1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMISelLowering.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMRegisterInfo.h"
23 #include "ARMSelectionDAGInfo.h"
24 #include "ARMSubtarget.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114
115 using namespace llvm;
116
117 #define DEBUG_TYPE "arm-isel"
118
119 STATISTIC(NumTailCalls, "Number of tail calls");
120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
122 STATISTIC(NumConstpoolPromoted,
123 "Number of constants with their storage promoted into constant pools");
124
125 static cl::opt<bool>
126 ARMInterworking("arm-interworking", cl::Hidden,
127 cl::desc("Enable / disable ARM interworking (for debugging only)"),
128 cl::init(true));
129
130 static cl::opt<bool> EnableConstpoolPromotion(
131 "arm-promote-constant", cl::Hidden,
132 cl::desc("Enable / disable promotion of unnamed_addr constants into "
133 "constant pools"),
134 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
136 "arm-promote-constant-max-size", cl::Hidden,
137 cl::desc("Maximum size of constant to promote into a constant pool"),
138 cl::init(64));
139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
140 "arm-promote-constant-max-total", cl::Hidden,
141 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
142 cl::init(128));
143
144 // The APCS parameter registers.
145 static const MCPhysReg GPRArgRegs[] = {
146 ARM::R0, ARM::R1, ARM::R2, ARM::R3
147 };
148
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
150 MVT PromotedBitwiseVT) {
151 if (VT != PromotedLdStVT) {
152 setOperationAction(ISD::LOAD, VT, Promote);
153 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
154
155 setOperationAction(ISD::STORE, VT, Promote);
156 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
157 }
158
159 MVT ElemTy = VT.getVectorElementType();
160 if (ElemTy != MVT::f64)
161 setOperationAction(ISD::SETCC, VT, Custom);
162 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
163 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
164 if (ElemTy == MVT::i32) {
165 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
166 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
167 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
168 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
169 } else {
170 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
171 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
172 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
173 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
174 }
175 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
176 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
177 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
178 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
179 setOperationAction(ISD::SELECT, VT, Expand);
180 setOperationAction(ISD::SELECT_CC, VT, Expand);
181 setOperationAction(ISD::VSELECT, VT, Expand);
182 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
183 if (VT.isInteger()) {
184 setOperationAction(ISD::SHL, VT, Custom);
185 setOperationAction(ISD::SRA, VT, Custom);
186 setOperationAction(ISD::SRL, VT, Custom);
187 }
188
189 // Promote all bit-wise operations.
190 if (VT.isInteger() && VT != PromotedBitwiseVT) {
191 setOperationAction(ISD::AND, VT, Promote);
192 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
193 setOperationAction(ISD::OR, VT, Promote);
194 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
195 setOperationAction(ISD::XOR, VT, Promote);
196 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
197 }
198
199 // Neon does not support vector divide/remainder operations.
200 setOperationAction(ISD::SDIV, VT, Expand);
201 setOperationAction(ISD::UDIV, VT, Expand);
202 setOperationAction(ISD::FDIV, VT, Expand);
203 setOperationAction(ISD::SREM, VT, Expand);
204 setOperationAction(ISD::UREM, VT, Expand);
205 setOperationAction(ISD::FREM, VT, Expand);
206
207 if (!VT.isFloatingPoint() &&
208 VT != MVT::v2i64 && VT != MVT::v1i64)
209 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210 setOperationAction(Opcode, VT, Legal);
211 }
212
addDRTypeForNEON(MVT VT)213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
214 addRegisterClass(VT, &ARM::DPRRegClass);
215 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
216 }
217
addQRTypeForNEON(MVT VT)218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
219 addRegisterClass(VT, &ARM::DPairRegClass);
220 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
221 }
222
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
224 const ARMSubtarget &STI)
225 : TargetLowering(TM), Subtarget(&STI) {
226 RegInfo = Subtarget->getRegisterInfo();
227 Itins = Subtarget->getInstrItineraryData();
228
229 setBooleanContents(ZeroOrOneBooleanContent);
230 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231
232 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
233 !Subtarget->isTargetWatchOS()) {
234 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
235 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
236 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
237 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
238 : CallingConv::ARM_AAPCS);
239 }
240
241 if (Subtarget->isTargetMachO()) {
242 // Uses VFP for Thumb libfuncs if available.
243 if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
244 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
245 static const struct {
246 const RTLIB::Libcall Op;
247 const char * const Name;
248 const ISD::CondCode Cond;
249 } LibraryCalls[] = {
250 // Single-precision floating-point arithmetic.
251 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
252 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
253 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
254 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
255
256 // Double-precision floating-point arithmetic.
257 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
258 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
259 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
260 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
261
262 // Single-precision comparisons.
263 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
264 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
265 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
266 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
267 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
268 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
269 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
270 { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
271
272 // Double-precision comparisons.
273 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
274 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
275 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
276 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
277 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
278 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
279 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
280 { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
281
282 // Floating-point to integer conversions.
283 // i64 conversions are done via library routines even when generating VFP
284 // instructions, so use the same ones.
285 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
286 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
287 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
288 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
289
290 // Conversions between floating types.
291 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
292 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
293
294 // Integer to floating-point conversions.
295 // i64 conversions are done via library routines even when generating VFP
296 // instructions, so use the same ones.
297 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
298 // e.g., __floatunsidf vs. __floatunssidfvfp.
299 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
300 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
301 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
302 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
303 };
304
305 for (const auto &LC : LibraryCalls) {
306 setLibcallName(LC.Op, LC.Name);
307 if (LC.Cond != ISD::SETCC_INVALID)
308 setCmpLibcallCC(LC.Op, LC.Cond);
309 }
310 }
311 }
312
313 // These libcalls are not available in 32-bit.
314 setLibcallName(RTLIB::SHL_I128, nullptr);
315 setLibcallName(RTLIB::SRL_I128, nullptr);
316 setLibcallName(RTLIB::SRA_I128, nullptr);
317
318 // RTLIB
319 if (Subtarget->isAAPCS_ABI() &&
320 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
321 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
322 static const struct {
323 const RTLIB::Libcall Op;
324 const char * const Name;
325 const CallingConv::ID CC;
326 const ISD::CondCode Cond;
327 } LibraryCalls[] = {
328 // Double-precision floating-point arithmetic helper functions
329 // RTABI chapter 4.1.2, Table 2
330 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334
335 // Double-precision floating-point comparison helper functions
336 // RTABI chapter 4.1.2, Table 3
337 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
338 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
339 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
340 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
341 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
342 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
343 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
344 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
345
346 // Single-precision floating-point arithmetic helper functions
347 // RTABI chapter 4.1.2, Table 4
348 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
349 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
351 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
352
353 // Single-precision floating-point comparison helper functions
354 // RTABI chapter 4.1.2, Table 5
355 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
356 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
357 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
358 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
359 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
360 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
361 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
362 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
363
364 // Floating-point to integer conversions.
365 // RTABI chapter 4.1.2, Table 6
366 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
369 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
370 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
371 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
372 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
373 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374
375 // Conversions between floating types.
376 // RTABI chapter 4.1.2, Table 7
377 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380
381 // Integer to floating-point conversions.
382 // RTABI chapter 4.1.2, Table 8
383 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
384 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
388 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
389 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
390 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391
392 // Long long helper functions
393 // RTABI chapter 4.2, Table 9
394 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
395 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398
399 // Integer division functions
400 // RTABI chapter 4.3.1
401 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
406 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
407 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
408 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409 };
410
411 for (const auto &LC : LibraryCalls) {
412 setLibcallName(LC.Op, LC.Name);
413 setLibcallCallingConv(LC.Op, LC.CC);
414 if (LC.Cond != ISD::SETCC_INVALID)
415 setCmpLibcallCC(LC.Op, LC.Cond);
416 }
417
418 // EABI dependent RTLIB
419 if (TM.Options.EABIVersion == EABI::EABI4 ||
420 TM.Options.EABIVersion == EABI::EABI5) {
421 static const struct {
422 const RTLIB::Libcall Op;
423 const char *const Name;
424 const CallingConv::ID CC;
425 const ISD::CondCode Cond;
426 } MemOpsLibraryCalls[] = {
427 // Memory operations
428 // RTABI chapter 4.3.4
429 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
430 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
431 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
432 };
433
434 for (const auto &LC : MemOpsLibraryCalls) {
435 setLibcallName(LC.Op, LC.Name);
436 setLibcallCallingConv(LC.Op, LC.CC);
437 if (LC.Cond != ISD::SETCC_INVALID)
438 setCmpLibcallCC(LC.Op, LC.Cond);
439 }
440 }
441 }
442
443 if (Subtarget->isTargetWindows()) {
444 static const struct {
445 const RTLIB::Libcall Op;
446 const char * const Name;
447 const CallingConv::ID CC;
448 } LibraryCalls[] = {
449 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
450 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
451 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
452 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
453 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
454 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
455 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
456 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
457 };
458
459 for (const auto &LC : LibraryCalls) {
460 setLibcallName(LC.Op, LC.Name);
461 setLibcallCallingConv(LC.Op, LC.CC);
462 }
463 }
464
465 // Use divmod compiler-rt calls for iOS 5.0 and later.
466 if (Subtarget->isTargetMachO() &&
467 !(Subtarget->isTargetIOS() &&
468 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
469 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
470 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
471 }
472
473 // The half <-> float conversion functions are always soft-float on
474 // non-watchos platforms, but are needed for some targets which use a
475 // hard-float calling convention by default.
476 if (!Subtarget->isTargetWatchABI()) {
477 if (Subtarget->isAAPCS_ABI()) {
478 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
479 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
480 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
481 } else {
482 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
483 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
484 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
485 }
486 }
487
488 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
489 // a __gnu_ prefix (which is the default).
490 if (Subtarget->isTargetAEABI()) {
491 static const struct {
492 const RTLIB::Libcall Op;
493 const char * const Name;
494 const CallingConv::ID CC;
495 } LibraryCalls[] = {
496 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
497 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
498 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
499 };
500
501 for (const auto &LC : LibraryCalls) {
502 setLibcallName(LC.Op, LC.Name);
503 setLibcallCallingConv(LC.Op, LC.CC);
504 }
505 }
506
507 if (Subtarget->isThumb1Only())
508 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
509 else
510 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
511
512 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
513 !Subtarget->isThumb1Only()) {
514 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
515 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
516 }
517
518 if (Subtarget->hasFullFP16()) {
519 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
520 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
521 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
522 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
523
524 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
525 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
526 }
527
528 for (MVT VT : MVT::vector_valuetypes()) {
529 for (MVT InnerVT : MVT::vector_valuetypes()) {
530 setTruncStoreAction(VT, InnerVT, Expand);
531 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
532 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
533 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
534 }
535
536 setOperationAction(ISD::MULHS, VT, Expand);
537 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
538 setOperationAction(ISD::MULHU, VT, Expand);
539 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
540
541 setOperationAction(ISD::BSWAP, VT, Expand);
542 }
543
544 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
545 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
546
547 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
548 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
549
550 if (Subtarget->hasNEON()) {
551 addDRTypeForNEON(MVT::v2f32);
552 addDRTypeForNEON(MVT::v8i8);
553 addDRTypeForNEON(MVT::v4i16);
554 addDRTypeForNEON(MVT::v2i32);
555 addDRTypeForNEON(MVT::v1i64);
556
557 addQRTypeForNEON(MVT::v4f32);
558 addQRTypeForNEON(MVT::v2f64);
559 addQRTypeForNEON(MVT::v16i8);
560 addQRTypeForNEON(MVT::v8i16);
561 addQRTypeForNEON(MVT::v4i32);
562 addQRTypeForNEON(MVT::v2i64);
563
564 if (Subtarget->hasFullFP16()) {
565 addQRTypeForNEON(MVT::v8f16);
566 addDRTypeForNEON(MVT::v4f16);
567 }
568
569 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
570 // neither Neon nor VFP support any arithmetic operations on it.
571 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
572 // supported for v4f32.
573 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
574 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
575 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
576 // FIXME: Code duplication: FDIV and FREM are expanded always, see
577 // ARMTargetLowering::addTypeForNEON method for details.
578 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
579 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
580 // FIXME: Create unittest.
581 // In another words, find a way when "copysign" appears in DAG with vector
582 // operands.
583 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
584 // FIXME: Code duplication: SETCC has custom operation action, see
585 // ARMTargetLowering::addTypeForNEON method for details.
586 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
587 // FIXME: Create unittest for FNEG and for FABS.
588 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
589 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
590 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
591 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
592 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
593 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
594 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
595 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
596 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
597 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
598 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
599 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
600 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
601 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
602 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
603 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
604 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
605 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
606
607 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
608 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
609 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
610 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
611 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
612 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
613 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
614 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
615 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
616 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
617 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
618 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
619 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
620 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
621
622 // Mark v2f32 intrinsics.
623 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
624 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
625 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
626 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
627 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
628 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
629 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
630 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
631 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
632 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
633 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
634 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
635 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
636 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
637
638 // Neon does not support some operations on v1i64 and v2i64 types.
639 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
640 // Custom handling for some quad-vector types to detect VMULL.
641 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
642 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
643 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
644 // Custom handling for some vector types to avoid expensive expansions
645 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
646 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
647 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
648 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
649 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
650 // a destination type that is wider than the source, and nor does
651 // it have a FP_TO_[SU]INT instruction with a narrower destination than
652 // source.
653 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
654 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
655 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
656 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
657 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
658 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
659 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
660 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
661
662 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
663 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
664
665 // NEON does not have single instruction CTPOP for vectors with element
666 // types wider than 8-bits. However, custom lowering can leverage the
667 // v8i8/v16i8 vcnt instruction.
668 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
669 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
670 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
671 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
672 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
673 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
674
675 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
676 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
677
678 // NEON does not have single instruction CTTZ for vectors.
679 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
680 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
681 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
682 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
683
684 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
685 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
686 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
687 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
688
689 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
690 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
691 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
692 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
693
694 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
695 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
696 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
697 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
698
699 // NEON only has FMA instructions as of VFP4.
700 if (!Subtarget->hasVFP4()) {
701 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
702 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
703 }
704
705 setTargetDAGCombine(ISD::INTRINSIC_VOID);
706 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
707 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
708 setTargetDAGCombine(ISD::SHL);
709 setTargetDAGCombine(ISD::SRL);
710 setTargetDAGCombine(ISD::SRA);
711 setTargetDAGCombine(ISD::SIGN_EXTEND);
712 setTargetDAGCombine(ISD::ZERO_EXTEND);
713 setTargetDAGCombine(ISD::ANY_EXTEND);
714 setTargetDAGCombine(ISD::BUILD_VECTOR);
715 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
716 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
717 setTargetDAGCombine(ISD::STORE);
718 setTargetDAGCombine(ISD::FP_TO_SINT);
719 setTargetDAGCombine(ISD::FP_TO_UINT);
720 setTargetDAGCombine(ISD::FDIV);
721 setTargetDAGCombine(ISD::LOAD);
722
723 // It is legal to extload from v4i8 to v4i16 or v4i32.
724 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
725 MVT::v2i32}) {
726 for (MVT VT : MVT::integer_vector_valuetypes()) {
727 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
728 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
729 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
730 }
731 }
732 }
733
734 if (Subtarget->isFPOnlySP()) {
735 // When targeting a floating-point unit with only single-precision
736 // operations, f64 is legal for the few double-precision instructions which
737 // are present However, no double-precision operations other than moves,
738 // loads and stores are provided by the hardware.
739 setOperationAction(ISD::FADD, MVT::f64, Expand);
740 setOperationAction(ISD::FSUB, MVT::f64, Expand);
741 setOperationAction(ISD::FMUL, MVT::f64, Expand);
742 setOperationAction(ISD::FMA, MVT::f64, Expand);
743 setOperationAction(ISD::FDIV, MVT::f64, Expand);
744 setOperationAction(ISD::FREM, MVT::f64, Expand);
745 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
746 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
747 setOperationAction(ISD::FNEG, MVT::f64, Expand);
748 setOperationAction(ISD::FABS, MVT::f64, Expand);
749 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
750 setOperationAction(ISD::FSIN, MVT::f64, Expand);
751 setOperationAction(ISD::FCOS, MVT::f64, Expand);
752 setOperationAction(ISD::FPOW, MVT::f64, Expand);
753 setOperationAction(ISD::FLOG, MVT::f64, Expand);
754 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
755 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
756 setOperationAction(ISD::FEXP, MVT::f64, Expand);
757 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
758 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
759 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
760 setOperationAction(ISD::FRINT, MVT::f64, Expand);
761 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
762 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
763 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
764 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
765 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
766 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
767 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
768 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
769 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
770 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
771 }
772
773 computeRegisterProperties(Subtarget->getRegisterInfo());
774
775 // ARM does not have floating-point extending loads.
776 for (MVT VT : MVT::fp_valuetypes()) {
777 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
778 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
779 }
780
781 // ... or truncating stores
782 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
783 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
784 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
785
786 // ARM does not have i1 sign extending load.
787 for (MVT VT : MVT::integer_valuetypes())
788 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
789
790 // ARM supports all 4 flavors of integer indexed load / store.
791 if (!Subtarget->isThumb1Only()) {
792 for (unsigned im = (unsigned)ISD::PRE_INC;
793 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
794 setIndexedLoadAction(im, MVT::i1, Legal);
795 setIndexedLoadAction(im, MVT::i8, Legal);
796 setIndexedLoadAction(im, MVT::i16, Legal);
797 setIndexedLoadAction(im, MVT::i32, Legal);
798 setIndexedStoreAction(im, MVT::i1, Legal);
799 setIndexedStoreAction(im, MVT::i8, Legal);
800 setIndexedStoreAction(im, MVT::i16, Legal);
801 setIndexedStoreAction(im, MVT::i32, Legal);
802 }
803 } else {
804 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
805 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
806 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
807 }
808
809 setOperationAction(ISD::SADDO, MVT::i32, Custom);
810 setOperationAction(ISD::UADDO, MVT::i32, Custom);
811 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
812 setOperationAction(ISD::USUBO, MVT::i32, Custom);
813
814 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
815 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
816
817 // i64 operation support.
818 setOperationAction(ISD::MUL, MVT::i64, Expand);
819 setOperationAction(ISD::MULHU, MVT::i32, Expand);
820 if (Subtarget->isThumb1Only()) {
821 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
822 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
823 }
824 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
825 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
826 setOperationAction(ISD::MULHS, MVT::i32, Expand);
827
828 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
829 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
830 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
831 setOperationAction(ISD::SRL, MVT::i64, Custom);
832 setOperationAction(ISD::SRA, MVT::i64, Custom);
833 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
834
835 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
836 if (Subtarget->isThumb1Only()) {
837 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
838 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
839 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
840 }
841
842 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
843 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
844
845 // ARM does not have ROTL.
846 setOperationAction(ISD::ROTL, MVT::i32, Expand);
847 for (MVT VT : MVT::vector_valuetypes()) {
848 setOperationAction(ISD::ROTL, VT, Expand);
849 setOperationAction(ISD::ROTR, VT, Expand);
850 }
851 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
852 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
853 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
854 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
855 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
856 }
857
858 // @llvm.readcyclecounter requires the Performance Monitors extension.
859 // Default to the 0 expansion on unsupported platforms.
860 // FIXME: Technically there are older ARM CPUs that have
861 // implementation-specific ways of obtaining this information.
862 if (Subtarget->hasPerfMon())
863 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
864
865 // Only ARMv6 has BSWAP.
866 if (!Subtarget->hasV6Ops())
867 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
868
869 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
870 : Subtarget->hasDivideInARMMode();
871 if (!hasDivide) {
872 // These are expanded into libcalls if the cpu doesn't have HW divider.
873 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
874 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
875 }
876
877 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
878 setOperationAction(ISD::SDIV, MVT::i32, Custom);
879 setOperationAction(ISD::UDIV, MVT::i32, Custom);
880
881 setOperationAction(ISD::SDIV, MVT::i64, Custom);
882 setOperationAction(ISD::UDIV, MVT::i64, Custom);
883 }
884
885 setOperationAction(ISD::SREM, MVT::i32, Expand);
886 setOperationAction(ISD::UREM, MVT::i32, Expand);
887
888 // Register based DivRem for AEABI (RTABI 4.2)
889 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
890 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
891 Subtarget->isTargetWindows()) {
892 setOperationAction(ISD::SREM, MVT::i64, Custom);
893 setOperationAction(ISD::UREM, MVT::i64, Custom);
894 HasStandaloneRem = false;
895
896 if (Subtarget->isTargetWindows()) {
897 const struct {
898 const RTLIB::Libcall Op;
899 const char * const Name;
900 const CallingConv::ID CC;
901 } LibraryCalls[] = {
902 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
903 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
904 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
905 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
906
907 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
908 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
909 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
910 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
911 };
912
913 for (const auto &LC : LibraryCalls) {
914 setLibcallName(LC.Op, LC.Name);
915 setLibcallCallingConv(LC.Op, LC.CC);
916 }
917 } else {
918 const struct {
919 const RTLIB::Libcall Op;
920 const char * const Name;
921 const CallingConv::ID CC;
922 } LibraryCalls[] = {
923 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
924 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
925 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
926 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
927
928 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
929 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
930 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
931 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
932 };
933
934 for (const auto &LC : LibraryCalls) {
935 setLibcallName(LC.Op, LC.Name);
936 setLibcallCallingConv(LC.Op, LC.CC);
937 }
938 }
939
940 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
941 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
942 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
943 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
944 } else {
945 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
946 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
947 }
948
949 if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
950 for (auto &VT : {MVT::f32, MVT::f64})
951 setOperationAction(ISD::FPOWI, VT, Custom);
952
953 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
954 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
955 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
956 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
957
958 setOperationAction(ISD::TRAP, MVT::Other, Legal);
959 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
960
961 // Use the default implementation.
962 setOperationAction(ISD::VASTART, MVT::Other, Custom);
963 setOperationAction(ISD::VAARG, MVT::Other, Expand);
964 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
965 setOperationAction(ISD::VAEND, MVT::Other, Expand);
966 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
967 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
968
969 if (Subtarget->isTargetWindows())
970 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
971 else
972 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
973
974 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
975 // the default expansion.
976 InsertFencesForAtomic = false;
977 if (Subtarget->hasAnyDataBarrier() &&
978 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
979 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
980 // to ldrex/strex loops already.
981 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
982 if (!Subtarget->isThumb() || !Subtarget->isMClass())
983 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
984
985 // On v8, we have particularly efficient implementations of atomic fences
986 // if they can be combined with nearby atomic loads and stores.
987 if (!Subtarget->hasAcquireRelease() ||
988 getTargetMachine().getOptLevel() == 0) {
989 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
990 InsertFencesForAtomic = true;
991 }
992 } else {
993 // If there's anything we can use as a barrier, go through custom lowering
994 // for ATOMIC_FENCE.
995 // If target has DMB in thumb, Fences can be inserted.
996 if (Subtarget->hasDataBarrier())
997 InsertFencesForAtomic = true;
998
999 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1000 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1001
1002 // Set them all for expansion, which will force libcalls.
1003 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
1004 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
1005 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
1006 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1007 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1008 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1009 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1010 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1011 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1012 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1013 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1014 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1015 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1016 // Unordered/Monotonic case.
1017 if (!InsertFencesForAtomic) {
1018 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1019 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1020 }
1021 }
1022
1023 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1024
1025 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1026 if (!Subtarget->hasV6Ops()) {
1027 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1028 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1029 }
1030 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1031
1032 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1033 !Subtarget->isThumb1Only()) {
1034 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1035 // iff target supports vfp2.
1036 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1037 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1038 }
1039
1040 // We want to custom lower some of our intrinsics.
1041 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1042 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1043 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1044 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1045 if (Subtarget->useSjLjEH())
1046 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1047
1048 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1049 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1050 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1051 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1052 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1053 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1054 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1055 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1056 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1057 if (Subtarget->hasFullFP16()) {
1058 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1059 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1060 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1061 }
1062
1063 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1064
1065 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1066 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1067 if (Subtarget->hasFullFP16())
1068 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1069 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1070 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1071 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1072
1073 // We don't support sin/cos/fmod/copysign/pow
1074 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1075 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1076 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1077 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1078 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1079 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1080 setOperationAction(ISD::FREM, MVT::f64, Expand);
1081 setOperationAction(ISD::FREM, MVT::f32, Expand);
1082 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1083 !Subtarget->isThumb1Only()) {
1084 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1085 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1086 }
1087 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1088 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1089
1090 if (!Subtarget->hasVFP4()) {
1091 setOperationAction(ISD::FMA, MVT::f64, Expand);
1092 setOperationAction(ISD::FMA, MVT::f32, Expand);
1093 }
1094
1095 // Various VFP goodness
1096 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1097 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1098 if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1099 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1100 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1101 }
1102
1103 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1104 if (!Subtarget->hasFP16()) {
1105 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1106 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1107 }
1108 }
1109
1110 // Use __sincos_stret if available.
1111 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1112 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1113 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1114 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1115 }
1116
1117 // FP-ARMv8 implements a lot of rounding-like FP operations.
1118 if (Subtarget->hasFPARMv8()) {
1119 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1120 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1121 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1122 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1123 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1124 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1125 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1126 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1127 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1128 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1129 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1130 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1131
1132 if (!Subtarget->isFPOnlySP()) {
1133 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1134 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1135 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1136 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1137 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1138 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1139 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1140 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1141 }
1142 }
1143
1144 if (Subtarget->hasNEON()) {
1145 // vmin and vmax aren't available in a scalar form, so we use
1146 // a NEON instruction with an undef lane instead.
1147 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1148 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1149 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1150 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1151 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1152 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1153 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1154 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1155
1156 if (Subtarget->hasFullFP16()) {
1157 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1158 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1159 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1160 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1161
1162 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1163 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1164 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1165 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1166 }
1167 }
1168
1169 // We have target-specific dag combine patterns for the following nodes:
1170 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1171 setTargetDAGCombine(ISD::ADD);
1172 setTargetDAGCombine(ISD::SUB);
1173 setTargetDAGCombine(ISD::MUL);
1174 setTargetDAGCombine(ISD::AND);
1175 setTargetDAGCombine(ISD::OR);
1176 setTargetDAGCombine(ISD::XOR);
1177
1178 if (Subtarget->hasV6Ops())
1179 setTargetDAGCombine(ISD::SRL);
1180
1181 setStackPointerRegisterToSaveRestore(ARM::SP);
1182
1183 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1184 !Subtarget->hasVFP2())
1185 setSchedulingPreference(Sched::RegPressure);
1186 else
1187 setSchedulingPreference(Sched::Hybrid);
1188
1189 //// temporary - rewrite interface to use type
1190 MaxStoresPerMemset = 8;
1191 MaxStoresPerMemsetOptSize = 4;
1192 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1193 MaxStoresPerMemcpyOptSize = 2;
1194 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1195 MaxStoresPerMemmoveOptSize = 2;
1196
1197 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1198 // are at least 4 bytes aligned.
1199 setMinStackArgumentAlignment(4);
1200
1201 // Prefer likely predicted branches to selects on out-of-order cores.
1202 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1203
1204 setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
1205
1206 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1207 }
1208
useSoftFloat() const1209 bool ARMTargetLowering::useSoftFloat() const {
1210 return Subtarget->useSoftFloat();
1211 }
1212
1213 // FIXME: It might make sense to define the representative register class as the
1214 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1215 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1216 // SPR's representative would be DPR_VFP2. This should work well if register
1217 // pressure tracking were modified such that a register use would increment the
1218 // pressure of the register class's representative and all of it's super
1219 // classes' representatives transitively. We have not implemented this because
1220 // of the difficulty prior to coalescing of modeling operand register classes
1221 // due to the common occurrence of cross class copies and subregister insertions
1222 // and extractions.
1223 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1224 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1225 MVT VT) const {
1226 const TargetRegisterClass *RRC = nullptr;
1227 uint8_t Cost = 1;
1228 switch (VT.SimpleTy) {
1229 default:
1230 return TargetLowering::findRepresentativeClass(TRI, VT);
1231 // Use DPR as representative register class for all floating point
1232 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1233 // the cost is 1 for both f32 and f64.
1234 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1235 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1236 RRC = &ARM::DPRRegClass;
1237 // When NEON is used for SP, only half of the register file is available
1238 // because operations that define both SP and DP results will be constrained
1239 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1240 // coalescing by double-counting the SP regs. See the FIXME above.
1241 if (Subtarget->useNEONForSinglePrecisionFP())
1242 Cost = 2;
1243 break;
1244 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1245 case MVT::v4f32: case MVT::v2f64:
1246 RRC = &ARM::DPRRegClass;
1247 Cost = 2;
1248 break;
1249 case MVT::v4i64:
1250 RRC = &ARM::DPRRegClass;
1251 Cost = 4;
1252 break;
1253 case MVT::v8i64:
1254 RRC = &ARM::DPRRegClass;
1255 Cost = 8;
1256 break;
1257 }
1258 return std::make_pair(RRC, Cost);
1259 }
1260
getTargetNodeName(unsigned Opcode) const1261 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1262 switch ((ARMISD::NodeType)Opcode) {
1263 case ARMISD::FIRST_NUMBER: break;
1264 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1265 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1266 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1267 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1268 case ARMISD::CALL: return "ARMISD::CALL";
1269 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1270 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1271 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1272 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1273 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1274 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1275 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1276 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1277 case ARMISD::CMP: return "ARMISD::CMP";
1278 case ARMISD::CMN: return "ARMISD::CMN";
1279 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1280 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1281 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1282 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1283 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1284
1285 case ARMISD::CMOV: return "ARMISD::CMOV";
1286 case ARMISD::SUBS: return "ARMISD::SUBS";
1287
1288 case ARMISD::SSAT: return "ARMISD::SSAT";
1289 case ARMISD::USAT: return "ARMISD::USAT";
1290
1291 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1292 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1293 case ARMISD::RRX: return "ARMISD::RRX";
1294
1295 case ARMISD::ADDC: return "ARMISD::ADDC";
1296 case ARMISD::ADDE: return "ARMISD::ADDE";
1297 case ARMISD::SUBC: return "ARMISD::SUBC";
1298 case ARMISD::SUBE: return "ARMISD::SUBE";
1299
1300 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1301 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1302 case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
1303 case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
1304 case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
1305
1306 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1307 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1308 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1309
1310 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1311
1312 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1313
1314 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1315
1316 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1317
1318 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1319
1320 case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
1321 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
1322
1323 case ARMISD::VCEQ: return "ARMISD::VCEQ";
1324 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
1325 case ARMISD::VCGE: return "ARMISD::VCGE";
1326 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
1327 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
1328 case ARMISD::VCGEU: return "ARMISD::VCGEU";
1329 case ARMISD::VCGT: return "ARMISD::VCGT";
1330 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
1331 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
1332 case ARMISD::VCGTU: return "ARMISD::VCGTU";
1333 case ARMISD::VTST: return "ARMISD::VTST";
1334
1335 case ARMISD::VSHL: return "ARMISD::VSHL";
1336 case ARMISD::VSHRs: return "ARMISD::VSHRs";
1337 case ARMISD::VSHRu: return "ARMISD::VSHRu";
1338 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
1339 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
1340 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
1341 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
1342 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
1343 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
1344 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
1345 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
1346 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
1347 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
1348 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
1349 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
1350 case ARMISD::VSLI: return "ARMISD::VSLI";
1351 case ARMISD::VSRI: return "ARMISD::VSRI";
1352 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1353 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1354 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1355 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1356 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1357 case ARMISD::VDUP: return "ARMISD::VDUP";
1358 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1359 case ARMISD::VEXT: return "ARMISD::VEXT";
1360 case ARMISD::VREV64: return "ARMISD::VREV64";
1361 case ARMISD::VREV32: return "ARMISD::VREV32";
1362 case ARMISD::VREV16: return "ARMISD::VREV16";
1363 case ARMISD::VZIP: return "ARMISD::VZIP";
1364 case ARMISD::VUZP: return "ARMISD::VUZP";
1365 case ARMISD::VTRN: return "ARMISD::VTRN";
1366 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1367 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1368 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1369 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1370 case ARMISD::UMAAL: return "ARMISD::UMAAL";
1371 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1372 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1373 case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
1374 case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
1375 case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
1376 case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
1377 case ARMISD::SMULWB: return "ARMISD::SMULWB";
1378 case ARMISD::SMULWT: return "ARMISD::SMULWT";
1379 case ARMISD::SMLALD: return "ARMISD::SMLALD";
1380 case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
1381 case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
1382 case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
1383 case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
1384 case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
1385 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1386 case ARMISD::BFI: return "ARMISD::BFI";
1387 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1388 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1389 case ARMISD::VBSL: return "ARMISD::VBSL";
1390 case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
1391 case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
1392 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1393 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1394 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1395 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1396 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1397 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1398 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1399 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1400 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1401 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1402 case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
1403 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1404 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1405 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1406 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1407 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1408 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1409 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1410 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1411 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1412 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1413 }
1414 return nullptr;
1415 }
1416
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1417 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1418 EVT VT) const {
1419 if (!VT.isVector())
1420 return getPointerTy(DL);
1421 return VT.changeVectorElementTypeToInteger();
1422 }
1423
1424 /// getRegClassFor - Return the register class that should be used for the
1425 /// specified value type.
getRegClassFor(MVT VT) const1426 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1427 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1428 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1429 // load / store 4 to 8 consecutive D registers.
1430 if (Subtarget->hasNEON()) {
1431 if (VT == MVT::v4i64)
1432 return &ARM::QQPRRegClass;
1433 if (VT == MVT::v8i64)
1434 return &ARM::QQQQPRRegClass;
1435 }
1436 return TargetLowering::getRegClassFor(VT);
1437 }
1438
1439 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1440 // source/dest is aligned and the copy size is large enough. We therefore want
1441 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1442 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1443 unsigned &PrefAlign) const {
1444 if (!isa<MemIntrinsic>(CI))
1445 return false;
1446 MinSize = 8;
1447 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1448 // cycle faster than 4-byte aligned LDM.
1449 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1450 return true;
1451 }
1452
1453 // Create a fast isel object.
1454 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1455 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1456 const TargetLibraryInfo *libInfo) const {
1457 return ARM::createFastISel(funcInfo, libInfo);
1458 }
1459
getSchedulingPreference(SDNode * N) const1460 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1461 unsigned NumVals = N->getNumValues();
1462 if (!NumVals)
1463 return Sched::RegPressure;
1464
1465 for (unsigned i = 0; i != NumVals; ++i) {
1466 EVT VT = N->getValueType(i);
1467 if (VT == MVT::Glue || VT == MVT::Other)
1468 continue;
1469 if (VT.isFloatingPoint() || VT.isVector())
1470 return Sched::ILP;
1471 }
1472
1473 if (!N->isMachineOpcode())
1474 return Sched::RegPressure;
1475
1476 // Load are scheduled for latency even if there instruction itinerary
1477 // is not available.
1478 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1479 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1480
1481 if (MCID.getNumDefs() == 0)
1482 return Sched::RegPressure;
1483 if (!Itins->isEmpty() &&
1484 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1485 return Sched::ILP;
1486
1487 return Sched::RegPressure;
1488 }
1489
1490 //===----------------------------------------------------------------------===//
1491 // Lowering Code
1492 //===----------------------------------------------------------------------===//
1493
isSRL16(const SDValue & Op)1494 static bool isSRL16(const SDValue &Op) {
1495 if (Op.getOpcode() != ISD::SRL)
1496 return false;
1497 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1498 return Const->getZExtValue() == 16;
1499 return false;
1500 }
1501
isSRA16(const SDValue & Op)1502 static bool isSRA16(const SDValue &Op) {
1503 if (Op.getOpcode() != ISD::SRA)
1504 return false;
1505 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1506 return Const->getZExtValue() == 16;
1507 return false;
1508 }
1509
isSHL16(const SDValue & Op)1510 static bool isSHL16(const SDValue &Op) {
1511 if (Op.getOpcode() != ISD::SHL)
1512 return false;
1513 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1514 return Const->getZExtValue() == 16;
1515 return false;
1516 }
1517
1518 // Check for a signed 16-bit value. We special case SRA because it makes it
1519 // more simple when also looking for SRAs that aren't sign extending a
1520 // smaller value. Without the check, we'd need to take extra care with
1521 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1522 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1523 if (isSRA16(Op))
1524 return isSHL16(Op.getOperand(0));
1525 return DAG.ComputeNumSignBits(Op) == 17;
1526 }
1527
1528 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1529 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1530 switch (CC) {
1531 default: llvm_unreachable("Unknown condition code!");
1532 case ISD::SETNE: return ARMCC::NE;
1533 case ISD::SETEQ: return ARMCC::EQ;
1534 case ISD::SETGT: return ARMCC::GT;
1535 case ISD::SETGE: return ARMCC::GE;
1536 case ISD::SETLT: return ARMCC::LT;
1537 case ISD::SETLE: return ARMCC::LE;
1538 case ISD::SETUGT: return ARMCC::HI;
1539 case ISD::SETUGE: return ARMCC::HS;
1540 case ISD::SETULT: return ARMCC::LO;
1541 case ISD::SETULE: return ARMCC::LS;
1542 }
1543 }
1544
1545 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2,bool & InvalidOnQNaN)1546 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1547 ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1548 CondCode2 = ARMCC::AL;
1549 InvalidOnQNaN = true;
1550 switch (CC) {
1551 default: llvm_unreachable("Unknown FP condition!");
1552 case ISD::SETEQ:
1553 case ISD::SETOEQ:
1554 CondCode = ARMCC::EQ;
1555 InvalidOnQNaN = false;
1556 break;
1557 case ISD::SETGT:
1558 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1559 case ISD::SETGE:
1560 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1561 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1562 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1563 case ISD::SETONE:
1564 CondCode = ARMCC::MI;
1565 CondCode2 = ARMCC::GT;
1566 InvalidOnQNaN = false;
1567 break;
1568 case ISD::SETO: CondCode = ARMCC::VC; break;
1569 case ISD::SETUO: CondCode = ARMCC::VS; break;
1570 case ISD::SETUEQ:
1571 CondCode = ARMCC::EQ;
1572 CondCode2 = ARMCC::VS;
1573 InvalidOnQNaN = false;
1574 break;
1575 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1576 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1577 case ISD::SETLT:
1578 case ISD::SETULT: CondCode = ARMCC::LT; break;
1579 case ISD::SETLE:
1580 case ISD::SETULE: CondCode = ARMCC::LE; break;
1581 case ISD::SETNE:
1582 case ISD::SETUNE:
1583 CondCode = ARMCC::NE;
1584 InvalidOnQNaN = false;
1585 break;
1586 }
1587 }
1588
1589 //===----------------------------------------------------------------------===//
1590 // Calling Convention Implementation
1591 //===----------------------------------------------------------------------===//
1592
1593 #include "ARMGenCallingConv.inc"
1594
1595 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1596 /// account presence of floating point hardware and calling convention
1597 /// limitations, such as support for variadic functions.
1598 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1599 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1600 bool isVarArg) const {
1601 switch (CC) {
1602 default:
1603 report_fatal_error("Unsupported calling convention");
1604 case CallingConv::ARM_AAPCS:
1605 case CallingConv::ARM_APCS:
1606 case CallingConv::GHC:
1607 return CC;
1608 case CallingConv::PreserveMost:
1609 return CallingConv::PreserveMost;
1610 case CallingConv::ARM_AAPCS_VFP:
1611 case CallingConv::Swift:
1612 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1613 case CallingConv::C:
1614 if (!Subtarget->isAAPCS_ABI())
1615 return CallingConv::ARM_APCS;
1616 else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1617 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1618 !isVarArg)
1619 return CallingConv::ARM_AAPCS_VFP;
1620 else
1621 return CallingConv::ARM_AAPCS;
1622 case CallingConv::Fast:
1623 case CallingConv::CXX_FAST_TLS:
1624 if (!Subtarget->isAAPCS_ABI()) {
1625 if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1626 return CallingConv::Fast;
1627 return CallingConv::ARM_APCS;
1628 } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1629 return CallingConv::ARM_AAPCS_VFP;
1630 else
1631 return CallingConv::ARM_AAPCS;
1632 }
1633 }
1634
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const1635 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1636 bool isVarArg) const {
1637 return CCAssignFnForNode(CC, false, isVarArg);
1638 }
1639
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const1640 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1641 bool isVarArg) const {
1642 return CCAssignFnForNode(CC, true, isVarArg);
1643 }
1644
1645 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1646 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1647 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1648 bool Return,
1649 bool isVarArg) const {
1650 switch (getEffectiveCallingConv(CC, isVarArg)) {
1651 default:
1652 report_fatal_error("Unsupported calling convention");
1653 case CallingConv::ARM_APCS:
1654 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1655 case CallingConv::ARM_AAPCS:
1656 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1657 case CallingConv::ARM_AAPCS_VFP:
1658 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1659 case CallingConv::Fast:
1660 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1661 case CallingConv::GHC:
1662 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1663 case CallingConv::PreserveMost:
1664 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1665 }
1666 }
1667
1668 /// LowerCallResult - Lower the result values of a call into the
1669 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const1670 SDValue ARMTargetLowering::LowerCallResult(
1671 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1672 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1673 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1674 SDValue ThisVal) const {
1675 // Assign locations to each value returned by this call.
1676 SmallVector<CCValAssign, 16> RVLocs;
1677 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1678 *DAG.getContext());
1679 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1680
1681 // Copy all of the result registers out of their specified physreg.
1682 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1683 CCValAssign VA = RVLocs[i];
1684
1685 // Pass 'this' value directly from the argument to return value, to avoid
1686 // reg unit interference
1687 if (i == 0 && isThisReturn) {
1688 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1689 "unexpected return calling convention register assignment");
1690 InVals.push_back(ThisVal);
1691 continue;
1692 }
1693
1694 SDValue Val;
1695 if (VA.needsCustom()) {
1696 // Handle f64 or half of a v2f64.
1697 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1698 InFlag);
1699 Chain = Lo.getValue(1);
1700 InFlag = Lo.getValue(2);
1701 VA = RVLocs[++i]; // skip ahead to next loc
1702 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1703 InFlag);
1704 Chain = Hi.getValue(1);
1705 InFlag = Hi.getValue(2);
1706 if (!Subtarget->isLittle())
1707 std::swap (Lo, Hi);
1708 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1709
1710 if (VA.getLocVT() == MVT::v2f64) {
1711 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1712 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1713 DAG.getConstant(0, dl, MVT::i32));
1714
1715 VA = RVLocs[++i]; // skip ahead to next loc
1716 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1717 Chain = Lo.getValue(1);
1718 InFlag = Lo.getValue(2);
1719 VA = RVLocs[++i]; // skip ahead to next loc
1720 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1721 Chain = Hi.getValue(1);
1722 InFlag = Hi.getValue(2);
1723 if (!Subtarget->isLittle())
1724 std::swap (Lo, Hi);
1725 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1726 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1727 DAG.getConstant(1, dl, MVT::i32));
1728 }
1729 } else {
1730 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1731 InFlag);
1732 Chain = Val.getValue(1);
1733 InFlag = Val.getValue(2);
1734 }
1735
1736 switch (VA.getLocInfo()) {
1737 default: llvm_unreachable("Unknown loc info!");
1738 case CCValAssign::Full: break;
1739 case CCValAssign::BCvt:
1740 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1741 break;
1742 }
1743
1744 InVals.push_back(Val);
1745 }
1746
1747 return Chain;
1748 }
1749
1750 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1751 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1752 SDValue Arg, const SDLoc &dl,
1753 SelectionDAG &DAG,
1754 const CCValAssign &VA,
1755 ISD::ArgFlagsTy Flags) const {
1756 unsigned LocMemOffset = VA.getLocMemOffset();
1757 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1758 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1759 StackPtr, PtrOff);
1760 return DAG.getStore(
1761 Chain, dl, Arg, PtrOff,
1762 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1763 }
1764
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const1765 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1766 SDValue Chain, SDValue &Arg,
1767 RegsToPassVector &RegsToPass,
1768 CCValAssign &VA, CCValAssign &NextVA,
1769 SDValue &StackPtr,
1770 SmallVectorImpl<SDValue> &MemOpChains,
1771 ISD::ArgFlagsTy Flags) const {
1772 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1773 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1774 unsigned id = Subtarget->isLittle() ? 0 : 1;
1775 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1776
1777 if (NextVA.isRegLoc())
1778 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1779 else {
1780 assert(NextVA.isMemLoc());
1781 if (!StackPtr.getNode())
1782 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1783 getPointerTy(DAG.getDataLayout()));
1784
1785 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1786 dl, DAG, NextVA,
1787 Flags));
1788 }
1789 }
1790
1791 /// LowerCall - Lowering a call into a callseq_start <-
1792 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1793 /// nodes.
1794 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1795 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1796 SmallVectorImpl<SDValue> &InVals) const {
1797 SelectionDAG &DAG = CLI.DAG;
1798 SDLoc &dl = CLI.DL;
1799 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1800 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1801 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1802 SDValue Chain = CLI.Chain;
1803 SDValue Callee = CLI.Callee;
1804 bool &isTailCall = CLI.IsTailCall;
1805 CallingConv::ID CallConv = CLI.CallConv;
1806 bool doesNotRet = CLI.DoesNotReturn;
1807 bool isVarArg = CLI.IsVarArg;
1808
1809 MachineFunction &MF = DAG.getMachineFunction();
1810 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1811 bool isThisReturn = false;
1812 bool isSibCall = false;
1813 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1814
1815 // Disable tail calls if they're not supported.
1816 if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1817 isTailCall = false;
1818
1819 if (isTailCall) {
1820 // Check if it's really possible to do a tail call.
1821 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1822 isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
1823 Outs, OutVals, Ins, DAG);
1824 if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1825 report_fatal_error("failed to perform tail call elimination on a call "
1826 "site marked musttail");
1827 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1828 // detected sibcalls.
1829 if (isTailCall) {
1830 ++NumTailCalls;
1831 isSibCall = true;
1832 }
1833 }
1834
1835 // Analyze operands of the call, assigning locations to each operand.
1836 SmallVector<CCValAssign, 16> ArgLocs;
1837 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1838 *DAG.getContext());
1839 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1840
1841 // Get a count of how many bytes are to be pushed on the stack.
1842 unsigned NumBytes = CCInfo.getNextStackOffset();
1843
1844 // For tail calls, memory operands are available in our caller's stack.
1845 if (isSibCall)
1846 NumBytes = 0;
1847
1848 // Adjust the stack pointer for the new arguments...
1849 // These operations are automatically eliminated by the prolog/epilog pass
1850 if (!isSibCall)
1851 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1852
1853 SDValue StackPtr =
1854 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1855
1856 RegsToPassVector RegsToPass;
1857 SmallVector<SDValue, 8> MemOpChains;
1858
1859 // Walk the register/memloc assignments, inserting copies/loads. In the case
1860 // of tail call optimization, arguments are handled later.
1861 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1862 i != e;
1863 ++i, ++realArgIdx) {
1864 CCValAssign &VA = ArgLocs[i];
1865 SDValue Arg = OutVals[realArgIdx];
1866 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1867 bool isByVal = Flags.isByVal();
1868
1869 // Promote the value if needed.
1870 switch (VA.getLocInfo()) {
1871 default: llvm_unreachable("Unknown loc info!");
1872 case CCValAssign::Full: break;
1873 case CCValAssign::SExt:
1874 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1875 break;
1876 case CCValAssign::ZExt:
1877 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1878 break;
1879 case CCValAssign::AExt:
1880 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1881 break;
1882 case CCValAssign::BCvt:
1883 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1884 break;
1885 }
1886
1887 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1888 if (VA.needsCustom()) {
1889 if (VA.getLocVT() == MVT::v2f64) {
1890 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1891 DAG.getConstant(0, dl, MVT::i32));
1892 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1893 DAG.getConstant(1, dl, MVT::i32));
1894
1895 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1896 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1897
1898 VA = ArgLocs[++i]; // skip ahead to next loc
1899 if (VA.isRegLoc()) {
1900 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1901 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1902 } else {
1903 assert(VA.isMemLoc());
1904
1905 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1906 dl, DAG, VA, Flags));
1907 }
1908 } else {
1909 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1910 StackPtr, MemOpChains, Flags);
1911 }
1912 } else if (VA.isRegLoc()) {
1913 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1914 Outs[0].VT == MVT::i32) {
1915 assert(VA.getLocVT() == MVT::i32 &&
1916 "unexpected calling convention register assignment");
1917 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1918 "unexpected use of 'returned'");
1919 isThisReturn = true;
1920 }
1921 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1922 } else if (isByVal) {
1923 assert(VA.isMemLoc());
1924 unsigned offset = 0;
1925
1926 // True if this byval aggregate will be split between registers
1927 // and memory.
1928 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1929 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1930
1931 if (CurByValIdx < ByValArgsCount) {
1932
1933 unsigned RegBegin, RegEnd;
1934 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1935
1936 EVT PtrVT =
1937 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1938 unsigned int i, j;
1939 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1940 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1941 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1942 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1943 MachinePointerInfo(),
1944 DAG.InferPtrAlignment(AddArg));
1945 MemOpChains.push_back(Load.getValue(1));
1946 RegsToPass.push_back(std::make_pair(j, Load));
1947 }
1948
1949 // If parameter size outsides register area, "offset" value
1950 // helps us to calculate stack slot for remained part properly.
1951 offset = RegEnd - RegBegin;
1952
1953 CCInfo.nextInRegsParam();
1954 }
1955
1956 if (Flags.getByValSize() > 4*offset) {
1957 auto PtrVT = getPointerTy(DAG.getDataLayout());
1958 unsigned LocMemOffset = VA.getLocMemOffset();
1959 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1960 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1961 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1962 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1963 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1964 MVT::i32);
1965 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1966 MVT::i32);
1967
1968 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1969 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1970 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1971 Ops));
1972 }
1973 } else if (!isSibCall) {
1974 assert(VA.isMemLoc());
1975
1976 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1977 dl, DAG, VA, Flags));
1978 }
1979 }
1980
1981 if (!MemOpChains.empty())
1982 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1983
1984 // Build a sequence of copy-to-reg nodes chained together with token chain
1985 // and flag operands which copy the outgoing args into the appropriate regs.
1986 SDValue InFlag;
1987 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1988 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1989 RegsToPass[i].second, InFlag);
1990 InFlag = Chain.getValue(1);
1991 }
1992
1993 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1994 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1995 // node so that legalize doesn't hack it.
1996 bool isDirect = false;
1997
1998 const TargetMachine &TM = getTargetMachine();
1999 const Module *Mod = MF.getFunction().getParent();
2000 const GlobalValue *GV = nullptr;
2001 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2002 GV = G->getGlobal();
2003 bool isStub =
2004 !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2005
2006 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2007 bool isLocalARMFunc = false;
2008 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2009 auto PtrVt = getPointerTy(DAG.getDataLayout());
2010
2011 if (Subtarget->genLongCalls()) {
2012 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2013 "long-calls codegen is not position independent!");
2014 // Handle a global address or an external symbol. If it's not one of
2015 // those, the target's already in a register, so we don't need to do
2016 // anything extra.
2017 if (isa<GlobalAddressSDNode>(Callee)) {
2018 // Create a constant pool entry for the callee address
2019 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2020 ARMConstantPoolValue *CPV =
2021 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2022
2023 // Get the address of the callee into a register
2024 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2025 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2026 Callee = DAG.getLoad(
2027 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2028 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2029 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2030 const char *Sym = S->getSymbol();
2031
2032 // Create a constant pool entry for the callee address
2033 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2034 ARMConstantPoolValue *CPV =
2035 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2036 ARMPCLabelIndex, 0);
2037 // Get the address of the callee into a register
2038 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2039 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2040 Callee = DAG.getLoad(
2041 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2042 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2043 }
2044 } else if (isa<GlobalAddressSDNode>(Callee)) {
2045 // If we're optimizing for minimum size and the function is called three or
2046 // more times in this block, we can improve codesize by calling indirectly
2047 // as BLXr has a 16-bit encoding.
2048 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2049 auto *BB = CLI.CS.getParent();
2050 bool PreferIndirect =
2051 Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
2052 count_if(GV->users(), [&BB](const User *U) {
2053 return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2054 }) > 2;
2055
2056 if (!PreferIndirect) {
2057 isDirect = true;
2058 bool isDef = GV->isStrongDefinitionForLinker();
2059
2060 // ARM call to a local ARM function is predicable.
2061 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2062 // tBX takes a register source operand.
2063 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2064 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2065 Callee = DAG.getNode(
2066 ARMISD::WrapperPIC, dl, PtrVt,
2067 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2068 Callee = DAG.getLoad(
2069 PtrVt, dl, DAG.getEntryNode(), Callee,
2070 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2071 /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2072 MachineMemOperand::MOInvariant);
2073 } else if (Subtarget->isTargetCOFF()) {
2074 assert(Subtarget->isTargetWindows() &&
2075 "Windows is the only supported COFF target");
2076 unsigned TargetFlags = GV->hasDLLImportStorageClass()
2077 ? ARMII::MO_DLLIMPORT
2078 : ARMII::MO_NO_FLAG;
2079 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2080 TargetFlags);
2081 if (GV->hasDLLImportStorageClass())
2082 Callee =
2083 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2084 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2085 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2086 } else {
2087 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2088 }
2089 }
2090 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2091 isDirect = true;
2092 // tBX takes a register source operand.
2093 const char *Sym = S->getSymbol();
2094 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2095 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2096 ARMConstantPoolValue *CPV =
2097 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2098 ARMPCLabelIndex, 4);
2099 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2100 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2101 Callee = DAG.getLoad(
2102 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2103 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2104 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2105 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2106 } else {
2107 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2108 }
2109 }
2110
2111 // FIXME: handle tail calls differently.
2112 unsigned CallOpc;
2113 if (Subtarget->isThumb()) {
2114 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2115 CallOpc = ARMISD::CALL_NOLINK;
2116 else
2117 CallOpc = ARMISD::CALL;
2118 } else {
2119 if (!isDirect && !Subtarget->hasV5TOps())
2120 CallOpc = ARMISD::CALL_NOLINK;
2121 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2122 // Emit regular call when code size is the priority
2123 !MF.getFunction().optForMinSize())
2124 // "mov lr, pc; b _foo" to avoid confusing the RSP
2125 CallOpc = ARMISD::CALL_NOLINK;
2126 else
2127 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2128 }
2129
2130 std::vector<SDValue> Ops;
2131 Ops.push_back(Chain);
2132 Ops.push_back(Callee);
2133
2134 // Add argument registers to the end of the list so that they are known live
2135 // into the call.
2136 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2137 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2138 RegsToPass[i].second.getValueType()));
2139
2140 // Add a register mask operand representing the call-preserved registers.
2141 if (!isTailCall) {
2142 const uint32_t *Mask;
2143 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2144 if (isThisReturn) {
2145 // For 'this' returns, use the R0-preserving mask if applicable
2146 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2147 if (!Mask) {
2148 // Set isThisReturn to false if the calling convention is not one that
2149 // allows 'returned' to be modeled in this way, so LowerCallResult does
2150 // not try to pass 'this' straight through
2151 isThisReturn = false;
2152 Mask = ARI->getCallPreservedMask(MF, CallConv);
2153 }
2154 } else
2155 Mask = ARI->getCallPreservedMask(MF, CallConv);
2156
2157 assert(Mask && "Missing call preserved mask for calling convention");
2158 Ops.push_back(DAG.getRegisterMask(Mask));
2159 }
2160
2161 if (InFlag.getNode())
2162 Ops.push_back(InFlag);
2163
2164 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2165 if (isTailCall) {
2166 MF.getFrameInfo().setHasTailCall();
2167 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2168 }
2169
2170 // Returns a chain and a flag for retval copy to use.
2171 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2172 InFlag = Chain.getValue(1);
2173
2174 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2175 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2176 if (!Ins.empty())
2177 InFlag = Chain.getValue(1);
2178
2179 // Handle result values, copying them out of physregs into vregs that we
2180 // return.
2181 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2182 InVals, isThisReturn,
2183 isThisReturn ? OutVals[0] : SDValue());
2184 }
2185
2186 /// HandleByVal - Every parameter *after* a byval parameter is passed
2187 /// on the stack. Remember the next parameter register to allocate,
2188 /// and then confiscate the rest of the parameter registers to insure
2189 /// this.
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const2190 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2191 unsigned Align) const {
2192 // Byval (as with any stack) slots are always at least 4 byte aligned.
2193 Align = std::max(Align, 4U);
2194
2195 unsigned Reg = State->AllocateReg(GPRArgRegs);
2196 if (!Reg)
2197 return;
2198
2199 unsigned AlignInRegs = Align / 4;
2200 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2201 for (unsigned i = 0; i < Waste; ++i)
2202 Reg = State->AllocateReg(GPRArgRegs);
2203
2204 if (!Reg)
2205 return;
2206
2207 unsigned Excess = 4 * (ARM::R4 - Reg);
2208
2209 // Special case when NSAA != SP and parameter size greater than size of
2210 // all remained GPR regs. In that case we can't split parameter, we must
2211 // send it to stack. We also must set NCRN to R4, so waste all
2212 // remained registers.
2213 const unsigned NSAAOffset = State->getNextStackOffset();
2214 if (NSAAOffset != 0 && Size > Excess) {
2215 while (State->AllocateReg(GPRArgRegs))
2216 ;
2217 return;
2218 }
2219
2220 // First register for byval parameter is the first register that wasn't
2221 // allocated before this method call, so it would be "reg".
