, resultType);
2724 }
2725
2726 /// Emit an ARC autorelease of the result of a function.
2727 ///
2728 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2729 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2730 llvm::Value *result) {
2731 // If we're returning 'self', kill the initial retain. This is a
2732 // heuristic attempt to "encourage correctness" in the really unfortunate
2733 // case where we have a return of self during a dealloc and we desperately
2734 // need to avoid the possible autorelease.
2735 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2736 return self;
2737
2738 // At -O0, try to emit a fused retain/autorelease.
2739 if (CGF.shouldUseFusedARCCalls())
2740 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2741 return fused;
2742
2743 return CGF.EmitARCAutoreleaseReturnValue(result);
2744 }
2745
2746 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)2747 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2748 // Check if a User is a store which pointerOperand is the ReturnValue.
2749 // We are looking for stores to the ReturnValue, not for stores of the
2750 // ReturnValue to some other location.
2751 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2752 auto *SI = dyn_cast<llvm::StoreInst>(U);
2753 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2754 return nullptr;
2755 // These aren't actually possible for non-coerced returns, and we
2756 // only care about non-coerced returns on this code path.
2757 assert(!SI->isAtomic() && !SI->isVolatile());
2758 return SI;
2759 };
2760 // If there are multiple uses of the return-value slot, just check
2761 // for something immediately preceding the IP. Sometimes this can
2762 // happen with how we generate implicit-returns; it can also happen
2763 // with noreturn cleanups.
2764 if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2765 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2766 if (IP->empty()) return nullptr;
2767 llvm::Instruction *I = &IP->back();
2768
2769 // Skip lifetime markers
2770 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2771 IE = IP->rend();
2772 II != IE; ++II) {
2773 if (llvm::IntrinsicInst *Intrinsic =
2774 dyn_cast<llvm::IntrinsicInst>(&*II)) {
2775 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2776 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2777 ++II;
2778 if (II == IE)
2779 break;
2780 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2781 continue;
2782 }
2783 }
2784 I = &*II;
2785 break;
2786 }
2787
2788 return GetStoreIfValid(I);
2789 }
2790
2791 llvm::StoreInst *store =
2792 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2793 if (!store) return nullptr;
2794
2795 // Now do a first-and-dirty dominance check: just walk up the
2796 // single-predecessors chain from the current insertion point.
2797 llvm::BasicBlock *StoreBB = store->getParent();
2798 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2799 while (IP != StoreBB) {
2800 if (!(IP = IP->getSinglePredecessor()))
2801 return nullptr;
2802 }
2803
2804 // Okay, the store's basic block dominates the insertion point; we
2805 // can do our thing.
2806 return store;
2807 }
2808
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)2809 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2810 bool EmitRetDbgLoc,
2811 SourceLocation EndLoc) {
2812 if (FI.isNoReturn()) {
2813 // Noreturn functions don't return.
2814 EmitUnreachable(EndLoc);
2815 return;
2816 }
2817
2818 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2819 // Naked functions don't have epilogues.
2820 Builder.CreateUnreachable();
2821 return;
2822 }
2823
2824 // Functions with no result always return void.
2825 if (!ReturnValue.isValid()) {
2826 Builder.CreateRetVoid();
2827 return;
2828 }
2829
2830 llvm::DebugLoc RetDbgLoc;
2831 llvm::Value *RV = nullptr;
2832 QualType RetTy = FI.getReturnType();
2833 const ABIArgInfo &RetAI = FI.getReturnInfo();
2834
2835 switch (RetAI.getKind()) {
2836 case ABIArgInfo::InAlloca:
2837 // Aggregrates get evaluated directly into the destination. Sometimes we
2838 // need to return the sret value in a register, though.
2839 assert(hasAggregateEvaluationKind(RetTy));
2840 if (RetAI.getInAllocaSRet()) {
2841 llvm::Function::arg_iterator EI = CurFn->arg_end();
2842 --EI;
2843 llvm::Value *ArgStruct = &*EI;
2844 llvm::Value *SRet = Builder.CreateStructGEP(
2845 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2846 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2847 }
2848 break;
2849
2850 case ABIArgInfo::Indirect: {
2851 auto AI = CurFn->arg_begin();
2852 if (RetAI.isSRetAfterThis())
2853 ++AI;
2854 switch (getEvaluationKind(RetTy)) {
2855 case TEK_Complex: {
2856 ComplexPairTy RT =
2857 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2858 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2859 /*isInit*/ true);
2860 break;
2861 }
2862 case TEK_Aggregate:
2863 // Do nothing; aggregrates get evaluated directly into the destination.
2864 break;
2865 case TEK_Scalar:
2866 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2867 MakeNaturalAlignAddrLValue(&*AI, RetTy),
2868 /*isInit*/ true);
2869 break;
2870 }
2871 break;
2872 }
2873
2874 case ABIArgInfo::Extend:
2875 case ABIArgInfo::Direct:
2876 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2877 RetAI.getDirectOffset() == 0) {
2878 // The internal return value temp always will have pointer-to-return-type
2879 // type, just do a load.
2880
2881 // If there is a dominating store to ReturnValue, we can elide
2882 // the load, zap the store, and usually zap the alloca.
2883 if (llvm::StoreInst *SI =
2884 findDominatingStoreToReturnValue(*this)) {
2885 // Reuse the debug location from the store unless there is
2886 // cleanup code to be emitted between the store and return
2887 // instruction.
2888 if (EmitRetDbgLoc && !AutoreleaseResult)
2889 RetDbgLoc = SI->getDebugLoc();
2890 // Get the stored value and nuke the now-dead store.
2891 RV = SI->getValueOperand();
2892 SI->eraseFromParent();
2893
2894 // If that was the only use of the return value, nuke it as well now.
2895 auto returnValueInst = ReturnValue.getPointer();
2896 if (returnValueInst->use_empty()) {
2897 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2898 alloca->eraseFromParent();
2899 ReturnValue = Address::invalid();
2900 }
2901 }
2902
2903 // Otherwise, we have to do a simple load.
2904 } else {
2905 RV = Builder.CreateLoad(ReturnValue);
2906 }
2907 } else {
2908 // If the value is offset in memory, apply the offset now.
2909 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2910
2911 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2912 }
2913
2914 // In ARC, end functions that return a retainable type with a call
2915 // to objc_autoreleaseReturnValue.
2916 if (AutoreleaseResult) {
2917 #ifndef NDEBUG
2918 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2919 // been stripped of the typedefs, so we cannot use RetTy here. Get the
2920 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2921 // CurCodeDecl or BlockInfo.
2922 QualType RT;
2923
2924 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2925 RT = FD->getReturnType();
2926 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2927 RT = MD->getReturnType();
2928 else if (isa<BlockDecl>(CurCodeDecl))
2929 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2930 else
2931 llvm_unreachable("Unexpected function/method type");
2932
2933 assert(getLangOpts().ObjCAutoRefCount &&
2934 !FI.isReturnsRetained() &&
2935 RT->isObjCRetainableType());
2936 #endif
2937 RV = emitAutoreleaseOfResult(*this, RV);
2938 }
2939
2940 break;
2941
2942 case ABIArgInfo::Ignore:
2943 break;
2944
2945 case ABIArgInfo::CoerceAndExpand: {
2946 auto coercionType = RetAI.getCoerceAndExpandType();
2947 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2948
2949 // Load all of the coerced elements out into results.
2950 llvm::SmallVector<llvm::Value*, 4> results;
2951 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2952 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2953 auto coercedEltType = coercionType->getElementType(i);
2954 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2955 continue;
2956
2957 auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2958 auto elt = Builder.CreateLoad(eltAddr);
2959 results.push_back(elt);
2960 }
2961
2962 // If we have one result, it's the single direct result type.
2963 if (results.size() == 1) {
2964 RV = results[0];
2965
2966 // Otherwise, we need to make a first-class aggregate.
