1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information needed to emit code for R600 and SI GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUMacroFusion.h"
20 #include "AMDGPUTargetObjectFile.h"
21 #include "AMDGPUTargetTransformInfo.h"
22 #include "GCNIterativeScheduler.h"
23 #include "GCNSchedStrategy.h"
24 #include "R600MachineScheduler.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIMachineScheduler.h"
27 #include "TargetInfo/AMDGPUTargetInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/Localizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/LegacyPassManager.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Passes/PassBuilder.h"
42 #include "llvm/Support/TargetRegistry.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/IPO/AlwaysInliner.h"
45 #include "llvm/Transforms/IPO/GlobalDCE.h"
46 #include "llvm/Transforms/IPO/Internalize.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/GVN.h"
50 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
51 #include "llvm/Transforms/Utils.h"
52 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
53 #include "llvm/Transforms/Vectorize.h"
54
55 using namespace llvm;
56
57 namespace {
58 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
59 public:
SGPRRegisterRegAlloc(const char * N,const char * D,FunctionPassCtor C)60 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
61 : RegisterRegAllocBase(N, D, C) {}
62 };
63
64 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
65 public:
VGPRRegisterRegAlloc(const char * N,const char * D,FunctionPassCtor C)66 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
67 : RegisterRegAllocBase(N, D, C) {}
68 };
69
onlyAllocateSGPRs(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC)70 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
71 const TargetRegisterClass &RC) {
72 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
73 }
74
onlyAllocateVGPRs(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC)75 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
76 const TargetRegisterClass &RC) {
77 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
78 }
79
80
81 /// -{sgpr|vgpr}-regalloc=... command line option.
useDefaultRegisterAllocator()82 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
83
84 /// A dummy default pass factory indicates whether the register allocator is
85 /// overridden on the command line.
86 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
87 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
88
89 static SGPRRegisterRegAlloc
90 defaultSGPRRegAlloc("default",
91 "pick SGPR register allocator based on -O option",
92 useDefaultRegisterAllocator);
93
94 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
95 RegisterPassParser<SGPRRegisterRegAlloc>>
96 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
97 cl::desc("Register allocator to use for SGPRs"));
98
99 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
100 RegisterPassParser<VGPRRegisterRegAlloc>>
101 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
102 cl::desc("Register allocator to use for VGPRs"));
103
104
initializeDefaultSGPRRegisterAllocatorOnce()105 static void initializeDefaultSGPRRegisterAllocatorOnce() {
106 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
107
108 if (!Ctor) {
109 Ctor = SGPRRegAlloc;
110 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
111 }
112 }
113
initializeDefaultVGPRRegisterAllocatorOnce()114 static void initializeDefaultVGPRRegisterAllocatorOnce() {
115 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
116
117 if (!Ctor) {
118 Ctor = VGPRRegAlloc;
119 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
120 }
121 }
122
createBasicSGPRRegisterAllocator()123 static FunctionPass *createBasicSGPRRegisterAllocator() {
124 return createBasicRegisterAllocator(onlyAllocateSGPRs);
125 }
126
createGreedySGPRRegisterAllocator()127 static FunctionPass *createGreedySGPRRegisterAllocator() {
128 return createGreedyRegisterAllocator(onlyAllocateSGPRs);
129 }
130
createFastSGPRRegisterAllocator()131 static FunctionPass *createFastSGPRRegisterAllocator() {
132 return createFastRegisterAllocator(onlyAllocateSGPRs, false);
133 }
134
createBasicVGPRRegisterAllocator()135 static FunctionPass *createBasicVGPRRegisterAllocator() {
136 return createBasicRegisterAllocator(onlyAllocateVGPRs);
137 }
138
createGreedyVGPRRegisterAllocator()139 static FunctionPass *createGreedyVGPRRegisterAllocator() {
140 return createGreedyRegisterAllocator(onlyAllocateVGPRs);
141 }
142
createFastVGPRRegisterAllocator()143 static FunctionPass *createFastVGPRRegisterAllocator() {
144 return createFastRegisterAllocator(onlyAllocateVGPRs, true);
145 }
146
147 static SGPRRegisterRegAlloc basicRegAllocSGPR(
148 "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
149 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
150 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
151
152 static SGPRRegisterRegAlloc fastRegAllocSGPR(
153 "fast", "fast register allocator", createFastSGPRRegisterAllocator);
154
155
156 static VGPRRegisterRegAlloc basicRegAllocVGPR(
157 "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
158 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
159 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
160
161 static VGPRRegisterRegAlloc fastRegAllocVGPR(
162 "fast", "fast register allocator", createFastVGPRRegisterAllocator);
163 }
164
165
166 static cl::opt<bool> EnableR600StructurizeCFG(
167 "r600-ir-structurize",
168 cl::desc("Use StructurizeCFG IR pass"),
169 cl::init(true));
170
171 static cl::opt<bool> EnableSROA(
172 "amdgpu-sroa",
173 cl::desc("Run SROA after promote alloca pass"),
174 cl::ReallyHidden,
175 cl::init(true));
176
177 static cl::opt<bool>
178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
179 cl::desc("Run early if-conversion"),
180 cl::init(false));
181
182 static cl::opt<bool>
183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
184 cl::desc("Run pre-RA exec mask optimizations"),
185 cl::init(true));
186
187 static cl::opt<bool> EnableR600IfConvert(
188 "r600-if-convert",
189 cl::desc("Use if conversion pass"),
190 cl::ReallyHidden,
191 cl::init(true));
192
193 // Option to disable vectorizer for tests.
194 static cl::opt<bool> EnableLoadStoreVectorizer(
195 "amdgpu-load-store-vectorizer",
196 cl::desc("Enable load store vectorizer"),
197 cl::init(true),
198 cl::Hidden);
199
200 // Option to control global loads scalarization
201 static cl::opt<bool> ScalarizeGlobal(
202 "amdgpu-scalarize-global-loads",
203 cl::desc("Enable global load scalarization"),
204 cl::init(true),
205 cl::Hidden);
206
207 // Option to run internalize pass.
208 static cl::opt<bool> InternalizeSymbols(
209 "amdgpu-internalize-symbols",
210 cl::desc("Enable elimination of non-kernel functions and unused globals"),
211 cl::init(false),
212 cl::Hidden);
213
214 // Option to inline all early.