2222 // If parameter is small enough to be saved in range [reg, r4), then
2223 // the end (first after last) register would be reg + param-size-in-regs,
2224 // else parameter would be splitted between registers and stack,
2225 // end register would be r4 in this case.
2226 unsigned ByValRegBegin = Reg;
2227 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2228 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2229 // Note, first register is allocated in the beginning of function already,
2230 // allocate remained amount of registers we need.
2231 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2232 State->AllocateReg(GPRArgRegs);
2233 // A byval parameter that is split between registers and memory needs its
2234 // size truncated here.
2235 // In the case where the entire structure fits in registers, we set the
2236 // size in memory to zero.
2237 Size = std::max<int>(Size - Excess, 0);
2238 }
2239
2240 /// MatchingStackOffset - Return true if the given stack call argument is
2241 /// already available in the same position (relatively) of the caller's
2242 /// incoming argument stack.
2243 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2244 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2245 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2246 const TargetInstrInfo *TII) {
2247 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2248 int FI = std::numeric_limits<int>::max();
2249 if (Arg.getOpcode() == ISD::CopyFromReg) {
2250 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2251 if (!TargetRegisterInfo::isVirtualRegister(VR))
2252 return false;
2253 MachineInstr *Def = MRI->getVRegDef(VR);
2254 if (!Def)
2255 return false;
2256 if (!Flags.isByVal()) {
2257 if (!TII->isLoadFromStackSlot(*Def, FI))
2258 return false;
2259 } else {
2260 return false;
2261 }
2262 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2263 if (Flags.isByVal())
2264 // ByVal argument is passed in as a pointer but it's now being
2265 // dereferenced. e.g.
2266 // define @foo(%struct.X* %A) {
2267 // tail call @bar(%struct.X* byval %A)
2268 // }
2269 return false;
2270 SDValue Ptr = Ld->getBasePtr();
2271 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2272 if (!FINode)
2273 return false;
2274 FI = FINode->getIndex();
2275 } else
2276 return false;
2277
2278 assert(FI != std::numeric_limits<int>::max());
2279 if (!MFI.isFixedObjectIndex(FI))
2280 return false;
2281 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2282 }
2283
2284 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2285 /// for tail call optimization. Targets which want to do tail call
2286 /// optimization should implement this function.
2287 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2288 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2289 CallingConv::ID CalleeCC,
2290 bool isVarArg,
2291 bool isCalleeStructRet,
2292 bool isCallerStructRet,
2293 const SmallVectorImpl<ISD::OutputArg> &Outs,
2294 const SmallVectorImpl<SDValue> &OutVals,
2295 const SmallVectorImpl<ISD::InputArg> &Ins,
2296 SelectionDAG& DAG) const {
2297 MachineFunction &MF = DAG.getMachineFunction();
2298 const Function &CallerF = MF.getFunction();
2299 CallingConv::ID CallerCC = CallerF.getCallingConv();
2300
2301 assert(Subtarget->supportsTailCall());
2302
2303 // Tail calls to function pointers cannot be optimized for Thumb1 if the args
2304 // to the call take up r0-r3. The reason is that there are no legal registers
2305 // left to hold the pointer to the function to be called.
2306 if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2307 !isa<GlobalAddressSDNode>(Callee.getNode()))
2308 return false;
2309
2310 // Look for obvious safe cases to perform tail call optimization that do not
2311 // require ABI changes. This is what gcc calls sibcall.
2312
2313 // Exception-handling functions need a special set of instructions to indicate
2314 // a return to the hardware. Tail-calling another function would probably
2315 // break this.
2316 if (CallerF.hasFnAttribute("interrupt"))
2317 return false;
2318
2319 // Also avoid sibcall optimization if either caller or callee uses struct
2320 // return semantics.
2321 if (isCalleeStructRet || isCallerStructRet)
2322 return false;
2323
2324 // Externally-defined functions with weak linkage should not be
2325 // tail-called on ARM when the OS does not support dynamic
2326 // pre-emption of symbols, as the AAELF spec requires normal calls
2327 // to undefined weak functions to be replaced with a NOP or jump to the
2328 // next instruction. The behaviour of branch instructions in this
2329 // situation (as used for tail calls) is implementation-defined, so we
2330 // cannot rely on the linker replacing the tail call with a return.
2331 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2332 const GlobalValue *GV = G->getGlobal();
2333 const Triple &TT = getTargetMachine().getTargetTriple();
2334 if (GV->hasExternalWeakLinkage() &&
2335 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2336 return false;
2337 }
2338
2339 // Check that the call results are passed in the same way.
2340 LLVMContext &C = *DAG.getContext();
2341 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2342 CCAssignFnForReturn(CalleeCC, isVarArg),
2343 CCAssignFnForReturn(CallerCC, isVarArg)))
2344 return false;
2345 // The callee has to preserve all registers the caller needs to preserve.
2346 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2347 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2348 if (CalleeCC != CallerCC) {
2349 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2350 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2351 return false;
2352 }
2353
2354 // If Caller's vararg or byval argument has been split between registers and
2355 // stack, do not perform tail call, since part of the argument is in caller's
2356 // local frame.
2357 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2358 if (AFI_Caller->getArgRegsSaveSize())
2359 return false;
2360
2361 // If the callee takes no arguments then go on to check the results of the
2362 // call.
2363 if (!Outs.empty()) {
2364 // Check if stack adjustment is needed. For now, do not do this if any
2365 // argument is passed on the stack.
2366 SmallVector<CCValAssign, 16> ArgLocs;
2367 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2368 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2369 if (CCInfo.getNextStackOffset()) {
2370 // Check if the arguments are already laid out in the right way as
2371 // the caller's fixed stack objects.
2372 MachineFrameInfo &MFI = MF.getFrameInfo();
2373 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2374 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2375 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2376 i != e;
2377 ++i, ++realArgIdx) {
2378 CCValAssign &VA = ArgLocs[i];
2379 EVT RegVT = VA.getLocVT();
2380 SDValue Arg = OutVals[realArgIdx];
2381 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2382 if (VA.getLocInfo() == CCValAssign::Indirect)
2383 return false;
2384 if (VA.needsCustom()) {
2385 // f64 and vector types are split into multiple registers or
2386 // register/stack-slot combinations. The types will not match
2387 // the registers; give up on memory f64 refs until we figure
2388 // out what to do about this.
2389 if (!VA.isRegLoc())
2390 return false;
2391 if (!ArgLocs[++i].isRegLoc())
2392 return false;
2393 if (RegVT == MVT::v2f64) {
2394 if (!ArgLocs[++i].isRegLoc())
2395 return false;
2396 if (!ArgLocs[++i].isRegLoc())
2397 return false;
2398 }
2399 } else if (!VA.isRegLoc()) {
2400 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2401 MFI, MRI, TII))
2402 return false;
2403 }
2404 }
2405 }
2406
2407 const MachineRegisterInfo &MRI = MF.getRegInfo();
2408 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2409 return false;
2410 }
2411
2412 return true;
2413 }
2414
2415 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2416 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2417 MachineFunction &MF, bool isVarArg,
2418 const SmallVectorImpl<ISD::OutputArg> &Outs,
2419 LLVMContext &Context) const {
2420 SmallVector<CCValAssign, 16> RVLocs;
2421 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2422 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2423 }
2424
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2425 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2426 const SDLoc &DL, SelectionDAG &DAG) {
2427 const MachineFunction &MF = DAG.getMachineFunction();
2428 const Function &F = MF.getFunction();
2429
2430 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2431
2432 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2433 // version of the "preferred return address". These offsets affect the return
2434 // instruction if this is a return from PL1 without hypervisor extensions.
2435 // IRQ/FIQ: +4 "subs pc, lr, #4"
2436 // SWI: 0 "subs pc, lr, #0"
2437 // ABORT: +4 "subs pc, lr, #4"
2438 // UNDEF: +4/+2 "subs pc, lr, #0"
2439 // UNDEF varies depending on where the exception came from ARM or Thumb
2440 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2441
2442 int64_t LROffset;
2443 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2444 IntKind == "ABORT")
2445 LROffset = 4;
2446 else if (IntKind == "SWI" || IntKind == "UNDEF")
2447 LROffset = 0;
2448 else
2449 report_fatal_error("Unsupported interrupt attribute. If present, value "
2450 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2451
2452 RetOps.insert(RetOps.begin() + 1,
2453 DAG.getConstant(LROffset, DL, MVT::i32, false));
2454
2455 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2456 }
2457
2458 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2459 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2460 bool isVarArg,
2461 const SmallVectorImpl<ISD::OutputArg> &Outs,
2462 const SmallVectorImpl<SDValue> &OutVals,
2463 const SDLoc &dl, SelectionDAG &DAG) const {
2464 // CCValAssign - represent the assignment of the return value to a location.
2465 SmallVector<CCValAssign, 16> RVLocs;
2466
2467 // CCState - Info about the registers and stack slots.
2468 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2469 *DAG.getContext());
2470
2471 // Analyze outgoing return values.
2472 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2473
2474 SDValue Flag;
2475 SmallVector<SDValue, 4> RetOps;
2476 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2477 bool isLittleEndian = Subtarget->isLittle();
2478
2479 MachineFunction &MF = DAG.getMachineFunction();
2480 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2481 AFI->setReturnRegsCount(RVLocs.size());
2482
2483 // Copy the result values into the output registers.
2484 for (unsigned i = 0, realRVLocIdx = 0;
2485 i != RVLocs.size();
2486 ++i, ++realRVLocIdx) {
2487 CCValAssign &VA = RVLocs[i];
2488 assert(VA.isRegLoc() && "Can only return in registers!");
2489
2490 SDValue Arg = OutVals[realRVLocIdx];
2491 bool ReturnF16 = false;
2492
2493 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2494 // Half-precision return values can be returned like this:
2495 //
2496 // t11 f16 = fadd ...
2497 // t12: i16 = bitcast t11
2498 // t13: i32 = zero_extend t12
2499 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2500 //
2501 // to avoid code generation for bitcasts, we simply set Arg to the node
2502 // that produces the f16 value, t11 in this case.
2503 //
2504 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2505 SDValue ZE = Arg.getOperand(0);
2506 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2507 SDValue BC = ZE.getOperand(0);
2508 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2509 Arg = BC.getOperand(0);
2510 ReturnF16 = true;
2511 }
2512 }
2513 }
2514 }
2515
2516 switch (VA.getLocInfo()) {
2517 default: llvm_unreachable("Unknown loc info!");
2518 case CCValAssign::Full: break;
2519 case CCValAssign::BCvt:
2520 if (!ReturnF16)
2521 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2522 break;
2523 }
2524
2525 if (VA.needsCustom()) {
2526 if (VA.getLocVT() == MVT::v2f64) {
2527 // Extract the first half and return it in two registers.
2528 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2529 DAG.getConstant(0, dl, MVT::i32));
2530 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2531 DAG.getVTList(MVT::i32, MVT::i32), Half);
2532
2533 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2534 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2535 Flag);
2536 Flag = Chain.getValue(1);
2537 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2538 VA = RVLocs[++i]; // skip ahead to next loc
2539 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2540 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2541 Flag);
2542 Flag = Chain.getValue(1);
2543 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2544 VA = RVLocs[++i]; // skip ahead to next loc
2545
2546 // Extract the 2nd half and fall through to handle it as an f64 value.
2547 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2548 DAG.getConstant(1, dl, MVT::i32));
2549 }
2550 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2551 // available.
2552 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2553 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2554 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2555 fmrrd.getValue(isLittleEndian ? 0 : 1),
2556 Flag);
2557 Flag = Chain.getValue(1);
2558 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2559 VA = RVLocs[++i]; // skip ahead to next loc
2560 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2561 fmrrd.getValue(isLittleEndian ? 1 : 0),
2562 Flag);
2563 } else
2564 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2565
2566 // Guarantee that all emitted copies are
2567 // stuck together, avoiding something bad.
2568 Flag = Chain.getValue(1);
2569 RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2570 ReturnF16 ? MVT::f16 : VA.getLocVT()));
2571 }
2572 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2573 const MCPhysReg *I =
2574 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2575 if (I) {
2576 for (; *I; ++I) {
2577 if (ARM::GPRRegClass.contains(*I))
2578 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2579 else if (ARM::DPRRegClass.contains(*I))
2580 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2581 else
2582 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2583 }
2584 }
2585
2586 // Update chain and glue.
2587 RetOps[0] = Chain;
2588 if (Flag.getNode())
2589 RetOps.push_back(Flag);
2590
2591 // CPUs which aren't M-class use a special sequence to return from
2592 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2593 // though we use "subs pc, lr, #N").
2594 //
2595 // M-class CPUs actually use a normal return sequence with a special
2596 // (hardware-provided) value in LR, so the normal code path works.
2597 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2598 !Subtarget->isMClass()) {
2599 if (Subtarget->isThumb1Only())
2600 report_fatal_error("interrupt attribute is not supported in Thumb1");
2601 return LowerInterruptReturn(RetOps, dl, DAG);
2602 }
2603
2604 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2605 }
2606
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2607 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2608 if (N->getNumValues() != 1)
2609 return false;
2610 if (!N->hasNUsesOfValue(1, 0))
2611 return false;
2612
2613 SDValue TCChain = Chain;
2614 SDNode *Copy = *N->use_begin();
2615 if (Copy->getOpcode() == ISD::CopyToReg) {
2616 // If the copy has a glue operand, we conservatively assume it isn't safe to
2617 // perform a tail call.
2618 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2619 return false;
2620 TCChain = Copy->getOperand(0);
2621 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2622 SDNode *VMov = Copy;
2623 // f64 returned in a pair of GPRs.
2624 SmallPtrSet<SDNode*, 2> Copies;
2625 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2626 UI != UE; ++UI) {
2627 if (UI->getOpcode() != ISD::CopyToReg)
2628 return false;
2629 Copies.insert(*UI);
2630 }
2631 if (Copies.size() > 2)
2632 return false;
2633
2634 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2635 UI != UE; ++UI) {
2636 SDValue UseChain = UI->getOperand(0);
2637 if (Copies.count(UseChain.getNode()))
2638 // Second CopyToReg
2639 Copy = *UI;
2640 else {
2641 // We are at the top of this chain.
2642 // If the copy has a glue operand, we conservatively assume it
2643 // isn't safe to perform a tail call.
2644 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2645 return false;
2646 // First CopyToReg
2647 TCChain = UseChain;
2648 }
2649 }
2650 } else if (Copy->getOpcode() == ISD::BITCAST) {
2651 // f32 returned in a single GPR.
2652 if (!Copy->hasOneUse())
2653 return false;
2654 Copy = *Copy->use_begin();
2655 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2656 return false;
2657 // If the copy has a glue operand, we conservatively assume it isn't safe to
2658 // perform a tail call.
2659 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2660 return false;
2661 TCChain = Copy->getOperand(0);
2662 } else {
2663 return false;
2664 }
2665
2666 bool HasRet = false;
2667 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2668 UI != UE; ++UI) {
2669 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2670 UI->getOpcode() != ARMISD::INTRET_FLAG)
2671 return false;
2672 HasRet = true;
2673 }
2674
2675 if (!HasRet)
2676 return false;
2677
2678 Chain = TCChain;
2679 return true;
2680 }
2681
mayBeEmittedAsTailCall(const CallInst * CI) const2682 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2683 if (!Subtarget->supportsTailCall())
2684 return false;
2685
2686 auto Attr =
2687 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2688 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2689 return false;
2690
2691 return true;
2692 }
2693
2694 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2695 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)2696 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2697 SDLoc DL(Op);
2698 SDValue WriteValue = Op->getOperand(2);
2699
2700 // This function is only supposed to be called for i64 type argument.
2701 assert(WriteValue.getValueType() == MVT::i64
2702 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2703
2704 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2705 DAG.getConstant(0, DL, MVT::i32));
2706 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2707 DAG.getConstant(1, DL, MVT::i32));
2708 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2709 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2710 }
2711
2712 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2713 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2714 // one of the above mentioned nodes. It has to be wrapped because otherwise
2715 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2716 // be used to form addressing mode. These wrapped nodes will be selected
2717 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2718 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2719 SelectionDAG &DAG) const {
2720 EVT PtrVT = Op.getValueType();
2721 // FIXME there is no actual debug info here
2722 SDLoc dl(Op);
2723 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2724 SDValue Res;
2725
2726 // When generating execute-only code Constant Pools must be promoted to the
2727 // global data section. It's a bit ugly that we can't share them across basic
2728 // blocks, but this way we guarantee that execute-only behaves correct with
2729 // position-independent addressing modes.
2730 if (Subtarget->genExecuteOnly()) {
2731 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2732 auto T = const_cast<Type*>(CP->getType());
2733 auto C = const_cast<Constant*>(CP->getConstVal());
2734 auto M = const_cast<Module*>(DAG.getMachineFunction().
2735 getFunction().getParent());
2736 auto GV = new GlobalVariable(
2737 *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2738 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2739 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2740 Twine(AFI->createPICLabelUId())
2741 );
2742 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2743 dl, PtrVT);
2744 return LowerGlobalAddress(GA, DAG);
2745 }
2746
2747 if (CP->isMachineConstantPoolEntry())
2748 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2749 CP->getAlignment());
2750 else
2751 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2752 CP->getAlignment());
2753 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2754 }
2755
getJumpTableEncoding() const2756 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2757 return MachineJumpTableInfo::EK_Inline;
2758 }
2759
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2760 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2761 SelectionDAG &DAG) const {
2762 MachineFunction &MF = DAG.getMachineFunction();
2763 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2764 unsigned ARMPCLabelIndex = 0;
2765 SDLoc DL(Op);
2766 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2767 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2768 SDValue CPAddr;
2769 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2770 if (!IsPositionIndependent) {
2771 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2772 } else {
2773 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2774 ARMPCLabelIndex = AFI->createPICLabelUId();
2775 ARMConstantPoolValue *CPV =
2776 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2777 ARMCP::CPBlockAddress, PCAdj);
2778 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2779 }
2780 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2781 SDValue Result = DAG.getLoad(
2782 PtrVT, DL, DAG.getEntryNode(), CPAddr,
2783 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2784 if (!IsPositionIndependent)
2785 return Result;
2786 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2787 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2788 }
2789
2790 /// Convert a TLS address reference into the correct sequence of loads
2791 /// and calls to compute the variable's address for Darwin, and return an
2792 /// SDValue containing the final node.
2793
2794 /// Darwin only has one TLS scheme which must be capable of dealing with the
2795 /// fully general situation, in the worst case. This means:
2796 /// + "extern __thread" declaration.
2797 /// + Defined in a possibly unknown dynamic library.
2798 ///
2799 /// The general system is that each __thread variable has a [3 x i32] descriptor
2800 /// which contains information used by the runtime to calculate the address. The
2801 /// only part of this the compiler needs to know about is the first word, which
2802 /// contains a function pointer that must be called with the address of the
2803 /// entire descriptor in "r0".
2804 ///
2805 /// Since this descriptor may be in a different unit, in general access must
2806 /// proceed along the usual ARM rules. A common sequence to produce is:
2807 ///
2808 /// movw rT1, :lower16:_var$non_lazy_ptr
2809 /// movt rT1, :upper16:_var$non_lazy_ptr
2810 /// ldr r0, [rT1]
2811 /// ldr rT2, [r0]
2812 /// blx rT2
2813 /// [...address now in r0...]
2814 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const2815 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2816 SelectionDAG &DAG) const {
2817 assert(Subtarget->isTargetDarwin() &&
2818 "This function expects a Darwin target");
2819 SDLoc DL(Op);
2820
2821 // First step is to get the address of the actua global symbol. This is where
2822 // the TLS descriptor lives.
2823 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2824
2825 // The first entry in the descriptor is a function pointer that we must call
2826 // to obtain the address of the variable.
2827 SDValue Chain = DAG.getEntryNode();
2828 SDValue FuncTLVGet = DAG.getLoad(
2829 MVT::i32, DL, Chain, DescAddr,
2830 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2831 /* Alignment = */ 4,
2832 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2833 MachineMemOperand::MOInvariant);
2834 Chain = FuncTLVGet.getValue(1);
2835
2836 MachineFunction &F = DAG.getMachineFunction();
2837 MachineFrameInfo &MFI = F.getFrameInfo();
2838 MFI.setAdjustsStack(true);
2839
2840 // TLS calls preserve all registers except those that absolutely must be
2841 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2842 // silly).
2843 auto TRI =
2844 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2845 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2846 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2847
2848 // Finally, we can make the call. This is just a degenerate version of a
2849 // normal AArch64 call node: r0 takes the address of the descriptor, and
2850 // returns the address of the variable in this thread.
2851 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2852 Chain =
2853 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2854 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2855 DAG.getRegisterMask(Mask), Chain.getValue(1));
2856 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2857 }
2858
2859 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const2860 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2861 SelectionDAG &DAG) const {
2862 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2863
2864 SDValue Chain = DAG.getEntryNode();
2865 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2866 SDLoc DL(Op);
2867
2868 // Load the current TEB (thread environment block)
2869 SDValue Ops[] = {Chain,
2870 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2871 DAG.getConstant(15, DL, MVT::i32),
2872 DAG.getConstant(0, DL, MVT::i32),
2873 DAG.getConstant(13, DL, MVT::i32),
2874 DAG.getConstant(0, DL, MVT::i32),
2875 DAG.getConstant(2, DL, MVT::i32)};
2876 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2877 DAG.getVTList(MVT::i32, MVT::Other), Ops);
2878
2879 SDValue TEB = CurrentTEB.getValue(0);
2880 Chain = CurrentTEB.getValue(1);
2881
2882 // Load the ThreadLocalStoragePointer from the TEB
2883 // A pointer to the TLS array is located at offset 0x2c from the TEB.
2884 SDValue TLSArray =
2885 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2886 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2887
2888 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2889 // offset into the TLSArray.
2890
2891 // Load the TLS index from the C runtime
2892 SDValue TLSIndex =
2893 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2894 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2895 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2896
2897 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2898 DAG.getConstant(2, DL, MVT::i32));
2899 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2900 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2901 MachinePointerInfo());
2902
2903 // Get the offset of the start of the .tls section (section base)
2904 const auto *GA = cast<GlobalAddressSDNode>(Op);
2905 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2906 SDValue Offset = DAG.getLoad(
2907 PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2908 DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2909 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2910
2911 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2912 }
2913
2914 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2915 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2916 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2917 SelectionDAG &DAG) const {
2918 SDLoc dl(GA);
2919 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2920 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2921 MachineFunction &MF = DAG.getMachineFunction();
2922 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2923 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2924 ARMConstantPoolValue *CPV =
2925 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2926 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2927 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2928 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2929 Argument = DAG.getLoad(
2930 PtrVT, dl, DAG.getEntryNode(), Argument,
2931 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2932 SDValue Chain = Argument.getValue(1);
2933
2934 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2935 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2936
2937 // call __tls_get_addr.
2938 ArgListTy Args;
2939 ArgListEntry Entry;
2940 Entry.Node = Argument;
2941 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2942 Args.push_back(Entry);
2943
2944 // FIXME: is there useful debug info available here?
2945 TargetLowering::CallLoweringInfo CLI(DAG);
2946 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2947 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2948 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2949
2950 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2951 return CallResult.first;
2952 }
2953
2954 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2955 // "local exec" model.
2956 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2957 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2958 SelectionDAG &DAG,
2959 TLSModel::Model model) const {
2960 const GlobalValue *GV = GA->getGlobal();
2961 SDLoc dl(GA);
2962 SDValue Offset;
2963 SDValue Chain = DAG.getEntryNode();
2964 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2965 // Get the Thread Pointer
2966 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2967
2968 if (model == TLSModel::InitialExec) {
2969 MachineFunction &MF = DAG.getMachineFunction();
2970 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2971 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2972 // Initial exec model.
2973 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2974 ARMConstantPoolValue *CPV =
2975 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2976 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2977 true);
2978 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2979 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2980 Offset = DAG.getLoad(
2981 PtrVT, dl, Chain, Offset,
2982 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2983 Chain = Offset.getValue(1);
2984
2985 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2986 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2987
2988 Offset = DAG.getLoad(
2989 PtrVT, dl, Chain, Offset,
2990 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2991 } else {
2992 // local exec model
2993 assert(model == TLSModel::LocalExec);
2994 ARMConstantPoolValue *CPV =
2995 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2996 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2997 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2998 Offset = DAG.getLoad(
2999 PtrVT, dl, Chain, Offset,
3000 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3001 }
3002
3003 // The address of the thread local variable is the add of the thread
3004 // pointer with the offset of the variable.
3005 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3006 }
3007
3008 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3009 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3010 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3011 if (DAG.getTarget().useEmulatedTLS())
3012 return LowerToTLSEmulatedModel(GA, DAG);
3013
3014 if (Subtarget->isTargetDarwin())
3015 return LowerGlobalTLSAddressDarwin(Op, DAG);
3016
3017 if (Subtarget->isTargetWindows())
3018 return LowerGlobalTLSAddressWindows(Op, DAG);
3019
3020 // TODO: implement the "local dynamic" model
3021 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3022 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3023
3024 switch (model) {
3025 case TLSModel::GeneralDynamic:
3026 case TLSModel::LocalDynamic:
3027 return LowerToTLSGeneralDynamicModel(GA, DAG);
3028 case TLSModel::InitialExec:
3029 case TLSModel::LocalExec:
3030 return LowerToTLSExecModels(GA, DAG, model);
3031 }
3032 llvm_unreachable("bogus TLS model");
3033 }
3034
3035 /// Return true if all users of V are within function F, looking through
3036 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3037 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3038 SmallVector<const User*,4> Worklist;
3039 for (auto *U : V->users())
3040 Worklist.push_back(U);
3041 while (!Worklist.empty()) {
3042 auto *U = Worklist.pop_back_val();
3043 if (isa<ConstantExpr>(U)) {
3044 for (auto *UU : U->users())
3045 Worklist.push_back(UU);
3046 continue;
3047 }
3048
3049 auto *I = dyn_cast<Instruction>(U);
3050 if (!I || I->getParent()->getParent() != F)
3051 return false;
3052 }
3053 return true;
3054 }
3055
promoteToConstantPool(const ARMTargetLowering * TLI,const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3056 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3057 const GlobalValue *GV, SelectionDAG &DAG,
3058 EVT PtrVT, const SDLoc &dl) {
3059 // If we're creating a pool entry for a constant global with unnamed address,
3060 // and the global is small enough, we can emit it inline into the constant pool
3061 // to save ourselves an indirection.
3062 //
3063 // This is a win if the constant is only used in one function (so it doesn't
3064 // need to be duplicated) or duplicating the constant wouldn't increase code
3065 // size (implying the constant is no larger than 4 bytes).
3066 const Function &F = DAG.getMachineFunction().getFunction();
3067
3068 // We rely on this decision to inline being idemopotent and unrelated to the
3069 // use-site. We know that if we inline a variable at one use site, we'll
3070 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3071 // doesn't know about this optimization, so bail out if it's enabled else
3072 // we could decide to inline here (and thus never emit the GV) but require
3073 // the GV from fast-isel generated code.
3074 if (!EnableConstpoolPromotion ||
3075 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3076 return SDValue();
3077
3078 auto *GVar = dyn_cast<GlobalVariable>(GV);
3079 if (!GVar || !GVar->hasInitializer() ||
3080 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3081 !GVar->hasLocalLinkage())
3082 return SDValue();
3083
3084 // If we inline a value that contains relocations, we move the relocations
3085 // from .data to .text. This is not allowed in position-independent code.
3086 auto *Init = GVar->getInitializer();
3087 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3088 Init->needsRelocation())
3089 return SDValue();
3090
3091 // The constant islands pass can only really deal with alignment requests
3092 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3093 // any type wanting greater alignment requirements than 4 bytes. We also
3094 // can only promote constants that are multiples of 4 bytes in size or
3095 // are paddable to a multiple of 4. Currently we only try and pad constants
3096 // that are strings for simplicity.
3097 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3098 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3099 unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3100 unsigned RequiredPadding = 4 - (Size % 4);
3101 bool PaddingPossible =
3102 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3103 if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3104 Size == 0)
3105 return SDValue();
3106
3107 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3108 MachineFunction &MF = DAG.getMachineFunction();
3109 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3110
3111 // We can't bloat the constant pool too much, else the ConstantIslands pass
3112 // may fail to converge. If we haven't promoted this global yet (it may have
3113 // multiple uses), and promoting it would increase the constant pool size (Sz
3114 // > 4), ensure we have space to do so up to MaxTotal.
3115 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3116 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3117 ConstpoolPromotionMaxTotal)
3118 return SDValue();
3119
3120 // This is only valid if all users are in a single function; we can't clone
3121 // the constant in general. The LLVM IR unnamed_addr allows merging
3122 // constants, but not cloning them.
3123 //
3124 // We could potentially allow cloning if we could prove all uses of the
3125 // constant in the current function don't care about the address, like
3126 // printf format strings. But that isn't implemented for now.
3127 if (!allUsersAreInFunction(GVar, &F))
3128 return SDValue();
3129
3130 // We're going to inline this global. Pad it out if needed.
3131 if (RequiredPadding != 4) {
3132 StringRef S = CDAInit->getAsString();
3133
3134 SmallVector<uint8_t,16> V(S.size());
3135 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3136 while (RequiredPadding--)
3137 V.push_back(0);
3138 Init = ConstantDataArray::get(*DAG.getContext(), V);
3139 }
3140
3141 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3142 SDValue CPAddr =
3143 DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3144 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3145 AFI->markGlobalAsPromotedToConstantPool(GVar);
3146 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3147 PaddedSize - 4);
3148 }
3149 ++NumConstpoolPromoted;
3150 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3151 }
3152
isReadOnly(const GlobalValue * GV) const3153 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3154 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3155 if (!(GV = GA->getBaseObject()))
3156 return false;
3157 if (const auto *V = dyn_cast<GlobalVariable>(GV))
3158 return V->isConstant();
3159 return isa<Function>(GV);
3160 }
3161
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3162 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3163 SelectionDAG &DAG) const {
3164 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3165 default: llvm_unreachable("unknown object format");
3166 case Triple::COFF:
3167 return LowerGlobalAddressWindows(Op, DAG);
3168 case Triple::ELF:
3169 return LowerGlobalAddressELF(Op, DAG);
3170 case Triple::MachO:
3171 return LowerGlobalAddressDarwin(Op, DAG);
3172 }
3173 }
3174
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3175 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3176 SelectionDAG &DAG) const {
3177 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3178 SDLoc dl(Op);
3179 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3180 const TargetMachine &TM = getTargetMachine();
3181 bool IsRO = isReadOnly(GV);
3182
3183 // promoteToConstantPool only if not generating XO text section
3184 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3185 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3186 return V;
3187
3188 if (isPositionIndependent()) {
3189 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3190 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3191 UseGOT_PREL ? ARMII::MO_GOT : 0);
3192 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3193 if (UseGOT_PREL)
3194 Result =
3195 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3196 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3197 return Result;
3198 } else if (Subtarget->isROPI() && IsRO) {
3199 // PC-relative.
3200 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3201 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3202 return Result;
3203 } else if (Subtarget->isRWPI() && !IsRO) {
3204 // SB-relative.
3205 SDValue RelAddr;
3206 if (Subtarget->useMovt(DAG.getMachineFunction())) {
3207 ++NumMovwMovt;
3208 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3209 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3210 } else { // use literal pool for address constant
3211 ARMConstantPoolValue *CPV =
3212 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3213 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3214 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3215 RelAddr = DAG.getLoad(
3216 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3217 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3218 }
3219 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3220 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3221 return Result;
3222 }
3223
3224 // If we have T2 ops, we can materialize the address directly via movt/movw
3225 // pair. This is always cheaper.
3226 if (Subtarget->useMovt(DAG.getMachineFunction())) {
3227 ++NumMovwMovt;
3228 // FIXME: Once remat is capable of dealing with instructions with register
3229 // operands, expand this into two nodes.
3230 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3231 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3232 } else {
3233 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3234 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3235 return DAG.getLoad(
3236 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3237 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3238 }
3239 }
3240
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3241 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3242 SelectionDAG &DAG) const {
3243 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3244 "ROPI/RWPI not currently supported for Darwin");
3245 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3246 SDLoc dl(Op);
3247 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3248
3249 if (Subtarget->useMovt(DAG.getMachineFunction()))
3250 ++NumMovwMovt;
3251
3252 // FIXME: Once remat is capable of dealing with instructions with register
3253 // operands, expand this into multiple nodes
3254 unsigned Wrapper =
3255 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3256
3257 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3258 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3259
3260 if (Subtarget->isGVIndirectSymbol(GV))
3261 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3262 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3263 return Result;
3264 }
3265
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3266 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3267 SelectionDAG &DAG) const {
3268 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3269 assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3270 "Windows on ARM expects to use movw/movt");
3271 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3272 "ROPI/RWPI not currently supported for Windows");
3273
3274 const TargetMachine &TM = getTargetMachine();
3275 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3276 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3277 if (GV->hasDLLImportStorageClass())
3278 TargetFlags = ARMII::MO_DLLIMPORT;
3279 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3280 TargetFlags = ARMII::MO_COFFSTUB;
3281 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3282 SDValue Result;
3283 SDLoc DL(Op);
3284
3285 ++NumMovwMovt;
3286
3287 // FIXME: Once remat is capable of dealing with instructions with register
3288 // operands, expand this into two nodes.
3289 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3290 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3291 TargetFlags));
3292 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3293 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3294 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3295 return Result;
3296 }
3297
3298 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3299 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3300 SDLoc dl(Op);
3301 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3302 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3303 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3304 Op.getOperand(1), Val);
3305 }
3306
3307 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3308 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3309 SDLoc dl(Op);
3310 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3311 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3312 }
3313
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3314 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3315 SelectionDAG &DAG) const {
3316 SDLoc dl(Op);
3317 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3318 Op.getOperand(0));
3319 }
3320
3321 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3322 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3323 const ARMSubtarget *Subtarget) const {
3324 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3325 SDLoc dl(Op);
3326 switch (IntNo) {
3327 default: return SDValue(); // Don't custom lower most intrinsics.
3328 case Intrinsic::thread_pointer: {
3329 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3330 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3331 }
3332 case Intrinsic::eh_sjlj_lsda: {
3333 MachineFunction &MF = DAG.getMachineFunction();
3334 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3335 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3336 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3337 SDValue CPAddr;
3338 bool IsPositionIndependent = isPositionIndependent();
3339 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3340 ARMConstantPoolValue *CPV =
3341 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3342 ARMCP::CPLSDA, PCAdj);
3343 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3344 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3345 SDValue Result = DAG.getLoad(
3346 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3347 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3348
3349 if (IsPositionIndependent) {
3350 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3351 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3352 }
3353 return Result;
3354 }
3355 case Intrinsic::arm_neon_vabs:
3356 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3357 Op.getOperand(1));
3358 case Intrinsic::arm_neon_vmulls:
3359 case Intrinsic::arm_neon_vmullu: {
3360 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3361 ? ARMISD::VMULLs : ARMISD::VMULLu;
3362 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3363 Op.getOperand(1), Op.getOperand(2));
3364 }
3365 case Intrinsic::arm_neon_vminnm:
3366 case Intrinsic::arm_neon_vmaxnm: {
3367 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3368 ? ISD::FMINNUM : ISD::FMAXNUM;
3369 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3370 Op.getOperand(1), Op.getOperand(2));
3371 }
3372 case Intrinsic::arm_neon_vminu:
3373 case Intrinsic::arm_neon_vmaxu: {
3374 if (Op.getValueType().isFloatingPoint())
3375 return SDValue();
3376 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3377 ? ISD::UMIN : ISD::UMAX;
3378 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3379 Op.getOperand(1), Op.getOperand(2));
3380 }
3381 case Intrinsic::arm_neon_vmins:
3382 case Intrinsic::arm_neon_vmaxs: {
3383 // v{min,max}s is overloaded between signed integers and floats.
3384 if (!Op.getValueType().isFloatingPoint()) {
3385 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3386 ? ISD::SMIN : ISD::SMAX;
3387 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3388 Op.getOperand(1), Op.getOperand(2));
3389 }
3390 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3391 ? ISD::FMINIMUM : ISD::FMAXIMUM;
3392 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3393 Op.getOperand(1), Op.getOperand(2));
3394 }
3395 case Intrinsic::arm_neon_vtbl1:
3396 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3397 Op.getOperand(1), Op.getOperand(2));
3398 case Intrinsic::arm_neon_vtbl2:
3399 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3400 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3401 }
3402 }
3403
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3404 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3405 const ARMSubtarget *Subtarget) {
3406 SDLoc dl(Op);
3407 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3408 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3409 if (SSID == SyncScope::SingleThread)
3410 return Op;
3411
3412 if (!Subtarget->hasDataBarrier()) {
3413 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3414 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3415 // here.
3416 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3417 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3418 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3419 DAG.getConstant(0, dl, MVT::i32));
3420 }
3421
3422 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3423 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3424 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3425 if (Subtarget->isMClass()) {
3426 // Only a full system barrier exists in the M-class architectures.
3427 Domain = ARM_MB::SY;
3428 } else if (Subtarget->preferISHSTBarriers() &&
3429 Ord == AtomicOrdering::Release) {
3430 // Swift happens to implement ISHST barriers in a way that's compatible with
3431 // Release semantics but weaker than ISH so we'd be fools not to use
3432 // it. Beware: other processors probably don't!
3433 Domain = ARM_MB::ISHST;
3434 }
3435
3436 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3437 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3438 DAG.getConstant(Domain, dl, MVT::i32));
3439 }
3440
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3441 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3442 const ARMSubtarget *Subtarget) {
3443 // ARM pre v5TE and Thumb1 does not have preload instructions.
3444 if (!(Subtarget->isThumb2() ||
3445 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3446 // Just preserve the chain.
3447 return Op.getOperand(0);
3448
3449 SDLoc dl(Op);
3450 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3451 if (!isRead &&
3452 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3453 // ARMv7 with MP extension has PLDW.
3454 return Op.getOperand(0);
3455
3456 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3457 if (Subtarget->isThumb()) {
3458 // Invert the bits.
3459 isRead = ~isRead & 1;
3460 isData = ~isData & 1;
3461 }
3462
3463 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3464 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3465 DAG.getConstant(isData, dl, MVT::i32));
3466 }
3467
LowerVASTART(SDValue Op,SelectionDAG & DAG)3468 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3469 MachineFunction &MF = DAG.getMachineFunction();
3470 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3471
3472 // vastart just stores the address of the VarArgsFrameIndex slot into the
3473 // memory location argument.
3474 SDLoc dl(Op);
3475 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3476 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3477 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3478 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3479 MachinePointerInfo(SV));
3480 }
3481
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const3482 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3483 CCValAssign &NextVA,
3484 SDValue &Root,
3485 SelectionDAG &DAG,
3486 const SDLoc &dl) const {
3487 MachineFunction &MF = DAG.getMachineFunction();
3488 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3489
3490 const TargetRegisterClass *RC;
3491 if (AFI->isThumb1OnlyFunction())
3492 RC = &ARM::tGPRRegClass;
3493 else
3494 RC = &ARM::GPRRegClass;
3495
3496 // Transform the arguments stored in physical registers into virtual ones.
3497 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3498 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3499
3500 SDValue ArgValue2;
3501 if (NextVA.isMemLoc()) {
3502 MachineFrameInfo &MFI = MF.getFrameInfo();
3503 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3504
3505 // Create load node to retrieve arguments from the stack.
3506 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3507 ArgValue2 = DAG.getLoad(
3508 MVT::i32, dl, Root, FIN,
3509 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3510 } else {
3511 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3512 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3513 }
3514 if (!Subtarget->isLittle())
3515 std::swap (ArgValue, ArgValue2);
3516 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3517 }
3518
3519 // The remaining GPRs hold either the beginning of variable-argument
3520 // data, or the beginning of an aggregate passed by value (usually
3521 // byval). Either way, we allocate stack slots adjacent to the data
3522 // provided by our caller, and store the unallocated registers there.
3523 // If this is a variadic function, the va_list pointer will begin with
3524 // these values; otherwise, this reassembles a (byval) structure that
3525 // was split between registers and memory.
3526 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const3527 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3528 const SDLoc &dl, SDValue &Chain,
3529 const Value *OrigArg,
3530 unsigned InRegsParamRecordIdx,
3531 int ArgOffset, unsigned ArgSize) const {
3532 // Currently, two use-cases possible:
3533 // Case #1. Non-var-args function, and we meet first byval parameter.
3534 // Setup first unallocated register as first byval register;
3535 // eat all remained registers
3536 // (these two actions are performed by HandleByVal method).
3537 // Then, here, we initialize stack frame with
3538 // "store-reg" instructions.
3539 // Case #2. Var-args function, that doesn't contain byval parameters.
3540 // The same: eat all remained unallocated registers,
3541 // initialize stack frame.
3542
3543 MachineFunction &MF = DAG.getMachineFunction();
3544 MachineFrameInfo &MFI = MF.getFrameInfo();
3545 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3546 unsigned RBegin, REnd;
3547 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3548 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3549 } else {
3550 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3551 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3552 REnd = ARM::R4;
3553 }
3554
3555 if (REnd != RBegin)
3556 ArgOffset = -4 * (ARM::R4 - RBegin);
3557
3558 auto PtrVT = getPointerTy(DAG.getDataLayout());
3559 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3560 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3561
3562 SmallVector<SDValue, 4> MemOps;
3563 const TargetRegisterClass *RC =
3564 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3565
3566 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3567 unsigned VReg = MF.addLiveIn(Reg, RC);
3568 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3569 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3570 MachinePointerInfo(OrigArg, 4 * i));
3571 MemOps.push_back(Store);
3572 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3573 }
3574
3575 if (!MemOps.empty())
3576 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3577 return FrameIndex;
3578 }
3579
3580 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const3581 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3582 const SDLoc &dl, SDValue &Chain,
3583 unsigned ArgOffset,
3584 unsigned TotalArgRegsSaveSize,
3585 bool ForceMutable) const {
3586 MachineFunction &MF = DAG.getMachineFunction();
3587 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3588
3589 // Try to store any remaining integer argument regs
3590 // to their spots on the stack so that they may be loaded by dereferencing
3591 // the result of va_next.
3592 // If there is no regs to be stored, just point address after last
3593 // argument passed via stack.
3594 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3595 CCInfo.getInRegsParamsCount(),
3596 CCInfo.getNextStackOffset(), 4);
3597 AFI->setVarArgsFrameIndex(FrameIndex);
3598 }
3599
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3600 SDValue ARMTargetLowering::LowerFormalArguments(
3601 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3602 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3603 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3604 MachineFunction &MF = DAG.getMachineFunction();
3605 MachineFrameInfo &MFI = MF.getFrameInfo();
3606
3607 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3608
3609 // Assign locations to all of the incoming arguments.
3610 SmallVector<CCValAssign, 16> ArgLocs;
3611 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3612 *DAG.getContext());
3613 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3614
3615 SmallVector<SDValue, 16> ArgValues;
3616 SDValue ArgValue;
3617 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3618 unsigned CurArgIdx = 0;
3619
3620 // Initially ArgRegsSaveSize is zero.
3621 // Then we increase this value each time we meet byval parameter.
3622 // We also increase this value in case of varargs function.
3623 AFI->setArgRegsSaveSize(0);
3624
3625 // Calculate the amount of stack space that we need to allocate to store
3626 // byval and variadic arguments that are passed in registers.
3627 // We need to know this before we allocate the first byval or variadic
3628 // argument, as they will be allocated a stack slot below the CFA (Canonical
3629 // Frame Address, the stack pointer at entry to the function).
3630 unsigned ArgRegBegin = ARM::R4;
3631 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3632 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3633 break;
3634
3635 CCValAssign &VA = ArgLocs[i];
3636 unsigned Index = VA.getValNo();
3637 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3638 if (!Flags.isByVal())
3639 continue;
3640
3641 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3642 unsigned RBegin, REnd;
3643 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3644 ArgRegBegin = std::min(ArgRegBegin, RBegin);
3645
3646 CCInfo.nextInRegsParam();
3647 }
3648 CCInfo.rewindByValRegsInfo();
3649
3650 int lastInsIndex = -1;
3651 if (isVarArg && MFI.hasVAStart()) {
3652 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3653 if (RegIdx != array_lengthof(GPRArgRegs))
3654 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3655 }
3656
3657 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3658 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3659 auto PtrVT = getPointerTy(DAG.getDataLayout());
3660
3661 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3662 CCValAssign &VA = ArgLocs[i];
3663 if (Ins[VA.getValNo()].isOrigArg()) {
3664 std::advance(CurOrigArg,
3665 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3666 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3667 }
3668 // Arguments stored in registers.
3669 if (VA.isRegLoc()) {
3670 EVT RegVT = VA.getLocVT();
3671
3672 if (VA.needsCustom()) {
3673 // f64 and vector types are split up into multiple registers or
3674 // combinations of registers and stack slots.
3675 if (VA.getLocVT() == MVT::v2f64) {
3676 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3677 Chain, DAG, dl);
3678 VA = ArgLocs[++i]; // skip ahead to next loc
3679 SDValue ArgValue2;
3680 if (VA.isMemLoc()) {
3681 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3682 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3683 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3684 MachinePointerInfo::getFixedStack(
3685 DAG.getMachineFunction(), FI));
3686 } else {
3687 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3688 Chain, DAG, dl);
3689 }
3690 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3691 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3692 ArgValue, ArgValue1,
3693 DAG.getIntPtrConstant(0, dl));
3694 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3695 ArgValue, ArgValue2,
3696 DAG.getIntPtrConstant(1, dl));
3697 } else
3698 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3699 } else {
3700 const TargetRegisterClass *RC;
3701
3702
3703 if (RegVT == MVT::f16)
3704 RC = &ARM::HPRRegClass;
3705 else if (RegVT == MVT::f32)
3706 RC = &ARM::SPRRegClass;
3707 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3708 RC = &ARM::DPRRegClass;
3709 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3710 RC = &ARM::QPRRegClass;
3711 else if (RegVT == MVT::i32)
3712 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3713 : &ARM::GPRRegClass;
3714 else
3715 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3716
3717 // Transform the arguments in physical registers into virtual ones.
3718 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3719 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3720 }
3721
3722 // If this is an 8 or 16-bit value, it is really passed promoted
3723 // to 32 bits. Insert an assert[sz]ext to capture this, then
3724 // truncate to the right size.
3725 switch (VA.getLocInfo()) {
3726 default: llvm_unreachable("Unknown loc info!");
3727 case CCValAssign::Full: break;
3728 case CCValAssign::BCvt:
3729 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3730 break;
3731 case CCValAssign::SExt:
3732 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3733 DAG.getValueType(VA.getValVT()));
3734 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3735 break;
3736 case CCValAssign::ZExt:
3737 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3738 DAG.getValueType(VA.getValVT()));
3739 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3740 break;
3741 }
3742
3743 InVals.push_back(ArgValue);
3744 } else { // VA.isRegLoc()
3745 // sanity check
3746 assert(VA.isMemLoc());
3747 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3748
3749 int index = VA.getValNo();
3750
3751 // Some Ins[] entries become multiple ArgLoc[] entries.
3752 // Process them only once.
3753 if (index != lastInsIndex)
3754 {
3755 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3756 // FIXME: For now, all byval parameter objects are marked mutable.
3757 // This can be changed with more analysis.
3758 // In case of tail call optimization mark all arguments mutable.
3759 // Since they could be overwritten by lowering of arguments in case of
3760 // a tail call.
3761 if (Flags.isByVal()) {
3762 assert(Ins[index].isOrigArg() &&
3763 "Byval arguments cannot be implicit");
3764 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3765
3766 int FrameIndex = StoreByValRegs(
3767 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3768 VA.getLocMemOffset(), Flags.getByValSize());
3769 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3770 CCInfo.nextInRegsParam();
3771 } else {
3772 unsigned FIOffset = VA.getLocMemOffset();
3773 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3774 FIOffset, true);
3775
3776 // Create load nodes to retrieve arguments from the stack.
3777 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3778 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3779 MachinePointerInfo::getFixedStack(
3780 DAG.getMachineFunction(), FI)));
3781 }
3782 lastInsIndex = index;
3783 }
3784 }
3785 }
3786
3787 // varargs
3788 if (isVarArg && MFI.hasVAStart())
3789 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3790 CCInfo.getNextStackOffset(),
3791 TotalArgRegsSaveSize);
3792
3793 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3794
3795 return Chain;
3796 }
3797
3798 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)3799 static bool isFloatingPointZero(SDValue Op) {
3800 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3801 return CFP->getValueAPF().isPosZero();
3802 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3803 // Maybe this has already been legalized into the constant pool?
3804 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3805 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3806 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3807 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3808 return CFP->getValueAPF().isPosZero();
3809 }
3810 } else if (Op->getOpcode() == ISD::BITCAST &&
3811 Op->getValueType(0) == MVT::f64) {
3812 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3813 // created by LowerConstantFP().
3814 SDValue BitcastOp = Op->getOperand(0);
3815 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3816 isNullConstant(BitcastOp->getOperand(0)))
3817 return true;
3818 }
3819 return false;
3820 }
3821
3822 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3823 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const3824 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3825 SDValue &ARMcc, SelectionDAG &DAG,
3826 const SDLoc &dl) const {
3827 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3828 unsigned C = RHSC->getZExtValue();
3829 if (!isLegalICmpImmediate((int32_t)C)) {
3830 // Constant does not fit, try adjusting it by one.
3831 switch (CC) {
3832 default: break;
3833 case ISD::SETLT:
3834 case ISD::SETGE:
3835 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3836 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3837 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3838 }
3839 break;
3840 case ISD::SETULT:
3841 case ISD::SETUGE:
3842 if (C != 0 && isLegalICmpImmediate(C-1)) {
3843 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3844 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3845 }
3846 break;
3847 case ISD::SETLE:
3848 case ISD::SETGT:
3849 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3850 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3851 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3852 }
3853 break;
3854 case ISD::SETULE:
3855 case ISD::SETUGT:
3856 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3857 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3858 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3859 }
3860 break;
3861 }
3862 }
3863 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3864 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3865 // In ARM and Thumb-2, the compare instructions can shift their second
3866 // operand.
3867 CC = ISD::getSetCCSwappedOperands(CC);
3868 std::swap(LHS, RHS);
3869 }
3870
3871 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3872 ARMISD::NodeType CompareType;
3873 switch (CondCode) {
3874 default:
3875 CompareType = ARMISD::CMP;
3876 break;
3877 case ARMCC::EQ:
3878 case ARMCC::NE:
3879 // Uses only Z Flag
3880 CompareType = ARMISD::CMPZ;
3881 break;
3882 }
3883 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3884 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3885 }
3886
3887 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool InvalidOnQNaN) const3888 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3889 SelectionDAG &DAG, const SDLoc &dl,
3890 bool InvalidOnQNaN) const {
3891 assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3892 SDValue Cmp;
3893 SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3894 if (!isFloatingPointZero(RHS))
3895 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3896 else
3897 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3898 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3899 }
3900
3901 /// duplicateCmp - Glue values can have only one use, so this function
3902 /// duplicates a comparison node.
3903 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const3904 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3905 unsigned Opc = Cmp.getOpcode();
3906 SDLoc DL(Cmp);
3907 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3908 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3909
3910 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3911 Cmp = Cmp.getOperand(0);
3912 Opc = Cmp.getOpcode();
3913 if (Opc == ARMISD::CMPFP)
3914 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3915 Cmp.getOperand(1), Cmp.getOperand(2));
3916 else {
3917 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3918 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3919 Cmp.getOperand(1));
3920 }
3921 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3922 }
3923
3924 // This function returns three things: the arithmetic computation itself
3925 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
3926 // comparison and the condition code define the case in which the arithmetic
3927 // computation *does not* overflow.
3928 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const3929 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3930 SDValue &ARMcc) const {
3931 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
3932
3933 SDValue Value, OverflowCmp;
3934 SDValue LHS = Op.getOperand(0);
3935 SDValue RHS = Op.getOperand(1);
3936 SDLoc dl(Op);
3937
3938 // FIXME: We are currently always generating CMPs because we don't support
3939 // generating CMN through the backend. This is not as good as the natural
3940 // CMP case because it causes a register dependency and cannot be folded
3941 // later.
3942
3943 switch (Op.getOpcode()) {
3944 default:
3945 llvm_unreachable("Unknown overflow instruction!");
3946 case ISD::SADDO:
3947 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3948 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3949 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3950 break;
3951 case ISD::UADDO:
3952 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3953 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3954 // We do not use it in the USUBO case as Value may not be used.
3955 Value = DAG.getNode(ARMISD::ADDC, dl,
3956 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3957 .getValue(0);
3958 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3959 break;
3960 case ISD::SSUBO:
3961 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3962 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3963 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3964 break;
3965 case ISD::USUBO:
3966 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3967 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3968 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3969 break;
3970 case ISD::UMULO:
3971 // We generate a UMUL_LOHI and then check if the high word is 0.
3972 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
3973 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
3974 DAG.getVTList(Op.getValueType(), Op.getValueType()),
3975 LHS, RHS);
3976 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
3977 DAG.getConstant(0, dl, MVT::i32));
3978 Value = Value.getValue(0); // We only want the low 32 bits for the result.
3979 break;
3980 case ISD::SMULO:
3981 // We generate a SMUL_LOHI and then check if all the bits of the high word
3982 // are the same as the sign bit of the low word.
3983 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
3984 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
3985 DAG.getVTList(Op.getValueType(), Op.getValueType()),
3986 LHS, RHS);
3987 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
3988 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
3989 Value.getValue(0),
3990 DAG.getConstant(31, dl, MVT::i32)));
3991 Value = Value.getValue(0); // We only want the low 32 bits for the result.
3992 break;
3993 } // switch (...)
3994
3995 return std::make_pair(Value, OverflowCmp);
3996 }
3997
3998 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const3999 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4000 // Let legalize expand this if it isn't a legal type yet.
4001 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4002 return SDValue();
4003
4004 SDValue Value, OverflowCmp;
4005 SDValue ARMcc;
4006 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4007 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4008 SDLoc dl(Op);
4009 // We use 0 and 1 as false and true values.
4010 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4011 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4012 EVT VT = Op.getValueType();
4013
4014 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4015 ARMcc, CCR, OverflowCmp);
4016
4017 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4018 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4019 }
4020
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4021 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4022 SelectionDAG &DAG) {
4023 SDLoc DL(BoolCarry);
4024 EVT CarryVT = BoolCarry.getValueType();
4025
4026 // This converts the boolean value carry into the carry flag by doing
4027 // ARMISD::SUBC Carry, 1
4028 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4029 DAG.getVTList(CarryVT, MVT::i32),
4030 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4031 return Carry.getValue(1);
4032 }
4033
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4034 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4035 SelectionDAG &DAG) {
4036 SDLoc DL(Flags);
4037
4038 // Now convert the carry flag into a boolean carry. We do this
4039 // using ARMISD:ADDE 0, 0, Carry
4040 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4041 DAG.getConstant(0, DL, MVT::i32),
4042 DAG.getConstant(0, DL, MVT::i32), Flags);
4043 }
4044
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4045 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4046 SelectionDAG &DAG) const {
4047 // Let legalize expand this if it isn't a legal type yet.
4048 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4049 return SDValue();
4050
4051 SDValue LHS = Op.getOperand(0);
4052 SDValue RHS = Op.getOperand(1);
4053 SDLoc dl(Op);
4054
4055 EVT VT = Op.getValueType();
4056 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4057 SDValue Value;
4058 SDValue Overflow;
4059 switch (Op.getOpcode()) {
4060 default:
4061 llvm_unreachable("Unknown overflow instruction!");
4062 case ISD::UADDO:
4063 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4064 // Convert the carry flag into a boolean value.
4065 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4066 break;
4067 case ISD::USUBO: {
4068 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4069 // Convert the carry flag into a boolean value.
4070 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4071 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4072 // value. So compute 1 - C.
4073 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4074 DAG.getConstant(1, dl, MVT::i32), Overflow);
4075 break;
4076 }
4077 }
4078
4079 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4080 }
4081
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4082 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4083 SDValue Cond = Op.getOperand(0);
4084 SDValue SelectTrue = Op.getOperand(1);
4085 SDValue SelectFalse = Op.getOperand(2);
4086 SDLoc dl(Op);
4087 unsigned Opc = Cond.getOpcode();
4088
4089 if (Cond.getResNo() == 1 &&
4090 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4091 Opc == ISD::USUBO)) {
4092 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4093 return SDValue();
4094
4095 SDValue Value, OverflowCmp;
4096 SDValue ARMcc;
4097 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4098 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4099 EVT VT = Op.getValueType();
4100
4101 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4102 OverflowCmp, DAG);
4103 }
4104
4105 // Convert:
4106 //
4107 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4108 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4109 //
4110 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4111 const ConstantSDNode *CMOVTrue =
4112 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4113 const ConstantSDNode *CMOVFalse =
4114 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4115
4116 if (CMOVTrue && CMOVFalse) {
4117 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4118 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4119
4120 SDValue True;
4121 SDValue False;
4122 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4123 True = SelectTrue;
4124 False = SelectFalse;
4125 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4126 True = SelectFalse;
4127 False = SelectTrue;
4128 }
4129
4130 if (True.getNode() && False.getNode()) {
4131 EVT VT = Op.getValueType();
4132 SDValue ARMcc = Cond.getOperand(2);
4133 SDValue CCR = Cond.getOperand(3);
4134 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4135 assert(True.getValueType() == VT);
4136 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4137 }
4138 }
4139 }
4140
4141 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4142 // undefined bits before doing a full-word comparison with zero.
