1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30
31 static llvm::cl::opt<unsigned>
32 AmdhsaCodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden,
33 llvm::cl::desc("AMDHSA Code Object Version"),
34 llvm::cl::init(4));
35
36 // TODO-GFX11: Remove this when full 16-bit codegen is implemented.
37 static llvm::cl::opt<bool>
38 LimitTo128VGPRs("amdgpu-limit-to-128-vgprs", llvm::cl::Hidden,
39 llvm::cl::desc("Never use more than 128 VGPRs"));
40
41 namespace {
42
43 /// \returns Bit mask for given bit \p Shift and bit \p Width.
getBitMask(unsigned Shift,unsigned Width)44 unsigned getBitMask(unsigned Shift, unsigned Width) {
45 return ((1 << Width) - 1) << Shift;
46 }
47
48 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
49 ///
50 /// \returns Packed \p Dst.
packBits(unsigned Src,unsigned Dst,unsigned Shift,unsigned Width)51 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
52 unsigned Mask = getBitMask(Shift, Width);
53 return ((Src << Shift) & Mask) | (Dst & ~Mask);
54 }
55
56 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Unpacked bits.
unpackBits(unsigned Src,unsigned Shift,unsigned Width)59 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
60 return (Src & getBitMask(Shift, Width)) >> Shift;
61 }
62
63 /// \returns Vmcnt bit shift (lower bits).
getVmcntBitShiftLo(unsigned VersionMajor)64 unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
65 return VersionMajor >= 11 ? 10 : 0;
66 }
67
68 /// \returns Vmcnt bit width (lower bits).
getVmcntBitWidthLo(unsigned VersionMajor)69 unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
70 return VersionMajor >= 11 ? 6 : 4;
71 }
72
73 /// \returns Expcnt bit shift.
getExpcntBitShift(unsigned VersionMajor)74 unsigned getExpcntBitShift(unsigned VersionMajor) {
75 return VersionMajor >= 11 ? 0 : 4;
76 }
77
78 /// \returns Expcnt bit width.
getExpcntBitWidth(unsigned VersionMajor)79 unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
80
81 /// \returns Lgkmcnt bit shift.
getLgkmcntBitShift(unsigned VersionMajor)82 unsigned getLgkmcntBitShift(unsigned VersionMajor) {
83 return VersionMajor >= 11 ? 4 : 8;
84 }
85
86 /// \returns Lgkmcnt bit width.
getLgkmcntBitWidth(unsigned VersionMajor)87 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
88 return VersionMajor >= 10 ? 6 : 4;
89 }
90
91 /// \returns Vmcnt bit shift (higher bits).
getVmcntBitShiftHi(unsigned VersionMajor)92 unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
93
94 /// \returns Vmcnt bit width (higher bits).
getVmcntBitWidthHi(unsigned VersionMajor)95 unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
96 return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
97 }
98
99 } // end namespace anonymous
100
101 namespace llvm {
102
103 namespace AMDGPU {
104
getHsaAbiVersion(const MCSubtargetInfo * STI)105 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
106 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
107 return None;
108
109 switch (AmdhsaCodeObjectVersion) {
110 case 2:
111 return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
112 case 3:
113 return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
114 case 4:
115 return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
116 case 5:
117 return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
118 default:
119 report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
120 Twine(AmdhsaCodeObjectVersion));
121 }
122 }
123
isHsaAbiVersion2(const MCSubtargetInfo * STI)124 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
125 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
126 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
127 return false;
128 }
129
isHsaAbiVersion3(const MCSubtargetInfo * STI)130 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
131 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
132 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
133 return false;
134 }
135
isHsaAbiVersion4(const MCSubtargetInfo * STI)136 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
137 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
138 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
139 return false;
140 }
141
isHsaAbiVersion5(const MCSubtargetInfo * STI)142 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
143 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
144 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
145 return false;
146 }
147
isHsaAbiVersion3AndAbove(const MCSubtargetInfo * STI)148 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
149 return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
150 isHsaAbiVersion5(STI);
151 }
152
getAmdhsaCodeObjectVersion()153 unsigned getAmdhsaCodeObjectVersion() {
154 return AmdhsaCodeObjectVersion;
155 }
156
getMultigridSyncArgImplicitArgPosition()157 unsigned getMultigridSyncArgImplicitArgPosition() {
158 switch (AmdhsaCodeObjectVersion) {
159 case 2:
160 case 3:
161 case 4:
162 return 48;
163 case 5:
164 return AMDGPU::ImplicitArg::MULTIGRID_SYNC_ARG_OFFSET;
165 default:
166 llvm_unreachable("Unexpected code object version");
167 return 0;
168 }
169 }
170
171
172 // FIXME: All such magic numbers about the ABI should be in a
173 // central TD file.
getHostcallImplicitArgPosition()174 unsigned getHostcallImplicitArgPosition() {
175 switch (AmdhsaCodeObjectVersion) {
176 case 2:
177 case 3:
178 case 4:
179 return 24;
180 case 5:
181 return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET;
182 default:
183 llvm_unreachable("Unexpected code object version");
184 return 0;
185 }
186 }
187
188 #define GET_MIMGBaseOpcodesTable_IMPL
189 #define GET_MIMGDimInfoTable_IMPL
190 #define GET_MIMGInfoTable_IMPL
191 #define GET_MIMGLZMappingTable_IMPL
192 #define GET_MIMGMIPMappingTable_IMPL
193 #define GET_MIMGBiasMappingTable_IMPL
194 #define GET_MIMGOffsetMappingTable_IMPL
195 #define GET_MIMGG16MappingTable_IMPL
196 #define GET_MAIInstInfoTable_IMPL
197 #include "AMDGPUGenSearchableTables.inc"
198
getMIMGOpcode(unsigned BaseOpcode,unsigned MIMGEncoding,unsigned VDataDwords,unsigned VAddrDwords)199 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
200 unsigned VDataDwords, unsigned VAddrDwords) {
201 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
202 VDataDwords, VAddrDwords);
203 return Info ? Info->Opcode : -1;
204 }
205
getMIMGBaseOpcode(unsigned Opc)206 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
207 const MIMGInfo *Info = getMIMGInfo(Opc);
208 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
209 }
210
getMaskedMIMGOp(unsigned Opc,unsigned NewChannels)211 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
212 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
213 const MIMGInfo *NewInfo =
214 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
215 NewChannels, OrigInfo->VAddrDwords);
216 return NewInfo ? NewInfo->Opcode : -1;
217 }
218
getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo * BaseOpcode,const MIMGDimInfo * Dim,bool IsA16,bool IsG16Supported)219 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
220 const MIMGDimInfo *Dim, bool IsA16,
221 bool IsG16Supported) {
222 unsigned AddrWords = BaseOpcode->NumExtraArgs;
223 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
224 (BaseOpcode->LodOrClampOrMip ? 1 : 0);
225 if (IsA16)
226 AddrWords += divideCeil(AddrComponents, 2);
227 else
228 AddrWords += AddrComponents;
229
230 // Note: For subtargets that support A16 but not G16, enabling A16 also
231 // enables 16 bit gradients.