2967 } else {
2968 // Construct a return type that lacks padding elements.
2969 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2970
2971 RV = llvm::UndefValue::get(returnType);
2972 for (unsigned i = 0, e = results.size(); i != e; ++i) {
2973 RV = Builder.CreateInsertValue(RV, results[i], i);
2974 }
2975 }
2976 break;
2977 }
2978
2979 case ABIArgInfo::Expand:
2980 llvm_unreachable("Invalid ABI kind for return argument");
2981 }
2982
2983 llvm::Instruction *Ret;
2984 if (RV) {
2985 EmitReturnValueCheck(RV);
2986 Ret = Builder.CreateRet(RV);
2987 } else {
2988 Ret = Builder.CreateRetVoid();
2989 }
2990
2991 if (RetDbgLoc)
2992 Ret->setDebugLoc(std::move(RetDbgLoc));
2993 }
2994
EmitReturnValueCheck(llvm::Value * RV)2995 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2996 // A current decl may not be available when emitting vtable thunks.
2997 if (!CurCodeDecl)
2998 return;
2999
3000 ReturnsNonNullAttr *RetNNAttr = nullptr;
3001 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3002 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3003
3004 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3005 return;
3006
3007 // Prefer the returns_nonnull attribute if it's present.
3008 SourceLocation AttrLoc;
3009 SanitizerMask CheckKind;
3010 SanitizerHandler Handler;
3011 if (RetNNAttr) {
3012 assert(!requiresReturnValueNullabilityCheck() &&
3013 "Cannot check nullability and the nonnull attribute");
3014 AttrLoc = RetNNAttr->getLocation();
3015 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3016 Handler = SanitizerHandler::NonnullReturn;
3017 } else {
3018 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3019 if (auto *TSI = DD->getTypeSourceInfo())
3020 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3021 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3022 CheckKind = SanitizerKind::NullabilityReturn;
3023 Handler = SanitizerHandler::NullabilityReturn;
3024 }
3025
3026 SanitizerScope SanScope(this);
3027
3028 // Make sure the "return" source location is valid. If we're checking a
3029 // nullability annotation, make sure the preconditions for the check are met.
3030 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3031 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3032 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3033 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3034 if (requiresReturnValueNullabilityCheck())
3035 CanNullCheck =
3036 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3037 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3038 EmitBlock(Check);
3039
3040 // Now do the null check.
3041 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3042 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3043 llvm::Value *DynamicData[] = {SLocPtr};
3044 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3045
3046 EmitBlock(NoCheck);
3047
3048 #ifndef NDEBUG
3049 // The return location should not be used after the check has been emitted.
3050 ReturnLocation = Address::invalid();
3051 #endif
3052 }
3053
isInAllocaArgument(CGCXXABI & ABI,QualType type)3054 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3055 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3056 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3057 }
3058
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)3059 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3060 QualType Ty) {
3061 // FIXME: Generate IR in one pass, rather than going back and fixing up these
3062 // placeholders.
3063 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3064 llvm::Type *IRPtrTy = IRTy->getPointerTo();
3065 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3066
3067 // FIXME: When we generate this IR in one pass, we shouldn't need
3068 // this win32-specific alignment hack.
3069 CharUnits Align = CharUnits::fromQuantity(4);
3070 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3071
3072 return AggValueSlot::forAddr(Address(Placeholder, Align),
3073 Ty.getQualifiers(),
3074 AggValueSlot::IsNotDestructed,
3075 AggValueSlot::DoesNotNeedGCBarriers,
3076 AggValueSlot::IsNotAliased,
3077 AggValueSlot::DoesNotOverlap);
3078 }
3079
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)3080 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3081 const VarDecl *param,
3082 SourceLocation loc) {
3083 // StartFunction converted the ABI-lowered parameter(s) into a
3084 // local alloca. We need to turn that into an r-value suitable
3085 // for EmitCall.
3086 Address local = GetAddrOfLocalVar(param);
3087
3088 QualType type = param->getType();
3089
3090 if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3091 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3092 }
3093
3094 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3095 // but the argument needs to be the original pointer.
3096 if (type->isReferenceType()) {
3097 args.add(RValue::get(Builder.CreateLoad(local)), type);
3098
3099 // In ARC, move out of consumed arguments so that the release cleanup
3100 // entered by StartFunction doesn't cause an over-release. This isn't
3101 // optimal -O0 code generation, but it should get cleaned up when
3102 // optimization is enabled. This also assumes that delegate calls are
3103 // performed exactly once for a set of arguments, but that should be safe.
3104 } else if (getLangOpts().ObjCAutoRefCount &&
3105 param->hasAttr<NSConsumedAttr>() &&
3106 type->isObjCRetainableType()) {
3107 llvm::Value *ptr = Builder.CreateLoad(local);
3108 auto null =
3109 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3110 Builder.CreateStore(null, local);
3111 args.add(RValue::get(ptr), type);
3112
3113 // For the most part, we just need to load the alloca, except that
3114 // aggregate r-values are actually pointers to temporaries.
3115 } else {
3116 args.add(convertTempToRValue(local, type, loc), type);
3117 }
3118
3119 // Deactivate the cleanup for the callee-destructed param that was pushed.
3120 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3121 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3122 type.isDestructedType()) {
3123 EHScopeStack::stable_iterator cleanup =
3124 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3125 assert(cleanup.isValid() &&
3126 "cleanup for callee-destructed param not recorded");
3127 // This unreachable is a temporary marker which will be removed later.
3128 llvm::Instruction *isActive = Builder.CreateUnreachable();
3129 args.addArgCleanupDeactivation(cleanup, isActive);
3130 }
3131 }
3132
isProvablyNull(llvm::Value * addr)3133 static bool isProvablyNull(llvm::Value *addr) {
3134 return isa<llvm::ConstantPointerNull>(addr);
3135 }
3136
3137 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)3138 static void emitWriteback(CodeGenFunction &CGF,
3139 const CallArgList::Writeback &writeback) {
3140 const LValue &srcLV = writeback.Source;
3141 Address srcAddr = srcLV.getAddress();
3142 assert(!isProvablyNull(srcAddr.getPointer()) &&
3143 "shouldn't have writeback for provably null argument");
3144
3145 llvm::BasicBlock *contBB = nullptr;
3146
3147 // If the argument wasn't provably non-null, we need to null check
3148 // before doing the store.
3149 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3150 CGF.CGM.getDataLayout());
3151 if (!provablyNonNull) {
3152 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3153 contBB = CGF.createBasicBlock("icr.done");
3154
3155 llvm::Value *isNull =
3156 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3157 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3158 CGF.EmitBlock(writebackBB);
3159 }
3160
3161 // Load the value to writeback.
3162 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3163
3164 // Cast it back, in case we're writing an id to a Foo* or something.
3165 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3166 "icr.writeback-cast");
3167
3168 // Perform the writeback.
3169
3170 // If we have a "to use" value, it's something we need to emit a use
3171 // of. This has to be carefully threaded in: if it's done after the
3172 // release it's potentially undefined behavior (and the optimizer
3173 // will ignore it), and if it happens before the retain then the
3174 // optimizer could move the release there.
3175 if (writeback.ToUse) {
3176 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3177
3178 // Retain the new value. No need to block-copy here: the block's
3179 // being passed up the stack.
3180 value = CGF.EmitARCRetainNonBlock(value);
3181
3182 // Emit the intrinsic use here.
3183 CGF.EmitARCIntrinsicUse(writeback.ToUse);
3184
3185 // Load the old value (primitively).
3186 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3187
3188 // Put the new value in place (primitively).
3189 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3190
3191 // Release the old value.
3192 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3193
3194 // Otherwise, we can just do a normal lvalue store.
3195 } else {
3196 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3197 }
3198
3199 // Jump to the continuation block.
