1 //===- ARMRegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the targeting of the RegisterBankInfo class for ARM.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMRegisterBankInfo.h"
15 #include "ARMInstrInfo.h" // For the register classes
16 #include "ARMSubtarget.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21
22 #define GET_TARGET_REGBANK_IMPL
23 #include "ARMGenRegisterBank.inc"
24
25 using namespace llvm;
26
27 // FIXME: TableGen this.
28 // If it grows too much and TableGen still isn't ready to do the job, extract it
29 // into an ARMGenRegisterBankInfo.def (similar to AArch64).
30 namespace llvm {
31 namespace ARM {
32 enum PartialMappingIdx {
33 PMI_GPR,
34 PMI_SPR,
35 PMI_DPR,
36 PMI_Min = PMI_GPR,
37 };
38
39 RegisterBankInfo::PartialMapping PartMappings[]{
40 // GPR Partial Mapping
41 {0, 32, GPRRegBank},
42 // SPR Partial Mapping
43 {0, 32, FPRRegBank},
44 // DPR Partial Mapping
45 {0, 64, FPRRegBank},
46 };
47
48 #ifndef NDEBUG
checkPartMapping(const RegisterBankInfo::PartialMapping & PM,unsigned Start,unsigned Length,unsigned RegBankID)49 static bool checkPartMapping(const RegisterBankInfo::PartialMapping &PM,
50 unsigned Start, unsigned Length,
51 unsigned RegBankID) {
52 return PM.StartIdx == Start && PM.Length == Length &&
53 PM.RegBank->getID() == RegBankID;
54 }
55
checkPartialMappings()56 static void checkPartialMappings() {
57 assert(
58 checkPartMapping(PartMappings[PMI_GPR - PMI_Min], 0, 32, GPRRegBankID) &&
59 "Wrong mapping for GPR");
60 assert(
61 checkPartMapping(PartMappings[PMI_SPR - PMI_Min], 0, 32, FPRRegBankID) &&
62 "Wrong mapping for SPR");
63 assert(
64 checkPartMapping(PartMappings[PMI_DPR - PMI_Min], 0, 64, FPRRegBankID) &&
65 "Wrong mapping for DPR");
66 }
67 #endif
68
69 enum ValueMappingIdx {
70 InvalidIdx = 0,
71 GPR3OpsIdx = 1,
72 SPR3OpsIdx = 4,
73 DPR3OpsIdx = 7,
74 };
75
76 RegisterBankInfo::ValueMapping ValueMappings[] = {
77 // invalid
78 {nullptr, 0},
79 // 3 ops in GPRs
80 {&PartMappings[PMI_GPR - PMI_Min], 1},
81 {&PartMappings[PMI_GPR - PMI_Min], 1},
82 {&PartMappings[PMI_GPR - PMI_Min], 1},
83 // 3 ops in SPRs
84 {&PartMappings[PMI_SPR - PMI_Min], 1},
85 {&PartMappings[PMI_SPR - PMI_Min], 1},
86 {&PartMappings[PMI_SPR - PMI_Min], 1},
87 // 3 ops in DPRs
88 {&PartMappings[PMI_DPR - PMI_Min], 1},
89 {&PartMappings[PMI_DPR - PMI_Min], 1},
90 {&PartMappings[PMI_DPR - PMI_Min], 1}};
91
92 #ifndef NDEBUG
checkValueMapping(const RegisterBankInfo::ValueMapping & VM,RegisterBankInfo::PartialMapping * BreakDown)93 static bool checkValueMapping(const RegisterBankInfo::ValueMapping &VM,
94 RegisterBankInfo::PartialMapping *BreakDown) {
95 return VM.NumBreakDowns == 1 && VM.BreakDown == BreakDown;
96 }
97
checkValueMappings()98 static void checkValueMappings() {
99 assert(checkValueMapping(ValueMappings[GPR3OpsIdx],
100 &PartMappings[PMI_GPR - PMI_Min]) &&
101 "Wrong value mapping for 3 GPR ops instruction");
102 assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 1],
103 &PartMappings[PMI_GPR - PMI_Min]) &&
104 "Wrong value mapping for 3 GPR ops instruction");
105 assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 2],
106 &PartMappings[PMI_GPR - PMI_Min]) &&
107 "Wrong value mapping for 3 GPR ops instruction");
108
109 assert(checkValueMapping(ValueMappings[SPR3OpsIdx],
110 &PartMappings[PMI_SPR - PMI_Min]) &&
111 "Wrong value mapping for 3 SPR ops instruction");
112 assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 1],
113 &PartMappings[PMI_SPR - PMI_Min]) &&
114 "Wrong value mapping for 3 SPR ops instruction");