4143 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4144 DAG.getConstant(1, dl, Cond.getValueType()));
4145
4146 return DAG.getSelectCC(dl, Cond,
4147 DAG.getConstant(0, dl, Cond.getValueType()),
4148 SelectTrue, SelectFalse, ISD::SETNE);
4149 }
4150
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4151 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4152 bool &swpCmpOps, bool &swpVselOps) {
4153 // Start by selecting the GE condition code for opcodes that return true for
4154 // 'equality'
4155 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4156 CC == ISD::SETULE)
4157 CondCode = ARMCC::GE;
4158
4159 // and GT for opcodes that return false for 'equality'.
4160 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4161 CC == ISD::SETULT)
4162 CondCode = ARMCC::GT;
4163
4164 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4165 // to swap the compare operands.
4166 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4167 CC == ISD::SETULT)
4168 swpCmpOps = true;
4169
4170 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4171 // If we have an unordered opcode, we need to swap the operands to the VSEL
4172 // instruction (effectively negating the condition).
4173 //
4174 // This also has the effect of swapping which one of 'less' or 'greater'
4175 // returns true, so we also swap the compare operands. It also switches
4176 // whether we return true for 'equality', so we compensate by picking the
4177 // opposite condition code to our original choice.
4178 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4179 CC == ISD::SETUGT) {
4180 swpCmpOps = !swpCmpOps;
4181 swpVselOps = !swpVselOps;
4182 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4183 }
4184
4185 // 'ordered' is 'anything but unordered', so use the VS condition code and
4186 // swap the VSEL operands.
4187 if (CC == ISD::SETO) {
4188 CondCode = ARMCC::VS;
4189 swpVselOps = true;
4190 }
4191
4192 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4193 // code and swap the VSEL operands.
4194 if (CC == ISD::SETUNE) {
4195 CondCode = ARMCC::EQ;
4196 swpVselOps = true;
4197 }
4198 }
4199
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4200 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4201 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4202 SDValue Cmp, SelectionDAG &DAG) const {
4203 if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
4204 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4205 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4206 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4207 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4208
4209 SDValue TrueLow = TrueVal.getValue(0);
4210 SDValue TrueHigh = TrueVal.getValue(1);
4211 SDValue FalseLow = FalseVal.getValue(0);
4212 SDValue FalseHigh = FalseVal.getValue(1);
4213
4214 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4215 ARMcc, CCR, Cmp);
4216 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4217 ARMcc, CCR, duplicateCmp(Cmp, DAG));
4218
4219 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4220 } else {
4221 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4222 Cmp);
4223 }
4224 }
4225
isGTorGE(ISD::CondCode CC)4226 static bool isGTorGE(ISD::CondCode CC) {
4227 return CC == ISD::SETGT || CC == ISD::SETGE;
4228 }
4229
isLTorLE(ISD::CondCode CC)4230 static bool isLTorLE(ISD::CondCode CC) {
4231 return CC == ISD::SETLT || CC == ISD::SETLE;
4232 }
4233
4234 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4235 // All of these conditions (and their <= and >= counterparts) will do:
4236 // x < k ? k : x
4237 // x > k ? x : k
4238 // k < x ? x : k
4239 // k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4240 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4241 const SDValue TrueVal, const SDValue FalseVal,
4242 const ISD::CondCode CC, const SDValue K) {
4243 return (isGTorGE(CC) &&
4244 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4245 (isLTorLE(CC) &&
4246 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4247 }
4248
4249 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
isUpperSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4250 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4251 const SDValue TrueVal, const SDValue FalseVal,
4252 const ISD::CondCode CC, const SDValue K) {
4253 return (isGTorGE(CC) &&
4254 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4255 (isLTorLE(CC) &&
4256 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4257 }
4258
4259 // Check if two chained conditionals could be converted into SSAT or USAT.
4260 //
4261 // SSAT can replace a set of two conditional selectors that bound a number to an
4262 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4263 //
4264 // x < -k ? -k : (x > k ? k : x)
4265 // x < -k ? -k : (x < k ? x : k)
4266 // x > -k ? (x > k ? k : x) : -k
4267 // x < k ? (x < -k ? -k : x) : k
4268 // etc.
4269 //
4270 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4271 // a power of 2.
4272 //
4273 // It returns true if the conversion can be done, false otherwise.
4274 // Additionally, the variable is returned in parameter V, the constant in K and
4275 // usat is set to true if the conditional represents an unsigned saturation
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K,bool & usat)4276 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4277 uint64_t &K, bool &usat) {
4278 SDValue LHS1 = Op.getOperand(0);
4279 SDValue RHS1 = Op.getOperand(1);
4280 SDValue TrueVal1 = Op.getOperand(2);
4281 SDValue FalseVal1 = Op.getOperand(3);
4282 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4283
4284 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4285 if (Op2.getOpcode() != ISD::SELECT_CC)
4286 return false;
4287
4288 SDValue LHS2 = Op2.getOperand(0);
4289 SDValue RHS2 = Op2.getOperand(1);
4290 SDValue TrueVal2 = Op2.getOperand(2);
4291 SDValue FalseVal2 = Op2.getOperand(3);
4292 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4293
4294 // Find out which are the constants and which are the variables
4295 // in each conditional
4296 SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4297 ? &RHS1
4298 : nullptr;
4299 SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4300 ? &RHS2
4301 : nullptr;
4302 SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4303 SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4304 SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4305 SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4306
4307 // We must detect cases where the original operations worked with 16- or
4308 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4309 // must work with sign-extended values but the select operations return
4310 // the original non-extended value.
4311 SDValue V2TmpReg = V2Tmp;
4312 if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4313 V2TmpReg = V2Tmp->getOperand(0);
4314
4315 // Check that the registers and the constants have the correct values
4316 // in both conditionals
4317 if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4318 V2TmpReg != V2)
4319 return false;
4320
4321 // Figure out which conditional is saturating the lower/upper bound.
4322 const SDValue *LowerCheckOp =
4323 isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4324 ? &Op
4325 : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4326 ? &Op2
4327 : nullptr;
4328 const SDValue *UpperCheckOp =
4329 isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4330 ? &Op
4331 : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4332 ? &Op2
4333 : nullptr;
4334
4335 if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4336 return false;
4337
4338 // Check that the constant in the lower-bound check is
4339 // the opposite of the constant in the upper-bound check
4340 // in 1's complement.
4341 int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4342 int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4343 int64_t PosVal = std::max(Val1, Val2);
4344 int64_t NegVal = std::min(Val1, Val2);
4345
4346 if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4347 (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4348 isPowerOf2_64(PosVal + 1)) {
4349
4350 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4351 if (Val1 == ~Val2)
4352 usat = false;
4353 else if (NegVal == 0)
4354 usat = true;
4355 else
4356 return false;
4357
4358 V = V2;
4359 K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4360
4361 return true;
4362 }
4363
4364 return false;
4365 }
4366
4367 // Check if a condition of the type x < k ? k : x can be converted into a
4368 // bit operation instead of conditional moves.
4369 // Currently this is allowed given:
4370 // - The conditions and values match up
4371 // - k is 0 or -1 (all ones)
4372 // This function will not check the last condition, thats up to the caller
4373 // It returns true if the transformation can be made, and in such case
4374 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)4375 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4376 SDValue &SatK)
4377 {
4378 SDValue LHS = Op.getOperand(0);
4379 SDValue RHS = Op.getOperand(1);
4380 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4381 SDValue TrueVal = Op.getOperand(2);
4382 SDValue FalseVal = Op.getOperand(3);
4383
4384 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4385 ? &RHS
4386 : nullptr;
4387
4388 // No constant operation in comparison, early out
4389 if (!K)
4390 return false;
4391
4392 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4393 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4394 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4395
4396 // If the constant on left and right side, or variable on left and right,
4397 // does not match, early out
4398 if (*K != KTmp || V != VTmp)
4399 return false;
4400
4401 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4402 SatK = *K;
4403 return true;
4404 }
4405
4406 return false;
4407 }
4408
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4409 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4410 EVT VT = Op.getValueType();
4411 SDLoc dl(Op);
4412
4413 // Try to convert two saturating conditional selects into a single SSAT
4414 SDValue SatValue;
4415 uint64_t SatConstant;
4416 bool SatUSat;
4417 if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4418 isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4419 if (SatUSat)
4420 return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4421 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4422 else
4423 return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4424 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4425 }
4426
4427 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4428 // into more efficient bit operations, which is possible when k is 0 or -1
4429 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4430 // single instructions. On Thumb the shift and the bit operation will be two
4431 // instructions.
4432 // Only allow this transformation on full-width (32-bit) operations
4433 SDValue LowerSatConstant;
4434 if (VT == MVT::i32 &&
4435 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4436 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4437 DAG.getConstant(31, dl, VT));
4438 if (isNullConstant(LowerSatConstant)) {
4439 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4440 DAG.getAllOnesConstant(dl, VT));
4441 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4442 } else if (isAllOnesConstant(LowerSatConstant))
4443 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4444 }
4445
4446 SDValue LHS = Op.getOperand(0);
4447 SDValue RHS = Op.getOperand(1);
4448 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4449 SDValue TrueVal = Op.getOperand(2);
4450 SDValue FalseVal = Op.getOperand(3);
4451
4452 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4453 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4454 dl);
4455
4456 // If softenSetCCOperands only returned one value, we should compare it to
4457 // zero.
4458 if (!RHS.getNode()) {
4459 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4460 CC = ISD::SETNE;
4461 }
4462 }
4463
4464 if (LHS.getValueType() == MVT::i32) {
4465 // Try to generate VSEL on ARMv8.
4466 // The VSEL instruction can't use all the usual ARM condition
4467 // codes: it only has two bits to select the condition code, so it's
4468 // constrained to use only GE, GT, VS and EQ.
4469 //
4470 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4471 // swap the operands of the previous compare instruction (effectively
4472 // inverting the compare condition, swapping 'less' and 'greater') and
4473 // sometimes need to swap the operands to the VSEL (which inverts the
4474 // condition in the sense of firing whenever the previous condition didn't)
4475 if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4476 TrueVal.getValueType() == MVT::f64)) {
4477 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4478 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4479 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4480 CC = ISD::getSetCCInverse(CC, true);
4481 std::swap(TrueVal, FalseVal);
4482 }
4483 }
4484
4485 SDValue ARMcc;
4486 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4487 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4488 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4489 }
4490
4491 ARMCC::CondCodes CondCode, CondCode2;
4492 bool InvalidOnQNaN;
4493 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4494
4495 // Normalize the fp compare. If RHS is zero we keep it there so we match
4496 // CMPFPw0 instead of CMPFP.
4497 if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
4498 (TrueVal.getValueType() == MVT::f16 ||
4499 TrueVal.getValueType() == MVT::f32 ||
4500 TrueVal.getValueType() == MVT::f64)) {
4501 bool swpCmpOps = false;
4502 bool swpVselOps = false;
4503 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4504
4505 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4506 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4507 if (swpCmpOps)
4508 std::swap(LHS, RHS);
4509 if (swpVselOps)
4510 std::swap(TrueVal, FalseVal);
4511 }
4512 }
4513
4514 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4515 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4516 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4517 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4518 if (CondCode2 != ARMCC::AL) {
4519 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4520 // FIXME: Needs another CMP because flag can have but one use.
4521 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4522 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4523 }
4524 return Result;
4525 }
4526
4527 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4528 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)4529 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4530 const ARMSubtarget *Subtarget) {
4531 SDNode *N = Op.getNode();
4532 if (!N->hasOneUse())
4533 // Otherwise it requires moving the value from fp to integer registers.
4534 return false;
4535 if (!N->getNumValues())
4536 return false;
4537 EVT VT = Op.getValueType();
4538 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4539 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4540 // vmrs are very slow, e.g. cortex-a8.
4541 return false;
4542
4543 if (isFloatingPointZero(Op)) {
4544 SeenZero = true;
4545 return true;
4546 }
4547 return ISD::isNormalLoad(N);
4548 }
4549
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)4550 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4551 if (isFloatingPointZero(Op))
4552 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4553
4554 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4555 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4556 Ld->getPointerInfo(), Ld->getAlignment(),
4557 Ld->getMemOperand()->getFlags());
4558
4559 llvm_unreachable("Unknown VFP cmp argument!");
4560 }
4561
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)4562 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4563 SDValue &RetVal1, SDValue &RetVal2) {
4564 SDLoc dl(Op);
4565
4566 if (isFloatingPointZero(Op)) {
4567 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4568 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4569 return;
4570 }
4571
4572 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4573 SDValue Ptr = Ld->getBasePtr();
4574 RetVal1 =
4575 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4576 Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4577
4578 EVT PtrType = Ptr.getValueType();
4579 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4580 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4581 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4582 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4583 Ld->getPointerInfo().getWithOffset(4), NewAlign,
4584 Ld->getMemOperand()->getFlags());
4585 return;
4586 }
4587
4588 llvm_unreachable("Unknown VFP cmp argument!");
4589 }
4590
4591 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4592 /// f32 and even f64 comparisons to integer ones.
4593 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const4594 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4595 SDValue Chain = Op.getOperand(0);
4596 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4597 SDValue LHS = Op.getOperand(2);
4598 SDValue RHS = Op.getOperand(3);
4599 SDValue Dest = Op.getOperand(4);
4600 SDLoc dl(Op);
4601
4602 bool LHSSeenZero = false;
4603 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4604 bool RHSSeenZero = false;
4605 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4606 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4607 // If unsafe fp math optimization is enabled and there are no other uses of
4608 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4609 // to an integer comparison.
4610 if (CC == ISD::SETOEQ)
4611 CC = ISD::SETEQ;
4612 else if (CC == ISD::SETUNE)
4613 CC = ISD::SETNE;
4614
4615 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4616 SDValue ARMcc;
4617 if (LHS.getValueType() == MVT::f32) {
4618 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4619 bitcastf32Toi32(LHS, DAG), Mask);
4620 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4621 bitcastf32Toi32(RHS, DAG), Mask);
4622 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4623 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4624 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4625 Chain, Dest, ARMcc, CCR, Cmp);
4626 }
4627
4628 SDValue LHS1, LHS2;
4629 SDValue RHS1, RHS2;
4630 expandf64Toi32(LHS, DAG, LHS1, LHS2);
4631 expandf64Toi32(RHS, DAG, RHS1, RHS2);
4632 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4633 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4634 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4635 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4636 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4637 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4638 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4639 }
4640
4641 return SDValue();
4642 }
4643
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const4644 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4645 SDValue Chain = Op.getOperand(0);
4646 SDValue Cond = Op.getOperand(1);
4647 SDValue Dest = Op.getOperand(2);
4648 SDLoc dl(Op);
4649
4650 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4651 // instruction.
4652 unsigned Opc = Cond.getOpcode();
4653 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4654 !Subtarget->isThumb1Only();
4655 if (Cond.getResNo() == 1 &&
4656 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4657 Opc == ISD::USUBO || OptimizeMul)) {
4658 // Only lower legal XALUO ops.
4659 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4660 return SDValue();
4661
4662 // The actual operation with overflow check.
4663 SDValue Value, OverflowCmp;
4664 SDValue ARMcc;
4665 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4666
4667 // Reverse the condition code.
4668 ARMCC::CondCodes CondCode =
4669 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4670 CondCode = ARMCC::getOppositeCondition(CondCode);
4671 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4672 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4673
4674 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4675 OverflowCmp);
4676 }
4677
4678 return SDValue();
4679 }
4680
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4681 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4682 SDValue Chain = Op.getOperand(0);
4683 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4684 SDValue LHS = Op.getOperand(2);
4685 SDValue RHS = Op.getOperand(3);
4686 SDValue Dest = Op.getOperand(4);
4687 SDLoc dl(Op);
4688
4689 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4690 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4691 dl);
4692
4693 // If softenSetCCOperands only returned one value, we should compare it to
4694 // zero.
4695 if (!RHS.getNode()) {
4696 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4697 CC = ISD::SETNE;
4698 }
4699 }
4700
4701 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4702 // instruction.
4703 unsigned Opc = LHS.getOpcode();
4704 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4705 !Subtarget->isThumb1Only();
4706 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4707 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4708 Opc == ISD::USUBO || OptimizeMul) &&
4709 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4710 // Only lower legal XALUO ops.
4711 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4712 return SDValue();
4713
4714 // The actual operation with overflow check.
4715 SDValue Value, OverflowCmp;
4716 SDValue ARMcc;
4717 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4718
4719 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4720 // Reverse the condition code.
4721 ARMCC::CondCodes CondCode =
4722 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4723 CondCode = ARMCC::getOppositeCondition(CondCode);
4724 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4725 }
4726 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4727
4728 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4729 OverflowCmp);
4730 }
4731
4732 if (LHS.getValueType() == MVT::i32) {
4733 SDValue ARMcc;
4734 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4735 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4736 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4737 Chain, Dest, ARMcc, CCR, Cmp);
4738 }
4739
4740 if (getTargetMachine().Options.UnsafeFPMath &&
4741 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4742 CC == ISD::SETNE || CC == ISD::SETUNE)) {
4743 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4744 return Result;
4745 }
4746
4747 ARMCC::CondCodes CondCode, CondCode2;
4748 bool InvalidOnQNaN;
4749 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4750
4751 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4752 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4753 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4754 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4755 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4756 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4757 if (CondCode2 != ARMCC::AL) {
4758 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4759 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4760 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4761 }
4762 return Res;
4763 }
4764
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const4765 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4766 SDValue Chain = Op.getOperand(0);
4767 SDValue Table = Op.getOperand(1);
4768 SDValue Index = Op.getOperand(2);
4769 SDLoc dl(Op);
4770
4771 EVT PTy = getPointerTy(DAG.getDataLayout());
4772 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4773 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4774 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4775 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4776 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4777 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4778 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4779 // which does another jump to the destination. This also makes it easier
4780 // to translate it to TBB / TBH later (Thumb2 only).
4781 // FIXME: This might not work if the function is extremely large.
4782 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4783 Addr, Op.getOperand(2), JTI);
4784 }
4785 if (isPositionIndependent() || Subtarget->isROPI()) {
4786 Addr =
4787 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4788 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4789 Chain = Addr.getValue(1);
4790 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4791 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4792 } else {
4793 Addr =
4794 DAG.getLoad(PTy, dl, Chain, Addr,
4795 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4796 Chain = Addr.getValue(1);
4797 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4798 }
4799 }
4800
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)4801 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4802 EVT VT = Op.getValueType();
4803 SDLoc dl(Op);
4804
4805 if (Op.getValueType().getVectorElementType() == MVT::i32) {
4806 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4807 return Op;
4808 return DAG.UnrollVectorOp(Op.getNode());
4809 }
4810
4811 const bool HasFullFP16 =
4812 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
4813
4814 EVT NewTy;
4815 const EVT OpTy = Op.getOperand(0).getValueType();
4816 if (OpTy == MVT::v4f32)
4817 NewTy = MVT::v4i32;
4818 else if (OpTy == MVT::v4f16 && HasFullFP16)
4819 NewTy = MVT::v4i16;
4820 else if (OpTy == MVT::v8f16 && HasFullFP16)
4821 NewTy = MVT::v8i16;
4822 else
4823 llvm_unreachable("Invalid type for custom lowering!");
4824
4825 if (VT != MVT::v4i16 && VT != MVT::v8i16)
4826 return DAG.UnrollVectorOp(Op.getNode());
4827
4828 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
4829 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4830 }
4831
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const4832 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4833 EVT VT = Op.getValueType();
4834 if (VT.isVector())
4835 return LowerVectorFP_TO_INT(Op, DAG);
4836 if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4837 RTLIB::Libcall LC;
4838 if (Op.getOpcode() == ISD::FP_TO_SINT)
4839 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4840 Op.getValueType());
4841 else
4842 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4843 Op.getValueType());
4844 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4845 /*isSigned*/ false, SDLoc(Op)).first;
4846 }
4847
4848 return Op;
4849 }
4850
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)4851 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4852 EVT VT = Op.getValueType();
4853 SDLoc dl(Op);
4854
4855 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4856 if (VT.getVectorElementType() == MVT::f32)
4857 return Op;
4858 return DAG.UnrollVectorOp(Op.getNode());
4859 }
4860
4861 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
4862 Op.getOperand(0).getValueType() == MVT::v8i16) &&
4863 "Invalid type for custom lowering!");
4864
4865 const bool HasFullFP16 =
4866 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
4867
4868 EVT DestVecType;
4869 if (VT == MVT::v4f32)
4870 DestVecType = MVT::v4i32;
4871 else if (VT == MVT::v4f16 && HasFullFP16)
4872 DestVecType = MVT::v4i16;
4873 else if (VT == MVT::v8f16 && HasFullFP16)
4874 DestVecType = MVT::v8i16;
4875 else
4876 return DAG.UnrollVectorOp(Op.getNode());
4877
4878 unsigned CastOpc;
4879 unsigned Opc;
4880 switch (Op.getOpcode()) {
4881 default: llvm_unreachable("Invalid opcode!");
4882 case ISD::SINT_TO_FP:
4883 CastOpc = ISD::SIGN_EXTEND;
4884 Opc = ISD::SINT_TO_FP;
4885 break;
4886 case ISD::UINT_TO_FP:
4887 CastOpc = ISD::ZERO_EXTEND;
4888 Opc = ISD::UINT_TO_FP;
4889 break;
4890 }
4891
4892 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
4893 return DAG.getNode(Opc, dl, VT, Op);
4894 }
4895
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const4896 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4897 EVT VT = Op.getValueType();
4898 if (VT.isVector())
4899 return LowerVectorINT_TO_FP(Op, DAG);
4900 if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4901 RTLIB::Libcall LC;
4902 if (Op.getOpcode() == ISD::SINT_TO_FP)
4903 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4904 Op.getValueType());
4905 else
4906 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4907 Op.getValueType());
4908 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4909 /*isSigned*/ false, SDLoc(Op)).first;
4910 }
4911
4912 return Op;
4913 }
4914
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4915 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4916 // Implement fcopysign with a fabs and a conditional fneg.
4917 SDValue Tmp0 = Op.getOperand(0);
4918 SDValue Tmp1 = Op.getOperand(1);
4919 SDLoc dl(Op);
4920 EVT VT = Op.getValueType();
4921 EVT SrcVT = Tmp1.getValueType();
4922 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4923 Tmp0.getOpcode() == ARMISD::VMOVDRR;
4924 bool UseNEON = !InGPR && Subtarget->hasNEON();
4925
4926 if (UseNEON) {
4927 // Use VBSL to copy the sign bit.
4928 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4929 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4930 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4931 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4932 if (VT == MVT::f64)
4933 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4934 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4935 DAG.getConstant(32, dl, MVT::i32));
4936 else /*if (VT == MVT::f32)*/
4937 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4938 if (SrcVT == MVT::f32) {
4939 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4940 if (VT == MVT::f64)
4941 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4942 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4943 DAG.getConstant(32, dl, MVT::i32));
4944 } else if (VT == MVT::f32)
4945 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4946 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4947 DAG.getConstant(32, dl, MVT::i32));
4948 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4949 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4950
4951 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4952 dl, MVT::i32);
4953 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4954 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4955 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4956
4957 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4958 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4959 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4960 if (VT == MVT::f32) {
4961 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4962 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4963 DAG.getConstant(0, dl, MVT::i32));
4964 } else {
4965 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4966 }
4967
4968 return Res;
4969 }
4970
4971 // Bitcast operand 1 to i32.
4972 if (SrcVT == MVT::f64)
4973 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4974 Tmp1).getValue(1);
4975 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4976
4977 // Or in the signbit with integer operations.
4978 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4979 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4980 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4981 if (VT == MVT::f32) {
4982 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4983 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4984 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4985 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4986 }
4987
4988 // f64: Or the high part with signbit and then combine two parts.
4989 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4990 Tmp0);
4991 SDValue Lo = Tmp0.getValue(0);
4992 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4993 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4994 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4995 }
4996
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4997 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4998 MachineFunction &MF = DAG.getMachineFunction();
4999 MachineFrameInfo &MFI = MF.getFrameInfo();
5000 MFI.setReturnAddressIsTaken(true);
5001
5002 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5003 return SDValue();
5004
5005 EVT VT = Op.getValueType();
5006 SDLoc dl(Op);
5007 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5008 if (Depth) {
5009 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5010 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5011 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5012 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5013 MachinePointerInfo());
5014 }
5015
5016 // Return LR, which contains the return address. Mark it an implicit live-in.
5017 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5018 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5019 }
5020
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5021 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5022 const ARMBaseRegisterInfo &ARI =
5023 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5024 MachineFunction &MF = DAG.getMachineFunction();
5025 MachineFrameInfo &MFI = MF.getFrameInfo();
5026 MFI.setFrameAddressIsTaken(true);
5027
5028 EVT VT = Op.getValueType();
5029 SDLoc dl(Op); // FIXME probably not meaningful
5030 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5031 unsigned FrameReg = ARI.getFrameRegister(MF);
5032 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5033 while (Depth--)
5034 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5035 MachinePointerInfo());
5036 return FrameAddr;
5037 }
5038
5039 // FIXME? Maybe this could be a TableGen attribute on some registers and
5040 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5041 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5042 SelectionDAG &DAG) const {
5043 unsigned Reg = StringSwitch<unsigned>(RegName)
5044 .Case("sp", ARM::SP)
5045 .Default(0);
5046 if (Reg)
5047 return Reg;
5048 report_fatal_error(Twine("Invalid register name \""
5049 + StringRef(RegName) + "\"."));
5050 }
5051
5052 // Result is 64 bit value so split into two 32 bit values and return as a
5053 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5054 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5055 SelectionDAG &DAG) {
5056 SDLoc DL(N);
5057
5058 // This function is only supposed to be called for i64 type destination.
5059 assert(N->getValueType(0) == MVT::i64
5060 && "ExpandREAD_REGISTER called for non-i64 type result.");
5061
5062 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5063 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5064 N->getOperand(0),
5065 N->getOperand(1));
5066
5067 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5068 Read.getValue(1)));
5069 Results.push_back(Read.getOperand(0));
5070 }
5071
5072 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5073 /// When \p DstVT, the destination type of \p BC, is on the vector
5074 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5075 /// it might be possible to combine them, such that everything stays on the
5076 /// vector register bank.
5077 /// \p return The node that would replace \p BT, if the combine
5078 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5079 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5080 SelectionDAG &DAG) {
5081 SDValue Op = BC->getOperand(0);
5082 EVT DstVT = BC->getValueType(0);
5083
5084 // The only vector instruction that can produce a scalar (remember,
5085 // since the bitcast was about to be turned into VMOVDRR, the source
5086 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5087 // Moreover, we can do this combine only if there is one use.
5088 // Finally, if the destination type is not a vector, there is not
5089 // much point on forcing everything on the vector bank.
5090 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5091 !Op.hasOneUse())
5092 return SDValue();
5093
5094 // If the index is not constant, we will introduce an additional
5095 // multiply that will stick.
5096 // Give up in that case.
5097 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5098 if (!Index)
5099 return SDValue();
5100 unsigned DstNumElt = DstVT.getVectorNumElements();
5101
5102 // Compute the new index.
5103 const APInt &APIntIndex = Index->getAPIntValue();
5104 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5105 NewIndex *= APIntIndex;
5106 // Check if the new constant index fits into i32.
5107 if (NewIndex.getBitWidth() > 32)
5108 return SDValue();
5109
5110 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5111 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5112 SDLoc dl(Op);
5113 SDValue ExtractSrc = Op.getOperand(0);
5114 EVT VecVT = EVT::getVectorVT(
5115 *DAG.getContext(), DstVT.getScalarType(),
5116 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5117 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5118 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5119 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5120 }
5121
5122 /// ExpandBITCAST - If the target supports VFP, this function is called to
5123 /// expand a bit convert where either the source or destination type is i64 to
5124 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5125 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5126 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)5127 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5128 const ARMSubtarget *Subtarget) {
5129 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5130 SDLoc dl(N);
5131 SDValue Op = N->getOperand(0);
5132
5133 // This function is only supposed to be called for i64 types, either as the
5134 // source or destination of the bit convert.
5135 EVT SrcVT = Op.getValueType();
5136 EVT DstVT = N->getValueType(0);
5137 const bool HasFullFP16 = Subtarget->hasFullFP16();
5138
5139 if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5140 // FullFP16: half values are passed in S-registers, and we don't
5141 // need any of the bitcast and moves:
5142 //
5143 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5144 // t5: i32 = bitcast t2
5145 // t18: f16 = ARMISD::VMOVhr t5
5146 if (Op.getOpcode() != ISD::CopyFromReg ||
5147 Op.getValueType() != MVT::f32)
5148 return SDValue();
5149
5150 auto Move = N->use_begin();
5151 if (Move->getOpcode() != ARMISD::VMOVhr)
5152 return SDValue();
5153
5154 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5155 SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5156 DAG.ReplaceAllUsesWith(*Move, &Copy);
5157 return Copy;
5158 }
5159
5160 if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5161 if (!HasFullFP16)
5162 return SDValue();
5163 // SoftFP: read half-precision arguments:
5164 //
5165 // t2: i32,ch = ...
5166 // t7: i16 = truncate t2 <~~~~ Op
5167 // t8: f16 = bitcast t7 <~~~~ N
5168 //
5169 if (Op.getOperand(0).getValueType() == MVT::i32)
5170 return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5171 MVT::f16, Op.getOperand(0));
5172
5173 return SDValue();
5174 }
5175
5176 // Half-precision return values
5177 if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5178 if (!HasFullFP16)
5179 return SDValue();
5180 //
5181 // t11: f16 = fadd t8, t10
5182 // t12: i16 = bitcast t11 <~~~ SDNode N
5183 // t13: i32 = zero_extend t12
5184 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5185 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5186 //
5187 // transform this into:
5188 //
5189 // t20: i32 = ARMISD::VMOVrh t11
5190 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5191 //
5192 auto ZeroExtend = N->use_begin();
5193 if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5194 ZeroExtend->getValueType(0) != MVT::i32)
5195 return SDValue();
5196
5197 auto Copy = ZeroExtend->use_begin();
5198 if (Copy->getOpcode() == ISD::CopyToReg &&
5199 Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5200 SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5201 DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5202 return Cvt;
5203 }
5204 return SDValue();
5205 }
5206
5207 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5208 return SDValue();
5209
5210 // Turn i64->f64 into VMOVDRR.
5211 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5212 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5213 // if we can combine the bitcast with its source.
5214 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5215 return Val;
5216
5217 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5218 DAG.getConstant(0, dl, MVT::i32));
5219 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5220 DAG.getConstant(1, dl, MVT::i32));
5221 return DAG.getNode(ISD::BITCAST, dl, DstVT,
5222 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5223 }
5224
5225 // Turn f64->i64 into VMOVRRD.
5226 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5227 SDValue Cvt;
5228 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5229 SrcVT.getVectorNumElements() > 1)
5230 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5231 DAG.getVTList(MVT::i32, MVT::i32),
5232 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5233 else
5234 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5235 DAG.getVTList(MVT::i32, MVT::i32), Op);
5236 // Merge the pieces into a single i64 value.
5237 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5238 }
5239
5240 return SDValue();
5241 }
5242
5243 /// getZeroVector - Returns a vector of specified type with all zero elements.
5244 /// Zero vectors are used to represent vector negation and in those cases
5245 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5246 /// not support i64 elements, so sometimes the zero vectors will need to be
5247 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5248 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)5249 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5250 assert(VT.isVector() && "Expected a vector type");
5251 // The canonical modified immediate encoding of a zero vector is....0!
5252 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5253 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5254 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5255 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5256 }
5257
5258 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5259 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5260 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5261 SelectionDAG &DAG) const {
5262 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5263 EVT VT = Op.getValueType();
5264 unsigned VTBits = VT.getSizeInBits();
5265 SDLoc dl(Op);
5266 SDValue ShOpLo = Op.getOperand(0);
5267 SDValue ShOpHi = Op.getOperand(1);
5268 SDValue ShAmt = Op.getOperand(2);
5269 SDValue ARMcc;
5270 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5271 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5272
5273 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5274
5275 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5276 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5277 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5278 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5279 DAG.getConstant(VTBits, dl, MVT::i32));
5280 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5281 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5282 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5283 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5284 ISD::SETGE, ARMcc, DAG, dl);
5285 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5286 ARMcc, CCR, CmpLo);
5287
5288 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5289 SDValue HiBigShift = Opc == ISD::SRA
5290 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5291 DAG.getConstant(VTBits - 1, dl, VT))
5292 : DAG.getConstant(0, dl, VT);
5293 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5294 ISD::SETGE, ARMcc, DAG, dl);
5295 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5296 ARMcc, CCR, CmpHi);
5297
5298 SDValue Ops[2] = { Lo, Hi };
5299 return DAG.getMergeValues(Ops, dl);
5300 }
5301
5302 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5303 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5304 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5305 SelectionDAG &DAG) const {
5306 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5307 EVT VT = Op.getValueType();
5308 unsigned VTBits = VT.getSizeInBits();
5309 SDLoc dl(Op);
5310 SDValue ShOpLo = Op.getOperand(0);
5311 SDValue ShOpHi = Op.getOperand(1);
5312 SDValue ShAmt = Op.getOperand(2);
5313 SDValue ARMcc;
5314 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5315
5316 assert(Op.getOpcode() == ISD::SHL_PARTS);
5317 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5318 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5319 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5320 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5321 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5322
5323 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5324 DAG.getConstant(VTBits, dl, MVT::i32));
5325 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5326 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5327 ISD::SETGE, ARMcc, DAG, dl);
5328 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5329 ARMcc, CCR, CmpHi);
5330
5331 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5332 ISD::SETGE, ARMcc, DAG, dl);
5333 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5334 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5335 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5336
5337 SDValue Ops[2] = { Lo, Hi };
5338 return DAG.getMergeValues(Ops, dl);
5339 }
5340
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const5341 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5342 SelectionDAG &DAG) const {
5343 // The rounding mode is in bits 23:22 of the FPSCR.
5344 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5345 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5346 // so that the shift + and get folded into a bitfield extract.
5347 SDLoc dl(Op);
5348 SDValue Ops[] = { DAG.getEntryNode(),
5349 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5350
5351 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5352 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5353 DAG.getConstant(1U << 22, dl, MVT::i32));
5354 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5355 DAG.getConstant(22, dl, MVT::i32));
5356 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5357 DAG.getConstant(3, dl, MVT::i32));
5358 }
5359
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5360 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5361 const ARMSubtarget *ST) {
5362 SDLoc dl(N);
5363 EVT VT = N->getValueType(0);
5364 if (VT.isVector()) {
5365 assert(ST->hasNEON());
5366
5367 // Compute the least significant set bit: LSB = X & -X
5368 SDValue X = N->getOperand(0);
5369 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5370 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5371
5372 EVT ElemTy = VT.getVectorElementType();
5373
5374 if (ElemTy == MVT::i8) {
5375 // Compute with: cttz(x) = ctpop(lsb - 1)
5376 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5377 DAG.getTargetConstant(1, dl, ElemTy));
5378 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5379 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5380 }
5381
5382 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5383 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5384 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5385 unsigned NumBits = ElemTy.getSizeInBits();
5386 SDValue WidthMinus1 =
5387 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5388 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5389 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5390 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5391 }
5392
5393 // Compute with: cttz(x) = ctpop(lsb - 1)
5394
5395 // Compute LSB - 1.
5396 SDValue Bits;
5397 if (ElemTy == MVT::i64) {
5398 // Load constant 0xffff'ffff'ffff'ffff to register.
5399 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5400 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5401 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5402 } else {
5403 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5404 DAG.getTargetConstant(1, dl, ElemTy));
5405 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5406 }
5407 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5408 }
5409
5410 if (!ST->hasV6T2Ops())
5411 return SDValue();
5412
5413 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5414 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5415 }
5416
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5417 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5418 const ARMSubtarget *ST) {
5419 EVT VT = N->getValueType(0);
5420 SDLoc DL(N);
5421
5422 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5423 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5424 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5425 "Unexpected type for custom ctpop lowering");
5426
5427 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5428 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5429 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
5430 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
5431
5432 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5433 unsigned EltSize = 8;
5434 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5435 while (EltSize != VT.getScalarSizeInBits()) {
5436 SmallVector<SDValue, 8> Ops;
5437 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
5438 TLI.getPointerTy(DAG.getDataLayout())));
5439 Ops.push_back(Res);
5440
5441 EltSize *= 2;
5442 NumElts /= 2;
5443 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5444 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
5445 }
5446
5447 return Res;
5448 }
5449
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5450 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5451 const ARMSubtarget *ST) {
5452 EVT VT = N->getValueType(0);
5453 SDLoc dl(N);
5454
5455 if (!VT.isVector())
5456 return SDValue();
5457
5458 // Lower vector shifts on NEON to use VSHL.
5459 assert(ST->hasNEON() && "unexpected vector shift");
5460
5461 // Left shifts translate directly to the vshiftu intrinsic.
5462 if (N->getOpcode() == ISD::SHL)
5463 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5464 DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5465 MVT::i32),
5466 N->getOperand(0), N->getOperand(1));
5467
5468 assert((N->getOpcode() == ISD::SRA ||
5469 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5470
5471 // NEON uses the same intrinsics for both left and right shifts. For
5472 // right shifts, the shift amounts are negative, so negate the vector of
5473 // shift amounts.
5474 EVT ShiftVT = N->getOperand(1).getValueType();
5475 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5476 getZeroVector(ShiftVT, DAG, dl),
5477 N->getOperand(1));
5478 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5479 Intrinsic::arm_neon_vshifts :
5480 Intrinsic::arm_neon_vshiftu);
5481 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5482 DAG.getConstant(vshiftInt, dl, MVT::i32),
5483 N->getOperand(0), NegatedCount);
5484 }
5485
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5486 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5487 const ARMSubtarget *ST) {
5488 EVT VT = N->getValueType(0);
5489 SDLoc dl(N);
5490
5491 // We can get here for a node like i32 = ISD::SHL i32, i64
5492 if (VT != MVT::i64)
5493 return SDValue();
5494
5495 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5496 "Unknown shift to lower!");
5497
5498 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5499 if (!isOneConstant(N->getOperand(1)))
5500 return SDValue();
5501
5502 // If we are in thumb mode, we don't have RRX.
5503 if (ST->isThumb1Only()) return SDValue();
5504
5505 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5506 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5507 DAG.getConstant(0, dl, MVT::i32));
5508 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5509 DAG.getConstant(1, dl, MVT::i32));
5510
5511 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5512 // captures the result into a carry flag.
5513 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5514 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5515
5516 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5517 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5518
5519 // Merge the pieces into a single i64 value.
5520 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5521 }
5522
LowerVSETCC(SDValue Op,SelectionDAG & DAG)5523 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5524 SDValue TmpOp0, TmpOp1;
5525 bool Invert = false;
5526 bool Swap = false;
5527 unsigned Opc = 0;
5528
5529 SDValue Op0 = Op.getOperand(0);
5530 SDValue Op1 = Op.getOperand(1);
5531 SDValue CC = Op.getOperand(2);
5532 EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5533 EVT VT = Op.getValueType();
5534 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5535 SDLoc dl(Op);
5536
5537 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5538 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5539 // Special-case integer 64-bit equality comparisons. They aren't legal,
5540 // but they can be lowered with a few vector instructions.
5541 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5542 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5543 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5544 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5545 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5546 DAG.getCondCode(ISD::SETEQ));
5547 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5548 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5549 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5550 if (SetCCOpcode == ISD::SETNE)
5551 Merged = DAG.getNOT(dl, Merged, CmpVT);
5552 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5553 return Merged;
5554 }
5555
5556 if (CmpVT.getVectorElementType() == MVT::i64)
5557 // 64-bit comparisons are not legal in general.
5558 return SDValue();
5559
5560 if (Op1.getValueType().isFloatingPoint()) {
5561 switch (SetCCOpcode) {
5562 default: llvm_unreachable("Illegal FP comparison");
5563 case ISD::SETUNE:
5564 case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
5565 case ISD::SETOEQ:
5566 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
5567 case ISD::SETOLT:
5568 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5569 case ISD::SETOGT:
5570 case ISD::SETGT: Opc = ARMISD::VCGT; break;
5571 case ISD::SETOLE:
5572 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
5573 case ISD::SETOGE:
5574 case ISD::SETGE: Opc = ARMISD::VCGE; break;
5575 case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5576 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5577 case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5578 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5579 case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5580 case ISD::SETONE:
5581 // Expand this to (OLT | OGT).
5582 TmpOp0 = Op0;
5583 TmpOp1 = Op1;
5584 Opc = ISD::OR;
5585 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5586 Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5587 break;
5588 case ISD::SETUO:
5589 Invert = true;
5590 LLVM_FALLTHROUGH;
5591 case ISD::SETO:
5592 // Expand this to (OLT | OGE).
5593 TmpOp0 = Op0;
5594 TmpOp1 = Op1;
5595 Opc = ISD::OR;
5596 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5597 Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5598 break;
5599 }
5600 } else {
5601 // Integer comparisons.
5602 switch (SetCCOpcode) {
5603 default: llvm_unreachable("Illegal integer comparison");
5604 case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
5605 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
5606 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5607 case ISD::SETGT: Opc = ARMISD::VCGT; break;
5608 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
5609 case ISD::SETGE: Opc = ARMISD::VCGE; break;
5610 case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5611 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5612 case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5613 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5614 }
5615
5616 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5617 if (Opc == ARMISD::VCEQ) {
5618 SDValue AndOp;
5619 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5620 AndOp = Op0;
5621 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5622 AndOp = Op1;
5623
5624 // Ignore bitconvert.
5625 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5626 AndOp = AndOp.getOperand(0);
5627
5628 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5629 Opc = ARMISD::VTST;
5630 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5631 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5632 Invert = !Invert;
5633 }
5634 }
5635 }
5636
5637 if (Swap)
5638 std::swap(Op0, Op1);
5639
5640 // If one of the operands is a constant vector zero, attempt to fold the
5641 // comparison to a specialized compare-against-zero form.
5642 SDValue SingleOp;
5643 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5644 SingleOp = Op0;
5645 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5646 if (Opc == ARMISD::VCGE)
5647 Opc = ARMISD::VCLEZ;
5648 else if (Opc == ARMISD::VCGT)
5649 Opc = ARMISD::VCLTZ;
5650 SingleOp = Op1;
5651 }
5652
5653 SDValue Result;
5654 if (SingleOp.getNode()) {
5655 switch (Opc) {
5656 case ARMISD::VCEQ:
5657 Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5658 case ARMISD::VCGE:
5659 Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5660 case ARMISD::VCLEZ:
5661 Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5662 case ARMISD::VCGT:
5663 Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5664 case ARMISD::VCLTZ:
5665 Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5666 default:
5667 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5668 }
5669 } else {
5670 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5671 }
5672
5673 Result = DAG.getSExtOrTrunc(Result, dl, VT);
5674
5675 if (Invert)
5676 Result = DAG.getNOT(dl, Result, VT);
5677
5678 return Result;
5679 }
5680
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)5681 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5682 SDValue LHS = Op.getOperand(0);
5683 SDValue RHS = Op.getOperand(1);
5684 SDValue Carry = Op.getOperand(2);
5685 SDValue Cond = Op.getOperand(3);
5686 SDLoc DL(Op);
5687
5688 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5689
5690 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5691 // have to invert the carry first.
5692 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5693 DAG.getConstant(1, DL, MVT::i32), Carry);
5694 // This converts the boolean value carry into the carry flag.
5695 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5696
5697 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5698 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5699
5700 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5701 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5702 SDValue ARMcc = DAG.getConstant(
5703 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5704 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5705 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5706 Cmp.getValue(1), SDValue());
5707 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5708 CCR, Chain.getValue(1));
5709 }
5710
5711 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5712 /// valid vector constant for a NEON instruction with a "modified immediate"
5713 /// operand (e.g., VMOV). If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,bool is128Bits,NEONModImmType type)5714 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5715 unsigned SplatBitSize, SelectionDAG &DAG,
5716 const SDLoc &dl, EVT &VT, bool is128Bits,
5717 NEONModImmType type) {
5718 unsigned OpCmode, Imm;
5719
5720 // SplatBitSize is set to the smallest size that splats the vector, so a
5721 // zero vector will always have SplatBitSize == 8. However, NEON modified
5722 // immediate instructions others than VMOV do not support the 8-bit encoding
5723 // of a zero vector, and the default encoding of zero is supposed to be the
5724 // 32-bit version.
5725 if (SplatBits == 0)
5726 SplatBitSize = 32;
5727
5728 switch (SplatBitSize) {
5729 case 8:
5730 if (type != VMOVModImm)
5731 return SDValue();
5732 // Any 1-byte value is OK. Op=0, Cmode=1110.
5733 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5734 OpCmode = 0xe;
5735 Imm = SplatBits;
5736 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5737 break;
5738
5739 case 16:
5740 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5741 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5742 if ((SplatBits & ~0xff) == 0) {
5743 // Value = 0x00nn: Op=x, Cmode=100x.
5744 OpCmode = 0x8;
5745 Imm = SplatBits;
5746 break;
5747 }
5748 if ((SplatBits & ~0xff00) == 0) {
5749 // Value = 0xnn00: Op=x, Cmode=101x.
5750 OpCmode = 0xa;
5751 Imm = SplatBits >> 8;
5752 break;
5753 }
5754 return SDValue();
5755
5756 case 32:
5757 // NEON's 32-bit VMOV supports splat values where:
5758 // * only one byte is nonzero, or
5759 // * the least significant byte is 0xff and the second byte is nonzero, or
5760 // * the least significant 2 bytes are 0xff and the third is nonzero.
5761 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5762 if ((SplatBits & ~0xff) == 0) {
5763 // Value = 0x000000nn: Op=x, Cmode=000x.
5764 OpCmode = 0;
5765 Imm = SplatBits;
5766 break;
5767 }
5768 if ((SplatBits & ~0xff00) == 0) {
5769 // Value = 0x0000nn00: Op=x, Cmode=001x.
5770 OpCmode = 0x2;
5771 Imm = SplatBits >> 8;
5772 break;
5773 }
5774 if ((SplatBits & ~0xff0000) == 0) {
5775 // Value = 0x00nn0000: Op=x, Cmode=010x.
5776 OpCmode = 0x4;
5777 Imm = SplatBits >> 16;
5778 break;
5779 }
5780 if ((SplatBits & ~0xff000000) == 0) {
5781 // Value = 0xnn000000: Op=x, Cmode=011x.
5782 OpCmode = 0x6;
5783 Imm = SplatBits >> 24;
5784 break;
5785 }
5786
5787 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5788 if (type == OtherModImm) return SDValue();
5789
5790 if ((SplatBits & ~0xffff) == 0 &&
5791 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5792 // Value = 0x0000nnff: Op=x, Cmode=1100.
5793 OpCmode = 0xc;
5794 Imm = SplatBits >> 8;
5795 break;
5796 }
5797
5798 if ((SplatBits & ~0xffffff) == 0 &&
5799 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5800 // Value = 0x00nnffff: Op=x, Cmode=1101.
5801 OpCmode = 0xd;
5802 Imm = SplatBits >> 16;
5803 break;
5804 }
5805
5806 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5807 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5808 // VMOV.I32. A (very) minor optimization would be to replicate the value
5809 // and fall through here to test for a valid 64-bit splat. But, then the
5810 // caller would also need to check and handle the change in size.
5811 return SDValue();
5812
5813 case 64: {
5814 if (type != VMOVModImm)
5815 return SDValue();
5816 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5817 uint64_t BitMask = 0xff;
5818 uint64_t Val = 0;
5819 unsigned ImmMask = 1;
5820 Imm = 0;
5821 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5822 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5823 Val |= BitMask;
5824 Imm |= ImmMask;
5825 } else if ((SplatBits & BitMask) != 0) {
5826 return SDValue();
5827 }
5828 BitMask <<= 8;
5829 ImmMask <<= 1;
5830 }
5831
5832 if (DAG.getDataLayout().isBigEndian())
5833 // swap higher and lower 32 bit word
5834 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5835
5836 // Op=1, Cmode=1110.
5837 OpCmode = 0x1e;
5838 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5839 break;
5840 }
5841
5842 default:
5843 llvm_unreachable("unexpected size for isNEONModifiedImm");
5844 }
5845
5846 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5847 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5848 }
5849
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const5850 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5851 const ARMSubtarget *ST) const {
5852 EVT VT = Op.getValueType();
5853 bool IsDouble = (VT == MVT::f64);
5854 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5855 const APFloat &FPVal = CFP->getValueAPF();
5856
5857 // Prevent floating-point constants from using literal loads
5858 // when execute-only is enabled.
5859 if (ST->genExecuteOnly()) {
5860 // If we can represent the constant as an immediate, don't lower it
5861 if (isFPImmLegal(FPVal, VT))
5862 return Op;
5863 // Otherwise, construct as integer, and move to float register
5864 APInt INTVal = FPVal.bitcastToAPInt();
5865 SDLoc DL(CFP);
5866 switch (VT.getSimpleVT().SimpleTy) {
5867 default:
5868 llvm_unreachable("Unknown floating point type!");
5869 break;
5870 case MVT::f64: {
5871 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5872 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5873 if (!ST->isLittle())
5874 std::swap(Lo, Hi);
5875 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5876 }
5877 case MVT::f32:
5878 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5879 DAG.getConstant(INTVal, DL, MVT::i32));
5880 }
5881 }
5882
5883 if (!ST->hasVFP3())
5884 return SDValue();
5885
5886 // Use the default (constant pool) lowering for double constants when we have
5887 // an SP-only FPU
5888 if (IsDouble && Subtarget->isFPOnlySP())
5889 return SDValue();
5890
5891 // Try splatting with a VMOV.f32...
5892 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5893
5894 if (ImmVal != -1) {
5895 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5896 // We have code in place to select a valid ConstantFP already, no need to
5897 // do any mangling.
5898 return Op;
5899 }
5900
5901 // It's a float and we are trying to use NEON operations where
5902 // possible. Lower it to a splat followed by an extract.
5903 SDLoc DL(Op);
5904 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5905 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5906 NewVal);
5907 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5908 DAG.getConstant(0, DL, MVT::i32));
5909 }
5910
5911 // The rest of our options are NEON only, make sure that's allowed before
5912 // proceeding..
5913 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5914 return SDValue();
5915
5916 EVT VMovVT;
5917 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5918
5919 // It wouldn't really be worth bothering for doubles except for one very
5920 // important value, which does happen to match: 0.0. So make sure we don't do
5921 // anything stupid.
5922 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5923 return SDValue();
5924
5925 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5926 SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5927 VMovVT, false, VMOVModImm);
5928 if (NewVal != SDValue()) {
5929 SDLoc DL(Op);
5930 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5931 NewVal);
5932 if (IsDouble)
5933 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5934
5935 // It's a float: cast and extract a vector element.
5936 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5937 VecConstant);
5938 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5939 DAG.getConstant(0, DL, MVT::i32));
5940 }
5941
5942 // Finally, try a VMVN.i32
5943 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5944 false, VMVNModImm);
5945 if (NewVal != SDValue()) {
5946 SDLoc DL(Op);
5947 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5948
5949 if (IsDouble)
5950 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5951
5952 // It's a float: cast and extract a vector element.
5953 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5954 VecConstant);
5955 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5956 DAG.getConstant(0, DL, MVT::i32));
5957 }
5958
5959 return SDValue();
5960 }
5961
5962 // check if an VEXT instruction can handle the shuffle mask when the
5963 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5964 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5965 unsigned NumElts = VT.getVectorNumElements();
5966
5967 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5968 if (M[0] < 0)
5969 return false;
5970
5971 Imm = M[0];
5972
5973 // If this is a VEXT shuffle, the immediate value is the index of the first
5974 // element. The other shuffle indices must be the successive elements after
5975 // the first one.
5976 unsigned ExpectedElt = Imm;
5977 for (unsigned i = 1; i < NumElts; ++i) {
5978 // Increment the expected index. If it wraps around, just follow it
5979 // back to index zero and keep going.
5980 ++ExpectedElt;
5981 if (ExpectedElt == NumElts)
5982 ExpectedElt = 0;
5983
5984 if (M[i] < 0) continue; // ignore UNDEF indices
5985 if (ExpectedElt != static_cast<unsigned>(M[i]))
5986 return false;
5987 }
5988
5989 return true;
5990 }
5991
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)5992 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5993 bool &ReverseVEXT, unsigned &Imm) {
5994 unsigned NumElts = VT.getVectorNumElements();
5995 ReverseVEXT = false;
5996
5997 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5998 if (M[0] < 0)
5999 return false;
6000
6001 Imm = M[0];
6002
6003 // If this is a VEXT shuffle, the immediate value is the index of the first
6004 // element. The other shuffle indices must be the successive elements after
6005 // the first one.
6006 unsigned ExpectedElt = Imm;
6007 for (unsigned i = 1; i < NumElts; ++i) {
6008 // Increment the expected index. If it wraps around, it may still be
6009 // a VEXT but the source vectors must be swapped.
6010 ExpectedElt += 1;
6011 if (ExpectedElt == NumElts * 2) {
6012 ExpectedElt = 0;
6013 ReverseVEXT = true;
6014 }
6015
6016 if (M[i] < 0) continue; // ignore UNDEF indices
6017 if (ExpectedElt != static_cast<unsigned>(M[i]))
6018 return false;
6019 }
6020
6021 // Adjust the index value if the source operands will be swapped.
6022 if (ReverseVEXT)
6023 Imm -= NumElts;
6024
6025 return true;
6026 }
6027
6028 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6029 /// instruction with the specified blocksize. (The order of the elements
6030 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6031 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6032 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6033 "Only possible block sizes for VREV are: 16, 32, 64");
6034
6035 unsigned EltSz = VT.getScalarSizeInBits();
6036 if (EltSz == 64)
6037 return false;
6038
6039 unsigned NumElts = VT.getVectorNumElements();
6040 unsigned BlockElts = M[0] + 1;
6041 // If the first shuffle index is UNDEF, be optimistic.
6042 if (M[0] < 0)
6043 BlockElts = BlockSize / EltSz;
6044
6045 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6046 return false;
6047
6048 for (unsigned i = 0; i < NumElts; ++i) {
6049 if (M[i] < 0) continue; // ignore UNDEF indices
6050 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6051 return false;
6052 }
6053
6054 return true;
6055 }
6056
isVTBLMask(ArrayRef<int> M,EVT VT)6057 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6058 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6059 // range, then 0 is placed into the resulting vector. So pretty much any mask
6060 // of 8 elements can work here.
6061 return VT == MVT::v8i8 && M.size() == 8;
6062 }
6063
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6064 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6065 unsigned Index) {
6066 if (Mask.size() == Elements * 2)
6067 return Index / Elements;
6068 return Mask[Index] == 0 ? 0 : 1;
6069 }
6070
6071 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6072 // checking that pairs of elements in the shuffle mask represent the same index
6073 // in each vector, incrementing the expected index by 2 at each step.
6074 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6075 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6076 // v2={e,f,g,h}
6077 // WhichResult gives the offset for each element in the mask based on which
6078 // of the two results it belongs to.
6079 //
6080 // The transpose can be represented either as:
6081 // result1 = shufflevector v1, v2, result1_shuffle_mask
6082 // result2 = shufflevector v1, v2, result2_shuffle_mask
6083 // where v1/v2 and the shuffle masks have the same number of elements
6084 // (here WhichResult (see below) indicates which result is being checked)
6085 //
6086 // or as:
6087 // results = shufflevector v1, v2, shuffle_mask
6088 // where both results are returned in one vector and the shuffle mask has twice
6089 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6090 // want to check the low half and high half of the shuffle mask as if it were
6091 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6092 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6093 unsigned EltSz = VT.getScalarSizeInBits();
6094 if (EltSz == 64)
6095 return false;
6096
6097 unsigned NumElts = VT.getVectorNumElements();
6098 if (M.size() != NumElts && M.size() != NumElts*2)
6099 return false;
6100
6101 // If the mask is twice as long as the input vector then we need to check the
6102 // upper and lower parts of the mask with a matching value for WhichResult
6103 // FIXME: A mask with only even values will be rejected in case the first
6104 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6105 // M[0] is used to determine WhichResult
6106 for (unsigned i = 0; i < M.size(); i += NumElts) {
6107 WhichResult = SelectPairHalf(NumElts, M, i);
6108 for (unsigned j = 0; j < NumElts; j += 2) {
6109 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6110 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6111 return false;
6112 }
6113 }
6114
6115 if (M.size() == NumElts*2)
6116 WhichResult = 0;
6117
6118 return true;
6119 }
6120
6121 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6122 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6123 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6124 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6125 unsigned EltSz = VT.getScalarSizeInBits();
6126 if (EltSz == 64)
6127 return false;
6128
6129 unsigned NumElts = VT.getVectorNumElements();
6130 if (M.size() != NumElts && M.size() != NumElts*2)
6131 return false;
6132
6133 for (unsigned i = 0; i < M.size(); i += NumElts) {
6134 WhichResult = SelectPairHalf(NumElts, M, i);
6135 for (unsigned j = 0; j < NumElts; j += 2) {
6136 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6137 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6138 return false;
6139 }
6140 }
6141
6142 if (M.size() == NumElts*2)
6143 WhichResult = 0;
6144
6145 return true;
6146 }
6147
6148 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6149 // that the mask elements are either all even and in steps of size 2 or all odd
6150 // and in steps of size 2.