232 // For subtargets that support A16 (operand) and G16 (done with a different
233 // instruction encoding), they are independent.
234
235 if (BaseOpcode->Gradients) {
236 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
237 // There are two gradients per coordinate, we pack them separately.
238 // For the 3d case,
239 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
240 AddrWords += alignTo<2>(Dim->NumGradients / 2);
241 else
242 AddrWords += Dim->NumGradients;
243 }
244 return AddrWords;
245 }
246
247 struct MUBUFInfo {
248 uint16_t Opcode;
249 uint16_t BaseOpcode;
250 uint8_t elements;
251 bool has_vaddr;
252 bool has_srsrc;
253 bool has_soffset;
254 bool IsBufferInv;
255 };
256
257 struct MTBUFInfo {
258 uint16_t Opcode;
259 uint16_t BaseOpcode;
260 uint8_t elements;
261 bool has_vaddr;
262 bool has_srsrc;
263 bool has_soffset;
264 };
265
266 struct SMInfo {
267 uint16_t Opcode;
268 bool IsBuffer;
269 };
270
271 struct VOPInfo {
272 uint16_t Opcode;
273 bool IsSingle;
274 };
275
276 struct VOPC64DPPInfo {
277 uint16_t Opcode;
278 };
279
280 struct VOPDComponentInfo {
281 uint16_t BaseVOP;
282 uint16_t VOPDOp;
283 bool CanBeVOPDX;
284 };
285
286 struct VOPDInfo {
287 uint16_t Opcode;
288 uint16_t OpX;
289 uint16_t OpY;
290 };
291
292 #define GET_MTBUFInfoTable_DECL
293 #define GET_MTBUFInfoTable_IMPL
294 #define GET_MUBUFInfoTable_DECL
295 #define GET_MUBUFInfoTable_IMPL
296 #define GET_SMInfoTable_DECL
297 #define GET_SMInfoTable_IMPL
298 #define GET_VOP1InfoTable_DECL
299 #define GET_VOP1InfoTable_IMPL
300 #define GET_VOP2InfoTable_DECL
301 #define GET_VOP2InfoTable_IMPL
302 #define GET_VOP3InfoTable_DECL
303 #define GET_VOP3InfoTable_IMPL
304 #define GET_VOPC64DPPTable_DECL
305 #define GET_VOPC64DPPTable_IMPL
306 #define GET_VOPC64DPP8Table_DECL
307 #define GET_VOPC64DPP8Table_IMPL
308 #define GET_VOPDComponentTable_DECL
309 #define GET_VOPDComponentTable_IMPL
310 #define GET_VOPDPairs_DECL
311 #define GET_VOPDPairs_IMPL
312 #define GET_WMMAOpcode2AddrMappingTable_DECL
313 #define GET_WMMAOpcode2AddrMappingTable_IMPL
314 #define GET_WMMAOpcode3AddrMappingTable_DECL
315 #define GET_WMMAOpcode3AddrMappingTable_IMPL
316 #include "AMDGPUGenSearchableTables.inc"
317
getMTBUFBaseOpcode(unsigned Opc)318 int getMTBUFBaseOpcode(unsigned Opc) {
319 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
320 return Info ? Info->BaseOpcode : -1;
321 }
322
getMTBUFOpcode(unsigned BaseOpc,unsigned Elements)323 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
324 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
325 return Info ? Info->Opcode : -1;
326 }
327
getMTBUFElements(unsigned Opc)328 int getMTBUFElements(unsigned Opc) {
329 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
330 return Info ? Info->elements : 0;
331 }
332
getMTBUFHasVAddr(unsigned Opc)333 bool getMTBUFHasVAddr(unsigned Opc) {
334 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
335 return Info ? Info->has_vaddr : false;
336 }
337
getMTBUFHasSrsrc(unsigned Opc)338 bool getMTBUFHasSrsrc(unsigned Opc) {
339 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
340 return Info ? Info->has_srsrc : false;
341 }
342
getMTBUFHasSoffset(unsigned Opc)343 bool getMTBUFHasSoffset(unsigned Opc) {
344 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
345 return Info ? Info->has_soffset : false;
346 }
347
getMUBUFBaseOpcode(unsigned Opc)348 int getMUBUFBaseOpcode(unsigned Opc) {
349 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
350 return Info ? Info->BaseOpcode : -1;
351 }
352
getMUBUFOpcode(unsigned BaseOpc,unsigned Elements)353 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
354 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
355 return Info ? Info->Opcode : -1;
356 }
357
getMUBUFElements(unsigned Opc)358 int getMUBUFElements(unsigned Opc) {
359 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
360 return Info ? Info->elements : 0;
361 }
362
getMUBUFHasVAddr(unsigned Opc)363 bool getMUBUFHasVAddr(unsigned Opc) {
364 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
365 return Info ? Info->has_vaddr : false;
366 }
367
getMUBUFHasSrsrc(unsigned Opc)368 bool getMUBUFHasSrsrc(unsigned Opc) {
369 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
370 return Info ? Info->has_srsrc : false;
371 }
372
getMUBUFHasSoffset(unsigned Opc)373 bool getMUBUFHasSoffset(unsigned Opc) {
374 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
375 return Info ? Info->has_soffset : false;
376 }
377
getMUBUFIsBufferInv(unsigned Opc)378 bool getMUBUFIsBufferInv(unsigned Opc) {
379 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
380 return Info ? Info->IsBufferInv : false;
381 }
382
getSMEMIsBuffer(unsigned Opc)383 bool getSMEMIsBuffer(unsigned Opc) {
384 const SMInfo *Info = getSMEMOpcodeHelper(Opc);
385 return Info ? Info->IsBuffer : false;
386 }
387
getVOP1IsSingle(unsigned Opc)388 bool getVOP1IsSingle(unsigned Opc) {
389 const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
390 return Info ? Info->IsSingle : false;
391 }
392
getVOP2IsSingle(unsigned Opc)393 bool getVOP2IsSingle(unsigned Opc) {
394 const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
395 return Info ? Info->IsSingle : false;
396 }
397
getVOP3IsSingle(unsigned Opc)398 bool getVOP3IsSingle(unsigned Opc) {
399 const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
400 return Info ? Info->IsSingle : false;
401 }
402
isVOPC64DPP(unsigned Opc)403 bool isVOPC64DPP(unsigned Opc) {
404 return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
405 }
406
getMAIIsDGEMM(unsigned Opc)407 bool getMAIIsDGEMM(unsigned Opc) {