215 static cl::opt<bool> EarlyInlineAll(
216 "amdgpu-early-inline-all",
217 cl::desc("Inline all functions early"),
218 cl::init(false),
219 cl::Hidden);
220
221 static cl::opt<bool> EnableSDWAPeephole(
222 "amdgpu-sdwa-peephole",
223 cl::desc("Enable SDWA peepholer"),
224 cl::init(true));
225
226 static cl::opt<bool> EnableDPPCombine(
227 "amdgpu-dpp-combine",
228 cl::desc("Enable DPP combiner"),
229 cl::init(true));
230
231 // Enable address space based alias analysis
232 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
233 cl::desc("Enable AMDGPU Alias Analysis"),
234 cl::init(true));
235
236 // Option to run late CFG structurizer
237 static cl::opt<bool, true> LateCFGStructurize(
238 "amdgpu-late-structurize",
239 cl::desc("Enable late CFG structurization"),
240 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
241 cl::Hidden);
242
243 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
244 "amdgpu-function-calls",
245 cl::desc("Enable AMDGPU function call support"),
246 cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
247 cl::init(true),
248 cl::Hidden);
249
250 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
251 "amdgpu-fixed-function-abi",
252 cl::desc("Enable all implicit function arguments"),
253 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
254 cl::init(false),
255 cl::Hidden);
256
257 // Enable lib calls simplifications
258 static cl::opt<bool> EnableLibCallSimplify(
259 "amdgpu-simplify-libcall",
260 cl::desc("Enable amdgpu library simplifications"),
261 cl::init(true),
262 cl::Hidden);
263
264 static cl::opt<bool> EnableLowerKernelArguments(
265 "amdgpu-ir-lower-kernel-arguments",
266 cl::desc("Lower kernel argument loads in IR pass"),
267 cl::init(true),
268 cl::Hidden);
269
270 static cl::opt<bool> EnableRegReassign(
271 "amdgpu-reassign-regs",
272 cl::desc("Enable register reassign optimizations on gfx10+"),
273 cl::init(true),
274 cl::Hidden);
275
276 static cl::opt<bool> OptVGPRLiveRange(
277 "amdgpu-opt-vgpr-liverange",
278 cl::desc("Enable VGPR liverange optimizations for if-else structure"),
279 cl::init(true), cl::Hidden);
280
281 // Enable atomic optimization
282 static cl::opt<bool> EnableAtomicOptimizations(
283 "amdgpu-atomic-optimizations",
284 cl::desc("Enable atomic optimizations"),
285 cl::init(false),
286 cl::Hidden);
287
288 // Enable Mode register optimization
289 static cl::opt<bool> EnableSIModeRegisterPass(
290 "amdgpu-mode-register",
291 cl::desc("Enable mode register pass"),
292 cl::init(true),
293 cl::Hidden);
294
295 // Option is used in lit tests to prevent deadcoding of patterns inspected.
296 static cl::opt<bool>
297 EnableDCEInRA("amdgpu-dce-in-ra",
298 cl::init(true), cl::Hidden,
299 cl::desc("Enable machine DCE inside regalloc"));
300
301 static cl::opt<bool> EnableScalarIRPasses(
302 "amdgpu-scalar-ir-passes",
303 cl::desc("Enable scalar IR passes"),
304 cl::init(true),
305 cl::Hidden);
306
307 static cl::opt<bool> EnableStructurizerWorkarounds(
308 "amdgpu-enable-structurizer-workarounds",
309 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
310 cl::Hidden);
311
312 static cl::opt<bool> EnableLDSReplaceWithPointer(
313 "amdgpu-enable-lds-replace-with-pointer",
314 cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
315 cl::Hidden);
316
317 static cl::opt<bool, true> EnableLowerModuleLDS(
318 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
319 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
320 cl::Hidden);
321
322 static cl::opt<bool> EnablePreRAOptimizations(
323 "amdgpu-enable-pre-ra-optimizations",
324 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
325 cl::Hidden);
326
LLVMInitializeAMDGPUTarget()327 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
328 // Register the target
329 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
330 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
331
332 PassRegistry *PR = PassRegistry::getPassRegistry();
333 initializeR600ClauseMergePassPass(*PR);
334 initializeR600ControlFlowFinalizerPass(*PR);
335 initializeR600PacketizerPass(*PR);
336 initializeR600ExpandSpecialInstrsPassPass(*PR);
337 initializeR600VectorRegMergerPass(*PR);
338 initializeGlobalISel(*PR);
339 initializeAMDGPUDAGToDAGISelPass(*PR);
340 initializeGCNDPPCombinePass(*PR);
341 initializeSILowerI1CopiesPass(*PR);
342 initializeSILowerSGPRSpillsPass(*PR);
343 initializeSIFixSGPRCopiesPass(*PR);
344 initializeSIFixVGPRCopiesPass(*PR);
345 initializeSIFoldOperandsPass(*PR);
346 initializeSIPeepholeSDWAPass(*PR);
347 initializeSIShrinkInstructionsPass(*PR);
348 initializeSIOptimizeExecMaskingPreRAPass(*PR);
349 initializeSIOptimizeVGPRLiveRangePass(*PR);
350 initializeSILoadStoreOptimizerPass(*PR);
351 initializeAMDGPUFixFunctionBitcastsPass(*PR);
352 initializeAMDGPUAlwaysInlinePass(*PR);
353 initializeAMDGPUAttributorPass(*PR);
354 initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
355 initializeAMDGPUAnnotateUniformValuesPass(*PR);
356 initializeAMDGPUArgumentUsageInfoPass(*PR);
357 initializeAMDGPUAtomicOptimizerPass(*PR);
358 initializeAMDGPULowerKernelArgumentsPass(*PR);
359 initializeAMDGPULowerKernelAttributesPass(*PR);
360 initializeAMDGPULowerIntrinsicsPass(*PR);
361 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
362 initializeAMDGPUPostLegalizerCombinerPass(*PR);
363 initializeAMDGPUPreLegalizerCombinerPass(*PR);
364 initializeAMDGPURegBankCombinerPass(*PR);
365 initializeAMDGPUPromoteAllocaPass(*PR);
366 initializeAMDGPUPromoteAllocaToVectorPass(*PR);
367 initializeAMDGPUCodeGenPreparePass(*PR);
368 initializeAMDGPULateCodeGenPreparePass(*PR);
369 initializeAMDGPUPropagateAttributesEarlyPass(*PR);
370 initializeAMDGPUPropagateAttributesLatePass(*PR);
371 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
372 initializeAMDGPULowerModuleLDSPass(*PR);
373 initializeAMDGPURewriteOutArgumentsPass(*PR);
374 initializeAMDGPUUnifyMetadataPass(*PR);
375 initializeSIAnnotateControlFlowPass(*PR);
376 initializeSIInsertHardClausesPass(*PR);
377 initializeSIInsertWaitcntsPass(*PR);
378 initializeSIModeRegisterPass(*PR);
379 initializeSIWholeQuadModePass(*PR);
380 initializeSILowerControlFlowPass(*PR);
381 initializeSIPreEmitPeepholePass(*PR);
382 initializeSILateBranchLoweringPass(*PR);
383 initializeSIMemoryLegalizerPass(*PR);
384 initializeSIOptimizeExecMaskingPass(*PR);
385 initializeSIPreAllocateWWMRegsPass(*PR);
386 initializeSIFormMemoryClausesPass(*PR);
387 initializeSIPostRABundlerPass(*PR);
388 initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
389 initializeAMDGPUAAWrapperPassPass(*PR);
390 initializeAMDGPUExternalAAWrapperPass(*PR);
391 initializeAMDGPUUseNativeCallsPass(*PR);
392 initializeAMDGPUSimplifyLibCallsPass(*PR);
393 initializeAMDGPUPrintfRuntimeBindingPass(*PR);
394 initializeAMDGPUResourceUsageAnalysisPass(*PR);
395 initializeGCNNSAReassignPass(*PR);
396 initializeGCNPreRAOptimizationsPass(*PR);
397 }
398
createTLOF(const Triple & TT)399 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
400 return std::make_unique<AMDGPUTargetObjectFile>();
401 }
402
createR600MachineScheduler(MachineSchedContext * C)403 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
404 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
405 }
406
createSIMachineScheduler(MachineSchedContext * C)407 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
408 return new SIScheduleDAGMI(C);
409 }
410
411 static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)412 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
413 ScheduleDAGMILive *DAG =