3200 if (!provablyNonNull)
3201 CGF.EmitBlock(contBB);
3202 }
3203
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)3204 static void emitWritebacks(CodeGenFunction &CGF,
3205 const CallArgList &args) {
3206 for (const auto &I : args.writebacks())
3207 emitWriteback(CGF, I);
3208 }
3209
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)3210 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3211 const CallArgList &CallArgs) {
3212 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3213 CallArgs.getCleanupsToDeactivate();
3214 // Iterate in reverse to increase the likelihood of popping the cleanup.
3215 for (const auto &I : llvm::reverse(Cleanups)) {
3216 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3217 I.IsActiveIP->eraseFromParent();
3218 }
3219 }
3220
maybeGetUnaryAddrOfOperand(const Expr * E)3221 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3222 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3223 if (uop->getOpcode() == UO_AddrOf)
3224 return uop->getSubExpr();
3225 return nullptr;
3226 }
3227
3228 /// Emit an argument that's being passed call-by-writeback. That is,
3229 /// we are passing the address of an __autoreleased temporary; it
3230 /// might be copy-initialized with the current value of the given
3231 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)3232 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3233 const ObjCIndirectCopyRestoreExpr *CRE) {
3234 LValue srcLV;
3235
3236 // Make an optimistic effort to emit the address as an l-value.
3237 // This can fail if the argument expression is more complicated.
3238 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3239 srcLV = CGF.EmitLValue(lvExpr);
3240
3241 // Otherwise, just emit it as a scalar.
3242 } else {
3243 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3244
3245 QualType srcAddrType =
3246 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3247 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3248 }
3249 Address srcAddr = srcLV.getAddress();
3250
3251 // The dest and src types don't necessarily match in LLVM terms
3252 // because of the crazy ObjC compatibility rules.
3253
3254 llvm::PointerType *destType =
3255 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3256
3257 // If the address is a constant null, just pass the appropriate null.
3258 if (isProvablyNull(srcAddr.getPointer())) {
3259 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3260 CRE->getType());
3261 return;
3262 }
3263
3264 // Create the temporary.
3265 Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3266 CGF.getPointerAlign(),
3267 "icr.temp");
3268 // Loading an l-value can introduce a cleanup if the l-value is __weak,
3269 // and that cleanup will be conditional if we can't prove that the l-value
3270 // isn't null, so we need to register a dominating point so that the cleanups
3271 // system will make valid IR.
3272 CodeGenFunction::ConditionalEvaluation condEval(CGF);
3273
3274 // Zero-initialize it if we're not doing a copy-initialization.
3275 bool shouldCopy = CRE->shouldCopy();
3276 if (!shouldCopy) {
3277 llvm::Value *null =
3278 llvm::ConstantPointerNull::get(
3279 cast<llvm::PointerType>(destType->getElementType()));
3280 CGF.Builder.CreateStore(null, temp);
3281 }
3282
3283 llvm::BasicBlock *contBB = nullptr;
3284 llvm::BasicBlock *originBB = nullptr;
3285
3286 // If the address is *not* known to be non-null, we need to switch.
3287 llvm::Value *finalArgument;
3288
3289 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3290 CGF.CGM.getDataLayout());
3291 if (provablyNonNull) {
3292 finalArgument = temp.getPointer();
3293 } else {
3294 llvm::Value *isNull =
3295 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3296
3297 finalArgument = CGF.Builder.CreateSelect(isNull,
3298 llvm::ConstantPointerNull::get(destType),
3299 temp.getPointer(), "icr.argument");
3300
3301 // If we need to copy, then the load has to be conditional, which
3302 // means we need control flow.
3303 if (shouldCopy) {
3304 originBB = CGF.Builder.GetInsertBlock();
3305 contBB = CGF.createBasicBlock("icr.cont");
3306 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3307 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3308 CGF.EmitBlock(copyBB);
3309 condEval.begin(CGF);
3310 }
3311 }
3312
3313 llvm::Value *valueToUse = nullptr;
3314
3315 // Perform a copy if necessary.
3316 if (shouldCopy) {
3317 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3318 assert(srcRV.isScalar());
3319
3320 llvm::Value *src = srcRV.getScalarVal();
3321 src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3322 "icr.cast");
3323
3324 // Use an ordinary store, not a store-to-lvalue.
3325 CGF.Builder.CreateStore(src, temp);
3326
3327 // If optimization is enabled, and the value was held in a
3328 // __strong variable, we need to tell the optimizer that this
3329 // value has to stay alive until we're doing the store back.
3330 // This is because the temporary is effectively unretained,
3331 // and so otherwise we can violate the high-level semantics.
3332 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3333 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3334 valueToUse = src;
3335 }
3336 }
3337
3338 // Finish the control flow if we needed it.
3339 if (shouldCopy && !provablyNonNull) {
3340 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3341 CGF.EmitBlock(contBB);
3342
3343 // Make a phi for the value to intrinsically use.
3344 if (valueToUse) {
3345 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3346 "icr.to-use");
3347 phiToUse->addIncoming(valueToUse, copyBB);
3348 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3349 originBB);
3350 valueToUse = phiToUse;
3351 }
3352
3353 condEval.end(CGF);
3354 }
3355
3356 args.addWriteback(srcLV, temp, valueToUse);
3357 args.add(RValue::get(finalArgument), CRE->getType());
3358 }
3359
allocateArgumentMemory(CodeGenFunction & CGF)3360 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3361 assert(!StackBase);
3362
3363 // Save the stack.
3364 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3365 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3366 }
3367
freeArgumentMemory(CodeGenFunction & CGF) const3368 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3369 if (StackBase) {
3370 // Restore the stack after the call.
3371 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3372 CGF.Builder.CreateCall(F, StackBase);
3373 }
3374 }
3375
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,AbstractCallee AC,unsigned ParmNum)3376 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3377 SourceLocation ArgLoc,
3378 AbstractCallee AC,
3379 unsigned ParmNum) {
3380 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3381 SanOpts.has(SanitizerKind::NullabilityArg)))
3382 return;
3383
3384 // The param decl may be missing in a variadic function.
3385 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3386 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3387
3388 // Prefer the nonnull attribute if it's present.
3389 const NonNullAttr *NNAttr = nullptr;
3390 if (SanOpts.has(SanitizerKind::NonnullAttribute))
3391 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3392
3393 bool CanCheckNullability = false;
3394 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3395 auto Nullability = PVD->getType()->getNullability(getContext());
3396 CanCheckNullability = Nullability &&
3397 *Nullability == NullabilityKind::NonNull &&
3398 PVD->getTypeSourceInfo();
3399 }
3400
3401 if (!NNAttr && !CanCheckNullability)
3402 return;
3403
3404 SourceLocation AttrLoc;
3405 SanitizerMask CheckKind;
3406 SanitizerHandler Handler;
3407 if (NNAttr) {
3408 AttrLoc = NNAttr->getLocation();
3409 CheckKind = SanitizerKind::NonnullAttribute;
3410 Handler = SanitizerHandler::NonnullArg;
3411 } else {
3412 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3413 CheckKind = SanitizerKind::NullabilityArg;
3414 Handler = SanitizerHandler::NullabilityArg;
3415 }
3416
3417 SanitizerScope SanScope(this);
3418 assert(RV.isScalar());
3419 llvm::Value *V = RV.getScalarVal();
3420 llvm::Value *Cond =
3421 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3422 llvm::Constant *StaticData[] = {
3423 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3424 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3425 };
3426 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3427 }
3428
EmitCallArgs(CallArgList & Args,ArrayRef<QualType> ArgTypes,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,AbstractCallee AC,unsigned ParamsToSkip,EvaluationOrder Order)3429 void CodeGenFunction::EmitCallArgs(
3430 CallArgList &Args, ArrayRef<QualType> ArgTypes,
3431 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3432 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3433 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3434
3435 // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3436 // because arguments are destroyed left to right in the callee. As a special
3437 // case, there are certain language constructs that require left-to-right
3438 // evaluation, and in those cases we consider the evaluation order requirement
3439 // to trump the "destruction order is reverse construction order" guarantee.