115 assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 2],
116 &PartMappings[PMI_SPR - PMI_Min]) &&
117 "Wrong value mapping for 3 SPR ops instruction");
118
119 assert(checkValueMapping(ValueMappings[DPR3OpsIdx],
120 &PartMappings[PMI_DPR - PMI_Min]) &&
121 "Wrong value mapping for 3 DPR ops instruction");
122 assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 1],
123 &PartMappings[PMI_DPR - PMI_Min]) &&
124 "Wrong value mapping for 3 DPR ops instruction");
125 assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 2],
126 &PartMappings[PMI_DPR - PMI_Min]) &&
127 "Wrong value mapping for 3 DPR ops instruction");
128 }
129 #endif
130 } // end namespace arm
131 } // end namespace llvm
132
ARMRegisterBankInfo(const TargetRegisterInfo & TRI)133 ARMRegisterBankInfo::ARMRegisterBankInfo(const TargetRegisterInfo &TRI)
134 : ARMGenRegisterBankInfo() {
135 static bool AlreadyInit = false;
136 // We have only one set of register banks, whatever the subtarget
137 // is. Therefore, the initialization of the RegBanks table should be
138 // done only once. Indeed the table of all register banks
139 // (ARM::RegBanks) is unique in the compiler. At some point, it
140 // will get tablegen'ed and the whole constructor becomes empty.
141 if (AlreadyInit)
142 return;
143 AlreadyInit = true;
144
145 const RegisterBank &RBGPR = getRegBank(ARM::GPRRegBankID);
146 (void)RBGPR;
147 assert(&ARM::GPRRegBank == &RBGPR && "The order in RegBanks is messed up");
148
149 // Initialize the GPR bank.
150 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRRegClassID)) &&
151 "Subclass not added?");
152 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRwithAPSRRegClassID)) &&
153 "Subclass not added?");
154 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRnopcRegClassID)) &&
155 "Subclass not added?");
156 assert(RBGPR.covers(*TRI.getRegClass(ARM::rGPRRegClassID)) &&
157 "Subclass not added?");
158 assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPRRegClassID)) &&
159 "Subclass not added?");
160 assert(RBGPR.covers(*TRI.getRegClass(ARM::tcGPRRegClassID)) &&
161 "Subclass not added?");
162 assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPR_and_tcGPRRegClassID)) &&
163 "Subclass not added?");
164 assert(RBGPR.getSize() == 32 && "GPRs should hold up to 32-bit");
165
166 #ifndef NDEBUG
167 ARM::checkPartialMappings();
168 ARM::checkValueMappings();
169 #endif
170 }
171
getRegBankFromRegClass(const TargetRegisterClass & RC) const172 const RegisterBank &ARMRegisterBankInfo::getRegBankFromRegClass(
173 const TargetRegisterClass &RC) const {
174 using namespace ARM;
175
176 switch (RC.getID()) {
177 case GPRRegClassID:
178 case GPRwithAPSRRegClassID:
179 case GPRnopcRegClassID:
180 case rGPRRegClassID:
181 case GPRspRegClassID:
182 case tGPR_and_tcGPRRegClassID:
183 case tcGPRRegClassID:
184 case tGPRRegClassID:
185 return getRegBank(ARM::GPRRegBankID);
186 case HPRRegClassID:
187 case SPR_8RegClassID:
188 case SPRRegClassID:
189 case DPR_8RegClassID:
190 case DPRRegClassID:
191 case QPRRegClassID:
192 return getRegBank(ARM::FPRRegBankID);
193 default:
194 llvm_unreachable("Unsupported register kind");
195 }
196
197 llvm_unreachable("Switch should handle all register classes");
198 }
199
200 const RegisterBankInfo::InstructionMapping &
getInstrMapping(const MachineInstr & MI) const201 ARMRegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
202 auto Opc = MI.getOpcode();
203
204 // Try the default logic for non-generic instructions that are either copies
205 // or already have some operands assigned to banks.
