1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterBankInfo.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/ARMTargetParser.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/TargetParser.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Transforms/CFGuard.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include <cassert>
55 #include <memory>
56 #include <string>
57
58 using namespace llvm;
59
60 static cl::opt<bool>
61 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
62 cl::desc("Inhibit optimization of S->D register accesses on A15"),
63 cl::init(false));
64
65 static cl::opt<bool>
66 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
67 cl::desc("Run SimplifyCFG after expanding atomic operations"
68 " to make use of cmpxchg flow-based information"),
69 cl::init(true));
70
71 static cl::opt<bool>
72 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
73 cl::desc("Enable ARM load/store optimization pass"),
74 cl::init(true));
75
76 // FIXME: Unify control over GlobalMerge.
77 static cl::opt<cl::boolOrDefault>
78 EnableGlobalMerge("arm-global-merge", cl::Hidden,
79 cl::desc("Enable the global merge pass"));
80
81 namespace llvm {
82 void initializeARMExecutionDomainFixPass(PassRegistry&);
83 }
84
LLVMInitializeARMTarget()85 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
86 // Register the target.
87 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
88 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
89 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
90 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
91
92 PassRegistry &Registry = *PassRegistry::getPassRegistry();
93 initializeGlobalISel(Registry);
94 initializeARMLoadStoreOptPass(Registry);
95 initializeARMPreAllocLoadStoreOptPass(Registry);
96 initializeARMParallelDSPPass(Registry);
97 initializeARMBranchTargetsPass(Registry);
98 initializeARMConstantIslandsPass(Registry);
99 initializeARMExecutionDomainFixPass(Registry);
100 initializeARMExpandPseudoPass(Registry);
101 initializeThumb2SizeReducePass(Registry);
102 initializeMVEVPTBlockPass(Registry);
103 initializeMVETPAndVPTOptimisationsPass(Registry);
104 initializeMVETailPredicationPass(Registry);
105 initializeARMLowOverheadLoopsPass(Registry);
106 initializeARMBlockPlacementPass(Registry);
107 initializeMVEGatherScatterLoweringPass(Registry);
108 initializeARMSLSHardeningPass(Registry);
109 initializeMVELaneInterleavingPass(Registry);
110 initializeARMFixCortexA57AES1742098Pass(Registry);
111 }
112
createTLOF(const Triple & TT)113 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
114 if (TT.isOSBinFormatMachO())
115 return std::make_unique<TargetLoweringObjectFileMachO>();
116 if (TT.isOSWindows())
117 return std::make_unique<TargetLoweringObjectFileCOFF>();
118 return std::make_unique<ARMElfTargetObjectFile>();
119 }
120
121 static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple & TT,StringRef CPU,const TargetOptions & Options)122 computeTargetABI(const Triple &TT, StringRef CPU,
123 const TargetOptions &Options) {
124 StringRef ABIName = Options.MCOptions.getABIName();
125
126 if (ABIName.empty())
127 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
128
129 if (ABIName == "aapcs16")
130 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
131 else if (ABIName.startswith("aapcs"))
132 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
133 else if (ABIName.startswith("apcs"))
134 return ARMBaseTargetMachine::ARM_ABI_APCS;
135
136 llvm_unreachable("Unhandled/unknown ABI Name!");
137 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
138 }
139
computeDataLayout(const Triple & TT,StringRef CPU,const TargetOptions & Options,bool isLittle)140 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
141 const TargetOptions &Options,
142 bool isLittle) {
143 auto ABI = computeTargetABI(TT, CPU, Options);
144 std::string Ret;
145
146 if (isLittle)
147 // Little endian.
148 Ret += "e";
149 else
150 // Big endian.
151 Ret += "E";
152
153 Ret += DataLayout::getManglingComponent(TT);
154
155 // Pointers are 32 bits and aligned to 32 bits.