3440 bool LeftToRight =
3441 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3442 ? Order == EvaluationOrder::ForceLeftToRight
3443 : Order != EvaluationOrder::ForceRightToLeft;
3444
3445 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3446 RValue EmittedArg) {
3447 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3448 return;
3449 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3450 if (PS == nullptr)
3451 return;
3452
3453 const auto &Context = getContext();
3454 auto SizeTy = Context.getSizeType();
3455 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3456 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3457 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3458 EmittedArg.getScalarVal());
3459 Args.add(RValue::get(V), SizeTy);
3460 // If we're emitting args in reverse, be sure to do so with
3461 // pass_object_size, as well.
3462 if (!LeftToRight)
3463 std::swap(Args.back(), *(&Args.back() - 1));
3464 };
3465
3466 // Insert a stack save if we're going to need any inalloca args.
3467 bool HasInAllocaArgs = false;
3468 if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3469 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3470 I != E && !HasInAllocaArgs; ++I)
3471 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3472 if (HasInAllocaArgs) {
3473 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3474 Args.allocateArgumentMemory(*this);
3475 }
3476 }
3477
3478 // Evaluate each argument in the appropriate order.
3479 size_t CallArgsStart = Args.size();
3480 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3481 unsigned Idx = LeftToRight ? I : E - I - 1;
3482 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3483 unsigned InitialArgSize = Args.size();
3484 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3485 // the argument and parameter match or the objc method is parameterized.
3486 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3487 getContext().hasSameUnqualifiedType((*Arg)->getType(),
3488 ArgTypes[Idx]) ||
3489 (isa<ObjCMethodDecl>(AC.getDecl()) &&
3490 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3491 "Argument and parameter types don't match");
3492 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3493 // In particular, we depend on it being the last arg in Args, and the
3494 // objectsize bits depend on there only being one arg if !LeftToRight.
3495 assert(InitialArgSize + 1 == Args.size() &&
3496 "The code below depends on only adding one arg per EmitCallArg");
3497 (void)InitialArgSize;
3498 // Since pointer argument are never emitted as LValue, it is safe to emit
3499 // non-null argument check for r-value only.
3500 if (!Args.back().hasLValue()) {
3501 RValue RVArg = Args.back().getKnownRValue();
3502 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3503 ParamsToSkip + Idx);
3504 // @llvm.objectsize should never have side-effects and shouldn't need
3505 // destruction/cleanups, so we can safely "emit" it after its arg,
3506 // regardless of right-to-leftness
3507 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3508 }
3509 }
3510
3511 if (!LeftToRight) {
3512 // Un-reverse the arguments we just evaluated so they match up with the LLVM
3513 // IR function.
3514 std::reverse(Args.begin() + CallArgsStart, Args.end());
3515 }
3516 }
3517
3518 namespace {
3519
3520 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon8199d0d30911::DestroyUnpassedArg3521 DestroyUnpassedArg(Address Addr, QualType Ty)
3522 : Addr(Addr), Ty(Ty) {}
3523
3524 Address Addr;
3525 QualType Ty;
3526
Emit__anon8199d0d30911::DestroyUnpassedArg3527 void Emit(CodeGenFunction &CGF, Flags flags) override {
3528 QualType::DestructionKind DtorKind = Ty.isDestructedType();
3529 if (DtorKind == QualType::DK_cxx_destructor) {
3530 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3531 assert(!Dtor->isTrivial());
3532 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3533 /*Delegating=*/false, Addr);
3534 } else {
3535 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3536 }
3537 }
3538 };
3539
3540 struct DisableDebugLocationUpdates {
3541 CodeGenFunction &CGF;
3542 bool disabledDebugInfo;
DisableDebugLocationUpdates__anon8199d0d30911::DisableDebugLocationUpdates3543 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3544 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3545 CGF.disableDebugInfo();
3546 }
~DisableDebugLocationUpdates__anon8199d0d30911::DisableDebugLocationUpdates3547 ~DisableDebugLocationUpdates() {
3548 if (disabledDebugInfo)
3549 CGF.enableDebugInfo();
3550 }
3551 };
3552
3553 } // end anonymous namespace
3554
getRValue(CodeGenFunction & CGF) const3555 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3556 if (!HasLV)
3557 return RV;
3558 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3559 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3560 LV.isVolatile());
3561 IsUsed = true;
3562 return RValue::getAggregate(Copy.getAddress());
3563 }
3564
copyInto(CodeGenFunction & CGF,Address Addr) const3565 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3566 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3567 if (!HasLV && RV.isScalar())
3568 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3569 else if (!HasLV && RV.isComplex())
3570 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3571 else {
3572 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3573 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3574 // We assume that call args are never copied into subobjects.
3575 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3576 HasLV ? LV.isVolatileQualified()
3577 : RV.isVolatileQualified());
3578 }
3579 IsUsed = true;
3580 }
3581
EmitCallArg(CallArgList & args,const Expr * E,QualType type)3582 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3583 QualType type) {
3584 DisableDebugLocationUpdates Dis(*this, E);
3585 if (const ObjCIndirectCopyRestoreExpr *CRE
3586 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3587 assert(getLangOpts().ObjCAutoRefCount);
3588 return emitWritebackArg(*this, args, CRE);
3589 }
3590
3591 assert(type->isReferenceType() == E->isGLValue() &&
3592 "reference binding to unmaterialized r-value!");
3593
3594 if (E->isGLValue()) {
3595 assert(E->getObjectKind() == OK_Ordinary);
3596 return args.add(EmitReferenceBindingToExpr(E), type);
3597 }
3598
3599 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3600
3601 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3602 // However, we still have to push an EH-only cleanup in case we unwind before
3603 // we make it to the call.
3604 if (HasAggregateEvalKind &&
3605 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3606 // If we're using inalloca, use the argument memory. Otherwise, use a
3607 // temporary.
3608 AggValueSlot Slot;
3609 if (args.isUsingInAlloca())
3610 Slot = createPlaceholderSlot(*this, type);
3611 else
3612 Slot = CreateAggTemp(type, "agg.tmp");
3613
3614 bool DestroyedInCallee = true, NeedsEHCleanup = true;
3615 if (const auto *RD = type->getAsCXXRecordDecl())
3616 DestroyedInCallee = RD->hasNonTrivialDestructor();
3617 else
3618 NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3619
3620 if (DestroyedInCallee)
3621 Slot.setExternallyDestructed();
3622
3623 EmitAggExpr(E, Slot);
3624 RValue RV = Slot.asRValue();
3625 args.add(RV, type);
3626
3627 if (DestroyedInCallee && NeedsEHCleanup) {
3628 // Create a no-op GEP between the placeholder and the cleanup so we can
3629 // RAUW it successfully. It also serves as a marker of the first
3630 // instruction where the cleanup is active.
3631 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3632 type);
3633 // This unreachable is a temporary marker which will be removed later.
3634 llvm::Instruction *IsActive = Builder.CreateUnreachable();
3635 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3636 }
3637 return;
3638 }
3639
3640 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3641 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3642 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3643 assert(L.isSimple());
3644 args.addUncopiedAggregate(L, type);
3645 return;
3646 }
3647
3648 args.add(EmitAnyExprToTemp(E), type);
3649 }
3650
getVarArgType(const Expr * Arg)3651 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3652 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3653 // implicitly widens null pointer constants that are arguments to varargs
3654 // functions to pointer-sized ints.