206 if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
207 const InstructionMapping &Mapping = getInstrMappingImpl(MI);
208 if (Mapping.isValid())
209 return Mapping;
210 }
211
212 using namespace TargetOpcode;
213
214 const MachineFunction &MF = *MI.getParent()->getParent();
215 const MachineRegisterInfo &MRI = MF.getRegInfo();
216 unsigned NumOperands = MI.getNumOperands();
217 const ValueMapping *OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
218
219 switch (Opc) {
220 case G_ADD:
221 case G_SUB:
222 case G_MUL:
223 case G_AND:
224 case G_OR:
225 case G_XOR:
226 case G_LSHR:
227 case G_ASHR:
228 case G_SHL:
229 case G_SDIV:
230 case G_UDIV:
231 case G_SEXT:
232 case G_ZEXT:
233 case G_ANYEXT:
234 case G_GEP:
235 case G_INTTOPTR:
236 case G_PTRTOINT:
237 case G_CTLZ:
238 // FIXME: We're abusing the fact that everything lives in a GPR for now; in
239 // the real world we would use different mappings.
240 OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
241 break;
242 case G_TRUNC: {
243 // In some cases we may end up with a G_TRUNC from a 64-bit value to a
244 // 32-bit value. This isn't a real floating point trunc (that would be a
245 // G_FPTRUNC). Instead it is an integer trunc in disguise, which can appear
246 // because the legalizer doesn't distinguish between integer and floating
247 // point values so it may leave some 64-bit integers un-narrowed. Until we
248 // have a more principled solution that doesn't let such things sneak all
249 // the way to this point, just map the source to a DPR and the destination
250 // to a GPR.
251 LLT LargeTy = MRI.getType(MI.getOperand(1).getReg());
252 OperandsMapping =
253 LargeTy.getSizeInBits() <= 32
254 ? &ARM::ValueMappings[ARM::GPR3OpsIdx]
255 : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
256 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
257 break;
258 }
259 case G_LOAD:
260 case G_STORE: {
261 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
262 OperandsMapping =
263 Ty.getSizeInBits() == 64
264 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
265 &ARM::ValueMappings[ARM::GPR3OpsIdx]})
266 : &ARM::ValueMappings[ARM::GPR3OpsIdx];
267 break;
268 }
269 case G_FADD:
270 case G_FSUB:
271 case G_FMUL:
272 case G_FDIV:
273 case G_FNEG: {
274 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
275 OperandsMapping =Ty.getSizeInBits() == 64
276 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
277 : &ARM::ValueMappings[ARM::SPR3OpsIdx];
278 break;
279 }
280 case G_FMA: {
281 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
282 OperandsMapping =
283 Ty.getSizeInBits() == 64
284 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
285 &ARM::ValueMappings[ARM::DPR3OpsIdx],
286 &ARM::ValueMappings[ARM::DPR3OpsIdx],
287 &ARM::ValueMappings[ARM::DPR3OpsIdx]})
288 : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
289 &ARM::ValueMappings[ARM::SPR3OpsIdx],
290 &ARM::ValueMappings[ARM::SPR3OpsIdx],
291 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
292 break;
293 }
294 case G_FPEXT: {
295 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
296 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
297 if (ToTy.getSizeInBits() == 64 && FromTy.getSizeInBits() == 32)
298 OperandsMapping =
299 getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
300 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
301 break;
302 }
303 case G_FPTRUNC: {
304 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
305 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
306 if (ToTy.getSizeInBits() == 32 && FromTy.getSizeInBits() == 64)
307 OperandsMapping =
308 getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
309 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
310 break;
311 }
312 case G_FPTOSI:
313 case G_FPTOUI: {
314 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
315 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
316 if ((FromTy.getSizeInBits() == 32 || FromTy.getSizeInBits() == 64) &&
317 ToTy.getSizeInBits() == 32)
318 OperandsMapping =
319 FromTy.getSizeInBits() == 64
320 ? getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
321 &ARM::ValueMappings[ARM::DPR3OpsIdx]})
322 : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
323 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
324 break;
325 }
326 case G_SITOFP:
327 case G_UITOFP: {