156 Ret += "-p:32:32";
157
158 // Function pointers are aligned to 8 bits (because the LSB stores the
159 // ARM/Thumb state).
160 Ret += "-Fi8";
161
162 // ABIs other than APCS have 64 bit integers with natural alignment.
163 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
164 Ret += "-i64:64";
165
166 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
167 // bits, others to 64 bits. We always try to align to 64 bits.
168 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
169 Ret += "-f64:32:64";
170
171 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
172 // to 64. We always ty to give them natural alignment.
173 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
174 Ret += "-v64:32:64-v128:32:128";
175 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
176 Ret += "-v128:64:128";
177
178 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
179 // particular hardware support on 32-bit ARM).
180 Ret += "-a:0:32";
181
182 // Integer registers are 32 bits.
183 Ret += "-n32";
184
185 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
186 // aligned everywhere else.
187 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
188 Ret += "-S128";
189 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
190 Ret += "-S64";
191 else
192 Ret += "-S32";
193
194 return Ret;
195 }
196
getEffectiveRelocModel(const Triple & TT,Optional<Reloc::Model> RM)197 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
198 Optional<Reloc::Model> RM) {
199 if (!RM)
200 // Default relocation model on Darwin is PIC.
201 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
202
203 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
204 assert(TT.isOSBinFormatELF() &&
205 "ROPI/RWPI currently only supported for ELF");
206
207 // DynamicNoPIC is only used on darwin.
208 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
209 return Reloc::Static;
210
211 return *RM;
212 }
213
214 /// Create an ARM architecture model.
215 ///
ARMBaseTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool isLittle)216 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
217 StringRef CPU, StringRef FS,
218 const TargetOptions &Options,
219 Optional<Reloc::Model> RM,
220 Optional<CodeModel::Model> CM,
221 CodeGenOpt::Level OL, bool isLittle)
222 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
223 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
224 getEffectiveCodeModel(CM, CodeModel::Small), OL),
225 TargetABI(computeTargetABI(TT, CPU, Options)),
226 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
227
228 // Default to triple-appropriate float ABI
229 if (Options.FloatABIType == FloatABI::Default) {
230 if (isTargetHardFloat())
231 this->Options.FloatABIType = FloatABI::Hard;
232 else
233 this->Options.FloatABIType = FloatABI::Soft;
234 }
235
236 // Default to triple-appropriate EABI
237 if (Options.EABIVersion == EABI::Default ||
238 Options.EABIVersion == EABI::Unknown) {
239 // musl is compatible with glibc with regard to EABI version
240 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
241 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
242 TargetTriple.getEnvironment() == Triple::MuslEABI ||
243 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
244 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
245 this->Options.EABIVersion = EABI::GNU;
246 else
247 this->Options.EABIVersion = EABI::EABI5;
248 }
249
250 if (TT.isOSBinFormatMachO()) {
251 this->Options.TrapUnreachable = true;
252 this->Options.NoTrapAfterNoreturn = true;
253 }
254
255 // ARM supports the debug entry values.
256 setSupportsDebugEntryValues(true);
257
258 initAsmInfo();
259
260 // ARM supports the MachineOutliner.
261 setMachineOutliner(true);
262 setSupportsDefaultOutlining(true);
263 }
264
265 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
266
267 const ARMSubtarget *
getSubtargetImpl(const Function & F) const268 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
269 Attribute CPUAttr = F.getFnAttribute("target-cpu");
270 Attribute FSAttr = F.getFnAttribute("target-features");
271
272 std::string CPU =
273 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
274 std::string FS =
275 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
276
277 // FIXME: This is related to the code below to reset the target options,
278 // we need to know whether or not the soft float flag is set on the
279 // function before we can generate a subtarget. We also need to use
280 // it as a key for the subtarget since that can be the only difference
281 // between two functions.
282 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
283 // If the soft float attribute is set on the function turn on the soft float
284 // subtarget feature.
