1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "amdgpu-disassembler"
40
41 #define SGPR_MAX \
42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
43 : AMDGPU::EncValues::SGPR_MAX_SI)
44
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46
AMDGPUDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,MCInstrInfo const * MCII)47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48 MCContext &Ctx,
49 MCInstrInfo const *MCII) :
50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52
53 // ToDo: AMDGPUDisassembler supports only VI ISA.
54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55 report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57
58 inline static MCDisassembler::DecodeStatus
addOperand(MCInst & Inst,const MCOperand & Opnd)59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60 Inst.addOperand(Opnd);
61 return Opnd.isValid() ?
62 MCDisassembler::Success :
63 MCDisassembler::Fail;
64 }
65
insertNamedMCOperand(MCInst & MI,const MCOperand & Op,uint16_t NameIdx)66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67 uint16_t NameIdx) {
68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69 if (OpIdx != -1) {
70 auto I = MI.begin();
71 std::advance(I, OpIdx);
72 MI.insert(I, Op);
73 }
74 return OpIdx;
75 }
76
decodeSoppBrTarget(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78 uint64_t Addr,
79 const MCDisassembler *Decoder) {
80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81
82 // Our branches take a simm16, but we need two extra bits to account for the
83 // factor of 4.
84 APInt SignedOffset(18, Imm * 4, true);
85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86
87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88 return MCDisassembler::Success;
89 return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91
decodeSMEMOffset(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93 const MCDisassembler *Decoder) {
94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95 int64_t Offset;
96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97 Offset = Imm & 0xFFFFF;
98 } else { // GFX9+ supports 21-bit signed offsets.
99 Offset = SignExtend64<21>(Imm);
100 }
101 return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103
decodeBoolReg(MCInst & Inst,unsigned Val,uint64_t Addr,const MCDisassembler * Decoder)104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105 const MCDisassembler *Decoder) {
106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107 return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \
112 uint64_t /*Addr*/, \
113 const MCDisassembler *Decoder) { \
114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
115 return addOperand(Inst, DAsm->DecoderName(Imm)); \
116 }
117
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120
121 DECODE_OPERAND_REG(VGPR_32)
DECODE_OPERAND_REG(VRegOrLds_32)122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157 uint64_t Addr,
158 const MCDisassembler *Decoder) {
159 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162
decodeOperand_VSrcV216(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164 uint64_t Addr,
165 const MCDisassembler *Decoder) {
166 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167 return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169
decodeOperand_VSrcV232(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171 uint64_t Addr,
172 const MCDisassembler *Decoder) {
173 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174 return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176
decodeOperand_VS_16(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178 uint64_t Addr,
179 const MCDisassembler *Decoder) {
180 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183
decodeOperand_VS_32(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185 uint64_t Addr,
186 const MCDisassembler *Decoder) {
187 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188 return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190
decodeOperand_AReg_64(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192 uint64_t Addr,
193 const MCDisassembler *Decoder) {
194 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197
decodeOperand_AReg_128(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199 uint64_t Addr,
200 const MCDisassembler *Decoder) {
201 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204
decodeOperand_AReg_256(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206 uint64_t Addr,
207 const MCDisassembler *Decoder) {
208 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211
decodeOperand_AReg_512(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213 uint64_t Addr,
214 const MCDisassembler *Decoder) {
215 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218
decodeOperand_AReg_1024(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220 uint64_t Addr,
221 const MCDisassembler *Decoder) {
222 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225
decodeOperand_VReg_64(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227 uint64_t Addr,
228 const MCDisassembler *Decoder) {
229 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232
decodeOperand_VReg_128(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234 uint64_t Addr,
235 const MCDisassembler *Decoder) {
236 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239
decodeOperand_VReg_256(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241 uint64_t Addr,
242 const MCDisassembler *Decoder) {
243 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246
decodeOperand_VReg_512(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248 uint64_t Addr,
249 const MCDisassembler *Decoder) {
250 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253
decodeOperand_VReg_1024(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255 uint64_t Addr,
256 const MCDisassembler *Decoder) {
257 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260
decodeOperand_f32kimm(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262 uint64_t Addr,
263 const MCDisassembler *Decoder) {
264 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267
decodeOperand_f16kimm(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269 uint64_t Addr,
270 const MCDisassembler *Decoder) {
271 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274
275 static DecodeStatus
decodeOperand_VS_16_Deferred(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277 const MCDisassembler *Decoder) {
278 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279 return addOperand(
280 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282
283 static DecodeStatus
decodeOperand_VS_32_Deferred(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285 const MCDisassembler *Decoder) {
286 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287 return addOperand(
288 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290
decodeOperandVOPDDstY(MCInst & Inst,unsigned Val,uint64_t Addr,const void * Decoder)291 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
292 uint64_t Addr, const void *Decoder) {
293 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
294 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
295 }
296
IsAGPROperand(const MCInst & Inst,int OpIdx,const MCRegisterInfo * MRI)297 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
298 const MCRegisterInfo *MRI) {
299 if (OpIdx < 0)
300 return false;
301
302 const MCOperand &Op = Inst.getOperand(OpIdx);
303 if (!Op.isReg())
304 return false;
305
306 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
307 auto Reg = Sub ? Sub : Op.getReg();
308 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
309 }
310
decodeOperand_AVLdSt_Any(MCInst & Inst,unsigned Imm,AMDGPUDisassembler::OpWidthTy Opw,const MCDisassembler * Decoder)311 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
312 AMDGPUDisassembler::OpWidthTy Opw,
313 const MCDisassembler *Decoder) {
314 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
315 if (!DAsm->isGFX90A()) {
316 Imm &= 511;
317 } else {
318 // If atomic has both vdata and vdst their register classes are tied.
319 // The bit is decoded along with the vdst, first operand. We need to
320 // change register class to AGPR if vdst was AGPR.
321 // If a DS instruction has both data0 and data1 their register classes
322 // are also tied.
