1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "ARMFeatures.h"
11 #include "InstPrinter/ARMInstPrinter.h"
12 #include "Utils/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMAddressingModes.h"
14 #include "MCTargetDesc/ARMBaseInfo.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCInstrInfo.h"
33 #include "llvm/MC/MCObjectFileInfo.h"
34 #include "llvm/MC/MCParser/MCAsmLexer.h"
35 #include "llvm/MC/MCParser/MCAsmParser.h"
36 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
37 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
38 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
39 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSubtargetInfo.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/SubtargetFeature.h"
46 #include "llvm/Support/ARMBuildAttributes.h"
47 #include "llvm/Support/ARMEHABI.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/SMLoc.h"
54 #include "llvm/Support/TargetParser.h"
55 #include "llvm/Support/TargetRegistry.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <string>
65 #include <utility>
66 #include <vector>
67
68 #define DEBUG_TYPE "asm-parser"
69
70 using namespace llvm;
71
72 namespace {
73
74 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
75
76 static cl::opt<ImplicitItModeTy> ImplicitItMode(
77 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
78 cl::desc("Allow conditional instructions outdside of an IT block"),
79 cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
80 "Accept in both ISAs, emit implicit ITs in Thumb"),
81 clEnumValN(ImplicitItModeTy::Never, "never",
82 "Warn in ARM, reject in Thumb"),
83 clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
84 "Accept in ARM, reject in Thumb"),
85 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
86 "Warn in ARM, emit implicit ITs in Thumb")));
87
88 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
89 cl::init(false));
90
91 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
92
93 class UnwindContext {
94 using Locs = SmallVector<SMLoc, 4>;
95
96 MCAsmParser &Parser;
97 Locs FnStartLocs;
98 Locs CantUnwindLocs;
99 Locs PersonalityLocs;
100 Locs PersonalityIndexLocs;
101 Locs HandlerDataLocs;
102 int FPReg;
103
104 public:
UnwindContext(MCAsmParser & P)105 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
106
hasFnStart() const107 bool hasFnStart() const { return !FnStartLocs.empty(); }
cantUnwind() const108 bool cantUnwind() const { return !CantUnwindLocs.empty(); }
hasHandlerData() const109 bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
110
hasPersonality() const111 bool hasPersonality() const {
112 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
113 }
114
recordFnStart(SMLoc L)115 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
recordCantUnwind(SMLoc L)116 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
recordPersonality(SMLoc L)117 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
recordHandlerData(SMLoc L)118 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
recordPersonalityIndex(SMLoc L)119 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
120
saveFPReg(int Reg)121 void saveFPReg(int Reg) { FPReg = Reg; }
getFPReg() const122 int getFPReg() const { return FPReg; }
123
emitFnStartLocNotes() const124 void emitFnStartLocNotes() const {
125 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
126 FI != FE; ++FI)
127 Parser.Note(*FI, ".fnstart was specified here");
128 }
129
emitCantUnwindLocNotes() const130 void emitCantUnwindLocNotes() const {
131 for (Locs::const_iterator UI = CantUnwindLocs.begin(),
132 UE = CantUnwindLocs.end(); UI != UE; ++UI)
133 Parser.Note(*UI, ".cantunwind was specified here");
134 }
135
emitHandlerDataLocNotes() const136 void emitHandlerDataLocNotes() const {
137 for (Locs::const_iterator HI = HandlerDataLocs.begin(),
138 HE = HandlerDataLocs.end(); HI != HE; ++HI)
139 Parser.Note(*HI, ".handlerdata was specified here");
140 }
141
emitPersonalityLocNotes() const142 void emitPersonalityLocNotes() const {
143 for (Locs::const_iterator PI = PersonalityLocs.begin(),
144 PE = PersonalityLocs.end(),
145 PII = PersonalityIndexLocs.begin(),
146 PIE = PersonalityIndexLocs.end();
147 PI != PE || PII != PIE;) {
148 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
149 Parser.Note(*PI++, ".personality was specified here");
150 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
151 Parser.Note(*PII++, ".personalityindex was specified here");
152 else
153 llvm_unreachable(".personality and .personalityindex cannot be "
154 "at the same location");
155 }
156 }
157
reset()158 void reset() {
159 FnStartLocs = Locs();
160 CantUnwindLocs = Locs();
161 PersonalityLocs = Locs();
162 HandlerDataLocs = Locs();
163 PersonalityIndexLocs = Locs();
164 FPReg = ARM::SP;
165 }
166 };
167
168 class ARMAsmParser : public MCTargetAsmParser {
169 const MCRegisterInfo *MRI;
170 UnwindContext UC;
171
getTargetStreamer()172 ARMTargetStreamer &getTargetStreamer() {
173 assert(getParser().getStreamer().getTargetStreamer() &&
174 "do not have a target streamer");
175 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
176 return static_cast<ARMTargetStreamer &>(TS);
177 }
178
179 // Map of register aliases registers via the .req directive.
180 StringMap<unsigned> RegisterReqs;
181
182 bool NextSymbolIsThumb;
183
useImplicitITThumb() const184 bool useImplicitITThumb() const {
185 return ImplicitItMode == ImplicitItModeTy::Always ||
186 ImplicitItMode == ImplicitItModeTy::ThumbOnly;
187 }
188
useImplicitITARM() const189 bool useImplicitITARM() const {
190 return ImplicitItMode == ImplicitItModeTy::Always ||
191 ImplicitItMode == ImplicitItModeTy::ARMOnly;
192 }
193
194 struct {
195 ARMCC::CondCodes Cond; // Condition for IT block.
196 unsigned Mask:4; // Condition mask for instructions.
197 // Starting at first 1 (from lsb).
198 // '1' condition as indicated in IT.
199 // '0' inverse of condition (else).
200 // Count of instructions in IT block is
201 // 4 - trailingzeroes(mask)
202 // Note that this does not have the same encoding
203 // as in the IT instruction, which also depends
204 // on the low bit of the condition code.
205
206 unsigned CurPosition; // Current position in parsing of IT
207 // block. In range [0,4], with 0 being the IT
208 // instruction itself. Initialized according to
209 // count of instructions in block. ~0U if no
210 // active IT block.
211
212 bool IsExplicit; // true - The IT instruction was present in the
213 // input, we should not modify it.
214 // false - The IT instruction was added
215 // implicitly, we can extend it if that
216 // would be legal.
217 } ITState;
218
219 SmallVector<MCInst, 4> PendingConditionalInsts;
220
flushPendingInstructions(MCStreamer & Out)221 void flushPendingInstructions(MCStreamer &Out) override {
222 if (!inImplicitITBlock()) {
223 assert(PendingConditionalInsts.size() == 0);
224 return;
225 }
226
227 // Emit the IT instruction
228 unsigned Mask = getITMaskEncoding();
229 MCInst ITInst;
230 ITInst.setOpcode(ARM::t2IT);
231 ITInst.addOperand(MCOperand::createImm(ITState.Cond));
232 ITInst.addOperand(MCOperand::createImm(Mask));
233 Out.EmitInstruction(ITInst, getSTI());
234
235 // Emit the conditonal instructions
236 assert(PendingConditionalInsts.size() <= 4);
237 for (const MCInst &Inst : PendingConditionalInsts) {
238 Out.EmitInstruction(Inst, getSTI());
239 }
240 PendingConditionalInsts.clear();
241
242 // Clear the IT state
243 ITState.Mask = 0;
244 ITState.CurPosition = ~0U;
245 }
246
inITBlock()247 bool inITBlock() { return ITState.CurPosition != ~0U; }
inExplicitITBlock()248 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
inImplicitITBlock()249 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
250
lastInITBlock()251 bool lastInITBlock() {
252 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
253 }
254
forwardITPosition()255 void forwardITPosition() {
256 if (!inITBlock()) return;
257 // Move to the next instruction in the IT block, if there is one. If not,
258 // mark the block as done, except for implicit IT blocks, which we leave
259 // open until we find an instruction that can't be added to it.
260 unsigned TZ = countTrailingZeros(ITState.Mask);
261 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
262 ITState.CurPosition = ~0U; // Done with the IT block after this.
263 }
264
265 // Rewind the state of the current IT block, removing the last slot from it.
rewindImplicitITPosition()266 void rewindImplicitITPosition() {
267 assert(inImplicitITBlock());
268 assert(ITState.CurPosition > 1);
269 ITState.CurPosition--;
270 unsigned TZ = countTrailingZeros(ITState.Mask);
271 unsigned NewMask = 0;
272 NewMask |= ITState.Mask & (0xC << TZ);
273 NewMask |= 0x2 << TZ;
274 ITState.Mask = NewMask;
275 }
276
277 // Rewind the state of the current IT block, removing the last slot from it.
278 // If we were at the first slot, this closes the IT block.
discardImplicitITBlock()279 void discardImplicitITBlock() {
280 assert(inImplicitITBlock());
281 assert(ITState.CurPosition == 1);
282 ITState.CurPosition = ~0U;
283 }
284
285 // Return the low-subreg of a given Q register.
getDRegFromQReg(unsigned QReg) const286 unsigned getDRegFromQReg(unsigned QReg) const {
287 return MRI->getSubReg(QReg, ARM::dsub_0);
288 }
289
290 // Get the encoding of the IT mask, as it will appear in an IT instruction.
getITMaskEncoding()291 unsigned getITMaskEncoding() {
292 assert(inITBlock());
293 unsigned Mask = ITState.Mask;
294 unsigned TZ = countTrailingZeros(Mask);
295 if ((ITState.Cond & 1) == 0) {
296 assert(Mask && TZ <= 3 && "illegal IT mask value!");
297 Mask ^= (0xE << TZ) & 0xF;
298 }
299 return Mask;
300 }
301
302 // Get the condition code corresponding to the current IT block slot.
currentITCond()303 ARMCC::CondCodes currentITCond() {
304 unsigned MaskBit;
305 if (ITState.CurPosition == 1)
306 MaskBit = 1;
307 else
308 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
309
310 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
311 }
312
313 // Invert the condition of the current IT block slot without changing any
314 // other slots in the same block.
invertCurrentITCondition()315 void invertCurrentITCondition() {
316 if (ITState.CurPosition == 1) {
317 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
318 } else {
319 ITState.Mask ^= 1 << (5 - ITState.CurPosition);
320 }
321 }
322
323 // Returns true if the current IT block is full (all 4 slots used).
isITBlockFull()324 bool isITBlockFull() {
325 return inITBlock() && (ITState.Mask & 1);
326 }
327
328 // Extend the current implicit IT block to have one more slot with the given
329 // condition code.
extendImplicitITBlock(ARMCC::CondCodes Cond)330 void extendImplicitITBlock(ARMCC::CondCodes Cond) {
331 assert(inImplicitITBlock());
332 assert(!isITBlockFull());
333 assert(Cond == ITState.Cond ||
334 Cond == ARMCC::getOppositeCondition(ITState.Cond));
335 unsigned TZ = countTrailingZeros(ITState.Mask);
336 unsigned NewMask = 0;
337 // Keep any existing condition bits.
338 NewMask |= ITState.Mask & (0xE << TZ);
339 // Insert the new condition bit.
340 NewMask |= (Cond == ITState.Cond) << TZ;
341 // Move the trailing 1 down one bit.
342 NewMask |= 1 << (TZ - 1);
343 ITState.Mask = NewMask;
344 }
345
346 // Create a new implicit IT block with a dummy condition code.
startImplicitITBlock()347 void startImplicitITBlock() {
348 assert(!inITBlock());
349 ITState.Cond = ARMCC::AL;
350 ITState.Mask = 8;
351 ITState.CurPosition = 1;
352 ITState.IsExplicit = false;
353 }
354
355 // Create a new explicit IT block with the given condition and mask. The mask
356 // should be in the parsed format, with a 1 implying 't', regardless of the
357 // low bit of the condition.
startExplicitITBlock(ARMCC::CondCodes Cond,unsigned Mask)358 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
359 assert(!inITBlock());
360 ITState.Cond = Cond;
361 ITState.Mask = Mask;
362 ITState.CurPosition = 0;
363 ITState.IsExplicit = true;
364 }
365
Note(SMLoc L,const Twine & Msg,SMRange Range=None)366 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
367 return getParser().Note(L, Msg, Range);
368 }
369
Warning(SMLoc L,const Twine & Msg,SMRange Range=None)370 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
371 return getParser().Warning(L, Msg, Range);
372 }
373
Error(SMLoc L,const Twine & Msg,SMRange Range=None)374 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
375 return getParser().Error(L, Msg, Range);
376 }
377
378 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
379 unsigned ListNo, bool IsARPop = false);
380 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
381 unsigned ListNo);
382
383 int tryParseRegister();
384 bool tryParseRegisterWithWriteBack(OperandVector &);
385 int tryParseShiftRegister(OperandVector &);
386 bool parseRegisterList(OperandVector &);
387 bool parseMemory(OperandVector &);
388 bool parseOperand(OperandVector &, StringRef Mnemonic);
389 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
390 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
391 unsigned &ShiftAmount);
392 bool parseLiteralValues(unsigned Size, SMLoc L);
393 bool parseDirectiveThumb(SMLoc L);
394 bool parseDirectiveARM(SMLoc L);
395 bool parseDirectiveThumbFunc(SMLoc L);
396 bool parseDirectiveCode(SMLoc L);
397 bool parseDirectiveSyntax(SMLoc L);
398 bool parseDirectiveReq(StringRef Name, SMLoc L);
399 bool parseDirectiveUnreq(SMLoc L);
400 bool parseDirectiveArch(SMLoc L);
401 bool parseDirectiveEabiAttr(SMLoc L);
402 bool parseDirectiveCPU(SMLoc L);
403 bool parseDirectiveFPU(SMLoc L);
404 bool parseDirectiveFnStart(SMLoc L);
405 bool parseDirectiveFnEnd(SMLoc L);
406 bool parseDirectiveCantUnwind(SMLoc L);
407 bool parseDirectivePersonality(SMLoc L);
408 bool parseDirectiveHandlerData(SMLoc L);
409 bool parseDirectiveSetFP(SMLoc L);
410 bool parseDirectivePad(SMLoc L);
411 bool parseDirectiveRegSave(SMLoc L, bool IsVector);
412 bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
413 bool parseDirectiveLtorg(SMLoc L);
414 bool parseDirectiveEven(SMLoc L);
415 bool parseDirectivePersonalityIndex(SMLoc L);
416 bool parseDirectiveUnwindRaw(SMLoc L);
417 bool parseDirectiveTLSDescSeq(SMLoc L);
418 bool parseDirectiveMovSP(SMLoc L);
419 bool parseDirectiveObjectArch(SMLoc L);
420 bool parseDirectiveArchExtension(SMLoc L);
421 bool parseDirectiveAlign(SMLoc L);
422 bool parseDirectiveThumbSet(SMLoc L);
423
424 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
425 bool &CarrySetting, unsigned &ProcessorIMod,
426 StringRef &ITMask);
427 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
428 bool &CanAcceptCarrySet,
429 bool &CanAcceptPredicationCode);
430
431 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
432 OperandVector &Operands);
isThumb() const433 bool isThumb() const {
434 // FIXME: Can tablegen auto-generate this?
435 return getSTI().getFeatureBits()[ARM::ModeThumb];
436 }
437
isThumbOne() const438 bool isThumbOne() const {
439 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
440 }
441
isThumbTwo() const442 bool isThumbTwo() const {
443 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
444 }
445
hasThumb() const446 bool hasThumb() const {
447 return getSTI().getFeatureBits()[ARM::HasV4TOps];
448 }
449
hasThumb2() const450 bool hasThumb2() const {
451 return getSTI().getFeatureBits()[ARM::FeatureThumb2];
452 }
453
hasV6Ops() const454 bool hasV6Ops() const {
455 return getSTI().getFeatureBits()[ARM::HasV6Ops];
456 }
457
hasV6T2Ops() const458 bool hasV6T2Ops() const {
459 return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
460 }
461
hasV6MOps() const462 bool hasV6MOps() const {
463 return getSTI().getFeatureBits()[ARM::HasV6MOps];
464 }
465
hasV7Ops() const466 bool hasV7Ops() const {
467 return getSTI().getFeatureBits()[ARM::HasV7Ops];
468 }
469
hasV8Ops() const470 bool hasV8Ops() const {
471 return getSTI().getFeatureBits()[ARM::HasV8Ops];
472 }
473
hasV8MBaseline() const474 bool hasV8MBaseline() const {
475 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
476 }
477
hasV8MMainline() const478 bool hasV8MMainline() const {
479 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
480 }
481
has8MSecExt() const482 bool has8MSecExt() const {
483 return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
484 }
485
hasARM() const486 bool hasARM() const {
487 return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
488 }
489
hasDSP() const490 bool hasDSP() const {
491 return getSTI().getFeatureBits()[ARM::FeatureDSP];
492 }
493
hasD16() const494 bool hasD16() const {
495 return getSTI().getFeatureBits()[ARM::FeatureD16];
496 }
497
hasV8_1aOps() const498 bool hasV8_1aOps() const {
499 return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
500 }
501
hasRAS() const502 bool hasRAS() const {
503 return getSTI().getFeatureBits()[ARM::FeatureRAS];
504 }
505
SwitchMode()506 void SwitchMode() {
507 MCSubtargetInfo &STI = copySTI();
508 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
509 setAvailableFeatures(FB);
510 }
511
512 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
513
isMClass() const514 bool isMClass() const {
515 return getSTI().getFeatureBits()[ARM::FeatureMClass];
516 }
517
518 /// @name Auto-generated Match Functions
519 /// {
520
521 #define GET_ASSEMBLER_HEADER
522 #include "ARMGenAsmMatcher.inc"
523
524 /// }
525
526 OperandMatchResultTy parseITCondCode(OperandVector &);
527 OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
528 OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
529 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
530 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
531 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
532 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
533 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
534 OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
535 OperandMatchResultTy parseBankedRegOperand(OperandVector &);
536 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
537 int High);
parsePKHLSLImm(OperandVector & O)538 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
539 return parsePKHImm(O, "lsl", 0, 31);
540 }
parsePKHASRImm(OperandVector & O)541 OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
542 return parsePKHImm(O, "asr", 1, 32);
543 }
544 OperandMatchResultTy parseSetEndImm(OperandVector &);
545 OperandMatchResultTy parseShifterImm(OperandVector &);
546 OperandMatchResultTy parseRotImm(OperandVector &);
547 OperandMatchResultTy parseModImm(OperandVector &);
548 OperandMatchResultTy parseBitfield(OperandVector &);
549 OperandMatchResultTy parsePostIdxReg(OperandVector &);
550 OperandMatchResultTy parseAM3Offset(OperandVector &);
551 OperandMatchResultTy parseFPImm(OperandVector &);
552 OperandMatchResultTy parseVectorList(OperandVector &);
553 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
554 SMLoc &EndLoc);
555
556 // Asm Match Converter Methods
557 void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
558 void cvtThumbBranches(MCInst &Inst, const OperandVector &);
559
560 bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
561 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
562 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
563 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
564 bool isITBlockTerminator(MCInst &Inst) const;
565 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
566 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
567 bool Load, bool ARMMode, bool Writeback);
568
569 public:
570 enum ARMMatchResultTy {
571 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
572 Match_RequiresNotITBlock,
573 Match_RequiresV6,
574 Match_RequiresThumb2,
575 Match_RequiresV8,
576 Match_RequiresFlagSetting,
577 #define GET_OPERAND_DIAGNOSTIC_TYPES
578 #include "ARMGenAsmMatcher.inc"
579
580 };
581
ARMAsmParser(const MCSubtargetInfo & STI,MCAsmParser & Parser,const MCInstrInfo & MII,const MCTargetOptions & Options)582 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
583 const MCInstrInfo &MII, const MCTargetOptions &Options)
584 : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
585 MCAsmParserExtension::Initialize(Parser);
586
587 // Cache the MCRegisterInfo.
588 MRI = getContext().getRegisterInfo();
589
590 // Initialize the set of available features.
591 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
592
593 // Add build attributes based on the selected target.
594 if (AddBuildAttributes)
595 getTargetStreamer().emitTargetAttributes(STI);
596
597 // Not in an ITBlock to start with.
598 ITState.CurPosition = ~0U;
599
600 NextSymbolIsThumb = false;
601 }
602
603 // Implementation of the MCTargetAsmParser interface:
604 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
605 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
606 SMLoc NameLoc, OperandVector &Operands) override;
607 bool ParseDirective(AsmToken DirectiveID) override;
608
609 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
610 unsigned Kind) override;
611 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
612
613 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
614 OperandVector &Operands, MCStreamer &Out,
615 uint64_t &ErrorInfo,
616 bool MatchingInlineAsm) override;
617 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
618 SmallVectorImpl<NearMissInfo> &NearMisses,
619 bool MatchingInlineAsm, bool &EmitInITBlock,
620 MCStreamer &Out);
621
622 struct NearMissMessage {
623 SMLoc Loc;
624 SmallString<128> Message;
625 };
626
627 const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
628
629 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
630 SmallVectorImpl<NearMissMessage> &NearMissesOut,
631 SMLoc IDLoc, OperandVector &Operands);
632 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
633 OperandVector &Operands);
634
635 void doBeforeLabelEmit(MCSymbol *Symbol) override;
636
637 void onLabelParsed(MCSymbol *Symbol) override;
638 };
639
640 /// ARMOperand - Instances of this class represent a parsed ARM machine
641 /// operand.
642 class ARMOperand : public MCParsedAsmOperand {
643 enum KindTy {
644 k_CondCode,
645 k_CCOut,
646 k_ITCondMask,
647 k_CoprocNum,
648 k_CoprocReg,
649 k_CoprocOption,
650 k_Immediate,
651 k_MemBarrierOpt,
652 k_InstSyncBarrierOpt,
653 k_TraceSyncBarrierOpt,
654 k_Memory,
655 k_PostIndexRegister,
656 k_MSRMask,
657 k_BankedReg,
658 k_ProcIFlags,
659 k_VectorIndex,
660 k_Register,
661 k_RegisterList,
662 k_DPRRegisterList,
663 k_SPRRegisterList,
664 k_VectorList,
665 k_VectorListAllLanes,
666 k_VectorListIndexed,
667 k_ShiftedRegister,
668 k_ShiftedImmediate,
669 k_ShifterImmediate,
670 k_RotateImmediate,
671 k_ModifiedImmediate,
672 k_ConstantPoolImmediate,
673 k_BitfieldDescriptor,
674 k_Token,
675 } Kind;
676
677 SMLoc StartLoc, EndLoc, AlignmentLoc;
678 SmallVector<unsigned, 8> Registers;
679
680 struct CCOp {
681 ARMCC::CondCodes Val;
682 };
683
684 struct CopOp {
685 unsigned Val;
686 };
687
688 struct CoprocOptionOp {
689 unsigned Val;
690 };
691
692 struct ITMaskOp {
693 unsigned Mask:4;
694 };
695
696 struct MBOptOp {
697 ARM_MB::MemBOpt Val;
698 };
699
700 struct ISBOptOp {
701 ARM_ISB::InstSyncBOpt Val;
702 };
703
704 struct TSBOptOp {
705 ARM_TSB::TraceSyncBOpt Val;
706 };
707
708 struct IFlagsOp {
709 ARM_PROC::IFlags Val;
710 };
711
712 struct MMaskOp {
713 unsigned Val;
714 };
715
716 struct BankedRegOp {
717 unsigned Val;
718 };
719
720 struct TokOp {
721 const char *Data;
722 unsigned Length;
723 };
724
725 struct RegOp {
726 unsigned RegNum;
727 };
728
729 // A vector register list is a sequential list of 1 to 4 registers.
730 struct VectorListOp {
731 unsigned RegNum;
732 unsigned Count;
733 unsigned LaneIndex;
734 bool isDoubleSpaced;
735 };
736
737 struct VectorIndexOp {
738 unsigned Val;
739 };
740
741 struct ImmOp {
742 const MCExpr *Val;
743 };
744
745 /// Combined record for all forms of ARM address expressions.
746 struct MemoryOp {
747 unsigned BaseRegNum;
748 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
749 // was specified.
750 const MCConstantExpr *OffsetImm; // Offset immediate value
751 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
752 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
753 unsigned ShiftImm; // shift for OffsetReg.
754 unsigned Alignment; // 0 = no alignment specified
755 // n = alignment in bytes (2, 4, 8, 16, or 32)
756 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
757 };
758
759 struct PostIdxRegOp {
760 unsigned RegNum;
761 bool isAdd;
762 ARM_AM::ShiftOpc ShiftTy;
763 unsigned ShiftImm;
764 };
765
766 struct ShifterImmOp {
767 bool isASR;
768 unsigned Imm;
769 };
770
771 struct RegShiftedRegOp {
772 ARM_AM::ShiftOpc ShiftTy;
773 unsigned SrcReg;
774 unsigned ShiftReg;
775 unsigned ShiftImm;
776 };
777
778 struct RegShiftedImmOp {
779 ARM_AM::ShiftOpc ShiftTy;
780 unsigned SrcReg;
781 unsigned ShiftImm;
782 };
783
784 struct RotImmOp {
785 unsigned Imm;
786 };
787
788 struct ModImmOp {
789 unsigned Bits;
790 unsigned Rot;
791 };
792
793 struct BitfieldOp {
794 unsigned LSB;
795 unsigned Width;
796 };
797
798 union {
799 struct CCOp CC;
800 struct CopOp Cop;
801 struct CoprocOptionOp CoprocOption;
802 struct MBOptOp MBOpt;
803 struct ISBOptOp ISBOpt;
804 struct TSBOptOp TSBOpt;
805 struct ITMaskOp ITMask;
806 struct IFlagsOp IFlags;
807 struct MMaskOp MMask;
808 struct BankedRegOp BankedReg;
809 struct TokOp Tok;
810 struct RegOp Reg;
811 struct VectorListOp VectorList;
812 struct VectorIndexOp VectorIndex;
813 struct ImmOp Imm;
814 struct MemoryOp Memory;
815 struct PostIdxRegOp PostIdxReg;
816 struct ShifterImmOp ShifterImm;
817 struct RegShiftedRegOp RegShiftedReg;
818 struct RegShiftedImmOp RegShiftedImm;
819 struct RotImmOp RotImm;
820 struct ModImmOp ModImm;
821 struct BitfieldOp Bitfield;
822 };
823
824 public:
ARMOperand(KindTy K)825 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
826
827 /// getStartLoc - Get the location of the first token of this operand.
getStartLoc() const828 SMLoc getStartLoc() const override { return StartLoc; }
829
830 /// getEndLoc - Get the location of the last token of this operand.
getEndLoc() const831 SMLoc getEndLoc() const override { return EndLoc; }
832
833 /// getLocRange - Get the range between the first and last token of this
834 /// operand.
getLocRange() const835 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
836
837 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
getAlignmentLoc() const838 SMLoc getAlignmentLoc() const {
839 assert(Kind == k_Memory && "Invalid access!");
840 return AlignmentLoc;
841 }
842
getCondCode() const843 ARMCC::CondCodes getCondCode() const {
844 assert(Kind == k_CondCode && "Invalid access!");
845 return CC.Val;
846 }
847
getCoproc() const848 unsigned getCoproc() const {
849 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
850 return Cop.Val;
851 }
852
getToken() const853 StringRef getToken() const {
854 assert(Kind == k_Token && "Invalid access!");
855 return StringRef(Tok.Data, Tok.Length);
856 }
857
getReg() const858 unsigned getReg() const override {
859 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
860 return Reg.RegNum;
861 }
862
getRegList() const863 const SmallVectorImpl<unsigned> &getRegList() const {
864 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
865 Kind == k_SPRRegisterList) && "Invalid access!");
866 return Registers;
867 }
868
getImm() const869 const MCExpr *getImm() const {
870 assert(isImm() && "Invalid access!");
871 return Imm.Val;
872 }
873
getConstantPoolImm() const874 const MCExpr *getConstantPoolImm() const {
875 assert(isConstantPoolImm() && "Invalid access!");
876 return Imm.Val;
877 }
878
getVectorIndex() const879 unsigned getVectorIndex() const {
880 assert(Kind == k_VectorIndex && "Invalid access!");
881 return VectorIndex.Val;
882 }
883
getMemBarrierOpt() const884 ARM_MB::MemBOpt getMemBarrierOpt() const {
885 assert(Kind == k_MemBarrierOpt && "Invalid access!");
886 return MBOpt.Val;
887 }
888
getInstSyncBarrierOpt() const889 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
890 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
891 return ISBOpt.Val;
892 }
893
getTraceSyncBarrierOpt() const894 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
895 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
896 return TSBOpt.Val;
897 }
898
getProcIFlags() const899 ARM_PROC::IFlags getProcIFlags() const {
900 assert(Kind == k_ProcIFlags && "Invalid access!");
901 return IFlags.Val;
902 }
903
getMSRMask() const904 unsigned getMSRMask() const {
905 assert(Kind == k_MSRMask && "Invalid access!");
906 return MMask.Val;
907 }
908
getBankedReg() const909 unsigned getBankedReg() const {
910 assert(Kind == k_BankedReg && "Invalid access!");
911 return BankedReg.Val;
912 }
913
isCoprocNum() const914 bool isCoprocNum() const { return Kind == k_CoprocNum; }
isCoprocReg() const915 bool isCoprocReg() const { return Kind == k_CoprocReg; }
isCoprocOption() const916 bool isCoprocOption() const { return Kind == k_CoprocOption; }
isCondCode() const917 bool isCondCode() const { return Kind == k_CondCode; }
isCCOut() const918 bool isCCOut() const { return Kind == k_CCOut; }
isITMask() const919 bool isITMask() const { return Kind == k_ITCondMask; }
isITCondCode() const920 bool isITCondCode() const { return Kind == k_CondCode; }
isImm() const921 bool isImm() const override {
922 return Kind == k_Immediate;
923 }
924
isARMBranchTarget() const925 bool isARMBranchTarget() const {
926 if (!isImm()) return false;
927
928 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
929 return CE->getValue() % 4 == 0;
930 return true;
931 }
932
933
isThumbBranchTarget() const934 bool isThumbBranchTarget() const {
935 if (!isImm()) return false;
936
937 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
938 return CE->getValue() % 2 == 0;
939 return true;
940 }
941
942 // checks whether this operand is an unsigned offset which fits is a field
943 // of specified width and scaled by a specific number of bits
944 template<unsigned width, unsigned scale>
isUnsignedOffset() const945 bool isUnsignedOffset() const {
946 if (!isImm()) return false;
947 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
948 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
949 int64_t Val = CE->getValue();
950 int64_t Align = 1LL << scale;
951 int64_t Max = Align * ((1LL << width) - 1);
952 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
953 }
954 return false;
955 }
956
957 // checks whether this operand is an signed offset which fits is a field
958 // of specified width and scaled by a specific number of bits
959 template<unsigned width, unsigned scale>
isSignedOffset() const960 bool isSignedOffset() const {
961 if (!isImm()) return false;
962 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
963 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
964 int64_t Val = CE->getValue();
965 int64_t Align = 1LL << scale;
966 int64_t Max = Align * ((1LL << (width-1)) - 1);
967 int64_t Min = -Align * (1LL << (width-1));
968 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
969 }
970 return false;
971 }
972
973 // checks whether this operand is a memory operand computed as an offset
974 // applied to PC. the offset may have 8 bits of magnitude and is represented
975 // with two bits of shift. textually it may be either [pc, #imm], #imm or
976 // relocable expression...
isThumbMemPC() const977 bool isThumbMemPC() const {
978 int64_t Val = 0;
979 if (isImm()) {
980 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
981 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
982 if (!CE) return false;
983 Val = CE->getValue();
984 }
985 else if (isMem()) {
986 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
987 if(Memory.BaseRegNum != ARM::PC) return false;
988 Val = Memory.OffsetImm->getValue();
989 }
990 else return false;
991 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
992 }
993
isFPImm() const994 bool isFPImm() const {
995 if (!isImm()) return false;
996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
997 if (!CE) return false;
998 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
999 return Val != -1;
1000 }
1001
1002 template<int64_t N, int64_t M>
isImmediate() const1003 bool isImmediate() const {
1004 if (!isImm()) return false;
1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1006 if (!CE) return false;
1007 int64_t Value = CE->getValue();
1008 return Value >= N && Value <= M;
1009 }
1010
1011 template<int64_t N, int64_t M>
isImmediateS4() const1012 bool isImmediateS4() const {
1013 if (!isImm()) return false;
1014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1015 if (!CE) return false;
1016 int64_t Value = CE->getValue();
1017 return ((Value & 3) == 0) && Value >= N && Value <= M;
1018 }
1019
isFBits16() const1020 bool isFBits16() const {
1021 return isImmediate<0, 17>();
1022 }
isFBits32() const1023 bool isFBits32() const {
1024 return isImmediate<1, 33>();
1025 }
isImm8s4() const1026 bool isImm8s4() const {
1027 return isImmediateS4<-1020, 1020>();
1028 }
isImm0_1020s4() const1029 bool isImm0_1020s4() const {
1030 return isImmediateS4<0, 1020>();
1031 }
isImm0_508s4() const1032 bool isImm0_508s4() const {
1033 return isImmediateS4<0, 508>();
1034 }
isImm0_508s4Neg() const1035 bool isImm0_508s4Neg() const {
1036 if (!isImm()) return false;
1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1038 if (!CE) return false;
1039 int64_t Value = -CE->getValue();
1040 // explicitly exclude zero. we want that to use the normal 0_508 version.
1041 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1042 }
1043
isImm0_4095Neg() const1044 bool isImm0_4095Neg() const {
1045 if (!isImm()) return false;
1046 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1047 if (!CE) return false;
1048 // isImm0_4095Neg is used with 32-bit immediates only.
1049 // 32-bit immediates are zero extended to 64-bit when parsed,
1050 // thus simple -CE->getValue() results in a big negative number,
1051 // not a small positive number as intended
1052 if ((CE->getValue() >> 32) > 0) return false;
1053 uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1054 return Value > 0 && Value < 4096;
1055 }
1056
isImm0_7() const1057 bool isImm0_7() const {
1058 return isImmediate<0, 7>();
1059 }
1060
isImm1_16() const1061 bool isImm1_16() const {
1062 return isImmediate<1, 16>();
1063 }
1064
isImm1_32() const1065 bool isImm1_32() const {
1066 return isImmediate<1, 32>();
1067 }
1068
isImm8_255() const1069 bool isImm8_255() const {
1070 return isImmediate<8, 255>();
1071 }
1072
isImm256_65535Expr() const1073 bool isImm256_65535Expr() const {
1074 if (!isImm()) return false;
1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1076 // If it's not a constant expression, it'll generate a fixup and be
1077 // handled later.
1078 if (!CE) return true;
1079 int64_t Value = CE->getValue();
1080 return Value >= 256 && Value < 65536;
1081 }
1082
isImm0_65535Expr() const1083 bool isImm0_65535Expr() const {
1084 if (!isImm()) return false;
1085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1086 // If it's not a constant expression, it'll generate a fixup and be
1087 // handled later.
1088 if (!CE) return true;
1089 int64_t Value = CE->getValue();
1090 return Value >= 0 && Value < 65536;
1091 }
1092
isImm24bit() const1093 bool isImm24bit() const {
1094 return isImmediate<0, 0xffffff + 1>();
1095 }
1096
isImmThumbSR() const1097 bool isImmThumbSR() const {
1098 return isImmediate<1, 33>();
1099 }
1100
isPKHLSLImm() const1101 bool isPKHLSLImm() const {
1102 return isImmediate<0, 32>();
1103 }
1104
isPKHASRImm() const1105 bool isPKHASRImm() const {
1106 return isImmediate<0, 33>();
1107 }
1108
isAdrLabel() const1109 bool isAdrLabel() const {
1110 // If we have an immediate that's not a constant, treat it as a label
1111 // reference needing a fixup.
1112 if (isImm() && !isa<MCConstantExpr>(getImm()))
1113 return true;
1114
1115 // If it is a constant, it must fit into a modified immediate encoding.
1116 if (!isImm()) return false;
1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1118 if (!CE) return false;
1119 int64_t Value = CE->getValue();
1120 return (ARM_AM::getSOImmVal(Value) != -1 ||
1121 ARM_AM::getSOImmVal(-Value) != -1);
1122 }
1123
isT2SOImm() const1124 bool isT2SOImm() const {
1125 // If we have an immediate that's not a constant, treat it as an expression
1126 // needing a fixup.
1127 if (isImm() && !isa<MCConstantExpr>(getImm())) {
1128 // We want to avoid matching :upper16: and :lower16: as we want these
1129 // expressions to match in isImm0_65535Expr()
1130 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1131 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1132 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1133 }
1134 if (!isImm()) return false;
1135 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1136 if (!CE) return false;
1137 int64_t Value = CE->getValue();
1138 return ARM_AM::getT2SOImmVal(Value) != -1;
1139 }
1140
isT2SOImmNot() const1141 bool isT2SOImmNot() const {
1142 if (!isImm()) return false;
1143 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1144 if (!CE) return false;
1145 int64_t Value = CE->getValue();
1146 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1147 ARM_AM::getT2SOImmVal(~Value) != -1;
1148 }
1149
isT2SOImmNeg() const1150 bool isT2SOImmNeg() const {
1151 if (!isImm()) return false;
1152 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1153 if (!CE) return false;
1154 int64_t Value = CE->getValue();
1155 // Only use this when not representable as a plain so_imm.
1156 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1157 ARM_AM::getT2SOImmVal(-Value) != -1;
1158 }
1159
isSetEndImm() const1160 bool isSetEndImm() const {
1161 if (!isImm()) return false;
1162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1163 if (!CE) return false;
1164 int64_t Value = CE->getValue();
1165 return Value == 1 || Value == 0;
1166 }
1167
isReg() const1168 bool isReg() const override { return Kind == k_Register; }
isRegList() const1169 bool isRegList() const { return Kind == k_RegisterList; }
isDPRRegList() const1170 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
isSPRRegList() const1171 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
isToken() const1172 bool isToken() const override { return Kind == k_Token; }
isMemBarrierOpt() const1173 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
isInstSyncBarrierOpt() const1174 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
isTraceSyncBarrierOpt() const1175 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
isMem() const1176 bool isMem() const override {
1177 if (Kind != k_Memory)
1178 return false;
1179 if (Memory.BaseRegNum &&
1180 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1181 return false;
1182 if (Memory.OffsetRegNum &&
1183 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1184 return false;
1185 return true;
1186 }
isShifterImm() const1187 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
isRegShiftedReg() const1188 bool isRegShiftedReg() const {
1189 return Kind == k_ShiftedRegister &&
1190 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1191 RegShiftedReg.SrcReg) &&
1192 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1193 RegShiftedReg.ShiftReg);
1194 }
isRegShiftedImm() const1195 bool isRegShiftedImm() const {
1196 return Kind == k_ShiftedImmediate &&
1197 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1198 RegShiftedImm.SrcReg);
1199 }
isRotImm() const1200 bool isRotImm() const { return Kind == k_RotateImmediate; }
isModImm() const1201 bool isModImm() const { return Kind == k_ModifiedImmediate; }
1202
isModImmNot() const1203 bool isModImmNot() const {
1204 if (!isImm()) return false;
1205 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1206 if (!CE) return false;
1207 int64_t Value = CE->getValue();
1208 return ARM_AM::getSOImmVal(~Value) != -1;
1209 }
1210
isModImmNeg() const1211 bool isModImmNeg() const {
1212 if (!isImm()) return false;
1213 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1214 if (!CE) return false;
1215 int64_t Value = CE->getValue();
1216 return ARM_AM::getSOImmVal(Value) == -1 &&
1217 ARM_AM::getSOImmVal(-Value) != -1;
1218 }
1219
isThumbModImmNeg1_7() const1220 bool isThumbModImmNeg1_7() const {
1221 if (!isImm()) return false;
1222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1223 if (!CE) return false;
1224 int32_t Value = -(int32_t)CE->getValue();
1225 return 0 < Value && Value < 8;
1226 }
1227
isThumbModImmNeg8_255() const1228 bool isThumbModImmNeg8_255() const {
1229 if (!isImm()) return false;
1230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1231 if (!CE) return false;
1232 int32_t Value = -(int32_t)CE->getValue();
1233 return 7 < Value && Value < 256;
1234 }
1235
isConstantPoolImm() const1236 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
isBitfield() const1237 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
isPostIdxRegShifted() const1238 bool isPostIdxRegShifted() const {
1239 return Kind == k_PostIndexRegister &&
1240 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1241 }
isPostIdxReg() const1242 bool isPostIdxReg() const {
1243 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1244 }
isMemNoOffset(bool alignOK=false,unsigned Alignment=0) const1245 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1246 if (!isMem())
1247 return false;
1248 // No offset of any kind.
1249 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1250 (alignOK || Memory.Alignment == Alignment);
1251 }
isMemPCRelImm12() const1252 bool isMemPCRelImm12() const {
1253 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1254 return false;
1255 // Base register must be PC.
1256 if (Memory.BaseRegNum != ARM::PC)
1257 return false;
1258 // Immediate offset in range [-4095, 4095].
1259 if (!Memory.OffsetImm) return true;
1260 int64_t Val = Memory.OffsetImm->getValue();
1261 return (Val > -4096 && Val < 4096) ||
1262 (Val == std::numeric_limits<int32_t>::min());
1263 }
1264
isAlignedMemory() const1265 bool isAlignedMemory() const {
1266 return isMemNoOffset(true);
1267 }
1268
isAlignedMemoryNone() const1269 bool isAlignedMemoryNone() const {
1270 return isMemNoOffset(false, 0);
1271 }
1272
isDupAlignedMemoryNone() const1273 bool isDupAlignedMemoryNone() const {
1274 return isMemNoOffset(false, 0);
1275 }
1276
isAlignedMemory16() const1277 bool isAlignedMemory16() const {
1278 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1279 return true;
1280 return isMemNoOffset(false, 0);
1281 }
1282
isDupAlignedMemory16() const1283 bool isDupAlignedMemory16() const {
1284 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1285 return true;
1286 return isMemNoOffset(false, 0);
1287 }
1288
isAlignedMemory32() const1289 bool isAlignedMemory32() const {
1290 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1291 return true;
1292 return isMemNoOffset(false, 0);
1293 }
1294
isDupAlignedMemory32() const1295 bool isDupAlignedMemory32() const {
1296 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1297 return true;
1298 return isMemNoOffset(false, 0);
1299 }
1300
isAlignedMemory64() const1301 bool isAlignedMemory64() const {
1302 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1303 return true;
1304 return isMemNoOffset(false, 0);
1305 }
1306
isDupAlignedMemory64() const1307 bool isDupAlignedMemory64() const {
1308 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1309 return true;
1310 return isMemNoOffset(false, 0);
1311 }
1312
isAlignedMemory64or128() const1313 bool isAlignedMemory64or128() const {
1314 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1315 return true;
1316 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1317 return true;
1318 return isMemNoOffset(false, 0);
1319 }
1320
isDupAlignedMemory64or128() const1321 bool isDupAlignedMemory64or128() const {
1322 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1323 return true;
1324 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1325 return true;
1326 return isMemNoOffset(false, 0);
1327 }
1328
isAlignedMemory64or128or256() const1329 bool isAlignedMemory64or128or256() const {
1330 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1331 return true;
1332 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1333 return true;
1334 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1335 return true;
1336 return isMemNoOffset(false, 0);
1337 }
1338
isAddrMode2() const1339 bool isAddrMode2() const {
1340 if (!isMem() || Memory.Alignment != 0) return false;
1341 // Check for register offset.
1342 if (Memory.OffsetRegNum) return true;
1343 // Immediate offset in range [-4095, 4095].
1344 if (!Memory.OffsetImm) return true;
1345 int64_t Val = Memory.OffsetImm->getValue();
1346 return Val > -4096 && Val < 4096;
1347 }
1348
isAM2OffsetImm() const1349 bool isAM2OffsetImm() const {
1350 if (!isImm()) return false;
1351 // Immediate offset in range [-4095, 4095].
1352 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1353 if (!CE) return false;
1354 int64_t Val = CE->getValue();
1355 return (Val == std::numeric_limits<int32_t>::min()) ||
1356 (Val > -4096 && Val < 4096);
1357 }
1358
isAddrMode3() const1359 bool isAddrMode3() const {
1360 // If we have an immediate that's not a constant, treat it as a label
1361 // reference needing a fixup. If it is a constant, it's something else
1362 // and we reject it.
1363 if (isImm() && !isa<MCConstantExpr>(getImm()))
1364 return true;
1365 if (!isMem() || Memory.Alignment != 0) return false;
1366 // No shifts are legal for AM3.
1367 if (Memory.ShiftType != ARM_AM::no_shift) return false;
1368 // Check for register offset.
1369 if (Memory.OffsetRegNum) return true;
1370 // Immediate offset in range [-255, 255].
1371 if (!Memory.OffsetImm) return true;
1372 int64_t Val = Memory.OffsetImm->getValue();
1373 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1374 // have to check for this too.
1375 return (Val > -256 && Val < 256) ||
1376 Val == std::numeric_limits<int32_t>::min();
1377 }
1378
isAM3Offset() const1379 bool isAM3Offset() const {
1380 if (isPostIdxReg())
1381 return true;
1382 if (!isImm())
1383 return false;
1384 // Immediate offset in range [-255, 255].