408 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
409 return Info ? Info->is_dgemm : false;
410 }
411
getMAIIsGFX940XDL(unsigned Opc)412 bool getMAIIsGFX940XDL(unsigned Opc) {
413 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
414 return Info ? Info->is_gfx940_xdl : false;
415 }
416
getCanBeVOPD(unsigned Opc)417 CanBeVOPD getCanBeVOPD(unsigned Opc) {
418 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
419 if (Info)
420 return {Info->CanBeVOPDX, true};
421 else
422 return {false, false};
423 }
424
getVOPDOpcode(unsigned Opc)425 unsigned getVOPDOpcode(unsigned Opc) {
426 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
427 return Info ? Info->VOPDOp : ~0u;
428 }
429
mapWMMA2AddrTo3AddrOpcode(unsigned Opc)430 unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
431 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
432 return Info ? Info->Opcode3Addr : ~0u;
433 }
434
mapWMMA3AddrTo2AddrOpcode(unsigned Opc)435 unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
436 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
437 return Info ? Info->Opcode2Addr : ~0u;
438 }
439
440 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any
441 // header files, so we need to wrap it in a function that takes unsigned
442 // instead.
getMCOpcode(uint16_t Opcode,unsigned Gen)443 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
444 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
445 }
446
getVOPDFull(unsigned OpX,unsigned OpY)447 int getVOPDFull(unsigned OpX, unsigned OpY) {
448 const VOPDInfo *Info = getVOPDInfoFromComponentOpcodes(OpX, OpY);
449 return Info ? Info->Opcode : -1;
450 }
451
452 namespace IsaInfo {
453
AMDGPUTargetID(const MCSubtargetInfo & STI)454 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
455 : STI(STI), XnackSetting(TargetIDSetting::Any),
456 SramEccSetting(TargetIDSetting::Any) {
457 if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
458 XnackSetting = TargetIDSetting::Unsupported;
459 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
460 SramEccSetting = TargetIDSetting::Unsupported;
461 }
462
setTargetIDFromFeaturesString(StringRef FS)463 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
464 // Check if xnack or sramecc is explicitly enabled or disabled. In the
465 // absence of the target features we assume we must generate code that can run
466 // in any environment.
467 SubtargetFeatures Features(FS);
468 Optional<bool> XnackRequested;
469 Optional<bool> SramEccRequested;
470
471 for (const std::string &Feature : Features.getFeatures()) {
472 if (Feature == "+xnack")
473 XnackRequested = true;
474 else if (Feature == "-xnack")
475 XnackRequested = false;
476 else if (Feature == "+sramecc")
477 SramEccRequested = true;
478 else if (Feature == "-sramecc")
479 SramEccRequested = false;
480 }
481
482 bool XnackSupported = isXnackSupported();
483 bool SramEccSupported = isSramEccSupported();
484
485 if (XnackRequested) {
486 if (XnackSupported) {
487 XnackSetting =
488 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
489 } else {
490 // If a specific xnack setting was requested and this GPU does not support
491 // xnack emit a warning. Setting will remain set to "Unsupported".
492 if (*XnackRequested) {
493 errs() << "warning: xnack 'On' was requested for a processor that does "
494 "not support it!\n";
495 } else {
496 errs() << "warning: xnack 'Off' was requested for a processor that "
497 "does not support it!\n";
498 }
499 }
500 }
501
502 if (SramEccRequested) {
503 if (SramEccSupported) {
504 SramEccSetting =
505 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
506 } else {
507 // If a specific sramecc setting was requested and this GPU does not
508 // support sramecc emit a warning. Setting will remain set to
509 // "Unsupported".
510 if (*SramEccRequested) {
511 errs() << "warning: sramecc 'On' was requested for a processor that "
512 "does not support it!\n";
513 } else {
514 errs() << "warning: sramecc 'Off' was requested for a processor that "
515 "does not support it!\n";
516 }
517 }
518 }
519 }
520
521 static TargetIDSetting
getTargetIDSettingFromFeatureString(StringRef FeatureString)522 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
523 if (FeatureString.endswith("-"))
524 return TargetIDSetting::Off;
525 if (FeatureString.endswith("+"))
526 return TargetIDSetting::On;
527
528 llvm_unreachable("Malformed feature string");
529 }
530
setTargetIDFromTargetIDStream(StringRef TargetID)531 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
532 SmallVector<StringRef, 3> TargetIDSplit;
533 TargetID.split(TargetIDSplit, ':');
534
535 for (const auto &FeatureString : TargetIDSplit) {
536 if (FeatureString.startswith("xnack"))
537 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
538 if (FeatureString.startswith("sramecc"))
539 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
540 }
541 }
542
toString() const543 std::string AMDGPUTargetID::toString() const {
544 std::string StringRep;
545 raw_string_ostream StreamRep(StringRep);
546
547 auto TargetTriple = STI.getTargetTriple();
548 auto Version = getIsaVersion(STI.getCPU());
549
550 StreamRep << TargetTriple.getArchName() << '-'
551 << TargetTriple.getVendorName() << '-'
552 << TargetTriple.getOSName() << '-'
553 << TargetTriple.getEnvironmentName() << '-';
554
555 std::string Processor;
556 // TODO: Following else statement is present here because we used various
557 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
558 // Remove once all aliases are removed from GCNProcessors.td.