323 unsigned Opc = Inst.getOpcode();
324 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
325 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
326 : AMDGPU::OpName::vdata;
327 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
328 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
329 if ((int)Inst.getNumOperands() == DataIdx) {
330 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
331 if (IsAGPROperand(Inst, DstIdx, MRI))
332 Imm |= 512;
333 }
334
335 if (TSFlags & SIInstrFlags::DS) {
336 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
337 if ((int)Inst.getNumOperands() == Data2Idx &&
338 IsAGPROperand(Inst, DataIdx, MRI))
339 Imm |= 512;
340 }
341 }
342 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
343 }
344
345 static DecodeStatus
DecodeAVLdSt_32RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)346 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
347 const MCDisassembler *Decoder) {
348 return decodeOperand_AVLdSt_Any(Inst, Imm,
349 AMDGPUDisassembler::OPW32, Decoder);
350 }
351
352 static DecodeStatus
DecodeAVLdSt_64RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)353 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
354 const MCDisassembler *Decoder) {
355 return decodeOperand_AVLdSt_Any(Inst, Imm,
356 AMDGPUDisassembler::OPW64, Decoder);
357 }
358
359 static DecodeStatus
DecodeAVLdSt_96RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)360 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
361 const MCDisassembler *Decoder) {
362 return decodeOperand_AVLdSt_Any(Inst, Imm,
363 AMDGPUDisassembler::OPW96, Decoder);
364 }
365
366 static DecodeStatus
DecodeAVLdSt_128RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)367 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
368 const MCDisassembler *Decoder) {
369 return decodeOperand_AVLdSt_Any(Inst, Imm,
370 AMDGPUDisassembler::OPW128, Decoder);
371 }
372
decodeOperand_SReg_32(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)373 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
374 uint64_t Addr,
375 const MCDisassembler *Decoder) {
376 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
377 return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
378 }
379
380 #define DECODE_SDWA(DecName) \
381 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
382
383 DECODE_SDWA(Src32)
DECODE_SDWA(Src16)384 DECODE_SDWA(Src16)
385 DECODE_SDWA(VopcDst)
386
387 #include "AMDGPUGenDisassemblerTables.inc"
388
389 //===----------------------------------------------------------------------===//
390 //
391 //===----------------------------------------------------------------------===//
392
393 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
394 assert(Bytes.size() >= sizeof(T));
395 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
396 Bytes = Bytes.slice(sizeof(T));
397 return Res;
398 }
399
eat12Bytes(ArrayRef<uint8_t> & Bytes)400 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
401 assert(Bytes.size() >= 12);
402 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
403 Bytes.data());
404 Bytes = Bytes.slice(8);
405 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
406 Bytes.data());
407 Bytes = Bytes.slice(4);
408 return DecoderUInt128(Lo, Hi);
409 }
410
411 // The disassembler is greedy, so we need to check FI operand value to
412 // not parse a dpp if the correct literal is not set. For dpp16 the
413 // autogenerated decoder checks the dpp literal
isValidDPP8(const MCInst & MI)414 static bool isValidDPP8(const MCInst &MI) {
415 using namespace llvm::AMDGPU::DPP;
416 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
417 assert(FiIdx != -1);
418 if ((unsigned)FiIdx >= MI.getNumOperands())
419 return false;
420 unsigned Fi = MI.getOperand(FiIdx).getImm();
421 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
422 }
423
getInstruction(MCInst & MI,uint64_t & Size,ArrayRef<uint8_t> Bytes_,uint64_t Address,raw_ostream & CS) const424 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
425 ArrayRef<uint8_t> Bytes_,
426 uint64_t Address,
427 raw_ostream &CS) const {
428 CommentStream = &CS;
429 bool IsSDWA = false;
430
431 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
432 Bytes = Bytes_.slice(0, MaxInstBytesNum);
433
434 DecodeStatus Res = MCDisassembler::Fail;
435 do {
436 // ToDo: better to switch encoding length using some bit predicate
437 // but it is unknown yet, so try all we can
438
439 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
440 // encodings
441 if (isGFX11Plus() && Bytes.size() >= 12 ) {
442 DecoderUInt128 DecW = eat12Bytes(Bytes);
443 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
444 Address);
445 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
446 break;
447 MI = MCInst(); // clear
448 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
449 Address);
450 if (Res) {
451 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
452 convertVOP3PDPPInst(MI);
453 else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
454 convertVOPCDPPInst(MI); // Special VOP3 case
455 else {
456 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
457 convertVOP3DPPInst(MI); // Regular VOP3 case
458 }
459 break;
460 }
461 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
462 if (Res)
463 break;
464 }
465 // Reinitialize Bytes
466 Bytes = Bytes_.slice(0, MaxInstBytesNum);
467
468 if (Bytes.size() >= 8) {
469 const uint64_t QW = eatBytes<uint64_t>(Bytes);
470
471 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
472 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
473 if (Res) {
474 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
475 == -1)
476 break;
477 if (convertDPP8Inst(MI) == MCDisassembler::Success)
478 break;
479 MI = MCInst(); // clear
480 }
481 }
482
483 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
484 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
485 break;
486 MI = MCInst(); // clear
487
488 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
489 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
490 break;
491 MI = MCInst(); // clear
492
493 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
494 if (Res) break;
495
496 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
497 if (Res) {
498 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
499 convertVOPCDPPInst(MI);
500 break;
501 }
502
503 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
504 if (Res) { IsSDWA = true; break; }
505
506 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
507 if (Res) { IsSDWA = true; break; }
508
509 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
510 if (Res) { IsSDWA = true; break; }
511
512 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
513 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
514 if (Res)
515 break;
516 }
517
518 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
519 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
520 // table first so we print the correct name.
521 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
522 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
523 if (Res)
524 break;
525 }
526 }
527
528 // Reinitialize Bytes as DPP64 could have eaten too much
529 Bytes = Bytes_.slice(0, MaxInstBytesNum);
530
531 // Try decode 32-bit instruction
532 if (Bytes.size() < 4) break;
533 const uint32_t DW = eatBytes<uint32_t>(Bytes);
534 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
535 if (Res) break;
536
537 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
538 if (Res) break;
539
540 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
541 if (Res) break;
542
543 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
544 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
545 if (Res)
546 break;
547 }
548
549 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
550 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
551 if (Res) break;
552 }
553
554 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
555 if (Res) break;
556
557 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
558 if (Res) break;
559
560 if (Bytes.size() < 4) break;
561 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
562
563 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
564 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
565 if (Res)
566 break;
567 }
568
569 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
570 if (Res) break;
571
572 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
573 if (Res) break;
574
575 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
576 if (Res) break;
577
578 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
579 if (Res) break;
580
581 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
582 if (Res)
583 break;
584
585 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
586 } while (false);
587
588 if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
589 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
590 MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
591 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
592 MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
593 MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
594 MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
595 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
596 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
597 MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx11 ||
598 MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
599 MI.getOpcode() == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
600 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10 ||
601 MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx11)) {
602 // Insert dummy unused src2_modifiers.
603 insertNamedMCOperand(MI, MCOperand::createImm(0),
604 AMDGPU::OpName::src2_modifiers);
605 }
606
607 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
608 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
609 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
610 AMDGPU::OpName::cpol);
611 if (CPolPos != -1) {
612 unsigned CPol =
613 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
614 AMDGPU::CPol::GLC : 0;
615 if (MI.getNumOperands() <= (unsigned)CPolPos) {
616 insertNamedMCOperand(MI, MCOperand::createImm(CPol),
617 AMDGPU::OpName::cpol);
618 } else if (CPol) {
619 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
620 }
621 }
622 }
623
624 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
625 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
626 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
627 // GFX90A lost TFE, its place is occupied by ACC.
628 int TFEOpIdx =
629 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
630 if (TFEOpIdx != -1) {
631 auto TFEIter = MI.begin();
632 std::advance(TFEIter, TFEOpIdx);
633 MI.insert(TFEIter, MCOperand::createImm(0));
634 }
635 }
636
637 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
638 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
639 int SWZOpIdx =
640 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
641 if (SWZOpIdx != -1) {
642 auto SWZIter = MI.begin();
643 std::advance(SWZIter, SWZOpIdx);
644 MI.insert(SWZIter, MCOperand::createImm(0));
645 }
646 }
647
648 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
649 int VAddr0Idx =
650 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
651 int RsrcIdx =
652 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
653 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
654 if (VAddr0Idx >= 0 && NSAArgs > 0) {
655 unsigned NSAWords = (NSAArgs + 3) / 4;
656 if (Bytes.size() < 4 * NSAWords) {
657 Res = MCDisassembler::Fail;
658 } else {
659 for (unsigned i = 0; i < NSAArgs; ++i) {
660 const unsigned VAddrIdx = VAddr0Idx + 1 + i;
661 auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
662 MI.insert(MI.begin() + VAddrIdx,
663 createRegOperand(VAddrRCID, Bytes[i]));
664 }
665 Bytes = Bytes.slice(4 * NSAWords);
666 }
667 }
668
669 if (Res)
670 Res = convertMIMGInst(MI);
671 }
672
673 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
674 Res = convertEXPInst(MI);
675
676 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
677 Res = convertVINTERPInst(MI);
678
679 if (Res && IsSDWA)
680 Res = convertSDWAInst(MI);
681
682 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
683 AMDGPU::OpName::vdst_in);
684 if (VDstIn_Idx != -1) {
685 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
686 MCOI::OperandConstraint::TIED_TO);
687 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
688 !MI.getOperand(VDstIn_Idx).isReg() ||
689 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
690 if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
691 MI.erase(&MI.getOperand(VDstIn_Idx));
692 insertNamedMCOperand(MI,
693 MCOperand::createReg(MI.getOperand(Tied).getReg()),
694 AMDGPU::OpName::vdst_in);
695 }
696 }
697
698 int ImmLitIdx =
699 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
700 if (Res && ImmLitIdx != -1)
701 Res = convertFMAanyK(MI, ImmLitIdx);
702
703 // if the opcode was not recognized we'll assume a Size of 4 bytes
704 // (unless there are fewer bytes left)
705 Size = Res ? (MaxInstBytesNum - Bytes.size())
706 : std::min((size_t)4, Bytes_.size());
707 return Res;
708 }
709
convertEXPInst(MCInst & MI) const710 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
711 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
712 // The MCInst still has these fields even though they are no longer encoded
713 // in the GFX11 instruction.