414 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
415 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
416 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
417 DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
418 return DAG;
419 }
420
421 static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext * C)422 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
423 auto DAG = new GCNIterativeScheduler(C,
424 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
425 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
426 return DAG;
427 }
428
createMinRegScheduler(MachineSchedContext * C)429 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
430 return new GCNIterativeScheduler(C,
431 GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
432 }
433
434 static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext * C)435 createIterativeILPMachineScheduler(MachineSchedContext *C) {
436 auto DAG = new GCNIterativeScheduler(C,
437 GCNIterativeScheduler::SCHEDULE_ILP);
438 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
439 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
440 return DAG;
441 }
442
443 static MachineSchedRegistry
444 R600SchedRegistry("r600", "Run R600's custom scheduler",
445 createR600MachineScheduler);
446
447 static MachineSchedRegistry
448 SISchedRegistry("si", "Run SI's custom scheduler",
449 createSIMachineScheduler);
450
451 static MachineSchedRegistry
452 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
453 "Run GCN scheduler to maximize occupancy",
454 createGCNMaxOccupancyMachineScheduler);
455
456 static MachineSchedRegistry
457 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
458 "Run GCN scheduler to maximize occupancy (experimental)",
459 createIterativeGCNMaxOccupancyMachineScheduler);
460
461 static MachineSchedRegistry
462 GCNMinRegSchedRegistry("gcn-minreg",
463 "Run GCN iterative scheduler for minimal register usage (experimental)",
464 createMinRegScheduler);
465
466 static MachineSchedRegistry
467 GCNILPSchedRegistry("gcn-ilp",
468 "Run GCN iterative scheduler for ILP scheduling (experimental)",
469 createIterativeILPMachineScheduler);
470
computeDataLayout(const Triple & TT)471 static StringRef computeDataLayout(const Triple &TT) {
472 if (TT.getArch() == Triple::r600) {
473 // 32-bit pointers.
474 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
475 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
476 }
477
478 // 32-bit private, local, and region pointers. 64-bit global, constant and
479 // flat, non-integral buffer fat pointers.
480 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
481 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
482 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
483 "-ni:7";
484 }
485
486 LLVM_READNONE
getGPUOrDefault(const Triple & TT,StringRef GPU)487 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
488 if (!GPU.empty())
489 return GPU;
490
491 // Need to default to a target with flat support for HSA.
492 if (TT.getArch() == Triple::amdgcn)
493 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
494
495 return "r600";
496 }
497
getEffectiveRelocModel(Optional<Reloc::Model> RM)498 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
499 // The AMDGPU toolchain only supports generating shared objects, so we
500 // must always use PIC.
501 return Reloc::PIC_;
502 }
503
AMDGPUTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OptLevel)504 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
505 StringRef CPU, StringRef FS,
506 TargetOptions Options,
507 Optional<Reloc::Model> RM,
508 Optional<CodeModel::Model> CM,
509 CodeGenOpt::Level OptLevel)
510 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
511 FS, Options, getEffectiveRelocModel(RM),
512 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
513 TLOF(createTLOF(getTargetTriple())) {
514 initAsmInfo();
515 if (TT.getArch() == Triple::amdgcn) {
516 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
517 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
518 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
519 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
520 }
521 }
522
523 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
524 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
525 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
526 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
527
528 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
529
getGPUName(const Function & F) const530 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
531 Attribute GPUAttr = F.getFnAttribute("target-cpu");
532 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
533 }
534
getFeatureString(const Function & F) const535 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
536 Attribute FSAttr = F.getFnAttribute("target-features");
537
538 return FSAttr.isValid() ? FSAttr.getValueAsString()
539 : getTargetFeatureString();
540 }
541
542 /// Predicate for Internalize pass.
mustPreserveGV(const GlobalValue & GV)543 static bool mustPreserveGV(const GlobalValue &GV) {
544 if (const Function *F = dyn_cast<Function>(&GV))
545 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
546
547 GV.removeDeadConstantUsers();
548 return !GV.use_empty();
549 }
550
adjustPassManager(PassManagerBuilder & Builder)551 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
552 Builder.DivergentTarget = true;
553
554 bool EnableOpt = getOptLevel() > CodeGenOpt::None;
555 bool Internalize = InternalizeSymbols;
556 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
557 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
558 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
559
560 if (EnableFunctionCalls) {
561 delete Builder.Inliner;
562 Builder.Inliner = createFunctionInliningPass();
563 }
564
565 Builder.addExtension(
566 PassManagerBuilder::EP_ModuleOptimizerEarly,
567 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
568 legacy::PassManagerBase &PM) {
569 if (AMDGPUAA) {
570 PM.add(createAMDGPUAAWrapperPass());
571 PM.add(createAMDGPUExternalAAWrapperPass());
572 }
573 PM.add(createAMDGPUUnifyMetadataPass());
574 PM.add(createAMDGPUPrintfRuntimeBinding());
575 if (Internalize)
576 PM.add(createInternalizePass(mustPreserveGV));
577 PM.add(createAMDGPUPropagateAttributesLatePass(this));
578 if (Internalize)
579 PM.add(createGlobalDCEPass());
580 if (EarlyInline)
581 PM.add(createAMDGPUAlwaysInlinePass(false));
582 });
583
584 Builder.addExtension(
585 PassManagerBuilder::EP_EarlyAsPossible,
586 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
587 legacy::PassManagerBase &PM) {
588 if (AMDGPUAA) {
589 PM.add(createAMDGPUAAWrapperPass());
590 PM.add(createAMDGPUExternalAAWrapperPass());
591 }
592 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
593 PM.add(llvm::createAMDGPUUseNativeCallsPass());
594 if (LibCallSimplify)
595 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
596 });
597
598 Builder.addExtension(
599 PassManagerBuilder::EP_CGSCCOptimizerLate,
600 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
601 // Add infer address spaces pass to the opt pipeline after inlining
602 // but before SROA to increase SROA opportunities.
603 PM.add(createInferAddressSpacesPass());
604
605 // This should run after inlining to have any chance of doing anything,
606 // and before other cleanup optimizations.
607 PM.add(createAMDGPULowerKernelAttributesPass());
608
609 // Promote alloca to vector before SROA and loop unroll. If we manage
610 // to eliminate allocas before unroll we may choose to unroll less.