1385 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1386 if (!CE) return false;
1387 int64_t Val = CE->getValue();
1388 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1389 return (Val > -256 && Val < 256) ||
1390 Val == std::numeric_limits<int32_t>::min();
1391 }
1392
isAddrMode5() const1393 bool isAddrMode5() const {
1394 // If we have an immediate that's not a constant, treat it as a label
1395 // reference needing a fixup. If it is a constant, it's something else
1396 // and we reject it.
1397 if (isImm() && !isa<MCConstantExpr>(getImm()))
1398 return true;
1399 if (!isMem() || Memory.Alignment != 0) return false;
1400 // Check for register offset.
1401 if (Memory.OffsetRegNum) return false;
1402 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1403 if (!Memory.OffsetImm) return true;
1404 int64_t Val = Memory.OffsetImm->getValue();
1405 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1406 Val == std::numeric_limits<int32_t>::min();
1407 }
1408
isAddrMode5FP16() const1409 bool isAddrMode5FP16() const {
1410 // If we have an immediate that's not a constant, treat it as a label
1411 // reference needing a fixup. If it is a constant, it's something else
1412 // and we reject it.
1413 if (isImm() && !isa<MCConstantExpr>(getImm()))
1414 return true;
1415 if (!isMem() || Memory.Alignment != 0) return false;
1416 // Check for register offset.
1417 if (Memory.OffsetRegNum) return false;
1418 // Immediate offset in range [-510, 510] and a multiple of 2.
1419 if (!Memory.OffsetImm) return true;
1420 int64_t Val = Memory.OffsetImm->getValue();
1421 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1422 Val == std::numeric_limits<int32_t>::min();
1423 }
1424
isMemTBB() const1425 bool isMemTBB() const {
1426 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1427 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1428 return false;
1429 return true;
1430 }
1431
isMemTBH() const1432 bool isMemTBH() const {
1433 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1434 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1435 Memory.Alignment != 0 )
1436 return false;
1437 return true;
1438 }
1439
isMemRegOffset() const1440 bool isMemRegOffset() const {
1441 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1442 return false;
1443 return true;
1444 }
1445
isT2MemRegOffset() const1446 bool isT2MemRegOffset() const {
1447 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1448 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1449 return false;
1450 // Only lsl #{0, 1, 2, 3} allowed.
1451 if (Memory.ShiftType == ARM_AM::no_shift)
1452 return true;
1453 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1454 return false;
1455 return true;
1456 }
1457
isMemThumbRR() const1458 bool isMemThumbRR() const {
1459 // Thumb reg+reg addressing is simple. Just two registers, a base and
1460 // an offset. No shifts, negations or any other complicating factors.
1461 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1462 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1463 return false;
1464 return isARMLowRegister(Memory.BaseRegNum) &&
1465 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1466 }
1467
isMemThumbRIs4() const1468 bool isMemThumbRIs4() const {
1469 if (!isMem() || Memory.OffsetRegNum != 0 ||
1470 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1471 return false;
1472 // Immediate offset, multiple of 4 in range [0, 124].
1473 if (!Memory.OffsetImm) return true;
1474 int64_t Val = Memory.OffsetImm->getValue();
1475 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1476 }
1477
isMemThumbRIs2() const1478 bool isMemThumbRIs2() const {
1479 if (!isMem() || Memory.OffsetRegNum != 0 ||
1480 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1481 return false;
1482 // Immediate offset, multiple of 4 in range [0, 62].
1483 if (!Memory.OffsetImm) return true;
1484 int64_t Val = Memory.OffsetImm->getValue();
1485 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1486 }
1487
isMemThumbRIs1() const1488 bool isMemThumbRIs1() const {
1489 if (!isMem() || Memory.OffsetRegNum != 0 ||
1490 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1491 return false;
1492 // Immediate offset in range [0, 31].
1493 if (!Memory.OffsetImm) return true;
1494 int64_t Val = Memory.OffsetImm->getValue();
1495 return Val >= 0 && Val <= 31;
1496 }
1497
isMemThumbSPI() const1498 bool isMemThumbSPI() const {
1499 if (!isMem() || Memory.OffsetRegNum != 0 ||
1500 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1501 return false;
1502 // Immediate offset, multiple of 4 in range [0, 1020].
1503 if (!Memory.OffsetImm) return true;
1504 int64_t Val = Memory.OffsetImm->getValue();
1505 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1506 }
1507
isMemImm8s4Offset() const1508 bool isMemImm8s4Offset() const {
1509 // If we have an immediate that's not a constant, treat it as a label
1510 // reference needing a fixup. If it is a constant, it's something else
1511 // and we reject it.
1512 if (isImm() && !isa<MCConstantExpr>(getImm()))
1513 return true;
1514 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1515 return false;
1516 // Immediate offset a multiple of 4 in range [-1020, 1020].
1517 if (!Memory.OffsetImm) return true;
1518 int64_t Val = Memory.OffsetImm->getValue();
1519 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1520 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1521 Val == std::numeric_limits<int32_t>::min();
1522 }
1523
isMemImm0_1020s4Offset() const1524 bool isMemImm0_1020s4Offset() const {
1525 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1526 return false;
1527 // Immediate offset a multiple of 4 in range [0, 1020].
1528 if (!Memory.OffsetImm) return true;
1529 int64_t Val = Memory.OffsetImm->getValue();
1530 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1531 }
1532
isMemImm8Offset() const1533 bool isMemImm8Offset() const {
1534 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1535 return false;
1536 // Base reg of PC isn't allowed for these encodings.
1537 if (Memory.BaseRegNum == ARM::PC) return false;
1538 // Immediate offset in range [-255, 255].
1539 if (!Memory.OffsetImm) return true;
1540 int64_t Val = Memory.OffsetImm->getValue();
1541 return (Val == std::numeric_limits<int32_t>::min()) ||
1542 (Val > -256 && Val < 256);
1543 }
1544
isMemPosImm8Offset() const1545 bool isMemPosImm8Offset() const {
1546 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1547 return false;
1548 // Immediate offset in range [0, 255].
1549 if (!Memory.OffsetImm) return true;
1550 int64_t Val = Memory.OffsetImm->getValue();
1551 return Val >= 0 && Val < 256;
1552 }
1553
isMemNegImm8Offset() const1554 bool isMemNegImm8Offset() const {
1555 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1556 return false;
1557 // Base reg of PC isn't allowed for these encodings.
1558 if (Memory.BaseRegNum == ARM::PC) return false;
1559 // Immediate offset in range [-255, -1].
1560 if (!Memory.OffsetImm) return false;
1561 int64_t Val = Memory.OffsetImm->getValue();
1562 return (Val == std::numeric_limits<int32_t>::min()) ||
1563 (Val > -256 && Val < 0);
1564 }
1565
isMemUImm12Offset() const1566 bool isMemUImm12Offset() const {
1567 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1568 return false;
1569 // Immediate offset in range [0, 4095].
1570 if (!Memory.OffsetImm) return true;
1571 int64_t Val = Memory.OffsetImm->getValue();
1572 return (Val >= 0 && Val < 4096);
1573 }
1574
isMemImm12Offset() const1575 bool isMemImm12Offset() const {
1576 // If we have an immediate that's not a constant, treat it as a label
1577 // reference needing a fixup. If it is a constant, it's something else
1578 // and we reject it.
1579
1580 if (isImm() && !isa<MCConstantExpr>(getImm()))
1581 return true;
1582
1583 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1584 return false;
1585 // Immediate offset in range [-4095, 4095].
1586 if (!Memory.OffsetImm) return true;
1587 int64_t Val = Memory.OffsetImm->getValue();
1588 return (Val > -4096 && Val < 4096) ||
1589 (Val == std::numeric_limits<int32_t>::min());
1590 }
1591
isConstPoolAsmImm() const1592 bool isConstPoolAsmImm() const {
1593 // Delay processing of Constant Pool Immediate, this will turn into
1594 // a constant. Match no other operand
1595 return (isConstantPoolImm());
1596 }
1597
isPostIdxImm8() const1598 bool isPostIdxImm8() const {
1599 if (!isImm()) return false;
1600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1601 if (!CE) return false;
1602 int64_t Val = CE->getValue();
1603 return (Val > -256 && Val < 256) ||
1604 (Val == std::numeric_limits<int32_t>::min());
1605 }
1606
isPostIdxImm8s4() const1607 bool isPostIdxImm8s4() const {
1608 if (!isImm()) return false;
1609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1610 if (!CE) return false;
1611 int64_t Val = CE->getValue();
1612 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1613 (Val == std::numeric_limits<int32_t>::min());
1614 }
1615
isMSRMask() const1616 bool isMSRMask() const { return Kind == k_MSRMask; }
isBankedReg() const1617 bool isBankedReg() const { return Kind == k_BankedReg; }
isProcIFlags() const1618 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1619
1620 // NEON operands.
isSingleSpacedVectorList() const1621 bool isSingleSpacedVectorList() const {
1622 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1623 }
1624
isDoubleSpacedVectorList() const1625 bool isDoubleSpacedVectorList() const {
1626 return Kind == k_VectorList && VectorList.isDoubleSpaced;
1627 }
1628
isVecListOneD() const1629 bool isVecListOneD() const {
1630 if (!isSingleSpacedVectorList()) return false;
1631 return VectorList.Count == 1;
1632 }
1633
isVecListDPair() const1634 bool isVecListDPair() const {
1635 if (!isSingleSpacedVectorList()) return false;
1636 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1637 .contains(VectorList.RegNum));
1638 }
1639
isVecListThreeD() const1640 bool isVecListThreeD() const {
1641 if (!isSingleSpacedVectorList()) return false;
1642 return VectorList.Count == 3;
1643 }
1644
isVecListFourD() const1645 bool isVecListFourD() const {
1646 if (!isSingleSpacedVectorList()) return false;
1647 return VectorList.Count == 4;
1648 }
1649
isVecListDPairSpaced() const1650 bool isVecListDPairSpaced() const {
1651 if (Kind != k_VectorList) return false;
1652 if (isSingleSpacedVectorList()) return false;
1653 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1654 .contains(VectorList.RegNum));
1655 }
1656
isVecListThreeQ() const1657 bool isVecListThreeQ() const {
1658 if (!isDoubleSpacedVectorList()) return false;
1659 return VectorList.Count == 3;
1660 }
1661
isVecListFourQ() const1662 bool isVecListFourQ() const {
1663 if (!isDoubleSpacedVectorList()) return false;
1664 return VectorList.Count == 4;
1665 }
1666
isSingleSpacedVectorAllLanes() const1667 bool isSingleSpacedVectorAllLanes() const {
1668 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1669 }
1670
isDoubleSpacedVectorAllLanes() const1671 bool isDoubleSpacedVectorAllLanes() const {
1672 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1673 }
1674
isVecListOneDAllLanes() const1675 bool isVecListOneDAllLanes() const {
1676 if (!isSingleSpacedVectorAllLanes()) return false;
1677 return VectorList.Count == 1;
1678 }
1679
isVecListDPairAllLanes() const1680 bool isVecListDPairAllLanes() const {
1681 if (!isSingleSpacedVectorAllLanes()) return false;
1682 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1683 .contains(VectorList.RegNum));
1684 }
1685
isVecListDPairSpacedAllLanes() const1686 bool isVecListDPairSpacedAllLanes() const {
1687 if (!isDoubleSpacedVectorAllLanes()) return false;
1688 return VectorList.Count == 2;
1689 }
1690
isVecListThreeDAllLanes() const1691 bool isVecListThreeDAllLanes() const {
1692 if (!isSingleSpacedVectorAllLanes()) return false;
1693 return VectorList.Count == 3;
1694 }
1695
isVecListThreeQAllLanes() const1696 bool isVecListThreeQAllLanes() const {
1697 if (!isDoubleSpacedVectorAllLanes()) return false;
1698 return VectorList.Count == 3;
1699 }
1700
isVecListFourDAllLanes() const1701 bool isVecListFourDAllLanes() const {
1702 if (!isSingleSpacedVectorAllLanes()) return false;
1703 return VectorList.Count == 4;
1704 }
1705
isVecListFourQAllLanes() const1706 bool isVecListFourQAllLanes() const {
1707 if (!isDoubleSpacedVectorAllLanes()) return false;
1708 return VectorList.Count == 4;
1709 }
1710
isSingleSpacedVectorIndexed() const1711 bool isSingleSpacedVectorIndexed() const {
1712 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1713 }
1714
isDoubleSpacedVectorIndexed() const1715 bool isDoubleSpacedVectorIndexed() const {
1716 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1717 }
1718
isVecListOneDByteIndexed() const1719 bool isVecListOneDByteIndexed() const {
1720 if (!isSingleSpacedVectorIndexed()) return false;
1721 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1722 }
1723
isVecListOneDHWordIndexed() const1724 bool isVecListOneDHWordIndexed() const {
1725 if (!isSingleSpacedVectorIndexed()) return false;
1726 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1727 }
1728
isVecListOneDWordIndexed() const1729 bool isVecListOneDWordIndexed() const {
1730 if (!isSingleSpacedVectorIndexed()) return false;
1731 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1732 }
1733
isVecListTwoDByteIndexed() const1734 bool isVecListTwoDByteIndexed() const {
1735 if (!isSingleSpacedVectorIndexed()) return false;
1736 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1737 }
1738
isVecListTwoDHWordIndexed() const1739 bool isVecListTwoDHWordIndexed() const {
1740 if (!isSingleSpacedVectorIndexed()) return false;
1741 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1742 }
1743
isVecListTwoQWordIndexed() const1744 bool isVecListTwoQWordIndexed() const {
1745 if (!isDoubleSpacedVectorIndexed()) return false;
1746 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1747 }
1748
isVecListTwoQHWordIndexed() const1749 bool isVecListTwoQHWordIndexed() const {
1750 if (!isDoubleSpacedVectorIndexed()) return false;
1751 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1752 }
1753
isVecListTwoDWordIndexed() const1754 bool isVecListTwoDWordIndexed() const {
1755 if (!isSingleSpacedVectorIndexed()) return false;
1756 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1757 }
1758
isVecListThreeDByteIndexed() const1759 bool isVecListThreeDByteIndexed() const {
1760 if (!isSingleSpacedVectorIndexed()) return false;
1761 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1762 }
1763
isVecListThreeDHWordIndexed() const1764 bool isVecListThreeDHWordIndexed() const {
1765 if (!isSingleSpacedVectorIndexed()) return false;
1766 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1767 }
1768
isVecListThreeQWordIndexed() const1769 bool isVecListThreeQWordIndexed() const {
1770 if (!isDoubleSpacedVectorIndexed()) return false;
1771 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1772 }
1773
isVecListThreeQHWordIndexed() const1774 bool isVecListThreeQHWordIndexed() const {
1775 if (!isDoubleSpacedVectorIndexed()) return false;
1776 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1777 }
1778
isVecListThreeDWordIndexed() const1779 bool isVecListThreeDWordIndexed() const {
1780 if (!isSingleSpacedVectorIndexed()) return false;
1781 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1782 }
1783
isVecListFourDByteIndexed() const1784 bool isVecListFourDByteIndexed() const {
1785 if (!isSingleSpacedVectorIndexed()) return false;
1786 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1787 }
1788
isVecListFourDHWordIndexed() const1789 bool isVecListFourDHWordIndexed() const {
1790 if (!isSingleSpacedVectorIndexed()) return false;
1791 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1792 }
1793
isVecListFourQWordIndexed() const1794 bool isVecListFourQWordIndexed() const {
1795 if (!isDoubleSpacedVectorIndexed()) return false;
1796 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1797 }
1798
isVecListFourQHWordIndexed() const1799 bool isVecListFourQHWordIndexed() const {
1800 if (!isDoubleSpacedVectorIndexed()) return false;
1801 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1802 }
1803
isVecListFourDWordIndexed() const1804 bool isVecListFourDWordIndexed() const {
1805 if (!isSingleSpacedVectorIndexed()) return false;
1806 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1807 }
1808
isVectorIndex8() const1809 bool isVectorIndex8() const {
1810 if (Kind != k_VectorIndex) return false;
1811 return VectorIndex.Val < 8;
1812 }
1813
isVectorIndex16() const1814 bool isVectorIndex16() const {
1815 if (Kind != k_VectorIndex) return false;
1816 return VectorIndex.Val < 4;
1817 }
1818
isVectorIndex32() const1819 bool isVectorIndex32() const {
1820 if (Kind != k_VectorIndex) return false;
1821 return VectorIndex.Val < 2;
1822 }
isVectorIndex64() const1823 bool isVectorIndex64() const {
1824 if (Kind != k_VectorIndex) return false;
1825 return VectorIndex.Val < 1;
1826 }
1827
isNEONi8splat() const1828 bool isNEONi8splat() const {
1829 if (!isImm()) return false;
1830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1831 // Must be a constant.
1832 if (!CE) return false;
1833 int64_t Value = CE->getValue();
1834 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1835 // value.
1836 return Value >= 0 && Value < 256;
1837 }
1838
isNEONi16splat() const1839 bool isNEONi16splat() const {
1840 if (isNEONByteReplicate(2))
1841 return false; // Leave that for bytes replication and forbid by default.
1842 if (!isImm())
1843 return false;
1844 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1845 // Must be a constant.
1846 if (!CE) return false;
1847 unsigned Value = CE->getValue();
1848 return ARM_AM::isNEONi16splat(Value);
1849 }
1850
isNEONi16splatNot() const1851 bool isNEONi16splatNot() const {
1852 if (!isImm())
1853 return false;
1854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1855 // Must be a constant.
1856 if (!CE) return false;
1857 unsigned Value = CE->getValue();
1858 return ARM_AM::isNEONi16splat(~Value & 0xffff);
1859 }
1860
isNEONi32splat() const1861 bool isNEONi32splat() const {
1862 if (isNEONByteReplicate(4))
1863 return false; // Leave that for bytes replication and forbid by default.
1864 if (!isImm())
1865 return false;
1866 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1867 // Must be a constant.
1868 if (!CE) return false;
1869 unsigned Value = CE->getValue();
1870 return ARM_AM::isNEONi32splat(Value);
1871 }
1872
isNEONi32splatNot() const1873 bool isNEONi32splatNot() const {
1874 if (!isImm())
1875 return false;
1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1877 // Must be a constant.
1878 if (!CE) return false;
1879 unsigned Value = CE->getValue();
1880 return ARM_AM::isNEONi32splat(~Value);
1881 }
1882
isValidNEONi32vmovImm(int64_t Value)1883 static bool isValidNEONi32vmovImm(int64_t Value) {
1884 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1885 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1886 return ((Value & 0xffffffffffffff00) == 0) ||
1887 ((Value & 0xffffffffffff00ff) == 0) ||
1888 ((Value & 0xffffffffff00ffff) == 0) ||
1889 ((Value & 0xffffffff00ffffff) == 0) ||
1890 ((Value & 0xffffffffffff00ff) == 0xff) ||
1891 ((Value & 0xffffffffff00ffff) == 0xffff);
1892 }
1893
isNEONReplicate(unsigned Width,unsigned NumElems,bool Inv) const1894 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1895 assert((Width == 8 || Width == 16 || Width == 32) &&
1896 "Invalid element width");
1897 assert(NumElems * Width <= 64 && "Invalid result width");
1898
1899 if (!isImm())
1900 return false;
1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1902 // Must be a constant.
1903 if (!CE)
1904 return false;
1905 int64_t Value = CE->getValue();
1906 if (!Value)
1907 return false; // Don't bother with zero.
1908 if (Inv)
1909 Value = ~Value;
1910
1911 uint64_t Mask = (1ull << Width) - 1;
1912 uint64_t Elem = Value & Mask;
1913 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1914 return false;
1915 if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1916 return false;
1917
1918 for (unsigned i = 1; i < NumElems; ++i) {
1919 Value >>= Width;
1920 if ((Value & Mask) != Elem)
1921 return false;
1922 }
1923 return true;
1924 }
1925
isNEONByteReplicate(unsigned NumBytes) const1926 bool isNEONByteReplicate(unsigned NumBytes) const {
1927 return isNEONReplicate(8, NumBytes, false);
1928 }
1929
checkNeonReplicateArgs(unsigned FromW,unsigned ToW)1930 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1931 assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1932 "Invalid source width");
1933 assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1934 "Invalid destination width");
1935 assert(FromW < ToW && "ToW is not less than FromW");
1936 }
1937
1938 template<unsigned FromW, unsigned ToW>
isNEONmovReplicate() const1939 bool isNEONmovReplicate() const {
1940 checkNeonReplicateArgs(FromW, ToW);
1941 if (ToW == 64 && isNEONi64splat())
1942 return false;
1943 return isNEONReplicate(FromW, ToW / FromW, false);
1944 }
1945
1946 template<unsigned FromW, unsigned ToW>
isNEONinvReplicate() const1947 bool isNEONinvReplicate() const {
1948 checkNeonReplicateArgs(FromW, ToW);
1949 return isNEONReplicate(FromW, ToW / FromW, true);
1950 }
1951
isNEONi32vmov() const1952 bool isNEONi32vmov() const {
1953 if (isNEONByteReplicate(4))
1954 return false; // Let it to be classified as byte-replicate case.
1955 if (!isImm())
1956 return false;
1957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1958 // Must be a constant.
1959 if (!CE)
1960 return false;
1961 return isValidNEONi32vmovImm(CE->getValue());
1962 }
1963
isNEONi32vmovNeg() const1964 bool isNEONi32vmovNeg() const {
1965 if (!isImm()) return false;
1966 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1967 // Must be a constant.
1968 if (!CE) return false;
1969 return isValidNEONi32vmovImm(~CE->getValue());
1970 }
1971
isNEONi64splat() const1972 bool isNEONi64splat() const {
1973 if (!isImm()) return false;
1974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1975 // Must be a constant.
1976 if (!CE) return false;
1977 uint64_t Value = CE->getValue();
1978 // i64 value with each byte being either 0 or 0xff.
1979 for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1980 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1981 return true;
1982 }
1983
1984 template<int64_t Angle, int64_t Remainder>
isComplexRotation() const1985 bool isComplexRotation() const {
1986 if (!isImm()) return false;
1987
1988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1989 if (!CE) return false;
1990 uint64_t Value = CE->getValue();
1991
1992 return (Value % Angle == Remainder && Value <= 270);
1993 }
1994
addExpr(MCInst & Inst,const MCExpr * Expr) const1995 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1996 // Add as immediates when possible. Null MCExpr = 0.
1997 if (!Expr)
1998 Inst.addOperand(MCOperand::createImm(0));
1999 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2000 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2001 else
2002 Inst.addOperand(MCOperand::createExpr(Expr));
2003 }
2004
addARMBranchTargetOperands(MCInst & Inst,unsigned N) const2005 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2006 assert(N == 1 && "Invalid number of operands!");
2007 addExpr(Inst, getImm());
2008 }
2009
addThumbBranchTargetOperands(MCInst & Inst,unsigned N) const2010 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2011 assert(N == 1 && "Invalid number of operands!");
2012 addExpr(Inst, getImm());
2013 }
2014
addCondCodeOperands(MCInst & Inst,unsigned N) const2015 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2016 assert(N == 2 && "Invalid number of operands!");
2017 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2018 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2019 Inst.addOperand(MCOperand::createReg(RegNum));
2020 }
2021
addCoprocNumOperands(MCInst & Inst,unsigned N) const2022 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2023 assert(N == 1 && "Invalid number of operands!");
2024 Inst.addOperand(MCOperand::createImm(getCoproc()));
2025 }
2026
addCoprocRegOperands(MCInst & Inst,unsigned N) const2027 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2028 assert(N == 1 && "Invalid number of operands!");
2029 Inst.addOperand(MCOperand::createImm(getCoproc()));
2030 }
2031
addCoprocOptionOperands(MCInst & Inst,unsigned N) const2032 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2033 assert(N == 1 && "Invalid number of operands!");
2034 Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2035 }
2036
addITMaskOperands(MCInst & Inst,unsigned N) const2037 void addITMaskOperands(MCInst &Inst, unsigned N) const {
2038 assert(N == 1 && "Invalid number of operands!");
2039 Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2040 }
2041
addITCondCodeOperands(MCInst & Inst,unsigned N) const2042 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2043 assert(N == 1 && "Invalid number of operands!");
2044 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2045 }
2046
addCCOutOperands(MCInst & Inst,unsigned N) const2047 void addCCOutOperands(MCInst &Inst, unsigned N) const {
2048 assert(N == 1 && "Invalid number of operands!");
2049 Inst.addOperand(MCOperand::createReg(getReg()));
2050 }
2051
addRegOperands(MCInst & Inst,unsigned N) const2052 void addRegOperands(MCInst &Inst, unsigned N) const {
2053 assert(N == 1 && "Invalid number of operands!");
2054 Inst.addOperand(MCOperand::createReg(getReg()));
2055 }
2056
addRegShiftedRegOperands(MCInst & Inst,unsigned N) const2057 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2058 assert(N == 3 && "Invalid number of operands!");
2059 assert(isRegShiftedReg() &&
2060 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2062 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2063 Inst.addOperand(MCOperand::createImm(
2064 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2065 }
2066
addRegShiftedImmOperands(MCInst & Inst,unsigned N) const2067 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2068 assert(N == 2 && "Invalid number of operands!");
2069 assert(isRegShiftedImm() &&
2070 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2071 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2072 // Shift of #32 is encoded as 0 where permitted
2073 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2074 Inst.addOperand(MCOperand::createImm(
2075 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2076 }
2077
addShifterImmOperands(MCInst & Inst,unsigned N) const2078 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2079 assert(N == 1 && "Invalid number of operands!");
2080 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2081 ShifterImm.Imm));
2082 }
2083
addRegListOperands(MCInst & Inst,unsigned N) const2084 void addRegListOperands(MCInst &Inst, unsigned N) const {
2085 assert(N == 1 && "Invalid number of operands!");
2086 const SmallVectorImpl<unsigned> &RegList = getRegList();
2087 for (SmallVectorImpl<unsigned>::const_iterator
2088 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2089 Inst.addOperand(MCOperand::createReg(*I));
2090 }
2091
addDPRRegListOperands(MCInst & Inst,unsigned N) const2092 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2093 addRegListOperands(Inst, N);
2094 }
2095
addSPRRegListOperands(MCInst & Inst,unsigned N) const2096 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2097 addRegListOperands(Inst, N);
2098 }
2099
addRotImmOperands(MCInst & Inst,unsigned N) const2100 void addRotImmOperands(MCInst &Inst, unsigned N) const {
2101 assert(N == 1 && "Invalid number of operands!");
2102 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2103 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2104 }
2105
addModImmOperands(MCInst & Inst,unsigned N) const2106 void addModImmOperands(MCInst &Inst, unsigned N) const {
2107 assert(N == 1 && "Invalid number of operands!");
2108
2109 // Support for fixups (MCFixup)
2110 if (isImm())
2111 return addImmOperands(Inst, N);
2112
2113 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2114 }
2115
addModImmNotOperands(MCInst & Inst,unsigned N) const2116 void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2117 assert(N == 1 && "Invalid number of operands!");
2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2119 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2120 Inst.addOperand(MCOperand::createImm(Enc));
2121 }
2122
addModImmNegOperands(MCInst & Inst,unsigned N) const2123 void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2124 assert(N == 1 && "Invalid number of operands!");
2125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2126 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2127 Inst.addOperand(MCOperand::createImm(Enc));
2128 }
2129
addThumbModImmNeg8_255Operands(MCInst & Inst,unsigned N) const2130 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2131 assert(N == 1 && "Invalid number of operands!");
2132 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2133 uint32_t Val = -CE->getValue();
2134 Inst.addOperand(MCOperand::createImm(Val));
2135 }
2136
addThumbModImmNeg1_7Operands(MCInst & Inst,unsigned N) const2137 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2138 assert(N == 1 && "Invalid number of operands!");
2139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2140 uint32_t Val = -CE->getValue();
2141 Inst.addOperand(MCOperand::createImm(Val));
2142 }
2143
addBitfieldOperands(MCInst & Inst,unsigned N) const2144 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2145 assert(N == 1 && "Invalid number of operands!");
2146 // Munge the lsb/width into a bitfield mask.
2147 unsigned lsb = Bitfield.LSB;
2148 unsigned width = Bitfield.Width;
2149 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2150 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2151 (32 - (lsb + width)));
2152 Inst.addOperand(MCOperand::createImm(Mask));
2153 }
2154
addImmOperands(MCInst & Inst,unsigned N) const2155 void addImmOperands(MCInst &Inst, unsigned N) const {
2156 assert(N == 1 && "Invalid number of operands!");
2157 addExpr(Inst, getImm());
2158 }
2159
addFBits16Operands(MCInst & Inst,unsigned N) const2160 void addFBits16Operands(MCInst &Inst, unsigned N) const {
2161 assert(N == 1 && "Invalid number of operands!");
2162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2163 Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2164 }
2165
addFBits32Operands(MCInst & Inst,unsigned N) const2166 void addFBits32Operands(MCInst &Inst, unsigned N) const {
2167 assert(N == 1 && "Invalid number of operands!");
2168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2169 Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2170 }
2171
addFPImmOperands(MCInst & Inst,unsigned N) const2172 void addFPImmOperands(MCInst &Inst, unsigned N) const {
2173 assert(N == 1 && "Invalid number of operands!");
2174 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2175 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2176 Inst.addOperand(MCOperand::createImm(Val));
2177 }
2178
addImm8s4Operands(MCInst & Inst,unsigned N) const2179 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2180 assert(N == 1 && "Invalid number of operands!");
2181 // FIXME: We really want to scale the value here, but the LDRD/STRD
2182 // instruction don't encode operands that way yet.
2183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2184 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2185 }
2186
addImm0_1020s4Operands(MCInst & Inst,unsigned N) const2187 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2188 assert(N == 1 && "Invalid number of operands!");
2189 // The immediate is scaled by four in the encoding and is stored
2190 // in the MCInst as such. Lop off the low two bits here.
2191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2192 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2193 }
2194
addImm0_508s4NegOperands(MCInst & Inst,unsigned N) const2195 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2196 assert(N == 1 && "Invalid number of operands!");
2197 // The immediate is scaled by four in the encoding and is stored
2198 // in the MCInst as such. Lop off the low two bits here.
2199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2200 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2201 }
2202
addImm0_508s4Operands(MCInst & Inst,unsigned N) const2203 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2204 assert(N == 1 && "Invalid number of operands!");
2205 // The immediate is scaled by four in the encoding and is stored
2206 // in the MCInst as such. Lop off the low two bits here.
2207 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2208 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2209 }
2210
addImm1_16Operands(MCInst & Inst,unsigned N) const2211 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2212 assert(N == 1 && "Invalid number of operands!");
2213 // The constant encodes as the immediate-1, and we store in the instruction
2214 // the bits as encoded, so subtract off one here.
2215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2216 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2217 }
2218
addImm1_32Operands(MCInst & Inst,unsigned N) const2219 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2220 assert(N == 1 && "Invalid number of operands!");
2221 // The constant encodes as the immediate-1, and we store in the instruction
2222 // the bits as encoded, so subtract off one here.
2223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2224 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2225 }
2226
addImmThumbSROperands(MCInst & Inst,unsigned N) const2227 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2228 assert(N == 1 && "Invalid number of operands!");
2229 // The constant encodes as the immediate, except for 32, which encodes as
2230 // zero.
2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2232 unsigned Imm = CE->getValue();
2233 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2234 }
2235
addPKHASRImmOperands(MCInst & Inst,unsigned N) const2236 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2237 assert(N == 1 && "Invalid number of operands!");
2238 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2239 // the instruction as well.
2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2241 int Val = CE->getValue();
2242 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2243 }
2244
addT2SOImmNotOperands(MCInst & Inst,unsigned N) const2245 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2246 assert(N == 1 && "Invalid number of operands!");
2247 // The operand is actually a t2_so_imm, but we have its bitwise
2248 // negation in the assembly source, so twiddle it here.
2249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2250 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2251 }
2252
addT2SOImmNegOperands(MCInst & Inst,unsigned N) const2253 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2254 assert(N == 1 && "Invalid number of operands!");
2255 // The operand is actually a t2_so_imm, but we have its
2256 // negation in the assembly source, so twiddle it here.
2257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2258 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2259 }
2260
addImm0_4095NegOperands(MCInst & Inst,unsigned N) const2261 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2262 assert(N == 1 && "Invalid number of operands!");
2263 // The operand is actually an imm0_4095, but we have its
2264 // negation in the assembly source, so twiddle it here.
2265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2266 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2267 }
2268
addUnsignedOffset_b8s2Operands(MCInst & Inst,unsigned N) const2269 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2270 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2271 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2272 return;
2273 }
2274
2275 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2276 assert(SR && "Unknown value type!");
2277 Inst.addOperand(MCOperand::createExpr(SR));
2278 }
2279
addThumbMemPCOperands(MCInst & Inst,unsigned N) const2280 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2281 assert(N == 1 && "Invalid number of operands!");
2282 if (isImm()) {
2283 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2284 if (CE) {
2285 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2286 return;
2287 }
2288
2289 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2290
2291 assert(SR && "Unknown value type!");
2292 Inst.addOperand(MCOperand::createExpr(SR));
2293 return;
2294 }
2295
2296 assert(isMem() && "Unknown value type!");
2297 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2298 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2299 }
2300
addMemBarrierOptOperands(MCInst & Inst,unsigned N) const2301 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2302 assert(N == 1 && "Invalid number of operands!");
2303 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2304 }
2305
addInstSyncBarrierOptOperands(MCInst & Inst,unsigned N) const2306 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2307 assert(N == 1 && "Invalid number of operands!");
2308 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2309 }
2310
addTraceSyncBarrierOptOperands(MCInst & Inst,unsigned N) const2311 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2312 assert(N == 1 && "Invalid number of operands!");
2313 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2314 }
2315
addMemNoOffsetOperands(MCInst & Inst,unsigned N) const2316 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2317 assert(N == 1 && "Invalid number of operands!");
2318 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2319 }
2320
addMemPCRelImm12Operands(MCInst & Inst,unsigned N) const2321 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2322 assert(N == 1 && "Invalid number of operands!");
2323 int32_t Imm = Memory.OffsetImm->getValue();
2324 Inst.addOperand(MCOperand::createImm(Imm));
2325 }
2326
addAdrLabelOperands(MCInst & Inst,unsigned N) const2327 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2328 assert(N == 1 && "Invalid number of operands!");
2329 assert(isImm() && "Not an immediate!");
2330
2331 // If we have an immediate that's not a constant, treat it as a label
2332 // reference needing a fixup.
2333 if (!isa<MCConstantExpr>(getImm())) {
2334 Inst.addOperand(MCOperand::createExpr(getImm()));
2335 return;
2336 }
2337
2338 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2339 int Val = CE->getValue();
2340 Inst.addOperand(MCOperand::createImm(Val));
2341 }
2342
addAlignedMemoryOperands(MCInst & Inst,unsigned N) const2343 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2344 assert(N == 2 && "Invalid number of operands!");
2345 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2346 Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2347 }
2348
addDupAlignedMemoryNoneOperands(MCInst & Inst,unsigned N) const2349 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2350 addAlignedMemoryOperands(Inst, N);
2351 }
2352
addAlignedMemoryNoneOperands(MCInst & Inst,unsigned N) const2353 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2354 addAlignedMemoryOperands(Inst, N);
2355 }
2356
addAlignedMemory16Operands(MCInst & Inst,unsigned N) const2357 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2358 addAlignedMemoryOperands(Inst, N);
2359 }
2360
addDupAlignedMemory16Operands(MCInst & Inst,unsigned N) const2361 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2362 addAlignedMemoryOperands(Inst, N);
2363 }
2364
addAlignedMemory32Operands(MCInst & Inst,unsigned N) const2365 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2366 addAlignedMemoryOperands(Inst, N);
2367 }
2368
addDupAlignedMemory32Operands(MCInst & Inst,unsigned N) const2369 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2370 addAlignedMemoryOperands(Inst, N);
2371 }
2372
addAlignedMemory64Operands(MCInst & Inst,unsigned N) const2373 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2374 addAlignedMemoryOperands(Inst, N);
2375 }
2376
addDupAlignedMemory64Operands(MCInst & Inst,unsigned N) const2377 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2378 addAlignedMemoryOperands(Inst, N);
2379 }
2380
addAlignedMemory64or128Operands(MCInst & Inst,unsigned N) const2381 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2382 addAlignedMemoryOperands(Inst, N);
2383 }
2384
addDupAlignedMemory64or128Operands(MCInst & Inst,unsigned N) const2385 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2386 addAlignedMemoryOperands(Inst, N);
2387 }
2388
addAlignedMemory64or128or256Operands(MCInst & Inst,unsigned N) const2389 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2390 addAlignedMemoryOperands(Inst, N);
2391 }
2392
addAddrMode2Operands(MCInst & Inst,unsigned N) const2393 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2394 assert(N == 3 && "Invalid number of operands!");
2395 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2396 if (!Memory.OffsetRegNum) {
2397 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2398 // Special case for #-0
2399 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2400 if (Val < 0) Val = -Val;
2401 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2402 } else {
2403 // For register offset, we encode the shift type and negation flag
2404 // here.
2405 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2406 Memory.ShiftImm, Memory.ShiftType);
2407 }
2408 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2409 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2410 Inst.addOperand(MCOperand::createImm(Val));
2411 }
2412
addAM2OffsetImmOperands(MCInst & Inst,unsigned N) const2413 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2414 assert(N == 2 && "Invalid number of operands!");
2415 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2416 assert(CE && "non-constant AM2OffsetImm operand!");
2417 int32_t Val = CE->getValue();
2418 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2419 // Special case for #-0
2420 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2421 if (Val < 0) Val = -Val;
2422 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2423 Inst.addOperand(MCOperand::createReg(0));
2424 Inst.addOperand(MCOperand::createImm(Val));
2425 }
2426
addAddrMode3Operands(MCInst & Inst,unsigned N) const2427 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2428 assert(N == 3 && "Invalid number of operands!");
2429 // If we have an immediate that's not a constant, treat it as a label
2430 // reference needing a fixup. If it is a constant, it's something else
2431 // and we reject it.
2432 if (isImm()) {
2433 Inst.addOperand(MCOperand::createExpr(getImm()));
2434 Inst.addOperand(MCOperand::createReg(0));
2435 Inst.addOperand(MCOperand::createImm(0));
2436 return;
2437 }
2438
2439 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2440 if (!Memory.OffsetRegNum) {
2441 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2442 // Special case for #-0
2443 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2444 if (Val < 0) Val = -Val;
2445 Val = ARM_AM::getAM3Opc(AddSub, Val);
2446 } else {
2447 // For register offset, we encode the shift type and negation flag
2448 // here.
2449 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2450 }
2451 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2452 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2453 Inst.addOperand(MCOperand::createImm(Val));
2454 }
2455
addAM3OffsetOperands(MCInst & Inst,unsigned N) const2456 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2457 assert(N == 2 && "Invalid number of operands!");
2458 if (Kind == k_PostIndexRegister) {
2459 int32_t Val =
2460 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2461 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2462 Inst.addOperand(MCOperand::createImm(Val));
2463 return;
2464 }
2465
2466 // Constant offset.
2467 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2468 int32_t Val = CE->getValue();
2469 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2470 // Special case for #-0
2471 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2472 if (Val < 0) Val = -Val;
2473 Val = ARM_AM::getAM3Opc(AddSub, Val);
2474 Inst.addOperand(MCOperand::createReg(0));
2475 Inst.addOperand(MCOperand::createImm(Val));
2476 }
2477
addAddrMode5Operands(MCInst & Inst,unsigned N) const2478 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2479 assert(N == 2 && "Invalid number of operands!");
2480 // If we have an immediate that's not a constant, treat it as a label
2481 // reference needing a fixup. If it is a constant, it's something else
2482 // and we reject it.
2483 if (isImm()) {
2484 Inst.addOperand(MCOperand::createExpr(getImm()));
2485 Inst.addOperand(MCOperand::createImm(0));
2486 return;
2487 }
2488
2489 // The lower two bits are always zero and as such are not encoded.
2490 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2491 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2492 // Special case for #-0
2493 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2494 if (Val < 0) Val = -Val;
2495 Val = ARM_AM::getAM5Opc(AddSub, Val);
2496 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2497 Inst.addOperand(MCOperand::createImm(Val));
2498 }
2499
addAddrMode5FP16Operands(MCInst & Inst,unsigned N) const2500 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2501 assert(N == 2 && "Invalid number of operands!");
2502 // If we have an immediate that's not a constant, treat it as a label
2503 // reference needing a fixup. If it is a constant, it's something else
2504 // and we reject it.
2505 if (isImm()) {
2506 Inst.addOperand(MCOperand::createExpr(getImm()));
2507 Inst.addOperand(MCOperand::createImm(0));
2508 return;
2509 }
2510
2511 // The lower bit is always zero and as such is not encoded.
2512 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2513 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2514 // Special case for #-0
2515 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2516 if (Val < 0) Val = -Val;
2517 Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2518 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2519 Inst.addOperand(MCOperand::createImm(Val));
2520 }
2521
addMemImm8s4OffsetOperands(MCInst & Inst,unsigned N) const2522 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2523 assert(N == 2 && "Invalid number of operands!");
2524 // If we have an immediate that's not a constant, treat it as a label
2525 // reference needing a fixup. If it is a constant, it's something else
2526 // and we reject it.
2527 if (isImm()) {
2528 Inst.addOperand(MCOperand::createExpr(getImm()));
2529 Inst.addOperand(MCOperand::createImm(0));
2530 return;
2531 }
2532
2533 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2534 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2535 Inst.addOperand(MCOperand::createImm(Val));
2536 }
2537
addMemImm0_1020s4OffsetOperands(MCInst & Inst,unsigned N) const2538 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2539 assert(N == 2 && "Invalid number of operands!");
2540 // The lower two bits are always zero and as such are not encoded.
2541 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2542 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2543 Inst.addOperand(MCOperand::createImm(Val));
2544 }
2545
addMemImm8OffsetOperands(MCInst & Inst,unsigned N) const2546 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2547 assert(N == 2 && "Invalid number of operands!");
2548 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2549 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2550 Inst.addOperand(MCOperand::createImm(Val));
2551 }
2552
addMemPosImm8OffsetOperands(MCInst & Inst,unsigned N) const2553 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2554 addMemImm8OffsetOperands(Inst, N);
2555 }
2556
addMemNegImm8OffsetOperands(MCInst & Inst,unsigned N) const2557 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2558 addMemImm8OffsetOperands(Inst, N);
2559 }
2560
addMemUImm12OffsetOperands(MCInst & Inst,unsigned N) const2561 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2562 assert(N == 2 && "Invalid number of operands!");
2563 // If this is an immediate, it's a label reference.
2564 if (isImm()) {
2565 addExpr(Inst, getImm());
2566 Inst.addOperand(MCOperand::createImm(0));
2567 return;
2568 }
2569
2570 // Otherwise, it's a normal memory reg+offset.
2571 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2572 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2573 Inst.addOperand(MCOperand::createImm(Val));
2574 }
2575
addMemImm12OffsetOperands(MCInst & Inst,unsigned N) const2576 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2577 assert(N == 2 && "Invalid number of operands!");
2578 // If this is an immediate, it's a label reference.
2579 if (isImm()) {
2580 addExpr(Inst, getImm());
2581 Inst.addOperand(MCOperand::createImm(0));
2582 return;
2583 }
2584
2585 // Otherwise, it's a normal memory reg+offset.
2586 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2587 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2588 Inst.addOperand(MCOperand::createImm(Val));
2589 }
2590
addConstPoolAsmImmOperands(MCInst & Inst,unsigned N) const2591 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2592 assert(N == 1 && "Invalid number of operands!");
2593 // This is container for the immediate that we will create the constant
2594 // pool from
2595 addExpr(Inst, getConstantPoolImm());
2596 return;
2597 }
2598
addMemTBBOperands(MCInst & Inst,unsigned N) const2599 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2600 assert(N == 2 && "Invalid number of operands!");
2601 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2602 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2603 }
2604
addMemTBHOperands(MCInst & Inst,unsigned N) const2605 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2606 assert(N == 2 && "Invalid number of operands!");
2607 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2608 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2609 }
2610
addMemRegOffsetOperands(MCInst & Inst,unsigned N) const2611 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2612 assert(N == 3 && "Invalid number of operands!");
2613 unsigned Val =
2614 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2615 Memory.ShiftImm, Memory.ShiftType);
2616 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2617 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2618 Inst.addOperand(MCOperand::createImm(Val));
2619 }
2620
addT2MemRegOffsetOperands(MCInst & Inst,unsigned N) const2621 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2622 assert(N == 3 && "Invalid number of operands!");
2623 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2624 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2625 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2626 }
2627
addMemThumbRROperands(MCInst & Inst,unsigned N) const2628 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2629 assert(N == 2 && "Invalid number of operands!");
2630 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2631 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2632 }
2633
addMemThumbRIs4Operands(MCInst & Inst,unsigned N) const2634 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2635 assert(N == 2 && "Invalid number of operands!");
2636 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2637 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2638 Inst.addOperand(MCOperand::createImm(Val));
2639 }
2640
addMemThumbRIs2Operands(MCInst & Inst,unsigned N) const2641 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2642 assert(N == 2 && "Invalid number of operands!");
2643 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2644 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2645 Inst.addOperand(MCOperand::createImm(Val));
2646 }
2647
addMemThumbRIs1Operands(MCInst & Inst,unsigned N) const2648 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2649 assert(N == 2 && "Invalid number of operands!");
2650 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2651 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2652 Inst.addOperand(MCOperand::createImm(Val));
2653 }
2654
addMemThumbSPIOperands(MCInst & Inst,unsigned N) const2655 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2656 assert(N == 2 && "Invalid number of operands!");
2657 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2658 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2659 Inst.addOperand(MCOperand::createImm(Val));
2660 }
2661
addPostIdxImm8Operands(MCInst & Inst,unsigned N) const2662 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2663 assert(N == 1 && "Invalid number of operands!");
2664 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2665 assert(CE && "non-constant post-idx-imm8 operand!");
2666 int Imm = CE->getValue();
2667 bool isAdd = Imm >= 0;
2668 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2669 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2670 Inst.addOperand(MCOperand::createImm(Imm));
2671 }
2672
addPostIdxImm8s4Operands(MCInst & Inst,unsigned N) const2673 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2674 assert(N == 1 && "Invalid number of operands!");
2675 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2676 assert(CE && "non-constant post-idx-imm8s4 operand!");
2677 int Imm = CE->getValue();
2678 bool isAdd = Imm >= 0;
2679 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2680 // Immediate is scaled by 4.