714 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
715 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
716 }
717 return MCDisassembler::Success;
718 }
719
convertVINTERPInst(MCInst & MI) const720 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
721 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
722 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
723 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
724 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
725 // The MCInst has this field that is not directly encoded in the
726 // instruction.
727 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
728 }
729 return MCDisassembler::Success;
730 }
731
convertSDWAInst(MCInst & MI) const732 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
733 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
734 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
735 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
736 // VOPC - insert clamp
737 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
738 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
739 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
740 if (SDst != -1) {
741 // VOPC - insert VCC register as sdst
742 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
743 AMDGPU::OpName::sdst);
744 } else {
745 // VOP1/2 - insert omod if present in instruction
746 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
747 }
748 }
749 return MCDisassembler::Success;
750 }
751
752 struct VOPModifiers {
753 unsigned OpSel = 0;
754 unsigned OpSelHi = 0;
755 unsigned NegLo = 0;
756 unsigned NegHi = 0;
757 };
758
759 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
760 // Note that these values do not affect disassembler output,
761 // so this is only necessary for consistency with src_modifiers.
collectVOPModifiers(const MCInst & MI,bool IsVOP3P=false)762 static VOPModifiers collectVOPModifiers(const MCInst &MI,
763 bool IsVOP3P = false) {
764 VOPModifiers Modifiers;
765 unsigned Opc = MI.getOpcode();
766 const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
767 AMDGPU::OpName::src1_modifiers,
768 AMDGPU::OpName::src2_modifiers};
769 for (int J = 0; J < 3; ++J) {
770 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
771 if (OpIdx == -1)
772 continue;
773
774 unsigned Val = MI.getOperand(OpIdx).getImm();
775
776 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
777 if (IsVOP3P) {
778 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
779 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
780 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
781 } else if (J == 0) {
782 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
783 }
784 }
785
786 return Modifiers;
787 }
788
789 // We must check FI == literal to reject not genuine dpp8 insts, and we must
790 // first add optional MI operands to check FI
convertDPP8Inst(MCInst & MI) const791 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
792 unsigned Opc = MI.getOpcode();
793 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
794 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
795 convertVOP3PDPPInst(MI);
796 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
797 AMDGPU::isVOPC64DPP(Opc)) {
798 convertVOPCDPPInst(MI);
799 } else if (MI.getNumOperands() < DescNumOps &&
800 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
801 auto Mods = collectVOPModifiers(MI);
802 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
803 AMDGPU::OpName::op_sel);
804 } else {
805 // Insert dummy unused src modifiers.
806 if (MI.getNumOperands() < DescNumOps &&
807 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
808 insertNamedMCOperand(MI, MCOperand::createImm(0),
809 AMDGPU::OpName::src0_modifiers);
810
811 if (MI.getNumOperands() < DescNumOps &&
812 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
813 insertNamedMCOperand(MI, MCOperand::createImm(0),
814 AMDGPU::OpName::src1_modifiers);
815 }
816 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
817 }
818
convertVOP3DPPInst(MCInst & MI) const819 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
820 unsigned Opc = MI.getOpcode();
821 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
822 if (MI.getNumOperands() < DescNumOps &&
823 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1) {
824 auto Mods = collectVOPModifiers(MI);
825 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
826 AMDGPU::OpName::op_sel);
827 }
828 return MCDisassembler::Success;
829 }
830
831 // Note that before gfx10, the MIMG encoding provided no information about
832 // VADDR size. Consequently, decoded instructions always show address as if it
833 // has 1 dword, which could be not really so.
convertMIMGInst(MCInst & MI) const834 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
835
836 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
837 AMDGPU::OpName::vdst);
838
839 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
840 AMDGPU::OpName::vdata);
841 int VAddr0Idx =
842 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
843 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
844 AMDGPU::OpName::dmask);
845
846 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
847 AMDGPU::OpName::tfe);
848 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
849 AMDGPU::OpName::d16);
850
851 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
852 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
853 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
854
855 assert(VDataIdx != -1);
856 if (BaseOpcode->BVH) {
857 // Add A16 operand for intersect_ray instructions
858 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
859 addOperand(MI, MCOperand::createImm(1));
860 }
861 return MCDisassembler::Success;
862 }
863
864 bool IsAtomic = (VDstIdx != -1);
865 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
866 bool IsNSA = false;
867 unsigned AddrSize = Info->VAddrDwords;
868
869 if (isGFX10Plus()) {
870 unsigned DimIdx =
871 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
872 int A16Idx =
873 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
874 const AMDGPU::MIMGDimInfo *Dim =
875 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
876 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
877
878 AddrSize =
879 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
880
881 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
882 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
883 if (!IsNSA) {
884 if (AddrSize > 8)
885 AddrSize = 16;
886 } else {
887 if (AddrSize > Info->VAddrDwords) {
888 // The NSA encoding does not contain enough operands for the combination
889 // of base opcode / dimension. Should this be an error?
890 return MCDisassembler::Success;
891 }
892 }
893 }
894
895 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
896 unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
897
898 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
899 if (D16 && AMDGPU::hasPackedD16(STI)) {
900 DstSize = (DstSize + 1) / 2;
901 }
902
903 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
904 DstSize += 1;
905
906 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
907 return MCDisassembler::Success;
908
909 int NewOpcode =
910 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
911 if (NewOpcode == -1)
912 return MCDisassembler::Success;
913
914 // Widen the register to the correct number of enabled channels.
915 unsigned NewVdata = AMDGPU::NoRegister;
916 if (DstSize != Info->VDataDwords) {
917 auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
918
919 // Get first subregister of VData
920 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
921 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
922 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
923
924 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
925 &MRI.getRegClass(DataRCID));
926 if (NewVdata == AMDGPU::NoRegister) {
927 // It's possible to encode this such that the low register + enabled
928 // components exceeds the register count.
929 return MCDisassembler::Success;
930 }
931 }
932
933 // If not using NSA on GFX10+, widen address register to correct size.