285 if (SoftFloat)
286 FS += FS.empty() ? "+soft-float" : ",+soft-float";
287
288 // Use the optminsize to identify the subtarget, but don't use it in the
289 // feature string.
290 std::string Key = CPU + FS;
291 if (F.hasMinSize())
292 Key += "+minsize";
293
294 auto &I = SubtargetMap[Key];
295 if (!I) {
296 // This needs to be done before we create a new subtarget since any
297 // creation will depend on the TM and the code generation flags on the
298 // function that reside in TargetOptions.
299 resetTargetOptions(F);
300 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
301 F.hasMinSize());
302
303 if (!I->isThumb() && !I->hasARMOps())
304 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
305 "instructions, but the target does not support ARM mode execution.");
306 }
307
308 return I.get();
309 }
310
311 TargetTransformInfo
getTargetTransformInfo(const Function & F) const312 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const {
313 return TargetTransformInfo(ARMTTIImpl(this, F));
314 }
315
ARMLETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)316 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
317 StringRef CPU, StringRef FS,
318 const TargetOptions &Options,
319 Optional<Reloc::Model> RM,
320 Optional<CodeModel::Model> CM,
321 CodeGenOpt::Level OL, bool JIT)
322 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
323
ARMBETargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)324 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
325 StringRef CPU, StringRef FS,
326 const TargetOptions &Options,
327 Optional<Reloc::Model> RM,
328 Optional<CodeModel::Model> CM,
329 CodeGenOpt::Level OL, bool JIT)
330 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
331
332 namespace {
333
334 /// ARM Code Generator Pass Configuration Options.
335 class ARMPassConfig : public TargetPassConfig {
336 public:
ARMPassConfig(ARMBaseTargetMachine & TM,PassManagerBase & PM)337 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
338 : TargetPassConfig(TM, PM) {}
339
getARMTargetMachine() const340 ARMBaseTargetMachine &getARMTargetMachine() const {
341 return getTM<ARMBaseTargetMachine>();
342 }
343
344 ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const345 createMachineScheduler(MachineSchedContext *C) const override {
346 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
347 // add DAG Mutations here.
348 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
349 if (ST.hasFusion())
350 DAG->addMutation(createARMMacroFusionDAGMutation());
351 return DAG;
352 }
353
354 ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const355 createPostMachineScheduler(MachineSchedContext *C) const override {
356 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
357 // add DAG Mutations here.
358 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
359 if (ST.hasFusion())
360 DAG->addMutation(createARMMacroFusionDAGMutation());
361 return DAG;
362 }
363
364 void addIRPasses() override;
365 void addCodeGenPrepare() override;
366 bool addPreISel() override;
367 bool addInstSelector() override;
368 bool addIRTranslator() override;
369 bool addLegalizeMachineIR() override;
370 bool addRegBankSelect() override;
371 bool addGlobalInstructionSelect() override;
372 void addPreRegAlloc() override;
373 void addPreSched2() override;
374 void addPreEmitPass() override;
375 void addPreEmitPass2() override;
376
377 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
378 };
379
380 class ARMExecutionDomainFix : public ExecutionDomainFix {
381 public:
382 static char ID;
ARMExecutionDomainFix()383 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
getPassName() const384 StringRef getPassName() const override {
385 return "ARM Execution Domain Fix";
386 }
387 };
388 char ARMExecutionDomainFix::ID;
389
390 } // end anonymous namespace
391
392 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
393 "ARM Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)394 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
395 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
396 "ARM Execution Domain Fix", false, false)
397
398 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
399 return new ARMPassConfig(*this, PM);
400 }
401
getCSEConfig() const402 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
403 return getStandardCSEConfigForOpt(TM->getOptLevel());
404 }
405
addIRPasses()406 void ARMPassConfig::addIRPasses() {
407 if (TM->Options.ThreadModel == ThreadModel::Single)
408 addPass(createLowerAtomicPass());
409 else
410 addPass(createAtomicExpandPass());
411
412 // Cmpxchg instructions are often used with a subsequent comparison to
413 // determine whether it succeeded. We can exploit existing control-flow in
414 // ldrex/strex loops to simplify this, but it needs tidying up.