3655 if (!getTarget().getTriple().isOSWindows())
3656 return Arg->getType();
3657
3658 if (Arg->getType()->isIntegerType() &&
3659 getContext().getTypeSize(Arg->getType()) <
3660 getContext().getTargetInfo().getPointerWidth(0) &&
3661 Arg->isNullPointerConstant(getContext(),
3662 Expr::NPC_ValueDependentIsNotNull)) {
3663 return getContext().getIntPtrType();
3664 }
3665
3666 return Arg->getType();
3667 }
3668
3669 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3670 // optimizer it can aggressively ignore unwind edges.
3671 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)3672 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3673 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3674 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3675 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3676 CGM.getNoObjCARCExceptionsMetadata());
3677 }
3678
3679 /// Emits a call to the given no-arguments nounwind runtime function.
3680 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)3681 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3682 const llvm::Twine &name) {
3683 return EmitNounwindRuntimeCall(callee, None, name);
3684 }
3685
3686 /// Emits a call to the given nounwind runtime function.
3687 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)3688 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3689 ArrayRef<llvm::Value*> args,
3690 const llvm::Twine &name) {
3691 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3692 call->setDoesNotThrow();
3693 return call;
3694 }
3695
3696 /// Emits a simple call (never an invoke) to the given no-arguments
3697 /// runtime function.
3698 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)3699 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3700 const llvm::Twine &name) {
3701 return EmitRuntimeCall(callee, None, name);
3702 }
3703
3704 // Calls which may throw must have operand bundles indicating which funclet
3705 // they are nested within.
3706 SmallVector<llvm::OperandBundleDef, 1>
getBundlesForFunclet(llvm::Value * Callee)3707 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3708 SmallVector<llvm::OperandBundleDef, 1> BundleList;
3709 // There is no need for a funclet operand bundle if we aren't inside a
3710 // funclet.
3711 if (!CurrentFuncletPad)
3712 return BundleList;
3713
3714 // Skip intrinsics which cannot throw.
3715 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3716 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3717 return BundleList;
3718
3719 BundleList.emplace_back("funclet", CurrentFuncletPad);
3720 return BundleList;
3721 }
3722
3723 /// Emits a simple call (never an invoke) to the given runtime function.
3724 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)3725 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3726 ArrayRef<llvm::Value*> args,
3727 const llvm::Twine &name) {
3728 llvm::CallInst *call =
3729 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3730 call->setCallingConv(getRuntimeCC());
3731 return call;
3732 }
3733
3734 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)3735 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3736 ArrayRef<llvm::Value*> args) {
3737 SmallVector<llvm::OperandBundleDef, 1> BundleList =
3738 getBundlesForFunclet(callee);
3739
3740 if (getInvokeDest()) {
3741 llvm::InvokeInst *invoke =
3742 Builder.CreateInvoke(callee,
3743 getUnreachableBlock(),
3744 getInvokeDest(),
3745 args,
3746 BundleList);
3747 invoke->setDoesNotReturn();
3748 invoke->setCallingConv(getRuntimeCC());
3749 } else {
3750 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3751 call->setDoesNotReturn();
3752 call->setCallingConv(getRuntimeCC());
3753 Builder.CreateUnreachable();
3754 }
3755 }
3756
3757 /// Emits a call or invoke instruction to the given nullary runtime function.
3758 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)3759 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3760 const Twine &name) {
3761 return EmitRuntimeCallOrInvoke(callee, None, name);
3762 }
3763
3764 /// Emits a call or invoke instruction to the given runtime function.
3765 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)3766 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3767 ArrayRef<llvm::Value*> args,
3768 const Twine &name) {
3769 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3770 callSite.setCallingConv(getRuntimeCC());
3771 return callSite;
3772 }
3773
3774 /// Emits a call or invoke instruction to the given function, depending
3775 /// on the current state of the EH stack.
3776 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)3777 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3778 ArrayRef<llvm::Value *> Args,
3779 const Twine &Name) {
3780 llvm::BasicBlock *InvokeDest = getInvokeDest();
3781 SmallVector<llvm::OperandBundleDef, 1> BundleList =
3782 getBundlesForFunclet(Callee);
3783
3784 llvm::Instruction *Inst;
3785 if (!InvokeDest)
3786 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3787 else {
3788 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3789 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3790 Name);
3791 EmitBlock(ContBB);
3792 }
3793
3794 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3795 // optimizer it can aggressively ignore unwind edges.
3796 if (CGM.getLangOpts().ObjCAutoRefCount)
3797 AddObjCARCExceptionMetadata(Inst);
3798
3799 return llvm::CallSite(Inst);
3800 }
3801
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)3802 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3803 llvm::Value *New) {
3804 DeferredReplacements.push_back(std::make_pair(Old, New));
3805 }
3806
EmitCall(const CGFunctionInfo & CallInfo,const CGCallee & Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,llvm::Instruction ** callOrInvoke,SourceLocation Loc)3807 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3808 const CGCallee &Callee,
3809 ReturnValueSlot ReturnValue,
3810 const CallArgList &CallArgs,
3811 llvm::Instruction **callOrInvoke,
3812 SourceLocation Loc) {
3813 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3814
3815 assert(Callee.isOrdinary() || Callee.isVirtual());
3816
3817 // Handle struct-return functions by passing a pointer to the
3818 // location that we would like to return into.
3819 QualType RetTy = CallInfo.getReturnType();
3820 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3821
3822 llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3823
3824 // 1. Set up the arguments.
3825
3826 // If we're using inalloca, insert the allocation after the stack save.
3827 // FIXME: Do this earlier rather than hacking it in here!
3828 Address ArgMemory = Address::invalid();
3829 const llvm::StructLayout *ArgMemoryLayout = nullptr;
3830 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3831 const llvm::DataLayout &DL = CGM.getDataLayout();
3832 ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3833 llvm::Instruction *IP = CallArgs.getStackBase();
3834 llvm::AllocaInst *AI;
3835 if (IP) {
3836 IP = IP->getNextNode();
3837 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3838 "argmem", IP);
3839 } else {
3840 AI = CreateTempAlloca(ArgStruct, "argmem");
3841 }
3842 auto Align = CallInfo.getArgStructAlignment();
3843 AI->setAlignment(Align.getQuantity());
3844 AI->setUsedWithInAlloca(true);
3845 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3846 ArgMemory = Address(AI, Align);
3847 }
3848
3849 // Helper function to drill into the inalloca allocation.
3850 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3851 auto FieldOffset =
3852 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3853 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3854 };
3855
3856 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3857 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3858
3859 // If the call returns a temporary with struct return, create a temporary
3860 // alloca to hold the result, unless one is given to us.
3861 Address SRetPtr = Address::invalid();
3862 Address SRetAlloca = Address::invalid();
3863 llvm::Value *UnusedReturnSizePtr = nullptr;
3864 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3865 if (!ReturnValue.isNull()) {
3866 SRetPtr = ReturnValue.getValue();
3867 } else {
3868 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3869 if (HaveInsertPoint() && ReturnValue.isUnused()) {
3870 uint64_t size =
3871 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3872 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3873 }
3874 }
3875 if (IRFunctionArgs.hasSRetArg()) {
3876 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3877 } else if (RetAI.isInAlloca()) {
3878 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3879 Builder.CreateStore(SRetPtr.getPointer(), Addr);
3880 }
3881 }
3882
3883 Address swiftErrorTemp = Address::invalid();
3884 Address swiftErrorArg = Address::invalid();
3885
3886 // Translate all of the arguments as necessary to match the IR lowering.
3887 assert(CallInfo.arg_size() == CallArgs.size() &&
3888 "Mismatch between function signature & arguments.");
3889 unsigned ArgNo = 0;
3890 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3891 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3892 I != E; ++I, ++info_it, ++ArgNo) {
3893 const ABIArgInfo &ArgInfo = info_it->info;
3894
3895 // Insert a padding argument to ensure proper alignment.