934 unsigned NewVAddr0 = AMDGPU::NoRegister;
935 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
936 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
937 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
938 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
939
940 auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
941 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
942 &MRI.getRegClass(AddrRCID));
943 if (NewVAddr0 == AMDGPU::NoRegister)
944 return MCDisassembler::Success;
945 }
946
947 MI.setOpcode(NewOpcode);
948
949 if (NewVdata != AMDGPU::NoRegister) {
950 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
951
952 if (IsAtomic) {
953 // Atomic operations have an additional operand (a copy of data)
954 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
955 }
956 }
957
958 if (NewVAddr0 != AMDGPU::NoRegister) {
959 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
960 } else if (IsNSA) {
961 assert(AddrSize <= Info->VAddrDwords);
962 MI.erase(MI.begin() + VAddr0Idx + AddrSize,
963 MI.begin() + VAddr0Idx + Info->VAddrDwords);
964 }
965
966 return MCDisassembler::Success;
967 }
968
969 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
970 // decoder only adds to src_modifiers, so manually add the bits to the other
971 // operands.
convertVOP3PDPPInst(MCInst & MI) const972 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
973 unsigned Opc = MI.getOpcode();
974 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
975 auto Mods = collectVOPModifiers(MI, true);
976
977 if (MI.getNumOperands() < DescNumOps &&
978 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in) != -1)
979 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
980
981 if (MI.getNumOperands() < DescNumOps &&
982 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel) != -1)
983 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
984 AMDGPU::OpName::op_sel);
985 if (MI.getNumOperands() < DescNumOps &&
986 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::op_sel_hi) != -1)
987 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
988 AMDGPU::OpName::op_sel_hi);
989 if (MI.getNumOperands() < DescNumOps &&
990 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_lo) != -1)
991 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
992 AMDGPU::OpName::neg_lo);
993 if (MI.getNumOperands() < DescNumOps &&
994 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::neg_hi) != -1)
995 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
996 AMDGPU::OpName::neg_hi);
997
998 return MCDisassembler::Success;
999 }
1000
1001 // Create dummy old operand and insert optional operands
convertVOPCDPPInst(MCInst & MI) const1002 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1003 unsigned Opc = MI.getOpcode();
1004 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1005
1006 if (MI.getNumOperands() < DescNumOps &&
1007 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::old) != -1)
1008 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1009
1010 if (MI.getNumOperands() < DescNumOps &&
1011 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
1012 insertNamedMCOperand(MI, MCOperand::createImm(0),
1013 AMDGPU::OpName::src0_modifiers);
1014
1015 if (MI.getNumOperands() < DescNumOps &&
1016 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
1017 insertNamedMCOperand(MI, MCOperand::createImm(0),
1018 AMDGPU::OpName::src1_modifiers);
1019 return MCDisassembler::Success;
1020 }
1021
convertFMAanyK(MCInst & MI,int ImmLitIdx) const1022 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1023 int ImmLitIdx) const {
1024 assert(HasLiteral && "Should have decoded a literal");
1025 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1026 unsigned DescNumOps = Desc.getNumOperands();
1027 insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1028 AMDGPU::OpName::immDeferred);
1029 assert(DescNumOps == MI.getNumOperands());
1030 for (unsigned I = 0; I < DescNumOps; ++I) {
1031 auto &Op = MI.getOperand(I);
1032 auto OpType = Desc.OpInfo[I].OperandType;
1033 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1034 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1035 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1036 IsDeferredOp)
1037 Op.setImm(Literal);
1038 }
1039 return MCDisassembler::Success;
1040 }
1041
getRegClassName(unsigned RegClassID) const1042 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1043 return getContext().getRegisterInfo()->
1044 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1045 }
1046
1047 inline
errOperand(unsigned V,const Twine & ErrMsg) const1048 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1049 const Twine& ErrMsg) const {
1050 *CommentStream << "Error: " + ErrMsg;
1051
1052 // ToDo: add support for error operands to MCInst.h
1053 // return MCOperand::createError(V);
1054 return MCOperand();
1055 }
1056
1057 inline
createRegOperand(unsigned int RegId) const1058 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1059 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1060 }
1061
1062 inline
createRegOperand(unsigned RegClassID,unsigned Val) const1063 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1064 unsigned Val) const {
1065 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1066 if (Val >= RegCl.getNumRegs())
1067 return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1068 ": unknown register " + Twine(Val));
1069 return createRegOperand(RegCl.getRegister(Val));
1070 }
1071
1072 inline
createSRegOperand(unsigned SRegClassID,unsigned Val) const1073 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1074 unsigned Val) const {
1075 // ToDo: SI/CI have 104 SGPRs, VI - 102
1076 // Valery: here we accepting as much as we can, let assembler sort it out
1077 int shift = 0;
1078 switch (SRegClassID) {
1079 case AMDGPU::SGPR_32RegClassID:
1080 case AMDGPU::TTMP_32RegClassID:
1081 break;
1082 case AMDGPU::SGPR_64RegClassID:
1083 case AMDGPU::TTMP_64RegClassID:
1084 shift = 1;
1085 break;
1086 case AMDGPU::SGPR_128RegClassID:
1087 case AMDGPU::TTMP_128RegClassID:
1088 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1089 // this bundle?
1090 case AMDGPU::SGPR_256RegClassID:
1091 case AMDGPU::TTMP_256RegClassID:
1092 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1093 // this bundle?
1094 case AMDGPU::SGPR_512RegClassID:
1095 case AMDGPU::TTMP_512RegClassID:
1096 shift = 2;
1097 break;
1098 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1099 // this bundle?
1100 default:
1101 llvm_unreachable("unhandled register class");
1102 }
1103
1104 if (Val % (1 << shift)) {
1105 *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1106 << ": scalar reg isn't aligned " << Val;
1107 }
1108
1109 return createRegOperand(SRegClassID, Val >> shift);
1110 }
1111
decodeOperand_VS_32(unsigned Val) const1112 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1113 return decodeSrcOp(OPW32, Val);
1114 }
1115
decodeOperand_VS_64(unsigned Val) const1116 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1117 return decodeSrcOp(OPW64, Val);
1118 }
1119
decodeOperand_VS_128(unsigned Val) const1120 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1121 return decodeSrcOp(OPW128, Val);
1122 }
1123
decodeOperand_VSrc16(unsigned Val) const1124 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1125 return decodeSrcOp(OPW16, Val);
1126 }
1127
decodeOperand_VSrcV216(unsigned Val) const1128 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1129 return decodeSrcOp(OPWV216, Val);
1130 }
1131
decodeOperand_VSrcV232(unsigned Val) const1132 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1133 return decodeSrcOp(OPWV232, Val);
1134 }
1135
decodeOperand_VGPR_32(unsigned Val) const1136 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1137 // Some instructions have operand restrictions beyond what the encoding
1138 // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1139 // high bit.