2681 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2682 Inst.addOperand(MCOperand::createImm(Imm));
2683 }
2684
addPostIdxRegOperands(MCInst & Inst,unsigned N) const2685 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2686 assert(N == 2 && "Invalid number of operands!");
2687 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2688 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2689 }
2690
addPostIdxRegShiftedOperands(MCInst & Inst,unsigned N) const2691 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2692 assert(N == 2 && "Invalid number of operands!");
2693 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2694 // The sign, shift type, and shift amount are encoded in a single operand
2695 // using the AM2 encoding helpers.
2696 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2697 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2698 PostIdxReg.ShiftTy);
2699 Inst.addOperand(MCOperand::createImm(Imm));
2700 }
2701
addMSRMaskOperands(MCInst & Inst,unsigned N) const2702 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2703 assert(N == 1 && "Invalid number of operands!");
2704 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2705 }
2706
addBankedRegOperands(MCInst & Inst,unsigned N) const2707 void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2708 assert(N == 1 && "Invalid number of operands!");
2709 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2710 }
2711
addProcIFlagsOperands(MCInst & Inst,unsigned N) const2712 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2713 assert(N == 1 && "Invalid number of operands!");
2714 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2715 }
2716
addVecListOperands(MCInst & Inst,unsigned N) const2717 void addVecListOperands(MCInst &Inst, unsigned N) const {
2718 assert(N == 1 && "Invalid number of operands!");
2719 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2720 }
2721
addVecListIndexedOperands(MCInst & Inst,unsigned N) const2722 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2723 assert(N == 2 && "Invalid number of operands!");
2724 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2725 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2726 }
2727
addVectorIndex8Operands(MCInst & Inst,unsigned N) const2728 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2729 assert(N == 1 && "Invalid number of operands!");
2730 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2731 }
2732
addVectorIndex16Operands(MCInst & Inst,unsigned N) const2733 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2734 assert(N == 1 && "Invalid number of operands!");
2735 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2736 }
2737
addVectorIndex32Operands(MCInst & Inst,unsigned N) const2738 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2739 assert(N == 1 && "Invalid number of operands!");
2740 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2741 }
2742
addVectorIndex64Operands(MCInst & Inst,unsigned N) const2743 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2744 assert(N == 1 && "Invalid number of operands!");
2745 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2746 }
2747
addNEONi8splatOperands(MCInst & Inst,unsigned N) const2748 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2749 assert(N == 1 && "Invalid number of operands!");
2750 // The immediate encodes the type of constant as well as the value.
2751 // Mask in that this is an i8 splat.
2752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2753 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2754 }
2755
addNEONi16splatOperands(MCInst & Inst,unsigned N) const2756 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2757 assert(N == 1 && "Invalid number of operands!");
2758 // The immediate encodes the type of constant as well as the value.
2759 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2760 unsigned Value = CE->getValue();
2761 Value = ARM_AM::encodeNEONi16splat(Value);
2762 Inst.addOperand(MCOperand::createImm(Value));
2763 }
2764
addNEONi16splatNotOperands(MCInst & Inst,unsigned N) const2765 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2766 assert(N == 1 && "Invalid number of operands!");
2767 // The immediate encodes the type of constant as well as the value.
2768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2769 unsigned Value = CE->getValue();
2770 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2771 Inst.addOperand(MCOperand::createImm(Value));
2772 }
2773
addNEONi32splatOperands(MCInst & Inst,unsigned N) const2774 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2775 assert(N == 1 && "Invalid number of operands!");
2776 // The immediate encodes the type of constant as well as the value.
2777 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2778 unsigned Value = CE->getValue();
2779 Value = ARM_AM::encodeNEONi32splat(Value);
2780 Inst.addOperand(MCOperand::createImm(Value));
2781 }
2782
addNEONi32splatNotOperands(MCInst & Inst,unsigned N) const2783 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2784 assert(N == 1 && "Invalid number of operands!");
2785 // The immediate encodes the type of constant as well as the value.
2786 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2787 unsigned Value = CE->getValue();
2788 Value = ARM_AM::encodeNEONi32splat(~Value);
2789 Inst.addOperand(MCOperand::createImm(Value));
2790 }
2791
addNEONi8ReplicateOperands(MCInst & Inst,bool Inv) const2792 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2793 // The immediate encodes the type of constant as well as the value.
2794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2795 assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2796 Inst.getOpcode() == ARM::VMOVv16i8) &&
2797 "All instructions that wants to replicate non-zero byte "
2798 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2799 unsigned Value = CE->getValue();
2800 if (Inv)
2801 Value = ~Value;
2802 unsigned B = Value & 0xff;
2803 B |= 0xe00; // cmode = 0b1110
2804 Inst.addOperand(MCOperand::createImm(B));
2805 }
2806
addNEONinvi8ReplicateOperands(MCInst & Inst,unsigned N) const2807 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2808 assert(N == 1 && "Invalid number of operands!");
2809 addNEONi8ReplicateOperands(Inst, true);
2810 }
2811
encodeNeonVMOVImmediate(unsigned Value)2812 static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2813 if (Value >= 256 && Value <= 0xffff)
2814 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2815 else if (Value > 0xffff && Value <= 0xffffff)
2816 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2817 else if (Value > 0xffffff)
2818 Value = (Value >> 24) | 0x600;
2819 return Value;
2820 }
2821
addNEONi32vmovOperands(MCInst & Inst,unsigned N) const2822 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2823 assert(N == 1 && "Invalid number of operands!");
2824 // The immediate encodes the type of constant as well as the value.
2825 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2826 unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2827 Inst.addOperand(MCOperand::createImm(Value));
2828 }
2829
addNEONvmovi8ReplicateOperands(MCInst & Inst,unsigned N) const2830 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2831 assert(N == 1 && "Invalid number of operands!");
2832 addNEONi8ReplicateOperands(Inst, false);
2833 }
2834
addNEONvmovi16ReplicateOperands(MCInst & Inst,unsigned N) const2835 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2836 assert(N == 1 && "Invalid number of operands!");
2837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2838 assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2839 Inst.getOpcode() == ARM::VMOVv8i16 ||
2840 Inst.getOpcode() == ARM::VMVNv4i16 ||
2841 Inst.getOpcode() == ARM::VMVNv8i16) &&
2842 "All instructions that want to replicate non-zero half-word "
2843 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2844 uint64_t Value = CE->getValue();
2845 unsigned Elem = Value & 0xffff;
2846 if (Elem >= 256)
2847 Elem = (Elem >> 8) | 0x200;
2848 Inst.addOperand(MCOperand::createImm(Elem));
2849 }
2850
addNEONi32vmovNegOperands(MCInst & Inst,unsigned N) const2851 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2852 assert(N == 1 && "Invalid number of operands!");
2853 // The immediate encodes the type of constant as well as the value.
2854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2855 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2856 Inst.addOperand(MCOperand::createImm(Value));
2857 }
2858
addNEONvmovi32ReplicateOperands(MCInst & Inst,unsigned N) const2859 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2860 assert(N == 1 && "Invalid number of operands!");
2861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2862 assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2863 Inst.getOpcode() == ARM::VMOVv4i32 ||
2864 Inst.getOpcode() == ARM::VMVNv2i32 ||
2865 Inst.getOpcode() == ARM::VMVNv4i32) &&
2866 "All instructions that want to replicate non-zero word "
2867 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2868 uint64_t Value = CE->getValue();
2869 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2870 Inst.addOperand(MCOperand::createImm(Elem));
2871 }
2872
addNEONi64splatOperands(MCInst & Inst,unsigned N) const2873 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2874 assert(N == 1 && "Invalid number of operands!");
2875 // The immediate encodes the type of constant as well as the value.
2876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2877 uint64_t Value = CE->getValue();
2878 unsigned Imm = 0;
2879 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2880 Imm |= (Value & 1) << i;
2881 }
2882 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2883 }
2884
addComplexRotationEvenOperands(MCInst & Inst,unsigned N) const2885 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2886 assert(N == 1 && "Invalid number of operands!");
2887 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2888 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2889 }
2890
addComplexRotationOddOperands(MCInst & Inst,unsigned N) const2891 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2892 assert(N == 1 && "Invalid number of operands!");
2893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2894 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2895 }
2896
2897 void print(raw_ostream &OS) const override;
2898
CreateITMask(unsigned Mask,SMLoc S)2899 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2900 auto Op = make_unique<ARMOperand>(k_ITCondMask);
2901 Op->ITMask.Mask = Mask;
2902 Op->StartLoc = S;
2903 Op->EndLoc = S;
2904 return Op;
2905 }
2906
CreateCondCode(ARMCC::CondCodes CC,SMLoc S)2907 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2908 SMLoc S) {
2909 auto Op = make_unique<ARMOperand>(k_CondCode);
2910 Op->CC.Val = CC;
2911 Op->StartLoc = S;
2912 Op->EndLoc = S;
2913 return Op;
2914 }
2915
CreateCoprocNum(unsigned CopVal,SMLoc S)2916 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2917 auto Op = make_unique<ARMOperand>(k_CoprocNum);
2918 Op->Cop.Val = CopVal;
2919 Op->StartLoc = S;
2920 Op->EndLoc = S;
2921 return Op;
2922 }
2923
CreateCoprocReg(unsigned CopVal,SMLoc S)2924 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2925 auto Op = make_unique<ARMOperand>(k_CoprocReg);
2926 Op->Cop.Val = CopVal;
2927 Op->StartLoc = S;
2928 Op->EndLoc = S;
2929 return Op;
2930 }
2931
CreateCoprocOption(unsigned Val,SMLoc S,SMLoc E)2932 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2933 SMLoc E) {
2934 auto Op = make_unique<ARMOperand>(k_CoprocOption);
2935 Op->Cop.Val = Val;
2936 Op->StartLoc = S;
2937 Op->EndLoc = E;
2938 return Op;
2939 }
2940
CreateCCOut(unsigned RegNum,SMLoc S)2941 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2942 auto Op = make_unique<ARMOperand>(k_CCOut);
2943 Op->Reg.RegNum = RegNum;
2944 Op->StartLoc = S;
2945 Op->EndLoc = S;
2946 return Op;
2947 }
2948
CreateToken(StringRef Str,SMLoc S)2949 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2950 auto Op = make_unique<ARMOperand>(k_Token);
2951 Op->Tok.Data = Str.data();
2952 Op->Tok.Length = Str.size();
2953 Op->StartLoc = S;
2954 Op->EndLoc = S;
2955 return Op;
2956 }
2957
CreateReg(unsigned RegNum,SMLoc S,SMLoc E)2958 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2959 SMLoc E) {
2960 auto Op = make_unique<ARMOperand>(k_Register);
2961 Op->Reg.RegNum = RegNum;
2962 Op->StartLoc = S;
2963 Op->EndLoc = E;
2964 return Op;
2965 }
2966
2967 static std::unique_ptr<ARMOperand>
CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,unsigned SrcReg,unsigned ShiftReg,unsigned ShiftImm,SMLoc S,SMLoc E)2968 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2969 unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2970 SMLoc E) {
2971 auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2972 Op->RegShiftedReg.ShiftTy = ShTy;
2973 Op->RegShiftedReg.SrcReg = SrcReg;
2974 Op->RegShiftedReg.ShiftReg = ShiftReg;
2975 Op->RegShiftedReg.ShiftImm = ShiftImm;
2976 Op->StartLoc = S;
2977 Op->EndLoc = E;
2978 return Op;
2979 }
2980
2981 static std::unique_ptr<ARMOperand>
CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,unsigned SrcReg,unsigned ShiftImm,SMLoc S,SMLoc E)2982 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2983 unsigned ShiftImm, SMLoc S, SMLoc E) {
2984 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2985 Op->RegShiftedImm.ShiftTy = ShTy;
2986 Op->RegShiftedImm.SrcReg = SrcReg;
2987 Op->RegShiftedImm.ShiftImm = ShiftImm;
2988 Op->StartLoc = S;
2989 Op->EndLoc = E;
2990 return Op;
2991 }
2992
CreateShifterImm(bool isASR,unsigned Imm,SMLoc S,SMLoc E)2993 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2994 SMLoc S, SMLoc E) {
2995 auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2996 Op->ShifterImm.isASR = isASR;
2997 Op->ShifterImm.Imm = Imm;
2998 Op->StartLoc = S;
2999 Op->EndLoc = E;
3000 return Op;
3001 }
3002
CreateRotImm(unsigned Imm,SMLoc S,SMLoc E)3003 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3004 SMLoc E) {
3005 auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3006 Op->RotImm.Imm = Imm;
3007 Op->StartLoc = S;
3008 Op->EndLoc = E;
3009 return Op;
3010 }
3011
CreateModImm(unsigned Bits,unsigned Rot,SMLoc S,SMLoc E)3012 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3013 SMLoc S, SMLoc E) {
3014 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3015 Op->ModImm.Bits = Bits;
3016 Op->ModImm.Rot = Rot;
3017 Op->StartLoc = S;
3018 Op->EndLoc = E;
3019 return Op;
3020 }
3021
3022 static std::unique_ptr<ARMOperand>
CreateConstantPoolImm(const MCExpr * Val,SMLoc S,SMLoc E)3023 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3024 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3025 Op->Imm.Val = Val;
3026 Op->StartLoc = S;
3027 Op->EndLoc = E;
3028 return Op;
3029 }
3030
3031 static std::unique_ptr<ARMOperand>
CreateBitfield(unsigned LSB,unsigned Width,SMLoc S,SMLoc E)3032 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3033 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3034 Op->Bitfield.LSB = LSB;
3035 Op->Bitfield.Width = Width;
3036 Op->StartLoc = S;
3037 Op->EndLoc = E;
3038 return Op;
3039 }
3040
3041 static std::unique_ptr<ARMOperand>
CreateRegList(SmallVectorImpl<std::pair<unsigned,unsigned>> & Regs,SMLoc StartLoc,SMLoc EndLoc)3042 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3043 SMLoc StartLoc, SMLoc EndLoc) {
3044 assert(Regs.size() > 0 && "RegList contains no registers?");
3045 KindTy Kind = k_RegisterList;
3046
3047 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3048 Kind = k_DPRRegisterList;
3049 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3050 contains(Regs.front().second))
3051 Kind = k_SPRRegisterList;
3052
3053 // Sort based on the register encoding values.
3054 array_pod_sort(Regs.begin(), Regs.end());
3055
3056 auto Op = make_unique<ARMOperand>(Kind);
3057 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3058 I = Regs.begin(), E = Regs.end(); I != E; ++I)
3059 Op->Registers.push_back(I->second);
3060 Op->StartLoc = StartLoc;
3061 Op->EndLoc = EndLoc;
3062 return Op;
3063 }
3064
CreateVectorList(unsigned RegNum,unsigned Count,bool isDoubleSpaced,SMLoc S,SMLoc E)3065 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3066 unsigned Count,
3067 bool isDoubleSpaced,
3068 SMLoc S, SMLoc E) {
3069 auto Op = make_unique<ARMOperand>(k_VectorList);
3070 Op->VectorList.RegNum = RegNum;
3071 Op->VectorList.Count = Count;
3072 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3073 Op->StartLoc = S;
3074 Op->EndLoc = E;
3075 return Op;
3076 }
3077
3078 static std::unique_ptr<ARMOperand>
CreateVectorListAllLanes(unsigned RegNum,unsigned Count,bool isDoubleSpaced,SMLoc S,SMLoc E)3079 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3080 SMLoc S, SMLoc E) {
3081 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3082 Op->VectorList.RegNum = RegNum;
3083 Op->VectorList.Count = Count;
3084 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3085 Op->StartLoc = S;
3086 Op->EndLoc = E;
3087 return Op;
3088 }
3089
3090 static std::unique_ptr<ARMOperand>
CreateVectorListIndexed(unsigned RegNum,unsigned Count,unsigned Index,bool isDoubleSpaced,SMLoc S,SMLoc E)3091 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3092 bool isDoubleSpaced, SMLoc S, SMLoc E) {
3093 auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3094 Op->VectorList.RegNum = RegNum;
3095 Op->VectorList.Count = Count;
3096 Op->VectorList.LaneIndex = Index;
3097 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3098 Op->StartLoc = S;
3099 Op->EndLoc = E;
3100 return Op;
3101 }
3102
3103 static std::unique_ptr<ARMOperand>
CreateVectorIndex(unsigned Idx,SMLoc S,SMLoc E,MCContext & Ctx)3104 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3105 auto Op = make_unique<ARMOperand>(k_VectorIndex);
3106 Op->VectorIndex.Val = Idx;
3107 Op->StartLoc = S;
3108 Op->EndLoc = E;
3109 return Op;
3110 }
3111
CreateImm(const MCExpr * Val,SMLoc S,SMLoc E)3112 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3113 SMLoc E) {
3114 auto Op = make_unique<ARMOperand>(k_Immediate);
3115 Op->Imm.Val = Val;
3116 Op->StartLoc = S;
3117 Op->EndLoc = E;
3118 return Op;
3119 }
3120
3121 static std::unique_ptr<ARMOperand>
CreateMem(unsigned BaseRegNum,const MCConstantExpr * OffsetImm,unsigned OffsetRegNum,ARM_AM::ShiftOpc ShiftType,unsigned ShiftImm,unsigned Alignment,bool isNegative,SMLoc S,SMLoc E,SMLoc AlignmentLoc=SMLoc ())3122 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3123 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3124 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3125 SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3126 auto Op = make_unique<ARMOperand>(k_Memory);
3127 Op->Memory.BaseRegNum = BaseRegNum;
3128 Op->Memory.OffsetImm = OffsetImm;
3129 Op->Memory.OffsetRegNum = OffsetRegNum;
3130 Op->Memory.ShiftType = ShiftType;
3131 Op->Memory.ShiftImm = ShiftImm;
3132 Op->Memory.Alignment = Alignment;
3133 Op->Memory.isNegative = isNegative;
3134 Op->StartLoc = S;
3135 Op->EndLoc = E;
3136 Op->AlignmentLoc = AlignmentLoc;
3137 return Op;
3138 }
3139
3140 static std::unique_ptr<ARMOperand>
CreatePostIdxReg(unsigned RegNum,bool isAdd,ARM_AM::ShiftOpc ShiftTy,unsigned ShiftImm,SMLoc S,SMLoc E)3141 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3142 unsigned ShiftImm, SMLoc S, SMLoc E) {
3143 auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3144 Op->PostIdxReg.RegNum = RegNum;
3145 Op->PostIdxReg.isAdd = isAdd;
3146 Op->PostIdxReg.ShiftTy = ShiftTy;
3147 Op->PostIdxReg.ShiftImm = ShiftImm;
3148 Op->StartLoc = S;
3149 Op->EndLoc = E;
3150 return Op;
3151 }
3152
CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,SMLoc S)3153 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3154 SMLoc S) {
3155 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3156 Op->MBOpt.Val = Opt;
3157 Op->StartLoc = S;
3158 Op->EndLoc = S;
3159 return Op;
3160 }
3161
3162 static std::unique_ptr<ARMOperand>
CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,SMLoc S)3163 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3164 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3165 Op->ISBOpt.Val = Opt;
3166 Op->StartLoc = S;
3167 Op->EndLoc = S;
3168 return Op;
3169 }
3170
3171 static std::unique_ptr<ARMOperand>
CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt,SMLoc S)3172 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3173 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3174 Op->TSBOpt.Val = Opt;
3175 Op->StartLoc = S;
3176 Op->EndLoc = S;
3177 return Op;
3178 }
3179
CreateProcIFlags(ARM_PROC::IFlags IFlags,SMLoc S)3180 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3181 SMLoc S) {
3182 auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3183 Op->IFlags.Val = IFlags;
3184 Op->StartLoc = S;
3185 Op->EndLoc = S;
3186 return Op;
3187 }
3188
CreateMSRMask(unsigned MMask,SMLoc S)3189 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3190 auto Op = make_unique<ARMOperand>(k_MSRMask);
3191 Op->MMask.Val = MMask;
3192 Op->StartLoc = S;
3193 Op->EndLoc = S;
3194 return Op;
3195 }
3196
CreateBankedReg(unsigned Reg,SMLoc S)3197 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3198 auto Op = make_unique<ARMOperand>(k_BankedReg);
3199 Op->BankedReg.Val = Reg;
3200 Op->StartLoc = S;
3201 Op->EndLoc = S;
3202 return Op;
3203 }
3204 };
3205
3206 } // end anonymous namespace.
3207
print(raw_ostream & OS) const3208 void ARMOperand::print(raw_ostream &OS) const {
3209 auto RegName = [](unsigned Reg) {
3210 if (Reg)
3211 return ARMInstPrinter::getRegisterName(Reg);
3212 else
3213 return "noreg";
3214 };
3215
3216 switch (Kind) {
3217 case k_CondCode:
3218 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3219 break;
3220 case k_CCOut:
3221 OS << "<ccout " << RegName(getReg()) << ">";
3222 break;
3223 case k_ITCondMask: {
3224 static const char *const MaskStr[] = {
3225 "(invalid)", "(teee)", "(tee)", "(teet)",
3226 "(te)", "(tete)", "(tet)", "(tett)",
3227 "(t)", "(ttee)", "(tte)", "(ttet)",
3228 "(tt)", "(ttte)", "(ttt)", "(tttt)"
3229 };
3230 assert((ITMask.Mask & 0xf) == ITMask.Mask);
3231 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3232 break;
3233 }
3234 case k_CoprocNum:
3235 OS << "<coprocessor number: " << getCoproc() << ">";
3236 break;
3237 case k_CoprocReg:
3238 OS << "<coprocessor register: " << getCoproc() << ">";
3239 break;
3240 case k_CoprocOption:
3241 OS << "<coprocessor option: " << CoprocOption.Val << ">";
3242 break;
3243 case k_MSRMask:
3244 OS << "<mask: " << getMSRMask() << ">";
3245 break;
3246 case k_BankedReg:
3247 OS << "<banked reg: " << getBankedReg() << ">";
3248 break;
3249 case k_Immediate:
3250 OS << *getImm();
3251 break;
3252 case k_MemBarrierOpt:
3253 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3254 break;
3255 case k_InstSyncBarrierOpt:
3256 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3257 break;
3258 case k_TraceSyncBarrierOpt:
3259 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3260 break;
3261 case k_Memory:
3262 OS << "<memory";
3263 if (Memory.BaseRegNum)
3264 OS << " base:" << RegName(Memory.BaseRegNum);
3265 if (Memory.OffsetImm)
3266 OS << " offset-imm:" << *Memory.OffsetImm;
3267 if (Memory.OffsetRegNum)
3268 OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3269 << RegName(Memory.OffsetRegNum);
3270 if (Memory.ShiftType != ARM_AM::no_shift) {
3271 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3272 OS << " shift-imm:" << Memory.ShiftImm;
3273 }
3274 if (Memory.Alignment)
3275 OS << " alignment:" << Memory.Alignment;
3276 OS << ">";
3277 break;
3278 case k_PostIndexRegister:
3279 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3280 << RegName(PostIdxReg.RegNum);
3281 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3282 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3283 << PostIdxReg.ShiftImm;
3284 OS << ">";
3285 break;
3286 case k_ProcIFlags: {
3287 OS << "<ARM_PROC::";
3288 unsigned IFlags = getProcIFlags();
3289 for (int i=2; i >= 0; --i)
3290 if (IFlags & (1 << i))
3291 OS << ARM_PROC::IFlagsToString(1 << i);
3292 OS << ">";
3293 break;
3294 }
3295 case k_Register:
3296 OS << "<register " << RegName(getReg()) << ">";
3297 break;
3298 case k_ShifterImmediate:
3299 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3300 << " #" << ShifterImm.Imm << ">";
3301 break;
3302 case k_ShiftedRegister:
3303 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3304 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3305 << RegName(RegShiftedReg.ShiftReg) << ">";
3306 break;
3307 case k_ShiftedImmediate:
3308 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3309 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3310 << RegShiftedImm.ShiftImm << ">";
3311 break;
3312 case k_RotateImmediate:
3313 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3314 break;
3315 case k_ModifiedImmediate:
3316 OS << "<mod_imm #" << ModImm.Bits << ", #"
3317 << ModImm.Rot << ")>";
3318 break;
3319 case k_ConstantPoolImmediate:
3320 OS << "<constant_pool_imm #" << *getConstantPoolImm();
3321 break;
3322 case k_BitfieldDescriptor:
3323 OS << "<bitfield " << "lsb: " << Bitfield.LSB
3324 << ", width: " << Bitfield.Width << ">";
3325 break;
3326 case k_RegisterList:
3327 case k_DPRRegisterList:
3328 case k_SPRRegisterList: {
3329 OS << "<register_list ";
3330
3331 const SmallVectorImpl<unsigned> &RegList = getRegList();
3332 for (SmallVectorImpl<unsigned>::const_iterator
3333 I = RegList.begin(), E = RegList.end(); I != E; ) {
3334 OS << RegName(*I);
3335 if (++I < E) OS << ", ";
3336 }
3337
3338 OS << ">";
3339 break;
3340 }
3341 case k_VectorList:
3342 OS << "<vector_list " << VectorList.Count << " * "
3343 << RegName(VectorList.RegNum) << ">";
3344 break;
3345 case k_VectorListAllLanes:
3346 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3347 << RegName(VectorList.RegNum) << ">";
3348 break;
3349 case k_VectorListIndexed:
3350 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3351 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3352 break;
3353 case k_Token:
3354 OS << "'" << getToken() << "'";
3355 break;
3356 case k_VectorIndex:
3357 OS << "<vectorindex " << getVectorIndex() << ">";
3358 break;
3359 }
3360 }
3361
3362 /// @name Auto-generated Match Functions
3363 /// {
3364
3365 static unsigned MatchRegisterName(StringRef Name);
3366
3367 /// }
3368
ParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)3369 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3370 SMLoc &StartLoc, SMLoc &EndLoc) {
3371 const AsmToken &Tok = getParser().getTok();
3372 StartLoc = Tok.getLoc();
3373 EndLoc = Tok.getEndLoc();
3374 RegNo = tryParseRegister();
3375
3376 return (RegNo == (unsigned)-1);
3377 }
3378
3379 /// Try to parse a register name. The token must be an Identifier when called,
3380 /// and if it is a register name the token is eaten and the register number is
3381 /// returned. Otherwise return -1.
tryParseRegister()3382 int ARMAsmParser::tryParseRegister() {
3383 MCAsmParser &Parser = getParser();
3384 const AsmToken &Tok = Parser.getTok();
3385 if (Tok.isNot(AsmToken::Identifier)) return -1;
3386
3387 std::string lowerCase = Tok.getString().lower();
3388 unsigned RegNum = MatchRegisterName(lowerCase);
3389 if (!RegNum) {
3390 RegNum = StringSwitch<unsigned>(lowerCase)
3391 .Case("r13", ARM::SP)
3392 .Case("r14", ARM::LR)
3393 .Case("r15", ARM::PC)
3394 .Case("ip", ARM::R12)
3395 // Additional register name aliases for 'gas' compatibility.
3396 .Case("a1", ARM::R0)
3397 .Case("a2", ARM::R1)
3398 .Case("a3", ARM::R2)
3399 .Case("a4", ARM::R3)
3400 .Case("v1", ARM::R4)
3401 .Case("v2", ARM::R5)
3402 .Case("v3", ARM::R6)
3403 .Case("v4", ARM::R7)
3404 .Case("v5", ARM::R8)
3405 .Case("v6", ARM::R9)
3406 .Case("v7", ARM::R10)
3407 .Case("v8", ARM::R11)
3408 .Case("sb", ARM::R9)
3409 .Case("sl", ARM::R10)
3410 .Case("fp", ARM::R11)
3411 .Default(0);
3412 }
3413 if (!RegNum) {
3414 // Check for aliases registered via .req. Canonicalize to lower case.
3415 // That's more consistent since register names are case insensitive, and
3416 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3417 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3418 // If no match, return failure.
3419 if (Entry == RegisterReqs.end())
3420 return -1;
3421 Parser.Lex(); // Eat identifier token.
3422 return Entry->getValue();
3423 }
3424
3425 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3426 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3427 return -1;
3428
3429 Parser.Lex(); // Eat identifier token.
3430
3431 return RegNum;
3432 }
3433
3434 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3435 // If a recoverable error occurs, return 1. If an irrecoverable error
3436 // occurs, return -1. An irrecoverable error is one where tokens have been
3437 // consumed in the process of trying to parse the shifter (i.e., when it is
3438 // indeed a shifter operand, but malformed).
tryParseShiftRegister(OperandVector & Operands)3439 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3440 MCAsmParser &Parser = getParser();
3441 SMLoc S = Parser.getTok().getLoc();
3442 const AsmToken &Tok = Parser.getTok();
3443 if (Tok.isNot(AsmToken::Identifier))
3444 return -1;
3445
3446 std::string lowerCase = Tok.getString().lower();
3447 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3448 .Case("asl", ARM_AM::lsl)
3449 .Case("lsl", ARM_AM::lsl)
3450 .Case("lsr", ARM_AM::lsr)
3451 .Case("asr", ARM_AM::asr)
3452 .Case("ror", ARM_AM::ror)
3453 .Case("rrx", ARM_AM::rrx)
3454 .Default(ARM_AM::no_shift);
3455
3456 if (ShiftTy == ARM_AM::no_shift)
3457 return 1;
3458
3459 Parser.Lex(); // Eat the operator.
3460
3461 // The source register for the shift has already been added to the
3462 // operand list, so we need to pop it off and combine it into the shifted
3463 // register operand instead.
3464 std::unique_ptr<ARMOperand> PrevOp(
3465 (ARMOperand *)Operands.pop_back_val().release());
3466 if (!PrevOp->isReg())
3467 return Error(PrevOp->getStartLoc(), "shift must be of a register");
3468 int SrcReg = PrevOp->getReg();
3469
3470 SMLoc EndLoc;
3471 int64_t Imm = 0;
3472 int ShiftReg = 0;
3473 if (ShiftTy == ARM_AM::rrx) {
3474 // RRX Doesn't have an explicit shift amount. The encoder expects
3475 // the shift register to be the same as the source register. Seems odd,
3476 // but OK.
3477 ShiftReg = SrcReg;
3478 } else {
3479 // Figure out if this is shifted by a constant or a register (for non-RRX).
3480 if (Parser.getTok().is(AsmToken::Hash) ||
3481 Parser.getTok().is(AsmToken::Dollar)) {
3482 Parser.Lex(); // Eat hash.
3483 SMLoc ImmLoc = Parser.getTok().getLoc();
3484 const MCExpr *ShiftExpr = nullptr;
3485 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3486 Error(ImmLoc, "invalid immediate shift value");
3487 return -1;
3488 }
3489 // The expression must be evaluatable as an immediate.
3490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3491 if (!CE) {
3492 Error(ImmLoc, "invalid immediate shift value");
3493 return -1;
3494 }
3495 // Range check the immediate.
3496 // lsl, ror: 0 <= imm <= 31
3497 // lsr, asr: 0 <= imm <= 32
3498 Imm = CE->getValue();
3499 if (Imm < 0 ||
3500 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3501 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3502 Error(ImmLoc, "immediate shift value out of range");
3503 return -1;
3504 }
3505 // shift by zero is a nop. Always send it through as lsl.
3506 // ('as' compatibility)
3507 if (Imm == 0)
3508 ShiftTy = ARM_AM::lsl;
3509 } else if (Parser.getTok().is(AsmToken::Identifier)) {
3510 SMLoc L = Parser.getTok().getLoc();
3511 EndLoc = Parser.getTok().getEndLoc();
3512 ShiftReg = tryParseRegister();
3513 if (ShiftReg == -1) {
3514 Error(L, "expected immediate or register in shift operand");
3515 return -1;
3516 }
3517 } else {
3518 Error(Parser.getTok().getLoc(),
3519 "expected immediate or register in shift operand");
3520 return -1;
3521 }
3522 }
3523
3524 if (ShiftReg && ShiftTy != ARM_AM::rrx)
3525 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3526 ShiftReg, Imm,
3527 S, EndLoc));
3528 else
3529 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3530 S, EndLoc));
3531
3532 return 0;
3533 }
3534
3535 /// Try to parse a register name. The token must be an Identifier when called.
3536 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3537 /// if there is a "writeback". 'true' if it's not a register.
3538 ///
3539 /// TODO this is likely to change to allow different register types and or to
3540 /// parse for a specific register type.
tryParseRegisterWithWriteBack(OperandVector & Operands)3541 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3542 MCAsmParser &Parser = getParser();
3543 SMLoc RegStartLoc = Parser.getTok().getLoc();
3544 SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3545 int RegNo = tryParseRegister();
3546 if (RegNo == -1)
3547 return true;
3548
3549 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3550
3551 const AsmToken &ExclaimTok = Parser.getTok();
3552 if (ExclaimTok.is(AsmToken::Exclaim)) {
3553 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3554 ExclaimTok.getLoc()));
3555 Parser.Lex(); // Eat exclaim token
3556 return false;
3557 }
3558
3559 // Also check for an index operand. This is only legal for vector registers,
3560 // but that'll get caught OK in operand matching, so we don't need to
3561 // explicitly filter everything else out here.
3562 if (Parser.getTok().is(AsmToken::LBrac)) {
3563 SMLoc SIdx = Parser.getTok().getLoc();
3564 Parser.Lex(); // Eat left bracket token.
3565
3566 const MCExpr *ImmVal;
3567 if (getParser().parseExpression(ImmVal))
3568 return true;
3569 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3570 if (!MCE)
3571 return TokError("immediate value expected for vector index");
3572
3573 if (Parser.getTok().isNot(AsmToken::RBrac))
3574 return Error(Parser.getTok().getLoc(), "']' expected");
3575
3576 SMLoc E = Parser.getTok().getEndLoc();
3577 Parser.Lex(); // Eat right bracket token.
3578
3579 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3580 SIdx, E,
3581 getContext()));
3582 }
3583
3584 return false;
3585 }
3586
3587 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3588 /// instruction with a symbolic operand name.
3589 /// We accept "crN" syntax for GAS compatibility.
3590 /// <operand-name> ::= <prefix><number>
3591 /// If CoprocOp is 'c', then:
3592 /// <prefix> ::= c | cr
3593 /// If CoprocOp is 'p', then :
3594 /// <prefix> ::= p
3595 /// <number> ::= integer in range [0, 15]
MatchCoprocessorOperandName(StringRef Name,char CoprocOp)3596 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3597 // Use the same layout as the tablegen'erated register name matcher. Ugly,
3598 // but efficient.
3599 if (Name.size() < 2 || Name[0] != CoprocOp)
3600 return -1;
3601 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3602
3603 switch (Name.size()) {
3604 default: return -1;
3605 case 1:
3606 switch (Name[0]) {
3607 default: return -1;
3608 case '0': return 0;
3609 case '1': return 1;
3610 case '2': return 2;
3611 case '3': return 3;
3612 case '4': return 4;
3613 case '5': return 5;
3614 case '6': return 6;
3615 case '7': return 7;
3616 case '8': return 8;
3617 case '9': return 9;
3618 }
3619 case 2:
3620 if (Name[0] != '1')
3621 return -1;
3622 switch (Name[1]) {
3623 default: return -1;
3624 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3625 // However, old cores (v5/v6) did use them in that way.
3626 case '0': return 10;
3627 case '1': return 11;
3628 case '2': return 12;
3629 case '3': return 13;
3630 case '4': return 14;
3631 case '5': return 15;
3632 }
3633 }
3634 }
3635
3636 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3637 OperandMatchResultTy
parseITCondCode(OperandVector & Operands)3638 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3639 MCAsmParser &Parser = getParser();
3640 SMLoc S = Parser.getTok().getLoc();
3641 const AsmToken &Tok = Parser.getTok();
3642 if (!Tok.is(AsmToken::Identifier))
3643 return MatchOperand_NoMatch;
3644 unsigned CC = ARMCondCodeFromString(Tok.getString());
3645 if (CC == ~0U)
3646 return MatchOperand_NoMatch;
3647 Parser.Lex(); // Eat the token.
3648
3649 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3650
3651 return MatchOperand_Success;
3652 }
3653
3654 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3655 /// token must be an Identifier when called, and if it is a coprocessor
3656 /// number, the token is eaten and the operand is added to the operand list.
3657 OperandMatchResultTy
parseCoprocNumOperand(OperandVector & Operands)3658 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3659 MCAsmParser &Parser = getParser();
3660 SMLoc S = Parser.getTok().getLoc();
3661 const AsmToken &Tok = Parser.getTok();
3662 if (Tok.isNot(AsmToken::Identifier))
3663 return MatchOperand_NoMatch;
3664
3665 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3666 if (Num == -1)
3667 return MatchOperand_NoMatch;
3668 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3669 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3670 return MatchOperand_NoMatch;
3671
3672 Parser.Lex(); // Eat identifier token.
3673 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3674 return MatchOperand_Success;
3675 }
3676
3677 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3678 /// token must be an Identifier when called, and if it is a coprocessor
3679 /// number, the token is eaten and the operand is added to the operand list.
3680 OperandMatchResultTy
parseCoprocRegOperand(OperandVector & Operands)3681 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3682 MCAsmParser &Parser = getParser();
3683 SMLoc S = Parser.getTok().getLoc();
3684 const AsmToken &Tok = Parser.getTok();
3685 if (Tok.isNot(AsmToken::Identifier))
3686 return MatchOperand_NoMatch;
3687
3688 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3689 if (Reg == -1)
3690 return MatchOperand_NoMatch;
3691
3692 Parser.Lex(); // Eat identifier token.
3693 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3694 return MatchOperand_Success;
3695 }
3696
3697 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3698 /// coproc_option : '{' imm0_255 '}'
3699 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector & Operands)3700 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3701 MCAsmParser &Parser = getParser();
3702 SMLoc S = Parser.getTok().getLoc();
3703
3704 // If this isn't a '{', this isn't a coprocessor immediate operand.
3705 if (Parser.getTok().isNot(AsmToken::LCurly))
3706 return MatchOperand_NoMatch;
3707 Parser.Lex(); // Eat the '{'
3708
3709 const MCExpr *Expr;
3710 SMLoc Loc = Parser.getTok().getLoc();
3711 if (getParser().parseExpression(Expr)) {
3712 Error(Loc, "illegal expression");
3713 return MatchOperand_ParseFail;
3714 }
3715 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3716 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3717 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3718 return MatchOperand_ParseFail;
3719 }
3720 int Val = CE->getValue();
3721
3722 // Check for and consume the closing '}'
3723 if (Parser.getTok().isNot(AsmToken::RCurly))
3724 return MatchOperand_ParseFail;
3725 SMLoc E = Parser.getTok().getEndLoc();
3726 Parser.Lex(); // Eat the '}'
3727
3728 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3729 return MatchOperand_Success;
3730 }
3731
3732 // For register list parsing, we need to map from raw GPR register numbering
3733 // to the enumeration values. The enumeration values aren't sorted by
3734 // register number due to our using "sp", "lr" and "pc" as canonical names.
getNextRegister(unsigned Reg)3735 static unsigned getNextRegister(unsigned Reg) {
3736 // If this is a GPR, we need to do it manually, otherwise we can rely
3737 // on the sort ordering of the enumeration since the other reg-classes
3738 // are sane.
3739 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3740 return Reg + 1;
3741 switch(Reg) {
3742 default: llvm_unreachable("Invalid GPR number!");
3743 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
3744 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
3745 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
3746 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
3747 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
3748 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3749 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
3750 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
3751 }
3752 }
3753
3754 /// Parse a register list.
parseRegisterList(OperandVector & Operands)3755 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3756 MCAsmParser &Parser = getParser();
3757 if (Parser.getTok().isNot(AsmToken::LCurly))
3758 return TokError("Token is not a Left Curly Brace");
3759 SMLoc S = Parser.getTok().getLoc();
3760 Parser.Lex(); // Eat '{' token.
3761 SMLoc RegLoc = Parser.getTok().getLoc();
3762
3763 // Check the first register in the list to see what register class
3764 // this is a list of.
3765 int Reg = tryParseRegister();
3766 if (Reg == -1)
3767 return Error(RegLoc, "register expected");
3768
3769 // The reglist instructions have at most 16 registers, so reserve
3770 // space for that many.
3771 int EReg = 0;
3772 SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3773
3774 // Allow Q regs and just interpret them as the two D sub-registers.
3775 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3776 Reg = getDRegFromQReg(Reg);
3777 EReg = MRI->getEncodingValue(Reg);
3778 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3779 ++Reg;
3780 }
3781 const MCRegisterClass *RC;
3782 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3783 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3784 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3785 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3786 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3787 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3788 else
3789 return Error(RegLoc, "invalid register in register list");
3790
3791 // Store the register.
3792 EReg = MRI->getEncodingValue(Reg);
3793 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3794
3795 // This starts immediately after the first register token in the list,
3796 // so we can see either a comma or a minus (range separator) as a legal
3797 // next token.
3798 while (Parser.getTok().is(AsmToken::Comma) ||
3799 Parser.getTok().is(AsmToken::Minus)) {
3800 if (Parser.getTok().is(AsmToken::Minus)) {
3801 Parser.Lex(); // Eat the minus.
3802 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3803 int EndReg = tryParseRegister();
3804 if (EndReg == -1)
3805 return Error(AfterMinusLoc, "register expected");
3806 // Allow Q regs and just interpret them as the two D sub-registers.
3807 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3808 EndReg = getDRegFromQReg(EndReg) + 1;
3809 // If the register is the same as the start reg, there's nothing
3810 // more to do.
3811 if (Reg == EndReg)
3812 continue;
3813 // The register must be in the same register class as the first.
3814 if (!RC->contains(EndReg))
3815 return Error(AfterMinusLoc, "invalid register in register list");
3816 // Ranges must go from low to high.
3817 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3818 return Error(AfterMinusLoc, "bad range in register list");
3819
3820 // Add all the registers in the range to the register list.
3821 while (Reg != EndReg) {
3822 Reg = getNextRegister(Reg);
3823 EReg = MRI->getEncodingValue(Reg);
3824 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3825 }
3826 continue;
3827 }
3828 Parser.Lex(); // Eat the comma.
3829 RegLoc = Parser.getTok().getLoc();
3830 int OldReg = Reg;
3831 const AsmToken RegTok = Parser.getTok();
3832 Reg = tryParseRegister();
3833 if (Reg == -1)
3834 return Error(RegLoc, "register expected");
3835 // Allow Q regs and just interpret them as the two D sub-registers.
3836 bool isQReg = false;
3837 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3838 Reg = getDRegFromQReg(Reg);
3839 isQReg = true;
3840 }
3841 // The register must be in the same register class as the first.
3842 if (!RC->contains(Reg))
3843 return Error(RegLoc, "invalid register in register list");
3844 // List must be monotonically increasing.
3845 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3846 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3847 Warning(RegLoc, "register list not in ascending order");
3848 else
3849 return Error(RegLoc, "register list not in ascending order");
3850 }
3851 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3852 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3853 ") in register list");
3854 continue;
3855 }
3856 // VFP register lists must also be contiguous.
3857 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3858 Reg != OldReg + 1)
3859 return Error(RegLoc, "non-contiguous register range");
3860 EReg = MRI->getEncodingValue(Reg);
3861 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3862 if (isQReg) {
3863 EReg = MRI->getEncodingValue(++Reg);
3864 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3865 }
3866 }
3867
3868 if (Parser.getTok().isNot(AsmToken::RCurly))
3869 return Error(Parser.getTok().getLoc(), "'}' expected");
3870 SMLoc E = Parser.getTok().getEndLoc();
3871 Parser.Lex(); // Eat '}' token.
3872
3873 // Push the register list operand.
3874 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3875
3876 // The ARM system instruction variants for LDM/STM have a '^' token here.