559 if (Version.Major >= 9)
560 Processor = STI.getCPU().str();
561 else
562 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
563 Twine(Version.Stepping))
564 .str();
565
566 std::string Features;
567 if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
568 switch (*HsaAbiVersion) {
569 case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
570 // Code object V2 only supported specific processors and had fixed
571 // settings for the XNACK.
572 if (Processor == "gfx600") {
573 } else if (Processor == "gfx601") {
574 } else if (Processor == "gfx602") {
575 } else if (Processor == "gfx700") {
576 } else if (Processor == "gfx701") {
577 } else if (Processor == "gfx702") {
578 } else if (Processor == "gfx703") {
579 } else if (Processor == "gfx704") {
580 } else if (Processor == "gfx705") {
581 } else if (Processor == "gfx801") {
582 if (!isXnackOnOrAny())
583 report_fatal_error(
584 "AMD GPU code object V2 does not support processor " +
585 Twine(Processor) + " without XNACK");
586 } else if (Processor == "gfx802") {
587 } else if (Processor == "gfx803") {
588 } else if (Processor == "gfx805") {
589 } else if (Processor == "gfx810") {
590 if (!isXnackOnOrAny())
591 report_fatal_error(
592 "AMD GPU code object V2 does not support processor " +
593 Twine(Processor) + " without XNACK");
594 } else if (Processor == "gfx900") {
595 if (isXnackOnOrAny())
596 Processor = "gfx901";
597 } else if (Processor == "gfx902") {
598 if (isXnackOnOrAny())
599 Processor = "gfx903";
600 } else if (Processor == "gfx904") {
601 if (isXnackOnOrAny())
602 Processor = "gfx905";
603 } else if (Processor == "gfx906") {
604 if (isXnackOnOrAny())
605 Processor = "gfx907";
606 } else if (Processor == "gfx90c") {
607 if (isXnackOnOrAny())
608 report_fatal_error(
609 "AMD GPU code object V2 does not support processor " +
610 Twine(Processor) + " with XNACK being ON or ANY");
611 } else {
612 report_fatal_error(
613 "AMD GPU code object V2 does not support processor " +
614 Twine(Processor));
615 }
616 break;
617 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
618 // xnack.
619 if (isXnackOnOrAny())
620 Features += "+xnack";
621 // In code object v2 and v3, "sramecc" feature was spelled with a
622 // hyphen ("sram-ecc").
623 if (isSramEccOnOrAny())
624 Features += "+sram-ecc";
625 break;
626 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
627 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
628 // sramecc.
629 if (getSramEccSetting() == TargetIDSetting::Off)
630 Features += ":sramecc-";
631 else if (getSramEccSetting() == TargetIDSetting::On)
632 Features += ":sramecc+";
633 // xnack.
634 if (getXnackSetting() == TargetIDSetting::Off)
635 Features += ":xnack-";
636 else if (getXnackSetting() == TargetIDSetting::On)
637 Features += ":xnack+";
638 break;
639 default:
640 break;
641 }
642 }
643
644 StreamRep << Processor << Features;
645
646 StreamRep.flush();
647 return StringRep;
648 }
649
getWavefrontSize(const MCSubtargetInfo * STI)650 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
651 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
652 return 16;
653 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
654 return 32;
655
656 return 64;
657 }
658
getLocalMemorySize(const MCSubtargetInfo * STI)659 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
660 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
661 return 32768;
662 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
663 return 65536;
664
665 return 0;
666 }
667
getEUsPerCU(const MCSubtargetInfo * STI)668 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
669 // "Per CU" really means "per whatever functional block the waves of a
670 // workgroup must share". For gfx10 in CU mode this is the CU, which contains
671 // two SIMDs.
672 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
673 return 2;
674 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
675 // two CUs, so a total of four SIMDs.
676 return 4;
677 }
678
getMaxWorkGroupsPerCU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)679 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
680 unsigned FlatWorkGroupSize) {
681 assert(FlatWorkGroupSize != 0);
682 if (STI->getTargetTriple().getArch() != Triple::amdgcn)
683 return 8;
684 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
685 if (N == 1)
686 return 40;
687 N = 40 / N;
688 return std::min(N, 16u);
689 }
690
getMinWavesPerEU(const MCSubtargetInfo * STI)691 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
692 return 1;
693 }
694
getMaxWavesPerEU(const MCSubtargetInfo * STI)695 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
696 // FIXME: Need to take scratch memory into account.
697 if (isGFX90A(*STI))
698 return 8;
699 if (!isGFX10Plus(*STI))
700 return 10;
701 return hasGFX10_3Insts(*STI) ? 16 : 20;
702 }
703
getWavesPerEUForWorkGroup(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)704 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
705 unsigned FlatWorkGroupSize) {
706 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
707 getEUsPerCU(STI));
708 }
709
getMinFlatWorkGroupSize(const MCSubtargetInfo * STI)710 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
711 return 1;
712 }
713
getMaxFlatWorkGroupSize(const MCSubtargetInfo * STI)714 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
715 // Some subtargets allow encoding 2048, but this isn't tested or supported.