1140 Val &= 255;
1141
1142 return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1143 }
1144
decodeOperand_VRegOrLds_32(unsigned Val) const1145 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1146 return decodeSrcOp(OPW32, Val);
1147 }
1148
decodeOperand_AGPR_32(unsigned Val) const1149 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1150 return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1151 }
1152
decodeOperand_AReg_64(unsigned Val) const1153 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1154 return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1155 }
1156
decodeOperand_AReg_128(unsigned Val) const1157 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1158 return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1159 }
1160
decodeOperand_AReg_256(unsigned Val) const1161 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1162 return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1163 }
1164
decodeOperand_AReg_512(unsigned Val) const1165 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1166 return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1167 }
1168
decodeOperand_AReg_1024(unsigned Val) const1169 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1170 return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1171 }
1172
decodeOperand_AV_32(unsigned Val) const1173 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1174 return decodeSrcOp(OPW32, Val);
1175 }
1176
decodeOperand_AV_64(unsigned Val) const1177 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1178 return decodeSrcOp(OPW64, Val);
1179 }
1180
decodeOperand_AV_128(unsigned Val) const1181 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1182 return decodeSrcOp(OPW128, Val);
1183 }
1184
decodeOperand_AVDst_128(unsigned Val) const1185 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1186 using namespace AMDGPU::EncValues;
1187 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1188 return decodeSrcOp(OPW128, Val | IS_VGPR);
1189 }
1190
decodeOperand_AVDst_512(unsigned Val) const1191 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1192 using namespace AMDGPU::EncValues;
1193 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1194 return decodeSrcOp(OPW512, Val | IS_VGPR);
1195 }
1196
decodeOperand_VReg_64(unsigned Val) const1197 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1198 return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1199 }
1200
decodeOperand_VReg_96(unsigned Val) const1201 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1202 return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1203 }
1204
decodeOperand_VReg_128(unsigned Val) const1205 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1206 return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1207 }
1208
decodeOperand_VReg_256(unsigned Val) const1209 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1210 return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1211 }
1212
decodeOperand_VReg_512(unsigned Val) const1213 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1214 return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1215 }
1216
decodeOperand_VReg_1024(unsigned Val) const1217 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1218 return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1219 }
1220
decodeOperand_SReg_32(unsigned Val) const1221 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1222 // table-gen generated disassembler doesn't care about operand types
1223 // leaving only registry class so SSrc_32 operand turns into SReg_32
1224 // and therefore we accept immediates and literals here as well
1225 return decodeSrcOp(OPW32, Val);
1226 }
1227
decodeOperand_SReg_32_XM0_XEXEC(unsigned Val) const1228 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1229 unsigned Val) const {
1230 // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1231 return decodeOperand_SReg_32(Val);
1232 }
1233
decodeOperand_SReg_32_XEXEC_HI(unsigned Val) const1234 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1235 unsigned Val) const {
1236 // SReg_32_XM0 is SReg_32 without EXEC_HI
1237 return decodeOperand_SReg_32(Val);
1238 }
1239
decodeOperand_SRegOrLds_32(unsigned Val) const1240 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1241 // table-gen generated disassembler doesn't care about operand types
1242 // leaving only registry class so SSrc_32 operand turns into SReg_32
1243 // and therefore we accept immediates and literals here as well
1244 return decodeSrcOp(OPW32, Val);
1245 }
1246
decodeOperand_SReg_64(unsigned Val) const1247 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1248 return decodeSrcOp(OPW64, Val);
1249 }
1250
decodeOperand_SReg_64_XEXEC(unsigned Val) const1251 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1252 return decodeSrcOp(OPW64, Val);
1253 }
1254
decodeOperand_SReg_128(unsigned Val) const1255 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1256 return decodeSrcOp(OPW128, Val);
1257 }
1258
decodeOperand_SReg_256(unsigned Val) const1259 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1260 return decodeDstOp(OPW256, Val);
1261 }
1262
decodeOperand_SReg_512(unsigned Val) const1263 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1264 return decodeDstOp(OPW512, Val);
1265 }
1266
1267 // Decode Literals for insts which always have a literal in the encoding
1268 MCOperand
decodeMandatoryLiteralConstant(unsigned Val) const1269 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1270 if (HasLiteral) {
1271 assert(
1272 AMDGPU::hasVOPD(STI) &&
1273 "Should only decode multiple kimm with VOPD, check VSrc operand types");
1274 if (Literal != Val)
1275 return errOperand(Val, "More than one unique literal is illegal");
1276 }
1277 HasLiteral = true;
1278 Literal = Val;
1279 return MCOperand::createImm(Literal);
1280 }
1281
decodeLiteralConstant() const1282 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1283 // For now all literal constants are supposed to be unsigned integer
1284 // ToDo: deal with signed/unsigned 64-bit integer constants
1285 // ToDo: deal with float/double constants
1286 if (!HasLiteral) {
1287 if (Bytes.size() < 4) {
1288 return errOperand(0, "cannot read literal, inst bytes left " +
1289 Twine(Bytes.size()));
1290 }
1291 HasLiteral = true;
1292 Literal = eatBytes<uint32_t>(Bytes);
1293 }
1294 return MCOperand::createImm(Literal);
1295 }
1296
decodeIntImmed(unsigned Imm)1297 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1298 using namespace AMDGPU::EncValues;
1299
1300 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1301 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1302 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1303 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1304 // Cast prevents negative overflow.
1305 }
1306
getInlineImmVal32(unsigned Imm)1307 static int64_t getInlineImmVal32(unsigned Imm) {
1308 switch (Imm) {
1309 case 240:
1310 return FloatToBits(0.5f);
1311 case 241:
1312 return FloatToBits(-0.5f);
1313 case 242:
1314 return FloatToBits(1.0f);
1315 case 243:
1316 return FloatToBits(-1.0f);
1317 case 244:
1318 return FloatToBits(2.0f);
1319 case 245:
1320 return FloatToBits(-2.0f);
1321 case 246:
1322 return FloatToBits(4.0f);
1323 case 247:
1324 return FloatToBits(-4.0f);
1325 case 248: // 1 / (2 * PI)
1326 return 0x3e22f983;
1327 default:
1328 llvm_unreachable("invalid fp inline imm");
1329 }
1330 }
1331
getInlineImmVal64(unsigned Imm)1332 static int64_t getInlineImmVal64(unsigned Imm) {
1333 switch (Imm) {
1334 case 240:
1335 return DoubleToBits(0.5);
1336 case 241:
1337 return DoubleToBits(-0.5);
1338 case 242:
1339 return DoubleToBits(1.0);
1340 case 243:
1341 return DoubleToBits(-1.0);
1342 case 244:
1343 return DoubleToBits(2.0);
1344 case 245:
1345 return DoubleToBits(-2.0);
1346 case 246:
1347 return DoubleToBits(4.0);
1348 case 247:
1349 return DoubleToBits(-4.0);
1350 case 248: // 1 / (2 * PI)
1351 return 0x3fc45f306dc9c882;
1352 default:
1353 llvm_unreachable("invalid fp inline imm");
1354 }
1355 }
1356
getInlineImmVal16(unsigned Imm)1357 static int64_t getInlineImmVal16(unsigned Imm) {
1358 switch (Imm) {
1359 case 240:
1360 return 0x3800;
1361 case 241:
1362 return 0xB800;
1363 case 242:
1364 return 0x3C00;
1365 case 243:
1366 return 0xBC00;
1367 case 244:
1368 return 0x4000;
1369 case 245:
1370 return 0xC000;
1371 case 246:
1372 return 0x4400;
1373 case 247:
1374 return 0xC400;
1375 case 248: // 1 / (2 * PI)
1376 return 0x3118;
1377 default:
1378 llvm_unreachable("invalid fp inline imm");
1379 }
1380 }
1381
decodeFPImmed(OpWidthTy Width,unsigned Imm)1382 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1383 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1384 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1385
1386 // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1387 switch (Width) {
1388 case OPW32:
1389 case OPW128: // splat constants
1390 case OPW512:
1391 case OPW1024:
1392 case OPWV232:
1393 return MCOperand::createImm(getInlineImmVal32(Imm));
1394 case OPW64:
1395 case OPW256:
1396 return MCOperand::createImm(getInlineImmVal64(Imm));
1397 case OPW16:
1398 case OPWV216:
1399 return MCOperand::createImm(getInlineImmVal16(Imm));
1400 default:
1401 llvm_unreachable("implement me");
1402 }
1403 }
1404
getVgprClassId(const OpWidthTy Width) const1405 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1406 using namespace AMDGPU;
1407
1408 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1409 switch (Width) {
1410 default: // fall
1411 case OPW32:
1412 case OPW16:
1413 case OPWV216:
1414 return VGPR_32RegClassID;
1415 case OPW64:
1416 case OPWV232: return VReg_64RegClassID;
1417 case OPW96: return VReg_96RegClassID;
1418 case OPW128: return VReg_128RegClassID;
1419 case OPW160: return VReg_160RegClassID;
1420 case OPW256: return VReg_256RegClassID;
1421 case OPW512: return VReg_512RegClassID;
1422 case OPW1024: return VReg_1024RegClassID;
1423 }
1424 }
1425