6151 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6152 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6153 // v2={e,f,g,h}
6154 // Requires similar checks to that of isVTRNMask with
6155 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6156 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6157 unsigned EltSz = VT.getScalarSizeInBits();
6158 if (EltSz == 64)
6159 return false;
6160
6161 unsigned NumElts = VT.getVectorNumElements();
6162 if (M.size() != NumElts && M.size() != NumElts*2)
6163 return false;
6164
6165 for (unsigned i = 0; i < M.size(); i += NumElts) {
6166 WhichResult = SelectPairHalf(NumElts, M, i);
6167 for (unsigned j = 0; j < NumElts; ++j) {
6168 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6169 return false;
6170 }
6171 }
6172
6173 if (M.size() == NumElts*2)
6174 WhichResult = 0;
6175
6176 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6177 if (VT.is64BitVector() && EltSz == 32)
6178 return false;
6179
6180 return true;
6181 }
6182
6183 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6184 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6185 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6186 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6187 unsigned EltSz = VT.getScalarSizeInBits();
6188 if (EltSz == 64)
6189 return false;
6190
6191 unsigned NumElts = VT.getVectorNumElements();
6192 if (M.size() != NumElts && M.size() != NumElts*2)
6193 return false;
6194
6195 unsigned Half = NumElts / 2;
6196 for (unsigned i = 0; i < M.size(); i += NumElts) {
6197 WhichResult = SelectPairHalf(NumElts, M, i);
6198 for (unsigned j = 0; j < NumElts; j += Half) {
6199 unsigned Idx = WhichResult;
6200 for (unsigned k = 0; k < Half; ++k) {
6201 int MIdx = M[i + j + k];
6202 if (MIdx >= 0 && (unsigned) MIdx != Idx)
6203 return false;
6204 Idx += 2;
6205 }
6206 }
6207 }
6208
6209 if (M.size() == NumElts*2)
6210 WhichResult = 0;
6211
6212 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6213 if (VT.is64BitVector() && EltSz == 32)
6214 return false;
6215
6216 return true;
6217 }
6218
6219 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6220 // that pairs of elements of the shufflemask represent the same index in each
6221 // vector incrementing sequentially through the vectors.
6222 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6223 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6224 // v2={e,f,g,h}
6225 // Requires similar checks to that of isVTRNMask with respect the how results
6226 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6227 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6228 unsigned EltSz = VT.getScalarSizeInBits();
6229 if (EltSz == 64)
6230 return false;
6231
6232 unsigned NumElts = VT.getVectorNumElements();
6233 if (M.size() != NumElts && M.size() != NumElts*2)
6234 return false;
6235
6236 for (unsigned i = 0; i < M.size(); i += NumElts) {
6237 WhichResult = SelectPairHalf(NumElts, M, i);
6238 unsigned Idx = WhichResult * NumElts / 2;
6239 for (unsigned j = 0; j < NumElts; j += 2) {
6240 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6241 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6242 return false;
6243 Idx += 1;
6244 }
6245 }
6246
6247 if (M.size() == NumElts*2)
6248 WhichResult = 0;
6249
6250 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6251 if (VT.is64BitVector() && EltSz == 32)
6252 return false;
6253
6254 return true;
6255 }
6256
6257 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6258 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6259 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6260 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6261 unsigned EltSz = VT.getScalarSizeInBits();
6262 if (EltSz == 64)
6263 return false;
6264
6265 unsigned NumElts = VT.getVectorNumElements();
6266 if (M.size() != NumElts && M.size() != NumElts*2)
6267 return false;
6268
6269 for (unsigned i = 0; i < M.size(); i += NumElts) {
6270 WhichResult = SelectPairHalf(NumElts, M, i);
6271 unsigned Idx = WhichResult * NumElts / 2;
6272 for (unsigned j = 0; j < NumElts; j += 2) {
6273 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6274 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6275 return false;
6276 Idx += 1;
6277 }
6278 }
6279
6280 if (M.size() == NumElts*2)
6281 WhichResult = 0;
6282
6283 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6284 if (VT.is64BitVector() && EltSz == 32)
6285 return false;
6286
6287 return true;
6288 }
6289
6290 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6291 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)6292 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6293 unsigned &WhichResult,
6294 bool &isV_UNDEF) {
6295 isV_UNDEF = false;
6296 if (isVTRNMask(ShuffleMask, VT, WhichResult))
6297 return ARMISD::VTRN;
6298 if (isVUZPMask(ShuffleMask, VT, WhichResult))
6299 return ARMISD::VUZP;
6300 if (isVZIPMask(ShuffleMask, VT, WhichResult))
6301 return ARMISD::VZIP;
6302
6303 isV_UNDEF = true;
6304 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6305 return ARMISD::VTRN;
6306 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6307 return ARMISD::VUZP;
6308 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6309 return ARMISD::VZIP;
6310
6311 return 0;
6312 }
6313
6314 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)6315 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6316 unsigned NumElts = VT.getVectorNumElements();
6317 // Make sure the mask has the right size.
6318 if (NumElts != M.size())
6319 return false;
6320
6321 // Look for <15, ..., 3, -1, 1, 0>.
6322 for (unsigned i = 0; i != NumElts; ++i)
6323 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6324 return false;
6325
6326 return true;
6327 }
6328
6329 // If N is an integer constant that can be moved into a register in one
6330 // instruction, return an SDValue of such a constant (will become a MOV
6331 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)6332 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6333 const ARMSubtarget *ST, const SDLoc &dl) {
6334 uint64_t Val;
6335 if (!isa<ConstantSDNode>(N))
6336 return SDValue();
6337 Val = cast<ConstantSDNode>(N)->getZExtValue();
6338
6339 if (ST->isThumb1Only()) {
6340 if (Val <= 255 || ~Val <= 255)
6341 return DAG.getConstant(Val, dl, MVT::i32);
6342 } else {
6343 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6344 return DAG.getConstant(Val, dl, MVT::i32);
6345 }
6346 return SDValue();
6347 }
6348
6349 // If this is a case we can't handle, return null and let the default
6350 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6351 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6352 const ARMSubtarget *ST) const {
6353 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6354 SDLoc dl(Op);
6355 EVT VT = Op.getValueType();
6356
6357 APInt SplatBits, SplatUndef;
6358 unsigned SplatBitSize;
6359 bool HasAnyUndefs;
6360 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6361 if (SplatUndef.isAllOnesValue())
6362 return DAG.getUNDEF(VT);
6363
6364 if (SplatBitSize <= 64) {
6365 // Check if an immediate VMOV works.
6366 EVT VmovVT;
6367 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6368 SplatUndef.getZExtValue(), SplatBitSize,
6369 DAG, dl, VmovVT, VT.is128BitVector(),
6370 VMOVModImm);
6371 if (Val.getNode()) {
6372 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6373 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6374 }
6375
6376 // Try an immediate VMVN.
6377 uint64_t NegatedImm = (~SplatBits).getZExtValue();
6378 Val = isNEONModifiedImm(NegatedImm,
6379 SplatUndef.getZExtValue(), SplatBitSize,
6380 DAG, dl, VmovVT, VT.is128BitVector(),
6381 VMVNModImm);
6382 if (Val.getNode()) {
6383 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6384 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6385 }
6386
6387 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6388 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6389 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6390 if (ImmVal != -1) {
6391 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6392 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6393 }
6394 }
6395 }
6396 }
6397
6398 // Scan through the operands to see if only one value is used.
6399 //
6400 // As an optimisation, even if more than one value is used it may be more
6401 // profitable to splat with one value then change some lanes.
6402 //
6403 // Heuristically we decide to do this if the vector has a "dominant" value,
6404 // defined as splatted to more than half of the lanes.
6405 unsigned NumElts = VT.getVectorNumElements();
6406 bool isOnlyLowElement = true;
6407 bool usesOnlyOneValue = true;
6408 bool hasDominantValue = false;
6409 bool isConstant = true;
6410
6411 // Map of the number of times a particular SDValue appears in the
6412 // element list.
6413 DenseMap<SDValue, unsigned> ValueCounts;
6414 SDValue Value;
6415 for (unsigned i = 0; i < NumElts; ++i) {
6416 SDValue V = Op.getOperand(i);
6417 if (V.isUndef())
6418 continue;
6419 if (i > 0)
6420 isOnlyLowElement = false;
6421 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6422 isConstant = false;
6423
6424 ValueCounts.insert(std::make_pair(V, 0));
6425 unsigned &Count = ValueCounts[V];
6426
6427 // Is this value dominant? (takes up more than half of the lanes)
6428 if (++Count > (NumElts / 2)) {
6429 hasDominantValue = true;
6430 Value = V;
6431 }
6432 }
6433 if (ValueCounts.size() != 1)
6434 usesOnlyOneValue = false;
6435 if (!Value.getNode() && !ValueCounts.empty())
6436 Value = ValueCounts.begin()->first;
6437
6438 if (ValueCounts.empty())
6439 return DAG.getUNDEF(VT);
6440
6441 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6442 // Keep going if we are hitting this case.
6443 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6444 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6445
6446 unsigned EltSize = VT.getScalarSizeInBits();
6447
6448 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6449 // i32 and try again.
6450 if (hasDominantValue && EltSize <= 32) {
6451 if (!isConstant) {
6452 SDValue N;
6453
6454 // If we are VDUPing a value that comes directly from a vector, that will
6455 // cause an unnecessary move to and from a GPR, where instead we could
6456 // just use VDUPLANE. We can only do this if the lane being extracted
6457 // is at a constant index, as the VDUP from lane instructions only have
6458 // constant-index forms.
6459 ConstantSDNode *constIndex;
6460 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6461 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6462 // We need to create a new undef vector to use for the VDUPLANE if the
6463 // size of the vector from which we get the value is different than the
6464 // size of the vector that we need to create. We will insert the element
6465 // such that the register coalescer will remove unnecessary copies.
6466 if (VT != Value->getOperand(0).getValueType()) {
6467 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6468 VT.getVectorNumElements();
6469 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6470 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6471 Value, DAG.getConstant(index, dl, MVT::i32)),
6472 DAG.getConstant(index, dl, MVT::i32));
6473 } else
6474 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6475 Value->getOperand(0), Value->getOperand(1));
6476 } else
6477 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6478
6479 if (!usesOnlyOneValue) {
6480 // The dominant value was splatted as 'N', but we now have to insert
6481 // all differing elements.
6482 for (unsigned I = 0; I < NumElts; ++I) {
6483 if (Op.getOperand(I) == Value)
6484 continue;
6485 SmallVector<SDValue, 3> Ops;
6486 Ops.push_back(N);
6487 Ops.push_back(Op.getOperand(I));
6488 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6489 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6490 }
6491 }
6492 return N;
6493 }
6494 if (VT.getVectorElementType().isFloatingPoint()) {
6495 SmallVector<SDValue, 8> Ops;
6496 for (unsigned i = 0; i < NumElts; ++i)
6497 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6498 Op.getOperand(i)));
6499 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6500 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6501 Val = LowerBUILD_VECTOR(Val, DAG, ST);
6502 if (Val.getNode())
6503 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6504 }
6505 if (usesOnlyOneValue) {
6506 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6507 if (isConstant && Val.getNode())
6508 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6509 }
6510 }
6511
6512 // If all elements are constants and the case above didn't get hit, fall back
6513 // to the default expansion, which will generate a load from the constant
6514 // pool.
6515 if (isConstant)
6516 return SDValue();
6517
6518 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6519 if (NumElts >= 4) {
6520 SDValue shuffle = ReconstructShuffle(Op, DAG);
6521 if (shuffle != SDValue())
6522 return shuffle;
6523 }
6524
6525 if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6526 // If we haven't found an efficient lowering, try splitting a 128-bit vector
6527 // into two 64-bit vectors; we might discover a better way to lower it.
6528 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6529 EVT ExtVT = VT.getVectorElementType();
6530 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6531 SDValue Lower =
6532 DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6533 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6534 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6535 SDValue Upper = DAG.getBuildVector(
6536 HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6537 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6538 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6539 if (Lower && Upper)
6540 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6541 }
6542
6543 // Vectors with 32- or 64-bit elements can be built by directly assigning
6544 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
6545 // will be legalized.
6546 if (EltSize >= 32) {
6547 // Do the expansion with floating-point types, since that is what the VFP
6548 // registers are defined to use, and since i64 is not legal.
6549 EVT EltVT = EVT::getFloatingPointVT(EltSize);
6550 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6551 SmallVector<SDValue, 8> Ops;
6552 for (unsigned i = 0; i < NumElts; ++i)
6553 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6554 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6555 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6556 }
6557
6558 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6559 // know the default expansion would otherwise fall back on something even
6560 // worse. For a vector with one or two non-undef values, that's
6561 // scalar_to_vector for the elements followed by a shuffle (provided the
6562 // shuffle is valid for the target) and materialization element by element
6563 // on the stack followed by a load for everything else.
6564 if (!isConstant && !usesOnlyOneValue) {
6565 SDValue Vec = DAG.getUNDEF(VT);
6566 for (unsigned i = 0 ; i < NumElts; ++i) {
6567 SDValue V = Op.getOperand(i);
6568 if (V.isUndef())
6569 continue;
6570 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6571 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6572 }
6573 return Vec;
6574 }
6575
6576 return SDValue();
6577 }
6578
6579 // Gather data to see if the operation can be modelled as a
6580 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const6581 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6582 SelectionDAG &DAG) const {
6583 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6584 SDLoc dl(Op);
6585 EVT VT = Op.getValueType();
6586 unsigned NumElts = VT.getVectorNumElements();
6587
6588 struct ShuffleSourceInfo {
6589 SDValue Vec;
6590 unsigned MinElt = std::numeric_limits<unsigned>::max();
6591 unsigned MaxElt = 0;
6592
6593 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6594 // be compatible with the shuffle we intend to construct. As a result
6595 // ShuffleVec will be some sliding window into the original Vec.
6596 SDValue ShuffleVec;
6597
6598 // Code should guarantee that element i in Vec starts at element "WindowBase
6599 // + i * WindowScale in ShuffleVec".
6600 int WindowBase = 0;
6601 int WindowScale = 1;
6602
6603 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6604
6605 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6606 };
6607
6608 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6609 // node.
6610 SmallVector<ShuffleSourceInfo, 2> Sources;
6611 for (unsigned i = 0; i < NumElts; ++i) {
6612 SDValue V = Op.getOperand(i);
6613 if (V.isUndef())
6614 continue;
6615 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6616 // A shuffle can only come from building a vector from various
6617 // elements of other vectors.
6618 return SDValue();
6619 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6620 // Furthermore, shuffles require a constant mask, whereas extractelts
6621 // accept variable indices.
6622 return SDValue();
6623 }
6624
6625 // Add this element source to the list if it's not already there.
6626 SDValue SourceVec = V.getOperand(0);
6627 auto Source = llvm::find(Sources, SourceVec);
6628 if (Source == Sources.end())
6629 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6630
6631 // Update the minimum and maximum lane number seen.
6632 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6633 Source->MinElt = std::min(Source->MinElt, EltNo);
6634 Source->MaxElt = std::max(Source->MaxElt, EltNo);
6635 }
6636
6637 // Currently only do something sane when at most two source vectors
6638 // are involved.
6639 if (Sources.size() > 2)
6640 return SDValue();
6641
6642 // Find out the smallest element size among result and two sources, and use
6643 // it as element size to build the shuffle_vector.
6644 EVT SmallestEltTy = VT.getVectorElementType();
6645 for (auto &Source : Sources) {
6646 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6647 if (SrcEltTy.bitsLT(SmallestEltTy))
6648 SmallestEltTy = SrcEltTy;
6649 }
6650 unsigned ResMultiplier =
6651 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6652 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6653 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6654
6655 // If the source vector is too wide or too narrow, we may nevertheless be able
6656 // to construct a compatible shuffle either by concatenating it with UNDEF or
6657 // extracting a suitable range of elements.
6658 for (auto &Src : Sources) {
6659 EVT SrcVT = Src.ShuffleVec.getValueType();
6660
6661 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6662 continue;
6663
6664 // This stage of the search produces a source with the same element type as
6665 // the original, but with a total width matching the BUILD_VECTOR output.
6666 EVT EltVT = SrcVT.getVectorElementType();
6667 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6668 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6669
6670 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6671 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6672 return SDValue();
6673 // We can pad out the smaller vector for free, so if it's part of a
6674 // shuffle...
6675 Src.ShuffleVec =
6676 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6677 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6678 continue;
6679 }
6680
6681 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6682 return SDValue();
6683
6684 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6685 // Span too large for a VEXT to cope
6686 return SDValue();
6687 }
6688
6689 if (Src.MinElt >= NumSrcElts) {
6690 // The extraction can just take the second half
6691 Src.ShuffleVec =
6692 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6693 DAG.getConstant(NumSrcElts, dl, MVT::i32));
6694 Src.WindowBase = -NumSrcElts;
6695 } else if (Src.MaxElt < NumSrcElts) {
6696 // The extraction can just take the first half
6697 Src.ShuffleVec =
6698 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6699 DAG.getConstant(0, dl, MVT::i32));
6700 } else {
6701 // An actual VEXT is needed
6702 SDValue VEXTSrc1 =
6703 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6704 DAG.getConstant(0, dl, MVT::i32));
6705 SDValue VEXTSrc2 =
6706 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6707 DAG.getConstant(NumSrcElts, dl, MVT::i32));
6708
6709 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6710 VEXTSrc2,
6711 DAG.getConstant(Src.MinElt, dl, MVT::i32));
6712 Src.WindowBase = -Src.MinElt;
6713 }
6714 }
6715
6716 // Another possible incompatibility occurs from the vector element types. We
6717 // can fix this by bitcasting the source vectors to the same type we intend
6718 // for the shuffle.
6719 for (auto &Src : Sources) {
6720 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6721 if (SrcEltTy == SmallestEltTy)
6722 continue;
6723 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6724 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6725 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6726 Src.WindowBase *= Src.WindowScale;
6727 }
6728
6729 // Final sanity check before we try to actually produce a shuffle.
6730 LLVM_DEBUG(for (auto Src
6731 : Sources)
6732 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6733
6734 // The stars all align, our next step is to produce the mask for the shuffle.
6735 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6736 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6737 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6738 SDValue Entry = Op.getOperand(i);
6739 if (Entry.isUndef())
6740 continue;
6741
6742 auto Src = llvm::find(Sources, Entry.getOperand(0));
6743 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6744
6745 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6746 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6747 // segment.
6748 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6749 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6750 VT.getScalarSizeInBits());
6751 int LanesDefined = BitsDefined / BitsPerShuffleLane;
6752
6753 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6754 // starting at the appropriate offset.
6755 int *LaneMask = &Mask[i * ResMultiplier];
6756
6757 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6758 ExtractBase += NumElts * (Src - Sources.begin());
6759 for (int j = 0; j < LanesDefined; ++j)
6760 LaneMask[j] = ExtractBase + j;
6761 }
6762
6763 // Final check before we try to produce nonsense...
6764 if (!isShuffleMaskLegal(Mask, ShuffleVT))
6765 return SDValue();
6766
6767 // We can't handle more than two sources. This should have already
6768 // been checked before this point.
6769 assert(Sources.size() <= 2 && "Too many sources!");
6770
6771 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6772 for (unsigned i = 0; i < Sources.size(); ++i)
6773 ShuffleOps[i] = Sources[i].ShuffleVec;
6774
6775 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6776 ShuffleOps[1], Mask);
6777 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6778 }
6779
6780 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6781 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6782 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6783 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const6784 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6785 if (VT.getVectorNumElements() == 4 &&
6786 (VT.is128BitVector() || VT.is64BitVector())) {
6787 unsigned PFIndexes[4];
6788 for (unsigned i = 0; i != 4; ++i) {
6789 if (M[i] < 0)
6790 PFIndexes[i] = 8;
6791 else
6792 PFIndexes[i] = M[i];
6793 }
6794
6795 // Compute the index in the perfect shuffle table.
6796 unsigned PFTableIndex =
6797 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6798 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6799 unsigned Cost = (PFEntry >> 30);
6800
6801 if (Cost <= 4)
6802 return true;
6803 }
6804
6805 bool ReverseVEXT, isV_UNDEF;
6806 unsigned Imm, WhichResult;
6807
6808 unsigned EltSize = VT.getScalarSizeInBits();
6809 return (EltSize >= 32 ||
6810 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6811 isVREVMask(M, VT, 64) ||
6812 isVREVMask(M, VT, 32) ||
6813 isVREVMask(M, VT, 16) ||
6814 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6815 isVTBLMask(M, VT) ||
6816 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6817 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6818 }
6819
6820 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6821 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6822 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6823 SDValue RHS, SelectionDAG &DAG,
6824 const SDLoc &dl) {
6825 unsigned OpNum = (PFEntry >> 26) & 0x0F;
6826 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6827 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
6828
6829 enum {
6830 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6831 OP_VREV,
6832 OP_VDUP0,
6833 OP_VDUP1,
6834 OP_VDUP2,
6835 OP_VDUP3,
6836 OP_VEXT1,
6837 OP_VEXT2,
6838 OP_VEXT3,
6839 OP_VUZPL, // VUZP, left result
6840 OP_VUZPR, // VUZP, right result
6841 OP_VZIPL, // VZIP, left result
6842 OP_VZIPR, // VZIP, right result
6843 OP_VTRNL, // VTRN, left result
6844 OP_VTRNR // VTRN, right result
6845 };
6846
6847 if (OpNum == OP_COPY) {
6848 if (LHSID == (1*9+2)*9+3) return LHS;
6849 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6850 return RHS;
6851 }
6852
6853 SDValue OpLHS, OpRHS;
6854 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6855 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6856 EVT VT = OpLHS.getValueType();
6857
6858 switch (OpNum) {
6859 default: llvm_unreachable("Unknown shuffle opcode!");
6860 case OP_VREV:
6861 // VREV divides the vector in half and swaps within the half.
6862 if (VT.getVectorElementType() == MVT::i32 ||
6863 VT.getVectorElementType() == MVT::f32)
6864 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6865 // vrev <4 x i16> -> VREV32
6866 if (VT.getVectorElementType() == MVT::i16)
6867 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6868 // vrev <4 x i8> -> VREV16
6869 assert(VT.getVectorElementType() == MVT::i8);
6870 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6871 case OP_VDUP0:
6872 case OP_VDUP1:
6873 case OP_VDUP2:
6874 case OP_VDUP3:
6875 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6876 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6877 case OP_VEXT1:
6878 case OP_VEXT2:
6879 case OP_VEXT3:
6880 return DAG.getNode(ARMISD::VEXT, dl, VT,
6881 OpLHS, OpRHS,
6882 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6883 case OP_VUZPL:
6884 case OP_VUZPR:
6885 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6886 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6887 case OP_VZIPL:
6888 case OP_VZIPR:
6889 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6890 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6891 case OP_VTRNL:
6892 case OP_VTRNR:
6893 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6894 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6895 }
6896 }
6897
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)6898 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6899 ArrayRef<int> ShuffleMask,
6900 SelectionDAG &DAG) {
6901 // Check to see if we can use the VTBL instruction.
6902 SDValue V1 = Op.getOperand(0);
6903 SDValue V2 = Op.getOperand(1);
6904 SDLoc DL(Op);
6905
6906 SmallVector<SDValue, 8> VTBLMask;
6907 for (ArrayRef<int>::iterator
6908 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6909 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6910
6911 if (V2.getNode()->isUndef())
6912 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6913 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6914
6915 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6916 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6917 }
6918
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)6919 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6920 SelectionDAG &DAG) {
6921 SDLoc DL(Op);
6922 SDValue OpLHS = Op.getOperand(0);
6923 EVT VT = OpLHS.getValueType();
6924
6925 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6926 "Expect an v8i16/v16i8 type");
6927 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6928 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6929 // extract the first 8 bytes into the top double word and the last 8 bytes
6930 // into the bottom double word. The v8i16 case is similar.
6931 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6932 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6933 DAG.getConstant(ExtractNum, DL, MVT::i32));
6934 }
6935
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)6936 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6937 SDValue V1 = Op.getOperand(0);
6938 SDValue V2 = Op.getOperand(1);
6939 SDLoc dl(Op);
6940 EVT VT = Op.getValueType();
6941 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6942
6943 // Convert shuffles that are directly supported on NEON to target-specific
6944 // DAG nodes, instead of keeping them as shuffles and matching them again
6945 // during code selection. This is more efficient and avoids the possibility
6946 // of inconsistencies between legalization and selection.
6947 // FIXME: floating-point vectors should be canonicalized to integer vectors
6948 // of the same time so that they get CSEd properly.
6949 ArrayRef<int> ShuffleMask = SVN->getMask();
6950
6951 unsigned EltSize = VT.getScalarSizeInBits();
6952 if (EltSize <= 32) {
6953 if (SVN->isSplat()) {
6954 int Lane = SVN->getSplatIndex();
6955 // If this is undef splat, generate it via "just" vdup, if possible.
6956 if (Lane == -1) Lane = 0;
6957
6958 // Test if V1 is a SCALAR_TO_VECTOR.
6959 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6960 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6961 }
6962 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6963 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6964 // reaches it).
6965 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6966 !isa<ConstantSDNode>(V1.getOperand(0))) {
6967 bool IsScalarToVector = true;
6968 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6969 if (!V1.getOperand(i).isUndef()) {
6970 IsScalarToVector = false;
6971 break;
6972 }
6973 if (IsScalarToVector)
6974 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6975 }
6976 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6977 DAG.getConstant(Lane, dl, MVT::i32));
6978 }
6979
6980 bool ReverseVEXT;
6981 unsigned Imm;
6982 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6983 if (ReverseVEXT)
6984 std::swap(V1, V2);
6985 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6986 DAG.getConstant(Imm, dl, MVT::i32));
6987 }
6988
6989 if (isVREVMask(ShuffleMask, VT, 64))
6990 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6991 if (isVREVMask(ShuffleMask, VT, 32))
6992 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6993 if (isVREVMask(ShuffleMask, VT, 16))
6994 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6995
6996 if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6997 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6998 DAG.getConstant(Imm, dl, MVT::i32));
6999 }
7000
7001 // Check for Neon shuffles that modify both input vectors in place.
7002 // If both results are used, i.e., if there are two shuffles with the same
7003 // source operands and with masks corresponding to both results of one of
7004 // these operations, DAG memoization will ensure that a single node is
7005 // used for both shuffles.
7006 unsigned WhichResult;
7007 bool isV_UNDEF;
7008 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7009 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7010 if (isV_UNDEF)
7011 V2 = V1;
7012 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7013 .getValue(WhichResult);
7014 }
7015
7016 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7017 // shuffles that produce a result larger than their operands with:
7018 // shuffle(concat(v1, undef), concat(v2, undef))
7019 // ->
7020 // shuffle(concat(v1, v2), undef)
7021 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7022 //
7023 // This is useful in the general case, but there are special cases where
7024 // native shuffles produce larger results: the two-result ops.
7025 //
7026 // Look through the concat when lowering them:
7027 // shuffle(concat(v1, v2), undef)
7028 // ->
7029 // concat(VZIP(v1, v2):0, :1)
7030 //
7031 if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7032 SDValue SubV1 = V1->getOperand(0);
7033 SDValue SubV2 = V1->getOperand(1);
7034 EVT SubVT = SubV1.getValueType();
7035
7036 // We expect these to have been canonicalized to -1.
7037 assert(llvm::all_of(ShuffleMask, [&](int i) {
7038 return i < (int)VT.getVectorNumElements();
7039 }) && "Unexpected shuffle index into UNDEF operand!");
7040
7041 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7042 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7043 if (isV_UNDEF)
7044 SubV2 = SubV1;
7045 assert((WhichResult == 0) &&
7046 "In-place shuffle of concat can only have one result!");
7047 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7048 SubV1, SubV2);
7049 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7050 Res.getValue(1));
7051 }
7052 }
7053 }
7054
7055 // If the shuffle is not directly supported and it has 4 elements, use
7056 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7057 unsigned NumElts = VT.getVectorNumElements();
7058 if (NumElts == 4) {
7059 unsigned PFIndexes[4];
7060 for (unsigned i = 0; i != 4; ++i) {
7061 if (ShuffleMask[i] < 0)
7062 PFIndexes[i] = 8;
7063 else
7064 PFIndexes[i] = ShuffleMask[i];
7065 }
7066
7067 // Compute the index in the perfect shuffle table.
7068 unsigned PFTableIndex =
7069 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7070 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7071 unsigned Cost = (PFEntry >> 30);
7072
7073 if (Cost <= 4)
7074 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7075 }
7076
7077 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7078 if (EltSize >= 32) {
7079 // Do the expansion with floating-point types, since that is what the VFP
7080 // registers are defined to use, and since i64 is not legal.
7081 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7082 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7083 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7084 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7085 SmallVector<SDValue, 8> Ops;
7086 for (unsigned i = 0; i < NumElts; ++i) {
7087 if (ShuffleMask[i] < 0)
7088 Ops.push_back(DAG.getUNDEF(EltVT));
7089 else
7090 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7091 ShuffleMask[i] < (int)NumElts ? V1 : V2,
7092 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7093 dl, MVT::i32)));
7094 }
7095 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7096 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7097 }
7098
7099 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7100 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7101
7102 if (VT == MVT::v8i8)
7103 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7104 return NewOp;
7105
7106 return SDValue();
7107 }
7108
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7109 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7110 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7111 SDValue Lane = Op.getOperand(2);
7112 if (!isa<ConstantSDNode>(Lane))
7113 return SDValue();
7114
7115 return Op;
7116 }
7117
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7118 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7119 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7120 SDValue Lane = Op.getOperand(1);
7121 if (!isa<ConstantSDNode>(Lane))
7122 return SDValue();
7123
7124 SDValue Vec = Op.getOperand(0);
7125 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7126 SDLoc dl(Op);
7127 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7128 }
7129
7130 return Op;
7131 }
7132
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)7133 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7134 // The only time a CONCAT_VECTORS operation can have legal types is when
7135 // two 64-bit vectors are concatenated to a 128-bit vector.
7136 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7137 "unexpected CONCAT_VECTORS");
7138 SDLoc dl(Op);
7139 SDValue Val = DAG.getUNDEF(MVT::v2f64);
7140 SDValue Op0 = Op.getOperand(0);
7141 SDValue Op1 = Op.getOperand(1);
7142 if (!Op0.isUndef())
7143 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7144 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7145 DAG.getIntPtrConstant(0, dl));
7146 if (!Op1.isUndef())
7147 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7148 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7149 DAG.getIntPtrConstant(1, dl));
7150 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7151 }
7152
7153 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7154 /// element has been zero/sign-extended, depending on the isSigned parameter,
7155 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)7156 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7157 bool isSigned) {
7158 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7159 EVT VT = N->getValueType(0);
7160 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7161 SDNode *BVN = N->getOperand(0).getNode();
7162 if (BVN->getValueType(0) != MVT::v4i32 ||
7163 BVN->getOpcode() != ISD::BUILD_VECTOR)
7164 return false;
7165 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7166 unsigned HiElt = 1 - LoElt;
7167 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7168 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7169 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7170 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7171 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7172 return false;
7173 if (isSigned) {
7174 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7175 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7176 return true;
7177 } else {
7178 if (Hi0->isNullValue() && Hi1->isNullValue())
7179 return true;
7180 }
7181 return false;
7182 }
7183
7184 if (N->getOpcode() != ISD::BUILD_VECTOR)
7185 return false;
7186
7187 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7188 SDNode *Elt = N->getOperand(i).getNode();
7189 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7190 unsigned EltSize = VT.getScalarSizeInBits();
7191 unsigned HalfSize = EltSize / 2;
7192 if (isSigned) {
7193 if (!isIntN(HalfSize, C->getSExtValue()))
7194 return false;
7195 } else {
7196 if (!isUIntN(HalfSize, C->getZExtValue()))
7197 return false;
7198 }
7199 continue;
7200 }
7201 return false;
7202 }
7203
7204 return true;
7205 }
7206
7207 /// isSignExtended - Check if a node is a vector value that is sign-extended
7208 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)7209 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7210 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7211 return true;
7212 if (isExtendedBUILD_VECTOR(N, DAG, true))
7213 return true;
7214 return false;
7215 }
7216
7217 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7218 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)7219 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7220 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7221 return true;
7222 if (isExtendedBUILD_VECTOR(N, DAG, false))
7223 return true;
7224 return false;
7225 }
7226
getExtensionTo64Bits(const EVT & OrigVT)7227 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7228 if (OrigVT.getSizeInBits() >= 64)
7229 return OrigVT;
7230
7231 assert(OrigVT.isSimple() && "Expecting a simple value type");
7232
7233 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7234 switch (OrigSimpleTy) {
7235 default: llvm_unreachable("Unexpected Vector Type");
7236 case MVT::v2i8:
7237 case MVT::v2i16:
7238 return MVT::v2i32;
7239 case MVT::v4i8:
7240 return MVT::v4i16;
7241 }
7242 }
7243
7244 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7245 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7246 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)7247 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7248 const EVT &OrigTy,
7249 const EVT &ExtTy,
7250 unsigned ExtOpcode) {
7251 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7252 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7253 // 64-bits we need to insert a new extension so that it will be 64-bits.
7254 assert(ExtTy.is128BitVector() && "Unexpected extension size");
7255 if (OrigTy.getSizeInBits() >= 64)
7256 return N;
7257
7258 // Must extend size to at least 64 bits to be used as an operand for VMULL.
7259 EVT NewVT = getExtensionTo64Bits(OrigTy);
7260
7261 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7262 }
7263
7264 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7265 /// does not do any sign/zero extension. If the original vector is less
7266 /// than 64 bits, an appropriate extension will be added after the load to
7267 /// reach a total size of 64 bits. We have to add the extension separately
7268 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)7269 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7270 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7271
7272 // The load already has the right type.
7273 if (ExtendedTy == LD->getMemoryVT())
7274 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7275 LD->getBasePtr(), LD->getPointerInfo(),
7276 LD->getAlignment(), LD->getMemOperand()->getFlags());
7277
7278 // We need to create a zextload/sextload. We cannot just create a load
7279 // followed by a zext/zext node because LowerMUL is also run during normal
7280 // operation legalization where we can't create illegal types.
7281 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7282 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7283 LD->getMemoryVT(), LD->getAlignment(),
7284 LD->getMemOperand()->getFlags());
7285 }
7286
7287 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7288 /// extending load, or BUILD_VECTOR with extended elements, return the
7289 /// unextended value. The unextended vector should be 64 bits so that it can
7290 /// be used as an operand to a VMULL instruction. If the original vector size
7291 /// before extension is less than 64 bits we add a an extension to resize
7292 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)7293 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7294 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7295 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7296 N->getOperand(0)->getValueType(0),
7297 N->getValueType(0),
7298 N->getOpcode());
7299
7300 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7301 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7302 "Expected extending load");
7303
7304 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7305 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7306 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7307 SDValue extLoad =
7308 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7309 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7310
7311 return newLoad;
7312 }
7313
7314 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
7315 // have been legalized as a BITCAST from v4i32.
7316 if (N->getOpcode() == ISD::BITCAST) {
7317 SDNode *BVN = N->getOperand(0).getNode();
7318 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7319 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7320 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7321 return DAG.getBuildVector(
7322 MVT::v2i32, SDLoc(N),
7323 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7324 }
7325 // Construct a new BUILD_VECTOR with elements truncated to half the size.
7326 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7327 EVT VT = N->getValueType(0);
7328 unsigned EltSize = VT.getScalarSizeInBits() / 2;
7329 unsigned NumElts = VT.getVectorNumElements();
7330 MVT TruncVT = MVT::getIntegerVT(EltSize);
7331 SmallVector<SDValue, 8> Ops;
7332 SDLoc dl(N);
7333 for (unsigned i = 0; i != NumElts; ++i) {
7334 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7335 const APInt &CInt = C->getAPIntValue();
7336 // Element types smaller than 32 bits are not legal, so use i32 elements.
7337 // The values are implicitly truncated so sext vs. zext doesn't matter.
7338 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7339 }
7340 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7341 }
7342
isAddSubSExt(SDNode * N,SelectionDAG & DAG)7343 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7344 unsigned Opcode = N->getOpcode();
7345 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7346 SDNode *N0 = N->getOperand(0).getNode();
7347 SDNode *N1 = N->getOperand(1).getNode();
7348 return N0->hasOneUse() && N1->hasOneUse() &&
7349 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7350 }
7351 return false;
7352 }
7353
isAddSubZExt(SDNode * N,SelectionDAG & DAG)7354 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7355 unsigned Opcode = N->getOpcode();
7356 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7357 SDNode *N0 = N->getOperand(0).getNode();
7358 SDNode *N1 = N->getOperand(1).getNode();
7359 return N0->hasOneUse() && N1->hasOneUse() &&
7360 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7361 }
7362 return false;
7363 }
7364
LowerMUL(SDValue Op,SelectionDAG & DAG)7365 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7366 // Multiplications are only custom-lowered for 128-bit vectors so that
7367 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
7368 EVT VT = Op.getValueType();
7369 assert(VT.is128BitVector() && VT.isInteger() &&
7370 "unexpected type for custom-lowering ISD::MUL");
7371 SDNode *N0 = Op.getOperand(0).getNode();
7372 SDNode *N1 = Op.getOperand(1).getNode();
7373 unsigned NewOpc = 0;
7374 bool isMLA = false;
7375 bool isN0SExt = isSignExtended(N0, DAG);
7376 bool isN1SExt = isSignExtended(N1, DAG);
7377 if (isN0SExt && isN1SExt)
7378 NewOpc = ARMISD::VMULLs;
7379 else {
7380 bool isN0ZExt = isZeroExtended(N0, DAG);
7381 bool isN1ZExt = isZeroExtended(N1, DAG);
7382 if (isN0ZExt && isN1ZExt)
7383 NewOpc = ARMISD::VMULLu;
7384 else if (isN1SExt || isN1ZExt) {
7385 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7386 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7387 if (isN1SExt && isAddSubSExt(N0, DAG)) {
7388 NewOpc = ARMISD::VMULLs;
7389 isMLA = true;
7390 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7391 NewOpc = ARMISD::VMULLu;
7392 isMLA = true;
7393 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7394 std::swap(N0, N1);
7395 NewOpc = ARMISD::VMULLu;
7396 isMLA = true;
7397 }
7398 }
7399
7400 if (!NewOpc) {
7401 if (VT == MVT::v2i64)
7402 // Fall through to expand this. It is not legal.
7403 return SDValue();
7404 else
7405 // Other vector multiplications are legal.
7406 return Op;
7407 }
7408 }
7409
7410 // Legalize to a VMULL instruction.
7411 SDLoc DL(Op);
7412 SDValue Op0;
7413 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7414 if (!isMLA) {
7415 Op0 = SkipExtensionForVMULL(N0, DAG);
7416 assert(Op0.getValueType().is64BitVector() &&
7417 Op1.getValueType().is64BitVector() &&
7418 "unexpected types for extended operands to VMULL");
7419 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7420 }
7421
7422 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7423 // isel lowering to take advantage of no-stall back to back vmul + vmla.
7424 // vmull q0, d4, d6
7425 // vmlal q0, d5, d6
7426 // is faster than
7427 // vaddl q0, d4, d5
7428 // vmovl q1, d6
7429 // vmul q0, q0, q1
7430 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7431 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7432 EVT Op1VT = Op1.getValueType();
7433 return DAG.getNode(N0->getOpcode(), DL, VT,
7434 DAG.getNode(NewOpc, DL, VT,
7435 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7436 DAG.getNode(NewOpc, DL, VT,
7437 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7438 }
7439
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)7440 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7441 SelectionDAG &DAG) {
7442 // TODO: Should this propagate fast-math-flags?
7443
7444 // Convert to float
7445 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7446 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7447 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7448 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7449 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7450 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7451 // Get reciprocal estimate.
7452 // float4 recip = vrecpeq_f32(yf);
7453 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7454 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7455 Y);
7456 // Because char has a smaller range than uchar, we can actually get away
7457 // without any newton steps. This requires that we use a weird bias
7458 // of 0xb000, however (again, this has been exhaustively tested).
7459 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7460 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7461 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7462 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7463 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7464 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7465 // Convert back to short.
7466 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7467 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7468 return X;
7469 }
7470
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)7471 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7472 SelectionDAG &DAG) {
7473 // TODO: Should this propagate fast-math-flags?
7474
7475 SDValue N2;
7476 // Convert to float.
7477 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7478 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7479 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7480 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7481 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7482 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7483
7484 // Use reciprocal estimate and one refinement step.
7485 // float4 recip = vrecpeq_f32(yf);
7486 // recip *= vrecpsq_f32(yf, recip);
7487 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7488 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7489 N1);
7490 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7491 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7492 N1, N2);
7493 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7494 // Because short has a smaller range than ushort, we can actually get away
7495 // with only a single newton step. This requires that we use a weird bias
7496 // of 89, however (again, this has been exhaustively tested).
7497 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7498 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7499 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7500 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7501 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7502 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7503 // Convert back to integer and return.
7504 // return vmovn_s32(vcvt_s32_f32(result));
7505 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7506 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7507 return N0;
7508 }
7509
LowerSDIV(SDValue Op,SelectionDAG & DAG)7510 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7511 EVT VT = Op.getValueType();
7512 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7513 "unexpected type for custom-lowering ISD::SDIV");
7514
7515 SDLoc dl(Op);
7516 SDValue N0 = Op.getOperand(0);
7517 SDValue N1 = Op.getOperand(1);
7518 SDValue N2, N3;
7519
7520 if (VT == MVT::v8i8) {
7521 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7522 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7523
7524 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7525 DAG.getIntPtrConstant(4, dl));
7526 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7527 DAG.getIntPtrConstant(4, dl));
7528 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7529 DAG.getIntPtrConstant(0, dl));
7530 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7531 DAG.getIntPtrConstant(0, dl));
7532
7533 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7534 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7535
7536 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7537 N0 = LowerCONCAT_VECTORS(N0, DAG);
7538
7539 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7540 return N0;
7541 }
7542 return LowerSDIV_v4i16(N0, N1, dl, DAG);
7543 }
7544
LowerUDIV(SDValue Op,SelectionDAG & DAG)7545 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7546 // TODO: Should this propagate fast-math-flags?
7547 EVT VT = Op.getValueType();
7548 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7549 "unexpected type for custom-lowering ISD::UDIV");
7550
7551 SDLoc dl(Op);
7552 SDValue N0 = Op.getOperand(0);
7553 SDValue N1 = Op.getOperand(1);
7554 SDValue N2, N3;
7555
7556 if (VT == MVT::v8i8) {
7557 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7558 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7559
7560 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7561 DAG.getIntPtrConstant(4, dl));
7562 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7563 DAG.getIntPtrConstant(4, dl));
7564 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7565 DAG.getIntPtrConstant(0, dl));
7566 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7567 DAG.getIntPtrConstant(0, dl));
7568
7569 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7570 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7571
7572 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7573 N0 = LowerCONCAT_VECTORS(N0, DAG);
7574
7575 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7576 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7577 MVT::i32),
7578 N0);
7579 return N0;
7580 }
7581
7582 // v4i16 sdiv ... Convert to float.
7583 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7584 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7585 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7586 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7587 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7588 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7589
7590 // Use reciprocal estimate and two refinement steps.
7591 // float4 recip = vrecpeq_f32(yf);
7592 // recip *= vrecpsq_f32(yf, recip);
7593 // recip *= vrecpsq_f32(yf, recip);
7594 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7595 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7596 BN1);
7597 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7598 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7599 BN1, N2);
7600 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7601 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7602 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7603 BN1, N2);
7604 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7605 // Simply multiplying by the reciprocal estimate can leave us a few ulps
7606 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7607 // and that it will never cause us to return an answer too large).
7608 // float4 result = as_float4(as_int4(xf*recip) + 2);
7609 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7610 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7611 N1 = DAG.getConstant(2, dl, MVT::v4i32);
7612 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7613 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7614 // Convert back to integer and return.
7615 // return vmovn_u32(vcvt_s32_f32(result));
7616 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7617 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7618 return N0;
7619 }
7620
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)7621 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7622 SDNode *N = Op.getNode();
7623 EVT VT = N->getValueType(0);
7624 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7625
7626 SDValue Carry = Op.getOperand(2);
7627
7628 SDLoc DL(Op);
7629
7630 SDValue Result;
7631 if (Op.getOpcode() == ISD::ADDCARRY) {
7632 // This converts the boolean value carry into the carry flag.
7633 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7634
7635 // Do the addition proper using the carry flag we wanted.
7636 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7637 Op.getOperand(1), Carry);
7638
7639 // Now convert the carry flag into a boolean value.
7640 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7641 } else {
7642 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7643 // have to invert the carry first.
7644 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7645 DAG.getConstant(1, DL, MVT::i32), Carry);
7646 // This converts the boolean value carry into the carry flag.
7647 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7648
7649 // Do the subtraction proper using the carry flag we wanted.
7650 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7651 Op.getOperand(1), Carry);
7652
7653 // Now convert the carry flag into a boolean value.
7654 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7655 // But the carry returned by ARMISD::SUBE is not a borrow as expected
7656 // by ISD::SUBCARRY, so compute 1 - C.
7657 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7658 DAG.getConstant(1, DL, MVT::i32), Carry);
7659 }
7660
7661 // Return both values.
7662 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7663 }
7664
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const7665 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7666 assert(Subtarget->isTargetDarwin());
7667
7668 // For iOS, we want to call an alternative entry point: __sincos_stret,
7669 // return values are passed via sret.
7670 SDLoc dl(Op);
7671 SDValue Arg = Op.getOperand(0);
7672 EVT ArgVT = Arg.getValueType();
7673 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7674 auto PtrVT = getPointerTy(DAG.getDataLayout());
7675
7676 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7677 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7678
7679 // Pair of floats / doubles used to pass the result.
7680 Type *RetTy = StructType::get(ArgTy, ArgTy);
7681 auto &DL = DAG.getDataLayout();
7682
7683 ArgListTy Args;
7684 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7685 SDValue SRet;
7686 if (ShouldUseSRet) {
7687 // Create stack object for sret.
7688 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7689 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7690 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7691 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7692
7693 ArgListEntry Entry;
7694 Entry.Node = SRet;
7695 Entry.Ty = RetTy->getPointerTo();
7696 Entry.IsSExt = false;
7697 Entry.IsZExt = false;
7698 Entry.IsSRet = true;
7699 Args.push_back(Entry);
7700 RetTy = Type::getVoidTy(*DAG.getContext());
7701 }
7702
7703 ArgListEntry Entry;
7704 Entry.Node = Arg;
7705 Entry.Ty = ArgTy;
7706 Entry.IsSExt = false;
7707 Entry.IsZExt = false;
7708 Args.push_back(Entry);
7709
7710 RTLIB::Libcall LC =
7711 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7712 const char *LibcallName = getLibcallName(LC);
7713 CallingConv::ID CC = getLibcallCallingConv(LC);
7714 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7715
7716 TargetLowering::CallLoweringInfo CLI(DAG);
7717 CLI.setDebugLoc(dl)
7718 .setChain(DAG.getEntryNode())
7719 .setCallee(CC, RetTy, Callee, std::move(Args))
7720 .setDiscardResult(ShouldUseSRet);
7721 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7722
7723 if (!ShouldUseSRet)
7724 return CallResult.first;
7725
7726 SDValue LoadSin =
7727 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7728
7729 // Address of cos field.
7730 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7731 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7732 SDValue LoadCos =
7733 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7734
7735 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7736 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7737 LoadSin.getValue(0), LoadCos.getValue(0));
7738 }
7739
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const7740 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7741 bool Signed,
7742 SDValue &Chain) const {
7743 EVT VT = Op.getValueType();
7744 assert((VT == MVT::i32 || VT == MVT::i64) &&
7745 "unexpected type for custom lowering DIV");
7746 SDLoc dl(Op);
7747
7748 const auto &DL = DAG.getDataLayout();
7749 const auto &TLI = DAG.getTargetLoweringInfo();
7750
7751 const char *Name = nullptr;
7752 if (Signed)
7753 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7754 else
7755 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7756
7757 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7758
7759 ARMTargetLowering::ArgListTy Args;
7760
7761 for (auto AI : {1, 0}) {
7762 ArgListEntry Arg;
7763 Arg.Node = Op.getOperand(AI);
7764 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7765 Args.push_back(Arg);
7766 }
7767
7768 CallLoweringInfo CLI(DAG);
7769 CLI.setDebugLoc(dl)
7770 .setChain(Chain)
7771 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7772 ES, std::move(Args));
7773
7774 return LowerCallTo(CLI).first;
7775 }
7776
7777 // This is a code size optimisation: return the original SDIV node to
7778 // DAGCombiner when we don't want to expand SDIV into a sequence of
7779 // instructions, and an empty node otherwise which will cause the
7780 // SDIV to be expanded in DAGCombine.
7781 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const7782 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7783 SelectionDAG &DAG,
7784 SmallVectorImpl<SDNode *> &Created) const {
7785 // TODO: Support SREM
7786 if (N->getOpcode() != ISD::SDIV)
7787 return SDValue();
7788
7789 const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
7790 const auto &MF = DAG.getMachineFunction();
7791 const bool MinSize = MF.getFunction().optForMinSize();
7792 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
7793 : ST.hasDivideInARMMode();
7794
7795 // Don't touch vector types; rewriting this may lead to scalarizing
7796 // the int divs.
7797 if (N->getOperand(0).getValueType().isVector())
7798 return SDValue();
7799
7800 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
7801 // hwdiv support for this to be really profitable.
7802 if (!(MinSize && HasDivide))
7803 return SDValue();
7804
7805 // ARM mode is a bit simpler than Thumb: we can handle large power
7806 // of 2 immediates with 1 mov instruction; no further checks required,
7807 // just return the sdiv node.
7808 if (!ST.isThumb())
7809 return SDValue(N, 0);
7810
7811 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
7812 // and thus lose the code size benefits of a MOVS that requires only 2.
7813 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
7814 // but as it's doing exactly this, it's not worth the trouble to get TTI.
7815 if (Divisor.sgt(128))
7816 return SDValue();
7817
7818 return SDValue(N, 0);
7819 }
7820
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const7821 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7822 bool Signed) const {
7823 assert(Op.getValueType() == MVT::i32 &&
7824 "unexpected type for custom lowering DIV");
7825 SDLoc dl(Op);
7826
7827 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7828 DAG.getEntryNode(), Op.getOperand(1));
7829
7830 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7831 }
7832
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)7833 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7834 SDLoc DL(N);
7835 SDValue Op = N->getOperand(1);
7836 if (N->getValueType(0) == MVT::i32)
7837 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7838 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7839 DAG.getConstant(0, DL, MVT::i32));
7840 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7841 DAG.getConstant(1, DL, MVT::i32));
7842 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7843 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7844 }
7845
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const7846 void ARMTargetLowering::ExpandDIV_Windows(
7847 SDValue Op, SelectionDAG &DAG, bool Signed,
7848 SmallVectorImpl<SDValue> &Results) const {
7849 const auto &DL = DAG.getDataLayout();
7850 const auto &TLI = DAG.getTargetLoweringInfo();
7851
7852 assert(Op.getValueType() == MVT::i64 &&
7853 "unexpected type for custom lowering DIV");
7854 SDLoc dl(Op);
7855
7856 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7857
7858 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7859
7860 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7861 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7862 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7863 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7864
7865 Results.push_back(Lower);
7866 Results.push_back(Upper);
7867 }
7868
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)7869 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7870 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7871 // Acquire/Release load/store is not legal for targets without a dmb or
7872 // equivalent available.
7873 return SDValue();
7874
7875 // Monotonic load/store is legal for all targets.
7876 return Op;
7877 }
7878
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)7879 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7880 SmallVectorImpl<SDValue> &Results,
7881 SelectionDAG &DAG,
7882 const ARMSubtarget *Subtarget) {
7883 SDLoc DL(N);
7884 // Under Power Management extensions, the cycle-count is:
7885 // mrc p15, #0, <Rt>, c9, c13, #0
7886 SDValue Ops[] = { N->getOperand(0), // Chain
7887 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7888 DAG.getConstant(15, DL, MVT::i32),
7889 DAG.getConstant(0, DL, MVT::i32),
7890 DAG.getConstant(9, DL, MVT::i32),
7891 DAG.getConstant(13, DL, MVT::i32),
7892 DAG.getConstant(0, DL, MVT::i32)
7893 };
7894
7895 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7896 DAG.getVTList(MVT::i32, MVT::Other), Ops);
7897 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7898 DAG.getConstant(0, DL, MVT::i32)));
7899 Results.push_back(Cycles32.getValue(1));
7900 }
7901
createGPRPairNode(SelectionDAG & DAG,SDValue V)7902 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7903 SDLoc dl(V.getNode());
7904 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7905 SDValue VHi = DAG.getAnyExtOrTrunc(
7906 DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7907 dl, MVT::i32);
7908 bool isBigEndian = DAG.getDataLayout().isBigEndian();
7909 if (isBigEndian)
7910 std::swap (VLo, VHi);
7911 SDValue RegClass =
7912 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7913 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7914 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7915 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7916 return SDValue(
7917 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7918 }
7919
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)7920 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7921 SmallVectorImpl<SDValue> & Results,
7922 SelectionDAG &DAG) {
7923 assert(N->getValueType(0) == MVT::i64 &&
7924 "AtomicCmpSwap on types less than 64 should be legal");
7925 SDValue Ops[] = {N->getOperand(1),
7926 createGPRPairNode(DAG, N->getOperand(2)),
7927 createGPRPairNode(DAG, N->getOperand(3)),
7928 N->getOperand(0)};
7929 SDNode *CmpSwap = DAG.getMachineNode(
7930 ARM::CMP_SWAP_64, SDLoc(N),
7931 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7932
7933 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
7934 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
7935
7936 bool isBigEndian = DAG.getDataLayout().isBigEndian();
7937
7938 Results.push_back(
7939 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
7940 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
7941 Results.push_back(
7942 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
7943 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
7944 Results.push_back(SDValue(CmpSwap, 2));
7945 }
7946
LowerFPOWI(SDValue Op,const ARMSubtarget & Subtarget,SelectionDAG & DAG)7947 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
7948 SelectionDAG &DAG) {
7949 const auto &TLI = DAG.getTargetLoweringInfo();
7950
7951 assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
7952 "Custom lowering is MSVCRT specific!");
7953
7954 SDLoc dl(Op);
7955 SDValue Val = Op.getOperand(0);
7956 MVT Ty = Val->getSimpleValueType(0);
7957 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
7958 SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
7959 TLI.getPointerTy(DAG.getDataLayout()));
7960
7961 TargetLowering::ArgListTy Args;
7962 TargetLowering::ArgListEntry Entry;
7963
7964 Entry.Node = Val;
7965 Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
7966 Entry.IsZExt = true;
7967 Args.push_back(Entry);
7968
7969 Entry.Node = Exponent;
7970 Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
7971 Entry.IsZExt = true;
7972 Args.push_back(Entry);
7973
7974 Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
7975
7976 // In the in-chain to the call is the entry node If we are emitting a
7977 // tailcall, the chain will be mutated if the node has a non-entry input
7978 // chain.