716 return 1024;
717 }
718
getWavesPerWorkGroup(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)719 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
720 unsigned FlatWorkGroupSize) {
721 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
722 }
723
getSGPRAllocGranule(const MCSubtargetInfo * STI)724 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
725 IsaVersion Version = getIsaVersion(STI->getCPU());
726 if (Version.Major >= 10)
727 return getAddressableNumSGPRs(STI);
728 if (Version.Major >= 8)
729 return 16;
730 return 8;
731 }
732
getSGPREncodingGranule(const MCSubtargetInfo * STI)733 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
734 return 8;
735 }
736
getTotalNumSGPRs(const MCSubtargetInfo * STI)737 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
738 IsaVersion Version = getIsaVersion(STI->getCPU());
739 if (Version.Major >= 8)
740 return 800;
741 return 512;
742 }
743
getAddressableNumSGPRs(const MCSubtargetInfo * STI)744 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
745 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
746 return FIXED_NUM_SGPRS_FOR_INIT_BUG;
747
748 IsaVersion Version = getIsaVersion(STI->getCPU());
749 if (Version.Major >= 10)
750 return 106;
751 if (Version.Major >= 8)
752 return 102;
753 return 104;
754 }
755
getMinNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)756 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
757 assert(WavesPerEU != 0);
758
759 IsaVersion Version = getIsaVersion(STI->getCPU());
760 if (Version.Major >= 10)
761 return 0;
762
763 if (WavesPerEU >= getMaxWavesPerEU(STI))
764 return 0;
765
766 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
767 if (STI->getFeatureBits().test(FeatureTrapHandler))
768 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
769 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
770 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
771 }
772
getMaxNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU,bool Addressable)773 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
774 bool Addressable) {
775 assert(WavesPerEU != 0);
776
777 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
778 IsaVersion Version = getIsaVersion(STI->getCPU());
779 if (Version.Major >= 10)
780 return Addressable ? AddressableNumSGPRs : 108;
781 if (Version.Major >= 8 && !Addressable)
782 AddressableNumSGPRs = 112;
783 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
784 if (STI->getFeatureBits().test(FeatureTrapHandler))
785 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
786 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
787 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
788 }
789
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed,bool XNACKUsed)790 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
791 bool FlatScrUsed, bool XNACKUsed) {
792 unsigned ExtraSGPRs = 0;
793 if (VCCUsed)
794 ExtraSGPRs = 2;
795
796 IsaVersion Version = getIsaVersion(STI->getCPU());
797 if (Version.Major >= 10)
798 return ExtraSGPRs;
799
800 if (Version.Major < 8) {
801 if (FlatScrUsed)
802 ExtraSGPRs = 4;
803 } else {
804 if (XNACKUsed)
805 ExtraSGPRs = 4;
806
807 if (FlatScrUsed ||
808 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
809 ExtraSGPRs = 6;
810 }
811
812 return ExtraSGPRs;
813 }
814
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed)815 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
816 bool FlatScrUsed) {
817 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
818 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
819 }
820
getNumSGPRBlocks(const MCSubtargetInfo * STI,unsigned NumSGPRs)821 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
822 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
823 // SGPRBlocks is actual number of SGPR blocks minus 1.
824 return NumSGPRs / getSGPREncodingGranule(STI) - 1;
825 }
826
getVGPRAllocGranule(const MCSubtargetInfo * STI,Optional<bool> EnableWavefrontSize32)827 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
828 Optional<bool> EnableWavefrontSize32) {
829 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
830 return 8;
831
832 bool IsWave32 = EnableWavefrontSize32 ?
833 *EnableWavefrontSize32 :
834 STI->getFeatureBits().test(FeatureWavefrontSize32);
835
836 if (hasGFX10_3Insts(*STI))
837 return IsWave32 ? 16 : 8;
838
839 return IsWave32 ? 8 : 4;
840 }
841
getVGPREncodingGranule(const MCSubtargetInfo * STI,Optional<bool> EnableWavefrontSize32)842 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
843 Optional<bool> EnableWavefrontSize32) {
844 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
845 return 8;
846
847 bool IsWave32 = EnableWavefrontSize32 ?
848 *EnableWavefrontSize32 :
849 STI->getFeatureBits().test(FeatureWavefrontSize32);
850
851 return IsWave32 ? 8 : 4;
852 }
853
getTotalNumVGPRs(const MCSubtargetInfo * STI)854 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
855 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
856 return 512;
857 if (!isGFX10Plus(*STI))
858 return 256;
859 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
860 }
861
getAddressableNumVGPRs(const MCSubtargetInfo * STI)862 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
863 if (LimitTo128VGPRs.getNumOccurrences() ? LimitTo128VGPRs
864 : isGFX11Plus(*STI)) {
865 // GFX11 changes the encoding of 16-bit operands in VOP1/2/C instructions
866 // such that values 128..255 no longer mean v128..v255, they mean
867 // v0.hi..v127.hi instead. Until the compiler understands this, it is not
868 // safe to use v128..v255.
869 // TODO-GFX11: Remove this when full 16-bit codegen is implemented.
870 return 128;
871 }
872 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
873 return 512;
874 return 256;
875 }
876
getMinNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)877 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
878 assert(WavesPerEU != 0);
879
880 if (WavesPerEU >= getMaxWavesPerEU(STI))
881 return 0;
882 unsigned MinNumVGPRs =
883 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
884 getVGPRAllocGranule(STI)) + 1;
885 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
886 }
887
getMaxNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)888 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
889 assert(WavesPerEU != 0);
890
891 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
892 getVGPRAllocGranule(STI));
893 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
894 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
895 }
896
getNumVGPRBlocks(const MCSubtargetInfo * STI,unsigned NumVGPRs,Optional<bool> EnableWavefrontSize32)897 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
898 Optional<bool> EnableWavefrontSize32) {
899 NumVGPRs = alignTo(std::max(1u, NumVGPRs),
900 getVGPREncodingGranule(STI, EnableWavefrontSize32));
901 // VGPRBlocks is actual number of VGPR blocks minus 1.
902 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
903 }
904
905 } // end namespace IsaInfo
906
initDefaultAMDKernelCodeT(amd_kernel_code_t & Header,const MCSubtargetInfo * STI)907 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
908 const MCSubtargetInfo *STI) {
909 IsaVersion Version = getIsaVersion(STI->getCPU());
910
911 memset(&Header, 0, sizeof(Header));
912
913 Header.amd_kernel_code_version_major = 1;
914 Header.amd_kernel_code_version_minor = 2;
915 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
916 Header.amd_machine_version_major = Version.Major;
917 Header.amd_machine_version_minor = Version.Minor;
918 Header.amd_machine_version_stepping = Version.Stepping;
919 Header.kernel_code_entry_byte_offset = sizeof(Header);
920 Header.wavefront_size = 6;
921
922 // If the code object does not support indirect functions, then the value must
923 // be 0xffffffff.
924 Header.call_convention = -1;
925
926 // These alignment values are specified in powers of two, so alignment =
927 // 2^n. The minimum alignment is 2^4 = 16.