3877 if (Parser.getTok().is(AsmToken::Caret)) {
3878 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3879 Parser.Lex(); // Eat '^' token.
3880 }
3881
3882 return false;
3883 }
3884
3885 // Helper function to parse the lane index for vector lists.
3886 OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy & LaneKind,unsigned & Index,SMLoc & EndLoc)3887 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3888 MCAsmParser &Parser = getParser();
3889 Index = 0; // Always return a defined index value.
3890 if (Parser.getTok().is(AsmToken::LBrac)) {
3891 Parser.Lex(); // Eat the '['.
3892 if (Parser.getTok().is(AsmToken::RBrac)) {
3893 // "Dn[]" is the 'all lanes' syntax.
3894 LaneKind = AllLanes;
3895 EndLoc = Parser.getTok().getEndLoc();
3896 Parser.Lex(); // Eat the ']'.
3897 return MatchOperand_Success;
3898 }
3899
3900 // There's an optional '#' token here. Normally there wouldn't be, but
3901 // inline assemble puts one in, and it's friendly to accept that.
3902 if (Parser.getTok().is(AsmToken::Hash))
3903 Parser.Lex(); // Eat '#' or '$'.
3904
3905 const MCExpr *LaneIndex;
3906 SMLoc Loc = Parser.getTok().getLoc();
3907 if (getParser().parseExpression(LaneIndex)) {
3908 Error(Loc, "illegal expression");
3909 return MatchOperand_ParseFail;
3910 }
3911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3912 if (!CE) {
3913 Error(Loc, "lane index must be empty or an integer");
3914 return MatchOperand_ParseFail;
3915 }
3916 if (Parser.getTok().isNot(AsmToken::RBrac)) {
3917 Error(Parser.getTok().getLoc(), "']' expected");
3918 return MatchOperand_ParseFail;
3919 }
3920 EndLoc = Parser.getTok().getEndLoc();
3921 Parser.Lex(); // Eat the ']'.
3922 int64_t Val = CE->getValue();
3923
3924 // FIXME: Make this range check context sensitive for .8, .16, .32.
3925 if (Val < 0 || Val > 7) {
3926 Error(Parser.getTok().getLoc(), "lane index out of range");
3927 return MatchOperand_ParseFail;
3928 }
3929 Index = Val;
3930 LaneKind = IndexedLane;
3931 return MatchOperand_Success;
3932 }
3933 LaneKind = NoLanes;
3934 return MatchOperand_Success;
3935 }
3936
3937 // parse a vector register list
3938 OperandMatchResultTy
parseVectorList(OperandVector & Operands)3939 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3940 MCAsmParser &Parser = getParser();
3941 VectorLaneTy LaneKind;
3942 unsigned LaneIndex;
3943 SMLoc S = Parser.getTok().getLoc();
3944 // As an extension (to match gas), support a plain D register or Q register
3945 // (without encosing curly braces) as a single or double entry list,
3946 // respectively.
3947 if (Parser.getTok().is(AsmToken::Identifier)) {
3948 SMLoc E = Parser.getTok().getEndLoc();
3949 int Reg = tryParseRegister();
3950 if (Reg == -1)
3951 return MatchOperand_NoMatch;
3952 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3953 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3954 if (Res != MatchOperand_Success)
3955 return Res;
3956 switch (LaneKind) {
3957 case NoLanes:
3958 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3959 break;
3960 case AllLanes:
3961 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3962 S, E));
3963 break;
3964 case IndexedLane:
3965 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3966 LaneIndex,
3967 false, S, E));
3968 break;
3969 }
3970 return MatchOperand_Success;
3971 }
3972 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3973 Reg = getDRegFromQReg(Reg);
3974 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3975 if (Res != MatchOperand_Success)
3976 return Res;
3977 switch (LaneKind) {
3978 case NoLanes:
3979 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3980 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3981 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3982 break;
3983 case AllLanes:
3984 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3985 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3986 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3987 S, E));
3988 break;
3989 case IndexedLane:
3990 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3991 LaneIndex,
3992 false, S, E));
3993 break;
3994 }
3995 return MatchOperand_Success;
3996 }
3997 Error(S, "vector register expected");
3998 return MatchOperand_ParseFail;
3999 }
4000
4001 if (Parser.getTok().isNot(AsmToken::LCurly))
4002 return MatchOperand_NoMatch;
4003
4004 Parser.Lex(); // Eat '{' token.
4005 SMLoc RegLoc = Parser.getTok().getLoc();
4006
4007 int Reg = tryParseRegister();
4008 if (Reg == -1) {
4009 Error(RegLoc, "register expected");
4010 return MatchOperand_ParseFail;
4011 }
4012 unsigned Count = 1;
4013 int Spacing = 0;
4014 unsigned FirstReg = Reg;
4015 // The list is of D registers, but we also allow Q regs and just interpret
4016 // them as the two D sub-registers.
4017 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4018 FirstReg = Reg = getDRegFromQReg(Reg);
4019 Spacing = 1; // double-spacing requires explicit D registers, otherwise
4020 // it's ambiguous with four-register single spaced.
4021 ++Reg;
4022 ++Count;
4023 }
4024
4025 SMLoc E;
4026 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4027 return MatchOperand_ParseFail;
4028
4029 while (Parser.getTok().is(AsmToken::Comma) ||
4030 Parser.getTok().is(AsmToken::Minus)) {
4031 if (Parser.getTok().is(AsmToken::Minus)) {
4032 if (!Spacing)
4033 Spacing = 1; // Register range implies a single spaced list.
4034 else if (Spacing == 2) {
4035 Error(Parser.getTok().getLoc(),
4036 "sequential registers in double spaced list");
4037 return MatchOperand_ParseFail;
4038 }
4039 Parser.Lex(); // Eat the minus.
4040 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4041 int EndReg = tryParseRegister();
4042 if (EndReg == -1) {
4043 Error(AfterMinusLoc, "register expected");
4044 return MatchOperand_ParseFail;
4045 }
4046 // Allow Q regs and just interpret them as the two D sub-registers.
4047 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4048 EndReg = getDRegFromQReg(EndReg) + 1;
4049 // If the register is the same as the start reg, there's nothing
4050 // more to do.
4051 if (Reg == EndReg)
4052 continue;
4053 // The register must be in the same register class as the first.
4054 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4055 Error(AfterMinusLoc, "invalid register in register list");
4056 return MatchOperand_ParseFail;
4057 }
4058 // Ranges must go from low to high.
4059 if (Reg > EndReg) {
4060 Error(AfterMinusLoc, "bad range in register list");
4061 return MatchOperand_ParseFail;
4062 }
4063 // Parse the lane specifier if present.
4064 VectorLaneTy NextLaneKind;
4065 unsigned NextLaneIndex;
4066 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4067 MatchOperand_Success)
4068 return MatchOperand_ParseFail;
4069 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4070 Error(AfterMinusLoc, "mismatched lane index in register list");
4071 return MatchOperand_ParseFail;
4072 }
4073
4074 // Add all the registers in the range to the register list.
4075 Count += EndReg - Reg;
4076 Reg = EndReg;
4077 continue;
4078 }
4079 Parser.Lex(); // Eat the comma.
4080 RegLoc = Parser.getTok().getLoc();
4081 int OldReg = Reg;
4082 Reg = tryParseRegister();
4083 if (Reg == -1) {
4084 Error(RegLoc, "register expected");
4085 return MatchOperand_ParseFail;
4086 }
4087 // vector register lists must be contiguous.
4088 // It's OK to use the enumeration values directly here rather, as the
4089 // VFP register classes have the enum sorted properly.
4090 //
4091 // The list is of D registers, but we also allow Q regs and just interpret
4092 // them as the two D sub-registers.
4093 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4094 if (!Spacing)
4095 Spacing = 1; // Register range implies a single spaced list.
4096 else if (Spacing == 2) {
4097 Error(RegLoc,
4098 "invalid register in double-spaced list (must be 'D' register')");
4099 return MatchOperand_ParseFail;
4100 }
4101 Reg = getDRegFromQReg(Reg);
4102 if (Reg != OldReg + 1) {
4103 Error(RegLoc, "non-contiguous register range");
4104 return MatchOperand_ParseFail;
4105 }
4106 ++Reg;
4107 Count += 2;
4108 // Parse the lane specifier if present.
4109 VectorLaneTy NextLaneKind;
4110 unsigned NextLaneIndex;
4111 SMLoc LaneLoc = Parser.getTok().getLoc();
4112 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4113 MatchOperand_Success)
4114 return MatchOperand_ParseFail;
4115 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4116 Error(LaneLoc, "mismatched lane index in register list");
4117 return MatchOperand_ParseFail;
4118 }
4119 continue;
4120 }
4121 // Normal D register.
4122 // Figure out the register spacing (single or double) of the list if
4123 // we don't know it already.
4124 if (!Spacing)
4125 Spacing = 1 + (Reg == OldReg + 2);
4126
4127 // Just check that it's contiguous and keep going.
4128 if (Reg != OldReg + Spacing) {
4129 Error(RegLoc, "non-contiguous register range");
4130 return MatchOperand_ParseFail;
4131 }
4132 ++Count;
4133 // Parse the lane specifier if present.
4134 VectorLaneTy NextLaneKind;
4135 unsigned NextLaneIndex;
4136 SMLoc EndLoc = Parser.getTok().getLoc();
4137 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4138 return MatchOperand_ParseFail;
4139 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4140 Error(EndLoc, "mismatched lane index in register list");
4141 return MatchOperand_ParseFail;
4142 }
4143 }
4144
4145 if (Parser.getTok().isNot(AsmToken::RCurly)) {
4146 Error(Parser.getTok().getLoc(), "'}' expected");
4147 return MatchOperand_ParseFail;
4148 }
4149 E = Parser.getTok().getEndLoc();
4150 Parser.Lex(); // Eat '}' token.
4151
4152 switch (LaneKind) {
4153 case NoLanes:
4154 // Two-register operands have been converted to the
4155 // composite register classes.
4156 if (Count == 2) {
4157 const MCRegisterClass *RC = (Spacing == 1) ?
4158 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4159 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4160 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4161 }
4162 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4163 (Spacing == 2), S, E));
4164 break;
4165 case AllLanes:
4166 // Two-register operands have been converted to the
4167 // composite register classes.
4168 if (Count == 2) {
4169 const MCRegisterClass *RC = (Spacing == 1) ?
4170 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4171 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4172 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4173 }
4174 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4175 (Spacing == 2),
4176 S, E));
4177 break;
4178 case IndexedLane:
4179 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4180 LaneIndex,
4181 (Spacing == 2),
4182 S, E));
4183 break;
4184 }
4185 return MatchOperand_Success;
4186 }
4187
4188 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4189 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector & Operands)4190 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4191 MCAsmParser &Parser = getParser();
4192 SMLoc S = Parser.getTok().getLoc();
4193 const AsmToken &Tok = Parser.getTok();
4194 unsigned Opt;
4195
4196 if (Tok.is(AsmToken::Identifier)) {
4197 StringRef OptStr = Tok.getString();
4198
4199 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4200 .Case("sy", ARM_MB::SY)
4201 .Case("st", ARM_MB::ST)
4202 .Case("ld", ARM_MB::LD)
4203 .Case("sh", ARM_MB::ISH)
4204 .Case("ish", ARM_MB::ISH)
4205 .Case("shst", ARM_MB::ISHST)
4206 .Case("ishst", ARM_MB::ISHST)
4207 .Case("ishld", ARM_MB::ISHLD)
4208 .Case("nsh", ARM_MB::NSH)
4209 .Case("un", ARM_MB::NSH)
4210 .Case("nshst", ARM_MB::NSHST)
4211 .Case("nshld", ARM_MB::NSHLD)
4212 .Case("unst", ARM_MB::NSHST)
4213 .Case("osh", ARM_MB::OSH)
4214 .Case("oshst", ARM_MB::OSHST)
4215 .Case("oshld", ARM_MB::OSHLD)
4216 .Default(~0U);
4217
4218 // ishld, oshld, nshld and ld are only available from ARMv8.
4219 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4220 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4221 Opt = ~0U;
4222
4223 if (Opt == ~0U)
4224 return MatchOperand_NoMatch;
4225
4226 Parser.Lex(); // Eat identifier token.
4227 } else if (Tok.is(AsmToken::Hash) ||
4228 Tok.is(AsmToken::Dollar) ||
4229 Tok.is(AsmToken::Integer)) {
4230 if (Parser.getTok().isNot(AsmToken::Integer))
4231 Parser.Lex(); // Eat '#' or '$'.
4232 SMLoc Loc = Parser.getTok().getLoc();
4233
4234 const MCExpr *MemBarrierID;
4235 if (getParser().parseExpression(MemBarrierID)) {
4236 Error(Loc, "illegal expression");
4237 return MatchOperand_ParseFail;
4238 }
4239
4240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4241 if (!CE) {
4242 Error(Loc, "constant expression expected");
4243 return MatchOperand_ParseFail;
4244 }
4245
4246 int Val = CE->getValue();
4247 if (Val & ~0xf) {
4248 Error(Loc, "immediate value out of range");
4249 return MatchOperand_ParseFail;
4250 }
4251
4252 Opt = ARM_MB::RESERVED_0 + Val;
4253 } else
4254 return MatchOperand_ParseFail;
4255
4256 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4257 return MatchOperand_Success;
4258 }
4259
4260 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector & Operands)4261 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4262 MCAsmParser &Parser = getParser();
4263 SMLoc S = Parser.getTok().getLoc();
4264 const AsmToken &Tok = Parser.getTok();
4265
4266 if (Tok.isNot(AsmToken::Identifier))
4267 return MatchOperand_NoMatch;
4268
4269 if (!Tok.getString().equals_lower("csync"))
4270 return MatchOperand_NoMatch;
4271
4272 Parser.Lex(); // Eat identifier token.
4273
4274 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4275 return MatchOperand_Success;
4276 }
4277
4278 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4279 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector & Operands)4280 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4281 MCAsmParser &Parser = getParser();
4282 SMLoc S = Parser.getTok().getLoc();
4283 const AsmToken &Tok = Parser.getTok();
4284 unsigned Opt;
4285
4286 if (Tok.is(AsmToken::Identifier)) {
4287 StringRef OptStr = Tok.getString();
4288
4289 if (OptStr.equals_lower("sy"))
4290 Opt = ARM_ISB::SY;
4291 else
4292 return MatchOperand_NoMatch;
4293
4294 Parser.Lex(); // Eat identifier token.
4295 } else if (Tok.is(AsmToken::Hash) ||
4296 Tok.is(AsmToken::Dollar) ||
4297 Tok.is(AsmToken::Integer)) {
4298 if (Parser.getTok().isNot(AsmToken::Integer))
4299 Parser.Lex(); // Eat '#' or '$'.
4300 SMLoc Loc = Parser.getTok().getLoc();
4301
4302 const MCExpr *ISBarrierID;
4303 if (getParser().parseExpression(ISBarrierID)) {
4304 Error(Loc, "illegal expression");
4305 return MatchOperand_ParseFail;
4306 }
4307
4308 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4309 if (!CE) {
4310 Error(Loc, "constant expression expected");
4311 return MatchOperand_ParseFail;
4312 }
4313
4314 int Val = CE->getValue();
4315 if (Val & ~0xf) {
4316 Error(Loc, "immediate value out of range");
4317 return MatchOperand_ParseFail;
4318 }
4319
4320 Opt = ARM_ISB::RESERVED_0 + Val;
4321 } else
4322 return MatchOperand_ParseFail;
4323
4324 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4325 (ARM_ISB::InstSyncBOpt)Opt, S));
4326 return MatchOperand_Success;
4327 }
4328
4329
4330 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4331 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector & Operands)4332 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4333 MCAsmParser &Parser = getParser();
4334 SMLoc S = Parser.getTok().getLoc();
4335 const AsmToken &Tok = Parser.getTok();
4336 if (!Tok.is(AsmToken::Identifier))
4337 return MatchOperand_NoMatch;
4338 StringRef IFlagsStr = Tok.getString();
4339
4340 // An iflags string of "none" is interpreted to mean that none of the AIF
4341 // bits are set. Not a terribly useful instruction, but a valid encoding.
4342 unsigned IFlags = 0;
4343 if (IFlagsStr != "none") {
4344 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4345 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4346 .Case("a", ARM_PROC::A)
4347 .Case("i", ARM_PROC::I)
4348 .Case("f", ARM_PROC::F)
4349 .Default(~0U);
4350
4351 // If some specific iflag is already set, it means that some letter is
4352 // present more than once, this is not acceptable.
4353 if (Flag == ~0U || (IFlags & Flag))
4354 return MatchOperand_NoMatch;
4355
4356 IFlags |= Flag;
4357 }
4358 }
4359
4360 Parser.Lex(); // Eat identifier token.
4361 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4362 return MatchOperand_Success;
4363 }
4364
4365 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4366 OperandMatchResultTy
parseMSRMaskOperand(OperandVector & Operands)4367 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4368 MCAsmParser &Parser = getParser();
4369 SMLoc S = Parser.getTok().getLoc();
4370 const AsmToken &Tok = Parser.getTok();
4371
4372 if (Tok.is(AsmToken::Integer)) {
4373 int64_t Val = Tok.getIntVal();
4374 if (Val > 255 || Val < 0) {
4375 return MatchOperand_NoMatch;
4376 }
4377 unsigned SYSmvalue = Val & 0xFF;
4378 Parser.Lex();
4379 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4380 return MatchOperand_Success;
4381 }
4382
4383 if (!Tok.is(AsmToken::Identifier))
4384 return MatchOperand_NoMatch;
4385 StringRef Mask = Tok.getString();
4386
4387 if (isMClass()) {
4388 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4389 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4390 return MatchOperand_NoMatch;
4391
4392 unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4393
4394 Parser.Lex(); // Eat identifier token.
4395 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4396 return MatchOperand_Success;
4397 }
4398
4399 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4400 size_t Start = 0, Next = Mask.find('_');
4401 StringRef Flags = "";
4402 std::string SpecReg = Mask.slice(Start, Next).lower();
4403 if (Next != StringRef::npos)
4404 Flags = Mask.slice(Next+1, Mask.size());
4405
4406 // FlagsVal contains the complete mask:
4407 // 3-0: Mask
4408 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4409 unsigned FlagsVal = 0;
4410
4411 if (SpecReg == "apsr") {
4412 FlagsVal = StringSwitch<unsigned>(Flags)
4413 .Case("nzcvq", 0x8) // same as CPSR_f
4414 .Case("g", 0x4) // same as CPSR_s
4415 .Case("nzcvqg", 0xc) // same as CPSR_fs
4416 .Default(~0U);
4417
4418 if (FlagsVal == ~0U) {
4419 if (!Flags.empty())
4420 return MatchOperand_NoMatch;
4421 else
4422 FlagsVal = 8; // No flag
4423 }
4424 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4425 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4426 if (Flags == "all" || Flags == "")
4427 Flags = "fc";
4428 for (int i = 0, e = Flags.size(); i != e; ++i) {
4429 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4430 .Case("c", 1)
4431 .Case("x", 2)
4432 .Case("s", 4)
4433 .Case("f", 8)
4434 .Default(~0U);
4435
4436 // If some specific flag is already set, it means that some letter is
4437 // present more than once, this is not acceptable.
4438 if (Flag == ~0U || (FlagsVal & Flag))
4439 return MatchOperand_NoMatch;
4440 FlagsVal |= Flag;
4441 }
4442 } else // No match for special register.
4443 return MatchOperand_NoMatch;
4444
4445 // Special register without flags is NOT equivalent to "fc" flags.
4446 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4447 // two lines would enable gas compatibility at the expense of breaking
4448 // round-tripping.
4449 //
4450 // if (!FlagsVal)
4451 // FlagsVal = 0x9;
4452
4453 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4454 if (SpecReg == "spsr")
4455 FlagsVal |= 16;
4456
4457 Parser.Lex(); // Eat identifier token.
4458 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4459 return MatchOperand_Success;
4460 }
4461
4462 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4463 /// use in the MRS/MSR instructions added to support virtualization.
4464 OperandMatchResultTy
parseBankedRegOperand(OperandVector & Operands)4465 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4466 MCAsmParser &Parser = getParser();
4467 SMLoc S = Parser.getTok().getLoc();
4468 const AsmToken &Tok = Parser.getTok();
4469 if (!Tok.is(AsmToken::Identifier))
4470 return MatchOperand_NoMatch;
4471 StringRef RegName = Tok.getString();
4472
4473 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4474 if (!TheReg)
4475 return MatchOperand_NoMatch;
4476 unsigned Encoding = TheReg->Encoding;
4477
4478 Parser.Lex(); // Eat identifier token.
4479 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4480 return MatchOperand_Success;
4481 }
4482
4483 OperandMatchResultTy
parsePKHImm(OperandVector & Operands,StringRef Op,int Low,int High)4484 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4485 int High) {
4486 MCAsmParser &Parser = getParser();
4487 const AsmToken &Tok = Parser.getTok();
4488 if (Tok.isNot(AsmToken::Identifier)) {
4489 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4490 return MatchOperand_ParseFail;
4491 }
4492 StringRef ShiftName = Tok.getString();
4493 std::string LowerOp = Op.lower();
4494 std::string UpperOp = Op.upper();
4495 if (ShiftName != LowerOp && ShiftName != UpperOp) {
4496 Error(Parser.getTok().getLoc(), Op + " operand expected.");
4497 return MatchOperand_ParseFail;
4498 }
4499 Parser.Lex(); // Eat shift type token.
4500
4501 // There must be a '#' and a shift amount.
4502 if (Parser.getTok().isNot(AsmToken::Hash) &&
4503 Parser.getTok().isNot(AsmToken::Dollar)) {
4504 Error(Parser.getTok().getLoc(), "'#' expected");
4505 return MatchOperand_ParseFail;
4506 }
4507 Parser.Lex(); // Eat hash token.
4508
4509 const MCExpr *ShiftAmount;
4510 SMLoc Loc = Parser.getTok().getLoc();
4511 SMLoc EndLoc;
4512 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4513 Error(Loc, "illegal expression");
4514 return MatchOperand_ParseFail;
4515 }
4516 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4517 if (!CE) {
4518 Error(Loc, "constant expression expected");
4519 return MatchOperand_ParseFail;
4520 }
4521 int Val = CE->getValue();
4522 if (Val < Low || Val > High) {
4523 Error(Loc, "immediate value out of range");
4524 return MatchOperand_ParseFail;
4525 }
4526
4527 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4528
4529 return MatchOperand_Success;
4530 }
4531
4532 OperandMatchResultTy
parseSetEndImm(OperandVector & Operands)4533 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4534 MCAsmParser &Parser = getParser();
4535 const AsmToken &Tok = Parser.getTok();
4536 SMLoc S = Tok.getLoc();
4537 if (Tok.isNot(AsmToken::Identifier)) {
4538 Error(S, "'be' or 'le' operand expected");
4539 return MatchOperand_ParseFail;
4540 }
4541 int Val = StringSwitch<int>(Tok.getString().lower())
4542 .Case("be", 1)
4543 .Case("le", 0)
4544 .Default(-1);
4545 Parser.Lex(); // Eat the token.
4546
4547 if (Val == -1) {
4548 Error(S, "'be' or 'le' operand expected");
4549 return MatchOperand_ParseFail;
4550 }
4551 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4552 getContext()),
4553 S, Tok.getEndLoc()));
4554 return MatchOperand_Success;
4555 }
4556
4557 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4558 /// instructions. Legal values are:
4559 /// lsl #n 'n' in [0,31]
4560 /// asr #n 'n' in [1,32]
4561 /// n == 32 encoded as n == 0.
4562 OperandMatchResultTy
parseShifterImm(OperandVector & Operands)4563 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4564 MCAsmParser &Parser = getParser();
4565 const AsmToken &Tok = Parser.getTok();
4566 SMLoc S = Tok.getLoc();
4567 if (Tok.isNot(AsmToken::Identifier)) {
4568 Error(S, "shift operator 'asr' or 'lsl' expected");
4569 return MatchOperand_ParseFail;
4570 }
4571 StringRef ShiftName = Tok.getString();
4572 bool isASR;
4573 if (ShiftName == "lsl" || ShiftName == "LSL")
4574 isASR = false;
4575 else if (ShiftName == "asr" || ShiftName == "ASR")
4576 isASR = true;
4577 else {
4578 Error(S, "shift operator 'asr' or 'lsl' expected");
4579 return MatchOperand_ParseFail;
4580 }
4581 Parser.Lex(); // Eat the operator.
4582
4583 // A '#' and a shift amount.
4584 if (Parser.getTok().isNot(AsmToken::Hash) &&
4585 Parser.getTok().isNot(AsmToken::Dollar)) {
4586 Error(Parser.getTok().getLoc(), "'#' expected");
4587 return MatchOperand_ParseFail;
4588 }
4589 Parser.Lex(); // Eat hash token.
4590 SMLoc ExLoc = Parser.getTok().getLoc();
4591
4592 const MCExpr *ShiftAmount;
4593 SMLoc EndLoc;
4594 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4595 Error(ExLoc, "malformed shift expression");
4596 return MatchOperand_ParseFail;
4597 }
4598 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4599 if (!CE) {
4600 Error(ExLoc, "shift amount must be an immediate");
4601 return MatchOperand_ParseFail;
4602 }
4603
4604 int64_t Val = CE->getValue();
4605 if (isASR) {
4606 // Shift amount must be in [1,32]
4607 if (Val < 1 || Val > 32) {
4608 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4609 return MatchOperand_ParseFail;
4610 }
4611 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4612 if (isThumb() && Val == 32) {
4613 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4614 return MatchOperand_ParseFail;
4615 }
4616 if (Val == 32) Val = 0;
4617 } else {
4618 // Shift amount must be in [1,32]
4619 if (Val < 0 || Val > 31) {
4620 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4621 return MatchOperand_ParseFail;
4622 }
4623 }
4624
4625 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4626
4627 return MatchOperand_Success;
4628 }
4629
4630 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4631 /// of instructions. Legal values are:
4632 /// ror #n 'n' in {0, 8, 16, 24}
4633 OperandMatchResultTy
parseRotImm(OperandVector & Operands)4634 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4635 MCAsmParser &Parser = getParser();
4636 const AsmToken &Tok = Parser.getTok();
4637 SMLoc S = Tok.getLoc();
4638 if (Tok.isNot(AsmToken::Identifier))
4639 return MatchOperand_NoMatch;
4640 StringRef ShiftName = Tok.getString();
4641 if (ShiftName != "ror" && ShiftName != "ROR")
4642 return MatchOperand_NoMatch;
4643 Parser.Lex(); // Eat the operator.
4644
4645 // A '#' and a rotate amount.
4646 if (Parser.getTok().isNot(AsmToken::Hash) &&
4647 Parser.getTok().isNot(AsmToken::Dollar)) {
4648 Error(Parser.getTok().getLoc(), "'#' expected");
4649 return MatchOperand_ParseFail;
4650 }
4651 Parser.Lex(); // Eat hash token.
4652 SMLoc ExLoc = Parser.getTok().getLoc();
4653
4654 const MCExpr *ShiftAmount;
4655 SMLoc EndLoc;
4656 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4657 Error(ExLoc, "malformed rotate expression");
4658 return MatchOperand_ParseFail;
4659 }
4660 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4661 if (!CE) {
4662 Error(ExLoc, "rotate amount must be an immediate");
4663 return MatchOperand_ParseFail;
4664 }
4665
4666 int64_t Val = CE->getValue();
4667 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4668 // normally, zero is represented in asm by omitting the rotate operand
4669 // entirely.
4670 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4671 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4672 return MatchOperand_ParseFail;
4673 }
4674
4675 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4676
4677 return MatchOperand_Success;
4678 }
4679
4680 OperandMatchResultTy
parseModImm(OperandVector & Operands)4681 ARMAsmParser::parseModImm(OperandVector &Operands) {
4682 MCAsmParser &Parser = getParser();
4683 MCAsmLexer &Lexer = getLexer();
4684 int64_t Imm1, Imm2;
4685
4686 SMLoc S = Parser.getTok().getLoc();
4687
4688 // 1) A mod_imm operand can appear in the place of a register name:
4689 // add r0, #mod_imm
4690 // add r0, r0, #mod_imm
4691 // to correctly handle the latter, we bail out as soon as we see an
4692 // identifier.
4693 //
4694 // 2) Similarly, we do not want to parse into complex operands:
4695 // mov r0, #mod_imm
4696 // mov r0, :lower16:(_foo)
4697 if (Parser.getTok().is(AsmToken::Identifier) ||
4698 Parser.getTok().is(AsmToken::Colon))
4699 return MatchOperand_NoMatch;
4700
4701 // Hash (dollar) is optional as per the ARMARM
4702 if (Parser.getTok().is(AsmToken::Hash) ||
4703 Parser.getTok().is(AsmToken::Dollar)) {
4704 // Avoid parsing into complex operands (#:)
4705 if (Lexer.peekTok().is(AsmToken::Colon))
4706 return MatchOperand_NoMatch;
4707
4708 // Eat the hash (dollar)
4709 Parser.Lex();
4710 }
4711
4712 SMLoc Sx1, Ex1;
4713 Sx1 = Parser.getTok().getLoc();
4714 const MCExpr *Imm1Exp;
4715 if (getParser().parseExpression(Imm1Exp, Ex1)) {
4716 Error(Sx1, "malformed expression");
4717 return MatchOperand_ParseFail;
4718 }
4719
4720 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4721
4722 if (CE) {
4723 // Immediate must fit within 32-bits
4724 Imm1 = CE->getValue();
4725 int Enc = ARM_AM::getSOImmVal(Imm1);
4726 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4727 // We have a match!
4728 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4729 (Enc & 0xF00) >> 7,
4730 Sx1, Ex1));
4731 return MatchOperand_Success;
4732 }
4733
4734 // We have parsed an immediate which is not for us, fallback to a plain
4735 // immediate. This can happen for instruction aliases. For an example,
4736 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4737 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4738 // instruction with a mod_imm operand. The alias is defined such that the
4739 // parser method is shared, that's why we have to do this here.
4740 if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4741 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4742 return MatchOperand_Success;
4743 }
4744 } else {
4745 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4746 // MCFixup). Fallback to a plain immediate.
4747 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4748 return MatchOperand_Success;
4749 }
4750
4751 // From this point onward, we expect the input to be a (#bits, #rot) pair
4752 if (Parser.getTok().isNot(AsmToken::Comma)) {
4753 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4754 return MatchOperand_ParseFail;
4755 }
4756
4757 if (Imm1 & ~0xFF) {
4758 Error(Sx1, "immediate operand must a number in the range [0, 255]");
4759 return MatchOperand_ParseFail;
4760 }
4761
4762 // Eat the comma
4763 Parser.Lex();
4764
4765 // Repeat for #rot
4766 SMLoc Sx2, Ex2;
4767 Sx2 = Parser.getTok().getLoc();
4768
4769 // Eat the optional hash (dollar)
4770 if (Parser.getTok().is(AsmToken::Hash) ||
4771 Parser.getTok().is(AsmToken::Dollar))
4772 Parser.Lex();
4773
4774 const MCExpr *Imm2Exp;
4775 if (getParser().parseExpression(Imm2Exp, Ex2)) {
4776 Error(Sx2, "malformed expression");
4777 return MatchOperand_ParseFail;
4778 }
4779
4780 CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4781
4782 if (CE) {
4783 Imm2 = CE->getValue();
4784 if (!(Imm2 & ~0x1E)) {
4785 // We have a match!
4786 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4787 return MatchOperand_Success;
4788 }
4789 Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4790 return MatchOperand_ParseFail;
4791 } else {
4792 Error(Sx2, "constant expression expected");
4793 return MatchOperand_ParseFail;
4794 }
4795 }
4796
4797 OperandMatchResultTy
parseBitfield(OperandVector & Operands)4798 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4799 MCAsmParser &Parser = getParser();
4800 SMLoc S = Parser.getTok().getLoc();
4801 // The bitfield descriptor is really two operands, the LSB and the width.
4802 if (Parser.getTok().isNot(AsmToken::Hash) &&
4803 Parser.getTok().isNot(AsmToken::Dollar)) {
4804 Error(Parser.getTok().getLoc(), "'#' expected");
4805 return MatchOperand_ParseFail;
4806 }
4807 Parser.Lex(); // Eat hash token.
4808
4809 const MCExpr *LSBExpr;
4810 SMLoc E = Parser.getTok().getLoc();
4811 if (getParser().parseExpression(LSBExpr)) {
4812 Error(E, "malformed immediate expression");
4813 return MatchOperand_ParseFail;
4814 }
4815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4816 if (!CE) {
4817 Error(E, "'lsb' operand must be an immediate");
4818 return MatchOperand_ParseFail;
4819 }
4820
4821 int64_t LSB = CE->getValue();
4822 // The LSB must be in the range [0,31]
4823 if (LSB < 0 || LSB > 31) {
4824 Error(E, "'lsb' operand must be in the range [0,31]");
4825 return MatchOperand_ParseFail;
4826 }
4827 E = Parser.getTok().getLoc();
4828
4829 // Expect another immediate operand.
4830 if (Parser.getTok().isNot(AsmToken::Comma)) {
4831 Error(Parser.getTok().getLoc(), "too few operands");
4832 return MatchOperand_ParseFail;
4833 }
4834 Parser.Lex(); // Eat hash token.
4835 if (Parser.getTok().isNot(AsmToken::Hash) &&
4836 Parser.getTok().isNot(AsmToken::Dollar)) {
4837 Error(Parser.getTok().getLoc(), "'#' expected");
4838 return MatchOperand_ParseFail;
4839 }
4840 Parser.Lex(); // Eat hash token.
4841
4842 const MCExpr *WidthExpr;
4843 SMLoc EndLoc;
4844 if (getParser().parseExpression(WidthExpr, EndLoc)) {
4845 Error(E, "malformed immediate expression");
4846 return MatchOperand_ParseFail;
4847 }
4848 CE = dyn_cast<MCConstantExpr>(WidthExpr);
4849 if (!CE) {
4850 Error(E, "'width' operand must be an immediate");
4851 return MatchOperand_ParseFail;
4852 }
4853
4854 int64_t Width = CE->getValue();
4855 // The LSB must be in the range [1,32-lsb]
4856 if (Width < 1 || Width > 32 - LSB) {
4857 Error(E, "'width' operand must be in the range [1,32-lsb]");
4858 return MatchOperand_ParseFail;
4859 }
4860
4861 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4862
4863 return MatchOperand_Success;
4864 }
4865
4866 OperandMatchResultTy
parsePostIdxReg(OperandVector & Operands)4867 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4868 // Check for a post-index addressing register operand. Specifically:
4869 // postidx_reg := '+' register {, shift}
4870 // | '-' register {, shift}
4871 // | register {, shift}
4872
4873 // This method must return MatchOperand_NoMatch without consuming any tokens
4874 // in the case where there is no match, as other alternatives take other
4875 // parse methods.
4876 MCAsmParser &Parser = getParser();
4877 AsmToken Tok = Parser.getTok();
4878 SMLoc S = Tok.getLoc();
4879 bool haveEaten = false;
4880 bool isAdd = true;
4881 if (Tok.is(AsmToken::Plus)) {
4882 Parser.Lex(); // Eat the '+' token.
4883 haveEaten = true;
4884 } else if (Tok.is(AsmToken::Minus)) {
4885 Parser.Lex(); // Eat the '-' token.
4886 isAdd = false;
4887 haveEaten = true;
4888 }
4889
4890 SMLoc E = Parser.getTok().getEndLoc();
4891 int Reg = tryParseRegister();
4892 if (Reg == -1) {
4893 if (!haveEaten)
4894 return MatchOperand_NoMatch;
4895 Error(Parser.getTok().getLoc(), "register expected");
4896 return MatchOperand_ParseFail;
4897 }
4898
4899 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4900 unsigned ShiftImm = 0;
4901 if (Parser.getTok().is(AsmToken::Comma)) {
4902 Parser.Lex(); // Eat the ','.
4903 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4904 return MatchOperand_ParseFail;
4905
4906 // FIXME: Only approximates end...may include intervening whitespace.
4907 E = Parser.getTok().getLoc();
4908 }
4909
4910 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4911 ShiftImm, S, E));
4912
4913 return MatchOperand_Success;
4914 }
4915
4916 OperandMatchResultTy
parseAM3Offset(OperandVector & Operands)4917 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4918 // Check for a post-index addressing register operand. Specifically:
4919 // am3offset := '+' register
4920 // | '-' register
4921 // | register
4922 // | # imm
4923 // | # + imm
4924 // | # - imm
4925
4926 // This method must return MatchOperand_NoMatch without consuming any tokens
4927 // in the case where there is no match, as other alternatives take other
4928 // parse methods.
4929 MCAsmParser &Parser = getParser();
4930 AsmToken Tok = Parser.getTok();
4931 SMLoc S = Tok.getLoc();
4932
4933 // Do immediates first, as we always parse those if we have a '#'.
4934 if (Parser.getTok().is(AsmToken::Hash) ||
4935 Parser.getTok().is(AsmToken::Dollar)) {
4936 Parser.Lex(); // Eat '#' or '$'.
4937 // Explicitly look for a '-', as we need to encode negative zero
4938 // differently.
4939 bool isNegative = Parser.getTok().is(AsmToken::Minus);
4940 const MCExpr *Offset;
4941 SMLoc E;
4942 if (getParser().parseExpression(Offset, E))
4943 return MatchOperand_ParseFail;
4944 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4945 if (!CE) {
4946 Error(S, "constant expression expected");
4947 return MatchOperand_ParseFail;
4948 }
4949 // Negative zero is encoded as the flag value
4950 // std::numeric_limits<int32_t>::min().
4951 int32_t Val = CE->getValue();
4952 if (isNegative && Val == 0)
4953 Val = std::numeric_limits<int32_t>::min();
4954
4955 Operands.push_back(
4956 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4957
4958 return MatchOperand_Success;
4959 }
4960
4961 bool haveEaten = false;
4962 bool isAdd = true;
4963 if (Tok.is(AsmToken::Plus)) {
4964 Parser.Lex(); // Eat the '+' token.
4965 haveEaten = true;
4966 } else if (Tok.is(AsmToken::Minus)) {
4967 Parser.Lex(); // Eat the '-' token.
4968 isAdd = false;
4969 haveEaten = true;
4970 }
4971
4972 Tok = Parser.getTok();
4973 int Reg = tryParseRegister();
4974 if (Reg == -1) {
4975 if (!haveEaten)
4976 return MatchOperand_NoMatch;
4977 Error(Tok.getLoc(), "register expected");
4978 return MatchOperand_ParseFail;
4979 }
4980
4981 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4982 0, S, Tok.getEndLoc()));
4983
4984 return MatchOperand_Success;
4985 }
4986
4987 /// Convert parsed operands to MCInst. Needed here because this instruction
4988 /// only has two register operands, but multiplication is commutative so
4989 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
cvtThumbMultiply(MCInst & Inst,const OperandVector & Operands)4990 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4991 const OperandVector &Operands) {
4992 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4993 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4994 // If we have a three-operand form, make sure to set Rn to be the operand
4995 // that isn't the same as Rd.
4996 unsigned RegOp = 4;
4997 if (Operands.size() == 6 &&
4998 ((ARMOperand &)*Operands[4]).getReg() ==
4999 ((ARMOperand &)*Operands[3]).getReg())
5000 RegOp = 5;
5001 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5002 Inst.addOperand(Inst.getOperand(0));
5003 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5004 }
5005
cvtThumbBranches(MCInst & Inst,const OperandVector & Operands)5006 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5007 const OperandVector &Operands) {
5008 int CondOp = -1, ImmOp = -1;
5009 switch(Inst.getOpcode()) {
5010 case ARM::tB:
5011 case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
5012
5013 case ARM::t2B:
5014 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5015
5016 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5017 }
5018 // first decide whether or not the branch should be conditional
5019 // by looking at it's location relative to an IT block
5020 if(inITBlock()) {
5021 // inside an IT block we cannot have any conditional branches. any
5022 // such instructions needs to be converted to unconditional form
5023 switch(Inst.getOpcode()) {
5024 case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5025 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5026 }
5027 } else {
5028 // outside IT blocks we can only have unconditional branches with AL
5029 // condition code or conditional branches with non-AL condition code
5030 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5031 switch(Inst.getOpcode()) {
5032 case ARM::tB:
5033 case ARM::tBcc:
5034 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5035 break;
5036 case ARM::t2B:
5037 case ARM::t2Bcc:
5038 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5039 break;
5040 }
5041 }
5042
5043 // now decide on encoding size based on branch target range
5044 switch(Inst.getOpcode()) {
5045 // classify tB as either t2B or t1B based on range of immediate operand
5046 case ARM::tB: {
5047 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5048 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5049 Inst.setOpcode(ARM::t2B);
5050 break;
5051 }
5052 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5053 case ARM::tBcc: {
5054 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5055 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5056 Inst.setOpcode(ARM::t2Bcc);
5057 break;
5058 }
5059 }
5060 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5061 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5062 }
5063
5064 /// Parse an ARM memory expression, return false if successful else return true
5065 /// or an error. The first token must be a '[' when called.
parseMemory(OperandVector & Operands)5066 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5067 MCAsmParser &Parser = getParser();
5068 SMLoc S, E;
5069 if (Parser.getTok().isNot(AsmToken::LBrac))
5070 return TokError("Token is not a Left Bracket");
5071 S = Parser.getTok().getLoc();
5072 Parser.Lex(); // Eat left bracket token.
5073
5074 const AsmToken &BaseRegTok = Parser.getTok();
5075 int BaseRegNum = tryParseRegister();
5076 if (BaseRegNum == -1)
5077 return Error(BaseRegTok.getLoc(), "register expected");
5078
5079 // The next token must either be a comma, a colon or a closing bracket.
5080 const AsmToken &Tok = Parser.getTok();
5081 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5082 !Tok.is(AsmToken::RBrac))
5083 return Error(Tok.getLoc(), "malformed memory operand");
5084
5085 if (Tok.is(AsmToken::RBrac)) {
5086 E = Tok.getEndLoc();
5087 Parser.Lex(); // Eat right bracket token.
5088
5089 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5090 ARM_AM::no_shift, 0, 0, false,
5091 S, E));
5092
5093 // If there's a pre-indexing writeback marker, '!', just add it as a token
5094 // operand. It's rather odd, but syntactically valid.
5095 if (Parser.getTok().is(AsmToken::Exclaim)) {
5096 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5097 Parser.Lex(); // Eat the '!'.
5098 }
5099
5100 return false;
5101 }
5102
5103 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5104 "Lost colon or comma in memory operand?!");
5105 if (Tok.is(AsmToken::Comma)) {
5106 Parser.Lex(); // Eat the comma.
5107 }
5108
5109 // If we have a ':', it's an alignment specifier.
5110 if (Parser.getTok().is(AsmToken::Colon)) {
5111 Parser.Lex(); // Eat the ':'.
5112 E = Parser.getTok().getLoc();
5113 SMLoc AlignmentLoc = Tok.getLoc();
5114
5115 const MCExpr *Expr;
5116 if (getParser().parseExpression(Expr))
5117 return true;
5118
5119 // The expression has to be a constant. Memory references with relocations
5120 // don't come through here, as they use the <label> forms of the relevant
5121 // instructions.
5122 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5123 if (!CE)
5124 return Error (E, "constant expression expected");
5125
5126 unsigned Align = 0;
5127 switch (CE->getValue()) {
5128 default:
5129 return Error(E,
5130 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5131 case 16: Align = 2; break;
5132 case 32: Align = 4; break;
5133 case 64: Align = 8; break;
5134 case 128: Align = 16; break;
5135 case 256: Align = 32; break;
5136 }
5137
5138 // Now we should have the closing ']'
5139 if (Parser.getTok().isNot(AsmToken::RBrac))
5140 return Error(Parser.getTok().getLoc(), "']' expected");
5141 E = Parser.getTok().getEndLoc();
5142 Parser.Lex(); // Eat right bracket token.
5143
5144 // Don't worry about range checking the value here. That's handled by
5145 // the is*() predicates.
5146 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5147 ARM_AM::no_shift, 0, Align,
5148 false, S, E, AlignmentLoc));
5149
5150 // If there's a pre-indexing writeback marker, '!', just add it as a token
5151 // operand.
5152 if (Parser.getTok().is(AsmToken::Exclaim)) {
5153 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5154 Parser.Lex(); // Eat the '!'.
5155 }
5156
5157 return false;
5158 }
5159
5160 // If we have a '#', it's an immediate offset, else assume it's a register
5161 // offset. Be friendly and also accept a plain integer (without a leading
5162 // hash) for gas compatibility.
5163 if (Parser.getTok().is(AsmToken::Hash) ||
5164 Parser.getTok().is(AsmToken::Dollar) ||
5165 Parser.getTok().is(AsmToken::Integer)) {
5166 if (Parser.getTok().isNot(AsmToken::Integer))
5167 Parser.Lex(); // Eat '#' or '$'.
5168 E = Parser.getTok().getLoc();
5169
5170 bool isNegative = getParser().getTok().is(AsmToken::Minus);
5171 const MCExpr *Offset;
5172 if (getParser().parseExpression(Offset))
5173 return true;
5174
5175 // The expression has to be a constant. Memory references with relocations
5176 // don't come through here, as they use the <label> forms of the relevant
5177 // instructions.