7979 SDValue InChain = DAG.getEntryNode();
7980 SDValue TCChain = InChain;
7981
7982 const Function &F = DAG.getMachineFunction().getFunction();
7983 bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
7984 F.getReturnType() == LCRTy;
7985 if (IsTC)
7986 InChain = TCChain;
7987
7988 TargetLowering::CallLoweringInfo CLI(DAG);
7989 CLI.setDebugLoc(dl)
7990 .setChain(InChain)
7991 .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
7992 .setTailCall(IsTC);
7993 std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
7994
7995 // Return the chain (the DAG root) if it is a tail call
7996 return !CI.second.getNode() ? DAG.getRoot() : CI.first;
7997 }
7998
LowerOperation(SDValue Op,SelectionDAG & DAG) const7999 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8000 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8001 switch (Op.getOpcode()) {
8002 default: llvm_unreachable("Don't know how to custom lower this!");
8003 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8004 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8005 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8006 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8007 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8008 case ISD::SELECT: return LowerSELECT(Op, DAG);
8009 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
8010 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8011 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
8012 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
8013 case ISD::VASTART: return LowerVASTART(Op, DAG);
8014 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8015 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
8016 case ISD::SINT_TO_FP:
8017 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
8018 case ISD::FP_TO_SINT:
8019 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
8020 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8021 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8022 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8023 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8024 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8025 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8026 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8027 Subtarget);
8028 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8029 case ISD::SHL:
8030 case ISD::SRL:
8031 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
8032 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
8033 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
8034 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
8035 case ISD::SRL_PARTS:
8036 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
8037 case ISD::CTTZ:
8038 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8039 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8040 case ISD::SETCC: return LowerVSETCC(Op, DAG);
8041 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
8042 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
8043 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8044 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8045 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8046 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8047 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8048 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8049 case ISD::MUL: return LowerMUL(Op, DAG);
8050 case ISD::SDIV:
8051 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8052 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8053 return LowerSDIV(Op, DAG);
8054 case ISD::UDIV:
8055 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8056 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8057 return LowerUDIV(Op, DAG);
8058 case ISD::ADDCARRY:
8059 case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
8060 case ISD::SADDO:
8061 case ISD::SSUBO:
8062 return LowerSignedALUO(Op, DAG);
8063 case ISD::UADDO:
8064 case ISD::USUBO:
8065 return LowerUnsignedALUO(Op, DAG);
8066 case ISD::ATOMIC_LOAD:
8067 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
8068 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
8069 case ISD::SDIVREM:
8070 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
8071 case ISD::DYNAMIC_STACKALLOC:
8072 if (Subtarget->isTargetWindows())
8073 return LowerDYNAMIC_STACKALLOC(Op, DAG);
8074 llvm_unreachable("Don't know how to custom lower this!");
8075 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8076 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8077 case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8078 case ARMISD::WIN__DBZCHK: return SDValue();
8079 }
8080 }
8081
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)8082 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8083 SelectionDAG &DAG) {
8084 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8085 unsigned Opc = 0;
8086 if (IntNo == Intrinsic::arm_smlald)
8087 Opc = ARMISD::SMLALD;
8088 else if (IntNo == Intrinsic::arm_smlaldx)
8089 Opc = ARMISD::SMLALDX;
8090 else if (IntNo == Intrinsic::arm_smlsld)
8091 Opc = ARMISD::SMLSLD;
8092 else if (IntNo == Intrinsic::arm_smlsldx)
8093 Opc = ARMISD::SMLSLDX;
8094 else
8095 return;
8096
8097 SDLoc dl(N);
8098 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8099 N->getOperand(3),
8100 DAG.getConstant(0, dl, MVT::i32));
8101 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8102 N->getOperand(3),
8103 DAG.getConstant(1, dl, MVT::i32));
8104
8105 SDValue LongMul = DAG.getNode(Opc, dl,
8106 DAG.getVTList(MVT::i32, MVT::i32),
8107 N->getOperand(1), N->getOperand(2),
8108 Lo, Hi);
8109 Results.push_back(LongMul.getValue(0));
8110 Results.push_back(LongMul.getValue(1));
8111 }
8112
8113 /// ReplaceNodeResults - Replace the results of node with an illegal result
8114 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8115 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8116 SmallVectorImpl<SDValue> &Results,
8117 SelectionDAG &DAG) const {
8118 SDValue Res;
8119 switch (N->getOpcode()) {
8120 default:
8121 llvm_unreachable("Don't know how to custom expand this!");
8122 case ISD::READ_REGISTER:
8123 ExpandREAD_REGISTER(N, Results, DAG);
8124 break;
8125 case ISD::BITCAST:
8126 Res = ExpandBITCAST(N, DAG, Subtarget);
8127 break;
8128 case ISD::SRL:
8129 case ISD::SRA:
8130 Res = Expand64BitShift(N, DAG, Subtarget);
8131 break;
8132 case ISD::SREM:
8133 case ISD::UREM:
8134 Res = LowerREM(N, DAG);
8135 break;
8136 case ISD::SDIVREM:
8137 case ISD::UDIVREM:
8138 Res = LowerDivRem(SDValue(N, 0), DAG);
8139 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8140 Results.push_back(Res.getValue(0));
8141 Results.push_back(Res.getValue(1));
8142 return;
8143 case ISD::READCYCLECOUNTER:
8144 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8145 return;
8146 case ISD::UDIV:
8147 case ISD::SDIV:
8148 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8149 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8150 Results);
8151 case ISD::ATOMIC_CMP_SWAP:
8152 ReplaceCMP_SWAP_64Results(N, Results, DAG);
8153 return;
8154 case ISD::INTRINSIC_WO_CHAIN:
8155 return ReplaceLongIntrinsic(N, Results, DAG);
8156 }
8157 if (Res.getNode())
8158 Results.push_back(Res);
8159 }
8160
8161 //===----------------------------------------------------------------------===//
8162 // ARM Scheduler Hooks
8163 //===----------------------------------------------------------------------===//
8164
8165 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8166 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const8167 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8168 MachineBasicBlock *MBB,
8169 MachineBasicBlock *DispatchBB,
8170 int FI) const {
8171 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8172 "ROPI/RWPI not currently supported with SjLj");
8173 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8174 DebugLoc dl = MI.getDebugLoc();
8175 MachineFunction *MF = MBB->getParent();
8176 MachineRegisterInfo *MRI = &MF->getRegInfo();
8177 MachineConstantPool *MCP = MF->getConstantPool();
8178 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8179 const Function &F = MF->getFunction();
8180
8181 bool isThumb = Subtarget->isThumb();
8182 bool isThumb2 = Subtarget->isThumb2();
8183
8184 unsigned PCLabelId = AFI->createPICLabelUId();
8185 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8186 ARMConstantPoolValue *CPV =
8187 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8188 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8189
8190 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8191 : &ARM::GPRRegClass;
8192
8193 // Grab constant pool and fixed stack memory operands.
8194 MachineMemOperand *CPMMO =
8195 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8196 MachineMemOperand::MOLoad, 4, 4);
8197
8198 MachineMemOperand *FIMMOSt =
8199 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8200 MachineMemOperand::MOStore, 4, 4);
8201
8202 // Load the address of the dispatch MBB into the jump buffer.
8203 if (isThumb2) {
8204 // Incoming value: jbuf
8205 // ldr.n r5, LCPI1_1
8206 // orr r5, r5, #1
8207 // add r5, pc
8208 // str r5, [$jbuf, #+4] ; &jbuf[1]
8209 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8210 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8211 .addConstantPoolIndex(CPI)
8212 .addMemOperand(CPMMO)
8213 .add(predOps(ARMCC::AL));
8214 // Set the low bit because of thumb mode.
8215 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8216 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8217 .addReg(NewVReg1, RegState::Kill)
8218 .addImm(0x01)
8219 .add(predOps(ARMCC::AL))
8220 .add(condCodeOp());
8221 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8222 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8223 .addReg(NewVReg2, RegState::Kill)
8224 .addImm(PCLabelId);
8225 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8226 .addReg(NewVReg3, RegState::Kill)
8227 .addFrameIndex(FI)
8228 .addImm(36) // &jbuf[1] :: pc
8229 .addMemOperand(FIMMOSt)
8230 .add(predOps(ARMCC::AL));
8231 } else if (isThumb) {
8232 // Incoming value: jbuf
8233 // ldr.n r1, LCPI1_4
8234 // add r1, pc
8235 // mov r2, #1
8236 // orrs r1, r2
8237 // add r2, $jbuf, #+4 ; &jbuf[1]
8238 // str r1, [r2]
8239 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8240 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8241 .addConstantPoolIndex(CPI)
8242 .addMemOperand(CPMMO)
8243 .add(predOps(ARMCC::AL));
8244 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8245 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8246 .addReg(NewVReg1, RegState::Kill)
8247 .addImm(PCLabelId);
8248 // Set the low bit because of thumb mode.
8249 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8250 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8251 .addReg(ARM::CPSR, RegState::Define)
8252 .addImm(1)
8253 .add(predOps(ARMCC::AL));
8254 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8255 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8256 .addReg(ARM::CPSR, RegState::Define)
8257 .addReg(NewVReg2, RegState::Kill)
8258 .addReg(NewVReg3, RegState::Kill)
8259 .add(predOps(ARMCC::AL));
8260 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8261 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8262 .addFrameIndex(FI)
8263 .addImm(36); // &jbuf[1] :: pc
8264 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8265 .addReg(NewVReg4, RegState::Kill)
8266 .addReg(NewVReg5, RegState::Kill)
8267 .addImm(0)
8268 .addMemOperand(FIMMOSt)
8269 .add(predOps(ARMCC::AL));
8270 } else {
8271 // Incoming value: jbuf
8272 // ldr r1, LCPI1_1
8273 // add r1, pc, r1
8274 // str r1, [$jbuf, #+4] ; &jbuf[1]
8275 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8276 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8277 .addConstantPoolIndex(CPI)
8278 .addImm(0)
8279 .addMemOperand(CPMMO)
8280 .add(predOps(ARMCC::AL));
8281 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8282 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8283 .addReg(NewVReg1, RegState::Kill)
8284 .addImm(PCLabelId)
8285 .add(predOps(ARMCC::AL));
8286 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8287 .addReg(NewVReg2, RegState::Kill)
8288 .addFrameIndex(FI)
8289 .addImm(36) // &jbuf[1] :: pc
8290 .addMemOperand(FIMMOSt)
8291 .add(predOps(ARMCC::AL));
8292 }
8293 }
8294
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const8295 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8296 MachineBasicBlock *MBB) const {
8297 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8298 DebugLoc dl = MI.getDebugLoc();
8299 MachineFunction *MF = MBB->getParent();
8300 MachineRegisterInfo *MRI = &MF->getRegInfo();
8301 MachineFrameInfo &MFI = MF->getFrameInfo();
8302 int FI = MFI.getFunctionContextIndex();
8303
8304 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8305 : &ARM::GPRnopcRegClass;
8306
8307 // Get a mapping of the call site numbers to all of the landing pads they're
8308 // associated with.
8309 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8310 unsigned MaxCSNum = 0;
8311 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8312 ++BB) {
8313 if (!BB->isEHPad()) continue;
8314
8315 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8316 // pad.
8317 for (MachineBasicBlock::iterator
8318 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8319 if (!II->isEHLabel()) continue;
8320
8321 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8322 if (!MF->hasCallSiteLandingPad(Sym)) continue;
8323
8324 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8325 for (SmallVectorImpl<unsigned>::iterator
8326 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8327 CSI != CSE; ++CSI) {
8328 CallSiteNumToLPad[*CSI].push_back(&*BB);
8329 MaxCSNum = std::max(MaxCSNum, *CSI);
8330 }
8331 break;
8332 }
8333 }
8334
8335 // Get an ordered list of the machine basic blocks for the jump table.
8336 std::vector<MachineBasicBlock*> LPadList;
8337 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8338 LPadList.reserve(CallSiteNumToLPad.size());
8339 for (unsigned I = 1; I <= MaxCSNum; ++I) {
8340 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8341 for (SmallVectorImpl<MachineBasicBlock*>::iterator
8342 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8343 LPadList.push_back(*II);
8344 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8345 }
8346 }
8347
8348 assert(!LPadList.empty() &&
8349 "No landing pad destinations for the dispatch jump table!");
8350
8351 // Create the jump table and associated information.
8352 MachineJumpTableInfo *JTI =
8353 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8354 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8355
8356 // Create the MBBs for the dispatch code.
8357
8358 // Shove the dispatch's address into the return slot in the function context.
8359 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8360 DispatchBB->setIsEHPad();
8361
8362 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8363 unsigned trap_opcode;
8364 if (Subtarget->isThumb())
8365 trap_opcode = ARM::tTRAP;
8366 else
8367 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8368
8369 BuildMI(TrapBB, dl, TII->get(trap_opcode));
8370 DispatchBB->addSuccessor(TrapBB);
8371
8372 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8373 DispatchBB->addSuccessor(DispContBB);
8374
8375 // Insert and MBBs.
8376 MF->insert(MF->end(), DispatchBB);
8377 MF->insert(MF->end(), DispContBB);
8378 MF->insert(MF->end(), TrapBB);
8379
8380 // Insert code into the entry block that creates and registers the function
8381 // context.
8382 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8383
8384 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8385 MachinePointerInfo::getFixedStack(*MF, FI),
8386 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8387
8388 MachineInstrBuilder MIB;
8389 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8390
8391 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8392 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8393
8394 // Add a register mask with no preserved registers. This results in all
8395 // registers being marked as clobbered. This can't work if the dispatch block
8396 // is in a Thumb1 function and is linked with ARM code which uses the FP
8397 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8398 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8399
8400 bool IsPositionIndependent = isPositionIndependent();
8401 unsigned NumLPads = LPadList.size();
8402 if (Subtarget->isThumb2()) {
8403 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8404 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8405 .addFrameIndex(FI)
8406 .addImm(4)
8407 .addMemOperand(FIMMOLd)
8408 .add(predOps(ARMCC::AL));
8409
8410 if (NumLPads < 256) {
8411 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8412 .addReg(NewVReg1)
8413 .addImm(LPadList.size())
8414 .add(predOps(ARMCC::AL));
8415 } else {
8416 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8417 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8418 .addImm(NumLPads & 0xFFFF)
8419 .add(predOps(ARMCC::AL));
8420
8421 unsigned VReg2 = VReg1;
8422 if ((NumLPads & 0xFFFF0000) != 0) {
8423 VReg2 = MRI->createVirtualRegister(TRC);
8424 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8425 .addReg(VReg1)
8426 .addImm(NumLPads >> 16)
8427 .add(predOps(ARMCC::AL));
8428 }
8429
8430 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8431 .addReg(NewVReg1)
8432 .addReg(VReg2)
8433 .add(predOps(ARMCC::AL));
8434 }
8435
8436 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8437 .addMBB(TrapBB)
8438 .addImm(ARMCC::HI)
8439 .addReg(ARM::CPSR);
8440
8441 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8442 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8443 .addJumpTableIndex(MJTI)
8444 .add(predOps(ARMCC::AL));
8445
8446 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8447 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8448 .addReg(NewVReg3, RegState::Kill)
8449 .addReg(NewVReg1)
8450 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8451 .add(predOps(ARMCC::AL))
8452 .add(condCodeOp());
8453
8454 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8455 .addReg(NewVReg4, RegState::Kill)
8456 .addReg(NewVReg1)
8457 .addJumpTableIndex(MJTI);
8458 } else if (Subtarget->isThumb()) {
8459 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8460 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8461 .addFrameIndex(FI)
8462 .addImm(1)
8463 .addMemOperand(FIMMOLd)
8464 .add(predOps(ARMCC::AL));
8465
8466 if (NumLPads < 256) {
8467 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8468 .addReg(NewVReg1)
8469 .addImm(NumLPads)
8470 .add(predOps(ARMCC::AL));
8471 } else {
8472 MachineConstantPool *ConstantPool = MF->getConstantPool();
8473 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8474 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8475
8476 // MachineConstantPool wants an explicit alignment.
8477 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8478 if (Align == 0)
8479 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8480 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8481
8482 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8483 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8484 .addReg(VReg1, RegState::Define)
8485 .addConstantPoolIndex(Idx)
8486 .add(predOps(ARMCC::AL));
8487 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8488 .addReg(NewVReg1)
8489 .addReg(VReg1)
8490 .add(predOps(ARMCC::AL));
8491 }
8492
8493 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8494 .addMBB(TrapBB)
8495 .addImm(ARMCC::HI)
8496 .addReg(ARM::CPSR);
8497
8498 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8499 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8500 .addReg(ARM::CPSR, RegState::Define)
8501 .addReg(NewVReg1)
8502 .addImm(2)
8503 .add(predOps(ARMCC::AL));
8504
8505 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8506 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8507 .addJumpTableIndex(MJTI)
8508 .add(predOps(ARMCC::AL));
8509
8510 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8511 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8512 .addReg(ARM::CPSR, RegState::Define)
8513 .addReg(NewVReg2, RegState::Kill)
8514 .addReg(NewVReg3)
8515 .add(predOps(ARMCC::AL));
8516
8517 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8518 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8519
8520 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8521 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8522 .addReg(NewVReg4, RegState::Kill)
8523 .addImm(0)
8524 .addMemOperand(JTMMOLd)
8525 .add(predOps(ARMCC::AL));
8526
8527 unsigned NewVReg6 = NewVReg5;
8528 if (IsPositionIndependent) {
8529 NewVReg6 = MRI->createVirtualRegister(TRC);
8530 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8531 .addReg(ARM::CPSR, RegState::Define)
8532 .addReg(NewVReg5, RegState::Kill)
8533 .addReg(NewVReg3)
8534 .add(predOps(ARMCC::AL));
8535 }
8536
8537 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8538 .addReg(NewVReg6, RegState::Kill)
8539 .addJumpTableIndex(MJTI);
8540 } else {
8541 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8542 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8543 .addFrameIndex(FI)
8544 .addImm(4)
8545 .addMemOperand(FIMMOLd)
8546 .add(predOps(ARMCC::AL));
8547
8548 if (NumLPads < 256) {
8549 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8550 .addReg(NewVReg1)
8551 .addImm(NumLPads)
8552 .add(predOps(ARMCC::AL));
8553 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8554 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8555 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8556 .addImm(NumLPads & 0xFFFF)
8557 .add(predOps(ARMCC::AL));
8558
8559 unsigned VReg2 = VReg1;
8560 if ((NumLPads & 0xFFFF0000) != 0) {
8561 VReg2 = MRI->createVirtualRegister(TRC);
8562 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8563 .addReg(VReg1)
8564 .addImm(NumLPads >> 16)
8565 .add(predOps(ARMCC::AL));
8566 }
8567
8568 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8569 .addReg(NewVReg1)
8570 .addReg(VReg2)
8571 .add(predOps(ARMCC::AL));
8572 } else {
8573 MachineConstantPool *ConstantPool = MF->getConstantPool();
8574 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8575 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8576
8577 // MachineConstantPool wants an explicit alignment.
8578 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8579 if (Align == 0)
8580 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8581 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8582
8583 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8584 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8585 .addReg(VReg1, RegState::Define)
8586 .addConstantPoolIndex(Idx)
8587 .addImm(0)
8588 .add(predOps(ARMCC::AL));
8589 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8590 .addReg(NewVReg1)
8591 .addReg(VReg1, RegState::Kill)
8592 .add(predOps(ARMCC::AL));
8593 }
8594
8595 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8596 .addMBB(TrapBB)
8597 .addImm(ARMCC::HI)
8598 .addReg(ARM::CPSR);
8599
8600 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8601 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8602 .addReg(NewVReg1)
8603 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8604 .add(predOps(ARMCC::AL))
8605 .add(condCodeOp());
8606 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8607 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8608 .addJumpTableIndex(MJTI)
8609 .add(predOps(ARMCC::AL));
8610
8611 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8612 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8613 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8614 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8615 .addReg(NewVReg3, RegState::Kill)
8616 .addReg(NewVReg4)
8617 .addImm(0)
8618 .addMemOperand(JTMMOLd)
8619 .add(predOps(ARMCC::AL));
8620
8621 if (IsPositionIndependent) {
8622 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8623 .addReg(NewVReg5, RegState::Kill)
8624 .addReg(NewVReg4)
8625 .addJumpTableIndex(MJTI);
8626 } else {
8627 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8628 .addReg(NewVReg5, RegState::Kill)
8629 .addJumpTableIndex(MJTI);
8630 }
8631 }
8632
8633 // Add the jump table entries as successors to the MBB.
8634 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8635 for (std::vector<MachineBasicBlock*>::iterator
8636 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8637 MachineBasicBlock *CurMBB = *I;
8638 if (SeenMBBs.insert(CurMBB).second)
8639 DispContBB->addSuccessor(CurMBB);
8640 }
8641
8642 // N.B. the order the invoke BBs are processed in doesn't matter here.
8643 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8644 SmallVector<MachineBasicBlock*, 64> MBBLPads;
8645 for (MachineBasicBlock *BB : InvokeBBs) {
8646
8647 // Remove the landing pad successor from the invoke block and replace it
8648 // with the new dispatch block.
8649 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8650 BB->succ_end());
8651 while (!Successors.empty()) {
8652 MachineBasicBlock *SMBB = Successors.pop_back_val();
8653 if (SMBB->isEHPad()) {
8654 BB->removeSuccessor(SMBB);
8655 MBBLPads.push_back(SMBB);
8656 }
8657 }
8658
8659 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8660 BB->normalizeSuccProbs();
8661
8662 // Find the invoke call and mark all of the callee-saved registers as
8663 // 'implicit defined' so that they're spilled. This prevents code from
8664 // moving instructions to before the EH block, where they will never be
8665 // executed.
8666 for (MachineBasicBlock::reverse_iterator
8667 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8668 if (!II->isCall()) continue;
8669
8670 DenseMap<unsigned, bool> DefRegs;
8671 for (MachineInstr::mop_iterator
8672 OI = II->operands_begin(), OE = II->operands_end();
8673 OI != OE; ++OI) {
8674 if (!OI->isReg()) continue;
8675 DefRegs[OI->getReg()] = true;
8676 }
8677
8678 MachineInstrBuilder MIB(*MF, &*II);
8679
8680 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8681 unsigned Reg = SavedRegs[i];
8682 if (Subtarget->isThumb2() &&
8683 !ARM::tGPRRegClass.contains(Reg) &&
8684 !ARM::hGPRRegClass.contains(Reg))
8685 continue;
8686 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8687 continue;
8688 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8689 continue;
8690 if (!DefRegs[Reg])
8691 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8692 }
8693
8694 break;
8695 }
8696 }
8697
8698 // Mark all former landing pads as non-landing pads. The dispatch is the only
8699 // landing pad now.
8700 for (SmallVectorImpl<MachineBasicBlock*>::iterator
8701 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8702 (*I)->setIsEHPad(false);
8703
8704 // The instruction is gone now.
8705 MI.eraseFromParent();
8706 }
8707
8708 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)8709 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8710 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8711 E = MBB->succ_end(); I != E; ++I)
8712 if (*I != Succ)
8713 return *I;
8714 llvm_unreachable("Expecting a BB with two successors!");
8715 }
8716
8717 /// Return the load opcode for a given load size. If load size >= 8,
8718 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)8719 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8720 if (LdSize >= 8)
8721 return LdSize == 16 ? ARM::VLD1q32wb_fixed
8722 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8723 if (IsThumb1)
8724 return LdSize == 4 ? ARM::tLDRi
8725 : LdSize == 2 ? ARM::tLDRHi
8726 : LdSize == 1 ? ARM::tLDRBi : 0;
8727 if (IsThumb2)
8728 return LdSize == 4 ? ARM::t2LDR_POST
8729 : LdSize == 2 ? ARM::t2LDRH_POST
8730 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8731 return LdSize == 4 ? ARM::LDR_POST_IMM
8732 : LdSize == 2 ? ARM::LDRH_POST
8733 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8734 }
8735
8736 /// Return the store opcode for a given store size. If store size >= 8,
8737 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)8738 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8739 if (StSize >= 8)
8740 return StSize == 16 ? ARM::VST1q32wb_fixed
8741 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8742 if (IsThumb1)
8743 return StSize == 4 ? ARM::tSTRi
8744 : StSize == 2 ? ARM::tSTRHi
8745 : StSize == 1 ? ARM::tSTRBi : 0;
8746 if (IsThumb2)
8747 return StSize == 4 ? ARM::t2STR_POST
8748 : StSize == 2 ? ARM::t2STRH_POST
8749 : StSize == 1 ? ARM::t2STRB_POST : 0;
8750 return StSize == 4 ? ARM::STR_POST_IMM
8751 : StSize == 2 ? ARM::STRH_POST
8752 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8753 }
8754
8755 /// Emit a post-increment load operation with given size. The instructions
8756 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8757 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8758 const TargetInstrInfo *TII, const DebugLoc &dl,
8759 unsigned LdSize, unsigned Data, unsigned AddrIn,
8760 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8761 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8762 assert(LdOpc != 0 && "Should have a load opcode");
8763 if (LdSize >= 8) {
8764 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8765 .addReg(AddrOut, RegState::Define)
8766 .addReg(AddrIn)
8767 .addImm(0)
8768 .add(predOps(ARMCC::AL));
8769 } else if (IsThumb1) {
8770 // load + update AddrIn
8771 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8772 .addReg(AddrIn)
8773 .addImm(0)
8774 .add(predOps(ARMCC::AL));
8775 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8776 .add(t1CondCodeOp())
8777 .addReg(AddrIn)
8778 .addImm(LdSize)
8779 .add(predOps(ARMCC::AL));
8780 } else if (IsThumb2) {
8781 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8782 .addReg(AddrOut, RegState::Define)
8783 .addReg(AddrIn)
8784 .addImm(LdSize)
8785 .add(predOps(ARMCC::AL));
8786 } else { // arm
8787 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8788 .addReg(AddrOut, RegState::Define)
8789 .addReg(AddrIn)
8790 .addReg(0)
8791 .addImm(LdSize)
8792 .add(predOps(ARMCC::AL));
8793 }
8794 }
8795
8796 /// Emit a post-increment store operation with given size. The instructions
8797 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8798 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8799 const TargetInstrInfo *TII, const DebugLoc &dl,
8800 unsigned StSize, unsigned Data, unsigned AddrIn,
8801 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8802 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8803 assert(StOpc != 0 && "Should have a store opcode");
8804 if (StSize >= 8) {
8805 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8806 .addReg(AddrIn)
8807 .addImm(0)
8808 .addReg(Data)
8809 .add(predOps(ARMCC::AL));
8810 } else if (IsThumb1) {
8811 // store + update AddrIn
8812 BuildMI(*BB, Pos, dl, TII->get(StOpc))
8813 .addReg(Data)
8814 .addReg(AddrIn)
8815 .addImm(0)
8816 .add(predOps(ARMCC::AL));
8817 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8818 .add(t1CondCodeOp())
8819 .addReg(AddrIn)
8820 .addImm(StSize)
8821 .add(predOps(ARMCC::AL));
8822 } else if (IsThumb2) {
8823 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8824 .addReg(Data)
8825 .addReg(AddrIn)
8826 .addImm(StSize)
8827 .add(predOps(ARMCC::AL));
8828 } else { // arm
8829 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8830 .addReg(Data)
8831 .addReg(AddrIn)
8832 .addReg(0)
8833 .addImm(StSize)
8834 .add(predOps(ARMCC::AL));
8835 }
8836 }
8837
8838 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const8839 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8840 MachineBasicBlock *BB) const {
8841 // This pseudo instruction has 3 operands: dst, src, size
8842 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8843 // Otherwise, we will generate unrolled scalar copies.
8844 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8845 const BasicBlock *LLVM_BB = BB->getBasicBlock();
8846 MachineFunction::iterator It = ++BB->getIterator();
8847
8848 unsigned dest = MI.getOperand(0).getReg();
8849 unsigned src = MI.getOperand(1).getReg();
8850 unsigned SizeVal = MI.getOperand(2).getImm();
8851 unsigned Align = MI.getOperand(3).getImm();
8852 DebugLoc dl = MI.getDebugLoc();
8853
8854 MachineFunction *MF = BB->getParent();
8855 MachineRegisterInfo &MRI = MF->getRegInfo();
8856 unsigned UnitSize = 0;
8857 const TargetRegisterClass *TRC = nullptr;
8858 const TargetRegisterClass *VecTRC = nullptr;
8859
8860 bool IsThumb1 = Subtarget->isThumb1Only();
8861 bool IsThumb2 = Subtarget->isThumb2();
8862 bool IsThumb = Subtarget->isThumb();
8863
8864 if (Align & 1) {
8865 UnitSize = 1;
8866 } else if (Align & 2) {
8867 UnitSize = 2;
8868 } else {
8869 // Check whether we can use NEON instructions.
8870 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8871 Subtarget->hasNEON()) {
8872 if ((Align % 16 == 0) && SizeVal >= 16)
8873 UnitSize = 16;
8874 else if ((Align % 8 == 0) && SizeVal >= 8)
8875 UnitSize = 8;
8876 }
8877 // Can't use NEON instructions.
8878 if (UnitSize == 0)
8879 UnitSize = 4;
8880 }
8881
8882 // Select the correct opcode and register class for unit size load/store
8883 bool IsNeon = UnitSize >= 8;
8884 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8885 if (IsNeon)
8886 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8887 : UnitSize == 8 ? &ARM::DPRRegClass
8888 : nullptr;
8889
8890 unsigned BytesLeft = SizeVal % UnitSize;
8891 unsigned LoopSize = SizeVal - BytesLeft;
8892
8893 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8894 // Use LDR and STR to copy.
8895 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8896 // [destOut] = STR_POST(scratch, destIn, UnitSize)
8897 unsigned srcIn = src;
8898 unsigned destIn = dest;
8899 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8900 unsigned srcOut = MRI.createVirtualRegister(TRC);
8901 unsigned destOut = MRI.createVirtualRegister(TRC);
8902 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8903 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8904 IsThumb1, IsThumb2);
8905 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8906 IsThumb1, IsThumb2);
8907 srcIn = srcOut;
8908 destIn = destOut;
8909 }
8910
8911 // Handle the leftover bytes with LDRB and STRB.
8912 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8913 // [destOut] = STRB_POST(scratch, destIn, 1)
8914 for (unsigned i = 0; i < BytesLeft; i++) {
8915 unsigned srcOut = MRI.createVirtualRegister(TRC);
8916 unsigned destOut = MRI.createVirtualRegister(TRC);
8917 unsigned scratch = MRI.createVirtualRegister(TRC);
8918 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8919 IsThumb1, IsThumb2);
8920 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8921 IsThumb1, IsThumb2);
8922 srcIn = srcOut;
8923 destIn = destOut;
8924 }
8925 MI.eraseFromParent(); // The instruction is gone now.
8926 return BB;
8927 }
8928
8929 // Expand the pseudo op to a loop.
8930 // thisMBB:
8931 // ...
8932 // movw varEnd, # --> with thumb2
8933 // movt varEnd, #
8934 // ldrcp varEnd, idx --> without thumb2
8935 // fallthrough --> loopMBB
8936 // loopMBB:
8937 // PHI varPhi, varEnd, varLoop
8938 // PHI srcPhi, src, srcLoop
8939 // PHI destPhi, dst, destLoop
8940 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8941 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
8942 // subs varLoop, varPhi, #UnitSize
8943 // bne loopMBB
8944 // fallthrough --> exitMBB
8945 // exitMBB:
8946 // epilogue to handle left-over bytes
8947 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8948 // [destOut] = STRB_POST(scratch, destLoop, 1)
8949 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8950 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8951 MF->insert(It, loopMBB);
8952 MF->insert(It, exitMBB);
8953
8954 // Transfer the remainder of BB and its successor edges to exitMBB.
8955 exitMBB->splice(exitMBB->begin(), BB,
8956 std::next(MachineBasicBlock::iterator(MI)), BB->end());
8957 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8958
8959 // Load an immediate to varEnd.
8960 unsigned varEnd = MRI.createVirtualRegister(TRC);
8961 if (Subtarget->useMovt(*MF)) {
8962 unsigned Vtmp = varEnd;
8963 if ((LoopSize & 0xFFFF0000) != 0)
8964 Vtmp = MRI.createVirtualRegister(TRC);
8965 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
8966 .addImm(LoopSize & 0xFFFF)
8967 .add(predOps(ARMCC::AL));
8968
8969 if ((LoopSize & 0xFFFF0000) != 0)
8970 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
8971 .addReg(Vtmp)
8972 .addImm(LoopSize >> 16)
8973 .add(predOps(ARMCC::AL));
8974 } else {
8975 MachineConstantPool *ConstantPool = MF->getConstantPool();
8976 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8977 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
8978
8979 // MachineConstantPool wants an explicit alignment.
8980 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8981 if (Align == 0)
8982 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8983 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8984
8985 if (IsThumb)
8986 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
8987 .addReg(varEnd, RegState::Define)
8988 .addConstantPoolIndex(Idx)
8989 .add(predOps(ARMCC::AL));
8990 else
8991 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
8992 .addReg(varEnd, RegState::Define)
8993 .addConstantPoolIndex(Idx)
8994 .addImm(0)
8995 .add(predOps(ARMCC::AL));
8996 }
8997 BB->addSuccessor(loopMBB);
8998
8999 // Generate the loop body:
9000 // varPhi = PHI(varLoop, varEnd)
9001 // srcPhi = PHI(srcLoop, src)
9002 // destPhi = PHI(destLoop, dst)
9003 MachineBasicBlock *entryBB = BB;
9004 BB = loopMBB;
9005 unsigned varLoop = MRI.createVirtualRegister(TRC);
9006 unsigned varPhi = MRI.createVirtualRegister(TRC);
9007 unsigned srcLoop = MRI.createVirtualRegister(TRC);
9008 unsigned srcPhi = MRI.createVirtualRegister(TRC);
9009 unsigned destLoop = MRI.createVirtualRegister(TRC);
9010 unsigned destPhi = MRI.createVirtualRegister(TRC);
9011
9012 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9013 .addReg(varLoop).addMBB(loopMBB)
9014 .addReg(varEnd).addMBB(entryBB);
9015 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9016 .addReg(srcLoop).addMBB(loopMBB)
9017 .addReg(src).addMBB(entryBB);
9018 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9019 .addReg(destLoop).addMBB(loopMBB)
9020 .addReg(dest).addMBB(entryBB);
9021
9022 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9023 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9024 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9025 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9026 IsThumb1, IsThumb2);
9027 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9028 IsThumb1, IsThumb2);
9029
9030 // Decrement loop variable by UnitSize.
9031 if (IsThumb1) {
9032 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9033 .add(t1CondCodeOp())
9034 .addReg(varPhi)
9035 .addImm(UnitSize)
9036 .add(predOps(ARMCC::AL));
9037 } else {
9038 MachineInstrBuilder MIB =
9039 BuildMI(*BB, BB->end(), dl,
9040 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9041 MIB.addReg(varPhi)
9042 .addImm(UnitSize)
9043 .add(predOps(ARMCC::AL))
9044 .add(condCodeOp());
9045 MIB->getOperand(5).setReg(ARM::CPSR);
9046 MIB->getOperand(5).setIsDef(true);
9047 }
9048 BuildMI(*BB, BB->end(), dl,
9049 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9050 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9051
9052 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9053 BB->addSuccessor(loopMBB);
9054 BB->addSuccessor(exitMBB);
9055
9056 // Add epilogue to handle BytesLeft.
9057 BB = exitMBB;
9058 auto StartOfExit = exitMBB->begin();
9059
9060 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9061 // [destOut] = STRB_POST(scratch, destLoop, 1)
9062 unsigned srcIn = srcLoop;
9063 unsigned destIn = destLoop;
9064 for (unsigned i = 0; i < BytesLeft; i++) {
9065 unsigned srcOut = MRI.createVirtualRegister(TRC);
9066 unsigned destOut = MRI.createVirtualRegister(TRC);
9067 unsigned scratch = MRI.createVirtualRegister(TRC);
9068 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9069 IsThumb1, IsThumb2);
9070 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9071 IsThumb1, IsThumb2);
9072 srcIn = srcOut;
9073 destIn = destOut;
9074 }
9075
9076 MI.eraseFromParent(); // The instruction is gone now.
9077 return BB;
9078 }
9079
9080 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const9081 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9082 MachineBasicBlock *MBB) const {
9083 const TargetMachine &TM = getTargetMachine();
9084 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9085 DebugLoc DL = MI.getDebugLoc();
9086
9087 assert(Subtarget->isTargetWindows() &&
9088 "__chkstk is only supported on Windows");
9089 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9090
9091 // __chkstk takes the number of words to allocate on the stack in R4, and
9092 // returns the stack adjustment in number of bytes in R4. This will not
9093 // clober any other registers (other than the obvious lr).
9094 //
9095 // Although, technically, IP should be considered a register which may be
9096 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9097 // thumb-2 environment, so there is no interworking required. As a result, we
9098 // do not expect a veneer to be emitted by the linker, clobbering IP.
9099 //
9100 // Each module receives its own copy of __chkstk, so no import thunk is
9101 // required, again, ensuring that IP is not clobbered.
9102 //
9103 // Finally, although some linkers may theoretically provide a trampoline for
9104 // out of range calls (which is quite common due to a 32M range limitation of
9105 // branches for Thumb), we can generate the long-call version via
9106 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9107 // IP.
9108
9109 switch (TM.getCodeModel()) {
9110 case CodeModel::Tiny:
9111 llvm_unreachable("Tiny code model not available on ARM.");
9112 case CodeModel::Small:
9113 case CodeModel::Medium:
9114 case CodeModel::Kernel:
9115 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9116 .add(predOps(ARMCC::AL))
9117 .addExternalSymbol("__chkstk")
9118 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9119 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9120 .addReg(ARM::R12,
9121 RegState::Implicit | RegState::Define | RegState::Dead)
9122 .addReg(ARM::CPSR,
9123 RegState::Implicit | RegState::Define | RegState::Dead);
9124 break;
9125 case CodeModel::Large: {
9126 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9127 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9128
9129 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9130 .addExternalSymbol("__chkstk");
9131 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9132 .add(predOps(ARMCC::AL))
9133 .addReg(Reg, RegState::Kill)
9134 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9135 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9136 .addReg(ARM::R12,
9137 RegState::Implicit | RegState::Define | RegState::Dead)
9138 .addReg(ARM::CPSR,
9139 RegState::Implicit | RegState::Define | RegState::Dead);
9140 break;
9141 }
9142 }
9143
9144 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9145 .addReg(ARM::SP, RegState::Kill)
9146 .addReg(ARM::R4, RegState::Kill)
9147 .setMIFlags(MachineInstr::FrameSetup)
9148 .add(predOps(ARMCC::AL))
9149 .add(condCodeOp());
9150
9151 MI.eraseFromParent();
9152 return MBB;
9153 }
9154
9155 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const9156 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9157 MachineBasicBlock *MBB) const {
9158 DebugLoc DL = MI.getDebugLoc();
9159 MachineFunction *MF = MBB->getParent();
9160 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9161
9162 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9163 MF->insert(++MBB->getIterator(), ContBB);
9164 ContBB->splice(ContBB->begin(), MBB,
9165 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9166 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9167 MBB->addSuccessor(ContBB);
9168
9169 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9170 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9171 MF->push_back(TrapBB);
9172 MBB->addSuccessor(TrapBB);
9173
9174 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9175 .addReg(MI.getOperand(0).getReg())
9176 .addImm(0)
9177 .add(predOps(ARMCC::AL));
9178 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9179 .addMBB(TrapBB)
9180 .addImm(ARMCC::EQ)
9181 .addReg(ARM::CPSR);
9182
9183 MI.eraseFromParent();
9184 return ContBB;
9185 }
9186
9187 // The CPSR operand of SelectItr might be missing a kill marker
9188 // because there were multiple uses of CPSR, and ISel didn't know
9189 // which to mark. Figure out whether SelectItr should have had a
9190 // kill marker, and set it if it should. Returns the correct kill
9191 // marker value.
checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)9192 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
9193 MachineBasicBlock* BB,
9194 const TargetRegisterInfo* TRI) {
9195 // Scan forward through BB for a use/def of CPSR.
9196 MachineBasicBlock::iterator miI(std::next(SelectItr));
9197 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
9198 const MachineInstr& mi = *miI;
9199 if (mi.readsRegister(ARM::CPSR))
9200 return false;
9201 if (mi.definesRegister(ARM::CPSR))
9202 break; // Should have kill-flag - update below.
9203 }
9204
9205 // If we hit the end of the block, check whether CPSR is live into a
9206 // successor.
9207 if (miI == BB->end()) {
9208 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
9209 sEnd = BB->succ_end();
9210 sItr != sEnd; ++sItr) {
9211 MachineBasicBlock* succ = *sItr;
9212 if (succ->isLiveIn(ARM::CPSR))
9213 return false;
9214 }
9215 }
9216
9217 // We found a def, or hit the end of the basic block and CPSR wasn't live
9218 // out. SelectMI should have a kill flag on CPSR.
9219 SelectItr->addRegisterKilled(ARM::CPSR, TRI);
9220 return true;
9221 }
9222
9223 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const9224 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9225 MachineBasicBlock *BB) const {
9226 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9227 DebugLoc dl = MI.getDebugLoc();
9228 bool isThumb2 = Subtarget->isThumb2();
9229 switch (MI.getOpcode()) {
9230 default: {
9231 MI.print(errs());
9232 llvm_unreachable("Unexpected instr type to insert");
9233 }
9234
9235 // Thumb1 post-indexed loads are really just single-register LDMs.
9236 case ARM::tLDR_postidx: {
9237 MachineOperand Def(MI.getOperand(1));
9238 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9239 .add(Def) // Rn_wb
9240 .add(MI.getOperand(2)) // Rn
9241 .add(MI.getOperand(3)) // PredImm
9242 .add(MI.getOperand(4)) // PredReg
9243 .add(MI.getOperand(0)); // Rt
9244 MI.eraseFromParent();
9245 return BB;
9246 }
9247
9248 // The Thumb2 pre-indexed stores have the same MI operands, they just
9249 // define them differently in the .td files from the isel patterns, so
9250 // they need pseudos.
9251 case ARM::t2STR_preidx:
9252 MI.setDesc(TII->get(ARM::t2STR_PRE));
9253 return BB;
9254 case ARM::t2STRB_preidx:
9255 MI.setDesc(TII->get(ARM::t2STRB_PRE));
9256 return BB;
9257 case ARM::t2STRH_preidx:
9258 MI.setDesc(TII->get(ARM::t2STRH_PRE));
9259 return BB;
9260
9261 case ARM::STRi_preidx:
9262 case ARM::STRBi_preidx: {
9263 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9264 : ARM::STRB_PRE_IMM;
9265 // Decode the offset.
9266 unsigned Offset = MI.getOperand(4).getImm();
9267 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9268 Offset = ARM_AM::getAM2Offset(Offset);
9269 if (isSub)
9270 Offset = -Offset;
9271
9272 MachineMemOperand *MMO = *MI.memoperands_begin();
9273 BuildMI(*BB, MI, dl, TII->get(NewOpc))
9274 .add(MI.getOperand(0)) // Rn_wb
9275 .add(MI.getOperand(1)) // Rt
9276 .add(MI.getOperand(2)) // Rn
9277 .addImm(Offset) // offset (skip GPR==zero_reg)
9278 .add(MI.getOperand(5)) // pred
9279 .add(MI.getOperand(6))
9280 .addMemOperand(MMO);
9281 MI.eraseFromParent();
9282 return BB;
9283 }
9284 case ARM::STRr_preidx:
9285 case ARM::STRBr_preidx:
9286 case ARM::STRH_preidx: {
9287 unsigned NewOpc;
9288 switch (MI.getOpcode()) {
9289 default: llvm_unreachable("unexpected opcode!");
9290 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9291 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9292 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9293 }
9294 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9295 for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9296 MIB.add(MI.getOperand(i));
9297 MI.eraseFromParent();
9298 return BB;
9299 }
9300
9301 case ARM::tMOVCCr_pseudo: {
9302 // To "insert" a SELECT_CC instruction, we actually have to insert the
9303 // diamond control-flow pattern. The incoming instruction knows the
9304 // destination vreg to set, the condition code register to branch on, the
9305 // true/false values to select between, and a branch opcode to use.
9306 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9307 MachineFunction::iterator It = ++BB->getIterator();
9308
9309 // thisMBB:
9310 // ...
9311 // TrueVal = ...
9312 // cmpTY ccX, r1, r2
9313 // bCC copy1MBB
9314 // fallthrough --> copy0MBB
9315 MachineBasicBlock *thisMBB = BB;
9316 MachineFunction *F = BB->getParent();
9317 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9318 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9319 F->insert(It, copy0MBB);
9320 F->insert(It, sinkMBB);
9321
9322 // Check whether CPSR is live past the tMOVCCr_pseudo.
9323 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
9324 if (!MI.killsRegister(ARM::CPSR) &&
9325 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
9326 copy0MBB->addLiveIn(ARM::CPSR);
9327 sinkMBB->addLiveIn(ARM::CPSR);
9328 }
9329
9330 // Transfer the remainder of BB and its successor edges to sinkMBB.
9331 sinkMBB->splice(sinkMBB->begin(), BB,
9332 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9333 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9334
9335 BB->addSuccessor(copy0MBB);
9336 BB->addSuccessor(sinkMBB);
9337
9338 BuildMI(BB, dl, TII->get(ARM::tBcc))
9339 .addMBB(sinkMBB)
9340 .addImm(MI.getOperand(3).getImm())
9341 .addReg(MI.getOperand(4).getReg());
9342
9343 // copy0MBB:
9344 // %FalseValue = ...
9345 // # fallthrough to sinkMBB
9346 BB = copy0MBB;
9347
9348 // Update machine-CFG edges
9349 BB->addSuccessor(sinkMBB);
9350
9351 // sinkMBB:
9352 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9353 // ...
9354 BB = sinkMBB;
9355 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9356 .addReg(MI.getOperand(1).getReg())
9357 .addMBB(copy0MBB)
9358 .addReg(MI.getOperand(2).getReg())
9359 .addMBB(thisMBB);
9360
9361 MI.eraseFromParent(); // The pseudo instruction is gone now.
9362 return BB;
9363 }
9364
9365 case ARM::BCCi64:
9366 case ARM::BCCZi64: {
9367 // If there is an unconditional branch to the other successor, remove it.
9368 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9369
9370 // Compare both parts that make up the double comparison separately for
9371 // equality.
9372 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9373
9374 unsigned LHS1 = MI.getOperand(1).getReg();
9375 unsigned LHS2 = MI.getOperand(2).getReg();
9376 if (RHSisZero) {
9377 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9378 .addReg(LHS1)
9379 .addImm(0)
9380 .add(predOps(ARMCC::AL));
9381 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9382 .addReg(LHS2).addImm(0)
9383 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9384 } else {
9385 unsigned RHS1 = MI.getOperand(3).getReg();
9386 unsigned RHS2 = MI.getOperand(4).getReg();
9387 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9388 .addReg(LHS1)
9389 .addReg(RHS1)
9390 .add(predOps(ARMCC::AL));
9391 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9392 .addReg(LHS2).addReg(RHS2)
9393 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9394 }
9395
9396 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9397 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9398 if (MI.getOperand(0).getImm() == ARMCC::NE)
9399 std::swap(destMBB, exitMBB);
9400
9401 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9402 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9403 if (isThumb2)
9404 BuildMI(BB, dl, TII->get(ARM::t2B))
9405 .addMBB(exitMBB)
9406 .add(predOps(ARMCC::AL));
9407 else
9408 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9409
9410 MI.eraseFromParent(); // The pseudo instruction is gone now.
9411 return BB;
9412 }
9413
9414 case ARM::Int_eh_sjlj_setjmp:
9415 case ARM::Int_eh_sjlj_setjmp_nofp:
9416 case ARM::tInt_eh_sjlj_setjmp:
9417 case ARM::t2Int_eh_sjlj_setjmp:
9418 case ARM::t2Int_eh_sjlj_setjmp_nofp:
9419 return BB;
9420
9421 case ARM::Int_eh_sjlj_setup_dispatch:
9422 EmitSjLjDispatchBlock(MI, BB);
9423 return BB;
9424
9425 case ARM::ABS:
9426 case ARM::t2ABS: {
9427 // To insert an ABS instruction, we have to insert the
9428 // diamond control-flow pattern. The incoming instruction knows the
9429 // source vreg to test against 0, the destination vreg to set,
9430 // the condition code register to branch on, the
9431 // true/false values to select between, and a branch opcode to use.
9432 // It transforms
9433 // V1 = ABS V0
9434 // into
9435 // V2 = MOVS V0
9436 // BCC (branch to SinkBB if V0 >= 0)
9437 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
9438 // SinkBB: V1 = PHI(V2, V3)
9439 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9440 MachineFunction::iterator BBI = ++BB->getIterator();
9441 MachineFunction *Fn = BB->getParent();
9442 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9443 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9444 Fn->insert(BBI, RSBBB);
9445 Fn->insert(BBI, SinkBB);
9446
9447 unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9448 unsigned int ABSDstReg = MI.getOperand(0).getReg();
9449 bool ABSSrcKIll = MI.getOperand(1).isKill();
9450 bool isThumb2 = Subtarget->isThumb2();
9451 MachineRegisterInfo &MRI = Fn->getRegInfo();
9452 // In Thumb mode S must not be specified if source register is the SP or
9453 // PC and if destination register is the SP, so restrict register class
9454 unsigned NewRsbDstReg =
9455 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9456
9457 // Transfer the remainder of BB and its successor edges to sinkMBB.
9458 SinkBB->splice(SinkBB->begin(), BB,
9459 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9460 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9461
9462 BB->addSuccessor(RSBBB);
9463 BB->addSuccessor(SinkBB);
9464
9465 // fall through to SinkMBB
9466 RSBBB->addSuccessor(SinkBB);
9467
9468 // insert a cmp at the end of BB
9469 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9470 .addReg(ABSSrcReg)
9471 .addImm(0)
9472 .add(predOps(ARMCC::AL));
9473
9474 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9475 BuildMI(BB, dl,
9476 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9477 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9478
9479 // insert rsbri in RSBBB
9480 // Note: BCC and rsbri will be converted into predicated rsbmi
9481 // by if-conversion pass
9482 BuildMI(*RSBBB, RSBBB->begin(), dl,
9483 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9484 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9485 .addImm(0)
9486 .add(predOps(ARMCC::AL))
9487 .add(condCodeOp());
9488
9489 // insert PHI in SinkBB,
9490 // reuse ABSDstReg to not change uses of ABS instruction
9491 BuildMI(*SinkBB, SinkBB->begin(), dl,
9492 TII->get(ARM::PHI), ABSDstReg)
9493 .addReg(NewRsbDstReg).addMBB(RSBBB)
9494 .addReg(ABSSrcReg).addMBB(BB);
9495
9496 // remove ABS instruction
9497 MI.eraseFromParent();
9498
9499 // return last added BB
9500 return SinkBB;
9501 }
9502 case ARM::COPY_STRUCT_BYVAL_I32:
9503 ++NumLoopByVals;
9504 return EmitStructByval(MI, BB);
9505 case ARM::WIN__CHKSTK:
9506 return EmitLowered__chkstk(MI, BB);
9507 case ARM::WIN__DBZCHK:
9508 return EmitLowered__dbzchk(MI, BB);
9509 }
9510 }
9511
9512 /// Attaches vregs to MEMCPY that it will use as scratch registers
9513 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9514 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)9515 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9516 MachineInstr &MI, const SDNode *Node) {
9517 bool isThumb1 = Subtarget->isThumb1Only();
9518
9519 DebugLoc DL = MI.getDebugLoc();
9520 MachineFunction *MF = MI.getParent()->getParent();
9521 MachineRegisterInfo &MRI = MF->getRegInfo();
9522 MachineInstrBuilder MIB(*MF, MI);
9523
9524 // If the new dst/src is unused mark it as dead.
9525 if (!Node->hasAnyUseOfValue(0)) {
9526 MI.getOperand(0).setIsDead(true);
9527 }
9528 if (!Node->hasAnyUseOfValue(1)) {
9529 MI.getOperand(1).setIsDead(true);
9530 }
9531
9532 // The MEMCPY both defines and kills the scratch registers.
9533 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9534 unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9535 : &ARM::GPRRegClass);
9536 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9537 }
9538 }
9539
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const9540 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9541 SDNode *Node) const {
9542 if (MI.getOpcode() == ARM::MEMCPY) {
9543 attachMEMCPYScratchRegs(Subtarget, MI, Node);
9544 return;
9545 }
9546
9547 const MCInstrDesc *MCID = &MI.getDesc();
9548 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9549 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9550 // operand is still set to noreg. If needed, set the optional operand's
9551 // register to CPSR, and remove the redundant implicit def.
9552 //
9553 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9554
9555 // Rename pseudo opcodes.
9556 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9557 unsigned ccOutIdx;
9558 if (NewOpc) {
9559 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9560 MCID = &TII->get(NewOpc);
9561
9562 assert(MCID->getNumOperands() ==
9563 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9564 && "converted opcode should be the same except for cc_out"
9565 " (and, on Thumb1, pred)");
9566
9567 MI.setDesc(*MCID);
9568
9569 // Add the optional cc_out operand
9570 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9571
9572 // On Thumb1, move all input operands to the end, then add the predicate
9573 if (Subtarget->isThumb1Only()) {
9574 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9575 MI.addOperand(MI.getOperand(1));
9576 MI.RemoveOperand(1);
9577 }
9578
9579 // Restore the ties
9580 for (unsigned i = MI.getNumOperands(); i--;) {
9581 const MachineOperand& op = MI.getOperand(i);
9582 if (op.isReg() && op.isUse()) {
9583 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9584 if (DefIdx != -1)
9585 MI.tieOperands(DefIdx, i);
9586 }
9587 }
9588
9589 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9590 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9591 ccOutIdx = 1;
9592 } else
9593 ccOutIdx = MCID->getNumOperands() - 1;
9594 } else
9595 ccOutIdx = MCID->getNumOperands() - 1;
9596
9597 // Any ARM instruction that sets the 's' bit should specify an optional
9598 // "cc_out" operand in the last operand position.
9599 if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9600 assert(!NewOpc && "Optional cc_out operand required");
9601 return;
9602 }
9603 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9604 // since we already have an optional CPSR def.
9605 bool definesCPSR = false;
9606 bool deadCPSR = false;
9607 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9608 ++i) {
9609 const MachineOperand &MO = MI.getOperand(i);
9610 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9611 definesCPSR = true;
9612 if (MO.isDead())
9613 deadCPSR = true;
9614 MI.RemoveOperand(i);
9615 break;
9616 }
9617 }
9618 if (!definesCPSR) {
9619 assert(!NewOpc && "Optional cc_out operand required");
9620 return;
9621 }
9622 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9623 if (deadCPSR) {
9624 assert(!MI.getOperand(ccOutIdx).getReg() &&
9625 "expect uninitialized optional cc_out operand");
9626 // Thumb1 instructions must have the S bit even if the CPSR is dead.
9627 if (!Subtarget->isThumb1Only())
9628 return;
9629 }
9630
9631 // If this instruction was defined with an optional CPSR def and its dag node
9632 // had a live implicit CPSR def, then activate the optional CPSR def.
9633 MachineOperand &MO = MI.getOperand(ccOutIdx);
9634 MO.setReg(ARM::CPSR);
9635 MO.setIsDef(true);
9636 }
9637
9638 //===----------------------------------------------------------------------===//
9639 // ARM Optimization Hooks
9640 //===----------------------------------------------------------------------===//
9641
9642 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)9643 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9644 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9645 }
9646
9647 // Return true if N is conditionally 0 or all ones.
9648 // Detects these expressions where cc is an i1 value:
9649 //
9650 // (select cc 0, y) [AllOnes=0]
9651 // (select cc y, 0) [AllOnes=0]
9652 // (zext cc) [AllOnes=0]
9653 // (sext cc) [AllOnes=0/1]
9654 // (select cc -1, y) [AllOnes=1]
9655 // (select cc y, -1) [AllOnes=1]
9656 //
9657 // Invert is set when N is the null/all ones constant when CC is false.
9658 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)9659 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9660 SDValue &CC, bool &Invert,
9661 SDValue &OtherOp,
9662 SelectionDAG &DAG) {
9663 switch (N->getOpcode()) {
9664 default: return false;
9665 case ISD::SELECT: {
9666 CC = N->getOperand(0);
9667 SDValue N1 = N->getOperand(1);
9668 SDValue N2 = N->getOperand(2);
9669 if (isZeroOrAllOnes(N1, AllOnes)) {
9670 Invert = false;
9671 OtherOp = N2;
9672 return true;
9673 }
9674 if (isZeroOrAllOnes(N2, AllOnes)) {
9675 Invert = true;
9676 OtherOp = N1;
9677 return true;
9678 }
9679 return false;
9680 }
9681 case ISD::ZERO_EXTEND:
9682 // (zext cc) can never be the all ones value.
9683 if (AllOnes)
9684 return false;
9685 LLVM_FALLTHROUGH;
9686 case ISD::SIGN_EXTEND: {
9687 SDLoc dl(N);
9688 EVT VT = N->getValueType(0);
9689 CC = N->getOperand(0);
9690 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9691 return false;
9692 Invert = !AllOnes;
9693 if (AllOnes)
9694 // When looking for an AllOnes constant, N is an sext, and the 'other'
9695 // value is 0.
9696 OtherOp = DAG.getConstant(0, dl, VT);
9697 else if (N->getOpcode() == ISD::ZERO_EXTEND)
9698 // When looking for a 0 constant, N can be zext or sext.
9699 OtherOp = DAG.getConstant(1, dl, VT);
9700 else
9701 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9702 VT);
9703 return true;
9704 }
9705 }
9706 }
9707
9708 // Combine a constant select operand into its use:
9709 //
9710 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
9711 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
9712 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
9713 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9714 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9715 //
9716 // The transform is rejected if the select doesn't have a constant operand that
9717 // is null, or all ones when AllOnes is set.
9718 //
9719 // Also recognize sext/zext from i1:
9720 //
9721 // (add (zext cc), x) -> (select cc (add x, 1), x)
9722 // (add (sext cc), x) -> (select cc (add x, -1), x)
9723 //
9724 // These transformations eventually create predicated instructions.
9725 //
9726 // @param N The node to transform.
9727 // @param Slct The N operand that is a select.
9728 // @param OtherOp The other N operand (x above).
9729 // @param DCI Context.
9730 // @param AllOnes Require the select constant to be all ones instead of null.
9731 // @returns The new node, or SDValue() on failure.
9732 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)9733 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9734 TargetLowering::DAGCombinerInfo &DCI,
9735 bool AllOnes = false) {
9736 SelectionDAG &DAG = DCI.DAG;
9737 EVT VT = N->getValueType(0);
9738 SDValue NonConstantVal;
9739 SDValue CCOp;
9740 bool SwapSelectOps;
9741 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9742 NonConstantVal, DAG))
9743 return SDValue();
9744
9745 // Slct is now know to be the desired identity constant when CC is true.
9746 SDValue TrueVal = OtherOp;
9747 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9748 OtherOp, NonConstantVal);
9749 // Unless SwapSelectOps says CC should be false.
9750 if (SwapSelectOps)
9751 std::swap(TrueVal, FalseVal);
9752
9753 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9754 CCOp, TrueVal, FalseVal);
9755 }
9756
9757 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9758 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)9759 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9760 TargetLowering::DAGCombinerInfo &DCI) {
9761 SDValue N0 = N->getOperand(0);
9762 SDValue N1 = N->getOperand(1);
9763 if (N0.getNode()->hasOneUse())
9764 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9765 return Result;
9766 if (N1.getNode()->hasOneUse())
9767 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9768 return Result;
9769 return SDValue();
9770 }
9771
IsVUZPShuffleNode(SDNode * N)9772 static bool IsVUZPShuffleNode(SDNode *N) {
9773 // VUZP shuffle node.