getAgprClassId(const OpWidthTy Width) const1426 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1427 using namespace AMDGPU;
1428
1429 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1430 switch (Width) {
1431 default: // fall
1432 case OPW32:
1433 case OPW16:
1434 case OPWV216:
1435 return AGPR_32RegClassID;
1436 case OPW64:
1437 case OPWV232: return AReg_64RegClassID;
1438 case OPW96: return AReg_96RegClassID;
1439 case OPW128: return AReg_128RegClassID;
1440 case OPW160: return AReg_160RegClassID;
1441 case OPW256: return AReg_256RegClassID;
1442 case OPW512: return AReg_512RegClassID;
1443 case OPW1024: return AReg_1024RegClassID;
1444 }
1445 }
1446
1447
getSgprClassId(const OpWidthTy Width) const1448 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1449 using namespace AMDGPU;
1450
1451 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1452 switch (Width) {
1453 default: // fall
1454 case OPW32:
1455 case OPW16:
1456 case OPWV216:
1457 return SGPR_32RegClassID;
1458 case OPW64:
1459 case OPWV232: return SGPR_64RegClassID;
1460 case OPW96: return SGPR_96RegClassID;
1461 case OPW128: return SGPR_128RegClassID;
1462 case OPW160: return SGPR_160RegClassID;
1463 case OPW256: return SGPR_256RegClassID;
1464 case OPW512: return SGPR_512RegClassID;
1465 }
1466 }
1467
getTtmpClassId(const OpWidthTy Width) const1468 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1469 using namespace AMDGPU;
1470
1471 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1472 switch (Width) {
1473 default: // fall
1474 case OPW32:
1475 case OPW16:
1476 case OPWV216:
1477 return TTMP_32RegClassID;
1478 case OPW64:
1479 case OPWV232: return TTMP_64RegClassID;
1480 case OPW128: return TTMP_128RegClassID;
1481 case OPW256: return TTMP_256RegClassID;
1482 case OPW512: return TTMP_512RegClassID;
1483 }
1484 }
1485
getTTmpIdx(unsigned Val) const1486 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1487 using namespace AMDGPU::EncValues;
1488
1489 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1490 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1491
1492 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1493 }
1494
decodeSrcOp(const OpWidthTy Width,unsigned Val,bool MandatoryLiteral) const1495 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1496 bool MandatoryLiteral) const {
1497 using namespace AMDGPU::EncValues;
1498
1499 assert(Val < 1024); // enum10
1500
1501 bool IsAGPR = Val & 512;
1502 Val &= 511;
1503
1504 if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1505 return createRegOperand(IsAGPR ? getAgprClassId(Width)
1506 : getVgprClassId(Width), Val - VGPR_MIN);
1507 }
1508 if (Val <= SGPR_MAX) {
1509 // "SGPR_MIN <= Val" is always true and causes compilation warning.
1510 static_assert(SGPR_MIN == 0, "");
1511 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1512 }
1513
1514 int TTmpIdx = getTTmpIdx(Val);
1515 if (TTmpIdx >= 0) {
1516 return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1517 }
1518
1519 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1520 return decodeIntImmed(Val);
1521
1522 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1523 return decodeFPImmed(Width, Val);
1524
1525 if (Val == LITERAL_CONST) {
1526 if (MandatoryLiteral)
1527 // Keep a sentinel value for deferred setting
1528 return MCOperand::createImm(LITERAL_CONST);
1529 else
1530 return decodeLiteralConstant();
1531 }
1532
1533 switch (Width) {
1534 case OPW32:
1535 case OPW16:
1536 case OPWV216:
1537 return decodeSpecialReg32(Val);
1538 case OPW64:
1539 case OPWV232:
1540 return decodeSpecialReg64(Val);
1541 default:
1542 llvm_unreachable("unexpected immediate type");
1543 }
1544 }
1545
decodeDstOp(const OpWidthTy Width,unsigned Val) const1546 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1547 using namespace AMDGPU::EncValues;
1548
1549 assert(Val < 128);
1550 assert(Width == OPW256 || Width == OPW512);
1551
1552 if (Val <= SGPR_MAX) {
1553 // "SGPR_MIN <= Val" is always true and causes compilation warning.
1554 static_assert(SGPR_MIN == 0, "");
1555 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1556 }
1557
1558 int TTmpIdx = getTTmpIdx(Val);
1559 if (TTmpIdx >= 0) {
1560 return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1561 }
1562
1563 llvm_unreachable("unknown dst register");
1564 }
1565
1566 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1567 // opposite of bit 0 of DstX.
decodeVOPDDstYOp(MCInst & Inst,unsigned Val) const1568 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1569 unsigned Val) const {
1570 int VDstXInd =
1571 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1572 assert(VDstXInd != -1);
1573 assert(Inst.getOperand(VDstXInd).isReg());
1574 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1575 Val |= ~XDstReg & 1;
1576 auto Width = llvm::AMDGPUDisassembler::OPW32;
1577 return createRegOperand(getVgprClassId(Width), Val);
1578 }
1579
decodeSpecialReg32(unsigned Val) const1580 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1581 using namespace AMDGPU;
1582
1583 switch (Val) {
1584 case 102: return createRegOperand(FLAT_SCR_LO);
1585 case 103: return createRegOperand(FLAT_SCR_HI);
1586 case 104: return createRegOperand(XNACK_MASK_LO);
1587 case 105: return createRegOperand(XNACK_MASK_HI);
1588 case 106: return createRegOperand(VCC_LO);
1589 case 107: return createRegOperand(VCC_HI);
1590 case 108: return createRegOperand(TBA_LO);
1591 case 109: return createRegOperand(TBA_HI);
1592 case 110: return createRegOperand(TMA_LO);
1593 case 111: return createRegOperand(TMA_HI);
1594 case 124:
1595 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1596 case 125:
1597 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1598 case 126: return createRegOperand(EXEC_LO);
1599 case 127: return createRegOperand(EXEC_HI);
1600 case 235: return createRegOperand(SRC_SHARED_BASE);
1601 case 236: return createRegOperand(SRC_SHARED_LIMIT);
1602 case 237: return createRegOperand(SRC_PRIVATE_BASE);
1603 case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1604 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1605 case 251: return createRegOperand(SRC_VCCZ);
1606 case 252: return createRegOperand(SRC_EXECZ);
1607 case 253: return createRegOperand(SRC_SCC);
1608 case 254: return createRegOperand(LDS_DIRECT);
1609 default: break;
1610 }
1611 return errOperand(Val, "unknown operand encoding " + Twine(Val));
1612 }
1613
decodeSpecialReg64(unsigned Val) const1614 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1615 using namespace AMDGPU;
1616
1617 switch (Val) {
1618 case 102: return createRegOperand(FLAT_SCR);
1619 case 104: return createRegOperand(XNACK_MASK);
1620 case 106: return createRegOperand(VCC);
1621 case 108: return createRegOperand(TBA);
1622 case 110: return createRegOperand(TMA);
1623 case 124:
1624 if (isGFX11Plus())
1625 return createRegOperand(SGPR_NULL);
1626 break;
1627 case 125:
1628 if (!isGFX11Plus())
1629 return createRegOperand(SGPR_NULL);
1630 break;
1631 case 126: return createRegOperand(EXEC);
1632 case 235: return createRegOperand(SRC_SHARED_BASE);
1633 case 236: return createRegOperand(SRC_SHARED_LIMIT);
1634 case 237: return createRegOperand(SRC_PRIVATE_BASE);
1635 case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1636 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1637 case 251: return createRegOperand(SRC_VCCZ);
1638 case 252: return createRegOperand(SRC_EXECZ);
1639 case 253: return createRegOperand(SRC_SCC);
1640 default: break;
1641 }
1642 return errOperand(Val, "unknown operand encoding " + Twine(Val));
1643 }
1644
decodeSDWASrc(const OpWidthTy Width,const unsigned Val) const1645 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1646 const unsigned Val) const {
1647 using namespace AMDGPU::SDWA;
1648 using namespace AMDGPU::EncValues;
1649
1650 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1651 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1652 // XXX: cast to int is needed to avoid stupid warning:
1653 // compare with unsigned is always true
1654 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1655 Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1656 return createRegOperand(getVgprClassId(Width),
1657 Val - SDWA9EncValues::SRC_VGPR_MIN);
1658 }
1659 if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1660 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1661 : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1662 return createSRegOperand(getSgprClassId(Width),
1663 Val - SDWA9EncValues::SRC_SGPR_MIN);
1664 }
1665 if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1666 Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1667 return createSRegOperand(getTtmpClassId(Width),
1668 Val - SDWA9EncValues::SRC_TTMP_MIN);
1669 }
1670
1671 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1672
1673 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1674 return decodeIntImmed(SVal);
1675
1676 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1677 return decodeFPImmed(Width, SVal);
1678
1679 return decodeSpecialReg32(SVal);
1680 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1681 return createRegOperand(getVgprClassId(Width), Val);
1682 }
1683 llvm_unreachable("unsupported target");
1684 }
1685
decodeSDWASrc16(unsigned Val) const1686 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1687 return decodeSDWASrc(OPW16, Val);
1688 }
1689
decodeSDWASrc32(unsigned Val) const1690 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1691 return decodeSDWASrc(OPW32, Val);
1692 }
1693
decodeSDWAVopcDst(unsigned Val) const1694 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1695 using namespace AMDGPU::SDWA;
1696
1697 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1698 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1699 "SDWAVopcDst should be present only on GFX9+");
1700
1701 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1702
1703 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1704 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1705