5178 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5179 if (!CE)
5180 return Error (E, "constant expression expected");
5181
5182 // If the constant was #-0, represent it as
5183 // std::numeric_limits<int32_t>::min().
5184 int32_t Val = CE->getValue();
5185 if (isNegative && Val == 0)
5186 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5187 getContext());
5188
5189 // Now we should have the closing ']'
5190 if (Parser.getTok().isNot(AsmToken::RBrac))
5191 return Error(Parser.getTok().getLoc(), "']' expected");
5192 E = Parser.getTok().getEndLoc();
5193 Parser.Lex(); // Eat right bracket token.
5194
5195 // Don't worry about range checking the value here. That's handled by
5196 // the is*() predicates.
5197 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5198 ARM_AM::no_shift, 0, 0,
5199 false, S, E));
5200
5201 // If there's a pre-indexing writeback marker, '!', just add it as a token
5202 // operand.
5203 if (Parser.getTok().is(AsmToken::Exclaim)) {
5204 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5205 Parser.Lex(); // Eat the '!'.
5206 }
5207
5208 return false;
5209 }
5210
5211 // The register offset is optionally preceded by a '+' or '-'
5212 bool isNegative = false;
5213 if (Parser.getTok().is(AsmToken::Minus)) {
5214 isNegative = true;
5215 Parser.Lex(); // Eat the '-'.
5216 } else if (Parser.getTok().is(AsmToken::Plus)) {
5217 // Nothing to do.
5218 Parser.Lex(); // Eat the '+'.
5219 }
5220
5221 E = Parser.getTok().getLoc();
5222 int OffsetRegNum = tryParseRegister();
5223 if (OffsetRegNum == -1)
5224 return Error(E, "register expected");
5225
5226 // If there's a shift operator, handle it.
5227 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5228 unsigned ShiftImm = 0;
5229 if (Parser.getTok().is(AsmToken::Comma)) {
5230 Parser.Lex(); // Eat the ','.
5231 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5232 return true;
5233 }
5234
5235 // Now we should have the closing ']'
5236 if (Parser.getTok().isNot(AsmToken::RBrac))
5237 return Error(Parser.getTok().getLoc(), "']' expected");
5238 E = Parser.getTok().getEndLoc();
5239 Parser.Lex(); // Eat right bracket token.
5240
5241 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5242 ShiftType, ShiftImm, 0, isNegative,
5243 S, E));
5244
5245 // If there's a pre-indexing writeback marker, '!', just add it as a token
5246 // operand.
5247 if (Parser.getTok().is(AsmToken::Exclaim)) {
5248 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5249 Parser.Lex(); // Eat the '!'.
5250 }
5251
5252 return false;
5253 }
5254
5255 /// parseMemRegOffsetShift - one of these two:
5256 /// ( lsl | lsr | asr | ror ) , # shift_amount
5257 /// rrx
5258 /// return true if it parses a shift otherwise it returns false.
parseMemRegOffsetShift(ARM_AM::ShiftOpc & St,unsigned & Amount)5259 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5260 unsigned &Amount) {
5261 MCAsmParser &Parser = getParser();
5262 SMLoc Loc = Parser.getTok().getLoc();
5263 const AsmToken &Tok = Parser.getTok();
5264 if (Tok.isNot(AsmToken::Identifier))
5265 return Error(Loc, "illegal shift operator");
5266 StringRef ShiftName = Tok.getString();
5267 if (ShiftName == "lsl" || ShiftName == "LSL" ||
5268 ShiftName == "asl" || ShiftName == "ASL")
5269 St = ARM_AM::lsl;
5270 else if (ShiftName == "lsr" || ShiftName == "LSR")
5271 St = ARM_AM::lsr;
5272 else if (ShiftName == "asr" || ShiftName == "ASR")
5273 St = ARM_AM::asr;
5274 else if (ShiftName == "ror" || ShiftName == "ROR")
5275 St = ARM_AM::ror;
5276 else if (ShiftName == "rrx" || ShiftName == "RRX")
5277 St = ARM_AM::rrx;
5278 else
5279 return Error(Loc, "illegal shift operator");
5280 Parser.Lex(); // Eat shift type token.
5281
5282 // rrx stands alone.
5283 Amount = 0;
5284 if (St != ARM_AM::rrx) {
5285 Loc = Parser.getTok().getLoc();
5286 // A '#' and a shift amount.
5287 const AsmToken &HashTok = Parser.getTok();
5288 if (HashTok.isNot(AsmToken::Hash) &&
5289 HashTok.isNot(AsmToken::Dollar))
5290 return Error(HashTok.getLoc(), "'#' expected");
5291 Parser.Lex(); // Eat hash token.
5292
5293 const MCExpr *Expr;
5294 if (getParser().parseExpression(Expr))
5295 return true;
5296 // Range check the immediate.
5297 // lsl, ror: 0 <= imm <= 31
5298 // lsr, asr: 0 <= imm <= 32
5299 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5300 if (!CE)
5301 return Error(Loc, "shift amount must be an immediate");
5302 int64_t Imm = CE->getValue();
5303 if (Imm < 0 ||
5304 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5305 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5306 return Error(Loc, "immediate shift value out of range");
5307 // If <ShiftTy> #0, turn it into a no_shift.
5308 if (Imm == 0)
5309 St = ARM_AM::lsl;
5310 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5311 if (Imm == 32)
5312 Imm = 0;
5313 Amount = Imm;
5314 }
5315
5316 return false;
5317 }
5318
5319 /// parseFPImm - A floating point immediate expression operand.
5320 OperandMatchResultTy
parseFPImm(OperandVector & Operands)5321 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5322 MCAsmParser &Parser = getParser();
5323 // Anything that can accept a floating point constant as an operand
5324 // needs to go through here, as the regular parseExpression is
5325 // integer only.
5326 //
5327 // This routine still creates a generic Immediate operand, containing
5328 // a bitcast of the 64-bit floating point value. The various operands
5329 // that accept floats can check whether the value is valid for them
5330 // via the standard is*() predicates.
5331
5332 SMLoc S = Parser.getTok().getLoc();
5333
5334 if (Parser.getTok().isNot(AsmToken::Hash) &&
5335 Parser.getTok().isNot(AsmToken::Dollar))
5336 return MatchOperand_NoMatch;
5337
5338 // Disambiguate the VMOV forms that can accept an FP immediate.
5339 // vmov.f32 <sreg>, #imm
5340 // vmov.f64 <dreg>, #imm
5341 // vmov.f32 <dreg>, #imm @ vector f32x2
5342 // vmov.f32 <qreg>, #imm @ vector f32x4
5343 //
5344 // There are also the NEON VMOV instructions which expect an
5345 // integer constant. Make sure we don't try to parse an FPImm
5346 // for these:
5347 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5348 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5349 bool isVmovf = TyOp.isToken() &&
5350 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5351 TyOp.getToken() == ".f16");
5352 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5353 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5354 Mnemonic.getToken() == "fconsts");
5355 if (!(isVmovf || isFconst))
5356 return MatchOperand_NoMatch;
5357
5358 Parser.Lex(); // Eat '#' or '$'.
5359
5360 // Handle negation, as that still comes through as a separate token.
5361 bool isNegative = false;
5362 if (Parser.getTok().is(AsmToken::Minus)) {
5363 isNegative = true;
5364 Parser.Lex();
5365 }
5366 const AsmToken &Tok = Parser.getTok();
5367 SMLoc Loc = Tok.getLoc();
5368 if (Tok.is(AsmToken::Real) && isVmovf) {
5369 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5370 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5371 // If we had a '-' in front, toggle the sign bit.
5372 IntVal ^= (uint64_t)isNegative << 31;
5373 Parser.Lex(); // Eat the token.
5374 Operands.push_back(ARMOperand::CreateImm(
5375 MCConstantExpr::create(IntVal, getContext()),
5376 S, Parser.getTok().getLoc()));
5377 return MatchOperand_Success;
5378 }
5379 // Also handle plain integers. Instructions which allow floating point
5380 // immediates also allow a raw encoded 8-bit value.
5381 if (Tok.is(AsmToken::Integer) && isFconst) {
5382 int64_t Val = Tok.getIntVal();
5383 Parser.Lex(); // Eat the token.
5384 if (Val > 255 || Val < 0) {
5385 Error(Loc, "encoded floating point value out of range");
5386 return MatchOperand_ParseFail;
5387 }
5388 float RealVal = ARM_AM::getFPImmFloat(Val);
5389 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5390
5391 Operands.push_back(ARMOperand::CreateImm(
5392 MCConstantExpr::create(Val, getContext()), S,
5393 Parser.getTok().getLoc()));
5394 return MatchOperand_Success;
5395 }
5396
5397 Error(Loc, "invalid floating point immediate");
5398 return MatchOperand_ParseFail;
5399 }
5400
5401 /// Parse a arm instruction operand. For now this parses the operand regardless
5402 /// of the mnemonic.
parseOperand(OperandVector & Operands,StringRef Mnemonic)5403 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5404 MCAsmParser &Parser = getParser();
5405 SMLoc S, E;
5406
5407 // Check if the current operand has a custom associated parser, if so, try to
5408 // custom parse the operand, or fallback to the general approach.
5409 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5410 if (ResTy == MatchOperand_Success)
5411 return false;
5412 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5413 // there was a match, but an error occurred, in which case, just return that
5414 // the operand parsing failed.
5415 if (ResTy == MatchOperand_ParseFail)
5416 return true;
5417
5418 switch (getLexer().getKind()) {
5419 default:
5420 Error(Parser.getTok().getLoc(), "unexpected token in operand");
5421 return true;
5422 case AsmToken::Identifier: {
5423 // If we've seen a branch mnemonic, the next operand must be a label. This
5424 // is true even if the label is a register name. So "br r1" means branch to
5425 // label "r1".
5426 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5427 if (!ExpectLabel) {
5428 if (!tryParseRegisterWithWriteBack(Operands))
5429 return false;
5430 int Res = tryParseShiftRegister(Operands);
5431 if (Res == 0) // success
5432 return false;
5433 else if (Res == -1) // irrecoverable error
5434 return true;
5435 // If this is VMRS, check for the apsr_nzcv operand.
5436 if (Mnemonic == "vmrs" &&
5437 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5438 S = Parser.getTok().getLoc();
5439 Parser.Lex();
5440 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5441 return false;
5442 }
5443 }
5444
5445 // Fall though for the Identifier case that is not a register or a
5446 // special name.
5447 LLVM_FALLTHROUGH;
5448 }
5449 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
5450 case AsmToken::Integer: // things like 1f and 2b as a branch targets
5451 case AsmToken::String: // quoted label names.
5452 case AsmToken::Dot: { // . as a branch target
5453 // This was not a register so parse other operands that start with an
5454 // identifier (like labels) as expressions and create them as immediates.
5455 const MCExpr *IdVal;
5456 S = Parser.getTok().getLoc();
5457 if (getParser().parseExpression(IdVal))
5458 return true;
5459 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5460 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5461 return false;
5462 }
5463 case AsmToken::LBrac:
5464 return parseMemory(Operands);
5465 case AsmToken::LCurly:
5466 return parseRegisterList(Operands);
5467 case AsmToken::Dollar:
5468 case AsmToken::Hash:
5469 // #42 -> immediate.
5470 S = Parser.getTok().getLoc();
5471 Parser.Lex();
5472
5473 if (Parser.getTok().isNot(AsmToken::Colon)) {
5474 bool isNegative = Parser.getTok().is(AsmToken::Minus);
5475 const MCExpr *ImmVal;
5476 if (getParser().parseExpression(ImmVal))
5477 return true;
5478 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5479 if (CE) {
5480 int32_t Val = CE->getValue();
5481 if (isNegative && Val == 0)
5482 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5483 getContext());
5484 }
5485 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5486 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5487
5488 // There can be a trailing '!' on operands that we want as a separate
5489 // '!' Token operand. Handle that here. For example, the compatibility
5490 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5491 if (Parser.getTok().is(AsmToken::Exclaim)) {
5492 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5493 Parser.getTok().getLoc()));
5494 Parser.Lex(); // Eat exclaim token
5495 }
5496 return false;
5497 }
5498 // w/ a ':' after the '#', it's just like a plain ':'.
5499 LLVM_FALLTHROUGH;
5500
5501 case AsmToken::Colon: {
5502 S = Parser.getTok().getLoc();
5503 // ":lower16:" and ":upper16:" expression prefixes
5504 // FIXME: Check it's an expression prefix,
5505 // e.g. (FOO - :lower16:BAR) isn't legal.
5506 ARMMCExpr::VariantKind RefKind;
5507 if (parsePrefix(RefKind))
5508 return true;
5509
5510 const MCExpr *SubExprVal;
5511 if (getParser().parseExpression(SubExprVal))
5512 return true;
5513
5514 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5515 getContext());
5516 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5517 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5518 return false;
5519 }
5520 case AsmToken::Equal: {
5521 S = Parser.getTok().getLoc();
5522 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5523 return Error(S, "unexpected token in operand");
5524 Parser.Lex(); // Eat '='
5525 const MCExpr *SubExprVal;
5526 if (getParser().parseExpression(SubExprVal))
5527 return true;
5528 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5529
5530 // execute-only: we assume that assembly programmers know what they are
5531 // doing and allow literal pool creation here
5532 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5533 return false;
5534 }
5535 }
5536 }
5537
5538 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5539 // :lower16: and :upper16:.
parsePrefix(ARMMCExpr::VariantKind & RefKind)5540 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5541 MCAsmParser &Parser = getParser();
5542 RefKind = ARMMCExpr::VK_ARM_None;
5543
5544 // consume an optional '#' (GNU compatibility)
5545 if (getLexer().is(AsmToken::Hash))
5546 Parser.Lex();
5547
5548 // :lower16: and :upper16: modifiers
5549 assert(getLexer().is(AsmToken::Colon) && "expected a :");
5550 Parser.Lex(); // Eat ':'
5551
5552 if (getLexer().isNot(AsmToken::Identifier)) {
5553 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5554 return true;
5555 }
5556
5557 enum {
5558 COFF = (1 << MCObjectFileInfo::IsCOFF),
5559 ELF = (1 << MCObjectFileInfo::IsELF),
5560 MACHO = (1 << MCObjectFileInfo::IsMachO),
5561 WASM = (1 << MCObjectFileInfo::IsWasm),
5562 };
5563 static const struct PrefixEntry {
5564 const char *Spelling;
5565 ARMMCExpr::VariantKind VariantKind;
5566 uint8_t SupportedFormats;
5567 } PrefixEntries[] = {
5568 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5569 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5570 };
5571
5572 StringRef IDVal = Parser.getTok().getIdentifier();
5573
5574 const auto &Prefix =
5575 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5576 [&IDVal](const PrefixEntry &PE) {
5577 return PE.Spelling == IDVal;
5578 });
5579 if (Prefix == std::end(PrefixEntries)) {
5580 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5581 return true;
5582 }
5583
5584 uint8_t CurrentFormat;
5585 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5586 case MCObjectFileInfo::IsMachO:
5587 CurrentFormat = MACHO;
5588 break;
5589 case MCObjectFileInfo::IsELF:
5590 CurrentFormat = ELF;
5591 break;
5592 case MCObjectFileInfo::IsCOFF:
5593 CurrentFormat = COFF;
5594 break;
5595 case MCObjectFileInfo::IsWasm:
5596 CurrentFormat = WASM;
5597 break;
5598 }
5599
5600 if (~Prefix->SupportedFormats & CurrentFormat) {
5601 Error(Parser.getTok().getLoc(),
5602 "cannot represent relocation in the current file format");
5603 return true;
5604 }
5605
5606 RefKind = Prefix->VariantKind;
5607 Parser.Lex();
5608
5609 if (getLexer().isNot(AsmToken::Colon)) {
5610 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5611 return true;
5612 }
5613 Parser.Lex(); // Eat the last ':'
5614
5615 return false;
5616 }
5617
5618 /// Given a mnemonic, split out possible predication code and carry
5619 /// setting letters to form a canonical mnemonic and flags.
5620 //
5621 // FIXME: Would be nice to autogen this.
5622 // FIXME: This is a bit of a maze of special cases.
splitMnemonic(StringRef Mnemonic,unsigned & PredicationCode,bool & CarrySetting,unsigned & ProcessorIMod,StringRef & ITMask)5623 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5624 unsigned &PredicationCode,
5625 bool &CarrySetting,
5626 unsigned &ProcessorIMod,
5627 StringRef &ITMask) {
5628 PredicationCode = ARMCC::AL;
5629 CarrySetting = false;
5630 ProcessorIMod = 0;
5631
5632 // Ignore some mnemonics we know aren't predicated forms.
5633 //
5634 // FIXME: Would be nice to autogen this.
5635 if ((Mnemonic == "movs" && isThumb()) ||
5636 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
5637 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
5638 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
5639 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
5640 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
5641 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
5642 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
5643 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5644 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5645 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
5646 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5647 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5648 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5649 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5650 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5651 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5652 Mnemonic == "vfmal" || Mnemonic == "vfmsl")
5653 return Mnemonic;
5654
5655 // First, split out any predication code. Ignore mnemonics we know aren't
5656 // predicated but do have a carry-set and so weren't caught above.
5657 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5658 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5659 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5660 Mnemonic != "sbcs" && Mnemonic != "rscs") {
5661 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5662 if (CC != ~0U) {
5663 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5664 PredicationCode = CC;
5665 }
5666 }
5667
5668 // Next, determine if we have a carry setting bit. We explicitly ignore all
5669 // the instructions we know end in 's'.
5670 if (Mnemonic.endswith("s") &&
5671 !(Mnemonic == "cps" || Mnemonic == "mls" ||
5672 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5673 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5674 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5675 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5676 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5677 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5678 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5679 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5680 Mnemonic == "bxns" || Mnemonic == "blxns" ||
5681 (Mnemonic == "movs" && isThumb()))) {
5682 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5683 CarrySetting = true;
5684 }
5685
5686 // The "cps" instruction can have a interrupt mode operand which is glued into
5687 // the mnemonic. Check if this is the case, split it and parse the imod op
5688 if (Mnemonic.startswith("cps")) {
5689 // Split out any imod code.
5690 unsigned IMod =
5691 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5692 .Case("ie", ARM_PROC::IE)
5693 .Case("id", ARM_PROC::ID)
5694 .Default(~0U);
5695 if (IMod != ~0U) {
5696 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5697 ProcessorIMod = IMod;
5698 }
5699 }
5700
5701 // The "it" instruction has the condition mask on the end of the mnemonic.
5702 if (Mnemonic.startswith("it")) {
5703 ITMask = Mnemonic.slice(2, Mnemonic.size());
5704 Mnemonic = Mnemonic.slice(0, 2);
5705 }
5706
5707 return Mnemonic;
5708 }
5709
5710 /// Given a canonical mnemonic, determine if the instruction ever allows
5711 /// inclusion of carry set or predication code operands.
5712 //
5713 // FIXME: It would be nice to autogen this.
getMnemonicAcceptInfo(StringRef Mnemonic,StringRef FullInst,bool & CanAcceptCarrySet,bool & CanAcceptPredicationCode)5714 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5715 bool &CanAcceptCarrySet,
5716 bool &CanAcceptPredicationCode) {
5717 CanAcceptCarrySet =
5718 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5719 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5720 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5721 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5722 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5723 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5724 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5725 (!isThumb() &&
5726 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5727 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5728
5729 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5730 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5731 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5732 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5733 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5734 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5735 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5736 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5737 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5738 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5739 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5740 Mnemonic == "vmovx" || Mnemonic == "vins" ||
5741 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5742 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5743 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
5744 Mnemonic == "sb" || Mnemonic == "ssbb" ||
5745 Mnemonic == "pssbb") {
5746 // These mnemonics are never predicable
5747 CanAcceptPredicationCode = false;
5748 } else if (!isThumb()) {
5749 // Some instructions are only predicable in Thumb mode
5750 CanAcceptPredicationCode =
5751 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5752 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5753 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5754 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5755 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5756 Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5757 Mnemonic != "tsb" &&
5758 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5759 } else if (isThumbOne()) {
5760 if (hasV6MOps())
5761 CanAcceptPredicationCode = Mnemonic != "movs";
5762 else
5763 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5764 } else
5765 CanAcceptPredicationCode = true;
5766 }
5767
5768 // Some Thumb instructions have two operand forms that are not
5769 // available as three operand, convert to two operand form if possible.
5770 //
5771 // FIXME: We would really like to be able to tablegen'erate this.
tryConvertingToTwoOperandForm(StringRef Mnemonic,bool CarrySetting,OperandVector & Operands)5772 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5773 bool CarrySetting,
5774 OperandVector &Operands) {
5775 if (Operands.size() != 6)
5776 return;
5777
5778 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5779 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5780 if (!Op3.isReg() || !Op4.isReg())
5781 return;
5782
5783 auto Op3Reg = Op3.getReg();
5784 auto Op4Reg = Op4.getReg();
5785
5786 // For most Thumb2 cases we just generate the 3 operand form and reduce
5787 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5788 // won't accept SP or PC so we do the transformation here taking care
5789 // with immediate range in the 'add sp, sp #imm' case.
5790 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5791 if (isThumbTwo()) {
5792 if (Mnemonic != "add")
5793 return;
5794 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5795 (Op5.isReg() && Op5.getReg() == ARM::PC);
5796 if (!TryTransform) {
5797 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5798 (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5799 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5800 Op5.isImm() && !Op5.isImm0_508s4());
5801 }
5802 if (!TryTransform)
5803 return;
5804 } else if (!isThumbOne())
5805 return;
5806
5807 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5808 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5809 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5810 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5811 return;
5812
5813 // If first 2 operands of a 3 operand instruction are the same
5814 // then transform to 2 operand version of the same instruction
5815 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5816 bool Transform = Op3Reg == Op4Reg;
5817
5818 // For communtative operations, we might be able to transform if we swap
5819 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5820 // as tADDrsp.
5821 const ARMOperand *LastOp = &Op5;
5822 bool Swap = false;
5823 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5824 ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5825 Mnemonic == "and" || Mnemonic == "eor" ||
5826 Mnemonic == "adc" || Mnemonic == "orr")) {
5827 Swap = true;
5828 LastOp = &Op4;
5829 Transform = true;
5830 }
5831
5832 // If both registers are the same then remove one of them from
5833 // the operand list, with certain exceptions.
5834 if (Transform) {
5835 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5836 // 2 operand forms don't exist.
5837 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5838 LastOp->isReg())
5839 Transform = false;
5840
5841 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5842 // 3-bits because the ARMARM says not to.
5843 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5844 Transform = false;
5845 }
5846
5847 if (Transform) {
5848 if (Swap)
5849 std::swap(Op4, Op5);
5850 Operands.erase(Operands.begin() + 3);
5851 }
5852 }
5853
shouldOmitCCOutOperand(StringRef Mnemonic,OperandVector & Operands)5854 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5855 OperandVector &Operands) {
5856 // FIXME: This is all horribly hacky. We really need a better way to deal
5857 // with optional operands like this in the matcher table.
5858
5859 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5860 // another does not. Specifically, the MOVW instruction does not. So we
5861 // special case it here and remove the defaulted (non-setting) cc_out
5862 // operand if that's the instruction we're trying to match.
5863 //
5864 // We do this as post-processing of the explicit operands rather than just
5865 // conditionally adding the cc_out in the first place because we need
5866 // to check the type of the parsed immediate operand.
5867 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5868 !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5869 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5870 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5871 return true;
5872
5873 // Register-register 'add' for thumb does not have a cc_out operand
5874 // when there are only two register operands.
5875 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5876 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5877 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5878 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5879 return true;
5880 // Register-register 'add' for thumb does not have a cc_out operand
5881 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5882 // have to check the immediate range here since Thumb2 has a variant
5883 // that can handle a different range and has a cc_out operand.
5884 if (((isThumb() && Mnemonic == "add") ||
5885 (isThumbTwo() && Mnemonic == "sub")) &&
5886 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5887 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5888 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5889 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5890 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5891 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5892 return true;
5893 // For Thumb2, add/sub immediate does not have a cc_out operand for the
5894 // imm0_4095 variant. That's the least-preferred variant when
5895 // selecting via the generic "add" mnemonic, so to know that we
5896 // should remove the cc_out operand, we have to explicitly check that
5897 // it's not one of the other variants. Ugh.
5898 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5899 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5900 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5901 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5902 // Nest conditions rather than one big 'if' statement for readability.
5903 //
5904 // If both registers are low, we're in an IT block, and the immediate is
5905 // in range, we should use encoding T1 instead, which has a cc_out.
5906 if (inITBlock() &&
5907 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5908 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5909 static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5910 return false;
5911 // Check against T3. If the second register is the PC, this is an
5912 // alternate form of ADR, which uses encoding T4, so check for that too.
5913 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5914 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5915 return false;
5916
5917 // Otherwise, we use encoding T4, which does not have a cc_out
5918 // operand.
5919 return true;
5920 }
5921
5922 // The thumb2 multiply instruction doesn't have a CCOut register, so
5923 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5924 // use the 16-bit encoding or not.
5925 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5926 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5927 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5928 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5929 static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5930 // If the registers aren't low regs, the destination reg isn't the
5931 // same as one of the source regs, or the cc_out operand is zero
5932 // outside of an IT block, we have to use the 32-bit encoding, so
5933 // remove the cc_out operand.
5934 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5935 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5936 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5937 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5938 static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5939 static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5940 static_cast<ARMOperand &>(*Operands[4]).getReg())))
5941 return true;
5942
5943 // Also check the 'mul' syntax variant that doesn't specify an explicit
5944 // destination register.
5945 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5946 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5947 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5948 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5949 // If the registers aren't low regs or the cc_out operand is zero
5950 // outside of an IT block, we have to use the 32-bit encoding, so
5951 // remove the cc_out operand.
5952 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5953 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5954 !inITBlock()))
5955 return true;
5956
5957 // Register-register 'add/sub' for thumb does not have a cc_out operand
5958 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5959 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5960 // right, this will result in better diagnostics (which operand is off)
5961 // anyway.
5962 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5963 (Operands.size() == 5 || Operands.size() == 6) &&
5964 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5965 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5966 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5967 (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5968 (Operands.size() == 6 &&
5969 static_cast<ARMOperand &>(*Operands[5]).isImm())))
5970 return true;
5971
5972 return false;
5973 }
5974
shouldOmitPredicateOperand(StringRef Mnemonic,OperandVector & Operands)5975 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5976 OperandVector &Operands) {
5977 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5978 unsigned RegIdx = 3;
5979 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5980 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5981 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5982 if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5983 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5984 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5985 RegIdx = 4;
5986
5987 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5988 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5989 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5990 ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5991 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5992 return true;
5993 }
5994 return false;
5995 }
5996
isDataTypeToken(StringRef Tok)5997 static bool isDataTypeToken(StringRef Tok) {
5998 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5999 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6000 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6001 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6002 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6003 Tok == ".f" || Tok == ".d";
6004 }
6005
6006 // FIXME: This bit should probably be handled via an explicit match class
6007 // in the .td files that matches the suffix instead of having it be
6008 // a literal string token the way it is now.
doesIgnoreDataTypeSuffix(StringRef Mnemonic,StringRef DT)6009 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6010 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6011 }
6012
6013 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
6014 unsigned VariantID);
6015
6016 // The GNU assembler has aliases of ldrd and strd with the second register
6017 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6018 //
6019 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6020 // the assmebly parser could then generate confusing diagnostics refering to
6021 // it. If we do find anything that prevents us from doing the transformation we
6022 // bail out, and let the assembly parser report an error on the instruction as
6023 // it is written.
fixupGNULDRDAlias(StringRef Mnemonic,OperandVector & Operands)6024 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6025 OperandVector &Operands) {
6026 if (Mnemonic != "ldrd" && Mnemonic != "strd")
6027 return;
6028 if (Operands.size() < 4)
6029 return;
6030
6031 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6032 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6033
6034 if (!Op2.isReg())
6035 return;
6036 if (!Op3.isMem())
6037 return;
6038
6039 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6040 if (!GPR.contains(Op2.getReg()))
6041 return;
6042
6043 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6044 if (!isThumb() && (RtEncoding & 1)) {
6045 // In ARM mode, the registers must be from an aligned pair, this
6046 // restriction does not apply in Thumb mode.
6047 return;
6048 }
6049 if (Op2.getReg() == ARM::PC)
6050 return;
6051 unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6052 if (!PairedReg || PairedReg == ARM::PC ||
6053 (PairedReg == ARM::SP && !hasV8Ops()))
6054 return;
6055
6056 Operands.insert(
6057 Operands.begin() + 3,
6058 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6059 }
6060
6061 /// Parse an arm instruction mnemonic followed by its operands.
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)6062 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6063 SMLoc NameLoc, OperandVector &Operands) {
6064 MCAsmParser &Parser = getParser();
6065
6066 // Apply mnemonic aliases before doing anything else, as the destination
6067 // mnemonic may include suffices and we want to handle them normally.
6068 // The generic tblgen'erated code does this later, at the start of
6069 // MatchInstructionImpl(), but that's too late for aliases that include
6070 // any sort of suffix.
6071 uint64_t AvailableFeatures = getAvailableFeatures();
6072 unsigned AssemblerDialect = getParser().getAssemblerDialect();
6073 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6074
6075 // First check for the ARM-specific .req directive.
6076 if (Parser.getTok().is(AsmToken::Identifier) &&
6077 Parser.getTok().getIdentifier() == ".req") {
6078 parseDirectiveReq(Name, NameLoc);
6079 // We always return 'error' for this, as we're done with this
6080 // statement and don't need to match the 'instruction."
6081 return true;
6082 }
6083
6084 // Create the leading tokens for the mnemonic, split by '.' characters.
6085 size_t Start = 0, Next = Name.find('.');
6086 StringRef Mnemonic = Name.slice(Start, Next);
6087
6088 // Split out the predication code and carry setting flag from the mnemonic.
6089 unsigned PredicationCode;
6090 unsigned ProcessorIMod;
6091 bool CarrySetting;
6092 StringRef ITMask;
6093 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6094 ProcessorIMod, ITMask);
6095
6096 // In Thumb1, only the branch (B) instruction can be predicated.
6097 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6098 return Error(NameLoc, "conditional execution not supported in Thumb1");
6099 }
6100
6101 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6102
6103 // Handle the IT instruction ITMask. Convert it to a bitmask. This
6104 // is the mask as it will be for the IT encoding if the conditional
6105 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6106 // where the conditional bit0 is zero, the instruction post-processing
6107 // will adjust the mask accordingly.
6108 if (Mnemonic == "it") {
6109 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6110 if (ITMask.size() > 3) {
6111 return Error(Loc, "too many conditions on IT instruction");
6112 }
6113 unsigned Mask = 8;
6114 for (unsigned i = ITMask.size(); i != 0; --i) {
6115 char pos = ITMask[i - 1];
6116 if (pos != 't' && pos != 'e') {
6117 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6118 }
6119 Mask >>= 1;
6120 if (ITMask[i - 1] == 't')
6121 Mask |= 8;
6122 }
6123 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6124 }
6125
6126 // FIXME: This is all a pretty gross hack. We should automatically handle
6127 // optional operands like this via tblgen.
6128
6129 // Next, add the CCOut and ConditionCode operands, if needed.
6130 //
6131 // For mnemonics which can ever incorporate a carry setting bit or predication
6132 // code, our matching model involves us always generating CCOut and
6133 // ConditionCode operands to match the mnemonic "as written" and then we let
6134 // the matcher deal with finding the right instruction or generating an
6135 // appropriate error.
6136 bool CanAcceptCarrySet, CanAcceptPredicationCode;
6137 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6138
6139 // If we had a carry-set on an instruction that can't do that, issue an
6140 // error.
6141 if (!CanAcceptCarrySet && CarrySetting) {
6142 return Error(NameLoc, "instruction '" + Mnemonic +
6143 "' can not set flags, but 's' suffix specified");
6144 }
6145 // If we had a predication code on an instruction that can't do that, issue an
6146 // error.
6147 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6148 return Error(NameLoc, "instruction '" + Mnemonic +
6149 "' is not predicable, but condition code specified");
6150 }
6151
6152 // Add the carry setting operand, if necessary.
6153 if (CanAcceptCarrySet) {
6154 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6155 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6156 Loc));
6157 }
6158
6159 // Add the predication code operand, if necessary.
6160 if (CanAcceptPredicationCode) {
6161 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6162 CarrySetting);
6163 Operands.push_back(ARMOperand::CreateCondCode(
6164 ARMCC::CondCodes(PredicationCode), Loc));
6165 }
6166
6167 // Add the processor imod operand, if necessary.
6168 if (ProcessorIMod) {
6169 Operands.push_back(ARMOperand::CreateImm(
6170 MCConstantExpr::create(ProcessorIMod, getContext()),
6171 NameLoc, NameLoc));
6172 } else if (Mnemonic == "cps" && isMClass()) {
6173 return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6174 }
6175
6176 // Add the remaining tokens in the mnemonic.
6177 while (Next != StringRef::npos) {
6178 Start = Next;
6179 Next = Name.find('.', Start + 1);
6180 StringRef ExtraToken = Name.slice(Start, Next);
6181
6182 // Some NEON instructions have an optional datatype suffix that is
6183 // completely ignored. Check for that.
6184 if (isDataTypeToken(ExtraToken) &&
6185 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6186 continue;
6187
6188 // For for ARM mode generate an error if the .n qualifier is used.
6189 if (ExtraToken == ".n" && !isThumb()) {
6190 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6191 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6192 "arm mode");
6193 }
6194
6195 // The .n qualifier is always discarded as that is what the tables
6196 // and matcher expect. In ARM mode the .w qualifier has no effect,
6197 // so discard it to avoid errors that can be caused by the matcher.
6198 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6199 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6200 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6201 }
6202 }
6203
6204 // Read the remaining operands.
6205 if (getLexer().isNot(AsmToken::EndOfStatement)) {
6206 // Read the first operand.
6207 if (parseOperand(Operands, Mnemonic)) {
6208 return true;
6209 }
6210
6211 while (parseOptionalToken(AsmToken::Comma)) {
6212 // Parse and remember the operand.
6213 if (parseOperand(Operands, Mnemonic)) {
6214 return true;
6215 }
6216 }
6217 }
6218
6219 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6220 return true;
6221
6222 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6223
6224 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6225 // do and don't have a cc_out optional-def operand. With some spot-checks
6226 // of the operand list, we can figure out which variant we're trying to
6227 // parse and adjust accordingly before actually matching. We shouldn't ever
6228 // try to remove a cc_out operand that was explicitly set on the
6229 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6230 // table driven matcher doesn't fit well with the ARM instruction set.
6231 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6232 Operands.erase(Operands.begin() + 1);
6233
6234 // Some instructions have the same mnemonic, but don't always
6235 // have a predicate. Distinguish them here and delete the
6236 // predicate if needed.
6237 if (PredicationCode == ARMCC::AL &&
6238 shouldOmitPredicateOperand(Mnemonic, Operands))
6239 Operands.erase(Operands.begin() + 1);
6240
6241 // ARM mode 'blx' need special handling, as the register operand version
6242 // is predicable, but the label operand version is not. So, we can't rely
6243 // on the Mnemonic based checking to correctly figure out when to put
6244 // a k_CondCode operand in the list. If we're trying to match the label
6245 // version, remove the k_CondCode operand here.
6246 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6247 static_cast<ARMOperand &>(*Operands[2]).isImm())
6248 Operands.erase(Operands.begin() + 1);
6249
6250 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6251 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6252 // a single GPRPair reg operand is used in the .td file to replace the two
6253 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6254 // expressed as a GPRPair, so we have to manually merge them.
6255 // FIXME: We would really like to be able to tablegen'erate this.
6256 if (!isThumb() && Operands.size() > 4 &&
6257 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6258 Mnemonic == "stlexd")) {
6259 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6260 unsigned Idx = isLoad ? 2 : 3;
6261 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6262 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6263
6264 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6265 // Adjust only if Op1 and Op2 are GPRs.
6266 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6267 MRC.contains(Op2.getReg())) {
6268 unsigned Reg1 = Op1.getReg();
6269 unsigned Reg2 = Op2.getReg();
6270 unsigned Rt = MRI->getEncodingValue(Reg1);
6271 unsigned Rt2 = MRI->getEncodingValue(Reg2);
6272
6273 // Rt2 must be Rt + 1 and Rt must be even.
6274 if (Rt + 1 != Rt2 || (Rt & 1)) {
6275 return Error(Op2.getStartLoc(),
6276 isLoad ? "destination operands must be sequential"
6277 : "source operands must be sequential");
6278 }
6279 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6280 &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6281 Operands[Idx] =
6282 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6283 Operands.erase(Operands.begin() + Idx + 1);
6284 }
6285 }
6286
6287 // GNU Assembler extension (compatibility).
6288 fixupGNULDRDAlias(Mnemonic, Operands);
6289
6290 // FIXME: As said above, this is all a pretty gross hack. This instruction
6291 // does not fit with other "subs" and tblgen.
6292 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6293 // so the Mnemonic is the original name "subs" and delete the predicate
6294 // operand so it will match the table entry.
6295 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6296 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6297 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6298 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6299 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6300 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6301 Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6302 Operands.erase(Operands.begin() + 1);
6303 }
6304 return false;
6305 }
6306
6307 // Validate context-sensitive operand constraints.
6308
6309 // return 'true' if register list contains non-low GPR registers,
6310 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6311 // 'containsReg' to true.
checkLowRegisterList(const MCInst & Inst,unsigned OpNo,unsigned Reg,unsigned HiReg,bool & containsReg)6312 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6313 unsigned Reg, unsigned HiReg,
6314 bool &containsReg) {
6315 containsReg = false;
6316 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6317 unsigned OpReg = Inst.getOperand(i).getReg();
6318 if (OpReg == Reg)
6319 containsReg = true;
6320 // Anything other than a low register isn't legal here.
6321 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6322 return true;
6323 }
6324 return false;
6325 }
6326
6327 // Check if the specified regisgter is in the register list of the inst,
6328 // starting at the indicated operand number.
listContainsReg(const MCInst & Inst,unsigned OpNo,unsigned Reg)6329 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6330 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6331 unsigned OpReg = Inst.getOperand(i).getReg();
6332 if (OpReg == Reg)
6333 return true;
6334 }
6335 return false;
6336 }
6337
6338 // Return true if instruction has the interesting property of being
6339 // allowed in IT blocks, but not being predicable.
instIsBreakpoint(const MCInst & Inst)6340 static bool instIsBreakpoint(const MCInst &Inst) {
6341 return Inst.getOpcode() == ARM::tBKPT ||
6342 Inst.getOpcode() == ARM::BKPT ||
6343 Inst.getOpcode() == ARM::tHLT ||
6344 Inst.getOpcode() == ARM::HLT;
6345 }
6346
validatetLDMRegList(const MCInst & Inst,const OperandVector & Operands,unsigned ListNo,bool IsARPop)6347 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6348 const OperandVector &Operands,
6349 unsigned ListNo, bool IsARPop) {
6350 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6351 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6352
6353 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6354 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6355 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6356
6357 if (!IsARPop && ListContainsSP)
6358 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6359 "SP may not be in the register list");
6360 else if (ListContainsPC && ListContainsLR)
6361 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6362 "PC and LR may not be in the register list simultaneously");
6363 return false;
6364 }
6365
validatetSTMRegList(const MCInst & Inst,const OperandVector & Operands,unsigned ListNo)6366 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6367 const OperandVector &Operands,
6368 unsigned ListNo) {
6369 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6370 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6371
6372 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6373 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6374
6375 if (ListContainsSP && ListContainsPC)
6376 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6377 "SP and PC may not be in the register list");
6378 else if (ListContainsSP)
6379 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6380 "SP may not be in the register list");
6381 else if (ListContainsPC)
6382 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6383 "PC may not be in the register list");
6384 return false;
6385 }
6386
validateLDRDSTRD(MCInst & Inst,const OperandVector & Operands,bool Load,bool ARMMode,bool Writeback)6387 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6388 const OperandVector &Operands,
6389 bool Load, bool ARMMode, bool Writeback) {
6390 unsigned RtIndex = Load || !Writeback ? 0 : 1;
6391 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6392 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6393
6394 if (ARMMode) {
6395 // Rt can't be R14.
6396 if (Rt == 14)
6397 return Error(Operands[3]->getStartLoc(),
6398 "Rt can't be R14");
6399
6400 // Rt must be even-numbered.
6401 if ((Rt & 1) == 1)
6402 return Error(Operands[3]->getStartLoc(),
6403 "Rt must be even-numbered");
6404
6405 // Rt2 must be Rt + 1.
6406 if (Rt2 != Rt + 1) {
6407 if (Load)
6408 return Error(Operands[3]->getStartLoc(),
6409 "destination operands must be sequential");
6410 else
6411 return Error(Operands[3]->getStartLoc(),
6412 "source operands must be sequential");
6413 }
6414
6415 // FIXME: Diagnose m == 15
6416 // FIXME: Diagnose ldrd with m == t || m == t2.
6417 }
6418
6419 if (!ARMMode && Load) {
6420 if (Rt2 == Rt)
6421 return Error(Operands[3]->getStartLoc(),
6422 "destination operands can't be identical");
6423 }
6424
6425 if (Writeback) {
6426 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6427
6428 if (Rn == Rt || Rn == Rt2) {
6429 if (Load)
6430 return Error(Operands[3]->getStartLoc(),
6431 "base register needs to be different from destination "
6432 "registers");
6433 else
6434 return Error(Operands[3]->getStartLoc(),
6435 "source register and base register can't be identical");
6436 }
6437
6438 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6439 // (Except the immediate form of ldrd?)
6440 }
6441
6442 return false;
6443 }
6444
6445
6446 // FIXME: We would really like to be able to tablegen'erate this.
validateInstruction(MCInst & Inst,const OperandVector & Operands)6447 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6448 const OperandVector &Operands) {
6449 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6450 SMLoc Loc = Operands[0]->getStartLoc();
6451
6452 // Check the IT block state first.
6453 // NOTE: BKPT and HLT instructions have the interesting property of being
6454 // allowed in IT blocks, but not being predicable. They just always execute.
6455 if (inITBlock() && !instIsBreakpoint(Inst)) {
6456 // The instruction must be predicable.
6457 if (!MCID.isPredicable())
6458 return Error(Loc, "instructions in IT block must be predicable");
6459 ARMCC::CondCodes Cond = ARMCC::CondCodes(
6460 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6461 if (Cond != currentITCond()) {
6462 // Find the condition code Operand to get its SMLoc information.
6463 SMLoc CondLoc;
6464 for (unsigned I = 1; I < Operands.size(); ++I)
6465 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6466 CondLoc = Operands[I]->getStartLoc();
6467 return Error(CondLoc, "incorrect condition in IT block; got '" +
6468 StringRef(ARMCondCodeToString(Cond)) +
6469 "', but expected '" +
6470 ARMCondCodeToString(currentITCond()) + "'");
6471 }
6472 // Check for non-'al' condition codes outside of the IT block.
6473 } else if (isThumbTwo() && MCID.isPredicable() &&
6474 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6475 ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6476 Inst.getOpcode() != ARM::t2Bcc) {
6477 return Error(Loc, "predicated instructions must be in IT block");
6478 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6479 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6480 ARMCC::AL) {
6481 return Warning(Loc, "predicated instructions should be in IT block");
6482 }
6483
6484 // PC-setting instructions in an IT block, but not the last instruction of
6485 // the block, are UNPREDICTABLE.
6486 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6487 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6488 }
6489
6490 const unsigned Opcode = Inst.getOpcode();
6491 switch (Opcode) {
6492 case ARM::t2IT: {
6493 // Encoding is unpredictable if it ever results in a notional 'NV'
6494 // predicate. Since we don't parse 'NV' directly this means an 'AL'
6495 // predicate with an "else" mask bit.
6496 unsigned Cond = Inst.getOperand(0).getImm();
6497 unsigned Mask = Inst.getOperand(1).getImm();
6498
6499 // Mask hasn't been modified to the IT instruction encoding yet so
6500 // conditions only allowing a 't' are a block of 1s starting at bit 3
6501 // followed by all 0s. Easiest way is to just list the 4 possibilities.