611 if (EnableOpt)
612 PM.add(createAMDGPUPromoteAllocaToVector());
613 });
614 }
615
registerDefaultAliasAnalyses(AAManager & AAM)616 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
617 AAM.registerFunctionAnalysis<AMDGPUAA>();
618 }
619
registerPassBuilderCallbacks(PassBuilder & PB)620 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
621 PB.registerPipelineParsingCallback(
622 [this](StringRef PassName, ModulePassManager &PM,
623 ArrayRef<PassBuilder::PipelineElement>) {
624 if (PassName == "amdgpu-propagate-attributes-late") {
625 PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
626 return true;
627 }
628 if (PassName == "amdgpu-unify-metadata") {
629 PM.addPass(AMDGPUUnifyMetadataPass());
630 return true;
631 }
632 if (PassName == "amdgpu-printf-runtime-binding") {
633 PM.addPass(AMDGPUPrintfRuntimeBindingPass());
634 return true;
635 }
636 if (PassName == "amdgpu-always-inline") {
637 PM.addPass(AMDGPUAlwaysInlinePass());
638 return true;
639 }
640 if (PassName == "amdgpu-replace-lds-use-with-pointer") {
641 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
642 return true;
643 }
644 if (PassName == "amdgpu-lower-module-lds") {
645 PM.addPass(AMDGPULowerModuleLDSPass());
646 return true;
647 }
648 return false;
649 });
650 PB.registerPipelineParsingCallback(
651 [this](StringRef PassName, FunctionPassManager &PM,
652 ArrayRef<PassBuilder::PipelineElement>) {
653 if (PassName == "amdgpu-simplifylib") {
654 PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
655 return true;
656 }
657 if (PassName == "amdgpu-usenative") {
658 PM.addPass(AMDGPUUseNativeCallsPass());
659 return true;
660 }
661 if (PassName == "amdgpu-promote-alloca") {
662 PM.addPass(AMDGPUPromoteAllocaPass(*this));
663 return true;
664 }
665 if (PassName == "amdgpu-promote-alloca-to-vector") {
666 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
667 return true;
668 }
669 if (PassName == "amdgpu-lower-kernel-attributes") {
670 PM.addPass(AMDGPULowerKernelAttributesPass());
671 return true;
672 }
673 if (PassName == "amdgpu-propagate-attributes-early") {
674 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
675 return true;
676 }
677 return false;
678 });
679
680 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
681 FAM.registerPass([&] { return AMDGPUAA(); });
682 });
683
684 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
685 if (AAName == "amdgpu-aa") {
686 AAM.registerFunctionAnalysis<AMDGPUAA>();
687 return true;
688 }
689 return false;
690 });
691
692 PB.registerPipelineStartEPCallback(
693 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
694 FunctionPassManager FPM;
695 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
696 FPM.addPass(AMDGPUUseNativeCallsPass());
697 if (EnableLibCallSimplify &&
698 Level != PassBuilder::OptimizationLevel::O0)
699 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
700 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
701 });
702
703 PB.registerPipelineEarlySimplificationEPCallback(
704 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
705 if (Level == PassBuilder::OptimizationLevel::O0)
706 return;
707
708 PM.addPass(AMDGPUUnifyMetadataPass());
709 PM.addPass(AMDGPUPrintfRuntimeBindingPass());
710
711 if (InternalizeSymbols) {
712 PM.addPass(InternalizePass(mustPreserveGV));
713 }
714 PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
715 if (InternalizeSymbols) {
716 PM.addPass(GlobalDCEPass());
717 }
718 if (EarlyInlineAll && !EnableFunctionCalls)
719 PM.addPass(AMDGPUAlwaysInlinePass());
720 });
721
722 PB.registerCGSCCOptimizerLateEPCallback(
723 [this](CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) {
724 if (Level == PassBuilder::OptimizationLevel::O0)
725 return;
726
727 FunctionPassManager FPM;
728
729 // Add infer address spaces pass to the opt pipeline after inlining
730 // but before SROA to increase SROA opportunities.
731 FPM.addPass(InferAddressSpacesPass());
732
733 // This should run after inlining to have any chance of doing
734 // anything, and before other cleanup optimizations.
735 FPM.addPass(AMDGPULowerKernelAttributesPass());
736
737 if (Level != PassBuilder::OptimizationLevel::O0) {
738 // Promote alloca to vector before SROA and loop unroll. If we
739 // manage to eliminate allocas before unroll we may choose to unroll
740 // less.
741 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
742 }
743
744 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
745 });
746 }
747
748 //===----------------------------------------------------------------------===//
749 // R600 Target Machine (R600 -> Cayman)
750 //===----------------------------------------------------------------------===//
751
R600TargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)752 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
753 StringRef CPU, StringRef FS,
754 TargetOptions Options,
755 Optional<Reloc::Model> RM,
756 Optional<CodeModel::Model> CM,
757 CodeGenOpt::Level OL, bool JIT)
758 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
759 setRequiresStructuredCFG(true);
760
761 // Override the default since calls aren't supported for r600.
762 if (EnableFunctionCalls &&
763 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
764 EnableFunctionCalls = false;
765 }
766
getSubtargetImpl(const Function & F) const767 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
768 const Function &F) const {
769 StringRef GPU = getGPUName(F);
770 StringRef FS = getFeatureString(F);
771
772 SmallString<128> SubtargetKey(GPU);
773 SubtargetKey.append(FS);
774
775 auto &I = SubtargetMap[SubtargetKey];
776 if (!I) {
777 // This needs to be done before we create a new subtarget since any
778 // creation will depend on the TM and the code generation flags on the
779 // function that reside in TargetOptions.
780 resetTargetOptions(F);
781 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
782 }
783
784 return I.get();
785 }
786
getNullPointerValue(unsigned AddrSpace)787 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
788 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
789 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
790 AddrSpace == AMDGPUAS::REGION_ADDRESS)
791 ? -1
792 : 0;
793 }
794
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const795 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
796 unsigned DestAS) const {
797 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
798 AMDGPU::isFlatGlobalAddrSpace(DestAS);
799 }
800
getAssumedAddrSpace(const Value * V) const801 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
802 const auto *LD = dyn_cast<LoadInst>(V);
803 if (!LD)
804 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
805
806 // It must be a generic pointer loaded.
807 assert(V->getType()->isPointerTy() &&
808 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
809
810 const auto *Ptr = LD->getPointerOperand();
811 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
812 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
813 // For a generic pointer loaded from the constant memory, it could be assumed
814 // as a global pointer since the constant memory is only populated on the
815 // host side. As implied by the offload programming model, only global
816 // pointers could be referenced on the host side.