3896 if (IRFunctionArgs.hasPaddingArg(ArgNo))
3897 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3898 llvm::UndefValue::get(ArgInfo.getPaddingType());
3899
3900 unsigned FirstIRArg, NumIRArgs;
3901 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3902
3903 switch (ArgInfo.getKind()) {
3904 case ABIArgInfo::InAlloca: {
3905 assert(NumIRArgs == 0);
3906 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3907 if (I->isAggregate()) {
3908 // Replace the placeholder with the appropriate argument slot GEP.
3909 Address Addr = I->hasLValue()
3910 ? I->getKnownLValue().getAddress()
3911 : I->getKnownRValue().getAggregateAddress();
3912 llvm::Instruction *Placeholder =
3913 cast<llvm::Instruction>(Addr.getPointer());
3914 CGBuilderTy::InsertPoint IP = Builder.saveIP();
3915 Builder.SetInsertPoint(Placeholder);
3916 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3917 Builder.restoreIP(IP);
3918 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3919 } else {
3920 // Store the RValue into the argument struct.
3921 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3922 unsigned AS = Addr.getType()->getPointerAddressSpace();
3923 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3924 // There are some cases where a trivial bitcast is not avoidable. The
3925 // definition of a type later in a translation unit may change it's type
3926 // from {}* to (%struct.foo*)*.
3927 if (Addr.getType() != MemType)
3928 Addr = Builder.CreateBitCast(Addr, MemType);
3929 I->copyInto(*this, Addr);
3930 }
3931 break;
3932 }
3933
3934 case ABIArgInfo::Indirect: {
3935 assert(NumIRArgs == 1);
3936 if (!I->isAggregate()) {
3937 // Make a temporary alloca to pass the argument.
3938 Address Addr = CreateMemTempWithoutCast(
3939 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3940 IRCallArgs[FirstIRArg] = Addr.getPointer();
3941
3942 I->copyInto(*this, Addr);
3943 } else {
3944 // We want to avoid creating an unnecessary temporary+copy here;
3945 // however, we need one in three cases:
3946 // 1. If the argument is not byval, and we are required to copy the
3947 // source. (This case doesn't occur on any common architecture.)
3948 // 2. If the argument is byval, RV is not sufficiently aligned, and
3949 // we cannot force it to be sufficiently aligned.
3950 // 3. If the argument is byval, but RV is not located in default
3951 // or alloca address space.
3952 Address Addr = I->hasLValue()
3953 ? I->getKnownLValue().getAddress()
3954 : I->getKnownRValue().getAggregateAddress();
3955 llvm::Value *V = Addr.getPointer();
3956 CharUnits Align = ArgInfo.getIndirectAlign();
3957 const llvm::DataLayout *TD = &CGM.getDataLayout();
3958
3959 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3960 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3961 TD->getAllocaAddrSpace()) &&
3962 "indirect argument must be in alloca address space");
3963
3964 bool NeedCopy = false;
3965
3966 if (Addr.getAlignment() < Align &&
3967 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3968 Align.getQuantity()) {
3969 NeedCopy = true;
3970 } else if (I->hasLValue()) {
3971 auto LV = I->getKnownLValue();
3972 auto AS = LV.getAddressSpace();
3973
3974 if ((!ArgInfo.getIndirectByVal() &&
3975 (LV.getAlignment() >=
3976 getContext().getTypeAlignInChars(I->Ty)))) {
3977 NeedCopy = true;
3978 }
3979 if (!getLangOpts().OpenCL) {
3980 if ((ArgInfo.getIndirectByVal() &&
3981 (AS != LangAS::Default &&
3982 AS != CGM.getASTAllocaAddressSpace()))) {
3983 NeedCopy = true;
3984 }
3985 }
3986 // For OpenCL even if RV is located in default or alloca address space
3987 // we don't want to perform address space cast for it.
3988 else if ((ArgInfo.getIndirectByVal() &&
3989 Addr.getType()->getAddressSpace() != IRFuncTy->
3990 getParamType(FirstIRArg)->getPointerAddressSpace())) {
3991 NeedCopy = true;
3992 }
3993 }
3994
3995 if (NeedCopy) {
3996 // Create an aligned temporary, and copy to it.
3997 Address AI = CreateMemTempWithoutCast(
3998 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3999 IRCallArgs[FirstIRArg] = AI.getPointer();
4000 I->copyInto(*this, AI);
4001 } else {
4002 // Skip the extra memcpy call.
4003 auto *T = V->getType()->getPointerElementType()->getPointerTo(
4004 CGM.getDataLayout().getAllocaAddrSpace());
4005 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4006 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4007 true);
4008 }
4009 }
4010 break;
4011 }
4012
4013 case ABIArgInfo::Ignore:
4014 assert(NumIRArgs == 0);
4015 break;
4016
4017 case ABIArgInfo::Extend:
4018 case ABIArgInfo::Direct: {
4019 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4020 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4021 ArgInfo.getDirectOffset() == 0) {
4022 assert(NumIRArgs == 1);
4023 llvm::Value *V;
4024 if (!I->isAggregate())
4025 V = I->getKnownRValue().getScalarVal();
4026 else
4027 V = Builder.CreateLoad(
4028 I->hasLValue() ? I->getKnownLValue().getAddress()
4029 : I->getKnownRValue().getAggregateAddress());
4030
4031 // Implement swifterror by copying into a new swifterror argument.
4032 // We'll write back in the normal path out of the call.
4033 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4034 == ParameterABI::SwiftErrorResult) {
4035 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4036
4037 QualType pointeeTy = I->Ty->getPointeeType();
4038 swiftErrorArg =
4039 Address(V, getContext().getTypeAlignInChars(pointeeTy));
4040
4041 swiftErrorTemp =
4042 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4043 V = swiftErrorTemp.getPointer();
4044 cast<llvm::AllocaInst>(V)->setSwiftError(true);
4045
4046 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4047 Builder.CreateStore(errorValue, swiftErrorTemp);
4048 }
4049
4050 // We might have to widen integers, but we should never truncate.
4051 if (ArgInfo.getCoerceToType() != V->getType() &&
4052 V->getType()->isIntegerTy())
4053 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4054
4055 // If the argument doesn't match, perform a bitcast to coerce it. This
4056 // can happen due to trivial type mismatches.
4057 if (FirstIRArg < IRFuncTy->getNumParams() &&
4058 V->getType() != IRFuncTy->getParamType(FirstIRArg))
4059 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4060
4061 IRCallArgs[FirstIRArg] = V;
4062 break;
4063 }
4064
4065 // FIXME: Avoid the conversion through memory if possible.
4066 Address Src = Address::invalid();
4067 if (!I->isAggregate()) {
4068 Src = CreateMemTemp(I->Ty, "coerce");
4069 I->copyInto(*this, Src);
4070 } else {
4071 Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4072 : I->getKnownRValue().getAggregateAddress();
4073 }
4074
4075 // If the value is offset in memory, apply the offset now.
4076 Src = emitAddressAtOffset(*this, Src, ArgInfo);
4077
4078 // Fast-isel and the optimizer generally like scalar values better than
4079 // FCAs, so we flatten them if this is safe to do for this argument.
4080 llvm::StructType *STy =
4081 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4082 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4083 llvm::Type *SrcTy = Src.getType()->getElementType();
4084 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4085 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4086
4087 // If the source type is smaller than the destination type of the
4088 // coerce-to logic, copy the source value into a temp alloca the size
4089 // of the destination type to allow loading all of it. The bits past
4090 // the source value are left undef.