928 Header.kernarg_segment_alignment = 4;
929 Header.group_segment_alignment = 4;
930 Header.private_segment_alignment = 4;
931
932 if (Version.Major >= 10) {
933 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
934 Header.wavefront_size = 5;
935 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
936 }
937 Header.compute_pgm_resource_registers |=
938 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
939 S_00B848_MEM_ORDERED(1);
940 }
941 }
942
getDefaultAmdhsaKernelDescriptor(const MCSubtargetInfo * STI)943 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
944 const MCSubtargetInfo *STI) {
945 IsaVersion Version = getIsaVersion(STI->getCPU());
946
947 amdhsa::kernel_descriptor_t KD;
948 memset(&KD, 0, sizeof(KD));
949
950 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
951 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
952 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
953 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
954 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
955 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
956 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
957 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
958 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
959 if (Version.Major >= 10) {
960 AMDHSA_BITS_SET(KD.kernel_code_properties,
961 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
962 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
963 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
964 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
965 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
966 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
967 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
968 }
969 if (AMDGPU::isGFX90A(*STI)) {
970 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
971 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
972 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
973 }
974 return KD;
975 }
976
isGroupSegment(const GlobalValue * GV)977 bool isGroupSegment(const GlobalValue *GV) {
978 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
979 }
980
isGlobalSegment(const GlobalValue * GV)981 bool isGlobalSegment(const GlobalValue *GV) {
982 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
983 }
984
isReadOnlySegment(const GlobalValue * GV)985 bool isReadOnlySegment(const GlobalValue *GV) {
986 unsigned AS = GV->getAddressSpace();
987 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
988 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
989 }
990
shouldEmitConstantsToTextSection(const Triple & TT)991 bool shouldEmitConstantsToTextSection(const Triple &TT) {
992 return TT.getArch() == Triple::r600;
993 }
994
getIntegerAttribute(const Function & F,StringRef Name,int Default)995 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
996 Attribute A = F.getFnAttribute(Name);
997 int Result = Default;
998
999 if (A.isStringAttribute()) {
1000 StringRef Str = A.getValueAsString();
1001 if (Str.getAsInteger(0, Result)) {
1002 LLVMContext &Ctx = F.getContext();
1003 Ctx.emitError("can't parse integer attribute " + Name);
1004 }
1005 }
1006
1007 return Result;
1008 }
1009
getIntegerPairAttribute(const Function & F,StringRef Name,std::pair<int,int> Default,bool OnlyFirstRequired)1010 std::pair<int, int> getIntegerPairAttribute(const Function &F,
1011 StringRef Name,
1012 std::pair<int, int> Default,
1013 bool OnlyFirstRequired) {
1014 Attribute A = F.getFnAttribute(Name);
1015 if (!A.isStringAttribute())
1016 return Default;
1017
1018 LLVMContext &Ctx = F.getContext();
1019 std::pair<int, int> Ints = Default;
1020 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1021 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1022 Ctx.emitError("can't parse first integer attribute " + Name);
1023 return Default;
1024 }
1025 if (Strs.second.trim().getAsInteger(0, Ints.second)) {
1026 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1027 Ctx.emitError("can't parse second integer attribute " + Name);
1028 return Default;
1029 }
1030 }
1031
1032 return Ints;
1033 }
1034
getVmcntBitMask(const IsaVersion & Version)1035 unsigned getVmcntBitMask(const IsaVersion &Version) {
1036 return (1 << (getVmcntBitWidthLo(Version.Major) +
1037 getVmcntBitWidthHi(Version.Major))) -
1038 1;
1039 }
1040
getExpcntBitMask(const IsaVersion & Version)1041 unsigned getExpcntBitMask(const IsaVersion &Version) {
1042 return (1 << getExpcntBitWidth(Version.Major)) - 1;
1043 }
1044
getLgkmcntBitMask(const IsaVersion & Version)1045 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
1046 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1047 }
1048
getWaitcntBitMask(const IsaVersion & Version)1049 unsigned getWaitcntBitMask(const IsaVersion &Version) {
1050 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1051 getVmcntBitWidthLo(Version.Major));
1052 unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1053 getExpcntBitWidth(Version.Major));
1054 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1055 getLgkmcntBitWidth(Version.Major));
1056 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1057 getVmcntBitWidthHi(Version.Major));
1058 return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1059 }
1060
decodeVmcnt(const IsaVersion & Version,unsigned Waitcnt)1061 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1062 unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1063 getVmcntBitWidthLo(Version.Major));
1064 unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1065 getVmcntBitWidthHi(Version.Major));
1066 return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1067 }
1068
decodeExpcnt(const IsaVersion & Version,unsigned Waitcnt)1069 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1070 return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1071 getExpcntBitWidth(Version.Major));
1072 }
1073
decodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt)1074 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1075 return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1076 getLgkmcntBitWidth(Version.Major));
1077 }
1078
decodeWaitcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned & Vmcnt,unsigned & Expcnt,unsigned & Lgkmcnt)1079 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
1080 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
1081 Vmcnt = decodeVmcnt(Version, Waitcnt);
1082 Expcnt = decodeExpcnt(Version, Waitcnt);
1083 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1084 }
1085
decodeWaitcnt(const IsaVersion & Version,unsigned Encoded)1086 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1087 Waitcnt Decoded;
1088 Decoded.VmCnt = decodeVmcnt(Version, Encoded);
1089 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1090 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
1091 return Decoded;
1092 }
1093
encodeVmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Vmcnt)1094 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1095 unsigned Vmcnt) {
1096 Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1097 getVmcntBitWidthLo(Version.Major));
1098 return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1099 getVmcntBitShiftHi(Version.Major),
1100 getVmcntBitWidthHi(Version.Major));
1101 }
1102
encodeExpcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Expcnt)1103 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1104 unsigned Expcnt) {
1105 return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1106 getExpcntBitWidth(Version.Major));
1107 }
1108
encodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Lgkmcnt)1109 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1110 unsigned Lgkmcnt) {
1111 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1112 getLgkmcntBitWidth(Version.Major));
1113 }
1114
encodeWaitcnt(const IsaVersion & Version,unsigned Vmcnt,unsigned Expcnt,unsigned Lgkmcnt)1115 unsigned encodeWaitcnt(const IsaVersion &Version,
1116 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1117 unsigned Waitcnt = getWaitcntBitMask(Version);
1118 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1119 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1120 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1121 return Waitcnt;
1122 }
1123
encodeWaitcnt(const IsaVersion & Version,const Waitcnt & Decoded)1124 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1125 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1126 }
1127
1128 //===----------------------------------------------------------------------===//
1129 // Custom Operands.