415 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
416 addPass(createCFGSimplificationPass(
417 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
418 [this](const Function &F) {
419 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
420 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
421 }));
422
423 addPass(createMVEGatherScatterLoweringPass());
424 addPass(createMVELaneInterleavingPass());
425
426 TargetPassConfig::addIRPasses();
427
428 // Run the parallel DSP pass.
429 if (getOptLevel() == CodeGenOpt::Aggressive)
430 addPass(createARMParallelDSPPass());
431
432 // Match interleaved memory accesses to ldN/stN intrinsics.
433 if (TM->getOptLevel() != CodeGenOpt::None)
434 addPass(createInterleavedAccessPass());
435
436 // Add Control Flow Guard checks.
437 if (TM->getTargetTriple().isOSWindows())
438 addPass(createCFGuardCheckPass());
439
440 if (TM->Options.JMCInstrument)
441 addPass(createJMCInstrumenterPass());
442 }
443
addCodeGenPrepare()444 void ARMPassConfig::addCodeGenPrepare() {
445 if (getOptLevel() != CodeGenOpt::None)
446 addPass(createTypePromotionPass());
447 TargetPassConfig::addCodeGenPrepare();
448 }
449
addPreISel()450 bool ARMPassConfig::addPreISel() {
451 if ((TM->getOptLevel() != CodeGenOpt::None &&
452 EnableGlobalMerge == cl::BOU_UNSET) ||
453 EnableGlobalMerge == cl::BOU_TRUE) {
454 // FIXME: This is using the thumb1 only constant value for
455 // maximal global offset for merging globals. We may want
456 // to look into using the old value for non-thumb1 code of
457 // 4095 based on the TargetMachine, but this starts to become
458 // tricky when doing code gen per function.
459 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
460 (EnableGlobalMerge == cl::BOU_UNSET);
461 // Merging of extern globals is enabled by default on non-Mach-O as we
462 // expect it to be generally either beneficial or harmless. On Mach-O it
463 // is disabled as we emit the .subsections_via_symbols directive which
464 // means that merging extern globals is not safe.
465 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
466 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
467 MergeExternalByDefault));
468 }
469
470 if (TM->getOptLevel() != CodeGenOpt::None) {
471 addPass(createHardwareLoopsPass());
472 addPass(createMVETailPredicationPass());
473 // FIXME: IR passes can delete address-taken basic blocks, deleting
474 // corresponding blockaddresses. ARMConstantPoolConstant holds references to
475 // address-taken basic blocks which can be invalidated if the function
476 // containing the blockaddress has already been codegen'd and the basic
477 // block is removed. Work around this by forcing all IR passes to run before
478 // any ISel takes place. We should have a more principled way of handling
479 // this. See D99707 for more details.