4091 if (SrcSize < DstSize) {
4092 Address TempAlloca
4093 = CreateTempAlloca(STy, Src.getAlignment(),
4094 Src.getName() + ".coerce");
4095 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4096 Src = TempAlloca;
4097 } else {
4098 Src = Builder.CreateBitCast(Src,
4099 STy->getPointerTo(Src.getAddressSpace()));
4100 }
4101
4102 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4103 assert(NumIRArgs == STy->getNumElements());
4104 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4105 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4106 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4107 llvm::Value *LI = Builder.CreateLoad(EltPtr);
4108 IRCallArgs[FirstIRArg + i] = LI;
4109 }
4110 } else {
4111 // In the simple case, just pass the coerced loaded value.
4112 assert(NumIRArgs == 1);
4113 IRCallArgs[FirstIRArg] =
4114 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4115 }
4116
4117 break;
4118 }
4119
4120 case ABIArgInfo::CoerceAndExpand: {
4121 auto coercionType = ArgInfo.getCoerceAndExpandType();
4122 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4123
4124 llvm::Value *tempSize = nullptr;
4125 Address addr = Address::invalid();
4126 Address AllocaAddr = Address::invalid();
4127 if (I->isAggregate()) {
4128 addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4129 : I->getKnownRValue().getAggregateAddress();
4130
4131 } else {
4132 RValue RV = I->getKnownRValue();
4133 assert(RV.isScalar()); // complex should always just be direct
4134
4135 llvm::Type *scalarType = RV.getScalarVal()->getType();
4136 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4137 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4138
4139 // Materialize to a temporary.
4140 addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4141 CharUnits::fromQuantity(std::max(
4142 layout->getAlignment(), scalarAlign)),
4143 "tmp",
4144 /*ArraySize=*/nullptr, &AllocaAddr);
4145 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4146
4147 Builder.CreateStore(RV.getScalarVal(), addr);
4148 }
4149
4150 addr = Builder.CreateElementBitCast(addr, coercionType);
4151
4152 unsigned IRArgPos = FirstIRArg;
4153 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4154 llvm::Type *eltType = coercionType->getElementType(i);
4155 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4156 Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4157 llvm::Value *elt = Builder.CreateLoad(eltAddr);
4158 IRCallArgs[IRArgPos++] = elt;
4159 }
4160 assert(IRArgPos == FirstIRArg + NumIRArgs);
4161
4162 if (tempSize) {
4163 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4164 }
4165
4166 break;
4167 }
4168
4169 case ABIArgInfo::Expand:
4170 unsigned IRArgPos = FirstIRArg;
4171 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4172 assert(IRArgPos == FirstIRArg + NumIRArgs);
4173 break;
4174 }
4175 }
4176
4177 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4178 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4179
4180 // If we're using inalloca, set up that argument.
4181 if (ArgMemory.isValid()) {
4182 llvm::Value *Arg = ArgMemory.getPointer();
4183 if (CallInfo.isVariadic()) {
4184 // When passing non-POD arguments by value to variadic functions, we will
4185 // end up with a variadic prototype and an inalloca call site. In such
4186 // cases, we can't do any parameter mismatch checks. Give up and bitcast
4187 // the callee.
4188 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4189 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4190 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4191 } else {
4192 llvm::Type *LastParamTy =
4193 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4194 if (Arg->getType() != LastParamTy) {
4195 #ifndef NDEBUG
4196 // Assert that these structs have equivalent element types.
4197 llvm::StructType *FullTy = CallInfo.getArgStruct();
4198 llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4199 cast<llvm::PointerType>(LastParamTy)->getElementType());
4200 assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4201 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4202 DE = DeclaredTy->element_end(),
4203 FI = FullTy->element_begin();
4204 DI != DE; ++DI, ++FI)
4205 assert(*DI == *FI);
4206 #endif
4207 Arg = Builder.CreateBitCast(Arg, LastParamTy);
4208 }
4209 }
4210 assert(IRFunctionArgs.hasInallocaArg());
4211 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4212 }
4213
4214 // 2. Prepare the function pointer.
4215
4216 // If the callee is a bitcast of a non-variadic function to have a
4217 // variadic function pointer type, check to see if we can remove the
4218 // bitcast. This comes up with unprototyped functions.
4219 //
4220 // This makes the IR nicer, but more importantly it ensures that we
4221 // can inline the function at -O0 if it is marked always_inline.
4222 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4223 llvm::FunctionType *CalleeFT =
4224 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4225 if (!CalleeFT->isVarArg())
4226 return Ptr;
4227
4228 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4229 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4230 return Ptr;
4231
4232 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4233 if (!OrigFn)
4234 return Ptr;
4235
4236 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4237
4238 // If the original type is variadic, or if any of the component types
4239 // disagree, we cannot remove the cast.
4240 if (OrigFT->isVarArg() ||
4241 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4242 OrigFT->getReturnType() != CalleeFT->getReturnType())
4243 return Ptr;
4244
4245 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4246 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4247 return Ptr;
4248
4249 return OrigFn;
4250 };
4251 CalleePtr = simplifyVariadicCallee(CalleePtr);
4252
4253 // 3. Perform the actual call.
4254
4255 // Deactivate any cleanups that we're supposed to do immediately before
4256 // the call.
4257 if (!CallArgs.getCleanupsToDeactivate().empty())
4258 deactivateArgCleanupsBeforeCall(*this, CallArgs);
4259
4260 // Assert that the arguments we computed match up. The IR verifier
4261 // will catch this, but this is a common enough source of problems
4262 // during IRGen changes that it's way better for debugging to catch
4263 // it ourselves here.
4264 #ifndef NDEBUG
4265 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4266 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4267 // Inalloca argument can have different type.
4268 if (IRFunctionArgs.hasInallocaArg() &&
4269 i == IRFunctionArgs.getInallocaArgNo())
4270 continue;
4271 if (i < IRFuncTy->getNumParams())
4272 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4273 }
4274 #endif
4275
4276 // Update the largest vector width if any arguments have vector types.
4277 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4278 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4279 LargestVectorWidth = std::max(LargestVectorWidth,
4280 VT->getPrimitiveSizeInBits());
4281 }
4282
4283 // Compute the calling convention and attributes.
4284 unsigned CallingConv;
4285 llvm::AttributeList Attrs;
4286 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4287 Callee.getAbstractInfo(), Attrs, CallingConv,
4288 /*AttrOnCallSite=*/true);
4289
4290 // Apply some call-site-specific attributes.
4291 // TODO: work this into building the attribute set.
4292
4293 // Apply always_inline to all calls within flatten functions.
4294 // FIXME: should this really take priority over __try, below?
4295 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4296 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4297 Callee.getAbstractInfo()
4298 .getCalleeDecl()
4299 .getDecl()
4300 ->hasAttr<NoInlineAttr>())) {
4301 Attrs =
4302 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4303 llvm::Attribute::AlwaysInline);
4304 }
4305
4306 // Disable inlining inside SEH __try blocks.
4307 if (isSEHTryScope()) {
4308 Attrs =
4309 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4310 llvm::Attribute::NoInline);
4311 }
4312
4313 // Decide whether to use a call or an invoke.
4314 bool CannotThrow;
4315 if (currentFunctionUsesSEHTry()) {
4316 // SEH cares about asynchronous exceptions, so everything can "throw."
4317 CannotThrow = false;
4318 } else if (isCleanupPadScope() &&
4319 EHPersonality::get(*this).isMSVCXXPersonality()) {
4320 // The MSVC++ personality will implicitly terminate the program if an
4321 // exception is thrown during a cleanup outside of a try/catch.
4322 // We don't need to model anything in IR to get this behavior.
4323 CannotThrow = true;
4324 } else {
4325 // Otherwise, nounwind call sites will never throw.
4326 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4327 llvm::Attribute::NoUnwind);
4328 }
4329
4330 // If we made a temporary, be sure to clean up after ourselves. Note that we
4331 // can't depend on being inside of an ExprWithCleanups, so we need to manually
4332 // pop this cleanup later on. Being eager about this is OK, since this
4333 // temporary is 'invisible' outside of the callee.