6502 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6503 Mask != 15)
6504 return Error(Loc, "unpredictable IT predicate sequence");
6505 break;
6506 }
6507 case ARM::LDRD:
6508 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6509 /*Writeback*/false))
6510 return true;
6511 break;
6512 case ARM::LDRD_PRE:
6513 case ARM::LDRD_POST:
6514 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6515 /*Writeback*/true))
6516 return true;
6517 break;
6518 case ARM::t2LDRDi8:
6519 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6520 /*Writeback*/false))
6521 return true;
6522 break;
6523 case ARM::t2LDRD_PRE:
6524 case ARM::t2LDRD_POST:
6525 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6526 /*Writeback*/true))
6527 return true;
6528 break;
6529 case ARM::t2BXJ: {
6530 const unsigned RmReg = Inst.getOperand(0).getReg();
6531 // Rm = SP is no longer unpredictable in v8-A
6532 if (RmReg == ARM::SP && !hasV8Ops())
6533 return Error(Operands[2]->getStartLoc(),
6534 "r13 (SP) is an unpredictable operand to BXJ");
6535 return false;
6536 }
6537 case ARM::STRD:
6538 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6539 /*Writeback*/false))
6540 return true;
6541 break;
6542 case ARM::STRD_PRE:
6543 case ARM::STRD_POST:
6544 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6545 /*Writeback*/true))
6546 return true;
6547 break;
6548 case ARM::t2STRD_PRE:
6549 case ARM::t2STRD_POST:
6550 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6551 /*Writeback*/true))
6552 return true;
6553 break;
6554 case ARM::STR_PRE_IMM:
6555 case ARM::STR_PRE_REG:
6556 case ARM::t2STR_PRE:
6557 case ARM::STR_POST_IMM:
6558 case ARM::STR_POST_REG:
6559 case ARM::t2STR_POST:
6560 case ARM::STRH_PRE:
6561 case ARM::t2STRH_PRE:
6562 case ARM::STRH_POST:
6563 case ARM::t2STRH_POST:
6564 case ARM::STRB_PRE_IMM:
6565 case ARM::STRB_PRE_REG:
6566 case ARM::t2STRB_PRE:
6567 case ARM::STRB_POST_IMM:
6568 case ARM::STRB_POST_REG:
6569 case ARM::t2STRB_POST: {
6570 // Rt must be different from Rn.
6571 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6572 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6573
6574 if (Rt == Rn)
6575 return Error(Operands[3]->getStartLoc(),
6576 "source register and base register can't be identical");
6577 return false;
6578 }
6579 case ARM::LDR_PRE_IMM:
6580 case ARM::LDR_PRE_REG:
6581 case ARM::t2LDR_PRE:
6582 case ARM::LDR_POST_IMM:
6583 case ARM::LDR_POST_REG:
6584 case ARM::t2LDR_POST:
6585 case ARM::LDRH_PRE:
6586 case ARM::t2LDRH_PRE:
6587 case ARM::LDRH_POST:
6588 case ARM::t2LDRH_POST:
6589 case ARM::LDRSH_PRE:
6590 case ARM::t2LDRSH_PRE:
6591 case ARM::LDRSH_POST:
6592 case ARM::t2LDRSH_POST:
6593 case ARM::LDRB_PRE_IMM:
6594 case ARM::LDRB_PRE_REG:
6595 case ARM::t2LDRB_PRE:
6596 case ARM::LDRB_POST_IMM:
6597 case ARM::LDRB_POST_REG:
6598 case ARM::t2LDRB_POST:
6599 case ARM::LDRSB_PRE:
6600 case ARM::t2LDRSB_PRE:
6601 case ARM::LDRSB_POST:
6602 case ARM::t2LDRSB_POST: {
6603 // Rt must be different from Rn.
6604 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6605 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6606
6607 if (Rt == Rn)
6608 return Error(Operands[3]->getStartLoc(),
6609 "destination register and base register can't be identical");
6610 return false;
6611 }
6612 case ARM::SBFX:
6613 case ARM::t2SBFX:
6614 case ARM::UBFX:
6615 case ARM::t2UBFX: {
6616 // Width must be in range [1, 32-lsb].
6617 unsigned LSB = Inst.getOperand(2).getImm();
6618 unsigned Widthm1 = Inst.getOperand(3).getImm();
6619 if (Widthm1 >= 32 - LSB)
6620 return Error(Operands[5]->getStartLoc(),
6621 "bitfield width must be in range [1,32-lsb]");
6622 return false;
6623 }
6624 // Notionally handles ARM::tLDMIA_UPD too.
6625 case ARM::tLDMIA: {
6626 // If we're parsing Thumb2, the .w variant is available and handles
6627 // most cases that are normally illegal for a Thumb1 LDM instruction.
6628 // We'll make the transformation in processInstruction() if necessary.
6629 //
6630 // Thumb LDM instructions are writeback iff the base register is not
6631 // in the register list.
6632 unsigned Rn = Inst.getOperand(0).getReg();
6633 bool HasWritebackToken =
6634 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6635 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6636 bool ListContainsBase;
6637 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6638 return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6639 "registers must be in range r0-r7");
6640 // If we should have writeback, then there should be a '!' token.
6641 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6642 return Error(Operands[2]->getStartLoc(),
6643 "writeback operator '!' expected");
6644 // If we should not have writeback, there must not be a '!'. This is
6645 // true even for the 32-bit wide encodings.
6646 if (ListContainsBase && HasWritebackToken)
6647 return Error(Operands[3]->getStartLoc(),
6648 "writeback operator '!' not allowed when base register "
6649 "in register list");
6650
6651 if (validatetLDMRegList(Inst, Operands, 3))
6652 return true;
6653 break;
6654 }
6655 case ARM::LDMIA_UPD:
6656 case ARM::LDMDB_UPD:
6657 case ARM::LDMIB_UPD:
6658 case ARM::LDMDA_UPD:
6659 // ARM variants loading and updating the same register are only officially
6660 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6661 if (!hasV7Ops())
6662 break;
6663 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6664 return Error(Operands.back()->getStartLoc(),
6665 "writeback register not allowed in register list");
6666 break;
6667 case ARM::t2LDMIA:
6668 case ARM::t2LDMDB:
6669 if (validatetLDMRegList(Inst, Operands, 3))
6670 return true;
6671 break;
6672 case ARM::t2STMIA:
6673 case ARM::t2STMDB:
6674 if (validatetSTMRegList(Inst, Operands, 3))
6675 return true;
6676 break;
6677 case ARM::t2LDMIA_UPD:
6678 case ARM::t2LDMDB_UPD:
6679 case ARM::t2STMIA_UPD:
6680 case ARM::t2STMDB_UPD:
6681 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6682 return Error(Operands.back()->getStartLoc(),
6683 "writeback register not allowed in register list");
6684
6685 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6686 if (validatetLDMRegList(Inst, Operands, 3))
6687 return true;
6688 } else {
6689 if (validatetSTMRegList(Inst, Operands, 3))
6690 return true;
6691 }
6692 break;
6693
6694 case ARM::sysLDMIA_UPD:
6695 case ARM::sysLDMDA_UPD:
6696 case ARM::sysLDMDB_UPD:
6697 case ARM::sysLDMIB_UPD:
6698 if (!listContainsReg(Inst, 3, ARM::PC))
6699 return Error(Operands[4]->getStartLoc(),
6700 "writeback register only allowed on system LDM "
6701 "if PC in register-list");
6702 break;
6703 case ARM::sysSTMIA_UPD:
6704 case ARM::sysSTMDA_UPD:
6705 case ARM::sysSTMDB_UPD:
6706 case ARM::sysSTMIB_UPD:
6707 return Error(Operands[2]->getStartLoc(),
6708 "system STM cannot have writeback register");
6709 case ARM::tMUL:
6710 // The second source operand must be the same register as the destination
6711 // operand.
6712 //
6713 // In this case, we must directly check the parsed operands because the
6714 // cvtThumbMultiply() function is written in such a way that it guarantees
6715 // this first statement is always true for the new Inst. Essentially, the
6716 // destination is unconditionally copied into the second source operand
6717 // without checking to see if it matches what we actually parsed.
6718 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6719 ((ARMOperand &)*Operands[5]).getReg()) &&
6720 (((ARMOperand &)*Operands[3]).getReg() !=
6721 ((ARMOperand &)*Operands[4]).getReg())) {
6722 return Error(Operands[3]->getStartLoc(),
6723 "destination register must match source register");
6724 }
6725 break;
6726
6727 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6728 // so only issue a diagnostic for thumb1. The instructions will be
6729 // switched to the t2 encodings in processInstruction() if necessary.
6730 case ARM::tPOP: {
6731 bool ListContainsBase;
6732 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6733 !isThumbTwo())
6734 return Error(Operands[2]->getStartLoc(),
6735 "registers must be in range r0-r7 or pc");
6736 if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6737 return true;
6738 break;
6739 }
6740 case ARM::tPUSH: {
6741 bool ListContainsBase;
6742 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6743 !isThumbTwo())
6744 return Error(Operands[2]->getStartLoc(),
6745 "registers must be in range r0-r7 or lr");
6746 if (validatetSTMRegList(Inst, Operands, 2))
6747 return true;
6748 break;
6749 }
6750 case ARM::tSTMIA_UPD: {
6751 bool ListContainsBase, InvalidLowList;
6752 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6753 0, ListContainsBase);
6754 if (InvalidLowList && !isThumbTwo())
6755 return Error(Operands[4]->getStartLoc(),
6756 "registers must be in range r0-r7");
6757
6758 // This would be converted to a 32-bit stm, but that's not valid if the
6759 // writeback register is in the list.
6760 if (InvalidLowList && ListContainsBase)
6761 return Error(Operands[4]->getStartLoc(),
6762 "writeback operator '!' not allowed when base register "
6763 "in register list");
6764
6765 if (validatetSTMRegList(Inst, Operands, 4))
6766 return true;
6767 break;
6768 }
6769 case ARM::tADDrSP:
6770 // If the non-SP source operand and the destination operand are not the
6771 // same, we need thumb2 (for the wide encoding), or we have an error.
6772 if (!isThumbTwo() &&
6773 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6774 return Error(Operands[4]->getStartLoc(),
6775 "source register must be the same as destination");
6776 }
6777 break;
6778
6779 // Final range checking for Thumb unconditional branch instructions.
6780 case ARM::tB:
6781 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6782 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6783 break;
6784 case ARM::t2B: {
6785 int op = (Operands[2]->isImm()) ? 2 : 3;
6786 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6787 return Error(Operands[op]->getStartLoc(), "branch target out of range");
6788 break;
6789 }
6790 // Final range checking for Thumb conditional branch instructions.
6791 case ARM::tBcc:
6792 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6793 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6794 break;
6795 case ARM::t2Bcc: {
6796 int Op = (Operands[2]->isImm()) ? 2 : 3;
6797 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6798 return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6799 break;
6800 }
6801 case ARM::tCBZ:
6802 case ARM::tCBNZ: {
6803 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6804 return Error(Operands[2]->getStartLoc(), "branch target out of range");
6805 break;
6806 }
6807 case ARM::MOVi16:
6808 case ARM::MOVTi16:
6809 case ARM::t2MOVi16:
6810 case ARM::t2MOVTi16:
6811 {
6812 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6813 // especially when we turn it into a movw and the expression <symbol> does
6814 // not have a :lower16: or :upper16 as part of the expression. We don't
6815 // want the behavior of silently truncating, which can be unexpected and
6816 // lead to bugs that are difficult to find since this is an easy mistake
6817 // to make.
6818 int i = (Operands[3]->isImm()) ? 3 : 4;
6819 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6821 if (CE) break;
6822 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6823 if (!E) break;
6824 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6825 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6826 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6827 return Error(
6828 Op.getStartLoc(),
6829 "immediate expression for mov requires :lower16: or :upper16");
6830 break;
6831 }
6832 case ARM::HINT:
6833 case ARM::t2HINT: {
6834 unsigned Imm8 = Inst.getOperand(0).getImm();
6835 unsigned Pred = Inst.getOperand(1).getImm();
6836 // ESB is not predicable (pred must be AL). Without the RAS extension, this
6837 // behaves as any other unallocated hint.
6838 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6839 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6840 "predicable, but condition "
6841 "code specified");
6842 if (Imm8 == 0x14 && Pred != ARMCC::AL)
6843 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6844 "predicable, but condition "
6845 "code specified");
6846 break;
6847 }
6848 case ARM::DSB:
6849 case ARM::t2DSB: {
6850
6851 if (Inst.getNumOperands() < 2)
6852 break;
6853
6854 unsigned Option = Inst.getOperand(0).getImm();
6855 unsigned Pred = Inst.getOperand(1).getImm();
6856
6857 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
6858 if (Option == 0 && Pred != ARMCC::AL)
6859 return Error(Operands[1]->getStartLoc(),
6860 "instruction 'ssbb' is not predicable, but condition code "
6861 "specified");
6862 if (Option == 4 && Pred != ARMCC::AL)
6863 return Error(Operands[1]->getStartLoc(),
6864 "instruction 'pssbb' is not predicable, but condition code "
6865 "specified");
6866 break;
6867 }
6868 case ARM::VMOVRRS: {
6869 // Source registers must be sequential.
6870 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6871 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6872 if (Sm1 != Sm + 1)
6873 return Error(Operands[5]->getStartLoc(),
6874 "source operands must be sequential");
6875 break;
6876 }
6877 case ARM::VMOVSRR: {
6878 // Destination registers must be sequential.
6879 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6880 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6881 if (Sm1 != Sm + 1)
6882 return Error(Operands[3]->getStartLoc(),
6883 "destination operands must be sequential");
6884 break;
6885 }
6886 case ARM::VLDMDIA:
6887 case ARM::VSTMDIA: {
6888 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
6889 auto &RegList = Op.getRegList();
6890 if (RegList.size() < 1 || RegList.size() > 16)
6891 return Error(Operands[3]->getStartLoc(),
6892 "list of registers must be at least 1 and at most 16");
6893 break;
6894 }
6895 }
6896
6897 return false;
6898 }
6899
getRealVSTOpcode(unsigned Opc,unsigned & Spacing)6900 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6901 switch(Opc) {
6902 default: llvm_unreachable("unexpected opcode!");
6903 // VST1LN
6904 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6905 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6906 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6907 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6908 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6909 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6910 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
6911 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6912 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6913
6914 // VST2LN
6915 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6916 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6917 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6918 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6919 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6920
6921 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6922 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6923 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6924 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6925 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6926
6927 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
6928 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6929 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6930 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6931 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6932
6933 // VST3LN
6934 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6935 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6936 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6937 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6938 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6939 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6940 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6941 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6942 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6943 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6944 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
6945 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6946 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6947 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6948 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6949
6950 // VST3
6951 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6952 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6953 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6954 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6955 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6956 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6957 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6958 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6959 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6960 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6961 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6962 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6963 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
6964 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6965 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6966 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
6967 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6968 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6969
6970 // VST4LN
6971 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6972 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6973 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6974 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6975 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6976 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6977 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6978 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6979 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6980 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6981 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
6982 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6983 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6984 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6985 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6986
6987 // VST4
6988 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6989 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6990 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6991 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6992 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6993 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6994 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6995 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6996 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6997 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6998 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6999 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
7000 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
7001 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
7002 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
7003 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
7004 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
7005 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
7006 }
7007 }
7008
getRealVLDOpcode(unsigned Opc,unsigned & Spacing)7009 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
7010 switch(Opc) {
7011 default: llvm_unreachable("unexpected opcode!");
7012 // VLD1LN
7013 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7014 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7015 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7016 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7017 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7018 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7019 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
7020 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
7021 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
7022
7023 // VLD2LN
7024 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7025 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7026 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7027 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
7028 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7029 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7030 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7031 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7032 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
7033 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7034 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
7035 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
7036 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
7037 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
7038 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
7039
7040 // VLD3DUP
7041 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7042 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7043 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7044 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
7045 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7046 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7047 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7048 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7049 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7050 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
7051 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7052 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7053 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
7054 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7055 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7056 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7057 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7058 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7059
7060 // VLD3LN
7061 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7062 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7063 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7064 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7065 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7066 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7067 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7068 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7069 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7070 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7071 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
7072 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7073 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7074 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7075 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7076
7077 // VLD3
7078 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7079 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7080 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7081 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7082 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7083 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7084 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7085 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7086 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7087 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7088 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7089 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7090 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
7091 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7092 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7093 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
7094 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7095 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7096
7097 // VLD4LN
7098 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7099 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7100 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7101 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7102 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7103 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7104 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7105 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7106 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7107 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7108 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
7109 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7110 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7111 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7112 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7113
7114 // VLD4DUP
7115 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7116 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7117 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7118 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7119 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7120 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7121 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7122 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7123 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7124 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7125 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7126 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7127 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
7128 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7129 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7130 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7131 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7132 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7133
7134 // VLD4
7135 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7136 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7137 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7138 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7139 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7140 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7141 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7142 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7143 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7144 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7145 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7146 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7147 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
7148 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7149 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7150 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
7151 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7152 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7153 }
7154 }
7155
processInstruction(MCInst & Inst,const OperandVector & Operands,MCStreamer & Out)7156 bool ARMAsmParser::processInstruction(MCInst &Inst,
7157 const OperandVector &Operands,
7158 MCStreamer &Out) {
7159 // Check if we have the wide qualifier, because if it's present we
7160 // must avoid selecting a 16-bit thumb instruction.
7161 bool HasWideQualifier = false;
7162 for (auto &Op : Operands) {
7163 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7164 if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7165 HasWideQualifier = true;
7166 break;
7167 }
7168 }
7169
7170 switch (Inst.getOpcode()) {
7171 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7172 case ARM::LDRT_POST:
7173 case ARM::LDRBT_POST: {
7174 const unsigned Opcode =
7175 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7176 : ARM::LDRBT_POST_IMM;
7177 MCInst TmpInst;
7178 TmpInst.setOpcode(Opcode);
7179 TmpInst.addOperand(Inst.getOperand(0));
7180 TmpInst.addOperand(Inst.getOperand(1));
7181 TmpInst.addOperand(Inst.getOperand(1));
7182 TmpInst.addOperand(MCOperand::createReg(0));
7183 TmpInst.addOperand(MCOperand::createImm(0));
7184 TmpInst.addOperand(Inst.getOperand(2));
7185 TmpInst.addOperand(Inst.getOperand(3));
7186 Inst = TmpInst;
7187 return true;
7188 }
7189 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7190 case ARM::STRT_POST:
7191 case ARM::STRBT_POST: {
7192 const unsigned Opcode =
7193 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7194 : ARM::STRBT_POST_IMM;
7195 MCInst TmpInst;
7196 TmpInst.setOpcode(Opcode);
7197 TmpInst.addOperand(Inst.getOperand(1));
7198 TmpInst.addOperand(Inst.getOperand(0));
7199 TmpInst.addOperand(Inst.getOperand(1));
7200 TmpInst.addOperand(MCOperand::createReg(0));
7201 TmpInst.addOperand(MCOperand::createImm(0));
7202 TmpInst.addOperand(Inst.getOperand(2));
7203 TmpInst.addOperand(Inst.getOperand(3));
7204 Inst = TmpInst;
7205 return true;
7206 }
7207 // Alias for alternate form of 'ADR Rd, #imm' instruction.
7208 case ARM::ADDri: {
7209 if (Inst.getOperand(1).getReg() != ARM::PC ||
7210 Inst.getOperand(5).getReg() != 0 ||
7211 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7212 return false;
7213 MCInst TmpInst;
7214 TmpInst.setOpcode(ARM::ADR);
7215 TmpInst.addOperand(Inst.getOperand(0));
7216 if (Inst.getOperand(2).isImm()) {
7217 // Immediate (mod_imm) will be in its encoded form, we must unencode it
7218 // before passing it to the ADR instruction.
7219 unsigned Enc = Inst.getOperand(2).getImm();
7220 TmpInst.addOperand(MCOperand::createImm(
7221 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7222 } else {
7223 // Turn PC-relative expression into absolute expression.
7224 // Reading PC provides the start of the current instruction + 8 and
7225 // the transform to adr is biased by that.
7226 MCSymbol *Dot = getContext().createTempSymbol();
7227 Out.EmitLabel(Dot);
7228 const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7229 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7230 MCSymbolRefExpr::VK_None,
7231 getContext());
7232 const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7233 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7234 getContext());
7235 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7236 getContext());
7237 TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7238 }
7239 TmpInst.addOperand(Inst.getOperand(3));
7240 TmpInst.addOperand(Inst.getOperand(4));
7241 Inst = TmpInst;
7242 return true;
7243 }
7244 // Aliases for alternate PC+imm syntax of LDR instructions.
7245 case ARM::t2LDRpcrel:
7246 // Select the narrow version if the immediate will fit.
7247 if (Inst.getOperand(1).getImm() > 0 &&
7248 Inst.getOperand(1).getImm() <= 0xff &&
7249 !HasWideQualifier)
7250 Inst.setOpcode(ARM::tLDRpci);
7251 else
7252 Inst.setOpcode(ARM::t2LDRpci);
7253 return true;
7254 case ARM::t2LDRBpcrel:
7255 Inst.setOpcode(ARM::t2LDRBpci);
7256 return true;
7257 case ARM::t2LDRHpcrel:
7258 Inst.setOpcode(ARM::t2LDRHpci);
7259 return true;
7260 case ARM::t2LDRSBpcrel:
7261 Inst.setOpcode(ARM::t2LDRSBpci);
7262 return true;
7263 case ARM::t2LDRSHpcrel:
7264 Inst.setOpcode(ARM::t2LDRSHpci);
7265 return true;
7266 case ARM::LDRConstPool:
7267 case ARM::tLDRConstPool:
7268 case ARM::t2LDRConstPool: {
7269 // Pseudo instruction ldr rt, =immediate is converted to a
7270 // MOV rt, immediate if immediate is known and representable
7271 // otherwise we create a constant pool entry that we load from.
7272 MCInst TmpInst;
7273 if (Inst.getOpcode() == ARM::LDRConstPool)
7274 TmpInst.setOpcode(ARM::LDRi12);
7275 else if (Inst.getOpcode() == ARM::tLDRConstPool)
7276 TmpInst.setOpcode(ARM::tLDRpci);
7277 else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7278 TmpInst.setOpcode(ARM::t2LDRpci);
7279 const ARMOperand &PoolOperand =
7280 (HasWideQualifier ?
7281 static_cast<ARMOperand &>(*Operands[4]) :
7282 static_cast<ARMOperand &>(*Operands[3]));
7283 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7284 // If SubExprVal is a constant we may be able to use a MOV
7285 if (isa<MCConstantExpr>(SubExprVal) &&
7286 Inst.getOperand(0).getReg() != ARM::PC &&
7287 Inst.getOperand(0).getReg() != ARM::SP) {
7288 int64_t Value =
7289 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7290 bool UseMov = true;
7291 bool MovHasS = true;
7292 if (Inst.getOpcode() == ARM::LDRConstPool) {
7293 // ARM Constant
7294 if (ARM_AM::getSOImmVal(Value) != -1) {
7295 Value = ARM_AM::getSOImmVal(Value);
7296 TmpInst.setOpcode(ARM::MOVi);
7297 }
7298 else if (ARM_AM::getSOImmVal(~Value) != -1) {
7299 Value = ARM_AM::getSOImmVal(~Value);
7300 TmpInst.setOpcode(ARM::MVNi);
7301 }
7302 else if (hasV6T2Ops() &&
7303 Value >=0 && Value < 65536) {
7304 TmpInst.setOpcode(ARM::MOVi16);
7305 MovHasS = false;
7306 }
7307 else
7308 UseMov = false;
7309 }
7310 else {
7311 // Thumb/Thumb2 Constant
7312 if (hasThumb2() &&
7313 ARM_AM::getT2SOImmVal(Value) != -1)
7314 TmpInst.setOpcode(ARM::t2MOVi);
7315 else if (hasThumb2() &&
7316 ARM_AM::getT2SOImmVal(~Value) != -1) {
7317 TmpInst.setOpcode(ARM::t2MVNi);
7318 Value = ~Value;
7319 }
7320 else if (hasV8MBaseline() &&
7321 Value >=0 && Value < 65536) {
7322 TmpInst.setOpcode(ARM::t2MOVi16);
7323 MovHasS = false;
7324 }
7325 else
7326 UseMov = false;
7327 }
7328 if (UseMov) {
7329 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7330 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
7331 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7332 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7333 if (MovHasS)
7334 TmpInst.addOperand(MCOperand::createReg(0)); // S
7335 Inst = TmpInst;
7336 return true;
7337 }
7338 }
7339 // No opportunity to use MOV/MVN create constant pool
7340 const MCExpr *CPLoc =
7341 getTargetStreamer().addConstantPoolEntry(SubExprVal,
7342 PoolOperand.getStartLoc());
7343 TmpInst.addOperand(Inst.getOperand(0)); // Rt
7344 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7345 if (TmpInst.getOpcode() == ARM::LDRi12)
7346 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
7347 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7348 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7349 Inst = TmpInst;
7350 return true;
7351 }
7352 // Handle NEON VST complex aliases.
7353 case ARM::VST1LNdWB_register_Asm_8:
7354 case ARM::VST1LNdWB_register_Asm_16:
7355 case ARM::VST1LNdWB_register_Asm_32: {
7356 MCInst TmpInst;
7357 // Shuffle the operands around so the lane index operand is in the
7358 // right place.
7359 unsigned Spacing;
7360 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7361 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7362 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7363 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7364 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7365 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7366 TmpInst.addOperand(Inst.getOperand(1)); // lane
7367 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7368 TmpInst.addOperand(Inst.getOperand(6));
7369 Inst = TmpInst;
7370 return true;
7371 }
7372
7373 case ARM::VST2LNdWB_register_Asm_8:
7374 case ARM::VST2LNdWB_register_Asm_16:
7375 case ARM::VST2LNdWB_register_Asm_32:
7376 case ARM::VST2LNqWB_register_Asm_16:
7377 case ARM::VST2LNqWB_register_Asm_32: {
7378 MCInst TmpInst;
7379 // Shuffle the operands around so the lane index operand is in the
7380 // right place.
7381 unsigned Spacing;
7382 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7383 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7384 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7385 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7386 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7387 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7388 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7389 Spacing));
7390 TmpInst.addOperand(Inst.getOperand(1)); // lane
7391 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7392 TmpInst.addOperand(Inst.getOperand(6));
7393 Inst = TmpInst;
7394 return true;
7395 }
7396
7397 case ARM::VST3LNdWB_register_Asm_8:
7398 case ARM::VST3LNdWB_register_Asm_16:
7399 case ARM::VST3LNdWB_register_Asm_32:
7400 case ARM::VST3LNqWB_register_Asm_16:
7401 case ARM::VST3LNqWB_register_Asm_32: {
7402 MCInst TmpInst;
7403 // Shuffle the operands around so the lane index operand is in the
7404 // right place.
7405 unsigned Spacing;
7406 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7407 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7408 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7409 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7410 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7411 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7412 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7413 Spacing));
7414 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7415 Spacing * 2));
7416 TmpInst.addOperand(Inst.getOperand(1)); // lane
7417 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7418 TmpInst.addOperand(Inst.getOperand(6));
7419 Inst = TmpInst;
7420 return true;
7421 }
7422
7423 case ARM::VST4LNdWB_register_Asm_8:
7424 case ARM::VST4LNdWB_register_Asm_16:
7425 case ARM::VST4LNdWB_register_Asm_32:
7426 case ARM::VST4LNqWB_register_Asm_16:
7427 case ARM::VST4LNqWB_register_Asm_32: {
7428 MCInst TmpInst;
7429 // Shuffle the operands around so the lane index operand is in the
7430 // right place.
7431 unsigned Spacing;
7432 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7433 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7434 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7435 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7436 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7437 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7439 Spacing));
7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7441 Spacing * 2));
7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7443 Spacing * 3));
7444 TmpInst.addOperand(Inst.getOperand(1)); // lane
7445 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7446 TmpInst.addOperand(Inst.getOperand(6));
7447 Inst = TmpInst;
7448 return true;
7449 }
7450
7451 case ARM::VST1LNdWB_fixed_Asm_8:
7452 case ARM::VST1LNdWB_fixed_Asm_16:
7453 case ARM::VST1LNdWB_fixed_Asm_32: {
7454 MCInst TmpInst;
7455 // Shuffle the operands around so the lane index operand is in the
7456 // right place.
7457 unsigned Spacing;
7458 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7459 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7460 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7461 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7462 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7463 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7464 TmpInst.addOperand(Inst.getOperand(1)); // lane
7465 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7466 TmpInst.addOperand(Inst.getOperand(5));
7467 Inst = TmpInst;
7468 return true;
7469 }
7470
7471 case ARM::VST2LNdWB_fixed_Asm_8:
7472 case ARM::VST2LNdWB_fixed_Asm_16:
7473 case ARM::VST2LNdWB_fixed_Asm_32:
7474 case ARM::VST2LNqWB_fixed_Asm_16:
7475 case ARM::VST2LNqWB_fixed_Asm_32: {
7476 MCInst TmpInst;
7477 // Shuffle the operands around so the lane index operand is in the
7478 // right place.
7479 unsigned Spacing;
7480 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7481 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7482 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7483 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7484 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7485 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7486 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7487 Spacing));
7488 TmpInst.addOperand(Inst.getOperand(1)); // lane
7489 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7490 TmpInst.addOperand(Inst.getOperand(5));
7491 Inst = TmpInst;
7492 return true;
7493 }
7494
7495 case ARM::VST3LNdWB_fixed_Asm_8:
7496 case ARM::VST3LNdWB_fixed_Asm_16:
7497 case ARM::VST3LNdWB_fixed_Asm_32:
7498 case ARM::VST3LNqWB_fixed_Asm_16:
7499 case ARM::VST3LNqWB_fixed_Asm_32: {
7500 MCInst TmpInst;
7501 // Shuffle the operands around so the lane index operand is in the
7502 // right place.
7503 unsigned Spacing;
7504 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7505 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7506 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7507 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7508 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7509 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7510 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7511 Spacing));
7512 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7513 Spacing * 2));
7514 TmpInst.addOperand(Inst.getOperand(1)); // lane
7515 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7516 TmpInst.addOperand(Inst.getOperand(5));
7517 Inst = TmpInst;
7518 return true;
7519 }
7520
7521 case ARM::VST4LNdWB_fixed_Asm_8:
7522 case ARM::VST4LNdWB_fixed_Asm_16:
7523 case ARM::VST4LNdWB_fixed_Asm_32:
7524 case ARM::VST4LNqWB_fixed_Asm_16:
7525 case ARM::VST4LNqWB_fixed_Asm_32: {
7526 MCInst TmpInst;
7527 // Shuffle the operands around so the lane index operand is in the
7528 // right place.
7529 unsigned Spacing;
7530 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7531 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7532 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7533 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7534 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7535 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7536 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7537 Spacing));
7538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7539 Spacing * 2));
7540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7541 Spacing * 3));
7542 TmpInst.addOperand(Inst.getOperand(1)); // lane
7543 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7544 TmpInst.addOperand(Inst.getOperand(5));
7545 Inst = TmpInst;
7546 return true;
7547 }
7548
7549 case ARM::VST1LNdAsm_8:
7550 case ARM::VST1LNdAsm_16:
7551 case ARM::VST1LNdAsm_32: {
7552 MCInst TmpInst;
7553 // Shuffle the operands around so the lane index operand is in the
7554 // right place.
7555 unsigned Spacing;
7556 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7557 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7558 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7559 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7560 TmpInst.addOperand(Inst.getOperand(1)); // lane
7561 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7562 TmpInst.addOperand(Inst.getOperand(5));
7563 Inst = TmpInst;
7564 return true;
7565 }
7566
7567 case ARM::VST2LNdAsm_8:
7568 case ARM::VST2LNdAsm_16:
7569 case ARM::VST2LNdAsm_32:
7570 case ARM::VST2LNqAsm_16:
7571 case ARM::VST2LNqAsm_32: {
7572 MCInst TmpInst;
7573 // Shuffle the operands around so the lane index operand is in the
7574 // right place.
7575 unsigned Spacing;
7576 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7577 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7578 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7579 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7580 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7581 Spacing));
7582 TmpInst.addOperand(Inst.getOperand(1)); // lane
7583 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7584 TmpInst.addOperand(Inst.getOperand(5));
7585 Inst = TmpInst;
7586 return true;
7587 }
7588
7589 case ARM::VST3LNdAsm_8:
7590 case ARM::VST3LNdAsm_16:
7591 case ARM::VST3LNdAsm_32:
7592 case ARM::VST3LNqAsm_16:
7593 case ARM::VST3LNqAsm_32: {
7594 MCInst TmpInst;
7595 // Shuffle the operands around so the lane index operand is in the
7596 // right place.
7597 unsigned Spacing;
7598 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7599 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7600 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7601 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7602 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7603 Spacing));
7604 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7605 Spacing * 2));
7606 TmpInst.addOperand(Inst.getOperand(1)); // lane
7607 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7608 TmpInst.addOperand(Inst.getOperand(5));
7609 Inst = TmpInst;
7610 return true;
7611 }
7612
7613 case ARM::VST4LNdAsm_8:
7614 case ARM::VST4LNdAsm_16:
7615 case ARM::VST4LNdAsm_32:
7616 case ARM::VST4LNqAsm_16:
7617 case ARM::VST4LNqAsm_32: {
7618 MCInst TmpInst;
7619 // Shuffle the operands around so the lane index operand is in the
7620 // right place.
7621 unsigned Spacing;
7622 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7623 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7624 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7625 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7626 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7627 Spacing));
7628 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7629 Spacing * 2));
7630 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7631 Spacing * 3));
7632 TmpInst.addOperand(Inst.getOperand(1)); // lane
7633 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7634 TmpInst.addOperand(Inst.getOperand(5));
7635 Inst = TmpInst;
7636 return true;
7637 }
7638
7639 // Handle NEON VLD complex aliases.
7640 case ARM::VLD1LNdWB_register_Asm_8:
7641 case ARM::VLD1LNdWB_register_Asm_16:
7642 case ARM::VLD1LNdWB_register_Asm_32: {
7643 MCInst TmpInst;
7644 // Shuffle the operands around so the lane index operand is in the
7645 // right place.
7646 unsigned Spacing;
7647 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7648 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7649 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7650 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7651 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7652 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7653 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7654 TmpInst.addOperand(Inst.getOperand(1)); // lane
7655 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7656 TmpInst.addOperand(Inst.getOperand(6));
7657 Inst = TmpInst;
7658 return true;
7659 }
7660
7661 case ARM::VLD2LNdWB_register_Asm_8:
7662 case ARM::VLD2LNdWB_register_Asm_16:
7663 case ARM::VLD2LNdWB_register_Asm_32:
7664 case ARM::VLD2LNqWB_register_Asm_16:
7665 case ARM::VLD2LNqWB_register_Asm_32: {
7666 MCInst TmpInst;
7667 // Shuffle the operands around so the lane index operand is in the
7668 // right place.
7669 unsigned Spacing;
7670 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7671 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7672 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7673 Spacing));
7674 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7675 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7676 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7677 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7678 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7680 Spacing));
7681 TmpInst.addOperand(Inst.getOperand(1)); // lane
7682 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7683 TmpInst.addOperand(Inst.getOperand(6));
7684 Inst = TmpInst;
7685 return true;
7686 }
7687
7688 case ARM::VLD3LNdWB_register_Asm_8:
7689 case ARM::VLD3LNdWB_register_Asm_16:
7690 case ARM::VLD3LNdWB_register_Asm_32:
7691 case ARM::VLD3LNqWB_register_Asm_16:
7692 case ARM::VLD3LNqWB_register_Asm_32: {
7693 MCInst TmpInst;
7694 // Shuffle the operands around so the lane index operand is in the
7695 // right place.
7696 unsigned Spacing;
7697 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7698 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7699 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7700 Spacing));
7701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7702 Spacing * 2));
7703 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7704 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7705 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7706 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7707 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7708 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7709 Spacing));
7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7711 Spacing * 2));
7712 TmpInst.addOperand(Inst.getOperand(1)); // lane
7713 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7714 TmpInst.addOperand(Inst.getOperand(6));
7715 Inst = TmpInst;
7716 return true;
7717 }
7718
7719 case ARM::VLD4LNdWB_register_Asm_8:
7720 case ARM::VLD4LNdWB_register_Asm_16:
7721 case ARM::VLD4LNdWB_register_Asm_32:
7722 case ARM::VLD4LNqWB_register_Asm_16:
7723 case ARM::VLD4LNqWB_register_Asm_32: {
7724 MCInst TmpInst;
7725 // Shuffle the operands around so the lane index operand is in the
7726 // right place.
7727 unsigned Spacing;
7728 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7729 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7730 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7731 Spacing));
7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7733 Spacing * 2));
7734 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7735 Spacing * 3));
7736 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7737 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7738 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7739 TmpInst.addOperand(Inst.getOperand(4)); // Rm
7740 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7742 Spacing));
7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7744 Spacing * 2));
7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7746 Spacing * 3));
7747 TmpInst.addOperand(Inst.getOperand(1)); // lane
7748 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7749 TmpInst.addOperand(Inst.getOperand(6));
7750 Inst = TmpInst;
7751 return true;
7752 }
7753
7754 case ARM::VLD1LNdWB_fixed_Asm_8:
7755 case ARM::VLD1LNdWB_fixed_Asm_16:
7756 case ARM::VLD1LNdWB_fixed_Asm_32: {
7757 MCInst TmpInst;
7758 // Shuffle the operands around so the lane index operand is in the
7759 // right place.
7760 unsigned Spacing;
7761 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7762 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7763 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7764 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7765 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7766 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7767 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7768 TmpInst.addOperand(Inst.getOperand(1)); // lane
7769 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7770 TmpInst.addOperand(Inst.getOperand(5));
7771 Inst = TmpInst;
7772 return true;
7773 }
7774
7775 case ARM::VLD2LNdWB_fixed_Asm_8:
7776 case ARM::VLD2LNdWB_fixed_Asm_16:
7777 case ARM::VLD2LNdWB_fixed_Asm_32:
7778 case ARM::VLD2LNqWB_fixed_Asm_16:
7779 case ARM::VLD2LNqWB_fixed_Asm_32: {
7780 MCInst TmpInst;
7781 // Shuffle the operands around so the lane index operand is in the
7782 // right place.
7783 unsigned Spacing;
7784 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7785 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7786 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7787 Spacing));
7788 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7789 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7790 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7791 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7792 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7794 Spacing));
7795 TmpInst.addOperand(Inst.getOperand(1)); // lane
7796 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7797 TmpInst.addOperand(Inst.getOperand(5));
7798 Inst = TmpInst;
7799 return true;
7800 }
7801
7802 case ARM::VLD3LNdWB_fixed_Asm_8:
7803 case ARM::VLD3LNdWB_fixed_Asm_16:
7804 case ARM::VLD3LNdWB_fixed_Asm_32:
7805 case ARM::VLD3LNqWB_fixed_Asm_16:
7806 case ARM::VLD3LNqWB_fixed_Asm_32: {
7807 MCInst TmpInst;
7808 // Shuffle the operands around so the lane index operand is in the
7809 // right place.
7810 unsigned Spacing;
7811 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7812 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7813 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7814 Spacing));
7815 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7816 Spacing * 2));
7817 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7818 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7819 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7820 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7821 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7822 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7823 Spacing));
7824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7825 Spacing * 2));
7826 TmpInst.addOperand(Inst.getOperand(1)); // lane
7827 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7828 TmpInst.addOperand(Inst.getOperand(5));
7829 Inst = TmpInst;
7830 return true;
7831 }
7832
7833 case ARM::VLD4LNdWB_fixed_Asm_8:
7834 case ARM::VLD4LNdWB_fixed_Asm_16:
7835 case ARM::VLD4LNdWB_fixed_Asm_32:
7836 case ARM::VLD4LNqWB_fixed_Asm_16:
7837 case ARM::VLD4LNqWB_fixed_Asm_32: {
7838 MCInst TmpInst;
7839 // Shuffle the operands around so the lane index operand is in the
7840 // right place.
7841 unsigned Spacing;
7842 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7843 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7844 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7845 Spacing));
7846 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7847 Spacing * 2));
7848 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7849 Spacing * 3));
7850 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7851 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7852 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7853 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7854 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7856 Spacing));
7857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7858 Spacing * 2));
7859 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7860 Spacing * 3));
7861 TmpInst.addOperand(Inst.getOperand(1)); // lane
7862 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7863 TmpInst.addOperand(Inst.getOperand(5));
7864 Inst = TmpInst;
7865 return true;
7866 }
7867
7868 case ARM::VLD1LNdAsm_8:
7869 case ARM::VLD1LNdAsm_16:
7870 case ARM::VLD1LNdAsm_32: {
7871 MCInst TmpInst;
7872 // Shuffle the operands around so the lane index operand is in the
7873 // right place.
7874 unsigned Spacing;
7875 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7876 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7877 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7878 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7879 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7880 TmpInst.addOperand(Inst.getOperand(1)); // lane
7881 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7882 TmpInst.addOperand(Inst.getOperand(5));
7883 Inst = TmpInst;
7884 return true;
7885 }
7886
7887 case ARM::VLD2LNdAsm_8:
7888 case ARM::VLD2LNdAsm_16:
7889 case ARM::VLD2LNdAsm_32:
7890 case ARM::VLD2LNqAsm_16:
7891 case ARM::VLD2LNqAsm_32: {
7892 MCInst TmpInst;
7893 // Shuffle the operands around so the lane index operand is in the
7894 // right place.
7895 unsigned Spacing;
7896 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7897 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7898 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7899 Spacing));
7900 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7901 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7902 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7903 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7904 Spacing));
7905 TmpInst.addOperand(Inst.getOperand(1)); // lane
7906 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7907 TmpInst.addOperand(Inst.getOperand(5));
7908 Inst = TmpInst;
7909 return true;
7910 }
7911
7912 case ARM::VLD3LNdAsm_8:
7913 case ARM::VLD3LNdAsm_16:
7914 case ARM::VLD3LNdAsm_32:
7915 case ARM::VLD3LNqAsm_16:
7916 case ARM::VLD3LNqAsm_32: {
7917 MCInst TmpInst;
7918 // Shuffle the operands around so the lane index operand is in the
7919 // right place.
7920 unsigned Spacing;
7921 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7922 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7924 Spacing));
7925 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7926 Spacing * 2));
7927 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7928 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7929 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7931 Spacing));
7932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7933 Spacing * 2));
7934 TmpInst.addOperand(Inst.getOperand(1)); // lane
7935 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7936 TmpInst.addOperand(Inst.getOperand(5));
7937 Inst = TmpInst;
7938 return true;
7939 }
7940
7941 case ARM::VLD4LNdAsm_8:
7942 case ARM::VLD4LNdAsm_16:
7943 case ARM::VLD4LNdAsm_32:
7944 case ARM::VLD4LNqAsm_16:
7945 case ARM::VLD4LNqAsm_32: {
7946 MCInst TmpInst;
7947 // Shuffle the operands around so the lane index operand is in the
7948 // right place.
7949 unsigned Spacing;
7950 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7951 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7952 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7953 Spacing));
7954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7955 Spacing * 2));
7956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7957 Spacing * 3));
7958 TmpInst.addOperand(Inst.getOperand(2)); // Rn
7959 TmpInst.addOperand(Inst.getOperand(3)); // alignment
7960 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7961 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7962 Spacing));
7963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7964 Spacing * 2));
7965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7966 Spacing * 3));
7967 TmpInst.addOperand(Inst.getOperand(1)); // lane
7968 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7969 TmpInst.addOperand(Inst.getOperand(5));
7970 Inst = TmpInst;
7971 return true;
7972 }
7973
7974 // VLD3DUP single 3-element structure to all lanes instructions.
7975 case ARM::VLD3DUPdAsm_8:
7976 case ARM::VLD3DUPdAsm_16:
7977 case ARM::VLD3DUPdAsm_32:
7978 case ARM::VLD3DUPqAsm_8:
7979 case ARM::VLD3DUPqAsm_16:
7980 case ARM::VLD3DUPqAsm_32: {
7981 MCInst TmpInst;
7982 unsigned Spacing;
7983 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7984 TmpInst.addOperand(Inst.getOperand(0)); // Vd
7985 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7986 Spacing));
7987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7988 Spacing * 2));
7989 TmpInst.addOperand(Inst.getOperand(1)); // Rn
7990 TmpInst.addOperand(Inst.getOperand(2)); // alignment
7991 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7992 TmpInst.addOperand(Inst.getOperand(4));
7993 Inst = TmpInst;
7994 return true;
7995 }
7996
7997 case ARM::VLD3DUPdWB_fixed_Asm_8:
7998 case ARM::VLD3DUPdWB_fixed_Asm_16:
7999 case ARM::VLD3DUPdWB_fixed_Asm_32:
8000 case ARM::VLD3DUPqWB_fixed_Asm_8:
8001 case ARM::VLD3DUPqWB_fixed_Asm_16:
8002 case ARM::VLD3DUPqWB_fixed_Asm_32: {
8003 MCInst TmpInst;
8004 unsigned Spacing;
8005 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8006 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8008 Spacing));
8009 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8010 Spacing * 2));
8011 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8012 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8013 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8014 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8015 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8016 TmpInst.addOperand(Inst.getOperand(4));
8017 Inst = TmpInst;
8018 return true;
8019 }
8020
8021 case ARM::VLD3DUPdWB_register_Asm_8:
8022 case ARM::VLD3DUPdWB_register_Asm_16:
8023 case ARM::VLD3DUPdWB_register_Asm_32:
8024 case ARM::VLD3DUPqWB_register_Asm_8:
8025 case ARM::VLD3DUPqWB_register_Asm_16:
8026 case ARM::VLD3DUPqWB_register_Asm_32: {
8027 MCInst TmpInst;
8028 unsigned Spacing;
8029 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8030 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8031 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8032 Spacing));
8033 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8034 Spacing * 2));
8035 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8036 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8037 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8038 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8039 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8040 TmpInst.addOperand(Inst.getOperand(5));
8041 Inst = TmpInst;
8042 return true;
8043 }
8044
8045 // VLD3 multiple 3-element structure instructions.