9774 if (N->getOpcode() == ARMISD::VUZP)
9775 return true;
9776
9777 // "VUZP" on i32 is an alias for VTRN.
9778 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9779 return true;
9780
9781 return false;
9782 }
9783
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9784 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9785 TargetLowering::DAGCombinerInfo &DCI,
9786 const ARMSubtarget *Subtarget) {
9787 // Look for ADD(VUZP.0, VUZP.1).
9788 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9789 N0 == N1)
9790 return SDValue();
9791
9792 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9793 if (!N->getValueType(0).is64BitVector())
9794 return SDValue();
9795
9796 // Generate vpadd.
9797 SelectionDAG &DAG = DCI.DAG;
9798 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9799 SDLoc dl(N);
9800 SDNode *Unzip = N0.getNode();
9801 EVT VT = N->getValueType(0);
9802
9803 SmallVector<SDValue, 8> Ops;
9804 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9805 TLI.getPointerTy(DAG.getDataLayout())));
9806 Ops.push_back(Unzip->getOperand(0));
9807 Ops.push_back(Unzip->getOperand(1));
9808
9809 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9810 }
9811
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9812 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9813 TargetLowering::DAGCombinerInfo &DCI,
9814 const ARMSubtarget *Subtarget) {
9815 // Check for two extended operands.
9816 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9817 N1.getOpcode() == ISD::SIGN_EXTEND) &&
9818 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9819 N1.getOpcode() == ISD::ZERO_EXTEND))
9820 return SDValue();
9821
9822 SDValue N00 = N0.getOperand(0);
9823 SDValue N10 = N1.getOperand(0);
9824
9825 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9826 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9827 N00 == N10)
9828 return SDValue();
9829
9830 // We only recognize Q register paddl here; this can't be reached until
9831 // after type legalization.
9832 if (!N00.getValueType().is64BitVector() ||
9833 !N0.getValueType().is128BitVector())
9834 return SDValue();
9835
9836 // Generate vpaddl.
9837 SelectionDAG &DAG = DCI.DAG;
9838 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9839 SDLoc dl(N);
9840 EVT VT = N->getValueType(0);
9841
9842 SmallVector<SDValue, 8> Ops;
9843 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9844 unsigned Opcode;
9845 if (N0.getOpcode() == ISD::SIGN_EXTEND)
9846 Opcode = Intrinsic::arm_neon_vpaddls;
9847 else
9848 Opcode = Intrinsic::arm_neon_vpaddlu;
9849 Ops.push_back(DAG.getConstant(Opcode, dl,
9850 TLI.getPointerTy(DAG.getDataLayout())));
9851 EVT ElemTy = N00.getValueType().getVectorElementType();
9852 unsigned NumElts = VT.getVectorNumElements();
9853 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9854 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9855 N00.getOperand(0), N00.getOperand(1));
9856 Ops.push_back(Concat);
9857
9858 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9859 }
9860
9861 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9862 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9863 // much easier to match.
9864 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9865 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9866 TargetLowering::DAGCombinerInfo &DCI,
9867 const ARMSubtarget *Subtarget) {
9868 // Only perform optimization if after legalize, and if NEON is available. We
9869 // also expected both operands to be BUILD_VECTORs.
9870 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9871 || N0.getOpcode() != ISD::BUILD_VECTOR
9872 || N1.getOpcode() != ISD::BUILD_VECTOR)
9873 return SDValue();
9874
9875 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9876 EVT VT = N->getValueType(0);
9877 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9878 return SDValue();
9879
9880 // Check that the vector operands are of the right form.
9881 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9882 // operands, where N is the size of the formed vector.
9883 // Each EXTRACT_VECTOR should have the same input vector and odd or even
9884 // index such that we have a pair wise add pattern.
9885
9886 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9887 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9888 return SDValue();
9889 SDValue Vec = N0->getOperand(0)->getOperand(0);
9890 SDNode *V = Vec.getNode();
9891 unsigned nextIndex = 0;
9892
9893 // For each operands to the ADD which are BUILD_VECTORs,
9894 // check to see if each of their operands are an EXTRACT_VECTOR with
9895 // the same vector and appropriate index.
9896 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9897 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9898 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9899
9900 SDValue ExtVec0 = N0->getOperand(i);
9901 SDValue ExtVec1 = N1->getOperand(i);
9902
9903 // First operand is the vector, verify its the same.
9904 if (V != ExtVec0->getOperand(0).getNode() ||
9905 V != ExtVec1->getOperand(0).getNode())
9906 return SDValue();
9907
9908 // Second is the constant, verify its correct.
9909 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9910 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9911
9912 // For the constant, we want to see all the even or all the odd.
9913 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9914 || C1->getZExtValue() != nextIndex+1)
9915 return SDValue();
9916
9917 // Increment index.
9918 nextIndex+=2;
9919 } else
9920 return SDValue();
9921 }
9922
9923 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9924 // we're using the entire input vector, otherwise there's a size/legality
9925 // mismatch somewhere.
9926 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9927 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9928 return SDValue();
9929
9930 // Create VPADDL node.
9931 SelectionDAG &DAG = DCI.DAG;
9932 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9933
9934 SDLoc dl(N);
9935
9936 // Build operand list.
9937 SmallVector<SDValue, 8> Ops;
9938 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9939 TLI.getPointerTy(DAG.getDataLayout())));
9940
9941 // Input is the vector.
9942 Ops.push_back(Vec);
9943
9944 // Get widened type and narrowed type.
9945 MVT widenType;
9946 unsigned numElem = VT.getVectorNumElements();
9947
9948 EVT inputLaneType = Vec.getValueType().getVectorElementType();
9949 switch (inputLaneType.getSimpleVT().SimpleTy) {
9950 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9951 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9952 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9953 default:
9954 llvm_unreachable("Invalid vector element type for padd optimization.");
9955 }
9956
9957 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9958 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9959 return DAG.getNode(ExtOp, dl, VT, tmp);
9960 }
9961
findMUL_LOHI(SDValue V)9962 static SDValue findMUL_LOHI(SDValue V) {
9963 if (V->getOpcode() == ISD::UMUL_LOHI ||
9964 V->getOpcode() == ISD::SMUL_LOHI)
9965 return V;
9966 return SDValue();
9967 }
9968
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9969 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
9970 TargetLowering::DAGCombinerInfo &DCI,
9971 const ARMSubtarget *Subtarget) {
9972 if (Subtarget->isThumb()) {
9973 if (!Subtarget->hasDSP())
9974 return SDValue();
9975 } else if (!Subtarget->hasV5TEOps())
9976 return SDValue();
9977
9978 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
9979 // accumulates the product into a 64-bit value. The 16-bit values will
9980 // be sign extended somehow or SRA'd into 32-bit values
9981 // (addc (adde (mul 16bit, 16bit), lo), hi)
9982 SDValue Mul = AddcNode->getOperand(0);
9983 SDValue Lo = AddcNode->getOperand(1);
9984 if (Mul.getOpcode() != ISD::MUL) {
9985 Lo = AddcNode->getOperand(0);
9986 Mul = AddcNode->getOperand(1);
9987 if (Mul.getOpcode() != ISD::MUL)
9988 return SDValue();
9989 }
9990
9991 SDValue SRA = AddeNode->getOperand(0);
9992 SDValue Hi = AddeNode->getOperand(1);
9993 if (SRA.getOpcode() != ISD::SRA) {
9994 SRA = AddeNode->getOperand(1);
9995 Hi = AddeNode->getOperand(0);
9996 if (SRA.getOpcode() != ISD::SRA)
9997 return SDValue();
9998 }
9999 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10000 if (Const->getZExtValue() != 31)
10001 return SDValue();
10002 } else
10003 return SDValue();
10004
10005 if (SRA.getOperand(0) != Mul)
10006 return SDValue();
10007
10008 SelectionDAG &DAG = DCI.DAG;
10009 SDLoc dl(AddcNode);
10010 unsigned Opcode = 0;
10011 SDValue Op0;
10012 SDValue Op1;
10013
10014 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10015 Opcode = ARMISD::SMLALBB;
10016 Op0 = Mul.getOperand(0);
10017 Op1 = Mul.getOperand(1);
10018 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10019 Opcode = ARMISD::SMLALBT;
10020 Op0 = Mul.getOperand(0);
10021 Op1 = Mul.getOperand(1).getOperand(0);
10022 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10023 Opcode = ARMISD::SMLALTB;
10024 Op0 = Mul.getOperand(0).getOperand(0);
10025 Op1 = Mul.getOperand(1);
10026 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10027 Opcode = ARMISD::SMLALTT;
10028 Op0 = Mul->getOperand(0).getOperand(0);
10029 Op1 = Mul->getOperand(1).getOperand(0);
10030 }
10031
10032 if (!Op0 || !Op1)
10033 return SDValue();
10034
10035 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10036 Op0, Op1, Lo, Hi);
10037 // Replace the ADDs' nodes uses by the MLA node's values.
10038 SDValue HiMLALResult(SMLAL.getNode(), 1);
10039 SDValue LoMLALResult(SMLAL.getNode(), 0);
10040
10041 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10042 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10043
10044 // Return original node to notify the driver to stop replacing.
10045 SDValue resNode(AddcNode, 0);
10046 return resNode;
10047 }
10048
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10049 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10050 TargetLowering::DAGCombinerInfo &DCI,
10051 const ARMSubtarget *Subtarget) {
10052 // Look for multiply add opportunities.
10053 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10054 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10055 // a glue link from the first add to the second add.
10056 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10057 // a S/UMLAL instruction.
10058 // UMUL_LOHI
10059 // / :lo \ :hi
10060 // V \ [no multiline comment]
10061 // loAdd -> ADDC |
10062 // \ :carry /
10063 // V V
10064 // ADDE <- hiAdd
10065 //
10066 // In the special case where only the higher part of a signed result is used
10067 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10068 // a constant with the exact value of 0x80000000, we recognize we are dealing
10069 // with a "rounded multiply and add" (or subtract) and transform it into
10070 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10071
10072 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10073 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10074 "Expect an ADDE or SUBE");
10075
10076 assert(AddeSubeNode->getNumOperands() == 3 &&
10077 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10078 "ADDE node has the wrong inputs");
10079
10080 // Check that we are chained to the right ADDC or SUBC node.
10081 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10082 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10083 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10084 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10085 AddcSubcNode->getOpcode() != ARMISD::SUBC))
10086 return SDValue();
10087
10088 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10089 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10090
10091 // Check if the two operands are from the same mul_lohi node.
10092 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10093 return SDValue();
10094
10095 assert(AddcSubcNode->getNumValues() == 2 &&
10096 AddcSubcNode->getValueType(0) == MVT::i32 &&
10097 "Expect ADDC with two result values. First: i32");
10098
10099 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10100 // maybe a SMLAL which multiplies two 16-bit values.
10101 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10102 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10103 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10104 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10105 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10106 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10107
10108 // Check for the triangle shape.
10109 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10110 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10111
10112 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10113 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10114 return SDValue();
10115
10116 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10117 bool IsLeftOperandMUL = false;
10118 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10119 if (MULOp == SDValue())
10120 MULOp = findMUL_LOHI(AddeSubeOp1);
10121 else
10122 IsLeftOperandMUL = true;
10123 if (MULOp == SDValue())
10124 return SDValue();
10125
10126 // Figure out the right opcode.
10127 unsigned Opc = MULOp->getOpcode();
10128 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10129
10130 // Figure out the high and low input values to the MLAL node.
10131 SDValue *HiAddSub = nullptr;
10132 SDValue *LoMul = nullptr;
10133 SDValue *LowAddSub = nullptr;
10134
10135 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10136 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10137 return SDValue();
10138
10139 if (IsLeftOperandMUL)
10140 HiAddSub = &AddeSubeOp1;
10141 else
10142 HiAddSub = &AddeSubeOp0;
10143
10144 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10145 // whose low result is fed to the ADDC/SUBC we are checking.
10146
10147 if (AddcSubcOp0 == MULOp.getValue(0)) {
10148 LoMul = &AddcSubcOp0;
10149 LowAddSub = &AddcSubcOp1;
10150 }
10151 if (AddcSubcOp1 == MULOp.getValue(0)) {
10152 LoMul = &AddcSubcOp1;
10153 LowAddSub = &AddcSubcOp0;
10154 }
10155
10156 if (!LoMul)
10157 return SDValue();
10158
10159 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10160 // the replacement below will create a cycle.
10161 if (AddcSubcNode == HiAddSub->getNode() ||
10162 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10163 return SDValue();
10164
10165 // Create the merged node.
10166 SelectionDAG &DAG = DCI.DAG;
10167
10168 // Start building operand list.
10169 SmallVector<SDValue, 8> Ops;
10170 Ops.push_back(LoMul->getOperand(0));
10171 Ops.push_back(LoMul->getOperand(1));
10172
10173 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10174 // the case, we must be doing signed multiplication and only use the higher
10175 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10176 // addition or subtraction with the value of 0x800000.
10177 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10178 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10179 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10180 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10181 0x80000000) {
10182 Ops.push_back(*HiAddSub);
10183 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10184 FinalOpc = ARMISD::SMMLSR;
10185 } else {
10186 FinalOpc = ARMISD::SMMLAR;
10187 }
10188 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10189 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10190
10191 return SDValue(AddeSubeNode, 0);
10192 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10193 // SMMLS is generated during instruction selection and the rest of this
10194 // function can not handle the case where AddcSubcNode is a SUBC.
10195 return SDValue();
10196
10197 // Finish building the operand list for {U/S}MLAL
10198 Ops.push_back(*LowAddSub);
10199 Ops.push_back(*HiAddSub);
10200
10201 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10202 DAG.getVTList(MVT::i32, MVT::i32), Ops);
10203
10204 // Replace the ADDs' nodes uses by the MLA node's values.
10205 SDValue HiMLALResult(MLALNode.getNode(), 1);
10206 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10207
10208 SDValue LoMLALResult(MLALNode.getNode(), 0);
10209 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10210
10211 // Return original node to notify the driver to stop replacing.
10212 return SDValue(AddeSubeNode, 0);
10213 }
10214
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10215 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10216 TargetLowering::DAGCombinerInfo &DCI,
10217 const ARMSubtarget *Subtarget) {
10218 // UMAAL is similar to UMLAL except that it adds two unsigned values.
10219 // While trying to combine for the other MLAL nodes, first search for the
10220 // chance to use UMAAL. Check if Addc uses a node which has already
10221 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10222 // as the addend, and it's handled in PerformUMLALCombine.
10223
10224 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10225 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10226
10227 // Check that we have a glued ADDC node.
10228 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10229 if (AddcNode->getOpcode() != ARMISD::ADDC)
10230 return SDValue();
10231
10232 // Find the converted UMAAL or quit if it doesn't exist.
10233 SDNode *UmlalNode = nullptr;
10234 SDValue AddHi;
10235 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10236 UmlalNode = AddcNode->getOperand(0).getNode();
10237 AddHi = AddcNode->getOperand(1);
10238 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10239 UmlalNode = AddcNode->getOperand(1).getNode();
10240 AddHi = AddcNode->getOperand(0);
10241 } else {
10242 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10243 }
10244
10245 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10246 // the ADDC as well as Zero.
10247 if (!isNullConstant(UmlalNode->getOperand(3)))
10248 return SDValue();
10249
10250 if ((isNullConstant(AddeNode->getOperand(0)) &&
10251 AddeNode->getOperand(1).getNode() == UmlalNode) ||
10252 (AddeNode->getOperand(0).getNode() == UmlalNode &&
10253 isNullConstant(AddeNode->getOperand(1)))) {
10254 SelectionDAG &DAG = DCI.DAG;
10255 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10256 UmlalNode->getOperand(2), AddHi };
10257 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10258 DAG.getVTList(MVT::i32, MVT::i32), Ops);
10259
10260 // Replace the ADDs' nodes uses by the UMAAL node's values.
10261 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10262 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10263
10264 // Return original node to notify the driver to stop replacing.
10265 return SDValue(AddeNode, 0);
10266 }
10267 return SDValue();
10268 }
10269
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)10270 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10271 const ARMSubtarget *Subtarget) {
10272 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10273 return SDValue();
10274
10275 // Check that we have a pair of ADDC and ADDE as operands.
10276 // Both addends of the ADDE must be zero.
10277 SDNode* AddcNode = N->getOperand(2).getNode();
10278 SDNode* AddeNode = N->getOperand(3).getNode();
10279 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10280 (AddeNode->getOpcode() == ARMISD::ADDE) &&
10281 isNullConstant(AddeNode->getOperand(0)) &&
10282 isNullConstant(AddeNode->getOperand(1)) &&
10283 (AddeNode->getOperand(2).getNode() == AddcNode))
10284 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10285 DAG.getVTList(MVT::i32, MVT::i32),
10286 {N->getOperand(0), N->getOperand(1),
10287 AddcNode->getOperand(0), AddcNode->getOperand(1)});
10288 else
10289 return SDValue();
10290 }
10291
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10292 static SDValue PerformAddcSubcCombine(SDNode *N,
10293 TargetLowering::DAGCombinerInfo &DCI,
10294 const ARMSubtarget *Subtarget) {
10295 SelectionDAG &DAG(DCI.DAG);
10296
10297 if (N->getOpcode() == ARMISD::SUBC) {
10298 // (SUBC (ADDE 0, 0, C), 1) -> C
10299 SDValue LHS = N->getOperand(0);
10300 SDValue RHS = N->getOperand(1);
10301 if (LHS->getOpcode() == ARMISD::ADDE &&
10302 isNullConstant(LHS->getOperand(0)) &&
10303 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10304 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10305 }
10306 }
10307
10308 if (Subtarget->isThumb1Only()) {
10309 SDValue RHS = N->getOperand(1);
10310 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10311 int32_t imm = C->getSExtValue();
10312 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10313 SDLoc DL(N);
10314 RHS = DAG.getConstant(-imm, DL, MVT::i32);
10315 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10316 : ARMISD::ADDC;
10317 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10318 }
10319 }
10320 }
10321
10322 return SDValue();
10323 }
10324
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10325 static SDValue PerformAddeSubeCombine(SDNode *N,
10326 TargetLowering::DAGCombinerInfo &DCI,
10327 const ARMSubtarget *Subtarget) {
10328 if (Subtarget->isThumb1Only()) {
10329 SelectionDAG &DAG = DCI.DAG;
10330 SDValue RHS = N->getOperand(1);
10331 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10332 int64_t imm = C->getSExtValue();
10333 if (imm < 0) {
10334 SDLoc DL(N);
10335
10336 // The with-carry-in form matches bitwise not instead of the negation.
10337 // Effectively, the inverse interpretation of the carry flag already
10338 // accounts for part of the negation.
10339 RHS = DAG.getConstant(~imm, DL, MVT::i32);
10340
10341 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10342 : ARMISD::ADDE;
10343 return DAG.getNode(Opcode, DL, N->getVTList(),
10344 N->getOperand(0), RHS, N->getOperand(2));
10345 }
10346 }
10347 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10348 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10349 }
10350 return SDValue();
10351 }
10352
10353 /// PerformADDECombine - Target-specific dag combine transform from
10354 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10355 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10356 static SDValue PerformADDECombine(SDNode *N,
10357 TargetLowering::DAGCombinerInfo &DCI,
10358 const ARMSubtarget *Subtarget) {
10359 // Only ARM and Thumb2 support UMLAL/SMLAL.
10360 if (Subtarget->isThumb1Only())
10361 return PerformAddeSubeCombine(N, DCI, Subtarget);
10362
10363 // Only perform the checks after legalize when the pattern is available.
10364 if (DCI.isBeforeLegalize()) return SDValue();
10365
10366 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10367 }
10368
10369 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10370 /// operands N0 and N1. This is a helper for PerformADDCombine that is
10371 /// called with the default operands, and if that fails, with commuted
10372 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10373 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10374 TargetLowering::DAGCombinerInfo &DCI,
10375 const ARMSubtarget *Subtarget){
10376 // Attempt to create vpadd for this add.
10377 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10378 return Result;
10379
10380 // Attempt to create vpaddl for this add.
10381 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10382 return Result;
10383 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10384 Subtarget))
10385 return Result;
10386
10387 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10388 if (N0.getNode()->hasOneUse())
10389 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10390 return Result;
10391 return SDValue();
10392 }
10393
10394 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const10395 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
10396 CombineLevel Level) const {
10397 if (Level == BeforeLegalizeTypes)
10398 return true;
10399
10400 if (Subtarget->isThumb() && Subtarget->isThumb1Only())
10401 return true;
10402
10403 if (N->getOpcode() != ISD::SHL)
10404 return true;
10405
10406 // Turn off commute-with-shift transform after legalization, so it doesn't
10407 // conflict with PerformSHLSimplify. (We could try to detect when
10408 // PerformSHLSimplify would trigger more precisely, but it isn't
10409 // really necessary.)
10410 return false;
10411 }
10412
10413 bool
shouldFoldShiftPairToMask(const SDNode * N,CombineLevel Level) const10414 ARMTargetLowering::shouldFoldShiftPairToMask(const SDNode *N,
10415 CombineLevel Level) const {
10416 if (!Subtarget->isThumb1Only())
10417 return true;
10418
10419 if (Level == BeforeLegalizeTypes)
10420 return true;
10421
10422 return false;
10423 }
10424
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)10425 static SDValue PerformSHLSimplify(SDNode *N,
10426 TargetLowering::DAGCombinerInfo &DCI,
10427 const ARMSubtarget *ST) {
10428 // Allow the generic combiner to identify potential bswaps.
10429 if (DCI.isBeforeLegalize())
10430 return SDValue();
10431
10432 // DAG combiner will fold:
10433 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10434 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10435 // Other code patterns that can be also be modified have the following form:
10436 // b + ((a << 1) | 510)
10437 // b + ((a << 1) & 510)
10438 // b + ((a << 1) ^ 510)
10439 // b + ((a << 1) + 510)
10440
10441 // Many instructions can perform the shift for free, but it requires both
10442 // the operands to be registers. If c1 << c2 is too large, a mov immediate
10443 // instruction will needed. So, unfold back to the original pattern if:
10444 // - if c1 and c2 are small enough that they don't require mov imms.
10445 // - the user(s) of the node can perform an shl
10446
10447 // No shifted operands for 16-bit instructions.
10448 if (ST->isThumb() && ST->isThumb1Only())
10449 return SDValue();
10450
10451 // Check that all the users could perform the shl themselves.
10452 for (auto U : N->uses()) {
10453 switch(U->getOpcode()) {
10454 default:
10455 return SDValue();
10456 case ISD::SUB:
10457 case ISD::ADD:
10458 case ISD::AND:
10459 case ISD::OR:
10460 case ISD::XOR:
10461 case ISD::SETCC:
10462 case ARMISD::CMP:
10463 // Check that the user isn't already using a constant because there
10464 // aren't any instructions that support an immediate operand and a
10465 // shifted operand.
10466 if (isa<ConstantSDNode>(U->getOperand(0)) ||
10467 isa<ConstantSDNode>(U->getOperand(1)))
10468 return SDValue();
10469
10470 // Check that it's not already using a shift.
10471 if (U->getOperand(0).getOpcode() == ISD::SHL ||
10472 U->getOperand(1).getOpcode() == ISD::SHL)
10473 return SDValue();
10474 break;
10475 }
10476 }
10477
10478 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10479 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10480 return SDValue();
10481
10482 if (N->getOperand(0).getOpcode() != ISD::SHL)
10483 return SDValue();
10484
10485 SDValue SHL = N->getOperand(0);
10486
10487 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10488 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10489 if (!C1ShlC2 || !C2)
10490 return SDValue();
10491
10492 APInt C2Int = C2->getAPIntValue();
10493 APInt C1Int = C1ShlC2->getAPIntValue();
10494
10495 // Check that performing a lshr will not lose any information.
10496 APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10497 C2Int.getBitWidth() - C2->getZExtValue());
10498 if ((C1Int & Mask) != C1Int)
10499 return SDValue();
10500
10501 // Shift the first constant.
10502 C1Int.lshrInPlace(C2Int);
10503
10504 // The immediates are encoded as an 8-bit value that can be rotated.
10505 auto LargeImm = [](const APInt &Imm) {
10506 unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10507 return Imm.getBitWidth() - Zeros > 8;
10508 };
10509
10510 if (LargeImm(C1Int) || LargeImm(C2Int))
10511 return SDValue();
10512
10513 SelectionDAG &DAG = DCI.DAG;
10514 SDLoc dl(N);
10515 SDValue X = SHL.getOperand(0);
10516 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10517 DAG.getConstant(C1Int, dl, MVT::i32));
10518 // Shift left to compensate for the lshr of C1Int.
10519 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10520
10521 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
10522 SHL.dump(); N->dump());
10523 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10524 return Res;
10525 }
10526
10527
10528 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10529 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10530 static SDValue PerformADDCombine(SDNode *N,
10531 TargetLowering::DAGCombinerInfo &DCI,
10532 const ARMSubtarget *Subtarget) {
10533 SDValue N0 = N->getOperand(0);
10534 SDValue N1 = N->getOperand(1);
10535
10536 // Only works one way, because it needs an immediate operand.
10537 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10538 return Result;
10539
10540 // First try with the default operand order.
10541 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10542 return Result;
10543
10544 // If that didn't work, try again with the operands commuted.
10545 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10546 }
10547
10548 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10549 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10550 static SDValue PerformSUBCombine(SDNode *N,
10551 TargetLowering::DAGCombinerInfo &DCI) {
10552 SDValue N0 = N->getOperand(0);
10553 SDValue N1 = N->getOperand(1);
10554
10555 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10556 if (N1.getNode()->hasOneUse())
10557 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10558 return Result;
10559
10560 return SDValue();
10561 }
10562
10563 /// PerformVMULCombine
10564 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10565 /// special multiplier accumulator forwarding.
10566 /// vmul d3, d0, d2
10567 /// vmla d3, d1, d2
10568 /// is faster than
10569 /// vadd d3, d0, d1
10570 /// vmul d3, d3, d2
10571 // However, for (A + B) * (A + B),
10572 // vadd d2, d0, d1
10573 // vmul d3, d0, d2
10574 // vmla d3, d1, d2
10575 // is slower than
10576 // vadd d2, d0, d1
10577 // vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10578 static SDValue PerformVMULCombine(SDNode *N,
10579 TargetLowering::DAGCombinerInfo &DCI,
10580 const ARMSubtarget *Subtarget) {
10581 if (!Subtarget->hasVMLxForwarding())
10582 return SDValue();
10583
10584 SelectionDAG &DAG = DCI.DAG;
10585 SDValue N0 = N->getOperand(0);
10586 SDValue N1 = N->getOperand(1);
10587 unsigned Opcode = N0.getOpcode();
10588 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10589 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10590 Opcode = N1.getOpcode();
10591 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10592 Opcode != ISD::FADD && Opcode != ISD::FSUB)
10593 return SDValue();
10594 std::swap(N0, N1);
10595 }
10596
10597 if (N0 == N1)
10598 return SDValue();
10599
10600 EVT VT = N->getValueType(0);
10601 SDLoc DL(N);
10602 SDValue N00 = N0->getOperand(0);
10603 SDValue N01 = N0->getOperand(1);
10604 return DAG.getNode(Opcode, DL, VT,
10605 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10606 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10607 }
10608
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10609 static SDValue PerformMULCombine(SDNode *N,
10610 TargetLowering::DAGCombinerInfo &DCI,
10611 const ARMSubtarget *Subtarget) {
10612 SelectionDAG &DAG = DCI.DAG;
10613
10614 if (Subtarget->isThumb1Only())
10615 return SDValue();
10616
10617 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10618 return SDValue();
10619
10620 EVT VT = N->getValueType(0);
10621 if (VT.is64BitVector() || VT.is128BitVector())
10622 return PerformVMULCombine(N, DCI, Subtarget);
10623 if (VT != MVT::i32)
10624 return SDValue();
10625
10626 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10627 if (!C)
10628 return SDValue();
10629
10630 int64_t MulAmt = C->getSExtValue();
10631 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10632
10633 ShiftAmt = ShiftAmt & (32 - 1);
10634 SDValue V = N->getOperand(0);
10635 SDLoc DL(N);
10636
10637 SDValue Res;
10638 MulAmt >>= ShiftAmt;
10639
10640 if (MulAmt >= 0) {
10641 if (isPowerOf2_32(MulAmt - 1)) {
10642 // (mul x, 2^N + 1) => (add (shl x, N), x)
10643 Res = DAG.getNode(ISD::ADD, DL, VT,
10644 V,
10645 DAG.getNode(ISD::SHL, DL, VT,
10646 V,
10647 DAG.getConstant(Log2_32(MulAmt - 1), DL,
10648 MVT::i32)));
10649 } else if (isPowerOf2_32(MulAmt + 1)) {
10650 // (mul x, 2^N - 1) => (sub (shl x, N), x)
10651 Res = DAG.getNode(ISD::SUB, DL, VT,
10652 DAG.getNode(ISD::SHL, DL, VT,
10653 V,
10654 DAG.getConstant(Log2_32(MulAmt + 1), DL,
10655 MVT::i32)),
10656 V);
10657 } else
10658 return SDValue();
10659 } else {
10660 uint64_t MulAmtAbs = -MulAmt;
10661 if (isPowerOf2_32(MulAmtAbs + 1)) {
10662 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10663 Res = DAG.getNode(ISD::SUB, DL, VT,
10664 V,
10665 DAG.getNode(ISD::SHL, DL, VT,
10666 V,
10667 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10668 MVT::i32)));
10669 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10670 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10671 Res = DAG.getNode(ISD::ADD, DL, VT,
10672 V,
10673 DAG.getNode(ISD::SHL, DL, VT,
10674 V,
10675 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10676 MVT::i32)));
10677 Res = DAG.getNode(ISD::SUB, DL, VT,
10678 DAG.getConstant(0, DL, MVT::i32), Res);
10679 } else
10680 return SDValue();
10681 }
10682
10683 if (ShiftAmt != 0)
10684 Res = DAG.getNode(ISD::SHL, DL, VT,
10685 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10686
10687 // Do not add new nodes to DAG combiner worklist.
10688 DCI.CombineTo(N, Res, false);
10689 return SDValue();
10690 }
10691
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10692 static SDValue CombineANDShift(SDNode *N,
10693 TargetLowering::DAGCombinerInfo &DCI,
10694 const ARMSubtarget *Subtarget) {
10695 // Allow DAGCombine to pattern-match before we touch the canonical form.
10696 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10697 return SDValue();
10698
10699 if (N->getValueType(0) != MVT::i32)
10700 return SDValue();
10701
10702 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10703 if (!N1C)
10704 return SDValue();
10705
10706 uint32_t C1 = (uint32_t)N1C->getZExtValue();
10707 // Don't transform uxtb/uxth.
10708 if (C1 == 255 || C1 == 65535)
10709 return SDValue();
10710
10711 SDNode *N0 = N->getOperand(0).getNode();
10712 if (!N0->hasOneUse())
10713 return SDValue();
10714
10715 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
10716 return SDValue();
10717
10718 bool LeftShift = N0->getOpcode() == ISD::SHL;
10719
10720 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10721 if (!N01C)
10722 return SDValue();
10723
10724 uint32_t C2 = (uint32_t)N01C->getZExtValue();
10725 if (!C2 || C2 >= 32)
10726 return SDValue();
10727
10728 // Clear irrelevant bits in the mask.
10729 if (LeftShift)
10730 C1 &= (-1U << C2);
10731 else
10732 C1 &= (-1U >> C2);
10733
10734 SelectionDAG &DAG = DCI.DAG;
10735 SDLoc DL(N);
10736
10737 // We have a pattern of the form "(and (shl x, c2) c1)" or
10738 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
10739 // transform to a pair of shifts, to save materializing c1.
10740
10741 // First pattern: right shift, then mask off leading bits.
10742 // FIXME: Use demanded bits?
10743 if (!LeftShift && isMask_32(C1)) {
10744 uint32_t C3 = countLeadingZeros(C1);
10745 if (C2 < C3) {
10746 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10747 DAG.getConstant(C3 - C2, DL, MVT::i32));
10748 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10749 DAG.getConstant(C3, DL, MVT::i32));
10750 }
10751 }
10752
10753 // First pattern, reversed: left shift, then mask off trailing bits.
10754 if (LeftShift && isMask_32(~C1)) {
10755 uint32_t C3 = countTrailingZeros(C1);
10756 if (C2 < C3) {
10757 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
10758 DAG.getConstant(C3 - C2, DL, MVT::i32));
10759 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
10760 DAG.getConstant(C3, DL, MVT::i32));
10761 }
10762 }
10763
10764 // Second pattern: left shift, then mask off leading bits.
10765 // FIXME: Use demanded bits?
10766 if (LeftShift && isShiftedMask_32(C1)) {
10767 uint32_t Trailing = countTrailingZeros(C1);
10768 uint32_t C3 = countLeadingZeros(C1);
10769 if (Trailing == C2 && C2 + C3 < 32) {
10770 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10771 DAG.getConstant(C2 + C3, DL, MVT::i32));
10772 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10773 DAG.getConstant(C3, DL, MVT::i32));
10774 }
10775 }
10776
10777 // Second pattern, reversed: right shift, then mask off trailing bits.
10778 // FIXME: Handle other patterns of known/demanded bits.
10779 if (!LeftShift && isShiftedMask_32(C1)) {
10780 uint32_t Leading = countLeadingZeros(C1);
10781 uint32_t C3 = countTrailingZeros(C1);
10782 if (Leading == C2 && C2 + C3 < 32) {
10783 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
10784 DAG.getConstant(C2 + C3, DL, MVT::i32));
10785 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
10786 DAG.getConstant(C3, DL, MVT::i32));
10787 }
10788 }
10789
10790 // FIXME: Transform "(and (shl x, c2) c1)" ->
10791 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
10792 // c1.
10793 return SDValue();
10794 }
10795
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10796 static SDValue PerformANDCombine(SDNode *N,
10797 TargetLowering::DAGCombinerInfo &DCI,
10798 const ARMSubtarget *Subtarget) {
10799 // Attempt to use immediate-form VBIC
10800 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10801 SDLoc dl(N);
10802 EVT VT = N->getValueType(0);
10803 SelectionDAG &DAG = DCI.DAG;
10804
10805 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10806 return SDValue();
10807
10808 APInt SplatBits, SplatUndef;
10809 unsigned SplatBitSize;
10810 bool HasAnyUndefs;
10811 if (BVN &&
10812 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10813 if (SplatBitSize <= 64) {
10814 EVT VbicVT;
10815 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10816 SplatUndef.getZExtValue(), SplatBitSize,
10817 DAG, dl, VbicVT, VT.is128BitVector(),
10818 OtherModImm);
10819 if (Val.getNode()) {
10820 SDValue Input =
10821 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10822 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10823 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10824 }
10825 }
10826 }
10827
10828 if (!Subtarget->isThumb1Only()) {
10829 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10830 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10831 return Result;
10832
10833 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10834 return Result;
10835 }
10836
10837 if (Subtarget->isThumb1Only())
10838 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
10839 return Result;
10840
10841 return SDValue();
10842 }
10843
10844 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10845 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10846 TargetLowering::DAGCombinerInfo &DCI,
10847 const ARMSubtarget *Subtarget) {
10848 if (!Subtarget->hasV6Ops() ||
10849 (Subtarget->isThumb() &&
10850 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10851 return SDValue();
10852
10853 SDValue SRL = OR->getOperand(0);
10854 SDValue SHL = OR->getOperand(1);
10855
10856 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10857 SRL = OR->getOperand(1);
10858 SHL = OR->getOperand(0);
10859 }
10860 if (!isSRL16(SRL) || !isSHL16(SHL))
10861 return SDValue();
10862
10863 // The first operands to the shifts need to be the two results from the
10864 // same smul_lohi node.
10865 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10866 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10867 return SDValue();
10868
10869 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10870 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10871 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10872 return SDValue();
10873
10874 // Now we have:
10875 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10876 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10877 // For SMUWB the 16-bit value will signed extended somehow.
10878 // For SMULWT only the SRA is required.
10879 // Check both sides of SMUL_LOHI
10880 SDValue OpS16 = SMULLOHI->getOperand(0);
10881 SDValue OpS32 = SMULLOHI->getOperand(1);
10882
10883 SelectionDAG &DAG = DCI.DAG;
10884 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10885 OpS16 = OpS32;
10886 OpS32 = SMULLOHI->getOperand(0);
10887 }
10888
10889 SDLoc dl(OR);
10890 unsigned Opcode = 0;
10891 if (isS16(OpS16, DAG))
10892 Opcode = ARMISD::SMULWB;
10893 else if (isSRA16(OpS16)) {
10894 Opcode = ARMISD::SMULWT;
10895 OpS16 = OpS16->getOperand(0);
10896 }
10897 else
10898 return SDValue();
10899
10900 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10901 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10902 return SDValue(OR, 0);
10903 }
10904
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10905 static SDValue PerformORCombineToBFI(SDNode *N,
10906 TargetLowering::DAGCombinerInfo &DCI,
10907 const ARMSubtarget *Subtarget) {
10908 // BFI is only available on V6T2+
10909 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10910 return SDValue();
10911
10912 EVT VT = N->getValueType(0);
10913 SDValue N0 = N->getOperand(0);
10914 SDValue N1 = N->getOperand(1);
10915 SelectionDAG &DAG = DCI.DAG;
10916 SDLoc DL(N);
10917 // 1) or (and A, mask), val => ARMbfi A, val, mask
10918 // iff (val & mask) == val
10919 //
10920 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10921 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10922 // && mask == ~mask2
10923 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10924 // && ~mask == mask2
10925 // (i.e., copy a bitfield value into another bitfield of the same width)
10926
10927 if (VT != MVT::i32)
10928 return SDValue();
10929
10930 SDValue N00 = N0.getOperand(0);
10931
10932 // The value and the mask need to be constants so we can verify this is
10933 // actually a bitfield set. If the mask is 0xffff, we can do better
10934 // via a movt instruction, so don't use BFI in that case.
10935 SDValue MaskOp = N0.getOperand(1);
10936 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
10937 if (!MaskC)
10938 return SDValue();
10939 unsigned Mask = MaskC->getZExtValue();
10940 if (Mask == 0xffff)
10941 return SDValue();
10942 SDValue Res;
10943 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
10944 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10945 if (N1C) {
10946 unsigned Val = N1C->getZExtValue();
10947 if ((Val & ~Mask) != Val)
10948 return SDValue();
10949
10950 if (ARM::isBitFieldInvertedMask(Mask)) {
10951 Val >>= countTrailingZeros(~Mask);
10952
10953 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
10954 DAG.getConstant(Val, DL, MVT::i32),
10955 DAG.getConstant(Mask, DL, MVT::i32));
10956
10957 DCI.CombineTo(N, Res, false);
10958 // Return value from the original node to inform the combiner than N is
10959 // now dead.
10960 return SDValue(N, 0);
10961 }
10962 } else if (N1.getOpcode() == ISD::AND) {
10963 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10964 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10965 if (!N11C)
10966 return SDValue();
10967 unsigned Mask2 = N11C->getZExtValue();
10968
10969 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
10970 // as is to match.
10971 if (ARM::isBitFieldInvertedMask(Mask) &&
10972 (Mask == ~Mask2)) {
10973 // The pack halfword instruction works better for masks that fit it,
10974 // so use that when it's available.
10975 if (Subtarget->hasDSP() &&
10976 (Mask == 0xffff || Mask == 0xffff0000))
10977 return SDValue();
10978 // 2a
10979 unsigned amt = countTrailingZeros(Mask2);
10980 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
10981 DAG.getConstant(amt, DL, MVT::i32));
10982 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
10983 DAG.getConstant(Mask, DL, MVT::i32));
10984 DCI.CombineTo(N, Res, false);
10985 // Return value from the original node to inform the combiner than N is
10986 // now dead.
10987 return SDValue(N, 0);
10988 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
10989 (~Mask == Mask2)) {
10990 // The pack halfword instruction works better for masks that fit it,
10991 // so use that when it's available.
10992 if (Subtarget->hasDSP() &&
10993 (Mask2 == 0xffff || Mask2 == 0xffff0000))
10994 return SDValue();
10995 // 2b
10996 unsigned lsb = countTrailingZeros(Mask);
10997 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10998 DAG.getConstant(lsb, DL, MVT::i32));
10999 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
11000 DAG.getConstant(Mask2, DL, MVT::i32));
11001 DCI.CombineTo(N, Res, false);
11002 // Return value from the original node to inform the combiner than N is
11003 // now dead.
11004 return SDValue(N, 0);
11005 }
11006 }
11007
11008 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
11009 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
11010 ARM::isBitFieldInvertedMask(~Mask)) {
11011 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11012 // where lsb(mask) == #shamt and masked bits of B are known zero.
11013 SDValue ShAmt = N00.getOperand(1);
11014 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
11015 unsigned LSB = countTrailingZeros(Mask);
11016 if (ShAmtC != LSB)
11017 return SDValue();
11018
11019 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
11020 DAG.getConstant(~Mask, DL, MVT::i32));
11021
11022 DCI.CombineTo(N, Res, false);
11023 // Return value from the original node to inform the combiner than N is
11024 // now dead.
11025 return SDValue(N, 0);
11026 }
11027
11028 return SDValue();
11029 }
11030
11031 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11032 static SDValue PerformORCombine(SDNode *N,
11033 TargetLowering::DAGCombinerInfo &DCI,
11034 const ARMSubtarget *Subtarget) {
11035 // Attempt to use immediate-form VORR
11036 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11037 SDLoc dl(N);
11038 EVT VT = N->getValueType(0);
11039 SelectionDAG &DAG = DCI.DAG;
11040
11041 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11042 return SDValue();
11043
11044 APInt SplatBits, SplatUndef;
11045 unsigned SplatBitSize;
11046 bool HasAnyUndefs;
11047 if (BVN && Subtarget->hasNEON() &&
11048 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11049 if (SplatBitSize <= 64) {
11050 EVT VorrVT;
11051 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
11052 SplatUndef.getZExtValue(), SplatBitSize,
11053 DAG, dl, VorrVT, VT.is128BitVector(),
11054 OtherModImm);
11055 if (Val.getNode()) {
11056 SDValue Input =
11057 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11058 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11059 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11060 }
11061 }
11062 }
11063
11064 if (!Subtarget->isThumb1Only()) {
11065 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11066 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11067 return Result;
11068 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11069 return Result;
11070 }
11071
11072 SDValue N0 = N->getOperand(0);
11073 SDValue N1 = N->getOperand(1);
11074
11075 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11076 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11077 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11078
11079 // The code below optimizes (or (and X, Y), Z).
11080 // The AND operand needs to have a single user to make these optimizations
11081 // profitable.
11082 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11083 return SDValue();
11084
11085 APInt SplatUndef;
11086 unsigned SplatBitSize;
11087 bool HasAnyUndefs;
11088
11089 APInt SplatBits0, SplatBits1;
11090 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11091 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11092 // Ensure that the second operand of both ands are constants
11093 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11094 HasAnyUndefs) && !HasAnyUndefs) {
11095 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11096 HasAnyUndefs) && !HasAnyUndefs) {
11097 // Ensure that the bit width of the constants are the same and that
11098 // the splat arguments are logical inverses as per the pattern we
11099 // are trying to simplify.
11100 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11101 SplatBits0 == ~SplatBits1) {
11102 // Canonicalize the vector type to make instruction selection
11103 // simpler.
11104 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11105 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11106 N0->getOperand(1),
11107 N0->getOperand(0),
11108 N1->getOperand(0));
11109 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11110 }
11111 }
11112 }
11113 }
11114
11115 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11116 // reasonable.
11117 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11118 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11119 return Res;
11120 }
11121
11122 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11123 return Result;
11124
11125 return SDValue();
11126 }
11127
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11128 static SDValue PerformXORCombine(SDNode *N,
11129 TargetLowering::DAGCombinerInfo &DCI,
11130 const ARMSubtarget *Subtarget) {
11131 EVT VT = N->getValueType(0);
11132 SelectionDAG &DAG = DCI.DAG;
11133
11134 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11135 return SDValue();
11136
11137 if (!Subtarget->isThumb1Only()) {
11138 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11139 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11140 return Result;
11141
11142 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11143 return Result;
11144 }
11145
11146 return SDValue();
11147 }
11148
11149 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11150 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11151 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)11152 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11153 assert(N->getOpcode() == ARMISD::BFI);
11154
11155 SDValue From = N->getOperand(1);
11156 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11157 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11158
11159 // If the Base came from a SHR #C, we can deduce that it is really testing bit
11160 // #C in the base of the SHR.
11161 if (From->getOpcode() == ISD::SRL &&
11162 isa<ConstantSDNode>(From->getOperand(1))) {
11163 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11164 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11165 FromMask <<= Shift.getLimitedValue(31);
11166 From = From->getOperand(0);
11167 }
11168
11169 return From;
11170 }
11171
11172 // If A and B contain one contiguous set of bits, does A | B == A . B?
11173 //
11174 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)11175 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11176 unsigned LastActiveBitInA = A.countTrailingZeros();
11177 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11178 return LastActiveBitInA - 1 == FirstActiveBitInB;
11179 }
11180
FindBFIToCombineWith(SDNode * N)11181 static SDValue FindBFIToCombineWith(SDNode *N) {
11182 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11183 // if one exists.
11184 APInt ToMask, FromMask;
11185 SDValue From = ParseBFI(N, ToMask, FromMask);
11186 SDValue To = N->getOperand(0);
11187
11188 // Now check for a compatible BFI to merge with. We can pass through BFIs that
11189 // aren't compatible, but not if they set the same bit in their destination as
11190 // we do (or that of any BFI we're going to combine with).
11191 SDValue V = To;
11192 APInt CombinedToMask = ToMask;
11193 while (V.getOpcode() == ARMISD::BFI) {
11194 APInt NewToMask, NewFromMask;
11195 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11196 if (NewFrom != From) {
11197 // This BFI has a different base. Keep going.
11198 CombinedToMask |= NewToMask;
11199 V = V.getOperand(0);
11200 continue;
11201 }
11202
11203 // Do the written bits conflict with any we've seen so far?
11204 if ((NewToMask & CombinedToMask).getBoolValue())
11205 // Conflicting bits - bail out because going further is unsafe.
11206 return SDValue();
11207
11208 // Are the new bits contiguous when combined with the old bits?
11209 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11210 BitsProperlyConcatenate(FromMask, NewFromMask))
11211 return V;
11212 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11213 BitsProperlyConcatenate(NewFromMask, FromMask))
11214 return V;
11215
11216 // We've seen a write to some bits, so track it.
11217 CombinedToMask |= NewToMask;
11218 // Keep going...
11219 V = V.getOperand(0);
11220 }
11221
11222 return SDValue();
11223 }
11224
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11225 static SDValue PerformBFICombine(SDNode *N,
11226 TargetLowering::DAGCombinerInfo &DCI) {
11227 SDValue N1 = N->getOperand(1);
11228 if (N1.getOpcode() == ISD::AND) {
11229 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11230 // the bits being cleared by the AND are not demanded by the BFI.
11231 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11232 if (!N11C)
11233 return SDValue();
11234 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11235 unsigned LSB = countTrailingZeros(~InvMask);
11236 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11237 assert(Width <
11238 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11239 "undefined behavior");
11240 unsigned Mask = (1u << Width) - 1;
11241 unsigned Mask2 = N11C->getZExtValue();
11242 if ((Mask & (~Mask2)) == 0)
11243 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11244 N->getOperand(0), N1.getOperand(0),
11245 N->getOperand(2));
11246 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11247 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11248 // Keep track of any consecutive bits set that all come from the same base
11249 // value. We can combine these together into a single BFI.
11250 SDValue CombineBFI = FindBFIToCombineWith(N);
11251 if (CombineBFI == SDValue())
11252 return SDValue();
11253
11254 // We've found a BFI.
11255 APInt ToMask1, FromMask1;
11256 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11257
11258 APInt ToMask2, FromMask2;
11259 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11260 assert(From1 == From2);
11261 (void)From2;
11262
11263 // First, unlink CombineBFI.
11264 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11265 // Then create a new BFI, combining the two together.
11266 APInt NewFromMask = FromMask1 | FromMask2;
11267 APInt NewToMask = ToMask1 | ToMask2;
11268
11269 EVT VT = N->getValueType(0);
11270 SDLoc dl(N);
11271
11272 if (NewFromMask[0] == 0)
11273 From1 = DCI.DAG.getNode(
11274 ISD::SRL, dl, VT, From1,
11275 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11276 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11277 DCI.DAG.getConstant(~NewToMask, dl, VT));
11278 }
11279 return SDValue();
11280 }
11281
11282 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11283 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11284 static SDValue PerformVMOVRRDCombine(SDNode *N,
11285 TargetLowering::DAGCombinerInfo &DCI,
11286 const ARMSubtarget *Subtarget) {
11287 // vmovrrd(vmovdrr x, y) -> x,y
11288 SDValue InDouble = N->getOperand(0);
11289 if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
11290 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11291
11292 // vmovrrd(load f64) -> (load i32), (load i32)
11293 SDNode *InNode = InDouble.getNode();
11294 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11295 InNode->getValueType(0) == MVT::f64 &&
11296 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11297 !cast<LoadSDNode>(InNode)->isVolatile()) {
11298 // TODO: Should this be done for non-FrameIndex operands?
11299 LoadSDNode *LD = cast<LoadSDNode>(InNode);
11300
11301 SelectionDAG &DAG = DCI.DAG;
11302 SDLoc DL(LD);
11303 SDValue BasePtr = LD->getBasePtr();
11304 SDValue NewLD1 =
11305 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11306 LD->getAlignment(), LD->getMemOperand()->getFlags());
11307
11308 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11309 DAG.getConstant(4, DL, MVT::i32));
11310 SDValue NewLD2 = DAG.getLoad(
11311 MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11312 std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11313
11314 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11315 if (DCI.DAG.getDataLayout().isBigEndian())
11316 std::swap (NewLD1, NewLD2);
11317 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11318 return Result;
11319 }
11320
11321 return SDValue();
11322 }
11323
11324 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11325 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)11326 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11327 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11328 SDValue Op0 = N->getOperand(0);
11329 SDValue Op1 = N->getOperand(1);
11330 if (Op0.getOpcode() == ISD::BITCAST)
11331 Op0 = Op0.getOperand(0);
11332 if (Op1.getOpcode() == ISD::BITCAST)
11333 Op1 = Op1.getOperand(0);
11334 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11335 Op0.getNode() == Op1.getNode() &&
11336 Op0.getResNo() == 0 && Op1.getResNo() == 1)
11337 return DAG.getNode(ISD::BITCAST, SDLoc(N),
11338 N->getValueType(0), Op0.getOperand(0));
11339 return SDValue();
11340 }
11341
11342 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11343 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
11344 /// i64 vector to have f64 elements, since the value can then be loaded
11345 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)11346 static bool hasNormalLoadOperand(SDNode *N) {
11347 unsigned NumElts = N->getValueType(0).getVectorNumElements();
11348 for (unsigned i = 0; i < NumElts; ++i) {
11349 SDNode *Elt = N->getOperand(i).getNode();
11350 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11351 return true;
11352 }
11353 return false;
11354 }
11355
11356 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11357 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11358 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11359 TargetLowering::DAGCombinerInfo &DCI,
11360 const ARMSubtarget *Subtarget) {
11361 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11362 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
11363 // into a pair of GPRs, which is fine when the value is used as a scalar,
11364 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11365 SelectionDAG &DAG = DCI.DAG;
11366 if (N->getNumOperands() == 2)
11367 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11368 return RV;
11369
11370 // Load i64 elements as f64 values so that type legalization does not split
11371 // them up into i32 values.
11372 EVT VT = N->getValueType(0);
11373 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11374 return SDValue();
11375 SDLoc dl(N);
11376 SmallVector<SDValue, 8> Ops;
11377 unsigned NumElts = VT.getVectorNumElements();
11378 for (unsigned i = 0; i < NumElts; ++i) {
11379 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11380 Ops.push_back(V);
11381 // Make the DAGCombiner fold the bitcast.
11382 DCI.AddToWorklist(V.getNode());
11383 }
11384 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11385 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11386 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11387 }
11388
11389 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11390 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11391 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11392 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11393 // At that time, we may have inserted bitcasts from integer to float.
11394 // If these bitcasts have survived DAGCombine, change the lowering of this
11395 // BUILD_VECTOR in something more vector friendly, i.e., that does not
11396 // force to use floating point types.
11397
11398 // Make sure we can change the type of the vector.
11399 // This is possible iff:
11400 // 1. The vector is only used in a bitcast to a integer type. I.e.,
11401 // 1.1. Vector is used only once.
11402 // 1.2. Use is a bit convert to an integer type.
11403 // 2. The size of its operands are 32-bits (64-bits are not legal).
11404 EVT VT = N->getValueType(0);
11405 EVT EltVT = VT.getVectorElementType();
11406
11407 // Check 1.1. and 2.
11408 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11409 return SDValue();
11410
11411 // By construction, the input type must be float.
11412 assert(EltVT == MVT::f32 && "Unexpected type!");
11413
11414 // Check 1.2.
11415 SDNode *Use = *N->use_begin();
11416 if (Use->getOpcode() != ISD::BITCAST ||
11417 Use->getValueType(0).isFloatingPoint())
11418 return SDValue();
11419
11420 // Check profitability.
11421 // Model is, if more than half of the relevant operands are bitcast from
11422 // i32, turn the build_vector into a sequence of insert_vector_elt.
11423 // Relevant operands are everything that is not statically
11424 // (i.e., at compile time) bitcasted.
11425 unsigned NumOfBitCastedElts = 0;
11426 unsigned NumElts = VT.getVectorNumElements();
11427 unsigned NumOfRelevantElts = NumElts;
11428 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11429 SDValue Elt = N->getOperand(Idx);
11430 if (Elt->getOpcode() == ISD::BITCAST) {
11431 // Assume only bit cast to i32 will go away.
11432 if (Elt->getOperand(0).getValueType() == MVT::i32)
11433 ++NumOfBitCastedElts;
11434 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11435 // Constants are statically casted, thus do not count them as
11436 // relevant operands.
11437 --NumOfRelevantElts;
11438 }
11439
11440 // Check if more than half of the elements require a non-free bitcast.
11441 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11442 return SDValue();
11443
11444 SelectionDAG &DAG = DCI.DAG;
11445 // Create the new vector type.
11446 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11447 // Check if the type is legal.
11448 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11449 if (!TLI.isTypeLegal(VecVT))
11450 return SDValue();
11451
11452 // Combine:
11453 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11454 // => BITCAST INSERT_VECTOR_ELT
11455 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11456 // (BITCAST EN), N.
11457 SDValue Vec = DAG.getUNDEF(VecVT);
11458 SDLoc dl(N);
11459 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11460 SDValue V = N->getOperand(Idx);
11461 if (V.isUndef())
11462 continue;
11463 if (V.getOpcode() == ISD::BITCAST &&
11464 V->getOperand(0).getValueType() == MVT::i32)
11465 // Fold obvious case.
11466 V = V.getOperand(0);
11467 else {
11468 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11469 // Make the DAGCombiner fold the bitcasts.
11470 DCI.AddToWorklist(V.getNode());
11471 }
11472 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11473 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11474 }
11475 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11476 // Make the DAGCombiner fold the bitcasts.
11477 DCI.AddToWorklist(Vec.getNode());
11478 return Vec;
11479 }
11480
11481 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11482 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11483 static SDValue PerformInsertEltCombine(SDNode *N,
11484 TargetLowering::DAGCombinerInfo &DCI) {
11485 // Bitcast an i64 load inserted into a vector to f64.
11486 // Otherwise, the i64 value will be legalized to a pair of i32 values.
11487 EVT VT = N->getValueType(0);
11488 SDNode *Elt = N->getOperand(1).getNode();
11489 if (VT.getVectorElementType() != MVT::i64 ||
11490 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11491 return SDValue();
11492
11493 SelectionDAG &DAG = DCI.DAG;
11494 SDLoc dl(N);
11495 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11496 VT.getVectorNumElements());
11497 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11498 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11499 // Make the DAGCombiner fold the bitcasts.
11500 DCI.AddToWorklist(Vec.getNode());
11501 DCI.AddToWorklist(V.getNode());
11502 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11503 Vec, V, N->getOperand(2));
11504 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11505 }
11506
11507 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11508 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)11509 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11510 // The LLVM shufflevector instruction does not require the shuffle mask
11511 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11512 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
11513 // operands do not match the mask length, they are extended by concatenating
11514 // them with undef vectors. That is probably the right thing for other
11515 // targets, but for NEON it is better to concatenate two double-register
11516 // size vector operands into a single quad-register size vector. Do that
11517 // transformation here:
11518 // shuffle(concat(v1, undef), concat(v2, undef)) ->
11519 // shuffle(concat(v1, v2), undef)
11520 SDValue Op0 = N->getOperand(0);
11521 SDValue Op1 = N->getOperand(1);
11522 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11523 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11524 Op0.getNumOperands() != 2 ||
11525 Op1.getNumOperands() != 2)
11526 return SDValue();
11527 SDValue Concat0Op1 = Op0.getOperand(1);
11528 SDValue Concat1Op1 = Op1.getOperand(1);
11529 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11530 return SDValue();
11531 // Skip the transformation if any of the types are illegal.
11532 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11533 EVT VT = N->getValueType(0);
11534 if (!TLI.isTypeLegal(VT) ||
11535 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11536 !TLI.isTypeLegal(Concat1Op1.getValueType()))
11537 return SDValue();
11538
11539 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11540 Op0.getOperand(0), Op1.getOperand(0));
11541 // Translate the shuffle mask.