328 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
329 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
330 if (FromTy.getSizeInBits() == 32 &&
331 (ToTy.getSizeInBits() == 32 || ToTy.getSizeInBits() == 64))
332 OperandsMapping =
333 ToTy.getSizeInBits() == 64
334 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
335 &ARM::ValueMappings[ARM::GPR3OpsIdx]})
336 : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
337 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
338 break;
339 }
340 case G_CONSTANT:
341 case G_FRAME_INDEX:
342 case G_GLOBAL_VALUE:
343 OperandsMapping =
344 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
345 break;
346 case G_SELECT: {
347 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
348 (void)Ty;
349 LLT Ty2 = MRI.getType(MI.getOperand(1).getReg());
350 (void)Ty2;
351 assert(Ty.getSizeInBits() == 32 && "Unsupported size for G_SELECT");
352 assert(Ty2.getSizeInBits() == 1 && "Unsupported size for G_SELECT");
353 OperandsMapping =
354 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
355 &ARM::ValueMappings[ARM::GPR3OpsIdx],
356 &ARM::ValueMappings[ARM::GPR3OpsIdx],
357 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
358 break;
359 }
360 case G_ICMP: {
361 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
362 (void)Ty2;
363 assert(Ty2.getSizeInBits() == 32 && "Unsupported size for G_ICMP");
364 OperandsMapping =
365 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
366 &ARM::ValueMappings[ARM::GPR3OpsIdx],
367 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
368 break;
369 }
370 case G_FCMP: {
371 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
372 (void)Ty;
373 LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
374 LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
375 (void)Ty2;
376 assert(Ty.getSizeInBits() == 1 && "Unsupported size for G_FCMP");
377 assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
378 "Mismatched operand sizes for G_FCMP");
379
380 unsigned Size = Ty1.getSizeInBits();
381 assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");
382
383 auto FPRValueMapping = Size == 32 ? &ARM::ValueMappings[ARM::SPR3OpsIdx]
384 : &ARM::ValueMappings[ARM::DPR3OpsIdx];
385 OperandsMapping =
386 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
387 FPRValueMapping, FPRValueMapping});
388 break;
389 }
390 case G_MERGE_VALUES: {
391 // We only support G_MERGE_VALUES for creating a double precision floating
392 // point value out of two GPRs.
393 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
394 LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
395 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
396 if (Ty.getSizeInBits() != 64 || Ty1.getSizeInBits() != 32 ||
397 Ty2.getSizeInBits() != 32)
398 return getInvalidInstructionMapping();
399 OperandsMapping =
400 getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
401 &ARM::ValueMappings[ARM::GPR3OpsIdx],
402 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
403 break;
404 }
405 case G_UNMERGE_VALUES: {
406 // We only support G_UNMERGE_VALUES for splitting a double precision
407 // floating point value into two GPRs.
408 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
409 LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
410 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
411 if (Ty.getSizeInBits() != 32 || Ty1.getSizeInBits() != 32 ||
412 Ty2.getSizeInBits() != 64)
413 return getInvalidInstructionMapping();
414 OperandsMapping =
415 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
416 &ARM::ValueMappings[ARM::GPR3OpsIdx],
417 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
418 break;
419 }
420 case G_BR:
421 OperandsMapping = getOperandsMapping({nullptr});
422 break;
423 case G_BRCOND:
424 OperandsMapping =
425 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
426 break;
427 default:
428 return getInvalidInstructionMapping();
429 }
430
431 #ifndef NDEBUG
432 for (unsigned i = 0; i < NumOperands; i++) {
433 for (const auto &Mapping : OperandsMapping[i]) {
434 assert(
435 (Mapping.RegBank->getID() != ARM::FPRRegBankID ||
436 MF.getSubtarget<ARMSubtarget>().hasVFP2()) &&
437 "Trying to use floating point register bank on target without vfp");
438 }
439 }
440 #endif
441
442 return getInstructionMapping(DefaultMappingID, /*Cost=*/1, OperandsMapping,
443 NumOperands);
444 }
445