8046 case ARM::VLD3dAsm_8:
8047 case ARM::VLD3dAsm_16:
8048 case ARM::VLD3dAsm_32:
8049 case ARM::VLD3qAsm_8:
8050 case ARM::VLD3qAsm_16:
8051 case ARM::VLD3qAsm_32: {
8052 MCInst TmpInst;
8053 unsigned Spacing;
8054 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8055 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8056 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8057 Spacing));
8058 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8059 Spacing * 2));
8060 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8061 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8062 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8063 TmpInst.addOperand(Inst.getOperand(4));
8064 Inst = TmpInst;
8065 return true;
8066 }
8067
8068 case ARM::VLD3dWB_fixed_Asm_8:
8069 case ARM::VLD3dWB_fixed_Asm_16:
8070 case ARM::VLD3dWB_fixed_Asm_32:
8071 case ARM::VLD3qWB_fixed_Asm_8:
8072 case ARM::VLD3qWB_fixed_Asm_16:
8073 case ARM::VLD3qWB_fixed_Asm_32: {
8074 MCInst TmpInst;
8075 unsigned Spacing;
8076 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8077 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8079 Spacing));
8080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8081 Spacing * 2));
8082 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8083 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8084 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8085 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8086 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8087 TmpInst.addOperand(Inst.getOperand(4));
8088 Inst = TmpInst;
8089 return true;
8090 }
8091
8092 case ARM::VLD3dWB_register_Asm_8:
8093 case ARM::VLD3dWB_register_Asm_16:
8094 case ARM::VLD3dWB_register_Asm_32:
8095 case ARM::VLD3qWB_register_Asm_8:
8096 case ARM::VLD3qWB_register_Asm_16:
8097 case ARM::VLD3qWB_register_Asm_32: {
8098 MCInst TmpInst;
8099 unsigned Spacing;
8100 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8101 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8102 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8103 Spacing));
8104 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8105 Spacing * 2));
8106 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8107 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8108 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8109 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8110 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8111 TmpInst.addOperand(Inst.getOperand(5));
8112 Inst = TmpInst;
8113 return true;
8114 }
8115
8116 // VLD4DUP single 3-element structure to all lanes instructions.
8117 case ARM::VLD4DUPdAsm_8:
8118 case ARM::VLD4DUPdAsm_16:
8119 case ARM::VLD4DUPdAsm_32:
8120 case ARM::VLD4DUPqAsm_8:
8121 case ARM::VLD4DUPqAsm_16:
8122 case ARM::VLD4DUPqAsm_32: {
8123 MCInst TmpInst;
8124 unsigned Spacing;
8125 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8126 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8127 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8128 Spacing));
8129 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8130 Spacing * 2));
8131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8132 Spacing * 3));
8133 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8134 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8135 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8136 TmpInst.addOperand(Inst.getOperand(4));
8137 Inst = TmpInst;
8138 return true;
8139 }
8140
8141 case ARM::VLD4DUPdWB_fixed_Asm_8:
8142 case ARM::VLD4DUPdWB_fixed_Asm_16:
8143 case ARM::VLD4DUPdWB_fixed_Asm_32:
8144 case ARM::VLD4DUPqWB_fixed_Asm_8:
8145 case ARM::VLD4DUPqWB_fixed_Asm_16:
8146 case ARM::VLD4DUPqWB_fixed_Asm_32: {
8147 MCInst TmpInst;
8148 unsigned Spacing;
8149 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8150 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8152 Spacing));
8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8154 Spacing * 2));
8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8156 Spacing * 3));
8157 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8158 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8159 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8160 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8161 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8162 TmpInst.addOperand(Inst.getOperand(4));
8163 Inst = TmpInst;
8164 return true;
8165 }
8166
8167 case ARM::VLD4DUPdWB_register_Asm_8:
8168 case ARM::VLD4DUPdWB_register_Asm_16:
8169 case ARM::VLD4DUPdWB_register_Asm_32:
8170 case ARM::VLD4DUPqWB_register_Asm_8:
8171 case ARM::VLD4DUPqWB_register_Asm_16:
8172 case ARM::VLD4DUPqWB_register_Asm_32: {
8173 MCInst TmpInst;
8174 unsigned Spacing;
8175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8176 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8178 Spacing));
8179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8180 Spacing * 2));
8181 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8182 Spacing * 3));
8183 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8184 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8185 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8186 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8187 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8188 TmpInst.addOperand(Inst.getOperand(5));
8189 Inst = TmpInst;
8190 return true;
8191 }
8192
8193 // VLD4 multiple 4-element structure instructions.
8194 case ARM::VLD4dAsm_8:
8195 case ARM::VLD4dAsm_16:
8196 case ARM::VLD4dAsm_32:
8197 case ARM::VLD4qAsm_8:
8198 case ARM::VLD4qAsm_16:
8199 case ARM::VLD4qAsm_32: {
8200 MCInst TmpInst;
8201 unsigned Spacing;
8202 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8203 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8204 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8205 Spacing));
8206 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8207 Spacing * 2));
8208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8209 Spacing * 3));
8210 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8211 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8212 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8213 TmpInst.addOperand(Inst.getOperand(4));
8214 Inst = TmpInst;
8215 return true;
8216 }
8217
8218 case ARM::VLD4dWB_fixed_Asm_8:
8219 case ARM::VLD4dWB_fixed_Asm_16:
8220 case ARM::VLD4dWB_fixed_Asm_32:
8221 case ARM::VLD4qWB_fixed_Asm_8:
8222 case ARM::VLD4qWB_fixed_Asm_16:
8223 case ARM::VLD4qWB_fixed_Asm_32: {
8224 MCInst TmpInst;
8225 unsigned Spacing;
8226 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8227 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8229 Spacing));
8230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8231 Spacing * 2));
8232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8233 Spacing * 3));
8234 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8235 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8236 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8237 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8238 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8239 TmpInst.addOperand(Inst.getOperand(4));
8240 Inst = TmpInst;
8241 return true;
8242 }
8243
8244 case ARM::VLD4dWB_register_Asm_8:
8245 case ARM::VLD4dWB_register_Asm_16:
8246 case ARM::VLD4dWB_register_Asm_32:
8247 case ARM::VLD4qWB_register_Asm_8:
8248 case ARM::VLD4qWB_register_Asm_16:
8249 case ARM::VLD4qWB_register_Asm_32: {
8250 MCInst TmpInst;
8251 unsigned Spacing;
8252 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8253 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8255 Spacing));
8256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8257 Spacing * 2));
8258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8259 Spacing * 3));
8260 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8261 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8262 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8263 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8264 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8265 TmpInst.addOperand(Inst.getOperand(5));
8266 Inst = TmpInst;
8267 return true;
8268 }
8269
8270 // VST3 multiple 3-element structure instructions.
8271 case ARM::VST3dAsm_8:
8272 case ARM::VST3dAsm_16:
8273 case ARM::VST3dAsm_32:
8274 case ARM::VST3qAsm_8:
8275 case ARM::VST3qAsm_16:
8276 case ARM::VST3qAsm_32: {
8277 MCInst TmpInst;
8278 unsigned Spacing;
8279 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8280 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8281 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8282 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8283 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8284 Spacing));
8285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8286 Spacing * 2));
8287 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8288 TmpInst.addOperand(Inst.getOperand(4));
8289 Inst = TmpInst;
8290 return true;
8291 }
8292
8293 case ARM::VST3dWB_fixed_Asm_8:
8294 case ARM::VST3dWB_fixed_Asm_16:
8295 case ARM::VST3dWB_fixed_Asm_32:
8296 case ARM::VST3qWB_fixed_Asm_8:
8297 case ARM::VST3qWB_fixed_Asm_16:
8298 case ARM::VST3qWB_fixed_Asm_32: {
8299 MCInst TmpInst;
8300 unsigned Spacing;
8301 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8302 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8303 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8304 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8305 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8306 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8308 Spacing));
8309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8310 Spacing * 2));
8311 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8312 TmpInst.addOperand(Inst.getOperand(4));
8313 Inst = TmpInst;
8314 return true;
8315 }
8316
8317 case ARM::VST3dWB_register_Asm_8:
8318 case ARM::VST3dWB_register_Asm_16:
8319 case ARM::VST3dWB_register_Asm_32:
8320 case ARM::VST3qWB_register_Asm_8:
8321 case ARM::VST3qWB_register_Asm_16:
8322 case ARM::VST3qWB_register_Asm_32: {
8323 MCInst TmpInst;
8324 unsigned Spacing;
8325 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8326 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8327 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8328 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8329 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8330 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8332 Spacing));
8333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8334 Spacing * 2));
8335 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8336 TmpInst.addOperand(Inst.getOperand(5));
8337 Inst = TmpInst;
8338 return true;
8339 }
8340
8341 // VST4 multiple 3-element structure instructions.
8342 case ARM::VST4dAsm_8:
8343 case ARM::VST4dAsm_16:
8344 case ARM::VST4dAsm_32:
8345 case ARM::VST4qAsm_8:
8346 case ARM::VST4qAsm_16:
8347 case ARM::VST4qAsm_32: {
8348 MCInst TmpInst;
8349 unsigned Spacing;
8350 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8351 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8352 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8353 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8354 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8355 Spacing));
8356 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8357 Spacing * 2));
8358 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8359 Spacing * 3));
8360 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8361 TmpInst.addOperand(Inst.getOperand(4));
8362 Inst = TmpInst;
8363 return true;
8364 }
8365
8366 case ARM::VST4dWB_fixed_Asm_8:
8367 case ARM::VST4dWB_fixed_Asm_16:
8368 case ARM::VST4dWB_fixed_Asm_32:
8369 case ARM::VST4qWB_fixed_Asm_8:
8370 case ARM::VST4qWB_fixed_Asm_16:
8371 case ARM::VST4qWB_fixed_Asm_32: {
8372 MCInst TmpInst;
8373 unsigned Spacing;
8374 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8375 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8376 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8377 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8378 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8379 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8380 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8381 Spacing));
8382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8383 Spacing * 2));
8384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8385 Spacing * 3));
8386 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8387 TmpInst.addOperand(Inst.getOperand(4));
8388 Inst = TmpInst;
8389 return true;
8390 }
8391
8392 case ARM::VST4dWB_register_Asm_8:
8393 case ARM::VST4dWB_register_Asm_16:
8394 case ARM::VST4dWB_register_Asm_32:
8395 case ARM::VST4qWB_register_Asm_8:
8396 case ARM::VST4qWB_register_Asm_16:
8397 case ARM::VST4qWB_register_Asm_32: {
8398 MCInst TmpInst;
8399 unsigned Spacing;
8400 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8401 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8402 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8403 TmpInst.addOperand(Inst.getOperand(2)); // alignment
8404 TmpInst.addOperand(Inst.getOperand(3)); // Rm
8405 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8407 Spacing));
8408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8409 Spacing * 2));
8410 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8411 Spacing * 3));
8412 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8413 TmpInst.addOperand(Inst.getOperand(5));
8414 Inst = TmpInst;
8415 return true;
8416 }
8417
8418 // Handle encoding choice for the shift-immediate instructions.
8419 case ARM::t2LSLri:
8420 case ARM::t2LSRri:
8421 case ARM::t2ASRri:
8422 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8423 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8424 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8425 !HasWideQualifier) {
8426 unsigned NewOpc;
8427 switch (Inst.getOpcode()) {
8428 default: llvm_unreachable("unexpected opcode");
8429 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8430 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8431 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8432 }
8433 // The Thumb1 operands aren't in the same order. Awesome, eh?
8434 MCInst TmpInst;
8435 TmpInst.setOpcode(NewOpc);
8436 TmpInst.addOperand(Inst.getOperand(0));
8437 TmpInst.addOperand(Inst.getOperand(5));
8438 TmpInst.addOperand(Inst.getOperand(1));
8439 TmpInst.addOperand(Inst.getOperand(2));
8440 TmpInst.addOperand(Inst.getOperand(3));
8441 TmpInst.addOperand(Inst.getOperand(4));
8442 Inst = TmpInst;
8443 return true;
8444 }
8445 return false;
8446
8447 // Handle the Thumb2 mode MOV complex aliases.
8448 case ARM::t2MOVsr:
8449 case ARM::t2MOVSsr: {
8450 // Which instruction to expand to depends on the CCOut operand and
8451 // whether we're in an IT block if the register operands are low
8452 // registers.
8453 bool isNarrow = false;
8454 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8455 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8456 isARMLowRegister(Inst.getOperand(2).getReg()) &&
8457 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8458 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8459 !HasWideQualifier)
8460 isNarrow = true;
8461 MCInst TmpInst;
8462 unsigned newOpc;
8463 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8464 default: llvm_unreachable("unexpected opcode!");
8465 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8466 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8467 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8468 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
8469 }
8470 TmpInst.setOpcode(newOpc);
8471 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8472 if (isNarrow)
8473 TmpInst.addOperand(MCOperand::createReg(
8474 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8475 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8476 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8477 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8478 TmpInst.addOperand(Inst.getOperand(5));
8479 if (!isNarrow)
8480 TmpInst.addOperand(MCOperand::createReg(
8481 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8482 Inst = TmpInst;
8483 return true;
8484 }
8485 case ARM::t2MOVsi:
8486 case ARM::t2MOVSsi: {
8487 // Which instruction to expand to depends on the CCOut operand and
8488 // whether we're in an IT block if the register operands are low
8489 // registers.
8490 bool isNarrow = false;
8491 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8492 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8493 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8494 !HasWideQualifier)
8495 isNarrow = true;
8496 MCInst TmpInst;
8497 unsigned newOpc;
8498 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8499 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8500 bool isMov = false;
8501 // MOV rd, rm, LSL #0 is actually a MOV instruction
8502 if (Shift == ARM_AM::lsl && Amount == 0) {
8503 isMov = true;
8504 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8505 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8506 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8507 // instead.
8508 if (inITBlock()) {
8509 isNarrow = false;
8510 }
8511 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8512 } else {
8513 switch(Shift) {
8514 default: llvm_unreachable("unexpected opcode!");
8515 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8516 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8517 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8518 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8519 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8520 }
8521 }
8522 if (Amount == 32) Amount = 0;
8523 TmpInst.setOpcode(newOpc);
8524 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8525 if (isNarrow && !isMov)
8526 TmpInst.addOperand(MCOperand::createReg(
8527 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8528 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8529 if (newOpc != ARM::t2RRX && !isMov)
8530 TmpInst.addOperand(MCOperand::createImm(Amount));
8531 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8532 TmpInst.addOperand(Inst.getOperand(4));
8533 if (!isNarrow)
8534 TmpInst.addOperand(MCOperand::createReg(
8535 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8536 Inst = TmpInst;
8537 return true;
8538 }
8539 // Handle the ARM mode MOV complex aliases.
8540 case ARM::ASRr:
8541 case ARM::LSRr:
8542 case ARM::LSLr:
8543 case ARM::RORr: {
8544 ARM_AM::ShiftOpc ShiftTy;
8545 switch(Inst.getOpcode()) {
8546 default: llvm_unreachable("unexpected opcode!");
8547 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8548 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8549 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8550 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8551 }
8552 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8553 MCInst TmpInst;
8554 TmpInst.setOpcode(ARM::MOVsr);
8555 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8556 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8557 TmpInst.addOperand(Inst.getOperand(2)); // Rm
8558 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8559 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8560 TmpInst.addOperand(Inst.getOperand(4));
8561 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8562 Inst = TmpInst;
8563 return true;
8564 }
8565 case ARM::ASRi:
8566 case ARM::LSRi:
8567 case ARM::LSLi:
8568 case ARM::RORi: {
8569 ARM_AM::ShiftOpc ShiftTy;
8570 switch(Inst.getOpcode()) {
8571 default: llvm_unreachable("unexpected opcode!");
8572 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8573 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8574 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8575 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8576 }
8577 // A shift by zero is a plain MOVr, not a MOVsi.
8578 unsigned Amt = Inst.getOperand(2).getImm();
8579 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8580 // A shift by 32 should be encoded as 0 when permitted
8581 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8582 Amt = 0;
8583 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8584 MCInst TmpInst;
8585 TmpInst.setOpcode(Opc);
8586 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8587 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8588 if (Opc == ARM::MOVsi)
8589 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8590 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8591 TmpInst.addOperand(Inst.getOperand(4));
8592 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8593 Inst = TmpInst;
8594 return true;
8595 }
8596 case ARM::RRXi: {
8597 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8598 MCInst TmpInst;
8599 TmpInst.setOpcode(ARM::MOVsi);
8600 TmpInst.addOperand(Inst.getOperand(0)); // Rd
8601 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8602 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8603 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8604 TmpInst.addOperand(Inst.getOperand(3));
8605 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8606 Inst = TmpInst;
8607 return true;
8608 }
8609 case ARM::t2LDMIA_UPD: {
8610 // If this is a load of a single register, then we should use
8611 // a post-indexed LDR instruction instead, per the ARM ARM.
8612 if (Inst.getNumOperands() != 5)
8613 return false;
8614 MCInst TmpInst;
8615 TmpInst.setOpcode(ARM::t2LDR_POST);
8616 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8617 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8618 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8619 TmpInst.addOperand(MCOperand::createImm(4));
8620 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8621 TmpInst.addOperand(Inst.getOperand(3));
8622 Inst = TmpInst;
8623 return true;
8624 }
8625 case ARM::t2STMDB_UPD: {
8626 // If this is a store of a single register, then we should use
8627 // a pre-indexed STR instruction instead, per the ARM ARM.
8628 if (Inst.getNumOperands() != 5)
8629 return false;
8630 MCInst TmpInst;
8631 TmpInst.setOpcode(ARM::t2STR_PRE);
8632 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8633 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8634 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8635 TmpInst.addOperand(MCOperand::createImm(-4));
8636 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8637 TmpInst.addOperand(Inst.getOperand(3));
8638 Inst = TmpInst;
8639 return true;
8640 }
8641 case ARM::LDMIA_UPD:
8642 // If this is a load of a single register via a 'pop', then we should use
8643 // a post-indexed LDR instruction instead, per the ARM ARM.
8644 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8645 Inst.getNumOperands() == 5) {
8646 MCInst TmpInst;
8647 TmpInst.setOpcode(ARM::LDR_POST_IMM);
8648 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8649 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8650 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8651 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
8652 TmpInst.addOperand(MCOperand::createImm(4));
8653 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8654 TmpInst.addOperand(Inst.getOperand(3));
8655 Inst = TmpInst;
8656 return true;
8657 }
8658 break;
8659 case ARM::STMDB_UPD:
8660 // If this is a store of a single register via a 'push', then we should use
8661 // a pre-indexed STR instruction instead, per the ARM ARM.
8662 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8663 Inst.getNumOperands() == 5) {
8664 MCInst TmpInst;
8665 TmpInst.setOpcode(ARM::STR_PRE_IMM);
8666 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8667 TmpInst.addOperand(Inst.getOperand(4)); // Rt
8668 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8669 TmpInst.addOperand(MCOperand::createImm(-4));
8670 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8671 TmpInst.addOperand(Inst.getOperand(3));
8672 Inst = TmpInst;
8673 }
8674 break;
8675 case ARM::t2ADDri12:
8676 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8677 // mnemonic was used (not "addw"), encoding T3 is preferred.
8678 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8679 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8680 break;
8681 Inst.setOpcode(ARM::t2ADDri);
8682 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8683 break;
8684 case ARM::t2SUBri12:
8685 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8686 // mnemonic was used (not "subw"), encoding T3 is preferred.
8687 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8688 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8689 break;
8690 Inst.setOpcode(ARM::t2SUBri);
8691 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8692 break;
8693 case ARM::tADDi8:
8694 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8695 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8696 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8697 // to encoding T1 if <Rd> is omitted."
8698 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8699 Inst.setOpcode(ARM::tADDi3);
8700 return true;
8701 }
8702 break;
8703 case ARM::tSUBi8:
8704 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8705 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8706 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8707 // to encoding T1 if <Rd> is omitted."
8708 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8709 Inst.setOpcode(ARM::tSUBi3);
8710 return true;
8711 }
8712 break;
8713 case ARM::t2ADDri:
8714 case ARM::t2SUBri: {
8715 // If the destination and first source operand are the same, and
8716 // the flags are compatible with the current IT status, use encoding T2
8717 // instead of T3. For compatibility with the system 'as'. Make sure the
8718 // wide encoding wasn't explicit.
8719 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8720 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8721 (Inst.getOperand(2).isImm() &&
8722 (unsigned)Inst.getOperand(2).getImm() > 255) ||
8723 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8724 HasWideQualifier)
8725 break;
8726 MCInst TmpInst;
8727 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8728 ARM::tADDi8 : ARM::tSUBi8);
8729 TmpInst.addOperand(Inst.getOperand(0));
8730 TmpInst.addOperand(Inst.getOperand(5));
8731 TmpInst.addOperand(Inst.getOperand(0));
8732 TmpInst.addOperand(Inst.getOperand(2));
8733 TmpInst.addOperand(Inst.getOperand(3));
8734 TmpInst.addOperand(Inst.getOperand(4));
8735 Inst = TmpInst;
8736 return true;
8737 }
8738 case ARM::t2ADDrr: {
8739 // If the destination and first source operand are the same, and
8740 // there's no setting of the flags, use encoding T2 instead of T3.
8741 // Note that this is only for ADD, not SUB. This mirrors the system
8742 // 'as' behaviour. Also take advantage of ADD being commutative.
8743 // Make sure the wide encoding wasn't explicit.
8744 bool Swap = false;
8745 auto DestReg = Inst.getOperand(0).getReg();
8746 bool Transform = DestReg == Inst.getOperand(1).getReg();
8747 if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8748 Transform = true;
8749 Swap = true;
8750 }
8751 if (!Transform ||
8752 Inst.getOperand(5).getReg() != 0 ||
8753 HasWideQualifier)
8754 break;
8755 MCInst TmpInst;
8756 TmpInst.setOpcode(ARM::tADDhirr);
8757 TmpInst.addOperand(Inst.getOperand(0));
8758 TmpInst.addOperand(Inst.getOperand(0));
8759 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8760 TmpInst.addOperand(Inst.getOperand(3));
8761 TmpInst.addOperand(Inst.getOperand(4));
8762 Inst = TmpInst;
8763 return true;
8764 }
8765 case ARM::tADDrSP:
8766 // If the non-SP source operand and the destination operand are not the
8767 // same, we need to use the 32-bit encoding if it's available.
8768 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8769 Inst.setOpcode(ARM::t2ADDrr);
8770 Inst.addOperand(MCOperand::createReg(0)); // cc_out
8771 return true;
8772 }
8773 break;
8774 case ARM::tB:
8775 // A Thumb conditional branch outside of an IT block is a tBcc.
8776 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8777 Inst.setOpcode(ARM::tBcc);
8778 return true;
8779 }
8780 break;
8781 case ARM::t2B:
8782 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8783 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8784 Inst.setOpcode(ARM::t2Bcc);
8785 return true;
8786 }
8787 break;
8788 case ARM::t2Bcc:
8789 // If the conditional is AL or we're in an IT block, we really want t2B.
8790 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8791 Inst.setOpcode(ARM::t2B);
8792 return true;
8793 }
8794 break;
8795 case ARM::tBcc:
8796 // If the conditional is AL, we really want tB.
8797 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8798 Inst.setOpcode(ARM::tB);
8799 return true;
8800 }
8801 break;
8802 case ARM::tLDMIA: {
8803 // If the register list contains any high registers, or if the writeback
8804 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8805 // instead if we're in Thumb2. Otherwise, this should have generated
8806 // an error in validateInstruction().
8807 unsigned Rn = Inst.getOperand(0).getReg();
8808 bool hasWritebackToken =
8809 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8810 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8811 bool listContainsBase;
8812 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8813 (!listContainsBase && !hasWritebackToken) ||
8814 (listContainsBase && hasWritebackToken)) {
8815 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8816 assert(isThumbTwo());
8817 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8818 // If we're switching to the updating version, we need to insert
8819 // the writeback tied operand.
8820 if (hasWritebackToken)
8821 Inst.insert(Inst.begin(),
8822 MCOperand::createReg(Inst.getOperand(0).getReg()));
8823 return true;
8824 }
8825 break;
8826 }
8827 case ARM::tSTMIA_UPD: {
8828 // If the register list contains any high registers, we need to use
8829 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8830 // should have generated an error in validateInstruction().
8831 unsigned Rn = Inst.getOperand(0).getReg();
8832 bool listContainsBase;
8833 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8834 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8835 assert(isThumbTwo());
8836 Inst.setOpcode(ARM::t2STMIA_UPD);
8837 return true;
8838 }
8839 break;
8840 }
8841 case ARM::tPOP: {
8842 bool listContainsBase;
8843 // If the register list contains any high registers, we need to use
8844 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8845 // should have generated an error in validateInstruction().
8846 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8847 return false;
8848 assert(isThumbTwo());
8849 Inst.setOpcode(ARM::t2LDMIA_UPD);
8850 // Add the base register and writeback operands.
8851 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8852 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8853 return true;
8854 }
8855 case ARM::tPUSH: {
8856 bool listContainsBase;
8857 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8858 return false;
8859 assert(isThumbTwo());
8860 Inst.setOpcode(ARM::t2STMDB_UPD);
8861 // Add the base register and writeback operands.
8862 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8863 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8864 return true;
8865 }
8866 case ARM::t2MOVi:
8867 // If we can use the 16-bit encoding and the user didn't explicitly
8868 // request the 32-bit variant, transform it here.
8869 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8870 (Inst.getOperand(1).isImm() &&
8871 (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8872 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8873 !HasWideQualifier) {
8874 // The operands aren't in the same order for tMOVi8...
8875 MCInst TmpInst;
8876 TmpInst.setOpcode(ARM::tMOVi8);
8877 TmpInst.addOperand(Inst.getOperand(0));
8878 TmpInst.addOperand(Inst.getOperand(4));
8879 TmpInst.addOperand(Inst.getOperand(1));
8880 TmpInst.addOperand(Inst.getOperand(2));
8881 TmpInst.addOperand(Inst.getOperand(3));
8882 Inst = TmpInst;
8883 return true;
8884 }
8885 break;
8886
8887 case ARM::t2MOVr:
8888 // If we can use the 16-bit encoding and the user didn't explicitly
8889 // request the 32-bit variant, transform it here.
8890 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8891 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8892 Inst.getOperand(2).getImm() == ARMCC::AL &&
8893 Inst.getOperand(4).getReg() == ARM::CPSR &&
8894 !HasWideQualifier) {
8895 // The operands aren't the same for tMOV[S]r... (no cc_out)
8896 MCInst TmpInst;
8897 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8898 TmpInst.addOperand(Inst.getOperand(0));
8899 TmpInst.addOperand(Inst.getOperand(1));
8900 TmpInst.addOperand(Inst.getOperand(2));
8901 TmpInst.addOperand(Inst.getOperand(3));
8902 Inst = TmpInst;
8903 return true;
8904 }
8905 break;
8906
8907 case ARM::t2SXTH:
8908 case ARM::t2SXTB:
8909 case ARM::t2UXTH:
8910 case ARM::t2UXTB:
8911 // If we can use the 16-bit encoding and the user didn't explicitly
8912 // request the 32-bit variant, transform it here.
8913 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8914 isARMLowRegister(Inst.getOperand(1).getReg()) &&
8915 Inst.getOperand(2).getImm() == 0 &&
8916 !HasWideQualifier) {
8917 unsigned NewOpc;
8918 switch (Inst.getOpcode()) {
8919 default: llvm_unreachable("Illegal opcode!");
8920 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8921 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8922 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8923 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8924 }
8925 // The operands aren't the same for thumb1 (no rotate operand).
8926 MCInst TmpInst;
8927 TmpInst.setOpcode(NewOpc);
8928 TmpInst.addOperand(Inst.getOperand(0));
8929 TmpInst.addOperand(Inst.getOperand(1));
8930 TmpInst.addOperand(Inst.getOperand(3));
8931 TmpInst.addOperand(Inst.getOperand(4));
8932 Inst = TmpInst;
8933 return true;
8934 }
8935 break;
8936
8937 case ARM::MOVsi: {
8938 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8939 // rrx shifts and asr/lsr of #32 is encoded as 0
8940 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8941 return false;
8942 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8943 // Shifting by zero is accepted as a vanilla 'MOVr'
8944 MCInst TmpInst;
8945 TmpInst.setOpcode(ARM::MOVr);
8946 TmpInst.addOperand(Inst.getOperand(0));
8947 TmpInst.addOperand(Inst.getOperand(1));
8948 TmpInst.addOperand(Inst.getOperand(3));
8949 TmpInst.addOperand(Inst.getOperand(4));
8950 TmpInst.addOperand(Inst.getOperand(5));
8951 Inst = TmpInst;
8952 return true;
8953 }
8954 return false;
8955 }
8956 case ARM::ANDrsi:
8957 case ARM::ORRrsi:
8958 case ARM::EORrsi:
8959 case ARM::BICrsi:
8960 case ARM::SUBrsi:
8961 case ARM::ADDrsi: {
8962 unsigned newOpc;
8963 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8964 if (SOpc == ARM_AM::rrx) return false;
8965 switch (Inst.getOpcode()) {
8966 default: llvm_unreachable("unexpected opcode!");
8967 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8968 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8969 case ARM::EORrsi: newOpc = ARM::EORrr; break;
8970 case ARM::BICrsi: newOpc = ARM::BICrr; break;
8971 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8972 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8973 }
8974 // If the shift is by zero, use the non-shifted instruction definition.
8975 // The exception is for right shifts, where 0 == 32
8976 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8977 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8978 MCInst TmpInst;
8979 TmpInst.setOpcode(newOpc);
8980 TmpInst.addOperand(Inst.getOperand(0));
8981 TmpInst.addOperand(Inst.getOperand(1));
8982 TmpInst.addOperand(Inst.getOperand(2));
8983 TmpInst.addOperand(Inst.getOperand(4));
8984 TmpInst.addOperand(Inst.getOperand(5));
8985 TmpInst.addOperand(Inst.getOperand(6));
8986 Inst = TmpInst;
8987 return true;
8988 }
8989 return false;
8990 }
8991 case ARM::ITasm:
8992 case ARM::t2IT: {
8993 MCOperand &MO = Inst.getOperand(1);
8994 unsigned Mask = MO.getImm();
8995 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8996
8997 // Set up the IT block state according to the IT instruction we just
8998 // matched.
8999 assert(!inITBlock() && "nested IT blocks?!");
9000 startExplicitITBlock(Cond, Mask);
9001 MO.setImm(getITMaskEncoding());
9002 break;
9003 }
9004 case ARM::t2LSLrr:
9005 case ARM::t2LSRrr:
9006 case ARM::t2ASRrr:
9007 case ARM::t2SBCrr:
9008 case ARM::t2RORrr:
9009 case ARM::t2BICrr:
9010 // Assemblers should use the narrow encodings of these instructions when permissible.
9011 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9012 isARMLowRegister(Inst.getOperand(2).getReg())) &&
9013 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9014 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9015 !HasWideQualifier) {
9016 unsigned NewOpc;
9017 switch (Inst.getOpcode()) {
9018 default: llvm_unreachable("unexpected opcode");
9019 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
9020 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
9021 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
9022 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
9023 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
9024 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
9025 }
9026 MCInst TmpInst;
9027 TmpInst.setOpcode(NewOpc);
9028 TmpInst.addOperand(Inst.getOperand(0));
9029 TmpInst.addOperand(Inst.getOperand(5));
9030 TmpInst.addOperand(Inst.getOperand(1));
9031 TmpInst.addOperand(Inst.getOperand(2));
9032 TmpInst.addOperand(Inst.getOperand(3));
9033 TmpInst.addOperand(Inst.getOperand(4));
9034 Inst = TmpInst;
9035 return true;
9036 }
9037 return false;
9038
9039 case ARM::t2ANDrr:
9040 case ARM::t2EORrr:
9041 case ARM::t2ADCrr:
9042 case ARM::t2ORRrr:
9043 // Assemblers should use the narrow encodings of these instructions when permissible.
9044 // These instructions are special in that they are commutable, so shorter encodings
9045 // are available more often.
9046 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9047 isARMLowRegister(Inst.getOperand(2).getReg())) &&
9048 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
9049 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
9050 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9051 !HasWideQualifier) {
9052 unsigned NewOpc;
9053 switch (Inst.getOpcode()) {
9054 default: llvm_unreachable("unexpected opcode");
9055 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9056 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9057 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9058 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9059 }
9060 MCInst TmpInst;
9061 TmpInst.setOpcode(NewOpc);
9062 TmpInst.addOperand(Inst.getOperand(0));
9063 TmpInst.addOperand(Inst.getOperand(5));
9064 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9065 TmpInst.addOperand(Inst.getOperand(1));
9066 TmpInst.addOperand(Inst.getOperand(2));
9067 } else {
9068 TmpInst.addOperand(Inst.getOperand(2));
9069 TmpInst.addOperand(Inst.getOperand(1));
9070 }
9071 TmpInst.addOperand(Inst.getOperand(3));
9072 TmpInst.addOperand(Inst.getOperand(4));
9073 Inst = TmpInst;
9074 return true;
9075 }
9076 return false;
9077 }
9078 return false;
9079 }
9080
checkTargetMatchPredicate(MCInst & Inst)9081 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9082 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9083 // suffix depending on whether they're in an IT block or not.
9084 unsigned Opc = Inst.getOpcode();
9085 const MCInstrDesc &MCID = MII.get(Opc);
9086 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
9087 assert(MCID.hasOptionalDef() &&
9088 "optionally flag setting instruction missing optional def operand");
9089 assert(MCID.NumOperands == Inst.getNumOperands() &&
9090 "operand count mismatch!");
9091 // Find the optional-def operand (cc_out).
9092 unsigned OpNo;
9093 for (OpNo = 0;
9094 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9095 ++OpNo)
9096 ;
9097 // If we're parsing Thumb1, reject it completely.
9098 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9099 return Match_RequiresFlagSetting;
9100 // If we're parsing Thumb2, which form is legal depends on whether we're
9101 // in an IT block.
9102 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9103 !inITBlock())
9104 return Match_RequiresITBlock;
9105 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9106 inITBlock())
9107 return Match_RequiresNotITBlock;
9108 // LSL with zero immediate is not allowed in an IT block
9109 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9110 return Match_RequiresNotITBlock;
9111 } else if (isThumbOne()) {
9112 // Some high-register supporting Thumb1 encodings only allow both registers
9113 // to be from r0-r7 when in Thumb2.
9114 if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9115 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9116 isARMLowRegister(Inst.getOperand(2).getReg()))
9117 return Match_RequiresThumb2;
9118 // Others only require ARMv6 or later.
9119 else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9120 isARMLowRegister(Inst.getOperand(0).getReg()) &&
9121 isARMLowRegister(Inst.getOperand(1).getReg()))
9122 return Match_RequiresV6;
9123 }
9124
9125 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9126 // than the loop below can handle, so it uses the GPRnopc register class and
9127 // we do SP handling here.
9128 if (Opc == ARM::t2MOVr && !hasV8Ops())
9129 {
9130 // SP as both source and destination is not allowed
9131 if (Inst.getOperand(0).getReg() == ARM::SP &&
9132 Inst.getOperand(1).getReg() == ARM::SP)
9133 return Match_RequiresV8;
9134 // When flags-setting SP as either source or destination is not allowed
9135 if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9136 (Inst.getOperand(0).getReg() == ARM::SP ||
9137 Inst.getOperand(1).getReg() == ARM::SP))
9138 return Match_RequiresV8;
9139 }
9140
9141 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9142 // ARMv8-A.
9143 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9144 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9145 return Match_InvalidOperand;
9146
9147 for (unsigned I = 0; I < MCID.NumOperands; ++I)
9148 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9149 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9150 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9151 return Match_RequiresV8;
9152 else if (Inst.getOperand(I).getReg() == ARM::PC)
9153 return Match_InvalidOperand;
9154 }
9155
9156 return Match_Success;
9157 }
9158
9159 namespace llvm {
9160
IsCPSRDead(const MCInst * Instr)9161 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9162 return true; // In an assembly source, no need to second-guess
9163 }
9164
9165 } // end namespace llvm
9166
9167 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9168 // the last instruction in the block.
isITBlockTerminator(MCInst & Inst) const9169 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9170 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9171
9172 // All branch & call instructions terminate IT blocks with the exception of
9173 // SVC.
9174 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9175 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9176 return true;
9177
9178 // Any arithmetic instruction which writes to the PC also terminates the IT
9179 // block.
9180 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
9181 return true;
9182
9183 return false;
9184 }
9185
MatchInstruction(OperandVector & Operands,MCInst & Inst,SmallVectorImpl<NearMissInfo> & NearMisses,bool MatchingInlineAsm,bool & EmitInITBlock,MCStreamer & Out)9186 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9187 SmallVectorImpl<NearMissInfo> &NearMisses,
9188 bool MatchingInlineAsm,
9189 bool &EmitInITBlock,
9190 MCStreamer &Out) {
9191 // If we can't use an implicit IT block here, just match as normal.
9192 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9193 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9194
9195 // Try to match the instruction in an extension of the current IT block (if
9196 // there is one).
9197 if (inImplicitITBlock()) {
9198 extendImplicitITBlock(ITState.Cond);
9199 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9200 Match_Success) {
9201 // The match succeded, but we still have to check that the instruction is
9202 // valid in this implicit IT block.
9203 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9204 if (MCID.isPredicable()) {
9205 ARMCC::CondCodes InstCond =
9206 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9207 .getImm();
9208 ARMCC::CondCodes ITCond = currentITCond();
9209 if (InstCond == ITCond) {
9210 EmitInITBlock = true;
9211 return Match_Success;
9212 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9213 invertCurrentITCondition();
9214 EmitInITBlock = true;
9215 return Match_Success;
9216 }
9217 }
9218 }
9219 rewindImplicitITPosition();
9220 }
9221
9222 // Finish the current IT block, and try to match outside any IT block.
9223 flushPendingInstructions(Out);
9224 unsigned PlainMatchResult =
9225 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9226 if (PlainMatchResult == Match_Success) {
9227 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9228 if (MCID.isPredicable()) {
9229 ARMCC::CondCodes InstCond =
9230 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9231 .getImm();
9232 // Some forms of the branch instruction have their own condition code
9233 // fields, so can be conditionally executed without an IT block.
9234 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9235 EmitInITBlock = false;
9236 return Match_Success;
9237 }
9238 if (InstCond == ARMCC::AL) {
9239 EmitInITBlock = false;
9240 return Match_Success;
9241 }
9242 } else {
9243 EmitInITBlock = false;
9244 return Match_Success;
9245 }
9246 }
9247
9248 // Try to match in a new IT block. The matcher doesn't check the actual
9249 // condition, so we create an IT block with a dummy condition, and fix it up
9250 // once we know the actual condition.
9251 startImplicitITBlock();
9252 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9253 Match_Success) {
9254 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9255 if (MCID.isPredicable()) {
9256 ITState.Cond =
9257 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9258 .getImm();
9259 EmitInITBlock = true;
9260 return Match_Success;
9261 }
9262 }
9263 discardImplicitITBlock();
9264
9265 // If none of these succeed, return the error we got when trying to match
9266 // outside any IT blocks.
9267 EmitInITBlock = false;
9268 return PlainMatchResult;
9269 }
9270
9271 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9272 unsigned VariantID = 0);
9273
9274 static const char *getSubtargetFeatureName(uint64_t Val);
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)9275 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9276 OperandVector &Operands,
9277 MCStreamer &Out, uint64_t &ErrorInfo,
9278 bool MatchingInlineAsm) {
9279 MCInst Inst;
9280 unsigned MatchResult;
9281 bool PendConditionalInstruction = false;
9282
9283 SmallVector<NearMissInfo, 4> NearMisses;
9284 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9285 PendConditionalInstruction, Out);
9286
9287 switch (MatchResult) {
9288 case Match_Success:
9289 LLVM_DEBUG(dbgs() << "Parsed as: ";
9290 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9291 dbgs() << "\n");
9292
9293 // Context sensitive operand constraints aren't handled by the matcher,
9294 // so check them here.
9295 if (validateInstruction(Inst, Operands)) {
9296 // Still progress the IT block, otherwise one wrong condition causes
9297 // nasty cascading errors.
9298 forwardITPosition();
9299 return true;
9300 }
9301
9302 { // processInstruction() updates inITBlock state, we need to save it away
9303 bool wasInITBlock = inITBlock();
9304
9305 // Some instructions need post-processing to, for example, tweak which
9306 // encoding is selected. Loop on it while changes happen so the
9307 // individual transformations can chain off each other. E.g.,
9308 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9309 while (processInstruction(Inst, Operands, Out))
9310 LLVM_DEBUG(dbgs() << "Changed to: ";
9311 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9312 dbgs() << "\n");
9313
9314 // Only after the instruction is fully processed, we can validate it
9315 if (wasInITBlock && hasV8Ops() && isThumb() &&
9316 !isV8EligibleForIT(&Inst)) {
9317 Warning(IDLoc, "deprecated instruction in IT block");
9318 }
9319 }
9320
9321 // Only move forward at the very end so that everything in validate
9322 // and process gets a consistent answer about whether we're in an IT
9323 // block.
9324 forwardITPosition();
9325
9326 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9327 // doesn't actually encode.
9328 if (Inst.getOpcode() == ARM::ITasm)
9329 return false;
9330
9331 Inst.setLoc(IDLoc);
9332 if (PendConditionalInstruction) {
9333 PendingConditionalInsts.push_back(Inst);
9334 if (isITBlockFull() || isITBlockTerminator(Inst))
9335 flushPendingInstructions(Out);
9336 } else {
9337 Out.EmitInstruction(Inst, getSTI());
9338 }
9339 return false;
9340 case Match_NearMisses:
9341 ReportNearMisses(NearMisses, IDLoc, Operands);
9342 return true;
9343 case Match_MnemonicFail: {
9344 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9345 std::string Suggestion = ARMMnemonicSpellCheck(
9346 ((ARMOperand &)*Operands[0]).getToken(), FBS);
9347 return Error(IDLoc, "invalid instruction" + Suggestion,
9348 ((ARMOperand &)*Operands[0]).getLocRange());
9349 }
9350 }
9351
9352 llvm_unreachable("Implement any new match types added!");
9353 }
9354
9355 /// parseDirective parses the arm specific directives
ParseDirective(AsmToken DirectiveID)9356 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9357 const MCObjectFileInfo::Environment Format =
9358 getContext().getObjectFileInfo()->getObjectFileType();
9359 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9360 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9361
9362 StringRef IDVal = DirectiveID.getIdentifier();
9363 if (IDVal == ".word")
9364 parseLiteralValues(4, DirectiveID.getLoc());
9365 else if (IDVal == ".short" || IDVal == ".hword")
9366 parseLiteralValues(2, DirectiveID.getLoc());
9367 else if (IDVal == ".thumb")
9368 parseDirectiveThumb(DirectiveID.getLoc());
9369 else if (IDVal == ".arm")
9370 parseDirectiveARM(DirectiveID.getLoc());
9371 else if (IDVal == ".thumb_func")
9372 parseDirectiveThumbFunc(DirectiveID.getLoc());
9373 else if (IDVal == ".code")
9374 parseDirectiveCode(DirectiveID.getLoc());
9375 else if (IDVal == ".syntax")
9376 parseDirectiveSyntax(DirectiveID.getLoc());
9377 else if (IDVal == ".unreq")
9378 parseDirectiveUnreq(DirectiveID.getLoc());
9379 else if (IDVal == ".fnend")
9380 parseDirectiveFnEnd(DirectiveID.getLoc());
9381 else if (IDVal == ".cantunwind")
9382 parseDirectiveCantUnwind(DirectiveID.getLoc());
9383 else if (IDVal == ".personality")
9384 parseDirectivePersonality(DirectiveID.getLoc());
9385 else if (IDVal == ".handlerdata")
9386 parseDirectiveHandlerData(DirectiveID.getLoc());
9387 else if (IDVal == ".setfp")
9388 parseDirectiveSetFP(DirectiveID.getLoc());
9389 else if (IDVal == ".pad")
9390 parseDirectivePad(DirectiveID.getLoc());
9391 else if (IDVal == ".save")
9392 parseDirectiveRegSave(DirectiveID.getLoc(), false);
9393 else if (IDVal == ".vsave")
9394 parseDirectiveRegSave(DirectiveID.getLoc(), true);
9395 else if (IDVal == ".ltorg" || IDVal == ".pool")
9396 parseDirectiveLtorg(DirectiveID.getLoc());
9397 else if (IDVal == ".even")
9398 parseDirectiveEven(DirectiveID.getLoc());
9399 else if (IDVal == ".personalityindex")
9400 parseDirectivePersonalityIndex(DirectiveID.getLoc());
9401 else if (IDVal == ".unwind_raw")
9402 parseDirectiveUnwindRaw(DirectiveID.getLoc());
9403 else if (IDVal == ".movsp")
9404 parseDirectiveMovSP(DirectiveID.getLoc());
9405 else if (IDVal == ".arch_extension")
9406 parseDirectiveArchExtension(DirectiveID.getLoc());
9407 else if (IDVal == ".align")
9408 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9409 else if (IDVal == ".thumb_set")
9410 parseDirectiveThumbSet(DirectiveID.getLoc());
9411 else if (IDVal == ".inst")
9412 parseDirectiveInst(DirectiveID.getLoc());
9413 else if (IDVal == ".inst.n")
9414 parseDirectiveInst(DirectiveID.getLoc(), 'n');
9415 else if (IDVal == ".inst.w")
9416 parseDirectiveInst(DirectiveID.getLoc(), 'w');
9417 else if (!IsMachO && !IsCOFF) {
9418 if (IDVal == ".arch")
9419 parseDirectiveArch(DirectiveID.getLoc());
9420 else if (IDVal == ".cpu")
9421 parseDirectiveCPU(DirectiveID.getLoc());
9422 else if (IDVal == ".eabi_attribute")
9423 parseDirectiveEabiAttr(DirectiveID.getLoc());
9424 else if (IDVal == ".fpu")
9425 parseDirectiveFPU(DirectiveID.getLoc());
9426 else if (IDVal == ".fnstart")
9427 parseDirectiveFnStart(DirectiveID.getLoc());
9428 else if (IDVal == ".object_arch")
9429 parseDirectiveObjectArch(DirectiveID.getLoc());
9430 else if (IDVal == ".tlsdescseq")
9431 parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9432 else
9433 return true;
9434 } else
9435 return true;
9436 return false;
9437 }
9438
9439 /// parseLiteralValues
9440 /// ::= .hword expression [, expression]*
9441 /// ::= .short expression [, expression]*
9442 /// ::= .word expression [, expression]*
parseLiteralValues(unsigned Size,SMLoc L)9443 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9444 auto parseOne = [&]() -> bool {
9445 const MCExpr *Value;
9446 if (getParser().parseExpression(Value))
9447 return true;
9448 getParser().getStreamer().EmitValue(Value, Size, L);
9449 return false;
9450 };
9451 return (parseMany(parseOne));
9452 }
9453
9454 /// parseDirectiveThumb
9455 /// ::= .thumb
parseDirectiveThumb(SMLoc L)9456 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9457 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9458 check(!hasThumb(), L, "target does not support Thumb mode"))
9459 return true;
9460
9461 if (!isThumb())
9462 SwitchMode();
9463
9464 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9465 return false;
9466 }
9467
9468 /// parseDirectiveARM
9469 /// ::= .arm
parseDirectiveARM(SMLoc L)9470 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9471 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9472 check(!hasARM(), L, "target does not support ARM mode"))
9473 return true;
9474
9475 if (isThumb())
9476 SwitchMode();
9477 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9478 return false;
9479 }
9480
doBeforeLabelEmit(MCSymbol * Symbol)9481 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
9482 // We need to flush the current implicit IT block on a label, because it is
9483 // not legal to branch into an IT block.