11542 SmallVector<int, 16> NewMask;
11543 unsigned NumElts = VT.getVectorNumElements();
11544 unsigned HalfElts = NumElts/2;
11545 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11546 for (unsigned n = 0; n < NumElts; ++n) {
11547 int MaskElt = SVN->getMaskElt(n);
11548 int NewElt = -1;
11549 if (MaskElt < (int)HalfElts)
11550 NewElt = MaskElt;
11551 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11552 NewElt = HalfElts + MaskElt - NumElts;
11553 NewMask.push_back(NewElt);
11554 }
11555 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11556 DAG.getUNDEF(VT), NewMask);
11557 }
11558
11559 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11560 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11561 /// base address updates.
11562 /// For generic load/stores, the memory type is assumed to be a vector.
11563 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11564 static SDValue CombineBaseUpdate(SDNode *N,
11565 TargetLowering::DAGCombinerInfo &DCI) {
11566 SelectionDAG &DAG = DCI.DAG;
11567 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11568 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11569 const bool isStore = N->getOpcode() == ISD::STORE;
11570 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11571 SDValue Addr = N->getOperand(AddrOpIdx);
11572 MemSDNode *MemN = cast<MemSDNode>(N);
11573 SDLoc dl(N);
11574
11575 // Search for a use of the address operand that is an increment.
11576 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11577 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11578 SDNode *User = *UI;
11579 if (User->getOpcode() != ISD::ADD ||
11580 UI.getUse().getResNo() != Addr.getResNo())
11581 continue;
11582
11583 // Check that the add is independent of the load/store. Otherwise, folding
11584 // it would create a cycle. We can avoid searching through Addr as it's a
11585 // predecessor to both.
11586 SmallPtrSet<const SDNode *, 32> Visited;
11587 SmallVector<const SDNode *, 16> Worklist;
11588 Visited.insert(Addr.getNode());
11589 Worklist.push_back(N);
11590 Worklist.push_back(User);
11591 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
11592 SDNode::hasPredecessorHelper(User, Visited, Worklist))
11593 continue;
11594
11595 // Find the new opcode for the updating load/store.
11596 bool isLoadOp = true;
11597 bool isLaneOp = false;
11598 unsigned NewOpc = 0;
11599 unsigned NumVecs = 0;
11600 if (isIntrinsic) {
11601 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11602 switch (IntNo) {
11603 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11604 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
11605 NumVecs = 1; break;
11606 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
11607 NumVecs = 2; break;
11608 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
11609 NumVecs = 3; break;
11610 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
11611 NumVecs = 4; break;
11612 case Intrinsic::arm_neon_vld2dup:
11613 case Intrinsic::arm_neon_vld3dup:
11614 case Intrinsic::arm_neon_vld4dup:
11615 // TODO: Support updating VLDxDUP nodes. For now, we just skip
11616 // combining base updates for such intrinsics.
11617 continue;
11618 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11619 NumVecs = 2; isLaneOp = true; break;
11620 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11621 NumVecs = 3; isLaneOp = true; break;
11622 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11623 NumVecs = 4; isLaneOp = true; break;
11624 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
11625 NumVecs = 1; isLoadOp = false; break;
11626 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
11627 NumVecs = 2; isLoadOp = false; break;
11628 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
11629 NumVecs = 3; isLoadOp = false; break;
11630 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
11631 NumVecs = 4; isLoadOp = false; break;
11632 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11633 NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11634 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11635 NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11636 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11637 NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11638 }
11639 } else {
11640 isLaneOp = true;
11641 switch (N->getOpcode()) {
11642 default: llvm_unreachable("unexpected opcode for Neon base update");
11643 case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11644 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11645 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11646 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11647 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
11648 NumVecs = 1; isLaneOp = false; break;
11649 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
11650 NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11651 }
11652 }
11653
11654 // Find the size of memory referenced by the load/store.
11655 EVT VecTy;
11656 if (isLoadOp) {
11657 VecTy = N->getValueType(0);
11658 } else if (isIntrinsic) {
11659 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11660 } else {
11661 assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11662 VecTy = N->getOperand(1).getValueType();
11663 }
11664
11665 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11666 if (isLaneOp)
11667 NumBytes /= VecTy.getVectorNumElements();
11668
11669 // If the increment is a constant, it must match the memory ref size.
11670 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11671 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11672 if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11673 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11674 // separate instructions that make it harder to use a non-constant update.
11675 continue;
11676 }
11677
11678 // OK, we found an ADD we can fold into the base update.
11679 // Now, create a _UPD node, taking care of not breaking alignment.
11680
11681 EVT AlignedVecTy = VecTy;
11682 unsigned Alignment = MemN->getAlignment();
11683
11684 // If this is a less-than-standard-aligned load/store, change the type to
11685 // match the standard alignment.
11686 // The alignment is overlooked when selecting _UPD variants; and it's
11687 // easier to introduce bitcasts here than fix that.
11688 // There are 3 ways to get to this base-update combine:
11689 // - intrinsics: they are assumed to be properly aligned (to the standard
11690 // alignment of the memory type), so we don't need to do anything.
11691 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11692 // intrinsics, so, likewise, there's nothing to do.
11693 // - generic load/store instructions: the alignment is specified as an
11694 // explicit operand, rather than implicitly as the standard alignment
11695 // of the memory type (like the intrisics). We need to change the
11696 // memory type to match the explicit alignment. That way, we don't
11697 // generate non-standard-aligned ARMISD::VLDx nodes.
11698 if (isa<LSBaseSDNode>(N)) {
11699 if (Alignment == 0)
11700 Alignment = 1;
11701 if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11702 MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11703 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11704 assert(!isLaneOp && "Unexpected generic load/store lane.");
11705 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11706 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11707 }
11708 // Don't set an explicit alignment on regular load/stores that we want
11709 // to transform to VLD/VST 1_UPD nodes.
11710 // This matches the behavior of regular load/stores, which only get an
11711 // explicit alignment if the MMO alignment is larger than the standard
11712 // alignment of the memory type.
11713 // Intrinsics, however, always get an explicit alignment, set to the
11714 // alignment of the MMO.
11715 Alignment = 1;
11716 }
11717
11718 // Create the new updating load/store node.
11719 // First, create an SDVTList for the new updating node's results.
11720 EVT Tys[6];
11721 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11722 unsigned n;
11723 for (n = 0; n < NumResultVecs; ++n)
11724 Tys[n] = AlignedVecTy;
11725 Tys[n++] = MVT::i32;
11726 Tys[n] = MVT::Other;
11727 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11728
11729 // Then, gather the new node's operands.
11730 SmallVector<SDValue, 8> Ops;
11731 Ops.push_back(N->getOperand(0)); // incoming chain
11732 Ops.push_back(N->getOperand(AddrOpIdx));
11733 Ops.push_back(Inc);
11734
11735 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11736 // Try to match the intrinsic's signature
11737 Ops.push_back(StN->getValue());
11738 } else {
11739 // Loads (and of course intrinsics) match the intrinsics' signature,
11740 // so just add all but the alignment operand.
11741 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11742 Ops.push_back(N->getOperand(i));
11743 }
11744
11745 // For all node types, the alignment operand is always the last one.
11746 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11747
11748 // If this is a non-standard-aligned STORE, the penultimate operand is the
11749 // stored value. Bitcast it to the aligned type.
11750 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11751 SDValue &StVal = Ops[Ops.size()-2];
11752 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11753 }
11754
11755 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11756 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11757 MemN->getMemOperand());
11758
11759 // Update the uses.
11760 SmallVector<SDValue, 5> NewResults;
11761 for (unsigned i = 0; i < NumResultVecs; ++i)
11762 NewResults.push_back(SDValue(UpdN.getNode(), i));
11763
11764 // If this is an non-standard-aligned LOAD, the first result is the loaded
11765 // value. Bitcast it to the expected result type.
11766 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11767 SDValue &LdVal = NewResults[0];
11768 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11769 }
11770
11771 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11772 DCI.CombineTo(N, NewResults);
11773 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11774
11775 break;
11776 }
11777 return SDValue();
11778 }
11779
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11780 static SDValue PerformVLDCombine(SDNode *N,
11781 TargetLowering::DAGCombinerInfo &DCI) {
11782 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11783 return SDValue();
11784
11785 return CombineBaseUpdate(N, DCI);
11786 }
11787
11788 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11789 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11790 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
11791 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11792 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11793 SelectionDAG &DAG = DCI.DAG;
11794 EVT VT = N->getValueType(0);
11795 // vldN-dup instructions only support 64-bit vectors for N > 1.
11796 if (!VT.is64BitVector())
11797 return false;
11798
11799 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11800 SDNode *VLD = N->getOperand(0).getNode();
11801 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11802 return false;
11803 unsigned NumVecs = 0;
11804 unsigned NewOpc = 0;
11805 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11806 if (IntNo == Intrinsic::arm_neon_vld2lane) {
11807 NumVecs = 2;
11808 NewOpc = ARMISD::VLD2DUP;
11809 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11810 NumVecs = 3;
11811 NewOpc = ARMISD::VLD3DUP;
11812 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11813 NumVecs = 4;
11814 NewOpc = ARMISD::VLD4DUP;
11815 } else {
11816 return false;
11817 }
11818
11819 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11820 // numbers match the load.
11821 unsigned VLDLaneNo =
11822 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11823 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11824 UI != UE; ++UI) {
11825 // Ignore uses of the chain result.
11826 if (UI.getUse().getResNo() == NumVecs)
11827 continue;
11828 SDNode *User = *UI;
11829 if (User->getOpcode() != ARMISD::VDUPLANE ||
11830 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11831 return false;
11832 }
11833
11834 // Create the vldN-dup node.
11835 EVT Tys[5];
11836 unsigned n;
11837 for (n = 0; n < NumVecs; ++n)
11838 Tys[n] = VT;
11839 Tys[n] = MVT::Other;
11840 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11841 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11842 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11843 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11844 Ops, VLDMemInt->getMemoryVT(),
11845 VLDMemInt->getMemOperand());
11846
11847 // Update the uses.
11848 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11849 UI != UE; ++UI) {
11850 unsigned ResNo = UI.getUse().getResNo();
11851 // Ignore uses of the chain result.
11852 if (ResNo == NumVecs)
11853 continue;
11854 SDNode *User = *UI;
11855 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11856 }
11857
11858 // Now the vldN-lane intrinsic is dead except for its chain result.
11859 // Update uses of the chain.
11860 std::vector<SDValue> VLDDupResults;
11861 for (unsigned n = 0; n < NumVecs; ++n)
11862 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11863 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11864 DCI.CombineTo(VLD, VLDDupResults);
11865
11866 return true;
11867 }
11868
11869 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11870 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11871 static SDValue PerformVDUPLANECombine(SDNode *N,
11872 TargetLowering::DAGCombinerInfo &DCI) {
11873 SDValue Op = N->getOperand(0);
11874
11875 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11876 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11877 if (CombineVLDDUP(N, DCI))
11878 return SDValue(N, 0);
11879
11880 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11881 // redundant. Ignore bit_converts for now; element sizes are checked below.
11882 while (Op.getOpcode() == ISD::BITCAST)
11883 Op = Op.getOperand(0);
11884 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11885 return SDValue();
11886
11887 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11888 unsigned EltSize = Op.getScalarValueSizeInBits();
11889 // The canonical VMOV for a zero vector uses a 32-bit element size.
11890 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11891 unsigned EltBits;
11892 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11893 EltSize = 8;
11894 EVT VT = N->getValueType(0);
11895 if (EltSize > VT.getScalarSizeInBits())
11896 return SDValue();
11897
11898 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11899 }
11900
11901 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11902 static SDValue PerformVDUPCombine(SDNode *N,
11903 TargetLowering::DAGCombinerInfo &DCI) {
11904 SelectionDAG &DAG = DCI.DAG;
11905 SDValue Op = N->getOperand(0);
11906
11907 // Match VDUP(LOAD) -> VLD1DUP.
11908 // We match this pattern here rather than waiting for isel because the
11909 // transform is only legal for unindexed loads.
11910 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11911 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11912 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11913 SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11914 DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11915 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11916 SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11917 Ops, LD->getMemoryVT(),
11918 LD->getMemOperand());
11919 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11920 return VLDDup;
11921 }
11922
11923 return SDValue();
11924 }
11925
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11926 static SDValue PerformLOADCombine(SDNode *N,
11927 TargetLowering::DAGCombinerInfo &DCI) {
11928 EVT VT = N->getValueType(0);
11929
11930 // If this is a legal vector load, try to combine it into a VLD1_UPD.
11931 if (ISD::isNormalLoad(N) && VT.isVector() &&
11932 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11933 return CombineBaseUpdate(N, DCI);
11934
11935 return SDValue();
11936 }
11937
11938 /// PerformSTORECombine - Target-specific dag combine xforms for
11939 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11940 static SDValue PerformSTORECombine(SDNode *N,
11941 TargetLowering::DAGCombinerInfo &DCI) {
11942 StoreSDNode *St = cast<StoreSDNode>(N);
11943 if (St->isVolatile())
11944 return SDValue();
11945
11946 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
11947 // pack all of the elements in one place. Next, store to memory in fewer
11948 // chunks.
11949 SDValue StVal = St->getValue();
11950 EVT VT = StVal.getValueType();
11951 if (St->isTruncatingStore() && VT.isVector()) {
11952 SelectionDAG &DAG = DCI.DAG;
11953 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11954 EVT StVT = St->getMemoryVT();
11955 unsigned NumElems = VT.getVectorNumElements();
11956 assert(StVT != VT && "Cannot truncate to the same type");
11957 unsigned FromEltSz = VT.getScalarSizeInBits();
11958 unsigned ToEltSz = StVT.getScalarSizeInBits();
11959
11960 // From, To sizes and ElemCount must be pow of two
11961 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
11962
11963 // We are going to use the original vector elt for storing.
11964 // Accumulated smaller vector elements must be a multiple of the store size.
11965 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
11966
11967 unsigned SizeRatio = FromEltSz / ToEltSz;
11968 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
11969
11970 // Create a type on which we perform the shuffle.
11971 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
11972 NumElems*SizeRatio);
11973 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
11974
11975 SDLoc DL(St);
11976 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
11977 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
11978 for (unsigned i = 0; i < NumElems; ++i)
11979 ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
11980 ? (i + 1) * SizeRatio - 1
11981 : i * SizeRatio;
11982
11983 // Can't shuffle using an illegal type.
11984 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
11985
11986 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
11987 DAG.getUNDEF(WideVec.getValueType()),
11988 ShuffleVec);
11989 // At this point all of the data is stored at the bottom of the
11990 // register. We now need to save it to mem.
11991
11992 // Find the largest store unit
11993 MVT StoreType = MVT::i8;
11994 for (MVT Tp : MVT::integer_valuetypes()) {
11995 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
11996 StoreType = Tp;
11997 }
11998 // Didn't find a legal store type.
11999 if (!TLI.isTypeLegal(StoreType))
12000 return SDValue();
12001
12002 // Bitcast the original vector into a vector of store-size units
12003 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12004 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12005 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12006 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
12007 SmallVector<SDValue, 8> Chains;
12008 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
12009 TLI.getPointerTy(DAG.getDataLayout()));
12010 SDValue BasePtr = St->getBasePtr();
12011
12012 // Perform one or more big stores into memory.
12013 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
12014 for (unsigned I = 0; I < E; I++) {
12015 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
12016 StoreType, ShuffWide,
12017 DAG.getIntPtrConstant(I, DL));
12018 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
12019 St->getPointerInfo(), St->getAlignment(),
12020 St->getMemOperand()->getFlags());
12021 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
12022 Increment);
12023 Chains.push_back(Ch);
12024 }
12025 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
12026 }
12027
12028 if (!ISD::isNormalStore(St))
12029 return SDValue();
12030
12031 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12032 // ARM stores of arguments in the same cache line.
12033 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
12034 StVal.getNode()->hasOneUse()) {
12035 SelectionDAG &DAG = DCI.DAG;
12036 bool isBigEndian = DAG.getDataLayout().isBigEndian();
12037 SDLoc DL(St);
12038 SDValue BasePtr = St->getBasePtr();
12039 SDValue NewST1 = DAG.getStore(
12040 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
12041 BasePtr, St->getPointerInfo(), St->getAlignment(),
12042 St->getMemOperand()->getFlags());
12043
12044 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12045 DAG.getConstant(4, DL, MVT::i32));
12046 return DAG.getStore(NewST1.getValue(0), DL,
12047 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12048 OffsetPtr, St->getPointerInfo(),
12049 std::min(4U, St->getAlignment() / 2),
12050 St->getMemOperand()->getFlags());
12051 }
12052
12053 if (StVal.getValueType() == MVT::i64 &&
12054 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12055
12056 // Bitcast an i64 store extracted from a vector to f64.
12057 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12058 SelectionDAG &DAG = DCI.DAG;
12059 SDLoc dl(StVal);
12060 SDValue IntVec = StVal.getOperand(0);
12061 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12062 IntVec.getValueType().getVectorNumElements());
12063 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12064 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12065 Vec, StVal.getOperand(1));
12066 dl = SDLoc(N);
12067 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12068 // Make the DAGCombiner fold the bitcasts.
12069 DCI.AddToWorklist(Vec.getNode());
12070 DCI.AddToWorklist(ExtElt.getNode());
12071 DCI.AddToWorklist(V.getNode());
12072 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12073 St->getPointerInfo(), St->getAlignment(),
12074 St->getMemOperand()->getFlags(), St->getAAInfo());
12075 }
12076
12077 // If this is a legal vector store, try to combine it into a VST1_UPD.
12078 if (ISD::isNormalStore(N) && VT.isVector() &&
12079 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12080 return CombineBaseUpdate(N, DCI);
12081
12082 return SDValue();
12083 }
12084
12085 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12086 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12087 /// when the VMUL has a constant operand that is a power of 2.
12088 ///
12089 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12090 /// vmul.f32 d16, d17, d16
12091 /// vcvt.s32.f32 d16, d16
12092 /// becomes:
12093 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12094 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
12095 const ARMSubtarget *Subtarget) {
12096 if (!Subtarget->hasNEON())
12097 return SDValue();
12098
12099 SDValue Op = N->getOperand(0);
12100 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12101 Op.getOpcode() != ISD::FMUL)
12102 return SDValue();
12103
12104 SDValue ConstVec = Op->getOperand(1);
12105 if (!isa<BuildVectorSDNode>(ConstVec))
12106 return SDValue();
12107
12108 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12109 uint32_t FloatBits = FloatTy.getSizeInBits();
12110 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12111 uint32_t IntBits = IntTy.getSizeInBits();
12112 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12113 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12114 // These instructions only exist converting from f32 to i32. We can handle
12115 // smaller integers by generating an extra truncate, but larger ones would
12116 // be lossy. We also can't handle more then 4 lanes, since these intructions
12117 // only support v2i32/v4i32 types.
12118 return SDValue();
12119 }
12120
12121 BitVector UndefElements;
12122 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12123 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12124 if (C == -1 || C == 0 || C > 32)
12125 return SDValue();
12126
12127 SDLoc dl(N);
12128 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12129 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12130 Intrinsic::arm_neon_vcvtfp2fxu;
12131 SDValue FixConv = DAG.getNode(
12132 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12133 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12134 DAG.getConstant(C, dl, MVT::i32));
12135
12136 if (IntBits < FloatBits)
12137 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12138
12139 return FixConv;
12140 }
12141
12142 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12143 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12144 /// when the VDIV has a constant operand that is a power of 2.
12145 ///
12146 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12147 /// vcvt.f32.s32 d16, d16
12148 /// vdiv.f32 d16, d17, d16
12149 /// becomes:
12150 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12151 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12152 const ARMSubtarget *Subtarget) {
12153 if (!Subtarget->hasNEON())
12154 return SDValue();
12155
12156 SDValue Op = N->getOperand(0);
12157 unsigned OpOpcode = Op.getNode()->getOpcode();
12158 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12159 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12160 return SDValue();
12161
12162 SDValue ConstVec = N->getOperand(1);
12163 if (!isa<BuildVectorSDNode>(ConstVec))
12164 return SDValue();
12165
12166 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12167 uint32_t FloatBits = FloatTy.getSizeInBits();
12168 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12169 uint32_t IntBits = IntTy.getSizeInBits();
12170 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12171 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12172 // These instructions only exist converting from i32 to f32. We can handle
12173 // smaller integers by generating an extra extend, but larger ones would
12174 // be lossy. We also can't handle more then 4 lanes, since these intructions
12175 // only support v2i32/v4i32 types.
12176 return SDValue();
12177 }
12178
12179 BitVector UndefElements;
12180 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12181 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12182 if (C == -1 || C == 0 || C > 32)
12183 return SDValue();
12184
12185 SDLoc dl(N);
12186 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12187 SDValue ConvInput = Op.getOperand(0);
12188 if (IntBits < FloatBits)
12189 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12190 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12191 ConvInput);
12192
12193 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12194 Intrinsic::arm_neon_vcvtfxu2fp;
12195 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12196 Op.getValueType(),
12197 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12198 ConvInput, DAG.getConstant(C, dl, MVT::i32));
12199 }
12200
12201 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12202 /// operand of a vector shift operation, where all the elements of the
12203 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)12204 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12205 // Ignore bit_converts.
12206 while (Op.getOpcode() == ISD::BITCAST)
12207 Op = Op.getOperand(0);
12208 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12209 APInt SplatBits, SplatUndef;
12210 unsigned SplatBitSize;
12211 bool HasAnyUndefs;
12212 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12213 HasAnyUndefs, ElementBits) ||
12214 SplatBitSize > ElementBits)
12215 return false;
12216 Cnt = SplatBits.getSExtValue();
12217 return true;
12218 }
12219
12220 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12221 /// operand of a vector shift left operation. That value must be in the range:
12222 /// 0 <= Value < ElementBits for a left shift; or
12223 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)12224 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12225 assert(VT.isVector() && "vector shift count is not a vector type");
12226 int64_t ElementBits = VT.getScalarSizeInBits();
12227 if (! getVShiftImm(Op, ElementBits, Cnt))
12228 return false;
12229 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12230 }
12231
12232 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12233 /// operand of a vector shift right operation. For a shift opcode, the value
12234 /// is positive, but for an intrinsic the value count must be negative. The
12235 /// absolute value must be in the range:
12236 /// 1 <= |Value| <= ElementBits for a right shift; or
12237 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)12238 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12239 int64_t &Cnt) {
12240 assert(VT.isVector() && "vector shift count is not a vector type");
12241 int64_t ElementBits = VT.getScalarSizeInBits();
12242 if (! getVShiftImm(Op, ElementBits, Cnt))
12243 return false;
12244 if (!isIntrinsic)
12245 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12246 if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12247 Cnt = -Cnt;
12248 return true;
12249 }
12250 return false;
12251 }
12252
12253 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)12254 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12255 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12256 switch (IntNo) {
12257 default:
12258 // Don't do anything for most intrinsics.
12259 break;
12260
12261 // Vector shifts: check for immediate versions and lower them.
12262 // Note: This is done during DAG combining instead of DAG legalizing because
12263 // the build_vectors for 64-bit vector element shift counts are generally
12264 // not legal, and it is hard to see their values after they get legalized to
12265 // loads from a constant pool.
12266 case Intrinsic::arm_neon_vshifts:
12267 case Intrinsic::arm_neon_vshiftu:
12268 case Intrinsic::arm_neon_vrshifts:
12269 case Intrinsic::arm_neon_vrshiftu:
12270 case Intrinsic::arm_neon_vrshiftn:
12271 case Intrinsic::arm_neon_vqshifts:
12272 case Intrinsic::arm_neon_vqshiftu:
12273 case Intrinsic::arm_neon_vqshiftsu:
12274 case Intrinsic::arm_neon_vqshiftns:
12275 case Intrinsic::arm_neon_vqshiftnu:
12276 case Intrinsic::arm_neon_vqshiftnsu:
12277 case Intrinsic::arm_neon_vqrshiftns:
12278 case Intrinsic::arm_neon_vqrshiftnu:
12279 case Intrinsic::arm_neon_vqrshiftnsu: {
12280 EVT VT = N->getOperand(1).getValueType();
12281 int64_t Cnt;
12282 unsigned VShiftOpc = 0;
12283
12284 switch (IntNo) {
12285 case Intrinsic::arm_neon_vshifts:
12286 case Intrinsic::arm_neon_vshiftu:
12287 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12288 VShiftOpc = ARMISD::VSHL;
12289 break;
12290 }
12291 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12292 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12293 ARMISD::VSHRs : ARMISD::VSHRu);
12294 break;
12295 }
12296 return SDValue();
12297
12298 case Intrinsic::arm_neon_vrshifts:
12299 case Intrinsic::arm_neon_vrshiftu:
12300 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12301 break;
12302 return SDValue();
12303
12304 case Intrinsic::arm_neon_vqshifts:
12305 case Intrinsic::arm_neon_vqshiftu:
12306 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12307 break;
12308 return SDValue();
12309
12310 case Intrinsic::arm_neon_vqshiftsu:
12311 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12312 break;
12313 llvm_unreachable("invalid shift count for vqshlu intrinsic");
12314
12315 case Intrinsic::arm_neon_vrshiftn:
12316 case Intrinsic::arm_neon_vqshiftns:
12317 case Intrinsic::arm_neon_vqshiftnu:
12318 case Intrinsic::arm_neon_vqshiftnsu:
12319 case Intrinsic::arm_neon_vqrshiftns:
12320 case Intrinsic::arm_neon_vqrshiftnu:
12321 case Intrinsic::arm_neon_vqrshiftnsu:
12322 // Narrowing shifts require an immediate right shift.
12323 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12324 break;
12325 llvm_unreachable("invalid shift count for narrowing vector shift "
12326 "intrinsic");
12327
12328 default:
12329 llvm_unreachable("unhandled vector shift");
12330 }
12331
12332 switch (IntNo) {
12333 case Intrinsic::arm_neon_vshifts:
12334 case Intrinsic::arm_neon_vshiftu:
12335 // Opcode already set above.
12336 break;
12337 case Intrinsic::arm_neon_vrshifts:
12338 VShiftOpc = ARMISD::VRSHRs; break;
12339 case Intrinsic::arm_neon_vrshiftu:
12340 VShiftOpc = ARMISD::VRSHRu; break;
12341 case Intrinsic::arm_neon_vrshiftn:
12342 VShiftOpc = ARMISD::VRSHRN; break;
12343 case Intrinsic::arm_neon_vqshifts:
12344 VShiftOpc = ARMISD::VQSHLs; break;
12345 case Intrinsic::arm_neon_vqshiftu:
12346 VShiftOpc = ARMISD::VQSHLu; break;
12347 case Intrinsic::arm_neon_vqshiftsu:
12348 VShiftOpc = ARMISD::VQSHLsu; break;
12349 case Intrinsic::arm_neon_vqshiftns:
12350 VShiftOpc = ARMISD::VQSHRNs; break;
12351 case Intrinsic::arm_neon_vqshiftnu:
12352 VShiftOpc = ARMISD::VQSHRNu; break;
12353 case Intrinsic::arm_neon_vqshiftnsu:
12354 VShiftOpc = ARMISD::VQSHRNsu; break;
12355 case Intrinsic::arm_neon_vqrshiftns:
12356 VShiftOpc = ARMISD::VQRSHRNs; break;
12357 case Intrinsic::arm_neon_vqrshiftnu:
12358 VShiftOpc = ARMISD::VQRSHRNu; break;
12359 case Intrinsic::arm_neon_vqrshiftnsu:
12360 VShiftOpc = ARMISD::VQRSHRNsu; break;
12361 }
12362
12363 SDLoc dl(N);
12364 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12365 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12366 }
12367
12368 case Intrinsic::arm_neon_vshiftins: {
12369 EVT VT = N->getOperand(1).getValueType();
12370 int64_t Cnt;
12371 unsigned VShiftOpc = 0;
12372
12373 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12374 VShiftOpc = ARMISD::VSLI;
12375 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12376 VShiftOpc = ARMISD::VSRI;
12377 else {
12378 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12379 }
12380
12381 SDLoc dl(N);
12382 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12383 N->getOperand(1), N->getOperand(2),
12384 DAG.getConstant(Cnt, dl, MVT::i32));
12385 }
12386
12387 case Intrinsic::arm_neon_vqrshifts:
12388 case Intrinsic::arm_neon_vqrshiftu:
12389 // No immediate versions of these to check for.
12390 break;
12391 }
12392
12393 return SDValue();
12394 }
12395
12396 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12397 /// lowers them. As with the vector shift intrinsics, this is done during DAG
12398 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12399 /// vector element shift counts are generally not legal, and it is hard to see
12400 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12401 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
12402 const ARMSubtarget *ST) {
12403 EVT VT = N->getValueType(0);
12404 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12405 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12406 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12407 SDValue N1 = N->getOperand(1);
12408 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12409 SDValue N0 = N->getOperand(0);
12410 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12411 DAG.MaskedValueIsZero(N0.getOperand(0),
12412 APInt::getHighBitsSet(32, 16)))
12413 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12414 }
12415 }
12416
12417 // Nothing to be done for scalar shifts.
12418 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12419 if (!VT.isVector() || !TLI.isTypeLegal(VT))
12420 return SDValue();
12421
12422 assert(ST->hasNEON() && "unexpected vector shift");
12423 int64_t Cnt;
12424
12425 switch (N->getOpcode()) {
12426 default: llvm_unreachable("unexpected shift opcode");
12427
12428 case ISD::SHL:
12429 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12430 SDLoc dl(N);
12431 return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12432 DAG.getConstant(Cnt, dl, MVT::i32));
12433 }
12434 break;
12435
12436 case ISD::SRA:
12437 case ISD::SRL:
12438 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12439 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12440 ARMISD::VSHRs : ARMISD::VSHRu);
12441 SDLoc dl(N);
12442 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12443 DAG.getConstant(Cnt, dl, MVT::i32));
12444 }
12445 }
12446 return SDValue();
12447 }
12448
12449 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12450 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12451 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12452 const ARMSubtarget *ST) {
12453 SDValue N0 = N->getOperand(0);
12454
12455 // Check for sign- and zero-extensions of vector extract operations of 8-
12456 // and 16-bit vector elements. NEON supports these directly. They are
12457 // handled during DAG combining because type legalization will promote them
12458 // to 32-bit types and it is messy to recognize the operations after that.
12459 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12460 SDValue Vec = N0.getOperand(0);
12461 SDValue Lane = N0.getOperand(1);
12462 EVT VT = N->getValueType(0);
12463 EVT EltVT = N0.getValueType();
12464 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12465
12466 if (VT == MVT::i32 &&
12467 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12468 TLI.isTypeLegal(Vec.getValueType()) &&
12469 isa<ConstantSDNode>(Lane)) {
12470
12471 unsigned Opc = 0;
12472 switch (N->getOpcode()) {
12473 default: llvm_unreachable("unexpected opcode");
12474 case ISD::SIGN_EXTEND:
12475 Opc = ARMISD::VGETLANEs;
12476 break;
12477 case ISD::ZERO_EXTEND:
12478 case ISD::ANY_EXTEND:
12479 Opc = ARMISD::VGETLANEu;
12480 break;
12481 }
12482 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12483 }
12484 }
12485
12486 return SDValue();
12487 }
12488
isPowerOf2Constant(SDValue V)12489 static const APInt *isPowerOf2Constant(SDValue V) {
12490 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12491 if (!C)
12492 return nullptr;
12493 const APInt *CV = &C->getAPIntValue();
12494 return CV->isPowerOf2() ? CV : nullptr;
12495 }
12496
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const12497 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12498 // If we have a CMOV, OR and AND combination such as:
12499 // if (x & CN)
12500 // y |= CM;
12501 //
12502 // And:
12503 // * CN is a single bit;
12504 // * All bits covered by CM are known zero in y
12505 //
12506 // Then we can convert this into a sequence of BFI instructions. This will
12507 // always be a win if CM is a single bit, will always be no worse than the
12508 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12509 // three bits (due to the extra IT instruction).
12510
12511 SDValue Op0 = CMOV->getOperand(0);
12512 SDValue Op1 = CMOV->getOperand(1);
12513 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12514 auto CC = CCNode->getAPIntValue().getLimitedValue();
12515 SDValue CmpZ = CMOV->getOperand(4);
12516
12517 // The compare must be against zero.
12518 if (!isNullConstant(CmpZ->getOperand(1)))
12519 return SDValue();
12520
12521 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12522 SDValue And = CmpZ->getOperand(0);
12523 if (And->getOpcode() != ISD::AND)
12524 return SDValue();
12525 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12526 if (!AndC)
12527 return SDValue();
12528 SDValue X = And->getOperand(0);
12529
12530 if (CC == ARMCC::EQ) {
12531 // We're performing an "equal to zero" compare. Swap the operands so we
12532 // canonicalize on a "not equal to zero" compare.
12533 std::swap(Op0, Op1);
12534 } else {
12535 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12536 }
12537
12538 if (Op1->getOpcode() != ISD::OR)
12539 return SDValue();
12540
12541 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12542 if (!OrC)
12543 return SDValue();
12544 SDValue Y = Op1->getOperand(0);
12545
12546 if (Op0 != Y)
12547 return SDValue();
12548
12549 // Now, is it profitable to continue?
12550 APInt OrCI = OrC->getAPIntValue();
12551 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12552 if (OrCI.countPopulation() > Heuristic)
12553 return SDValue();
12554
12555 // Lastly, can we determine that the bits defined by OrCI
12556 // are zero in Y?
12557 KnownBits Known = DAG.computeKnownBits(Y);
12558 if ((OrCI & Known.Zero) != OrCI)
12559 return SDValue();
12560
12561 // OK, we can do the combine.
12562 SDValue V = Y;
12563 SDLoc dl(X);
12564 EVT VT = X.getValueType();
12565 unsigned BitInX = AndC->logBase2();
12566
12567 if (BitInX != 0) {
12568 // We must shift X first.
12569 X = DAG.getNode(ISD::SRL, dl, VT, X,
12570 DAG.getConstant(BitInX, dl, VT));
12571 }
12572
12573 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12574 BitInY < NumActiveBits; ++BitInY) {
12575 if (OrCI[BitInY] == 0)
12576 continue;
12577 APInt Mask(VT.getSizeInBits(), 0);
12578 Mask.setBit(BitInY);
12579 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12580 // Confusingly, the operand is an *inverted* mask.
12581 DAG.getConstant(~Mask, dl, VT));
12582 }
12583
12584 return V;
12585 }
12586
12587 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12588 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const12589 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12590 SDValue Cmp = N->getOperand(4);
12591 if (Cmp.getOpcode() != ARMISD::CMPZ)
12592 // Only looking at NE cases.
12593 return SDValue();
12594
12595 EVT VT = N->getValueType(0);
12596 SDLoc dl(N);
12597 SDValue LHS = Cmp.getOperand(0);
12598 SDValue RHS = Cmp.getOperand(1);
12599 SDValue Chain = N->getOperand(0);
12600 SDValue BB = N->getOperand(1);
12601 SDValue ARMcc = N->getOperand(2);
12602 ARMCC::CondCodes CC =
12603 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12604
12605 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12606 // -> (brcond Chain BB CC CPSR Cmp)
12607 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12608 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12609 LHS->getOperand(0)->hasOneUse()) {
12610 auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12611 auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12612 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12613 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12614 if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12615 (LHS01C && LHS01C->getZExtValue() == 1) &&
12616 (LHS1C && LHS1C->getZExtValue() == 1) &&
12617 (RHSC && RHSC->getZExtValue() == 0)) {
12618 return DAG.getNode(
12619 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12620 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12621 }
12622 }
12623
12624 return SDValue();
12625 }
12626
12627 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12628 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const12629 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12630 SDValue Cmp = N->getOperand(4);
12631 if (Cmp.getOpcode() != ARMISD::CMPZ)
12632 // Only looking at EQ and NE cases.
12633 return SDValue();
12634
12635 EVT VT = N->getValueType(0);
12636 SDLoc dl(N);
12637 SDValue LHS = Cmp.getOperand(0);
12638 SDValue RHS = Cmp.getOperand(1);
12639 SDValue FalseVal = N->getOperand(0);
12640 SDValue TrueVal = N->getOperand(1);
12641 SDValue ARMcc = N->getOperand(2);
12642 ARMCC::CondCodes CC =
12643 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12644
12645 // BFI is only available on V6T2+.
12646 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12647 SDValue R = PerformCMOVToBFICombine(N, DAG);
12648 if (R)
12649 return R;
12650 }
12651
12652 // Simplify
12653 // mov r1, r0
12654 // cmp r1, x
12655 // mov r0, y
12656 // moveq r0, x
12657 // to
12658 // cmp r0, x
12659 // movne r0, y
12660 //
12661 // mov r1, r0
12662 // cmp r1, x
12663 // mov r0, x
12664 // movne r0, y
12665 // to
12666 // cmp r0, x
12667 // movne r0, y
12668 /// FIXME: Turn this into a target neutral optimization?
12669 SDValue Res;
12670 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12671 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12672 N->getOperand(3), Cmp);
12673 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12674 SDValue ARMcc;
12675 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12676 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12677 N->getOperand(3), NewCmp);
12678 }
12679
12680 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12681 // -> (cmov F T CC CPSR Cmp)
12682 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12683 auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12684 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12685 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12686 if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12687 (LHS1C && LHS1C->getZExtValue() == 1) &&
12688 (RHSC && RHSC->getZExtValue() == 0)) {
12689 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12690 LHS->getOperand(2), LHS->getOperand(3),
12691 LHS->getOperand(4));
12692 }
12693 }
12694
12695 if (!VT.isInteger())
12696 return SDValue();
12697
12698 // Materialize a boolean comparison for integers so we can avoid branching.
12699 if (isNullConstant(FalseVal)) {
12700 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12701 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12702 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12703 // right 5 bits will make that 32 be 1, otherwise it will be 0.
12704 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12705 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12706 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12707 DAG.getConstant(5, dl, MVT::i32));
12708 } else {
12709 // CMOV 0, 1, ==, (CMPZ x, y) ->
12710 // (ADDCARRY (SUB x, y), t:0, t:1)
12711 // where t = (SUBCARRY 0, (SUB x, y), 0)
12712 //
12713 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12714 // x != y. In other words, a carry C == 1 when x == y, C == 0
12715 // otherwise.
12716 // The final ADDCARRY computes
12717 // x - y + (0 - (x - y)) + C == C
12718 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12719 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12720 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12721 // ISD::SUBCARRY returns a borrow but we want the carry here
12722 // actually.
12723 SDValue Carry =
12724 DAG.getNode(ISD::SUB, dl, MVT::i32,
12725 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12726 Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12727 }
12728 } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
12729 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12730 // This seems pointless but will allow us to combine it further below.
12731 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
12732 SDValue Sub =
12733 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
12734 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
12735 Sub.getValue(1), SDValue());
12736 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12737 N->getOperand(3), CPSRGlue.getValue(1));
12738 FalseVal = Sub;
12739 }
12740 } else if (isNullConstant(TrueVal)) {
12741 if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
12742 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12743 // This seems pointless but will allow us to combine it further below
12744 // Note that we change == for != as this is the dual for the case above.
12745 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
12746 SDValue Sub =
12747 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
12748 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
12749 Sub.getValue(1), SDValue());
12750 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12751 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12752 N->getOperand(3), CPSRGlue.getValue(1));
12753 FalseVal = Sub;
12754 }
12755 }
12756
12757 // On Thumb1, the DAG above may be further combined if z is a power of 2
12758 // (z == 2 ^ K).
12759 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
12760 // merge t3, t4
12761 // where t1 = (SUBCARRY (SUB x, y), z, 0)
12762 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12763 // t3 = if K != 0 then (SHL t2:0, K) else t2:0
12764 // t4 = (SUB 1, t2:1) [ we want a carry, not a borrow ]
12765 const APInt *TrueConst;
12766 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12767 (FalseVal.getOpcode() == ARMISD::SUBS) &&
12768 (FalseVal.getOperand(0) == LHS) && (FalseVal.getOperand(1) == RHS) &&
12769 (TrueConst = isPowerOf2Constant(TrueVal))) {
12770 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12771 unsigned ShiftAmount = TrueConst->logBase2();
12772 if (ShiftAmount)
12773 TrueVal = DAG.getConstant(1, dl, VT);
12774 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12775 Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12776 // Make it a carry, not a borrow.
12777 SDValue Carry = DAG.getNode(
12778 ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
12779 Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
12780
12781 if (ShiftAmount)
12782 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12783 DAG.getConstant(ShiftAmount, dl, MVT::i32));
12784 }
12785
12786 if (Res.getNode()) {
12787 KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
12788 // Capture demanded bits information that would be otherwise lost.
12789 if (Known.Zero == 0xfffffffe)
12790 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12791 DAG.getValueType(MVT::i1));
12792 else if (Known.Zero == 0xffffff00)
12793 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12794 DAG.getValueType(MVT::i8));
12795 else if (Known.Zero == 0xffff0000)
12796 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12797 DAG.getValueType(MVT::i16));
12798 }
12799
12800 return Res;
12801 }
12802
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const12803 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12804 DAGCombinerInfo &DCI) const {
12805 switch (N->getOpcode()) {
12806 default: break;
12807 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
12808 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12809 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
12810 case ISD::SUB: return PerformSUBCombine(N, DCI);
12811 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
12812 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
12813 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
12814 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
12815 case ARMISD::ADDC:
12816 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
12817 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
12818 case ARMISD::BFI: return PerformBFICombine(N, DCI);
12819 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12820 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12821 case ISD::STORE: return PerformSTORECombine(N, DCI);
12822 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12823 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12824 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12825 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12826 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12827 case ISD::FP_TO_SINT:
12828 case ISD::FP_TO_UINT:
12829 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12830 case ISD::FDIV:
12831 return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12832 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12833 case ISD::SHL:
12834 case ISD::SRA:
12835 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
12836 case ISD::SIGN_EXTEND:
12837 case ISD::ZERO_EXTEND:
12838 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12839 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12840 case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12841 case ISD::LOAD: return PerformLOADCombine(N, DCI);
12842 case ARMISD::VLD1DUP:
12843 case ARMISD::VLD2DUP:
12844 case ARMISD::VLD3DUP:
12845 case ARMISD::VLD4DUP:
12846 return PerformVLDCombine(N, DCI);
12847 case ARMISD::BUILD_VECTOR:
12848 return PerformARMBUILD_VECTORCombine(N, DCI);
12849 case ARMISD::SMULWB: {
12850 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12851 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12852 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12853 return SDValue();
12854 break;
12855 }
12856 case ARMISD::SMULWT: {
12857 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12858 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12859 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12860 return SDValue();
12861 break;
12862 }
12863 case ARMISD::SMLALBB: {
12864 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12865 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12866 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12867 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12868 return SDValue();
12869 break;
12870 }
12871 case ARMISD::SMLALBT: {
12872 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12873 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12874 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12875 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12876 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12877 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12878 return SDValue();
12879 break;
12880 }
12881 case ARMISD::SMLALTB: {
12882 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12883 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12884 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12885 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12886 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12887 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12888 return SDValue();
12889 break;
12890 }
12891 case ARMISD::SMLALTT: {
12892 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12893 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12894 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12895 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12896 return SDValue();
12897 break;
12898 }
12899 case ISD::INTRINSIC_VOID:
12900 case ISD::INTRINSIC_W_CHAIN:
12901 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12902 case Intrinsic::arm_neon_vld1:
12903 case Intrinsic::arm_neon_vld1x2:
12904 case Intrinsic::arm_neon_vld1x3:
12905 case Intrinsic::arm_neon_vld1x4:
12906 case Intrinsic::arm_neon_vld2:
12907 case Intrinsic::arm_neon_vld3:
12908 case Intrinsic::arm_neon_vld4:
12909 case Intrinsic::arm_neon_vld2lane:
12910 case Intrinsic::arm_neon_vld3lane:
12911 case Intrinsic::arm_neon_vld4lane:
12912 case Intrinsic::arm_neon_vld2dup:
12913 case Intrinsic::arm_neon_vld3dup:
12914 case Intrinsic::arm_neon_vld4dup:
12915 case Intrinsic::arm_neon_vst1:
12916 case Intrinsic::arm_neon_vst1x2:
12917 case Intrinsic::arm_neon_vst1x3:
12918 case Intrinsic::arm_neon_vst1x4:
12919 case Intrinsic::arm_neon_vst2:
12920 case Intrinsic::arm_neon_vst3:
12921 case Intrinsic::arm_neon_vst4:
12922 case Intrinsic::arm_neon_vst2lane:
12923 case Intrinsic::arm_neon_vst3lane:
12924 case Intrinsic::arm_neon_vst4lane:
12925 return PerformVLDCombine(N, DCI);
12926 default: break;
12927 }
12928 break;
12929 }
12930 return SDValue();
12931 }
12932
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const12933 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
12934 EVT VT) const {
12935 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
12936 }
12937
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const12938 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12939 unsigned,
12940 unsigned,
12941 bool *Fast) const {
12942 // Depends what it gets converted into if the type is weird.
12943 if (!VT.isSimple())
12944 return false;
12945
12946 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
12947 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
12948
12949 switch (VT.getSimpleVT().SimpleTy) {
12950 default:
12951 return false;
12952 case MVT::i8:
12953 case MVT::i16:
12954 case MVT::i32: {
12955 // Unaligned access can use (for example) LRDB, LRDH, LDR
12956 if (AllowsUnaligned) {
12957 if (Fast)
12958 *Fast = Subtarget->hasV7Ops();
12959 return true;
12960 }
12961 return false;
12962 }
12963 case MVT::f64:
12964 case MVT::v2f64: {
12965 // For any little-endian targets with neon, we can support unaligned ld/st
12966 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
12967 // A big-endian target may also explicitly support unaligned accesses
12968 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
12969 if (Fast)
12970 *Fast = true;
12971 return true;
12972 }
12973 return false;
12974 }
12975 }
12976 }
12977
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)12978 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
12979 unsigned AlignCheck) {
12980 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
12981 (DstAlign == 0 || DstAlign % AlignCheck == 0));
12982 }
12983
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const12984 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
12985 unsigned DstAlign, unsigned SrcAlign,
12986 bool IsMemset, bool ZeroMemset,
12987 bool MemcpyStrSrc,
12988 MachineFunction &MF) const {
12989 const Function &F = MF.getFunction();
12990
12991 // See if we can use NEON instructions for this...
12992 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
12993 !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
12994 bool Fast;
12995 if (Size >= 16 &&
12996 (memOpAlign(SrcAlign, DstAlign, 16) ||
12997 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
12998 return MVT::v2f64;
12999 } else if (Size >= 8 &&
13000 (memOpAlign(SrcAlign, DstAlign, 8) ||
13001 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
13002 Fast))) {
13003 return MVT::f64;
13004 }
13005 }
13006
13007 // Let the target-independent logic figure it out.
13008 return MVT::Other;
13009 }
13010
13011 // 64-bit integers are split into their high and low parts and held in two
13012 // different registers, so the trunc is free since the low register can just
13013 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const13014 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
13015 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
13016 return false;
13017 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
13018 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
13019 return (SrcBits == 64 && DestBits == 32);
13020 }
13021
isTruncateFree(EVT SrcVT,EVT DstVT) const13022 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
13023 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
13024 !DstVT.isInteger())
13025 return false;
13026 unsigned SrcBits = SrcVT.getSizeInBits();
13027 unsigned DestBits = DstVT.getSizeInBits();
13028 return (SrcBits == 64 && DestBits == 32);
13029 }
13030
isZExtFree(SDValue Val,EVT VT2) const13031 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13032 if (Val.getOpcode() != ISD::LOAD)
13033 return false;
13034
13035 EVT VT1 = Val.getValueType();
13036 if (!VT1.isSimple() || !VT1.isInteger() ||
13037 !VT2.isSimple() || !VT2.isInteger())
13038 return false;
13039
13040 switch (VT1.getSimpleVT().SimpleTy) {
13041 default: break;
13042 case MVT::i1:
13043 case MVT::i8:
13044 case MVT::i16:
13045 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
13046 return true;
13047 }
13048
13049 return false;
13050 }
13051
isFNegFree(EVT VT) const13052 bool ARMTargetLowering::isFNegFree(EVT VT) const {
13053 if (!VT.isSimple())
13054 return false;
13055
13056 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13057 // negate values directly (fneg is free). So, we don't want to let the DAG
13058 // combiner rewrite fneg into xors and some other instructions. For f16 and
13059 // FullFP16 argument passing, some bitcast nodes may be introduced,
13060 // triggering this DAG combine rewrite, so we are avoiding that with this.
13061 switch (VT.getSimpleVT().SimpleTy) {
13062 default: break;
13063 case MVT::f16:
13064 return Subtarget->hasFullFP16();
13065 }
13066
13067 return false;
13068 }
13069
isVectorLoadExtDesirable(SDValue ExtVal) const13070 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
13071 EVT VT = ExtVal.getValueType();
13072
13073 if (!isTypeLegal(VT))
13074 return false;
13075
13076 // Don't create a loadext if we can fold the extension into a wide/long
13077 // instruction.
13078 // If there's more than one user instruction, the loadext is desirable no
13079 // matter what. There can be two uses by the same instruction.
13080 if (ExtVal->use_empty() ||
13081 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
13082 return true;
13083
13084 SDNode *U = *ExtVal->use_begin();
13085 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
13086 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
13087 return false;
13088
13089 return true;
13090 }
13091
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const13092 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13093 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13094 return false;
13095
13096 if (!isTypeLegal(EVT::getEVT(Ty1)))
13097 return false;
13098
13099 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13100
13101 // Assuming the caller doesn't have a zeroext or signext return parameter,
13102 // truncation all the way down to i1 is valid.
13103 return true;
13104 }
13105
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const13106 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
13107 const AddrMode &AM, Type *Ty,
13108 unsigned AS) const {
13109 if (isLegalAddressingMode(DL, AM, Ty, AS)) {
13110 if (Subtarget->hasFPAO())
13111 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
13112 return 0;
13113 }
13114 return -1;
13115 }
13116
isLegalT1AddressImmediate(int64_t V,EVT VT)13117 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13118 if (V < 0)
13119 return false;
13120
13121 unsigned Scale = 1;
13122 switch (VT.getSimpleVT().SimpleTy) {
13123 default: return false;
13124 case MVT::i1:
13125 case MVT::i8:
13126 // Scale == 1;
13127 break;
13128 case MVT::i16:
13129 // Scale == 2;
13130 Scale = 2;
13131 break;
13132 case MVT::i32:
13133 // Scale == 4;
13134 Scale = 4;
13135 break;
13136 }
13137
13138 if ((V & (Scale - 1)) != 0)
13139 return false;
13140 V /= Scale;
13141 return V == (V & ((1LL << 5) - 1));
13142 }
13143
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13144 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13145 const ARMSubtarget *Subtarget) {
13146 bool isNeg = false;
13147 if (V < 0) {
13148 isNeg = true;
13149 V = - V;
13150 }
13151
13152 switch (VT.getSimpleVT().SimpleTy) {
13153 default: return false;
13154 case MVT::i1:
13155 case MVT::i8:
13156 case MVT::i16:
13157 case MVT::i32:
13158 // + imm12 or - imm8
13159 if (isNeg)
13160 return V == (V & ((1LL << 8) - 1));
13161 return V == (V & ((1LL << 12) - 1));
13162 case MVT::f32:
13163 case MVT::f64:
13164 // Same as ARM mode. FIXME: NEON?
13165 if (!Subtarget->hasVFP2())
13166 return false;
13167 if ((V & 3) != 0)
13168 return false;
13169 V >>= 2;
13170 return V == (V & ((1LL << 8) - 1));
13171 }
13172 }
13173
13174 /// isLegalAddressImmediate - Return true if the integer value can be used
13175 /// as the offset of the target addressing mode for load / store of the
13176 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13177 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13178 const ARMSubtarget *Subtarget) {
13179 if (V == 0)
13180 return true;
13181
13182 if (!VT.isSimple())
13183 return false;
13184
13185 if (Subtarget->isThumb1Only())
13186 return isLegalT1AddressImmediate(V, VT);
13187 else if (Subtarget->isThumb2())
13188 return isLegalT2AddressImmediate(V, VT, Subtarget);
13189
13190 // ARM mode.
13191 if (V < 0)
13192 V = - V;
13193 switch (VT.getSimpleVT().SimpleTy) {
13194 default: return false;
13195 case MVT::i1:
13196 case MVT::i8:
13197 case MVT::i32:
13198 // +- imm12
13199 return V == (V & ((1LL << 12) - 1));
13200 case MVT::i16:
13201 // +- imm8
13202 return V == (V & ((1LL << 8) - 1));
13203 case MVT::f32:
13204 case MVT::f64:
13205 if (!Subtarget->hasVFP2()) // FIXME: NEON?
13206 return false;
13207 if ((V & 3) != 0)
13208 return false;
13209 V >>= 2;
13210 return V == (V & ((1LL << 8) - 1));
13211 }
13212 }
13213
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const13214 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13215 EVT VT) const {
13216 int Scale = AM.Scale;
13217 if (Scale < 0)
13218 return false;
13219
13220 switch (VT.getSimpleVT().SimpleTy) {
13221 default: return false;
13222 case MVT::i1:
13223 case MVT::i8:
13224 case MVT::i16:
13225 case MVT::i32:
13226 if (Scale == 1)
13227 return true;
13228 // r + r << imm
13229 Scale = Scale & ~1;
13230 return Scale == 2 || Scale == 4 || Scale == 8;
13231 case MVT::i64:
13232 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13233 // version in Thumb mode.
13234 // r + r
13235 if (Scale == 1)
13236 return true;
13237 // r * 2 (this can be lowered to r + r).
13238 if (!AM.HasBaseReg && Scale == 2)
13239 return true;
13240 return false;
13241 case MVT::isVoid:
13242 // Note, we allow "void" uses (basically, uses that aren't loads or
13243 // stores), because arm allows folding a scale into many arithmetic
13244 // operations. This should be made more precise and revisited later.
13245
13246 // Allow r << imm, but the imm has to be a multiple of two.
13247 if (Scale & 1) return false;
13248 return isPowerOf2_32(Scale);
13249 }
13250 }
13251
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const13252 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13253 EVT VT) const {
13254 const int Scale = AM.Scale;
13255
13256 // Negative scales are not supported in Thumb1.
13257 if (Scale < 0)
13258 return false;
13259
13260 // Thumb1 addressing modes do not support register scaling excepting the
13261 // following cases:
13262 // 1. Scale == 1 means no scaling.
13263 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13264 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13265 }
13266
13267 /// isLegalAddressingMode - Return true if the addressing mode represented
13268 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const13269 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13270 const AddrMode &AM, Type *Ty,
13271 unsigned AS, Instruction *I) const {
13272 EVT VT = getValueType(DL, Ty, true);
13273 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13274 return false;
13275
13276 // Can never fold addr of global into load/store.
13277 if (AM.BaseGV)
13278 return false;
13279
13280 switch (AM.Scale) {
13281 case 0: // no scale reg, must be "r+i" or "r", or "i".
13282 break;
13283 default:
13284 // ARM doesn't support any R+R*scale+imm addr modes.
13285 if (AM.BaseOffs)
13286 return false;
13287
13288 if (!VT.isSimple())
13289 return false;
13290
13291 if (Subtarget->isThumb1Only())
13292 return isLegalT1ScaledAddressingMode(AM, VT);
13293
13294 if (Subtarget->isThumb2())
13295 return isLegalT2ScaledAddressingMode(AM, VT);
13296
13297 int Scale = AM.Scale;
13298 switch (VT.getSimpleVT().SimpleTy) {
13299 default: return false;
13300 case MVT::i1:
13301 case MVT::i8:
13302 case MVT::i32:
13303 if (Scale < 0) Scale = -Scale;
13304 if (Scale == 1)
13305 return true;
13306 // r + r << imm
13307 return isPowerOf2_32(Scale & ~1);
13308 case MVT::i16:
13309 case MVT::i64:
13310 // r +/- r
13311 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13312 return true;
13313 // r * 2 (this can be lowered to r + r).
13314 if (!AM.HasBaseReg && Scale == 2)
13315 return true;
13316 return false;
13317
13318 case MVT::isVoid:
13319 // Note, we allow "void" uses (basically, uses that aren't loads or
13320 // stores), because arm allows folding a scale into many arithmetic
13321 // operations. This should be made more precise and revisited later.
13322
13323 // Allow r << imm, but the imm has to be a multiple of two.
13324 if (Scale & 1) return false;
13325 return isPowerOf2_32(Scale);
13326 }
13327 }
13328 return true;
13329 }
13330
13331 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13332 /// icmp immediate, that is the target has icmp instructions which can compare
13333 /// a register against the immediate without having to materialize the
13334 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const13335 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13336 // Thumb2 and ARM modes can use cmn for negative immediates.
13337 if (!Subtarget->isThumb())
13338 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
13339 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
13340 if (Subtarget->isThumb2())
13341 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
13342 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
13343 // Thumb1 doesn't have cmn, and only 8-bit immediates.
13344 return Imm >= 0 && Imm <= 255;
13345 }
13346
13347 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13348 /// *or sub* immediate, that is the target has add or sub instructions which can
13349 /// add a register with the immediate without having to materialize the
13350 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const13351 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13352 // Same encoding for add/sub, just flip the sign.