4334 if (UnusedReturnSizePtr)
4335 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4336 UnusedReturnSizePtr);
4337
4338 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4339
4340 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4341 getBundlesForFunclet(CalleePtr);
4342
4343 // Emit the actual call/invoke instruction.
4344 llvm::CallSite CS;
4345 if (!InvokeDest) {
4346 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4347 } else {
4348 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4349 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4350 BundleList);
4351 EmitBlock(Cont);
4352 }
4353 llvm::Instruction *CI = CS.getInstruction();
4354 if (callOrInvoke)
4355 *callOrInvoke = CI;
4356
4357 // Apply the attributes and calling convention.
4358 CS.setAttributes(Attrs);
4359 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4360
4361 // Apply various metadata.
4362
4363 if (!CI->getType()->isVoidTy())
4364 CI->setName("call");
4365
4366 // Update largest vector width from the return type.
4367 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4368 LargestVectorWidth = std::max(LargestVectorWidth,
4369 VT->getPrimitiveSizeInBits());
4370
4371 // Insert instrumentation or attach profile metadata at indirect call sites.
4372 // For more details, see the comment before the definition of
4373 // IPVK_IndirectCallTarget in InstrProfData.inc.
4374 if (!CS.getCalledFunction())
4375 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4376 CI, CalleePtr);
4377
4378 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4379 // optimizer it can aggressively ignore unwind edges.
4380 if (CGM.getLangOpts().ObjCAutoRefCount)
4381 AddObjCARCExceptionMetadata(CI);
4382
4383 // Suppress tail calls if requested.
4384 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4385 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4386 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4387 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4388 }
4389
4390 // 4. Finish the call.
4391
4392 // If the call doesn't return, finish the basic block and clear the
4393 // insertion point; this allows the rest of IRGen to discard
4394 // unreachable code.
4395 if (CS.doesNotReturn()) {
4396 if (UnusedReturnSizePtr)
4397 PopCleanupBlock();
4398
4399 // Strip away the noreturn attribute to better diagnose unreachable UB.
4400 if (SanOpts.has(SanitizerKind::Unreachable)) {
4401 if (auto *F = CS.getCalledFunction())
4402 F->removeFnAttr(llvm::Attribute::NoReturn);
4403 CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4404 llvm::Attribute::NoReturn);
4405 }
4406
4407 EmitUnreachable(Loc);
4408 Builder.ClearInsertionPoint();
4409
4410 // FIXME: For now, emit a dummy basic block because expr emitters in
4411 // generally are not ready to handle emitting expressions at unreachable
4412 // points.
4413 EnsureInsertPoint();
4414
4415 // Return a reasonable RValue.
4416 return GetUndefRValue(RetTy);
4417 }
4418
4419 // Perform the swifterror writeback.
4420 if (swiftErrorTemp.isValid()) {
4421 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4422 Builder.CreateStore(errorResult, swiftErrorArg);
4423 }
4424
4425 // Emit any call-associated writebacks immediately. Arguably this
4426 // should happen after any return-value munging.
4427 if (CallArgs.hasWritebacks())
4428 emitWritebacks(*this, CallArgs);
4429
4430 // The stack cleanup for inalloca arguments has to run out of the normal
4431 // lexical order, so deactivate it and run it manually here.
4432 CallArgs.freeArgumentMemory(*this);
4433
4434 // Extract the return value.
4435 RValue Ret = [&] {
4436 switch (RetAI.getKind()) {
4437 case ABIArgInfo::CoerceAndExpand: {
4438 auto coercionType = RetAI.getCoerceAndExpandType();
4439 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4440
4441 Address addr = SRetPtr;
4442 addr = Builder.CreateElementBitCast(addr, coercionType);
4443
4444 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4445 bool requiresExtract = isa<llvm::StructType>(CI->getType());
4446
4447 unsigned unpaddedIndex = 0;
4448 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4449 llvm::Type *eltType = coercionType->getElementType(i);
4450 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4451 Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4452 llvm::Value *elt = CI;
4453 if (requiresExtract)
4454 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4455 else
4456 assert(unpaddedIndex == 0);
4457 Builder.CreateStore(elt, eltAddr);
4458 }
4459 // FALLTHROUGH
4460 LLVM_FALLTHROUGH;
4461 }
4462
4463 case ABIArgInfo::InAlloca:
4464 case ABIArgInfo::Indirect: {
4465 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4466 if (UnusedReturnSizePtr)
4467 PopCleanupBlock();
4468 return ret;
4469 }
4470
4471 case ABIArgInfo::Ignore:
4472 // If we are ignoring an argument that had a result, make sure to
4473 // construct the appropriate return value for our caller.
4474 return GetUndefRValue(RetTy);
4475
4476 case ABIArgInfo::Extend:
4477 case ABIArgInfo::Direct: {
4478 llvm::Type *RetIRTy = ConvertType(RetTy);
4479 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4480 switch (getEvaluationKind(RetTy)) {
4481 case TEK_Complex: {
4482 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4483 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4484 return RValue::getComplex(std::make_pair(Real, Imag));
4485 }
4486 case TEK_Aggregate: {
4487 Address DestPtr = ReturnValue.getValue();
4488 bool DestIsVolatile = ReturnValue.isVolatile();
4489
4490 if (!DestPtr.isValid()) {
4491 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4492 DestIsVolatile = false;
4493 }
4494 BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4495 return RValue::getAggregate(DestPtr);
4496 }
4497 case TEK_Scalar: {
4498 // If the argument doesn't match, perform a bitcast to coerce it. This
4499 // can happen due to trivial type mismatches.
4500 llvm::Value *V = CI;
4501 if (V->getType() != RetIRTy)
4502 V = Builder.CreateBitCast(V, RetIRTy);
4503 return RValue::get(V);
4504 }
4505 }
4506 llvm_unreachable("bad evaluation kind");
4507 }
4508
4509 Address DestPtr = ReturnValue.getValue();
4510 bool DestIsVolatile = ReturnValue.isVolatile();
4511
4512 if (!DestPtr.isValid()) {
4513 DestPtr = CreateMemTemp(RetTy, "coerce");
4514 DestIsVolatile = false;
4515 }
4516
4517 // If the value is offset in memory, apply the offset now.
4518 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4519 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4520
4521 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4522 }
4523
4524 case ABIArgInfo::Expand:
4525 llvm_unreachable("Invalid ABI kind for return argument");
4526 }
4527
4528 llvm_unreachable("Unhandled ABIArgInfo::Kind");
4529 } ();
4530
4531 // Emit the assume_aligned check on the return value.
4532 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4533 if (Ret.isScalar() && TargetDecl) {
4534 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4535 llvm::Value *OffsetValue = nullptr;
4536 if (const auto *Offset = AA->getOffset())
4537 OffsetValue = EmitScalarExpr(Offset);
4538
4539 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4540 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4541 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4542 AlignmentCI->getZExtValue(), OffsetValue);
4543 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4544 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4545 .getRValue(*this)
4546 .getScalarVal();
4547 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4548 AlignmentVal);
4549 }
4550 }
4551
4552 return Ret;
4553 }
4554
prepareConcreteCallee(CodeGenFunction & CGF) const4555 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4556 if (isVirtual()) {
4557 const CallExpr *CE = getVirtualCallExpr();
4558 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4559 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4560 CE ? CE->getBeginLoc() : SourceLocation());
4561 }
4562
4563 return *this;
4564 }
4565
4566 /* VarArg handling */
4567
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)4568 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4569 VAListAddr = VE->isMicrosoftABI()
4570 ? EmitMSVAListRef(VE->getSubExpr())
4571 : EmitVAListRef(VE->getSubExpr());
4572 QualType Ty = VE->getType();
4573 if (VE->isMicrosoftABI())
4574 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4575 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4576 }
4577