817 return AMDGPUAS::GLOBAL_ADDRESS;
818 }
819
820 TargetTransformInfo
getTargetTransformInfo(const Function & F)821 R600TargetMachine::getTargetTransformInfo(const Function &F) {
822 return TargetTransformInfo(R600TTIImpl(this, F));
823 }
824
825 //===----------------------------------------------------------------------===//
826 // GCN Target Machine (SI+)
827 //===----------------------------------------------------------------------===//
828
GCNTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,TargetOptions Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)829 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
830 StringRef CPU, StringRef FS,
831 TargetOptions Options,
832 Optional<Reloc::Model> RM,
833 Optional<CodeModel::Model> CM,
834 CodeGenOpt::Level OL, bool JIT)
835 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
836
getSubtargetImpl(const Function & F) const837 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
838 StringRef GPU = getGPUName(F);
839 StringRef FS = getFeatureString(F);
840
841 SmallString<128> SubtargetKey(GPU);
842 SubtargetKey.append(FS);
843
844 auto &I = SubtargetMap[SubtargetKey];
845 if (!I) {
846 // This needs to be done before we create a new subtarget since any
847 // creation will depend on the TM and the code generation flags on the
848 // function that reside in TargetOptions.
849 resetTargetOptions(F);
850 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
851 }
852
853 I->setScalarizeGlobalBehavior(ScalarizeGlobal);
854
855 return I.get();
856 }
857
858 TargetTransformInfo
getTargetTransformInfo(const Function & F)859 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
860 return TargetTransformInfo(GCNTTIImpl(this, F));
861 }
862
863 //===----------------------------------------------------------------------===//
864 // AMDGPU Pass Setup
865 //===----------------------------------------------------------------------===//
866
867 namespace {
868
869 class AMDGPUPassConfig : public TargetPassConfig {
870 public:
AMDGPUPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)871 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
872 : TargetPassConfig(TM, PM) {
873 // Exceptions and StackMaps are not supported, so these passes will never do
874 // anything.
875 disablePass(&StackMapLivenessID);
876 disablePass(&FuncletLayoutID);
877 // Garbage collection is not supported.
878 disablePass(&GCLoweringID);
879 disablePass(&ShadowStackGCLoweringID);
880 }
881
getAMDGPUTargetMachine() const882 AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
883 return getTM<AMDGPUTargetMachine>();
884 }
885
886 ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const887 createMachineScheduler(MachineSchedContext *C) const override {
888 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
889 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
890 return DAG;
891 }
892
893 void addEarlyCSEOrGVNPass();
894 void addStraightLineScalarOptimizationPasses();
895 void addIRPasses() override;
896 void addCodeGenPrepare() override;
897 bool addPreISel() override;
898 bool addInstSelector() override;
899 bool addGCPasses() override;
900
901 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
902
903 /// Check if a pass is enabled given \p Opt option. The option always
904 /// overrides defaults if explicitely used. Otherwise its default will
905 /// be used given that a pass shall work at an optimization \p Level
906 /// minimum.
isPassEnabled(const cl::opt<bool> & Opt,CodeGenOpt::Level Level=CodeGenOpt::Default) const907 bool isPassEnabled(const cl::opt<bool> &Opt,
908 CodeGenOpt::Level Level = CodeGenOpt::Default) const {
909 if (Opt.getNumOccurrences())
910 return Opt;
911 if (TM->getOptLevel() < Level)
912 return false;
913 return Opt;
914 }
915 };
916
getCSEConfig() const917 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
918 return getStandardCSEConfigForOpt(TM->getOptLevel());
919 }
920
921 class R600PassConfig final : public AMDGPUPassConfig {
922 public:
R600PassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)923 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
924 : AMDGPUPassConfig(TM, PM) {}
925
createMachineScheduler(MachineSchedContext * C) const926 ScheduleDAGInstrs *createMachineScheduler(
927 MachineSchedContext *C) const override {
928 return createR600MachineScheduler(C);
929 }
930
931 bool addPreISel() override;
932 bool addInstSelector() override;
933 void addPreRegAlloc() override;
934 void addPreSched2() override;
935 void addPreEmitPass() override;
936 };
937
938 class GCNPassConfig final : public AMDGPUPassConfig {
939 public:
GCNPassConfig(LLVMTargetMachine & TM,PassManagerBase & PM)940 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
941 : AMDGPUPassConfig(TM, PM) {
942 // It is necessary to know the register usage of the entire call graph. We
943 // allow calls without EnableAMDGPUFunctionCalls if they are marked
944 // noinline, so this is always required.
945 setRequiresCodeGenSCCOrder(true);
946 }
947
getGCNTargetMachine() const948 GCNTargetMachine &getGCNTargetMachine() const {
949 return getTM<GCNTargetMachine>();
950 }
951
952 ScheduleDAGInstrs *
953 createMachineScheduler(MachineSchedContext *C) const override;
954
955 bool addPreISel() override;
956 void addMachineSSAOptimization() override;
957 bool addILPOpts() override;
958 bool addInstSelector() override;
959 bool addIRTranslator() override;
960 void addPreLegalizeMachineIR() override;
961 bool addLegalizeMachineIR() override;
962 void addPreRegBankSelect() override;
963 bool addRegBankSelect() override;
964 void addPreGlobalInstructionSelect() override;
965 bool addGlobalInstructionSelect() override;
966 void addFastRegAlloc() override;
967 void addOptimizedRegAlloc() override;
968
969 FunctionPass *createSGPRAllocPass(bool Optimized);
970 FunctionPass *createVGPRAllocPass(bool Optimized);
971 FunctionPass *createRegAllocPass(bool Optimized) override;
972
973 bool addRegAssignAndRewriteFast() override;
974 bool addRegAssignAndRewriteOptimized() override;
975
976 void addPreRegAlloc() override;
977 bool addPreRewrite() override;
978 void addPostRegAlloc() override;
979 void addPreSched2() override;
980 void addPreEmitPass() override;
981 };
982
983 } // end anonymous namespace
984
addEarlyCSEOrGVNPass()985 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
986 if (getOptLevel() == CodeGenOpt::Aggressive)
987 addPass(createGVNPass());
988 else
989 addPass(createEarlyCSEPass());
990 }
991
addStraightLineScalarOptimizationPasses()992 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
993 addPass(createLICMPass());
994 addPass(createSeparateConstOffsetFromGEPPass());
995 addPass(createSpeculativeExecutionPass());
996 // ReassociateGEPs exposes more opportunites for SLSR. See
997 // the example in reassociate-geps-and-slsr.ll.
998 addPass(createStraightLineStrengthReducePass());
999 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
1000 // EarlyCSE can reuse.
1001 addEarlyCSEOrGVNPass();
1002 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
1003 addPass(createNaryReassociatePass());
1004 // NaryReassociate on GEPs creates redundant common expressions, so run
1005 // EarlyCSE after it.
1006 addPass(createEarlyCSEPass());
1007 }
1008
addIRPasses()1009 void AMDGPUPassConfig::addIRPasses() {
1010 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
1011
1012 // There is no reason to run these.
1013 disablePass(&StackMapLivenessID);
1014 disablePass(&FuncletLayoutID);
1015 disablePass(&PatchableFunctionID);
1016
1017 addPass(createAMDGPUPrintfRuntimeBinding());
1018
1019 // This must occur before inlining, as the inliner will not look through
1020 // bitcast calls.