1706 int TTmpIdx = getTTmpIdx(Val);
1707 if (TTmpIdx >= 0) {
1708 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1709 return createSRegOperand(TTmpClsId, TTmpIdx);
1710 } else if (Val > SGPR_MAX) {
1711 return IsWave64 ? decodeSpecialReg64(Val)
1712 : decodeSpecialReg32(Val);
1713 } else {
1714 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1715 }
1716 } else {
1717 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1718 }
1719 }
1720
decodeBoolReg(unsigned Val) const1721 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1722 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1723 decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1724 }
1725
isVI() const1726 bool AMDGPUDisassembler::isVI() const {
1727 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1728 }
1729
isGFX9() const1730 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1731
isGFX90A() const1732 bool AMDGPUDisassembler::isGFX90A() const {
1733 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1734 }
1735
isGFX9Plus() const1736 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1737
isGFX10() const1738 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1739
isGFX10Plus() const1740 bool AMDGPUDisassembler::isGFX10Plus() const {
1741 return AMDGPU::isGFX10Plus(STI);
1742 }
1743
isGFX11() const1744 bool AMDGPUDisassembler::isGFX11() const {
1745 return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1746 }
1747
isGFX11Plus() const1748 bool AMDGPUDisassembler::isGFX11Plus() const {
1749 return AMDGPU::isGFX11Plus(STI);
1750 }
1751
1752
hasArchitectedFlatScratch() const1753 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1754 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1755 }
1756
1757 //===----------------------------------------------------------------------===//
1758 // AMDGPU specific symbol handling
1759 //===----------------------------------------------------------------------===//
1760 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
1761 do { \
1762 KdStream << Indent << DIRECTIVE " " \
1763 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
1764 } while (0)
1765
1766 // NOLINTNEXTLINE(readability-identifier-naming)
decodeCOMPUTE_PGM_RSRC1(uint32_t FourByteBuffer,raw_string_ostream & KdStream) const1767 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1768 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1769 using namespace amdhsa;
1770 StringRef Indent = "\t";
1771
1772 // We cannot accurately backward compute #VGPRs used from
1773 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1774 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1775 // simply calculate the inverse of what the assembler does.
1776
1777 uint32_t GranulatedWorkitemVGPRCount =
1778 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1779 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1780
1781 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1782 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1783
1784 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1785
1786 // We cannot backward compute values used to calculate
1787 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1788 // directives can't be computed:
1789 // .amdhsa_reserve_vcc
1790 // .amdhsa_reserve_flat_scratch
1791 // .amdhsa_reserve_xnack_mask
1792 // They take their respective default values if not specified in the assembly.
1793 //
1794 // GRANULATED_WAVEFRONT_SGPR_COUNT
1795 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1796 //
1797 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1798 // are set to 0. So while disassembling we consider that:
1799 //
1800 // GRANULATED_WAVEFRONT_SGPR_COUNT
1801 // = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1802 //
1803 // The disassembler cannot recover the original values of those 3 directives.
1804
1805 uint32_t GranulatedWavefrontSGPRCount =
1806 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1807 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1808
1809 if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1810 return MCDisassembler::Fail;
1811
1812 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1813 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1814
1815 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1816 if (!hasArchitectedFlatScratch())
1817 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1818 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1819 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1820
1821 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1822 return MCDisassembler::Fail;
1823
1824 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1825 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1826 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1827 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1828 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1829 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1830 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1831 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1832
1833 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1834 return MCDisassembler::Fail;
1835
1836 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1837
1838 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1839 return MCDisassembler::Fail;
1840
1841 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1842
1843 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1844 return MCDisassembler::Fail;
1845
1846 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1847 return MCDisassembler::Fail;
1848
1849 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1850
1851 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1852 return MCDisassembler::Fail;
1853
1854 if (isGFX10Plus()) {
1855 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1856 COMPUTE_PGM_RSRC1_WGP_MODE);
1857 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1858 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1859 }
1860 return MCDisassembler::Success;
1861 }
1862
1863 // NOLINTNEXTLINE(readability-identifier-naming)
decodeCOMPUTE_PGM_RSRC2(uint32_t FourByteBuffer,raw_string_ostream & KdStream) const1864 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1865 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1866 using namespace amdhsa;
1867 StringRef Indent = "\t";
1868 if (hasArchitectedFlatScratch())
1869 PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1870 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1871 else
1872 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1873 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1874 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1875 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1876 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1877 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1878 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1879 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1880 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1881 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1882 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1883 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1884
1885 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1886 return MCDisassembler::Fail;
1887
1888 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1889 return MCDisassembler::Fail;
1890
1891 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1892 return MCDisassembler::Fail;
1893
1894 PRINT_DIRECTIVE(
1895 ".amdhsa_exception_fp_ieee_invalid_op",
1896 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1897 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1898 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1899 PRINT_DIRECTIVE(
1900 ".amdhsa_exception_fp_ieee_div_zero",
1901 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1902 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1903 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1904 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1905 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1906 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1907 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1908 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1909 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1910
1911 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1912 return MCDisassembler::Fail;
1913
1914 return MCDisassembler::Success;
1915 }
1916
1917 #undef PRINT_DIRECTIVE
1918
1919 MCDisassembler::DecodeStatus
decodeKernelDescriptorDirective(DataExtractor::Cursor & Cursor,ArrayRef<uint8_t> Bytes,raw_string_ostream & KdStream) const1920 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1921 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1922 raw_string_ostream &KdStream) const {
1923 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
1924 do { \
1925 KdStream << Indent << DIRECTIVE " " \
1926 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
1927 } while (0)
1928
1929 uint16_t TwoByteBuffer = 0;
1930 uint32_t FourByteBuffer = 0;
1931
1932 StringRef ReservedBytes;
1933 StringRef Indent = "\t";
1934
1935 assert(Bytes.size() == 64);
1936 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1937
1938 switch (Cursor.tell()) {
1939 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1940 FourByteBuffer = DE.getU32(Cursor);
1941 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1942 << '\n';
1943 return MCDisassembler::Success;
1944
1945 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1946 FourByteBuffer = DE.getU32(Cursor);
1947 KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1948 << FourByteBuffer << '\n';
1949 return MCDisassembler::Success;
1950
1951 case amdhsa::KERNARG_SIZE_OFFSET:
1952 FourByteBuffer = DE.getU32(Cursor);
1953 KdStream << Indent << ".amdhsa_kernarg_size "
1954 << FourByteBuffer << '\n';
1955 return MCDisassembler::Success;
1956
1957 case amdhsa::RESERVED0_OFFSET:
1958 // 4 reserved bytes, must be 0.