9484 flushPendingInstructions(getStreamer());
9485 }
9486
onLabelParsed(MCSymbol * Symbol)9487 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9488 if (NextSymbolIsThumb) {
9489 getParser().getStreamer().EmitThumbFunc(Symbol);
9490 NextSymbolIsThumb = false;
9491 }
9492 }
9493
9494 /// parseDirectiveThumbFunc
9495 /// ::= .thumbfunc symbol_name
parseDirectiveThumbFunc(SMLoc L)9496 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9497 MCAsmParser &Parser = getParser();
9498 const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9499 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9500
9501 // Darwin asm has (optionally) function name after .thumb_func direction
9502 // ELF doesn't
9503
9504 if (IsMachO) {
9505 if (Parser.getTok().is(AsmToken::Identifier) ||
9506 Parser.getTok().is(AsmToken::String)) {
9507 MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9508 Parser.getTok().getIdentifier());
9509 getParser().getStreamer().EmitThumbFunc(Func);
9510 Parser.Lex();
9511 if (parseToken(AsmToken::EndOfStatement,
9512 "unexpected token in '.thumb_func' directive"))
9513 return true;
9514 return false;
9515 }
9516 }
9517
9518 if (parseToken(AsmToken::EndOfStatement,
9519 "unexpected token in '.thumb_func' directive"))
9520 return true;
9521
9522 NextSymbolIsThumb = true;
9523 return false;
9524 }
9525
9526 /// parseDirectiveSyntax
9527 /// ::= .syntax unified | divided
parseDirectiveSyntax(SMLoc L)9528 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9529 MCAsmParser &Parser = getParser();
9530 const AsmToken &Tok = Parser.getTok();
9531 if (Tok.isNot(AsmToken::Identifier)) {
9532 Error(L, "unexpected token in .syntax directive");
9533 return false;
9534 }
9535
9536 StringRef Mode = Tok.getString();
9537 Parser.Lex();
9538 if (check(Mode == "divided" || Mode == "DIVIDED", L,
9539 "'.syntax divided' arm assembly not supported") ||
9540 check(Mode != "unified" && Mode != "UNIFIED", L,
9541 "unrecognized syntax mode in .syntax directive") ||
9542 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9543 return true;
9544
9545 // TODO tell the MC streamer the mode
9546 // getParser().getStreamer().Emit???();
9547 return false;
9548 }
9549
9550 /// parseDirectiveCode
9551 /// ::= .code 16 | 32
parseDirectiveCode(SMLoc L)9552 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9553 MCAsmParser &Parser = getParser();
9554 const AsmToken &Tok = Parser.getTok();
9555 if (Tok.isNot(AsmToken::Integer))
9556 return Error(L, "unexpected token in .code directive");
9557 int64_t Val = Parser.getTok().getIntVal();
9558 if (Val != 16 && Val != 32) {
9559 Error(L, "invalid operand to .code directive");
9560 return false;
9561 }
9562 Parser.Lex();
9563
9564 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9565 return true;
9566
9567 if (Val == 16) {
9568 if (!hasThumb())
9569 return Error(L, "target does not support Thumb mode");
9570
9571 if (!isThumb())
9572 SwitchMode();
9573 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9574 } else {
9575 if (!hasARM())
9576 return Error(L, "target does not support ARM mode");
9577
9578 if (isThumb())
9579 SwitchMode();
9580 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9581 }
9582
9583 return false;
9584 }
9585
9586 /// parseDirectiveReq
9587 /// ::= name .req registername
parseDirectiveReq(StringRef Name,SMLoc L)9588 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9589 MCAsmParser &Parser = getParser();
9590 Parser.Lex(); // Eat the '.req' token.
9591 unsigned Reg;
9592 SMLoc SRegLoc, ERegLoc;
9593 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9594 "register name expected") ||
9595 parseToken(AsmToken::EndOfStatement,
9596 "unexpected input in .req directive."))
9597 return true;
9598
9599 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9600 return Error(SRegLoc,
9601 "redefinition of '" + Name + "' does not match original.");
9602
9603 return false;
9604 }
9605
9606 /// parseDirectiveUneq
9607 /// ::= .unreq registername
parseDirectiveUnreq(SMLoc L)9608 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9609 MCAsmParser &Parser = getParser();
9610 if (Parser.getTok().isNot(AsmToken::Identifier))
9611 return Error(L, "unexpected input in .unreq directive.");
9612 RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9613 Parser.Lex(); // Eat the identifier.
9614 if (parseToken(AsmToken::EndOfStatement,
9615 "unexpected input in '.unreq' directive"))
9616 return true;
9617 return false;
9618 }
9619
9620 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9621 // before, if supported by the new target, or emit mapping symbols for the mode
9622 // switch.
FixModeAfterArchChange(bool WasThumb,SMLoc Loc)9623 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9624 if (WasThumb != isThumb()) {
9625 if (WasThumb && hasThumb()) {
9626 // Stay in Thumb mode
9627 SwitchMode();
9628 } else if (!WasThumb && hasARM()) {
9629 // Stay in ARM mode
9630 SwitchMode();
9631 } else {
9632 // Mode switch forced, because the new arch doesn't support the old mode.
9633 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9634 : MCAF_Code32);
9635 // Warn about the implcit mode switch. GAS does not switch modes here,
9636 // but instead stays in the old mode, reporting an error on any following
9637 // instructions as the mode does not exist on the target.
9638 Warning(Loc, Twine("new target does not support ") +
9639 (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9640 (!WasThumb ? "thumb" : "arm") + " mode");
9641 }
9642 }
9643 }
9644
9645 /// parseDirectiveArch
9646 /// ::= .arch token
parseDirectiveArch(SMLoc L)9647 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9648 StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9649 ARM::ArchKind ID = ARM::parseArch(Arch);
9650
9651 if (ID == ARM::ArchKind::INVALID)
9652 return Error(L, "Unknown arch name");
9653
9654 bool WasThumb = isThumb();
9655 Triple T;
9656 MCSubtargetInfo &STI = copySTI();
9657 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9658 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9659 FixModeAfterArchChange(WasThumb, L);
9660
9661 getTargetStreamer().emitArch(ID);
9662 return false;
9663 }
9664
9665 /// parseDirectiveEabiAttr
9666 /// ::= .eabi_attribute int, int [, "str"]
9667 /// ::= .eabi_attribute Tag_name, int [, "str"]
parseDirectiveEabiAttr(SMLoc L)9668 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9669 MCAsmParser &Parser = getParser();
9670 int64_t Tag;
9671 SMLoc TagLoc;
9672 TagLoc = Parser.getTok().getLoc();
9673 if (Parser.getTok().is(AsmToken::Identifier)) {
9674 StringRef Name = Parser.getTok().getIdentifier();
9675 Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9676 if (Tag == -1) {
9677 Error(TagLoc, "attribute name not recognised: " + Name);
9678 return false;
9679 }
9680 Parser.Lex();
9681 } else {
9682 const MCExpr *AttrExpr;
9683
9684 TagLoc = Parser.getTok().getLoc();
9685 if (Parser.parseExpression(AttrExpr))
9686 return true;
9687
9688 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9689 if (check(!CE, TagLoc, "expected numeric constant"))
9690 return true;
9691
9692 Tag = CE->getValue();
9693 }
9694
9695 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9696 return true;
9697
9698 StringRef StringValue = "";
9699 bool IsStringValue = false;
9700
9701 int64_t IntegerValue = 0;
9702 bool IsIntegerValue = false;
9703
9704 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9705 IsStringValue = true;
9706 else if (Tag == ARMBuildAttrs::compatibility) {
9707 IsStringValue = true;
9708 IsIntegerValue = true;
9709 } else if (Tag < 32 || Tag % 2 == 0)
9710 IsIntegerValue = true;
9711 else if (Tag % 2 == 1)
9712 IsStringValue = true;
9713 else
9714 llvm_unreachable("invalid tag type");
9715
9716 if (IsIntegerValue) {
9717 const MCExpr *ValueExpr;
9718 SMLoc ValueExprLoc = Parser.getTok().getLoc();
9719 if (Parser.parseExpression(ValueExpr))
9720 return true;
9721
9722 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9723 if (!CE)
9724 return Error(ValueExprLoc, "expected numeric constant");
9725 IntegerValue = CE->getValue();
9726 }
9727
9728 if (Tag == ARMBuildAttrs::compatibility) {
9729 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9730 return true;
9731 }
9732
9733 if (IsStringValue) {
9734 if (Parser.getTok().isNot(AsmToken::String))
9735 return Error(Parser.getTok().getLoc(), "bad string constant");
9736
9737 StringValue = Parser.getTok().getStringContents();
9738 Parser.Lex();
9739 }
9740
9741 if (Parser.parseToken(AsmToken::EndOfStatement,
9742 "unexpected token in '.eabi_attribute' directive"))
9743 return true;
9744
9745 if (IsIntegerValue && IsStringValue) {
9746 assert(Tag == ARMBuildAttrs::compatibility);
9747 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9748 } else if (IsIntegerValue)
9749 getTargetStreamer().emitAttribute(Tag, IntegerValue);
9750 else if (IsStringValue)
9751 getTargetStreamer().emitTextAttribute(Tag, StringValue);
9752 return false;
9753 }
9754
9755 /// parseDirectiveCPU
9756 /// ::= .cpu str
parseDirectiveCPU(SMLoc L)9757 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9758 StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9759 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9760
9761 // FIXME: This is using table-gen data, but should be moved to
9762 // ARMTargetParser once that is table-gen'd.
9763 if (!getSTI().isCPUStringValid(CPU))
9764 return Error(L, "Unknown CPU name");
9765
9766 bool WasThumb = isThumb();
9767 MCSubtargetInfo &STI = copySTI();
9768 STI.setDefaultFeatures(CPU, "");
9769 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9770 FixModeAfterArchChange(WasThumb, L);
9771
9772 return false;
9773 }
9774
9775 /// parseDirectiveFPU
9776 /// ::= .fpu str
parseDirectiveFPU(SMLoc L)9777 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9778 SMLoc FPUNameLoc = getTok().getLoc();
9779 StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9780
9781 unsigned ID = ARM::parseFPU(FPU);
9782 std::vector<StringRef> Features;
9783 if (!ARM::getFPUFeatures(ID, Features))
9784 return Error(FPUNameLoc, "Unknown FPU name");
9785
9786 MCSubtargetInfo &STI = copySTI();
9787 for (auto Feature : Features)
9788 STI.ApplyFeatureFlag(Feature);
9789 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9790
9791 getTargetStreamer().emitFPU(ID);
9792 return false;
9793 }
9794
9795 /// parseDirectiveFnStart
9796 /// ::= .fnstart
parseDirectiveFnStart(SMLoc L)9797 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9798 if (parseToken(AsmToken::EndOfStatement,
9799 "unexpected token in '.fnstart' directive"))
9800 return true;
9801
9802 if (UC.hasFnStart()) {
9803 Error(L, ".fnstart starts before the end of previous one");
9804 UC.emitFnStartLocNotes();
9805 return true;
9806 }
9807
9808 // Reset the unwind directives parser state
9809 UC.reset();
9810
9811 getTargetStreamer().emitFnStart();
9812
9813 UC.recordFnStart(L);
9814 return false;
9815 }
9816
9817 /// parseDirectiveFnEnd
9818 /// ::= .fnend
parseDirectiveFnEnd(SMLoc L)9819 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9820 if (parseToken(AsmToken::EndOfStatement,
9821 "unexpected token in '.fnend' directive"))
9822 return true;
9823 // Check the ordering of unwind directives
9824 if (!UC.hasFnStart())
9825 return Error(L, ".fnstart must precede .fnend directive");
9826
9827 // Reset the unwind directives parser state
9828 getTargetStreamer().emitFnEnd();
9829
9830 UC.reset();
9831 return false;
9832 }
9833
9834 /// parseDirectiveCantUnwind
9835 /// ::= .cantunwind
parseDirectiveCantUnwind(SMLoc L)9836 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9837 if (parseToken(AsmToken::EndOfStatement,
9838 "unexpected token in '.cantunwind' directive"))
9839 return true;
9840
9841 UC.recordCantUnwind(L);
9842 // Check the ordering of unwind directives
9843 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9844 return true;
9845
9846 if (UC.hasHandlerData()) {
9847 Error(L, ".cantunwind can't be used with .handlerdata directive");
9848 UC.emitHandlerDataLocNotes();
9849 return true;
9850 }
9851 if (UC.hasPersonality()) {
9852 Error(L, ".cantunwind can't be used with .personality directive");
9853 UC.emitPersonalityLocNotes();
9854 return true;
9855 }
9856
9857 getTargetStreamer().emitCantUnwind();
9858 return false;
9859 }
9860
9861 /// parseDirectivePersonality
9862 /// ::= .personality name
parseDirectivePersonality(SMLoc L)9863 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9864 MCAsmParser &Parser = getParser();
9865 bool HasExistingPersonality = UC.hasPersonality();
9866
9867 // Parse the name of the personality routine
9868 if (Parser.getTok().isNot(AsmToken::Identifier))
9869 return Error(L, "unexpected input in .personality directive.");
9870 StringRef Name(Parser.getTok().getIdentifier());
9871 Parser.Lex();
9872
9873 if (parseToken(AsmToken::EndOfStatement,
9874 "unexpected token in '.personality' directive"))
9875 return true;
9876
9877 UC.recordPersonality(L);
9878
9879 // Check the ordering of unwind directives
9880 if (!UC.hasFnStart())
9881 return Error(L, ".fnstart must precede .personality directive");
9882 if (UC.cantUnwind()) {
9883 Error(L, ".personality can't be used with .cantunwind directive");
9884 UC.emitCantUnwindLocNotes();
9885 return true;
9886 }
9887 if (UC.hasHandlerData()) {
9888 Error(L, ".personality must precede .handlerdata directive");
9889 UC.emitHandlerDataLocNotes();
9890 return true;
9891 }
9892 if (HasExistingPersonality) {
9893 Error(L, "multiple personality directives");
9894 UC.emitPersonalityLocNotes();
9895 return true;
9896 }
9897
9898 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9899 getTargetStreamer().emitPersonality(PR);
9900 return false;
9901 }
9902
9903 /// parseDirectiveHandlerData
9904 /// ::= .handlerdata
parseDirectiveHandlerData(SMLoc L)9905 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9906 if (parseToken(AsmToken::EndOfStatement,
9907 "unexpected token in '.handlerdata' directive"))
9908 return true;
9909
9910 UC.recordHandlerData(L);
9911 // Check the ordering of unwind directives
9912 if (!UC.hasFnStart())
9913 return Error(L, ".fnstart must precede .personality directive");
9914 if (UC.cantUnwind()) {
9915 Error(L, ".handlerdata can't be used with .cantunwind directive");
9916 UC.emitCantUnwindLocNotes();
9917 return true;
9918 }
9919
9920 getTargetStreamer().emitHandlerData();
9921 return false;
9922 }
9923
9924 /// parseDirectiveSetFP
9925 /// ::= .setfp fpreg, spreg [, offset]
parseDirectiveSetFP(SMLoc L)9926 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9927 MCAsmParser &Parser = getParser();
9928 // Check the ordering of unwind directives
9929 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9930 check(UC.hasHandlerData(), L,
9931 ".setfp must precede .handlerdata directive"))
9932 return true;
9933
9934 // Parse fpreg
9935 SMLoc FPRegLoc = Parser.getTok().getLoc();
9936 int FPReg = tryParseRegister();
9937
9938 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9939 Parser.parseToken(AsmToken::Comma, "comma expected"))
9940 return true;
9941
9942 // Parse spreg
9943 SMLoc SPRegLoc = Parser.getTok().getLoc();
9944 int SPReg = tryParseRegister();
9945 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9946 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9947 "register should be either $sp or the latest fp register"))
9948 return true;
9949
9950 // Update the frame pointer register
9951 UC.saveFPReg(FPReg);
9952
9953 // Parse offset
9954 int64_t Offset = 0;
9955 if (Parser.parseOptionalToken(AsmToken::Comma)) {
9956 if (Parser.getTok().isNot(AsmToken::Hash) &&
9957 Parser.getTok().isNot(AsmToken::Dollar))
9958 return Error(Parser.getTok().getLoc(), "'#' expected");
9959 Parser.Lex(); // skip hash token.
9960
9961 const MCExpr *OffsetExpr;
9962 SMLoc ExLoc = Parser.getTok().getLoc();
9963 SMLoc EndLoc;
9964 if (getParser().parseExpression(OffsetExpr, EndLoc))
9965 return Error(ExLoc, "malformed setfp offset");
9966 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9967 if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9968 return true;
9969 Offset = CE->getValue();
9970 }
9971
9972 if (Parser.parseToken(AsmToken::EndOfStatement))
9973 return true;
9974
9975 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9976 static_cast<unsigned>(SPReg), Offset);
9977 return false;
9978 }
9979
9980 /// parseDirective
9981 /// ::= .pad offset
parseDirectivePad(SMLoc L)9982 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9983 MCAsmParser &Parser = getParser();
9984 // Check the ordering of unwind directives
9985 if (!UC.hasFnStart())
9986 return Error(L, ".fnstart must precede .pad directive");
9987 if (UC.hasHandlerData())
9988 return Error(L, ".pad must precede .handlerdata directive");
9989
9990 // Parse the offset
9991 if (Parser.getTok().isNot(AsmToken::Hash) &&
9992 Parser.getTok().isNot(AsmToken::Dollar))
9993 return Error(Parser.getTok().getLoc(), "'#' expected");
9994 Parser.Lex(); // skip hash token.
9995
9996 const MCExpr *OffsetExpr;
9997 SMLoc ExLoc = Parser.getTok().getLoc();
9998 SMLoc EndLoc;
9999 if (getParser().parseExpression(OffsetExpr, EndLoc))
10000 return Error(ExLoc, "malformed pad offset");
10001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10002 if (!CE)
10003 return Error(ExLoc, "pad offset must be an immediate");
10004
10005 if (parseToken(AsmToken::EndOfStatement,
10006 "unexpected token in '.pad' directive"))
10007 return true;
10008
10009 getTargetStreamer().emitPad(CE->getValue());
10010 return false;
10011 }
10012
10013 /// parseDirectiveRegSave
10014 /// ::= .save { registers }
10015 /// ::= .vsave { registers }
parseDirectiveRegSave(SMLoc L,bool IsVector)10016 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
10017 // Check the ordering of unwind directives
10018 if (!UC.hasFnStart())
10019 return Error(L, ".fnstart must precede .save or .vsave directives");
10020 if (UC.hasHandlerData())
10021 return Error(L, ".save or .vsave must precede .handlerdata directive");
10022
10023 // RAII object to make sure parsed operands are deleted.
10024 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
10025
10026 // Parse the register list
10027 if (parseRegisterList(Operands) ||
10028 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10029 return true;
10030 ARMOperand &Op = (ARMOperand &)*Operands[0];
10031 if (!IsVector && !Op.isRegList())
10032 return Error(L, ".save expects GPR registers");
10033 if (IsVector && !Op.isDPRRegList())
10034 return Error(L, ".vsave expects DPR registers");
10035
10036 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
10037 return false;
10038 }
10039
10040 /// parseDirectiveInst
10041 /// ::= .inst opcode [, ...]
10042 /// ::= .inst.n opcode [, ...]
10043 /// ::= .inst.w opcode [, ...]
parseDirectiveInst(SMLoc Loc,char Suffix)10044 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10045 int Width = 4;
10046
10047 if (isThumb()) {
10048 switch (Suffix) {
10049 case 'n':
10050 Width = 2;
10051 break;
10052 case 'w':
10053 break;
10054 default:
10055 Width = 0;
10056 break;
10057 }
10058 } else {
10059 if (Suffix)
10060 return Error(Loc, "width suffixes are invalid in ARM mode");
10061 }
10062
10063 auto parseOne = [&]() -> bool {
10064 const MCExpr *Expr;
10065 if (getParser().parseExpression(Expr))
10066 return true;
10067 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10068 if (!Value) {
10069 return Error(Loc, "expected constant expression");
10070 }
10071
10072 char CurSuffix = Suffix;
10073 switch (Width) {
10074 case 2:
10075 if (Value->getValue() > 0xffff)
10076 return Error(Loc, "inst.n operand is too big, use inst.w instead");
10077 break;
10078 case 4:
10079 if (Value->getValue() > 0xffffffff)
10080 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10081 " operand is too big");
10082 break;
10083 case 0:
10084 // Thumb mode, no width indicated. Guess from the opcode, if possible.
10085 if (Value->getValue() < 0xe800)
10086 CurSuffix = 'n';
10087 else if (Value->getValue() >= 0xe8000000)
10088 CurSuffix = 'w';
10089 else
10090 return Error(Loc, "cannot determine Thumb instruction size, "
10091 "use inst.n/inst.w instead");
10092 break;
10093 default:
10094 llvm_unreachable("only supported widths are 2 and 4");
10095 }
10096
10097 getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
10098 return false;
10099 };
10100
10101 if (parseOptionalToken(AsmToken::EndOfStatement))
10102 return Error(Loc, "expected expression following directive");
10103 if (parseMany(parseOne))
10104 return true;
10105 return false;
10106 }
10107
10108 /// parseDirectiveLtorg
10109 /// ::= .ltorg | .pool
parseDirectiveLtorg(SMLoc L)10110 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10111 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10112 return true;
10113 getTargetStreamer().emitCurrentConstantPool();
10114 return false;
10115 }
10116
parseDirectiveEven(SMLoc L)10117 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10118 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10119
10120 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10121 return true;
10122
10123 if (!Section) {
10124 getStreamer().InitSections(false);
10125 Section = getStreamer().getCurrentSectionOnly();
10126 }
10127
10128 assert(Section && "must have section to emit alignment");
10129 if (Section->UseCodeAlign())
10130 getStreamer().EmitCodeAlignment(2);
10131 else
10132 getStreamer().EmitValueToAlignment(2);
10133
10134 return false;
10135 }
10136
10137 /// parseDirectivePersonalityIndex
10138 /// ::= .personalityindex index
parseDirectivePersonalityIndex(SMLoc L)10139 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10140 MCAsmParser &Parser = getParser();
10141 bool HasExistingPersonality = UC.hasPersonality();
10142
10143 const MCExpr *IndexExpression;
10144 SMLoc IndexLoc = Parser.getTok().getLoc();
10145 if (Parser.parseExpression(IndexExpression) ||
10146 parseToken(AsmToken::EndOfStatement,
10147 "unexpected token in '.personalityindex' directive")) {
10148 return true;
10149 }
10150
10151 UC.recordPersonalityIndex(L);
10152
10153 if (!UC.hasFnStart()) {
10154 return Error(L, ".fnstart must precede .personalityindex directive");
10155 }
10156 if (UC.cantUnwind()) {
10157 Error(L, ".personalityindex cannot be used with .cantunwind");
10158 UC.emitCantUnwindLocNotes();
10159 return true;
10160 }
10161 if (UC.hasHandlerData()) {
10162 Error(L, ".personalityindex must precede .handlerdata directive");
10163 UC.emitHandlerDataLocNotes();
10164 return true;
10165 }
10166 if (HasExistingPersonality) {
10167 Error(L, "multiple personality directives");
10168 UC.emitPersonalityLocNotes();
10169 return true;
10170 }
10171
10172 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10173 if (!CE)
10174 return Error(IndexLoc, "index must be a constant number");
10175 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10176 return Error(IndexLoc,
10177 "personality routine index should be in range [0-3]");
10178
10179 getTargetStreamer().emitPersonalityIndex(CE->getValue());
10180 return false;
10181 }
10182
10183 /// parseDirectiveUnwindRaw
10184 /// ::= .unwind_raw offset, opcode [, opcode...]
parseDirectiveUnwindRaw(SMLoc L)10185 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10186 MCAsmParser &Parser = getParser();
10187 int64_t StackOffset;
10188 const MCExpr *OffsetExpr;
10189 SMLoc OffsetLoc = getLexer().getLoc();
10190
10191 if (!UC.hasFnStart())
10192 return Error(L, ".fnstart must precede .unwind_raw directives");
10193 if (getParser().parseExpression(OffsetExpr))
10194 return Error(OffsetLoc, "expected expression");
10195
10196 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10197 if (!CE)
10198 return Error(OffsetLoc, "offset must be a constant");
10199
10200 StackOffset = CE->getValue();
10201
10202 if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10203 return true;
10204
10205 SmallVector<uint8_t, 16> Opcodes;
10206
10207 auto parseOne = [&]() -> bool {
10208 const MCExpr *OE;
10209 SMLoc OpcodeLoc = getLexer().getLoc();
10210 if (check(getLexer().is(AsmToken::EndOfStatement) ||
10211 Parser.parseExpression(OE),
10212 OpcodeLoc, "expected opcode expression"))
10213 return true;
10214 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10215 if (!OC)
10216 return Error(OpcodeLoc, "opcode value must be a constant");
10217 const int64_t Opcode = OC->getValue();
10218 if (Opcode & ~0xff)
10219 return Error(OpcodeLoc, "invalid opcode");
10220 Opcodes.push_back(uint8_t(Opcode));
10221 return false;
10222 };
10223
10224 // Must have at least 1 element
10225 SMLoc OpcodeLoc = getLexer().getLoc();
10226 if (parseOptionalToken(AsmToken::EndOfStatement))
10227 return Error(OpcodeLoc, "expected opcode expression");
10228 if (parseMany(parseOne))
10229 return true;
10230
10231 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10232 return false;
10233 }
10234
10235 /// parseDirectiveTLSDescSeq
10236 /// ::= .tlsdescseq tls-variable
parseDirectiveTLSDescSeq(SMLoc L)10237 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10238 MCAsmParser &Parser = getParser();
10239
10240 if (getLexer().isNot(AsmToken::Identifier))
10241 return TokError("expected variable after '.tlsdescseq' directive");
10242
10243 const MCSymbolRefExpr *SRE =
10244 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
10245 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10246 Lex();
10247
10248 if (parseToken(AsmToken::EndOfStatement,
10249 "unexpected token in '.tlsdescseq' directive"))
10250 return true;
10251
10252 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10253 return false;
10254 }
10255
10256 /// parseDirectiveMovSP
10257 /// ::= .movsp reg [, #offset]
parseDirectiveMovSP(SMLoc L)10258 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10259 MCAsmParser &Parser = getParser();
10260 if (!UC.hasFnStart())
10261 return Error(L, ".fnstart must precede .movsp directives");
10262 if (UC.getFPReg() != ARM::SP)
10263 return Error(L, "unexpected .movsp directive");
10264
10265 SMLoc SPRegLoc = Parser.getTok().getLoc();
10266 int SPReg = tryParseRegister();
10267 if (SPReg == -1)
10268 return Error(SPRegLoc, "register expected");
10269 if (SPReg == ARM::SP || SPReg == ARM::PC)
10270 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10271
10272 int64_t Offset = 0;
10273 if (Parser.parseOptionalToken(AsmToken::Comma)) {
10274 if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10275 return true;
10276
10277 const MCExpr *OffsetExpr;
10278 SMLoc OffsetLoc = Parser.getTok().getLoc();
10279
10280 if (Parser.parseExpression(OffsetExpr))
10281 return Error(OffsetLoc, "malformed offset expression");
10282
10283 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10284 if (!CE)
10285 return Error(OffsetLoc, "offset must be an immediate constant");
10286
10287 Offset = CE->getValue();
10288 }
10289
10290 if (parseToken(AsmToken::EndOfStatement,
10291 "unexpected token in '.movsp' directive"))
10292 return true;
10293
10294 getTargetStreamer().emitMovSP(SPReg, Offset);
10295 UC.saveFPReg(SPReg);
10296
10297 return false;
10298 }
10299
10300 /// parseDirectiveObjectArch
10301 /// ::= .object_arch name
parseDirectiveObjectArch(SMLoc L)10302 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10303 MCAsmParser &Parser = getParser();
10304 if (getLexer().isNot(AsmToken::Identifier))
10305 return Error(getLexer().getLoc(), "unexpected token");
10306
10307 StringRef Arch = Parser.getTok().getString();
10308 SMLoc ArchLoc = Parser.getTok().getLoc();
10309 Lex();
10310
10311 ARM::ArchKind ID = ARM::parseArch(Arch);
10312
10313 if (ID == ARM::ArchKind::INVALID)
10314 return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10315 if (parseToken(AsmToken::EndOfStatement))
10316 return true;
10317
10318 getTargetStreamer().emitObjectArch(ID);
10319 return false;
10320 }
10321
10322 /// parseDirectiveAlign
10323 /// ::= .align
parseDirectiveAlign(SMLoc L)10324 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10325 // NOTE: if this is not the end of the statement, fall back to the target
10326 // agnostic handling for this directive which will correctly handle this.
10327 if (parseOptionalToken(AsmToken::EndOfStatement)) {
10328 // '.align' is target specifically handled to mean 2**2 byte alignment.
10329 const MCSection *Section = getStreamer().getCurrentSectionOnly();
10330 assert(Section && "must have section to emit alignment");
10331 if (Section->UseCodeAlign())
10332 getStreamer().EmitCodeAlignment(4, 0);
10333 else
10334 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10335 return false;
10336 }
10337 return true;
10338 }
10339
10340 /// parseDirectiveThumbSet
10341 /// ::= .thumb_set name, value
parseDirectiveThumbSet(SMLoc L)10342 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10343 MCAsmParser &Parser = getParser();
10344
10345 StringRef Name;
10346 if (check(Parser.parseIdentifier(Name),
10347 "expected identifier after '.thumb_set'") ||
10348 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10349 return true;
10350
10351 MCSymbol *Sym;
10352 const MCExpr *Value;
10353 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10354 Parser, Sym, Value))
10355 return true;
10356
10357 getTargetStreamer().emitThumbSet(Sym, Value);
10358 return false;
10359 }
10360
10361 /// Force static initialization.
LLVMInitializeARMAsmParser()10362 extern "C" void LLVMInitializeARMAsmParser() {
10363 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
10364 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
10365 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
10366 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
10367 }
10368
10369 #define GET_REGISTER_MATCHER
10370 #define GET_SUBTARGET_FEATURE_NAME
10371 #define GET_MATCHER_IMPLEMENTATION
10372 #define GET_MNEMONIC_SPELL_CHECKER
10373 #include "ARMGenAsmMatcher.inc"
10374
10375 // Some diagnostics need to vary with subtarget features, so they are handled
10376 // here. For example, the DPR class has either 16 or 32 registers, depending
10377 // on the FPU available.
10378 const char *
getCustomOperandDiag(ARMMatchResultTy MatchError)10379 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10380 switch (MatchError) {
10381 // rGPR contains sp starting with ARMv8.
10382 case Match_rGPR:
10383 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10384 : "operand must be a register in range [r0, r12] or r14";
10385 // DPR contains 16 registers for some FPUs, and 32 for others.
10386 case Match_DPR:
10387 return hasD16() ? "operand must be a register in range [d0, d15]"
10388 : "operand must be a register in range [d0, d31]";
10389 case Match_DPR_RegList:
10390 return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10391 : "operand must be a list of registers in range [d0, d31]";
10392
10393 // For all other diags, use the static string from tablegen.
10394 default:
10395 return getMatchKindDiag(MatchError);
10396 }
10397 }
10398
10399 // Process the list of near-misses, throwing away ones we don't want to report
10400 // to the user, and converting the rest to a source location and string that
10401 // should be reported.
10402 void
FilterNearMisses(SmallVectorImpl<NearMissInfo> & NearMissesIn,SmallVectorImpl<NearMissMessage> & NearMissesOut,SMLoc IDLoc,OperandVector & Operands)10403 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10404 SmallVectorImpl<NearMissMessage> &NearMissesOut,
10405 SMLoc IDLoc, OperandVector &Operands) {
10406 // TODO: If operand didn't match, sub in a dummy one and run target
10407 // predicate, so that we can avoid reporting near-misses that are invalid?
10408 // TODO: Many operand types dont have SuperClasses set, so we report
10409 // redundant ones.
10410 // TODO: Some operands are superclasses of registers (e.g.
10411 // MCK_RegShiftedImm), we don't have any way to represent that currently.
10412 // TODO: This is not all ARM-specific, can some of it be factored out?
10413
10414 // Record some information about near-misses that we have already seen, so
10415 // that we can avoid reporting redundant ones. For example, if there are
10416 // variants of an instruction that take 8- and 16-bit immediates, we want
10417 // to only report the widest one.
10418 std::multimap<unsigned, unsigned> OperandMissesSeen;
10419 SmallSet<uint64_t, 4> FeatureMissesSeen;
10420 bool ReportedTooFewOperands = false;
10421
10422 // Process the near-misses in reverse order, so that we see more general ones
10423 // first, and so can avoid emitting more specific ones.
10424 for (NearMissInfo &I : reverse(NearMissesIn)) {
10425 switch (I.getKind()) {
10426 case NearMissInfo::NearMissOperand: {
10427 SMLoc OperandLoc =
10428 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10429 const char *OperandDiag =
10430 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10431
10432 // If we have already emitted a message for a superclass, don't also report
10433 // the sub-class. We consider all operand classes that we don't have a
10434 // specialised diagnostic for to be equal for the propose of this check,
10435 // so that we don't report the generic error multiple times on the same
10436 // operand.
10437 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10438 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10439 if (std::any_of(PrevReports.first, PrevReports.second,
10440 [DupCheckMatchClass](
10441 const std::pair<unsigned, unsigned> Pair) {
10442 if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10443 return Pair.second == DupCheckMatchClass;
10444 else
10445 return isSubclass((MatchClassKind)DupCheckMatchClass,
10446 (MatchClassKind)Pair.second);
10447 }))
10448 break;
10449 OperandMissesSeen.insert(
10450 std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10451
10452 NearMissMessage Message;
10453 Message.Loc = OperandLoc;
10454 if (OperandDiag) {
10455 Message.Message = OperandDiag;
10456 } else if (I.getOperandClass() == InvalidMatchClass) {
10457 Message.Message = "too many operands for instruction";
10458 } else {
10459 Message.Message = "invalid operand for instruction";
10460 LLVM_DEBUG(
10461 dbgs() << "Missing diagnostic string for operand class "
10462 << getMatchClassName((MatchClassKind)I.getOperandClass())
10463 << I.getOperandClass() << ", error " << I.getOperandError()
10464 << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10465 }
10466 NearMissesOut.emplace_back(Message);
10467 break;
10468 }
10469 case NearMissInfo::NearMissFeature: {
10470 uint64_t MissingFeatures = I.getFeatures();
10471 // Don't report the same set of features twice.
10472 if (FeatureMissesSeen.count(MissingFeatures))
10473 break;
10474 FeatureMissesSeen.insert(MissingFeatures);
10475
10476 // Special case: don't report a feature set which includes arm-mode for
10477 // targets that don't have ARM mode.
10478 if ((MissingFeatures & Feature_IsARM) && !hasARM())
10479 break;
10480 // Don't report any near-misses that both require switching instruction
10481 // set, and adding other subtarget features.
10482 if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10483 (MissingFeatures & ~Feature_IsARM))
10484 break;
10485 if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10486 (MissingFeatures & ~Feature_IsThumb))
10487 break;
10488 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10489 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10490 break;
10491 if (isMClass() && (MissingFeatures & Feature_HasNEON))
10492 break;
10493
10494 NearMissMessage Message;
10495 Message.Loc = IDLoc;
10496 raw_svector_ostream OS(Message.Message);
10497
10498 OS << "instruction requires:";
10499 uint64_t Mask = 1;
10500 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10501 ++MaskPos) {
10502 if (MissingFeatures & Mask) {
10503 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10504 }
10505 Mask <<= 1;
10506 }
10507 NearMissesOut.emplace_back(Message);
10508
10509 break;
10510 }
10511 case NearMissInfo::NearMissPredicate: {
10512 NearMissMessage Message;
10513 Message.Loc = IDLoc;
10514 switch (I.getPredicateError()) {
10515 case Match_RequiresNotITBlock:
10516 Message.Message = "flag setting instruction only valid outside IT block";
10517 break;
10518 case Match_RequiresITBlock:
10519 Message.Message = "instruction only valid inside IT block";
10520 break;
10521 case Match_RequiresV6:
10522 Message.Message = "instruction variant requires ARMv6 or later";
10523 break;
10524 case Match_RequiresThumb2:
10525 Message.Message = "instruction variant requires Thumb2";
10526 break;
10527 case Match_RequiresV8:
10528 Message.Message = "instruction variant requires ARMv8 or later";
10529 break;
10530 case Match_RequiresFlagSetting:
10531 Message.Message = "no flag-preserving variant of this instruction available";
10532 break;
10533 case Match_InvalidOperand:
10534 Message.Message = "invalid operand for instruction";
10535 break;
10536 default:
10537 llvm_unreachable("Unhandled target predicate error");
10538 break;
10539 }
10540 NearMissesOut.emplace_back(Message);
10541 break;
10542 }
10543 case NearMissInfo::NearMissTooFewOperands: {
10544 if (!ReportedTooFewOperands) {
10545 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10546 NearMissesOut.emplace_back(NearMissMessage{
10547 EndLoc, StringRef("too few operands for instruction")});
10548 ReportedTooFewOperands = true;
10549 }
10550 break;
10551 }
10552 case NearMissInfo::NoNearMiss:
10553 // This should never leave the matcher.
10554 llvm_unreachable("not a near-miss");
10555 break;
10556 }
10557 }
10558 }
10559
ReportNearMisses(SmallVectorImpl<NearMissInfo> & NearMisses,SMLoc IDLoc,OperandVector & Operands)10560 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10561 SMLoc IDLoc, OperandVector &Operands) {
10562 SmallVector<NearMissMessage, 4> Messages;
10563 FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10564
10565 if (Messages.size() == 0) {
10566 // No near-misses were found, so the best we can do is "invalid
10567 // instruction".
10568 Error(IDLoc, "invalid instruction");
10569 } else if (Messages.size() == 1) {
10570 // One near miss was found, report it as the sole error.
10571 Error(Messages[0].Loc, Messages[0].Message);
10572 } else {
10573 // More than one near miss, so report a generic "invalid instruction"
10574 // error, followed by notes for each of the near-misses.
10575 Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10576 for (auto &M : Messages) {
10577 Note(M.Loc, M.Message);
10578 }
10579 }
10580 }
10581
10582 // FIXME: This structure should be moved inside ARMTargetParser
10583 // when we start to table-generate them, and we can use the ARM
10584 // flags below, that were generated by table-gen.
10585 static const struct {
10586 const unsigned Kind;
10587 const uint64_t ArchCheck;
10588 const FeatureBitset Features;
10589 } Extensions[] = {
10590 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10591 { ARM::AEK_CRYPTO, Feature_HasV8,
10592 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10593 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10594 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10595 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10596 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10597 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10598 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10599 // FIXME: Only available in A-class, isel not predicated
10600 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10601 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10602 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10603 // FIXME: Unsupported extensions.
10604 { ARM::AEK_OS, Feature_None, {} },
10605 { ARM::AEK_IWMMXT, Feature_None, {} },
10606 { ARM::AEK_IWMMXT2, Feature_None, {} },
10607 { ARM::AEK_MAVERICK, Feature_None, {} },
10608 { ARM::AEK_XSCALE, Feature_None, {} },
10609 };
10610
10611 /// parseDirectiveArchExtension
10612 /// ::= .arch_extension [no]feature
parseDirectiveArchExtension(SMLoc L)10613 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10614 MCAsmParser &Parser = getParser();
10615
10616 if (getLexer().isNot(AsmToken::Identifier))
10617 return Error(getLexer().getLoc(), "expected architecture extension name");
10618
10619 StringRef Name = Parser.getTok().getString();
10620 SMLoc ExtLoc = Parser.getTok().getLoc();
10621 Lex();
10622
10623 if (parseToken(AsmToken::EndOfStatement,
10624 "unexpected token in '.arch_extension' directive"))
10625 return true;
10626
10627 bool EnableFeature = true;
10628 if (Name.startswith_lower("no")) {
10629 EnableFeature = false;
10630 Name = Name.substr(2);
10631 }
10632 unsigned FeatureKind = ARM::parseArchExt(Name);
10633 if (FeatureKind == ARM::AEK_INVALID)
10634 return Error(ExtLoc, "unknown architectural extension: " + Name);
10635
10636 for (const auto &Extension : Extensions) {
10637 if (Extension.Kind != FeatureKind)
10638 continue;
10639
10640 if (Extension.Features.none())
10641 return Error(ExtLoc, "unsupported architectural extension: " + Name);
10642
10643 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10644 return Error(ExtLoc, "architectural extension '" + Name +
10645 "' is not "
10646 "allowed for the current base architecture");
10647
10648 MCSubtargetInfo &STI = copySTI();
10649 FeatureBitset ToggleFeatures = EnableFeature
10650 ? (~STI.getFeatureBits() & Extension.Features)
10651 : ( STI.getFeatureBits() & Extension.Features);
10652
10653 uint64_t Features =
10654 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10655 setAvailableFeatures(Features);
10656 return false;
10657 }
10658
10659 return Error(ExtLoc, "unknown architectural extension: " + Name);
10660 }
10661
10662 // Define this matcher function after the auto-generated include so we
10663 // have the match class enum definitions.
validateTargetOperandClass(MCParsedAsmOperand & AsmOp,unsigned Kind)10664 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10665 unsigned Kind) {
10666 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10667 // If the kind is a token for a literal immediate, check if our asm
10668 // operand matches. This is for InstAliases which have a fixed-value
10669 // immediate in the syntax.
10670 switch (Kind) {
10671 default: break;
10672 case MCK__35_0:
10673 if (Op.isImm())
10674 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10675 if (CE->getValue() == 0)
10676 return Match_Success;
10677 break;
10678 case MCK_ModImm:
10679 if (Op.isImm()) {
10680 const MCExpr *SOExpr = Op.getImm();
10681 int64_t Value;
10682 if (!SOExpr->evaluateAsAbsolute(Value))
10683 return Match_Success;
10684 assert((Value >= std::numeric_limits<int32_t>::min() &&
10685 Value <= std::numeric_limits<uint32_t>::max()) &&
10686 "expression value must be representable in 32 bits");
10687 }
10688 break;
10689 case MCK_rGPR:
10690 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10691 return Match_Success;
10692 return Match_rGPR;
10693 case MCK_GPRPair:
10694 if (Op.isReg() &&
10695 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10696 return Match_Success;
10697 break;
10698 }
10699 return Match_InvalidOperand;
10700 }
10701