1021 addPass(createAMDGPUFixFunctionBitcastsPass());
1022
1023 // A call to propagate attributes pass in the backend in case opt was not run.
1024 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
1025
1026 addPass(createAMDGPULowerIntrinsicsPass());
1027
1028 // Function calls are not supported, so make sure we inline everything.
1029 addPass(createAMDGPUAlwaysInlinePass());
1030 addPass(createAlwaysInlinerLegacyPass());
1031 // We need to add the barrier noop pass, otherwise adding the function
1032 // inlining pass will cause all of the PassConfigs passes to be run
1033 // one function at a time, which means if we have a nodule with two
1034 // functions, then we will generate code for the first function
1035 // without ever running any passes on the second.
1036 addPass(createBarrierNoopPass());
1037
1038 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
1039 if (TM.getTargetTriple().getArch() == Triple::r600)
1040 addPass(createR600OpenCLImageTypeLoweringPass());
1041
1042 // Replace OpenCL enqueued block function pointers with global variables.
1043 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
1044
1045 // Can increase LDS used by kernel so runs before PromoteAlloca
1046 if (EnableLowerModuleLDS) {
1047 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
1048 // pass "amdgpu-lower-module-lds", and also it required to be run only if
1049 // "amdgpu-lower-module-lds" pass is enabled.
1050 if (EnableLDSReplaceWithPointer)
1051 addPass(createAMDGPUReplaceLDSUseWithPointerPass());
1052
1053 addPass(createAMDGPULowerModuleLDSPass());
1054 }
1055
1056 if (TM.getOptLevel() > CodeGenOpt::None)
1057 addPass(createInferAddressSpacesPass());
1058
1059 addPass(createAtomicExpandPass());
1060
1061 if (TM.getOptLevel() > CodeGenOpt::None) {
1062 addPass(createAMDGPUPromoteAlloca());
1063
1064 if (EnableSROA)
1065 addPass(createSROAPass());
1066 if (isPassEnabled(EnableScalarIRPasses))
1067 addStraightLineScalarOptimizationPasses();
1068
1069 if (EnableAMDGPUAliasAnalysis) {
1070 addPass(createAMDGPUAAWrapperPass());
1071 addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1072 AAResults &AAR) {
1073 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1074 AAR.addAAResult(WrapperPass->getResult());
1075 }));
1076 }
1077
1078 if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1079 // TODO: May want to move later or split into an early and late one.
1080 addPass(createAMDGPUCodeGenPreparePass());
1081 }
1082 }
1083
1084 TargetPassConfig::addIRPasses();
1085
1086 // EarlyCSE is not always strong enough to clean up what LSR produces. For
1087 // example, GVN can combine
1088 //
1089 // %0 = add %a, %b
1090 // %1 = add %b, %a
1091 //
1092 // and
1093 //
1094 // %0 = shl nsw %a, 2
1095 // %1 = shl %a, 2
1096 //
1097 // but EarlyCSE can do neither of them.
1098 if (isPassEnabled(EnableScalarIRPasses))
1099 addEarlyCSEOrGVNPass();
1100 }
1101
addCodeGenPrepare()1102 void AMDGPUPassConfig::addCodeGenPrepare() {
1103 if (TM->getTargetTriple().getArch() == Triple::amdgcn)
1104 addPass(createAMDGPUAnnotateKernelFeaturesPass());
1105
1106 if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1107 EnableLowerKernelArguments)
1108 addPass(createAMDGPULowerKernelArgumentsPass());
1109
1110 TargetPassConfig::addCodeGenPrepare();
1111
1112 if (isPassEnabled(EnableLoadStoreVectorizer))
1113 addPass(createLoadStoreVectorizerPass());
1114
1115 // LowerSwitch pass may introduce unreachable blocks that can
1116 // cause unexpected behavior for subsequent passes. Placing it
1117 // here seems better that these blocks would get cleaned up by
1118 // UnreachableBlockElim inserted next in the pass flow.
1119 addPass(createLowerSwitchPass());
1120 }
1121
addPreISel()1122 bool AMDGPUPassConfig::addPreISel() {
1123 if (TM->getOptLevel() > CodeGenOpt::None)
1124 addPass(createFlattenCFGPass());
1125 return false;
1126 }
1127
addInstSelector()1128 bool AMDGPUPassConfig::addInstSelector() {
1129 // Defer the verifier until FinalizeISel.
1130 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
1131 return false;
1132 }
1133
addGCPasses()1134 bool AMDGPUPassConfig::addGCPasses() {
1135 // Do nothing. GC is not supported.
1136 return false;
1137 }
1138
1139 //===----------------------------------------------------------------------===//
1140 // R600 Pass Setup
1141 //===----------------------------------------------------------------------===//
1142
addPreISel()1143 bool R600PassConfig::addPreISel() {
1144 AMDGPUPassConfig::addPreISel();
1145
1146 if (EnableR600StructurizeCFG)
1147 addPass(createStructurizeCFGPass());
1148 return false;
1149 }
1150
addInstSelector()1151 bool R600PassConfig::addInstSelector() {
1152 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
1153 return false;
1154 }
1155
addPreRegAlloc()1156 void R600PassConfig::addPreRegAlloc() {
1157 addPass(createR600VectorRegMerger());
1158 }
1159
addPreSched2()1160 void R600PassConfig::addPreSched2() {
1161 addPass(createR600EmitClauseMarkers(), false);
1162 if (EnableR600IfConvert)
1163 addPass(&IfConverterID, false);
1164 addPass(createR600ClauseMergePass(), false);
1165 }
1166
addPreEmitPass()1167 void R600PassConfig::addPreEmitPass() {
1168 addPass(createAMDGPUCFGStructurizerPass(), false);
1169 addPass(createR600ExpandSpecialInstrsPass(), false);
1170 addPass(&FinalizeMachineBundlesID, false);
1171 addPass(createR600Packetizer(), false);
1172 addPass(createR600ControlFlowFinalizer(), false);
1173 }
1174
createPassConfig(PassManagerBase & PM)1175 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
1176 return new R600PassConfig(*this, PM);
1177 }
1178
1179 //===----------------------------------------------------------------------===//
1180 // GCN Pass Setup
1181 //===----------------------------------------------------------------------===//
1182
createMachineScheduler(MachineSchedContext * C) const1183 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1184 MachineSchedContext *C) const {
1185 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1186 if (ST.enableSIScheduler())
1187 return createSIMachineScheduler(C);
1188 return createGCNMaxOccupancyMachineScheduler(C);
1189 }
1190
addPreISel()1191 bool GCNPassConfig::addPreISel() {
1192 AMDGPUPassConfig::addPreISel();
1193
1194 if (TM->getOptLevel() > CodeGenOpt::None)
1195 addPass(createAMDGPULateCodeGenPreparePass());
1196
1197 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
1198 addPass(createAMDGPUAtomicOptimizerPass());
1199 }
1200
1201 if (TM->getOptLevel() > CodeGenOpt::None)
1202 addPass(createSinkingPass());
1203
1204 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1205 // regions formed by them.