1130 //
1131 // A table of custom operands shall describe "primary" operand names
1132 // first followed by aliases if any. It is not required but recommended
1133 // to arrange operands so that operand encoding match operand position
1134 // in the table. This will make disassembly a bit more efficient.
1135 // Unused slots in the table shall have an empty name.
1136 //
1137 //===----------------------------------------------------------------------===//
1138
1139 template <class T>
isValidOpr(int Idx,const CustomOperand<T> OpInfo[],int OpInfoSize,T Context)1140 static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize,
1141 T Context) {
1142 return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() &&
1143 (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context));
1144 }
1145
1146 template <class T>
getOprIdx(std::function<bool (const CustomOperand<T> &)> Test,const CustomOperand<T> OpInfo[],int OpInfoSize,T Context)1147 static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test,
1148 const CustomOperand<T> OpInfo[], int OpInfoSize,
1149 T Context) {
1150 int InvalidIdx = OPR_ID_UNKNOWN;
1151 for (int Idx = 0; Idx < OpInfoSize; ++Idx) {
1152 if (Test(OpInfo[Idx])) {
1153 if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context))
1154 return Idx;
1155 InvalidIdx = OPR_ID_UNSUPPORTED;
1156 }
1157 }
1158 return InvalidIdx;
1159 }
1160
1161 template <class T>
getOprIdx(const StringRef Name,const CustomOperand<T> OpInfo[],int OpInfoSize,T Context)1162 static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[],
1163 int OpInfoSize, T Context) {
1164 auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; };
1165 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1166 }
1167
1168 template <class T>
getOprIdx(int Id,const CustomOperand<T> OpInfo[],int OpInfoSize,T Context,bool QuickCheck=true)1169 static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize,
1170 T Context, bool QuickCheck = true) {
1171 auto Test = [=](const CustomOperand<T> &Op) {
1172 return Op.Encoding == Id && !Op.Name.empty();
1173 };
1174 // This is an optimization that should work in most cases.
1175 // As a side effect, it may cause selection of an alias
1176 // instead of a primary operand name in case of sparse tables.
1177 if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) &&
1178 OpInfo[Id].Encoding == Id) {
1179 return Id;
1180 }
1181 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1182 }
1183
1184 //===----------------------------------------------------------------------===//
1185 // Custom Operand Values
1186 //===----------------------------------------------------------------------===//
1187
getDefaultCustomOperandEncoding(const CustomOperandVal * Opr,int Size,const MCSubtargetInfo & STI)1188 static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr,
1189 int Size,
1190 const MCSubtargetInfo &STI) {
1191 unsigned Enc = 0;
1192 for (int Idx = 0; Idx < Size; ++Idx) {
1193 const auto &Op = Opr[Idx];
1194 if (Op.isSupported(STI))
1195 Enc |= Op.encode(Op.Default);
1196 }
1197 return Enc;
1198 }
1199
isSymbolicCustomOperandEncoding(const CustomOperandVal * Opr,int Size,unsigned Code,bool & HasNonDefaultVal,const MCSubtargetInfo & STI)1200 static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr,
1201 int Size, unsigned Code,
1202 bool &HasNonDefaultVal,
1203 const MCSubtargetInfo &STI) {
1204 unsigned UsedOprMask = 0;
1205 HasNonDefaultVal = false;
1206 for (int Idx = 0; Idx < Size; ++Idx) {
1207 const auto &Op = Opr[Idx];
1208 if (!Op.isSupported(STI))
1209 continue;
1210 UsedOprMask |= Op.getMask();
1211 unsigned Val = Op.decode(Code);
1212 if (!Op.isValid(Val))
1213 return false;
1214 HasNonDefaultVal |= (Val != Op.Default);
1215 }
1216 return (Code & ~UsedOprMask) == 0;
1217 }
1218
decodeCustomOperand(const CustomOperandVal * Opr,int Size,unsigned Code,int & Idx,StringRef & Name,unsigned & Val,bool & IsDefault,const MCSubtargetInfo & STI)1219 static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1220 unsigned Code, int &Idx, StringRef &Name,
1221 unsigned &Val, bool &IsDefault,
1222 const MCSubtargetInfo &STI) {
1223 while (Idx < Size) {
1224 const auto &Op = Opr[Idx++];
1225 if (Op.isSupported(STI)) {
1226 Name = Op.Name;
1227 Val = Op.decode(Code);
1228 IsDefault = (Val == Op.Default);
1229 return true;
1230 }
1231 }
1232
1233 return false;
1234 }
1235
encodeCustomOperandVal(const CustomOperandVal & Op,int64_t InputVal)1236 static int encodeCustomOperandVal(const CustomOperandVal &Op,
1237 int64_t InputVal) {
1238 if (InputVal < 0 || InputVal > Op.Max)
1239 return OPR_VAL_INVALID;
1240 return Op.encode(InputVal);
1241 }
1242
encodeCustomOperand(const CustomOperandVal * Opr,int Size,const StringRef Name,int64_t InputVal,unsigned & UsedOprMask,const MCSubtargetInfo & STI)1243 static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
1244 const StringRef Name, int64_t InputVal,
1245 unsigned &UsedOprMask,
1246 const MCSubtargetInfo &STI) {
1247 int InvalidId = OPR_ID_UNKNOWN;
1248 for (int Idx = 0; Idx < Size; ++Idx) {
1249 const auto &Op = Opr[Idx];
1250 if (Op.Name == Name) {
1251 if (!Op.isSupported(STI)) {
1252 InvalidId = OPR_ID_UNSUPPORTED;
1253 continue;
1254 }
1255 auto OprMask = Op.getMask();
1256 if (OprMask & UsedOprMask)
1257 return OPR_ID_DUPLICATE;
1258 UsedOprMask |= OprMask;
1259 return encodeCustomOperandVal(Op, InputVal);
1260 }
1261 }
1262 return InvalidId;
1263 }
1264
1265 //===----------------------------------------------------------------------===//
1266 // DepCtr
1267 //===----------------------------------------------------------------------===//
1268
1269 namespace DepCtr {
1270
getDefaultDepCtrEncoding(const MCSubtargetInfo & STI)1271 int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI) {
1272 static int Default = -1;
1273 if (Default == -1)
1274 Default = getDefaultCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, STI);
1275 return Default;
1276 }
1277
isSymbolicDepCtrEncoding(unsigned Code,bool & HasNonDefaultVal,const MCSubtargetInfo & STI)1278 bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
1279 const MCSubtargetInfo &STI) {
1280 return isSymbolicCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, Code,