13353 int64_t AbsImm = std::abs(Imm);
13354 if (!Subtarget->isThumb())
13355 return ARM_AM::getSOImmVal(AbsImm) != -1;
13356 if (Subtarget->isThumb2())
13357 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13358 // Thumb1 only has 8-bit unsigned immediate.
13359 return AbsImm >= 0 && AbsImm <= 255;
13360 }
13361
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13362 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13363 bool isSEXTLoad, SDValue &Base,
13364 SDValue &Offset, bool &isInc,
13365 SelectionDAG &DAG) {
13366 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13367 return false;
13368
13369 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13370 // AddressingMode 3
13371 Base = Ptr->getOperand(0);
13372 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13373 int RHSC = (int)RHS->getZExtValue();
13374 if (RHSC < 0 && RHSC > -256) {
13375 assert(Ptr->getOpcode() == ISD::ADD);
13376 isInc = false;
13377 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13378 return true;
13379 }
13380 }
13381 isInc = (Ptr->getOpcode() == ISD::ADD);
13382 Offset = Ptr->getOperand(1);
13383 return true;
13384 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13385 // AddressingMode 2
13386 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13387 int RHSC = (int)RHS->getZExtValue();
13388 if (RHSC < 0 && RHSC > -0x1000) {
13389 assert(Ptr->getOpcode() == ISD::ADD);
13390 isInc = false;
13391 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13392 Base = Ptr->getOperand(0);
13393 return true;
13394 }
13395 }
13396
13397 if (Ptr->getOpcode() == ISD::ADD) {
13398 isInc = true;
13399 ARM_AM::ShiftOpc ShOpcVal=
13400 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13401 if (ShOpcVal != ARM_AM::no_shift) {
13402 Base = Ptr->getOperand(1);
13403 Offset = Ptr->getOperand(0);
13404 } else {
13405 Base = Ptr->getOperand(0);
13406 Offset = Ptr->getOperand(1);
13407 }
13408 return true;
13409 }
13410
13411 isInc = (Ptr->getOpcode() == ISD::ADD);
13412 Base = Ptr->getOperand(0);
13413 Offset = Ptr->getOperand(1);
13414 return true;
13415 }
13416
13417 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13418 return false;
13419 }
13420
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13421 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13422 bool isSEXTLoad, SDValue &Base,
13423 SDValue &Offset, bool &isInc,
13424 SelectionDAG &DAG) {
13425 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13426 return false;
13427
13428 Base = Ptr->getOperand(0);
13429 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13430 int RHSC = (int)RHS->getZExtValue();
13431 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13432 assert(Ptr->getOpcode() == ISD::ADD);
13433 isInc = false;
13434 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13435 return true;
13436 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13437 isInc = Ptr->getOpcode() == ISD::ADD;
13438 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13439 return true;
13440 }
13441 }
13442
13443 return false;
13444 }
13445
13446 /// getPreIndexedAddressParts - returns true by value, base pointer and
13447 /// offset pointer and addressing mode by reference if the node's address
13448 /// can be legally represented as pre-indexed load / store address.
13449 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13450 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13451 SDValue &Offset,
13452 ISD::MemIndexedMode &AM,
13453 SelectionDAG &DAG) const {
13454 if (Subtarget->isThumb1Only())
13455 return false;
13456
13457 EVT VT;
13458 SDValue Ptr;
13459 bool isSEXTLoad = false;
13460 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13461 Ptr = LD->getBasePtr();
13462 VT = LD->getMemoryVT();
13463 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13464 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13465 Ptr = ST->getBasePtr();
13466 VT = ST->getMemoryVT();
13467 } else
13468 return false;
13469
13470 bool isInc;
13471 bool isLegal = false;
13472 if (Subtarget->isThumb2())
13473 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13474 Offset, isInc, DAG);
13475 else
13476 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13477 Offset, isInc, DAG);
13478 if (!isLegal)
13479 return false;
13480
13481 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13482 return true;
13483 }
13484
13485 /// getPostIndexedAddressParts - returns true by value, base pointer and
13486 /// offset pointer and addressing mode by reference if this node can be
13487 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13488 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13489 SDValue &Base,
13490 SDValue &Offset,
13491 ISD::MemIndexedMode &AM,
13492 SelectionDAG &DAG) const {
13493 EVT VT;
13494 SDValue Ptr;
13495 bool isSEXTLoad = false, isNonExt;
13496 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13497 VT = LD->getMemoryVT();
13498 Ptr = LD->getBasePtr();
13499 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13500 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13501 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13502 VT = ST->getMemoryVT();
13503 Ptr = ST->getBasePtr();
13504 isNonExt = !ST->isTruncatingStore();
13505 } else
13506 return false;
13507
13508 if (Subtarget->isThumb1Only()) {
13509 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13510 // must be non-extending/truncating, i32, with an offset of 4.
13511 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13512 if (Op->getOpcode() != ISD::ADD || !isNonExt)
13513 return false;
13514 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13515 if (!RHS || RHS->getZExtValue() != 4)
13516 return false;
13517
13518 Offset = Op->getOperand(1);
13519 Base = Op->getOperand(0);
13520 AM = ISD::POST_INC;
13521 return true;
13522 }
13523
13524 bool isInc;
13525 bool isLegal = false;
13526 if (Subtarget->isThumb2())
13527 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13528 isInc, DAG);
13529 else
13530 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13531 isInc, DAG);
13532 if (!isLegal)
13533 return false;
13534
13535 if (Ptr != Base) {
13536 // Swap base ptr and offset to catch more post-index load / store when
13537 // it's legal. In Thumb2 mode, offset must be an immediate.
13538 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13539 !Subtarget->isThumb2())
13540 std::swap(Base, Offset);
13541
13542 // Post-indexed load / store update the base pointer.
13543 if (Ptr != Base)
13544 return false;
13545 }
13546
13547 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13548 return true;
13549 }
13550
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const13551 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13552 KnownBits &Known,
13553 const APInt &DemandedElts,
13554 const SelectionDAG &DAG,
13555 unsigned Depth) const {
13556 unsigned BitWidth = Known.getBitWidth();
13557 Known.resetAll();
13558 switch (Op.getOpcode()) {
13559 default: break;
13560 case ARMISD::ADDC:
13561 case ARMISD::ADDE:
13562 case ARMISD::SUBC:
13563 case ARMISD::SUBE:
13564 // Special cases when we convert a carry to a boolean.
13565 if (Op.getResNo() == 0) {
13566 SDValue LHS = Op.getOperand(0);
13567 SDValue RHS = Op.getOperand(1);
13568 // (ADDE 0, 0, C) will give us a single bit.
13569 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13570 isNullConstant(RHS)) {
13571 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13572 return;
13573 }
13574 }
13575 break;
13576 case ARMISD::CMOV: {
13577 // Bits are known zero/one if known on the LHS and RHS.
13578 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
13579 if (Known.isUnknown())
13580 return;
13581
13582 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
13583 Known.Zero &= KnownRHS.Zero;
13584 Known.One &= KnownRHS.One;
13585 return;
13586 }
13587 case ISD::INTRINSIC_W_CHAIN: {
13588 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13589 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13590 switch (IntID) {
13591 default: return;
13592 case Intrinsic::arm_ldaex:
13593 case Intrinsic::arm_ldrex: {
13594 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13595 unsigned MemBits = VT.getScalarSizeInBits();
13596 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13597 return;
13598 }
13599 }
13600 }
13601 case ARMISD::BFI: {
13602 // Conservatively, we can recurse down the first operand
13603 // and just mask out all affected bits.
13604 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
13605
13606 // The operand to BFI is already a mask suitable for removing the bits it
13607 // sets.
13608 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13609 const APInt &Mask = CI->getAPIntValue();
13610 Known.Zero &= Mask;
13611 Known.One &= Mask;
13612 return;
13613 }
13614 case ARMISD::VGETLANEs:
13615 case ARMISD::VGETLANEu: {
13616 const SDValue &SrcSV = Op.getOperand(0);
13617 EVT VecVT = SrcSV.getValueType();
13618 assert(VecVT.isVector() && "VGETLANE expected a vector type");
13619 const unsigned NumSrcElts = VecVT.getVectorNumElements();
13620 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
13621 assert(Pos->getAPIntValue().ult(NumSrcElts) &&
13622 "VGETLANE index out of bounds");
13623 unsigned Idx = Pos->getZExtValue();
13624 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
13625 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
13626
13627 EVT VT = Op.getValueType();
13628 const unsigned DstSz = VT.getScalarSizeInBits();
13629 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
13630 assert(SrcSz == Known.getBitWidth());
13631 assert(DstSz > SrcSz);
13632 if (Op.getOpcode() == ARMISD::VGETLANEs)
13633 Known = Known.sext(DstSz);
13634 else {
13635 Known = Known.zext(DstSz);
13636 Known.Zero.setBitsFrom(SrcSz);
13637 }
13638 assert(DstSz == Known.getBitWidth());
13639 break;
13640 }
13641 }
13642 }
13643
13644 bool
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedAPInt,TargetLoweringOpt & TLO) const13645 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
13646 const APInt &DemandedAPInt,
13647 TargetLoweringOpt &TLO) const {
13648 // Delay optimization, so we don't have to deal with illegal types, or block
13649 // optimizations.
13650 if (!TLO.LegalOps)
13651 return false;
13652
13653 // Only optimize AND for now.
13654 if (Op.getOpcode() != ISD::AND)
13655 return false;
13656
13657 EVT VT = Op.getValueType();
13658
13659 // Ignore vectors.
13660 if (VT.isVector())
13661 return false;
13662
13663 assert(VT == MVT::i32 && "Unexpected integer type");
13664
13665 // Make sure the RHS really is a constant.
13666 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13667 if (!C)
13668 return false;
13669
13670 unsigned Mask = C->getZExtValue();
13671
13672 unsigned Demanded = DemandedAPInt.getZExtValue();
13673 unsigned ShrunkMask = Mask & Demanded;
13674 unsigned ExpandedMask = Mask | ~Demanded;
13675
13676 // If the mask is all zeros, let the target-independent code replace the
13677 // result with zero.
13678 if (ShrunkMask == 0)
13679 return false;
13680
13681 // If the mask is all ones, erase the AND. (Currently, the target-independent
13682 // code won't do this, so we have to do it explicitly to avoid an infinite
13683 // loop in obscure cases.)
13684 if (ExpandedMask == ~0U)
13685 return TLO.CombineTo(Op, Op.getOperand(0));
13686
13687 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
13688 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
13689 };
13690 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
13691 if (NewMask == Mask)
13692 return true;
13693 SDLoc DL(Op);
13694 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
13695 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
13696 return TLO.CombineTo(Op, NewOp);
13697 };
13698
13699 // Prefer uxtb mask.
13700 if (IsLegalMask(0xFF))
13701 return UseMask(0xFF);
13702
13703 // Prefer uxth mask.
13704 if (IsLegalMask(0xFFFF))
13705 return UseMask(0xFFFF);
13706
13707 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
13708 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
13709 if (ShrunkMask < 256)
13710 return UseMask(ShrunkMask);
13711
13712 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
13713 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
13714 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
13715 return UseMask(ExpandedMask);
13716
13717 // Potential improvements:
13718 //
13719 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
13720 // We could try to prefer Thumb1 immediates which can be lowered to a
13721 // two-instruction sequence.
13722 // We could try to recognize more legal ARM/Thumb2 immediates here.
13723
13724 return false;
13725 }
13726
13727
13728 //===----------------------------------------------------------------------===//
13729 // ARM Inline Assembly Support
13730 //===----------------------------------------------------------------------===//
13731
ExpandInlineAsm(CallInst * CI) const13732 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13733 // Looking for "rev" which is V6+.
13734 if (!Subtarget->hasV6Ops())
13735 return false;
13736
13737 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13738 std::string AsmStr = IA->getAsmString();
13739 SmallVector<StringRef, 4> AsmPieces;
13740 SplitString(AsmStr, AsmPieces, ";\n");
13741
13742 switch (AsmPieces.size()) {
13743 default: return false;
13744 case 1:
13745 AsmStr = AsmPieces[0];
13746 AsmPieces.clear();
13747 SplitString(AsmStr, AsmPieces, " \t,");
13748
13749 // rev $0, $1
13750 if (AsmPieces.size() == 3 &&
13751 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13752 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13753 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13754 if (Ty && Ty->getBitWidth() == 32)
13755 return IntrinsicLowering::LowerToByteSwap(CI);
13756 }
13757 break;
13758 }
13759
13760 return false;
13761 }
13762
LowerXConstraint(EVT ConstraintVT) const13763 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13764 // At this point, we have to lower this constraint to something else, so we
13765 // lower it to an "r" or "w". However, by doing this we will force the result
13766 // to be in register, while the X constraint is much more permissive.
13767 //
13768 // Although we are correct (we are free to emit anything, without
13769 // constraints), we might break use cases that would expect us to be more
13770 // efficient and emit something else.
13771 if (!Subtarget->hasVFP2())
13772 return "r";
13773 if (ConstraintVT.isFloatingPoint())
13774 return "w";
13775 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13776 (ConstraintVT.getSizeInBits() == 64 ||
13777 ConstraintVT.getSizeInBits() == 128))
13778 return "w";
13779
13780 return "r";
13781 }
13782
13783 /// getConstraintType - Given a constraint letter, return the type of
13784 /// constraint it is for this target.
13785 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const13786 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13787 if (Constraint.size() == 1) {
13788 switch (Constraint[0]) {
13789 default: break;
13790 case 'l': return C_RegisterClass;
13791 case 'w': return C_RegisterClass;
13792 case 'h': return C_RegisterClass;
13793 case 'x': return C_RegisterClass;
13794 case 't': return C_RegisterClass;
13795 case 'j': return C_Other; // Constant for movw.
13796 // An address with a single base register. Due to the way we
13797 // currently handle addresses it is the same as an 'r' memory constraint.
13798 case 'Q': return C_Memory;
13799 }
13800 } else if (Constraint.size() == 2) {
13801 switch (Constraint[0]) {
13802 default: break;
13803 // All 'U+' constraints are addresses.
13804 case 'U': return C_Memory;
13805 }
13806 }
13807 return TargetLowering::getConstraintType(Constraint);
13808 }
13809
13810 /// Examine constraint type and operand type and determine a weight value.
13811 /// This object must already have been set up with the operand type
13812 /// and the current alternative constraint selected.
13813 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const13814 ARMTargetLowering::getSingleConstraintMatchWeight(
13815 AsmOperandInfo &info, const char *constraint) const {
13816 ConstraintWeight weight = CW_Invalid;
13817 Value *CallOperandVal = info.CallOperandVal;
13818 // If we don't have a value, we can't do a match,
13819 // but allow it at the lowest weight.
13820 if (!CallOperandVal)
13821 return CW_Default;
13822 Type *type = CallOperandVal->getType();
13823 // Look at the constraint type.
13824 switch (*constraint) {
13825 default:
13826 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13827 break;
13828 case 'l':
13829 if (type->isIntegerTy()) {
13830 if (Subtarget->isThumb())
13831 weight = CW_SpecificReg;
13832 else
13833 weight = CW_Register;
13834 }
13835 break;
13836 case 'w':
13837 if (type->isFloatingPointTy())
13838 weight = CW_Register;
13839 break;
13840 }
13841 return weight;
13842 }
13843
13844 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
13845
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const13846 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
13847 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
13848 if (Constraint.size() == 1) {
13849 // GCC ARM Constraint Letters
13850 switch (Constraint[0]) {
13851 case 'l': // Low regs or general regs.
13852 if (Subtarget->isThumb())
13853 return RCPair(0U, &ARM::tGPRRegClass);
13854 return RCPair(0U, &ARM::GPRRegClass);
13855 case 'h': // High regs or no regs.
13856 if (Subtarget->isThumb())
13857 return RCPair(0U, &ARM::hGPRRegClass);
13858 break;
13859 case 'r':
13860 if (Subtarget->isThumb1Only())
13861 return RCPair(0U, &ARM::tGPRRegClass);
13862 return RCPair(0U, &ARM::GPRRegClass);
13863 case 'w':
13864 if (VT == MVT::Other)
13865 break;
13866 if (VT == MVT::f32)
13867 return RCPair(0U, &ARM::SPRRegClass);
13868 if (VT.getSizeInBits() == 64)
13869 return RCPair(0U, &ARM::DPRRegClass);
13870 if (VT.getSizeInBits() == 128)
13871 return RCPair(0U, &ARM::QPRRegClass);
13872 break;
13873 case 'x':
13874 if (VT == MVT::Other)
13875 break;
13876 if (VT == MVT::f32)
13877 return RCPair(0U, &ARM::SPR_8RegClass);
13878 if (VT.getSizeInBits() == 64)
13879 return RCPair(0U, &ARM::DPR_8RegClass);
13880 if (VT.getSizeInBits() == 128)
13881 return RCPair(0U, &ARM::QPR_8RegClass);
13882 break;
13883 case 't':
13884 if (VT == MVT::Other)
13885 break;
13886 if (VT == MVT::f32 || VT == MVT::i32)
13887 return RCPair(0U, &ARM::SPRRegClass);
13888 if (VT.getSizeInBits() == 64)
13889 return RCPair(0U, &ARM::DPR_VFP2RegClass);
13890 if (VT.getSizeInBits() == 128)
13891 return RCPair(0U, &ARM::QPR_VFP2RegClass);
13892 break;
13893 }
13894 }
13895 if (StringRef("{cc}").equals_lower(Constraint))
13896 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
13897
13898 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13899 }
13900
13901 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13902 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const13903 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13904 std::string &Constraint,
13905 std::vector<SDValue>&Ops,
13906 SelectionDAG &DAG) const {
13907 SDValue Result;
13908
13909 // Currently only support length 1 constraints.
13910 if (Constraint.length() != 1) return;
13911
13912 char ConstraintLetter = Constraint[0];
13913 switch (ConstraintLetter) {
13914 default: break;
13915 case 'j':
13916 case 'I': case 'J': case 'K': case 'L':
13917 case 'M': case 'N': case 'O':
13918 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
13919 if (!C)
13920 return;
13921
13922 int64_t CVal64 = C->getSExtValue();
13923 int CVal = (int) CVal64;
13924 // None of these constraints allow values larger than 32 bits. Check
13925 // that the value fits in an int.
13926 if (CVal != CVal64)
13927 return;
13928
13929 switch (ConstraintLetter) {
13930 case 'j':
13931 // Constant suitable for movw, must be between 0 and
13932 // 65535.
13933 if (Subtarget->hasV6T2Ops())
13934 if (CVal >= 0 && CVal <= 65535)
13935 break;
13936 return;
13937 case 'I':
13938 if (Subtarget->isThumb1Only()) {
13939 // This must be a constant between 0 and 255, for ADD
13940 // immediates.
13941 if (CVal >= 0 && CVal <= 255)
13942 break;
13943 } else if (Subtarget->isThumb2()) {
13944 // A constant that can be used as an immediate value in a
13945 // data-processing instruction.
13946 if (ARM_AM::getT2SOImmVal(CVal) != -1)
13947 break;
13948 } else {
13949 // A constant that can be used as an immediate value in a
13950 // data-processing instruction.
13951 if (ARM_AM::getSOImmVal(CVal) != -1)
13952 break;
13953 }
13954 return;
13955
13956 case 'J':
13957 if (Subtarget->isThumb1Only()) {
13958 // This must be a constant between -255 and -1, for negated ADD
13959 // immediates. This can be used in GCC with an "n" modifier that
13960 // prints the negated value, for use with SUB instructions. It is
13961 // not useful otherwise but is implemented for compatibility.
13962 if (CVal >= -255 && CVal <= -1)
13963 break;
13964 } else {
13965 // This must be a constant between -4095 and 4095. It is not clear
13966 // what this constraint is intended for. Implemented for
13967 // compatibility with GCC.
13968 if (CVal >= -4095 && CVal <= 4095)
13969 break;
13970 }
13971 return;
13972
13973 case 'K':
13974 if (Subtarget->isThumb1Only()) {
13975 // A 32-bit value where only one byte has a nonzero value. Exclude
13976 // zero to match GCC. This constraint is used by GCC internally for
13977 // constants that can be loaded with a move/shift combination.
13978 // It is not useful otherwise but is implemented for compatibility.
13979 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
13980 break;
13981 } else if (Subtarget->isThumb2()) {
13982 // A constant whose bitwise inverse can be used as an immediate
13983 // value in a data-processing instruction. This can be used in GCC
13984 // with a "B" modifier that prints the inverted value, for use with
13985 // BIC and MVN instructions. It is not useful otherwise but is
13986 // implemented for compatibility.
13987 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
13988 break;
13989 } else {
13990 // A constant whose bitwise inverse can be used as an immediate
13991 // value in a data-processing instruction. This can be used in GCC
13992 // with a "B" modifier that prints the inverted value, for use with
13993 // BIC and MVN instructions. It is not useful otherwise but is
13994 // implemented for compatibility.
13995 if (ARM_AM::getSOImmVal(~CVal) != -1)
13996 break;
13997 }
13998 return;
13999
14000 case 'L':
14001 if (Subtarget->isThumb1Only()) {
14002 // This must be a constant between -7 and 7,
14003 // for 3-operand ADD/SUB immediate instructions.
14004 if (CVal >= -7 && CVal < 7)
14005 break;
14006 } else if (Subtarget->isThumb2()) {
14007 // A constant whose negation can be used as an immediate value in a
14008 // data-processing instruction. This can be used in GCC with an "n"
14009 // modifier that prints the negated value, for use with SUB
14010 // instructions. It is not useful otherwise but is implemented for
14011 // compatibility.
14012 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
14013 break;
14014 } else {
14015 // A constant whose negation can be used as an immediate value in a
14016 // data-processing instruction. This can be used in GCC with an "n"
14017 // modifier that prints the negated value, for use with SUB
14018 // instructions. It is not useful otherwise but is implemented for
14019 // compatibility.
14020 if (ARM_AM::getSOImmVal(-CVal) != -1)
14021 break;
14022 }
14023 return;
14024
14025 case 'M':
14026 if (Subtarget->isThumb1Only()) {
14027 // This must be a multiple of 4 between 0 and 1020, for
14028 // ADD sp + immediate.
14029 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
14030 break;
14031 } else {
14032 // A power of two or a constant between 0 and 32. This is used in
14033 // GCC for the shift amount on shifted register operands, but it is
14034 // useful in general for any shift amounts.
14035 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
14036 break;
14037 }
14038 return;
14039
14040 case 'N':
14041 if (Subtarget->isThumb()) { // FIXME thumb2
14042 // This must be a constant between 0 and 31, for shift amounts.
14043 if (CVal >= 0 && CVal <= 31)
14044 break;
14045 }
14046 return;
14047
14048 case 'O':
14049 if (Subtarget->isThumb()) { // FIXME thumb2
14050 // This must be a multiple of 4 between -508 and 508, for
14051 // ADD/SUB sp = sp + immediate.
14052 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
14053 break;
14054 }
14055 return;
14056 }
14057 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
14058 break;
14059 }
14060
14061 if (Result.getNode()) {
14062 Ops.push_back(Result);
14063 return;
14064 }
14065 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14066 }
14067
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)14068 static RTLIB::Libcall getDivRemLibcall(
14069 const SDNode *N, MVT::SimpleValueType SVT) {
14070 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14071 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
14072 "Unhandled Opcode in getDivRemLibcall");
14073 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14074 N->getOpcode() == ISD::SREM;
14075 RTLIB::Libcall LC;
14076 switch (SVT) {
14077 default: llvm_unreachable("Unexpected request for libcall!");
14078 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
14079 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
14080 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
14081 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
14082 }
14083 return LC;
14084 }
14085
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)14086 static TargetLowering::ArgListTy getDivRemArgList(
14087 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
14088 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14089 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
14090 "Unhandled Opcode in getDivRemArgList");
14091 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14092 N->getOpcode() == ISD::SREM;
14093 TargetLowering::ArgListTy Args;
14094 TargetLowering::ArgListEntry Entry;
14095 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
14096 EVT ArgVT = N->getOperand(i).getValueType();
14097 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
14098 Entry.Node = N->getOperand(i);
14099 Entry.Ty = ArgTy;
14100 Entry.IsSExt = isSigned;
14101 Entry.IsZExt = !isSigned;
14102 Args.push_back(Entry);
14103 }
14104 if (Subtarget->isTargetWindows() && Args.size() >= 2)
14105 std::swap(Args[0], Args[1]);
14106 return Args;
14107 }
14108
LowerDivRem(SDValue Op,SelectionDAG & DAG) const14109 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
14110 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
14111 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
14112 Subtarget->isTargetWindows()) &&
14113 "Register-based DivRem lowering only");
14114 unsigned Opcode = Op->getOpcode();
14115 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
14116 "Invalid opcode for Div/Rem lowering");
14117 bool isSigned = (Opcode == ISD::SDIVREM);
14118 EVT VT = Op->getValueType(0);
14119 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
14120 SDLoc dl(Op);
14121
14122 // If the target has hardware divide, use divide + multiply + subtract:
14123 // div = a / b
14124 // rem = a - b * div
14125 // return {div, rem}
14126 // This should be lowered into UDIV/SDIV + MLS later on.
14127 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
14128 : Subtarget->hasDivideInARMMode();
14129 if (hasDivide && Op->getValueType(0).isSimple() &&
14130 Op->getSimpleValueType(0) == MVT::i32) {
14131 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
14132 const SDValue Dividend = Op->getOperand(0);
14133 const SDValue Divisor = Op->getOperand(1);
14134 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
14135 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
14136 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
14137
14138 SDValue Values[2] = {Div, Rem};
14139 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
14140 }
14141
14142 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
14143 VT.getSimpleVT().SimpleTy);
14144 SDValue InChain = DAG.getEntryNode();
14145
14146 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
14147 DAG.getContext(),
14148 Subtarget);
14149
14150 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14151 getPointerTy(DAG.getDataLayout()));
14152
14153 Type *RetTy = StructType::get(Ty, Ty);
14154
14155 if (Subtarget->isTargetWindows())
14156 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
14157
14158 TargetLowering::CallLoweringInfo CLI(DAG);
14159 CLI.setDebugLoc(dl).setChain(InChain)
14160 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
14161 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
14162
14163 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
14164 return CallInfo.first;
14165 }
14166
14167 // Lowers REM using divmod helpers
14168 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const14169 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
14170 // Build return types (div and rem)
14171 std::vector<Type*> RetTyParams;
14172 Type *RetTyElement;
14173
14174 switch (N->getValueType(0).getSimpleVT().SimpleTy) {
14175 default: llvm_unreachable("Unexpected request for libcall!");
14176 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
14177 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
14178 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
14179 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
14180 }
14181
14182 RetTyParams.push_back(RetTyElement);
14183 RetTyParams.push_back(RetTyElement);
14184 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
14185 Type *RetTy = StructType::get(*DAG.getContext(), ret);
14186
14187 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
14188 SimpleTy);
14189 SDValue InChain = DAG.getEntryNode();
14190 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
14191 Subtarget);
14192 bool isSigned = N->getOpcode() == ISD::SREM;
14193 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14194 getPointerTy(DAG.getDataLayout()));
14195
14196 if (Subtarget->isTargetWindows())
14197 InChain = WinDBZCheckDenominator(DAG, N, InChain);
14198
14199 // Lower call
14200 CallLoweringInfo CLI(DAG);
14201 CLI.setChain(InChain)
14202 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
14203 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
14204 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
14205
14206 // Return second (rem) result operand (first contains div)
14207 SDNode *ResNode = CallResult.first.getNode();
14208 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
14209 return ResNode->getOperand(1);
14210 }
14211
14212 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const14213 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
14214 assert(Subtarget->isTargetWindows() && "unsupported target platform");
14215 SDLoc DL(Op);
14216
14217 // Get the inputs.
14218 SDValue Chain = Op.getOperand(0);
14219 SDValue Size = Op.getOperand(1);
14220
14221 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
14222 "no-stack-arg-probe")) {
14223 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14224 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14225 Chain = SP.getValue(1);
14226 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
14227 if (Align)
14228 SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14229 DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14230 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14231 SDValue Ops[2] = { SP, Chain };
14232 return DAG.getMergeValues(Ops, DL);
14233 }
14234
14235 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14236 DAG.getConstant(2, DL, MVT::i32));
14237
14238 SDValue Flag;
14239 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14240 Flag = Chain.getValue(1);
14241
14242 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14243 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14244
14245 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14246 Chain = NewSP.getValue(1);
14247
14248 SDValue Ops[2] = { NewSP, Chain };
14249 return DAG.getMergeValues(Ops, DL);
14250 }
14251
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const14252 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14253 assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
14254 "Unexpected type for custom-lowering FP_EXTEND");
14255
14256 RTLIB::Libcall LC;
14257 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14258
14259 SDValue SrcVal = Op.getOperand(0);
14260 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14261 SDLoc(Op)).first;
14262 }
14263
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const14264 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14265 assert(Op.getOperand(0).getValueType() == MVT::f64 &&
14266 Subtarget->isFPOnlySP() &&
14267 "Unexpected type for custom-lowering FP_ROUND");
14268
14269 RTLIB::Libcall LC;
14270 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14271
14272 SDValue SrcVal = Op.getOperand(0);
14273 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14274 SDLoc(Op)).first;
14275 }
14276
14277 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const14278 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14279 // The ARM target isn't yet aware of offsets.
14280 return false;
14281 }
14282
isBitFieldInvertedMask(unsigned v)14283 bool ARM::isBitFieldInvertedMask(unsigned v) {
14284 if (v == 0xffffffff)
14285 return false;
14286
14287 // there can be 1's on either or both "outsides", all the "inside"
14288 // bits must be 0's
14289 return isShiftedMask_32(~v);
14290 }
14291
14292 /// isFPImmLegal - Returns true if the target can instruction select the
14293 /// specified FP immediate natively. If false, the legalizer will
14294 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const14295 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14296 if (!Subtarget->hasVFP3())
14297 return false;
14298 if (VT == MVT::f16 && Subtarget->hasFullFP16())
14299 return ARM_AM::getFP16Imm(Imm) != -1;
14300 if (VT == MVT::f32)
14301 return ARM_AM::getFP32Imm(Imm) != -1;
14302 if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
14303 return ARM_AM::getFP64Imm(Imm) != -1;
14304 return false;
14305 }
14306
14307 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14308 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
14309 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const14310 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14311 const CallInst &I,
14312 MachineFunction &MF,
14313 unsigned Intrinsic) const {
14314 switch (Intrinsic) {
14315 case Intrinsic::arm_neon_vld1:
14316 case Intrinsic::arm_neon_vld2:
14317 case Intrinsic::arm_neon_vld3:
14318 case Intrinsic::arm_neon_vld4:
14319 case Intrinsic::arm_neon_vld2lane:
14320 case Intrinsic::arm_neon_vld3lane:
14321 case Intrinsic::arm_neon_vld4lane:
14322 case Intrinsic::arm_neon_vld2dup:
14323 case Intrinsic::arm_neon_vld3dup:
14324 case Intrinsic::arm_neon_vld4dup: {
14325 Info.opc = ISD::INTRINSIC_W_CHAIN;
14326 // Conservatively set memVT to the entire set of vectors loaded.
14327 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14328 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14329 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14330 Info.ptrVal = I.getArgOperand(0);
14331 Info.offset = 0;
14332 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14333 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14334 // volatile loads with NEON intrinsics not supported
14335 Info.flags = MachineMemOperand::MOLoad;
14336 return true;
14337 }
14338 case Intrinsic::arm_neon_vld1x2:
14339 case Intrinsic::arm_neon_vld1x3:
14340 case Intrinsic::arm_neon_vld1x4: {
14341 Info.opc = ISD::INTRINSIC_W_CHAIN;
14342 // Conservatively set memVT to the entire set of vectors loaded.
14343 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14344 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14345 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14346 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
14347 Info.offset = 0;
14348 Info.align = 0;
14349 // volatile loads with NEON intrinsics not supported
14350 Info.flags = MachineMemOperand::MOLoad;
14351 return true;
14352 }
14353 case Intrinsic::arm_neon_vst1:
14354 case Intrinsic::arm_neon_vst2:
14355 case Intrinsic::arm_neon_vst3:
14356 case Intrinsic::arm_neon_vst4:
14357 case Intrinsic::arm_neon_vst2lane:
14358 case Intrinsic::arm_neon_vst3lane:
14359 case Intrinsic::arm_neon_vst4lane: {
14360 Info.opc = ISD::INTRINSIC_VOID;
14361 // Conservatively set memVT to the entire set of vectors stored.
14362 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14363 unsigned NumElts = 0;
14364 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14365 Type *ArgTy = I.getArgOperand(ArgI)->getType();
14366 if (!ArgTy->isVectorTy())
14367 break;
14368 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14369 }
14370 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14371 Info.ptrVal = I.getArgOperand(0);
14372 Info.offset = 0;
14373 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14374 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14375 // volatile stores with NEON intrinsics not supported
14376 Info.flags = MachineMemOperand::MOStore;
14377 return true;
14378 }
14379 case Intrinsic::arm_neon_vst1x2:
14380 case Intrinsic::arm_neon_vst1x3:
14381 case Intrinsic::arm_neon_vst1x4: {
14382 Info.opc = ISD::INTRINSIC_VOID;
14383 // Conservatively set memVT to the entire set of vectors stored.
14384 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14385 unsigned NumElts = 0;
14386 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14387 Type *ArgTy = I.getArgOperand(ArgI)->getType();
14388 if (!ArgTy->isVectorTy())
14389 break;
14390 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14391 }
14392 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14393 Info.ptrVal = I.getArgOperand(0);
14394 Info.offset = 0;
14395 Info.align = 0;
14396 // volatile stores with NEON intrinsics not supported
14397 Info.flags = MachineMemOperand::MOStore;
14398 return true;
14399 }
14400 case Intrinsic::arm_ldaex:
14401 case Intrinsic::arm_ldrex: {
14402 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14403 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14404 Info.opc = ISD::INTRINSIC_W_CHAIN;
14405 Info.memVT = MVT::getVT(PtrTy->getElementType());
14406 Info.ptrVal = I.getArgOperand(0);
14407 Info.offset = 0;
14408 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14409 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14410 return true;
14411 }
14412 case Intrinsic::arm_stlex:
14413 case Intrinsic::arm_strex: {
14414 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14415 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14416 Info.opc = ISD::INTRINSIC_W_CHAIN;
14417 Info.memVT = MVT::getVT(PtrTy->getElementType());
14418 Info.ptrVal = I.getArgOperand(1);
14419 Info.offset = 0;
14420 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14421 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14422 return true;
14423 }
14424 case Intrinsic::arm_stlexd:
14425 case Intrinsic::arm_strexd:
14426 Info.opc = ISD::INTRINSIC_W_CHAIN;
14427 Info.memVT = MVT::i64;
14428 Info.ptrVal = I.getArgOperand(2);
14429 Info.offset = 0;
14430 Info.align = 8;
14431 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14432 return true;
14433
14434 case Intrinsic::arm_ldaexd:
14435 case Intrinsic::arm_ldrexd:
14436 Info.opc = ISD::INTRINSIC_W_CHAIN;
14437 Info.memVT = MVT::i64;
14438 Info.ptrVal = I.getArgOperand(0);
14439 Info.offset = 0;
14440 Info.align = 8;
14441 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14442 return true;
14443
14444 default:
14445 break;
14446 }
14447
14448 return false;
14449 }
14450
14451 /// Returns true if it is beneficial to convert a load of a constant
14452 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const14453 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14454 Type *Ty) const {
14455 assert(Ty->isIntegerTy());
14456
14457 unsigned Bits = Ty->getPrimitiveSizeInBits();
14458 if (Bits == 0 || Bits > 32)
14459 return false;
14460 return true;
14461 }
14462
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const14463 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14464 unsigned Index) const {
14465 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14466 return false;
14467
14468 return (Index == 0 || Index == ResVT.getVectorNumElements());
14469 }
14470
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const14471 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14472 ARM_MB::MemBOpt Domain) const {
14473 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14474
14475 // First, if the target has no DMB, see what fallback we can use.
14476 if (!Subtarget->hasDataBarrier()) {
14477 // Some ARMv6 cpus can support data barriers with an mcr instruction.
14478 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14479 // here.
14480 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14481 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14482 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14483 Builder.getInt32(0), Builder.getInt32(7),
14484 Builder.getInt32(10), Builder.getInt32(5)};
14485 return Builder.CreateCall(MCR, args);
14486 } else {
14487 // Instead of using barriers, atomic accesses on these subtargets use
14488 // libcalls.
14489 llvm_unreachable("makeDMB on a target so old that it has no barriers");
14490 }
14491 } else {
14492 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14493 // Only a full system barrier exists in the M-class architectures.
14494 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14495 Constant *CDomain = Builder.getInt32(Domain);
14496 return Builder.CreateCall(DMB, CDomain);
14497 }
14498 }
14499
14500 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14501 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14502 Instruction *Inst,
14503 AtomicOrdering Ord) const {
14504 switch (Ord) {
14505 case AtomicOrdering::NotAtomic:
14506 case AtomicOrdering::Unordered:
14507 llvm_unreachable("Invalid fence: unordered/non-atomic");
14508 case AtomicOrdering::Monotonic:
14509 case AtomicOrdering::Acquire:
14510 return nullptr; // Nothing to do
14511 case AtomicOrdering::SequentiallyConsistent:
14512 if (!Inst->hasAtomicStore())
14513 return nullptr; // Nothing to do
14514 LLVM_FALLTHROUGH;
14515 case AtomicOrdering::Release:
14516 case AtomicOrdering::AcquireRelease:
14517 if (Subtarget->preferISHSTBarriers())
14518 return makeDMB(Builder, ARM_MB::ISHST);
14519 // FIXME: add a comment with a link to documentation justifying this.
14520 else
14521 return makeDMB(Builder, ARM_MB::ISH);
14522 }
14523 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14524 }
14525
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14526 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14527 Instruction *Inst,
14528 AtomicOrdering Ord) const {
14529 switch (Ord) {
14530 case AtomicOrdering::NotAtomic:
14531 case AtomicOrdering::Unordered:
14532 llvm_unreachable("Invalid fence: unordered/not-atomic");
14533 case AtomicOrdering::Monotonic:
14534 case AtomicOrdering::Release:
14535 return nullptr; // Nothing to do
14536 case AtomicOrdering::Acquire:
14537 case AtomicOrdering::AcquireRelease:
14538 case AtomicOrdering::SequentiallyConsistent:
14539 return makeDMB(Builder, ARM_MB::ISH);
14540 }
14541 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14542 }
14543
14544 // Loads and stores less than 64-bits are already atomic; ones above that
14545 // are doomed anyway, so defer to the default libcall and blame the OS when
14546 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14547 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const14548 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14549 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14550 return (Size == 64) && !Subtarget->isMClass();
14551 }
14552
14553 // Loads and stores less than 64-bits are already atomic; ones above that
14554 // are doomed anyway, so defer to the default libcall and blame the OS when
14555 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14556 // anything for those.
14557 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14558 // guarantee, see DDI0406C ARM architecture reference manual,
14559 // sections A8.8.72-74 LDRD)
14560 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const14561 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14562 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14563 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14564 : AtomicExpansionKind::None;
14565 }
14566
14567 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14568 // and up to 64 bits on the non-M profiles
14569 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const14570 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14571 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14572 bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14573 return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14574 ? AtomicExpansionKind::LLSC
14575 : AtomicExpansionKind::None;
14576 }
14577
14578 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const14579 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
14580 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14581 // implement cmpxchg without spilling. If the address being exchanged is also
14582 // on the stack and close enough to the spill slot, this can lead to a
14583 // situation where the monitor always gets cleared and the atomic operation
14584 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14585 bool HasAtomicCmpXchg =
14586 !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14587 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
14588 return AtomicExpansionKind::LLSC;
14589 return AtomicExpansionKind::None;
14590 }
14591
shouldInsertFencesForAtomic(const Instruction * I) const14592 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14593 const Instruction *I) const {
14594 return InsertFencesForAtomic;
14595 }
14596
14597 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const14598 bool ARMTargetLowering::useLoadStackGuardNode() const {
14599 return Subtarget->isTargetMachO();
14600 }
14601
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const14602 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14603 unsigned &Cost) const {
14604 // If we do not have NEON, vector types are not natively supported.
14605 if (!Subtarget->hasNEON())
14606 return false;
14607
14608 // Floating point values and vector values map to the same register file.
14609 // Therefore, although we could do a store extract of a vector type, this is
14610 // better to leave at float as we have more freedom in the addressing mode for
14611 // those.
14612 if (VectorTy->isFPOrFPVectorTy())
14613 return false;
14614
14615 // If the index is unknown at compile time, this is very expensive to lower
14616 // and it is not possible to combine the store with the extract.
14617 if (!isa<ConstantInt>(Idx))
14618 return false;
14619
14620 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14621 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14622 // We can do a store + vector extract on any vector that fits perfectly in a D
14623 // or Q register.
14624 if (BitWidth == 64 || BitWidth == 128) {
14625 Cost = 0;
14626 return true;
14627 }
14628 return false;
14629 }
14630
isCheapToSpeculateCttz() const14631 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14632 return Subtarget->hasV6T2Ops();
14633 }
14634
isCheapToSpeculateCtlz() const14635 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14636 return Subtarget->hasV6T2Ops();
14637 }
14638
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const14639 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14640 AtomicOrdering Ord) const {
14641 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14642 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14643 bool IsAcquire = isAcquireOrStronger(Ord);
14644
14645 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14646 // intrinsic must return {i32, i32} and we have to recombine them into a
14647 // single i64 here.
14648 if (ValTy->getPrimitiveSizeInBits() == 64) {
14649 Intrinsic::ID Int =
14650 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14651 Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14652
14653 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14654 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14655
14656 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14657 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14658 if (!Subtarget->isLittle())
14659 std::swap (Lo, Hi);
14660 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14661 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14662 return Builder.CreateOr(
14663 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14664 }
14665
14666 Type *Tys[] = { Addr->getType() };
14667 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14668 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14669
14670 return Builder.CreateTruncOrBitCast(
14671 Builder.CreateCall(Ldrex, Addr),
14672 cast<PointerType>(Addr->getType())->getElementType());
14673 }
14674
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const14675 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14676 IRBuilder<> &Builder) const {
14677 if (!Subtarget->hasV7Ops())
14678 return;
14679 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14680 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14681 }
14682
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const14683 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14684 Value *Addr,
14685 AtomicOrdering Ord) const {
14686 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14687 bool IsRelease = isReleaseOrStronger(Ord);
14688
14689 // Since the intrinsics must have legal type, the i64 intrinsics take two
14690 // parameters: "i32, i32". We must marshal Val into the appropriate form
14691 // before the call.
14692 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14693 Intrinsic::ID Int =
14694 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14695 Function *Strex = Intrinsic::getDeclaration(M, Int);
14696 Type *Int32Ty = Type::getInt32Ty(M->getContext());
14697
14698 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14699 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14700 if (!Subtarget->isLittle())
14701 std::swap(Lo, Hi);
14702 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14703 return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14704 }
14705
14706 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14707 Type *Tys[] = { Addr->getType() };
14708 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14709
14710 return Builder.CreateCall(
14711 Strex, {Builder.CreateZExtOrBitCast(
14712 Val, Strex->getFunctionType()->getParamType(0)),
14713 Addr});
14714 }
14715
14716
alignLoopsWithOptSize() const14717 bool ARMTargetLowering::alignLoopsWithOptSize() const {
14718 return Subtarget->isMClass();
14719 }
14720
14721 /// A helper function for determining the number of interleaved accesses we
14722 /// will generate when lowering accesses of the given type.
14723 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const14724 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14725 const DataLayout &DL) const {
14726 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14727 }
14728
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const14729 bool ARMTargetLowering::isLegalInterleavedAccessType(
14730 VectorType *VecTy, const DataLayout &DL) const {
14731
14732 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14733 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14734
14735 // Ensure the vector doesn't have f16 elements. Even though we could do an
14736 // i16 vldN, we can't hold the f16 vectors and will end up converting via
14737 // f32.
14738 if (VecTy->getElementType()->isHalfTy())
14739 return false;
14740
14741 // Ensure the number of vector elements is greater than 1.
14742 if (VecTy->getNumElements() < 2)
14743 return false;
14744
14745 // Ensure the element type is legal.
14746 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14747 return false;
14748
14749 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14750 // 128 will be split into multiple interleaved accesses.
14751 return VecSize == 64 || VecSize % 128 == 0;
14752 }
14753
14754 /// Lower an interleaved load into a vldN intrinsic.
14755 ///
14756 /// E.g. Lower an interleaved load (Factor = 2):
14757 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14758 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
14759 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
14760 ///
14761 /// Into:
14762 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14763 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14764 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const14765 bool ARMTargetLowering::lowerInterleavedLoad(
14766 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14767 ArrayRef<unsigned> Indices, unsigned Factor) const {
14768 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14769 "Invalid interleave factor");
14770 assert(!Shuffles.empty() && "Empty shufflevector input");
14771 assert(Shuffles.size() == Indices.size() &&
14772 "Unmatched number of shufflevectors and indices");
14773
14774 VectorType *VecTy = Shuffles[0]->getType();
14775 Type *EltTy = VecTy->getVectorElementType();
14776
14777 const DataLayout &DL = LI->getModule()->getDataLayout();
14778
14779 // Skip if we do not have NEON and skip illegal vector types. We can
14780 // "legalize" wide vector types into multiple interleaved accesses as long as
14781 // the vector types are divisible by 128.
14782 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14783 return false;
14784
14785 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14786
14787 // A pointer vector can not be the return type of the ldN intrinsics. Need to
14788 // load integer vectors first and then convert to pointer vectors.
14789 if (EltTy->isPointerTy())
14790 VecTy =
14791 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14792
14793 IRBuilder<> Builder(LI);
14794
14795 // The base address of the load.
14796 Value *BaseAddr = LI->getPointerOperand();
14797
14798 if (NumLoads > 1) {
14799 // If we're going to generate more than one load, reset the sub-vector type
14800 // to something legal.
14801 VecTy = VectorType::get(VecTy->getVectorElementType(),
14802 VecTy->getVectorNumElements() / NumLoads);
14803
14804 // We will compute the pointer operand of each load from the original base
14805 // address using GEPs. Cast the base address to a pointer to the scalar
14806 // element type.
14807 BaseAddr = Builder.CreateBitCast(
14808 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
14809 LI->getPointerAddressSpace()));
14810 }
14811
14812 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
14813
14814 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
14815 Type *Tys[] = {VecTy, Int8Ptr};
14816 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
14817 Intrinsic::arm_neon_vld3,
14818 Intrinsic::arm_neon_vld4};
14819 Function *VldnFunc =
14820 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
14821
14822 // Holds sub-vectors extracted from the load intrinsic return values. The
14823 // sub-vectors are associated with the shufflevector instructions they will
14824 // replace.
14825 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
14826
14827 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
14828 // If we're generating more than one load, compute the base address of
14829 // subsequent loads as an offset from the previous.
14830 if (LoadCount > 0)
14831 BaseAddr = Builder.CreateConstGEP1_32(
14832 BaseAddr, VecTy->getVectorNumElements() * Factor);
14833
14834 SmallVector<Value *, 2> Ops;
14835 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14836 Ops.push_back(Builder.getInt32(LI->getAlignment()));
14837
14838 CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
14839
14840 // Replace uses of each shufflevector with the corresponding vector loaded
14841 // by ldN.
14842 for (unsigned i = 0; i < Shuffles.size(); i++) {
14843 ShuffleVectorInst *SV = Shuffles[i];
14844 unsigned Index = Indices[i];
14845
14846 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
14847
14848 // Convert the integer vector to pointer vector if the element is pointer.
14849 if (EltTy->isPointerTy())
14850 SubVec = Builder.CreateIntToPtr(
14851 SubVec, VectorType::get(SV->getType()->getVectorElementType(),
14852 VecTy->getVectorNumElements()));
14853
14854 SubVecs[SV].push_back(SubVec);
14855 }
14856 }
14857
14858 // Replace uses of the shufflevector instructions with the sub-vectors
14859 // returned by the load intrinsic. If a shufflevector instruction is
14860 // associated with more than one sub-vector, those sub-vectors will be
14861 // concatenated into a single wide vector.
14862 for (ShuffleVectorInst *SVI : Shuffles) {
14863 auto &SubVec = SubVecs[SVI];
14864 auto *WideVec =
14865 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
14866 SVI->replaceAllUsesWith(WideVec);
14867 }
14868
14869 return true;
14870 }
14871
14872 /// Lower an interleaved store into a vstN intrinsic.
14873 ///
14874 /// E.g. Lower an interleaved store (Factor = 3):
14875 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
14876 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
14877 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
14878 ///
14879 /// Into:
14880 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
14881 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
14882 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
14883 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14884 ///
14885 /// Note that the new shufflevectors will be removed and we'll only generate one
14886 /// vst3 instruction in CodeGen.
14887 ///
14888 /// Example for a more general valid mask (Factor 3). Lower:
14889 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
14890 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
14891 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
14892 ///
14893 /// Into:
14894 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
14895 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
14896 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
14897 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const14898 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
14899 ShuffleVectorInst *SVI,
14900 unsigned Factor) const {
14901 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14902 "Invalid interleave factor");
14903
14904 VectorType *VecTy = SVI->getType();
14905 assert(VecTy->getVectorNumElements() % Factor == 0 &&
14906 "Invalid interleaved store");
14907
14908 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
14909 Type *EltTy = VecTy->getVectorElementType();
14910 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
14911
14912 const DataLayout &DL = SI->getModule()->getDataLayout();
14913
14914 // Skip if we do not have NEON and skip illegal vector types. We can
14915 // "legalize" wide vector types into multiple interleaved accesses as long as
14916 // the vector types are divisible by 128.
14917 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
14918 return false;
14919
14920 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
14921
14922 Value *Op0 = SVI->getOperand(0);
14923 Value *Op1 = SVI->getOperand(1);
14924 IRBuilder<> Builder(SI);
14925
14926 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
14927 // vectors to integer vectors.
14928 if (EltTy->isPointerTy()) {
14929 Type *IntTy = DL.getIntPtrType(EltTy);
14930
14931 // Convert to the corresponding integer vector.
14932 Type *IntVecTy =
14933 VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
14934 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
14935 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
14936
14937 SubVecTy = VectorType::get(IntTy, LaneLen);
14938 }
14939
14940 // The base address of the store.
14941 Value *BaseAddr = SI->getPointerOperand();
14942
14943 if (NumStores > 1) {
14944 // If we're going to generate more than one store, reset the lane length
14945 // and sub-vector type to something legal.
14946 LaneLen /= NumStores;
14947 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
14948
14949 // We will compute the pointer operand of each store from the original base
14950 // address using GEPs. Cast the base address to a pointer to the scalar
14951 // element type.
14952 BaseAddr = Builder.CreateBitCast(
14953 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
14954 SI->getPointerAddressSpace()));
14955 }
14956
14957 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
14958
14959 auto Mask = SVI->getShuffleMask();
14960
14961 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
14962 Type *Tys[] = {Int8Ptr, SubVecTy};
14963 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
14964 Intrinsic::arm_neon_vst3,
14965 Intrinsic::arm_neon_vst4};
14966
14967 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
14968 // If we generating more than one store, we compute the base address of
14969 // subsequent stores as an offset from the previous.
14970 if (StoreCount > 0)
14971 BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
14972
14973 SmallVector<Value *, 6> Ops;
14974 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14975
14976 Function *VstNFunc =
14977 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
14978
14979 // Split the shufflevector operands into sub vectors for the new vstN call.
14980 for (unsigned i = 0; i < Factor; i++) {
14981 unsigned IdxI = StoreCount * LaneLen * Factor + i;
14982 if (Mask[IdxI] >= 0) {
14983 Ops.push_back(Builder.CreateShuffleVector(
14984 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
14985 } else {
14986 unsigned StartMask = 0;
14987 for (unsigned j = 1; j < LaneLen; j++) {
14988 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
14989 if (Mask[IdxJ * Factor + IdxI] >= 0) {
14990 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
14991 break;
14992 }
14993 }
14994 // Note: If all elements in a chunk are undefs, StartMask=0!
14995 // Note: Filling undef gaps with random elements is ok, since
14996 // those elements were being written anyway (with undefs).
14997 // In the case of all undefs we're defaulting to using elems from 0
14998 // Note: StartMask cannot be negative, it's checked in
14999 // isReInterleaveMask
15000 Ops.push_back(Builder.CreateShuffleVector(
15001 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
15002 }
15003 }
15004
15005 Ops.push_back(Builder.getInt32(SI->getAlignment()));
15006 Builder.CreateCall(VstNFunc, Ops);
15007 }
15008 return true;
15009 }
15010
15011 enum HABaseType {
15012 HA_UNKNOWN = 0,
15013 HA_FLOAT,
15014 HA_DOUBLE,
15015 HA_VECT64,
15016 HA_VECT128
15017 };
15018
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)15019 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
15020 uint64_t &Members) {
15021 if (auto *ST = dyn_cast<StructType>(Ty)) {
15022 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
15023 uint64_t SubMembers = 0;
15024 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
15025 return false;
15026 Members += SubMembers;
15027 }
15028 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
15029 uint64_t SubMembers = 0;
15030 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
15031 return false;
15032 Members += SubMembers * AT->getNumElements();
15033 } else if (Ty->isFloatTy()) {
15034 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
15035 return false;
15036 Members = 1;
15037 Base = HA_FLOAT;
15038 } else if (Ty->isDoubleTy()) {
15039 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
15040 return false;
15041 Members = 1;
15042 Base = HA_DOUBLE;
15043 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
15044 Members = 1;
15045 switch (Base) {
15046 case HA_FLOAT:
15047 case HA_DOUBLE:
15048 return false;
15049 case HA_VECT64:
15050 return VT->getBitWidth() == 64;
15051 case HA_VECT128:
15052 return VT->getBitWidth() == 128;
15053 case HA_UNKNOWN:
15054 switch (VT->getBitWidth()) {
15055 case 64:
15056 Base = HA_VECT64;
15057 return true;
15058 case 128:
15059 Base = HA_VECT128;
15060 return true;
15061 default:
15062 return false;
15063 }
15064 }
15065 }
15066
15067 return (Members > 0 && Members <= 4);
15068 }
15069
15070 /// Return the correct alignment for the current calling convention.
15071 unsigned
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const15072 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
15073 DataLayout DL) const {
15074 if (!ArgTy->isVectorTy())
15075 return DL.getABITypeAlignment(ArgTy);
15076
15077 // Avoid over-aligning vector parameters. It would require realigning the
15078 // stack and waste space for no real benefit.
15079 return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
15080 }
15081
15082 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
15083 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
15084 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const15085 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
15086 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
15087 if (getEffectiveCallingConv(CallConv, isVarArg) !=
15088 CallingConv::ARM_AAPCS_VFP)
15089 return false;
15090
15091 HABaseType Base = HA_UNKNOWN;
15092 uint64_t Members = 0;
15093 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
15094 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
15095
15096 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
15097 return IsHA || IsIntArray;
15098 }
15099
getExceptionPointerRegister(const Constant * PersonalityFn) const15100 unsigned ARMTargetLowering::getExceptionPointerRegister(
15101 const Constant *PersonalityFn) const {
15102 // Platforms which do not use SjLj EH may return values in these registers
15103 // via the personality function.
15104 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
15105 }
15106
getExceptionSelectorRegister(const Constant * PersonalityFn) const15107 unsigned ARMTargetLowering::getExceptionSelectorRegister(
15108 const Constant *PersonalityFn) const {
15109 // Platforms which do not use SjLj EH may return values in these registers
15110 // via the personality function.
15111 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
15112 }
15113
initializeSplitCSR(MachineBasicBlock * Entry) const15114 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15115 // Update IsSplitCSR in ARMFunctionInfo.
15116 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
15117 AFI->setIsSplitCSR(true);
15118 }
15119
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const15120 void ARMTargetLowering::insertCopiesSplitCSR(
15121 MachineBasicBlock *Entry,
15122 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15123 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
15124 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15125 if (!IStart)
15126 return;
15127
15128 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
15129 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15130 MachineBasicBlock::iterator MBBI = Entry->begin();
15131 for (const MCPhysReg *I = IStart; *I; ++I) {
15132 const TargetRegisterClass *RC = nullptr;
15133 if (ARM::GPRRegClass.contains(*I))
15134 RC = &ARM::GPRRegClass;
15135 else if (ARM::DPRRegClass.contains(*I))
15136 RC = &ARM::DPRRegClass;
15137 else
15138 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15139
15140 unsigned NewVR = MRI->createVirtualRegister(RC);
15141 // Create copy from CSR to a virtual register.
15142 // FIXME: this currently does not emit CFI pseudo-instructions, it works
15143 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15144 // nounwind. If we want to generalize this later, we may need to emit
15145 // CFI pseudo-instructions.
15146 assert(Entry->getParent()->getFunction().hasFnAttribute(
15147 Attribute::NoUnwind) &&
15148 "Function should be nounwind in insertCopiesSplitCSR!");
15149 Entry->addLiveIn(*I);
15150 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15151 .addReg(*I);
15152
15153 // Insert the copy-back instructions right before the terminator.
15154 for (auto *Exit : Exits)
15155 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15156 TII->get(TargetOpcode::COPY), *I)
15157 .addReg(NewVR);
15158 }
15159 }
15160
finalizeLowering(MachineFunction & MF) const15161 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
15162 MF.getFrameInfo().computeMaxCallFrameSize(MF);
15163 TargetLoweringBase::finalizeLowering(MF);
15164 }
15165