1206 addPass(&AMDGPUUnifyDivergentExitNodesID);
1207 if (!LateCFGStructurize) {
1208 if (EnableStructurizerWorkarounds) {
1209 addPass(createFixIrreduciblePass());
1210 addPass(createUnifyLoopExitsPass());
1211 }
1212 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1213 }
1214 addPass(createAMDGPUAnnotateUniformValues());
1215 if (!LateCFGStructurize) {
1216 addPass(createSIAnnotateControlFlowPass());
1217 }
1218 addPass(createLCSSAPass());
1219
1220 if (TM->getOptLevel() > CodeGenOpt::Less)
1221 addPass(&AMDGPUPerfHintAnalysisID);
1222
1223 return false;
1224 }
1225
addMachineSSAOptimization()1226 void GCNPassConfig::addMachineSSAOptimization() {
1227 TargetPassConfig::addMachineSSAOptimization();
1228
1229 // We want to fold operands after PeepholeOptimizer has run (or as part of
1230 // it), because it will eliminate extra copies making it easier to fold the
1231 // real source operand. We want to eliminate dead instructions after, so that
1232 // we see fewer uses of the copies. We then need to clean up the dead
1233 // instructions leftover after the operands are folded as well.
1234 //
1235 // XXX - Can we get away without running DeadMachineInstructionElim again?
1236 addPass(&SIFoldOperandsID);
1237 if (EnableDPPCombine)
1238 addPass(&GCNDPPCombineID);
1239 addPass(&SILoadStoreOptimizerID);
1240 if (isPassEnabled(EnableSDWAPeephole)) {
1241 addPass(&SIPeepholeSDWAID);
1242 addPass(&EarlyMachineLICMID);
1243 addPass(&MachineCSEID);
1244 addPass(&SIFoldOperandsID);
1245 }
1246 addPass(&DeadMachineInstructionElimID);
1247 addPass(createSIShrinkInstructionsPass());
1248 }
1249
addILPOpts()1250 bool GCNPassConfig::addILPOpts() {
1251 if (EnableEarlyIfConversion)
1252 addPass(&EarlyIfConverterID);
1253
1254 TargetPassConfig::addILPOpts();
1255 return false;
1256 }
1257
addInstSelector()1258 bool GCNPassConfig::addInstSelector() {
1259 AMDGPUPassConfig::addInstSelector();
1260 addPass(&SIFixSGPRCopiesID);
1261 addPass(createSILowerI1CopiesPass());
1262 return false;
1263 }
1264
addIRTranslator()1265 bool GCNPassConfig::addIRTranslator() {
1266 addPass(new IRTranslator(getOptLevel()));
1267 return false;
1268 }
1269
addPreLegalizeMachineIR()1270 void GCNPassConfig::addPreLegalizeMachineIR() {
1271 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1272 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1273 addPass(new Localizer());
1274 }
1275
addLegalizeMachineIR()1276 bool GCNPassConfig::addLegalizeMachineIR() {
1277 addPass(new Legalizer());
1278 return false;
1279 }
1280
addPreRegBankSelect()1281 void GCNPassConfig::addPreRegBankSelect() {
1282 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1283 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1284 }
1285
addRegBankSelect()1286 bool GCNPassConfig::addRegBankSelect() {
1287 addPass(new RegBankSelect());
1288 return false;
1289 }
1290
addPreGlobalInstructionSelect()1291 void GCNPassConfig::addPreGlobalInstructionSelect() {
1292 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1293 addPass(createAMDGPURegBankCombiner(IsOptNone));
1294 }
1295
addGlobalInstructionSelect()1296 bool GCNPassConfig::addGlobalInstructionSelect() {
1297 addPass(new InstructionSelect(getOptLevel()));
1298 return false;
1299 }
1300
addPreRegAlloc()1301 void GCNPassConfig::addPreRegAlloc() {
1302 if (LateCFGStructurize) {
1303 addPass(createAMDGPUMachineCFGStructurizerPass());
1304 }
1305 }
1306
addFastRegAlloc()1307 void GCNPassConfig::addFastRegAlloc() {
1308 // FIXME: We have to disable the verifier here because of PHIElimination +
1309 // TwoAddressInstructions disabling it.
1310
1311 // This must be run immediately after phi elimination and before
1312 // TwoAddressInstructions, otherwise the processing of the tied operand of
1313 // SI_ELSE will introduce a copy of the tied operand source after the else.
1314 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1315
1316 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1317 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1318
1319 TargetPassConfig::addFastRegAlloc();
1320 }
1321
addOptimizedRegAlloc()1322 void GCNPassConfig::addOptimizedRegAlloc() {
1323 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1324 // instructions that cause scheduling barriers.
1325 insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1326 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1327
1328 if (OptExecMaskPreRA)
1329 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1330
1331 if (isPassEnabled(EnablePreRAOptimizations))
1332 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1333
1334 // This is not an essential optimization and it has a noticeable impact on
1335 // compilation time, so we only enable it from O2.
1336 if (TM->getOptLevel() > CodeGenOpt::Less)
1337 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1338
1339 // FIXME: when an instruction has a Killed operand, and the instruction is
1340 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1341 // the register in LiveVariables, this would trigger a failure in verifier,
1342 // we should fix it and enable the verifier.
1343 if (OptVGPRLiveRange)
1344 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false);
1345 // This must be run immediately after phi elimination and before
1346 // TwoAddressInstructions, otherwise the processing of the tied operand of
1347 // SI_ELSE will introduce a copy of the tied operand source after the else.
1348 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1349
1350 if (EnableDCEInRA)
1351 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1352
1353 TargetPassConfig::addOptimizedRegAlloc();
1354 }
1355
addPreRewrite()1356 bool GCNPassConfig::addPreRewrite() {
1357 if (EnableRegReassign)
1358 addPass(&GCNNSAReassignID);
1359 return true;
1360 }
1361
createSGPRAllocPass(bool Optimized)1362 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1363 // Initialize the global default.
1364 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1365 initializeDefaultSGPRRegisterAllocatorOnce);
1366
1367 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1368 if (Ctor != useDefaultRegisterAllocator)
1369 return Ctor();
1370
1371 if (Optimized)
1372 return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1373
1374 return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1375 }
1376
createVGPRAllocPass(bool Optimized)1377 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1378 // Initialize the global default.
1379 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1380 initializeDefaultVGPRRegisterAllocatorOnce);
1381
1382 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1383 if (Ctor != useDefaultRegisterAllocator)
1384 return Ctor();
1385
1386 if (Optimized)
1387 return createGreedyVGPRRegisterAllocator();
1388
1389 return createFastVGPRRegisterAllocator();
1390 }
1391
createRegAllocPass(bool Optimized)1392 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1393 llvm_unreachable("should not be used");
1394 }
1395
1396 static const char RegAllocOptNotSupportedMessage[] =
1397 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1398
addRegAssignAndRewriteFast()1399 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1400 if (!usingDefaultRegAlloc())
1401 report_fatal_error(RegAllocOptNotSupportedMessage);
1402
1403 addPass(createSGPRAllocPass(false));
1404
1405 // Equivalent of PEI for SGPRs.