1959 ReservedBytes = DE.getBytes(Cursor, 4);
1960 for (int I = 0; I < 4; ++I) {
1961 if (ReservedBytes[I] != 0) {
1962 return MCDisassembler::Fail;
1963 }
1964 }
1965 return MCDisassembler::Success;
1966
1967 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1968 // KERNEL_CODE_ENTRY_BYTE_OFFSET
1969 // So far no directive controls this for Code Object V3, so simply skip for
1970 // disassembly.
1971 DE.skip(Cursor, 8);
1972 return MCDisassembler::Success;
1973
1974 case amdhsa::RESERVED1_OFFSET:
1975 // 20 reserved bytes, must be 0.
1976 ReservedBytes = DE.getBytes(Cursor, 20);
1977 for (int I = 0; I < 20; ++I) {
1978 if (ReservedBytes[I] != 0) {
1979 return MCDisassembler::Fail;
1980 }
1981 }
1982 return MCDisassembler::Success;
1983
1984 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1985 // COMPUTE_PGM_RSRC3
1986 // - Only set for GFX10, GFX6-9 have this to be 0.
1987 // - Currently no directives directly control this.
1988 FourByteBuffer = DE.getU32(Cursor);
1989 if (!isGFX10Plus() && FourByteBuffer) {
1990 return MCDisassembler::Fail;
1991 }
1992 return MCDisassembler::Success;
1993
1994 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1995 FourByteBuffer = DE.getU32(Cursor);
1996 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1997 MCDisassembler::Fail) {
1998 return MCDisassembler::Fail;
1999 }
2000 return MCDisassembler::Success;
2001
2002 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2003 FourByteBuffer = DE.getU32(Cursor);
2004 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2005 MCDisassembler::Fail) {
2006 return MCDisassembler::Fail;
2007 }
2008 return MCDisassembler::Success;
2009
2010 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2011 using namespace amdhsa;
2012 TwoByteBuffer = DE.getU16(Cursor);
2013
2014 if (!hasArchitectedFlatScratch())
2015 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2016 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2017 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2018 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2019 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2020 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2021 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2022 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2023 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2024 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2025 if (!hasArchitectedFlatScratch())
2026 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2027 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2028 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2029 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2030
2031 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2032 return MCDisassembler::Fail;
2033
2034 // Reserved for GFX9
2035 if (isGFX9() &&
2036 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2037 return MCDisassembler::Fail;
2038 } else if (isGFX10Plus()) {
2039 PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2040 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2041 }
2042
2043 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2044 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2045
2046 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2047 return MCDisassembler::Fail;
2048
2049 return MCDisassembler::Success;
2050
2051 case amdhsa::RESERVED2_OFFSET:
2052 // 6 bytes from here are reserved, must be 0.
2053 ReservedBytes = DE.getBytes(Cursor, 6);
2054 for (int I = 0; I < 6; ++I) {
2055 if (ReservedBytes[I] != 0)
2056 return MCDisassembler::Fail;
2057 }
2058 return MCDisassembler::Success;
2059
2060 default:
2061 llvm_unreachable("Unhandled index. Case statements cover everything.");
2062 return MCDisassembler::Fail;
2063 }
2064 #undef PRINT_DIRECTIVE
2065 }
2066
decodeKernelDescriptor(StringRef KdName,ArrayRef<uint8_t> Bytes,uint64_t KdAddress) const2067 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2068 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2069 // CP microcode requires the kernel descriptor to be 64 aligned.
2070 if (Bytes.size() != 64 || KdAddress % 64 != 0)
2071 return MCDisassembler::Fail;
2072
2073 std::string Kd;
2074 raw_string_ostream KdStream(Kd);
2075 KdStream << ".amdhsa_kernel " << KdName << '\n';
2076
2077 DataExtractor::Cursor C(0);
2078 while (C && C.tell() < Bytes.size()) {
2079 MCDisassembler::DecodeStatus Status =
2080 decodeKernelDescriptorDirective(C, Bytes, KdStream);
2081
2082 cantFail(C.takeError());
2083
2084 if (Status == MCDisassembler::Fail)
2085 return MCDisassembler::Fail;
2086 }
2087 KdStream << ".end_amdhsa_kernel\n";
2088 outs() << KdStream.str();
2089 return MCDisassembler::Success;
2090 }
2091
2092 Optional<MCDisassembler::DecodeStatus>
onSymbolStart(SymbolInfoTy & Symbol,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const2093 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2094 ArrayRef<uint8_t> Bytes, uint64_t Address,
2095 raw_ostream &CStream) const {
2096 // Right now only kernel descriptor needs to be handled.
2097 // We ignore all other symbols for target specific handling.
2098 // TODO:
2099 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2100 // Object V2 and V3 when symbols are marked protected.
2101
2102 // amd_kernel_code_t for Code Object V2.
2103 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2104 Size = 256;
2105 return MCDisassembler::Fail;
2106 }
2107
2108 // Code Object V3 kernel descriptors.
2109 StringRef Name = Symbol.Name;
2110 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2111 Size = 64; // Size = 64 regardless of success or failure.
2112 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2113 }
2114 return None;
2115 }
2116
2117 //===----------------------------------------------------------------------===//
2118 // AMDGPUSymbolizer
2119 //===----------------------------------------------------------------------===//
2120
2121 // Try to find symbol name for specified label
tryAddingSymbolicOperand(MCInst & Inst,raw_ostream &,int64_t Value,uint64_t,bool IsBranch,uint64_t,uint64_t,uint64_t)2122 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2123 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2124 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2125 uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2126
2127 if (!IsBranch) {
2128 return false;
2129 }
2130
2131 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2132 if (!Symbols)
2133 return false;
2134
2135 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2136 return Val.Addr == static_cast<uint64_t>(Value) &&
2137 Val.Type == ELF::STT_NOTYPE;
2138 });
2139 if (Result != Symbols->end()) {
2140 auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2141 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2142 Inst.addOperand(MCOperand::createExpr(Add));
2143 return true;
2144 }
2145 // Add to list of referenced addresses, so caller can synthesize a label.
2146 ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2147 return false;
2148 }
2149
tryAddingPcLoadReferenceComment(raw_ostream & cStream,int64_t Value,uint64_t Address)2150 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2151 int64_t Value,
2152 uint64_t Address) {
2153 llvm_unreachable("unimplemented");
2154 }
2155
2156 //===----------------------------------------------------------------------===//
2157 // Initialization
2158 //===----------------------------------------------------------------------===//
2159
createAMDGPUSymbolizer(const Triple &,LLVMOpInfoCallback,LLVMSymbolLookupCallback,void * DisInfo,MCContext * Ctx,std::unique_ptr<MCRelocationInfo> && RelInfo)2160 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2161 LLVMOpInfoCallback /*GetOpInfo*/,
2162 LLVMSymbolLookupCallback /*SymbolLookUp*/,
2163 void *DisInfo,
2164 MCContext *Ctx,
2165 std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2166 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2167 }
2168
createAMDGPUDisassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)2169 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2170 const MCSubtargetInfo &STI,
2171 MCContext &Ctx) {
2172 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2173 }
2174
LLVMInitializeAMDGPUDisassembler()2175 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2176 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2177 createAMDGPUDisassembler);
2178 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2179 createAMDGPUSymbolizer);
2180 }
2181