480 addPass(createBarrierNoopPass());
481 }
482
483 return false;
484 }
485
addInstSelector()486 bool ARMPassConfig::addInstSelector() {
487 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
488 return false;
489 }
490
addIRTranslator()491 bool ARMPassConfig::addIRTranslator() {
492 addPass(new IRTranslator(getOptLevel()));
493 return false;
494 }
495
addLegalizeMachineIR()496 bool ARMPassConfig::addLegalizeMachineIR() {
497 addPass(new Legalizer());
498 return false;
499 }
500
addRegBankSelect()501 bool ARMPassConfig::addRegBankSelect() {
502 addPass(new RegBankSelect());
503 return false;
504 }
505
addGlobalInstructionSelect()506 bool ARMPassConfig::addGlobalInstructionSelect() {
507 addPass(new InstructionSelect(getOptLevel()));
508 return false;
509 }
510
addPreRegAlloc()511 void ARMPassConfig::addPreRegAlloc() {
512 if (getOptLevel() != CodeGenOpt::None) {
513 if (getOptLevel() == CodeGenOpt::Aggressive)
514 addPass(&MachinePipelinerID);
515
516 addPass(createMVETPAndVPTOptimisationsPass());
517
518 addPass(createMLxExpansionPass());
519
520 if (EnableARMLoadStoreOpt)
521 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
522
523 if (!DisableA15SDOptimization)
524 addPass(createA15SDOptimizerPass());
525 }
526 }
527
addPreSched2()528 void ARMPassConfig::addPreSched2() {
529 if (getOptLevel() != CodeGenOpt::None) {
530 if (EnableARMLoadStoreOpt)
531 addPass(createARMLoadStoreOptimizationPass());
532
533 addPass(new ARMExecutionDomainFix());
534 addPass(createBreakFalseDeps());
535 }
536
537 // Expand some pseudo instructions into multiple instructions to allow
538 // proper scheduling.
539 addPass(createARMExpandPseudoPass());
540
541 if (getOptLevel() != CodeGenOpt::None) {
542 // When optimising for size, always run the Thumb2SizeReduction pass before
543 // IfConversion. Otherwise, check whether IT blocks are restricted
544 // (e.g. in v8, IfConversion depends on Thumb instruction widths)
545 addPass(createThumb2SizeReductionPass([this](const Function &F) {
546 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
547 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
548 }));
549
550 addPass(createIfConverter([](const MachineFunction &MF) {
551 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
552 }));
553 }
554 addPass(createThumb2ITBlockPass());
555
556 // Add both scheduling passes to give the subtarget an opportunity to pick
557 // between them.
558 if (getOptLevel() != CodeGenOpt::None) {
559 addPass(&PostMachineSchedulerID);
560 addPass(&PostRASchedulerID);
561 }
562
563 addPass(createMVEVPTBlockPass());
564 addPass(createARMIndirectThunks());
565 addPass(createARMSLSHardeningPass());
566 }
567
addPreEmitPass()568 void ARMPassConfig::addPreEmitPass() {
569 addPass(createThumb2SizeReductionPass());
570
571 // Constant island pass work on unbundled instructions.
572 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
573 return MF.getSubtarget<ARMSubtarget>().isThumb2();
574 }));
575
576 // Don't optimize barriers or block placement at -O0.
577 if (getOptLevel() != CodeGenOpt::None) {
578 addPass(createARMBlockPlacementPass());
579 addPass(createARMOptimizeBarriersPass());
580 }
581 }
582
addPreEmitPass2()583 void ARMPassConfig::addPreEmitPass2() {
584 // Inserts fixup instructions before unsafe AES operations. Instructions may
585 // be inserted at the start of blocks and at within blocks so this pass has to
586 // come before those below.
587 addPass(createARMFixCortexA57AES1742098Pass());
588 // Inserts BTIs at the start of functions and indirectly-called basic blocks,
589 // so passes cannot add to the start of basic blocks once this has run.
590 addPass(createARMBranchTargetsPass());
591 // Inserts Constant Islands. Block sizes cannot be increased after this point,
592 // as this may push the branch ranges and load offsets of accessing constant
593 // pools out of range..
594 addPass(createARMConstantIslandPass());
595 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real
596 // instructions, but the pseudos all have conservative sizes so that block
597 // sizes will only be decreased by this pass.
598 addPass(createARMLowOverheadLoopsPass());
599
600 if (TM->getTargetTriple().isOSWindows()) {
601 // Identify valid longjmp targets for Windows Control Flow Guard.
602 addPass(createCFGuardLongjmpPass());
603 // Identify valid eh continuation targets for Windows EHCont Guard.
604 addPass(createEHContGuardCatchretPass());
605 }
606 }
607