1406 addPass(&SILowerSGPRSpillsID);
1407
1408 addPass(createVGPRAllocPass(false));
1409 return true;
1410 }
1411
addRegAssignAndRewriteOptimized()1412 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1413 if (!usingDefaultRegAlloc())
1414 report_fatal_error(RegAllocOptNotSupportedMessage);
1415
1416 addPass(createSGPRAllocPass(true));
1417
1418 // Commit allocated register changes. This is mostly necessary because too
1419 // many things rely on the use lists of the physical registers, such as the
1420 // verifier. This is only necessary with allocators which use LiveIntervals,
1421 // since FastRegAlloc does the replacments itself.
1422 addPass(createVirtRegRewriter(false));
1423
1424 // Equivalent of PEI for SGPRs.
1425 addPass(&SILowerSGPRSpillsID);
1426
1427 addPass(createVGPRAllocPass(true));
1428
1429 addPreRewrite();
1430 addPass(&VirtRegRewriterID);
1431
1432 return true;
1433 }
1434
addPostRegAlloc()1435 void GCNPassConfig::addPostRegAlloc() {
1436 addPass(&SIFixVGPRCopiesID);
1437 if (getOptLevel() > CodeGenOpt::None)
1438 addPass(&SIOptimizeExecMaskingID);
1439 TargetPassConfig::addPostRegAlloc();
1440 }
1441
addPreSched2()1442 void GCNPassConfig::addPreSched2() {
1443 addPass(&SIPostRABundlerID);
1444 }
1445
addPreEmitPass()1446 void GCNPassConfig::addPreEmitPass() {
1447 addPass(createSIMemoryLegalizerPass());
1448 addPass(createSIInsertWaitcntsPass());
1449
1450 if (TM->getOptLevel() > CodeGenOpt::None)
1451 addPass(createSIShrinkInstructionsPass());
1452
1453 addPass(createSIModeRegisterPass());
1454
1455 if (getOptLevel() > CodeGenOpt::None)
1456 addPass(&SIInsertHardClausesID);
1457
1458 addPass(&SILateBranchLoweringPassID);
1459 if (getOptLevel() > CodeGenOpt::None)
1460 addPass(&SIPreEmitPeepholeID);
1461 // The hazard recognizer that runs as part of the post-ra scheduler does not
1462 // guarantee to be able handle all hazards correctly. This is because if there
1463 // are multiple scheduling regions in a basic block, the regions are scheduled
1464 // bottom up, so when we begin to schedule a region we don't know what
1465 // instructions were emitted directly before it.
1466 //
1467 // Here we add a stand-alone hazard recognizer pass which can handle all
1468 // cases.
1469 addPass(&PostRAHazardRecognizerID);
1470 addPass(&BranchRelaxationPassID);
1471 }
1472
createPassConfig(PassManagerBase & PM)1473 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1474 return new GCNPassConfig(*this, PM);
1475 }
1476
createDefaultFuncInfoYAML() const1477 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1478 return new yaml::SIMachineFunctionInfo();
1479 }
1480
1481 yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF) const1482 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1483 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1484 return new yaml::SIMachineFunctionInfo(
1485 *MFI, *MF.getSubtarget().getRegisterInfo(), MF);
1486 }
1487
parseMachineFunctionInfo(const yaml::MachineFunctionInfo & MFI_,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange) const1488 bool GCNTargetMachine::parseMachineFunctionInfo(
1489 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1490 SMDiagnostic &Error, SMRange &SourceRange) const {
1491 const yaml::SIMachineFunctionInfo &YamlMFI =
1492 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1493 MachineFunction &MF = PFS.MF;
1494 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1495
1496 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1497 return true;
1498
1499 if (MFI->Occupancy == 0) {
1500 // Fixup the subtarget dependent default value.
1501 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1502 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1503 }
1504
1505 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1506 Register TempReg;
1507 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1508 SourceRange = RegName.SourceRange;
1509 return true;
1510 }
1511 RegVal = TempReg;
1512
1513 return false;
1514 };
1515
1516 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1517 // Create a diagnostic for a the register string literal.
1518 const MemoryBuffer &Buffer =
1519 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1520 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1521 RegName.Value.size(), SourceMgr::DK_Error,
1522 "incorrect register class for field", RegName.Value,
1523 None, None);
1524 SourceRange = RegName.SourceRange;
1525 return true;
1526 };
1527
1528 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1529 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1530 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1531 return true;
1532
1533 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1534 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1535 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1536 }
1537
1538 if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1539 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1540 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1541 }
1542
1543 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1544 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1545 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1546 }
1547
1548 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1549 const TargetRegisterClass &RC,
1550 ArgDescriptor &Arg, unsigned UserSGPRs,
1551 unsigned SystemSGPRs) {
1552 // Skip parsing if it's not present.
1553 if (!A)
1554 return false;
1555
1556 if (A->IsRegister) {
1557 Register Reg;
1558 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1559 SourceRange = A->RegisterName.SourceRange;
1560 return true;
1561 }
1562 if (!RC.contains(Reg))
1563 return diagnoseRegisterClass(A->RegisterName);
1564 Arg = ArgDescriptor::createRegister(Reg);
1565 } else
1566 Arg = ArgDescriptor::createStack(A->StackOffset);
1567 // Check and apply the optional mask.
1568 if (A->Mask)
1569 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1570
1571 MFI->NumUserSGPRs += UserSGPRs;
1572 MFI->NumSystemSGPRs += SystemSGPRs;
1573 return false;
1574 };
1575
1576 if (YamlMFI.ArgInfo &&
1577 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1578 AMDGPU::SGPR_128RegClass,
1579 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1580 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1581 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1582 2, 0) ||
1583 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1584 MFI->ArgInfo.QueuePtr, 2, 0) ||
1585 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1586 AMDGPU::SReg_64RegClass,
1587 MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1588 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1589 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1590 2, 0) ||
1591 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1592 AMDGPU::SReg_64RegClass,
1593 MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1594 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1595 AMDGPU::SGPR_32RegClass,
1596 MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1597 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1598 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1599 0, 1) ||
1600 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1601 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1602 0, 1) ||
1603 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1604 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1605 0, 1) ||
1606 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1607 AMDGPU::SGPR_32RegClass,
1608 MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1609 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1610 AMDGPU::SGPR_32RegClass,
1611 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1612 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1613 AMDGPU::SReg_64RegClass,
1614 MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1615 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1616 AMDGPU::SReg_64RegClass,
1617 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1618 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1619 AMDGPU::VGPR_32RegClass,
1620 MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1621 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1622 AMDGPU::VGPR_32RegClass,
1623 MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1624 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1625 AMDGPU::VGPR_32RegClass,
1626 MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1627 return true;
1628
1629 MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1630 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1631 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1632 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1633 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1634 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1635
1636 return false;
1637 }
1638