1281 HasNonDefaultVal, STI);
1282 }
1283
decodeDepCtr(unsigned Code,int & Id,StringRef & Name,unsigned & Val,bool & IsDefault,const MCSubtargetInfo & STI)1284 bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
1285 bool &IsDefault, const MCSubtargetInfo &STI) {
1286 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
1287 IsDefault, STI);
1288 }
1289
encodeDepCtr(const StringRef Name,int64_t Val,unsigned & UsedOprMask,const MCSubtargetInfo & STI)1290 int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
1291 const MCSubtargetInfo &STI) {
1292 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
1293 STI);
1294 }
1295
1296 } // namespace DepCtr
1297
1298 //===----------------------------------------------------------------------===//
1299 // hwreg
1300 //===----------------------------------------------------------------------===//
1301
1302 namespace Hwreg {
1303
getHwregId(const StringRef Name,const MCSubtargetInfo & STI)1304 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1305 int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI);
1306 return (Idx < 0) ? Idx : Opr[Idx].Encoding;
1307 }
1308
isValidHwreg(int64_t Id)1309 bool isValidHwreg(int64_t Id) {
1310 return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1311 }
1312
isValidHwregOffset(int64_t Offset)1313 bool isValidHwregOffset(int64_t Offset) {
1314 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1315 }
1316
isValidHwregWidth(int64_t Width)1317 bool isValidHwregWidth(int64_t Width) {
1318 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1319 }
1320
encodeHwreg(uint64_t Id,uint64_t Offset,uint64_t Width)1321 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1322 return (Id << ID_SHIFT_) |
1323 (Offset << OFFSET_SHIFT_) |
1324 ((Width - 1) << WIDTH_M1_SHIFT_);
1325 }
1326
getHwreg(unsigned Id,const MCSubtargetInfo & STI)1327 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1328 int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI);
1329 return (Idx < 0) ? "" : Opr[Idx].Name;
1330 }
1331
decodeHwreg(unsigned Val,unsigned & Id,unsigned & Offset,unsigned & Width)1332 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1333 Id = (Val & ID_MASK_) >> ID_SHIFT_;
1334 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1335 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1336 }
1337
1338 } // namespace Hwreg
1339
1340 //===----------------------------------------------------------------------===//
1341 // exp tgt
1342 //===----------------------------------------------------------------------===//
1343
1344 namespace Exp {
1345
1346 struct ExpTgt {
1347 StringLiteral Name;
1348 unsigned Tgt;
1349 unsigned MaxIndex;
1350 };
1351
1352 static constexpr ExpTgt ExpTgtInfo[] = {
1353 {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
1354 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
1355 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
1356 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
1357 {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
1358 {{"dual_src_blend"}, ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
1359 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1360 };
1361
getTgtName(unsigned Id,StringRef & Name,int & Index)1362 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1363 for (const ExpTgt &Val : ExpTgtInfo) {
1364 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1365 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1366 Name = Val.Name;
1367 return true;
1368 }
1369 }
1370 return false;
1371 }
1372
getTgtId(const StringRef Name)1373 unsigned getTgtId(const StringRef Name) {
1374
1375 for (const ExpTgt &Val : ExpTgtInfo) {
1376 if (Val.MaxIndex == 0 && Name == Val.Name)
1377 return Val.Tgt;
1378
1379 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1380 StringRef Suffix = Name.drop_front(Val.Name.size());
1381
1382 unsigned Id;
1383 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1384 return ET_INVALID;
1385
1386 // Disable leading zeroes
1387 if (Suffix.size() > 1 && Suffix[0] == '0')
1388 return ET_INVALID;
1389
1390 return Val.Tgt + Id;
1391 }
1392 }
1393 return ET_INVALID;
1394 }
1395
isSupportedTgtId(unsigned Id,const MCSubtargetInfo & STI)1396 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1397 switch (Id) {
1398 case ET_NULL:
1399 return !isGFX11Plus(STI);
1400 case ET_POS4:
1401 case ET_PRIM:
1402 return isGFX10Plus(STI);
1403 case ET_DUAL_SRC_BLEND0:
1404 case ET_DUAL_SRC_BLEND1:
1405 return isGFX11Plus(STI);
1406 default:
1407 if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
1408 return !isGFX11Plus(STI);
1409 return true;
1410 }
1411 }
1412
1413 } // namespace Exp
1414
1415 //===----------------------------------------------------------------------===//
1416 // MTBUF Format
1417 //===----------------------------------------------------------------------===//
1418
1419 namespace MTBUFFormat {
1420
getDfmt(const StringRef Name)1421 int64_t getDfmt(const StringRef Name) {
1422 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1423 if (Name == DfmtSymbolic[Id])
1424 return Id;
1425 }
1426 return DFMT_UNDEF;
1427 }
1428
getDfmtName(unsigned Id)1429 StringRef getDfmtName(unsigned Id) {
1430 assert(Id <= DFMT_MAX);
1431 return DfmtSymbolic[Id];
1432 }
1433
getNfmtLookupTable(const MCSubtargetInfo & STI)1434 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1435 if (isSI(STI) || isCI(STI))
1436 return NfmtSymbolicSICI;
1437 if (isVI(STI) || isGFX9(STI))
1438 return NfmtSymbolicVI;
1439 return NfmtSymbolicGFX10;
1440 }
1441
getNfmt(const StringRef Name,const MCSubtargetInfo & STI)1442 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1443 auto lookupTable = getNfmtLookupTable(STI);
1444 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1445 if (Name == lookupTable[Id])
1446 return Id;
1447 }
1448 return NFMT_UNDEF;
1449 }
1450
getNfmtName(unsigned Id,const MCSubtargetInfo & STI)1451 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1452 assert(Id <= NFMT_MAX);
1453 return getNfmtLookupTable(STI)[Id];
1454 }
1455
isValidDfmtNfmt(unsigned Id,const MCSubtargetInfo & STI)1456 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1457 unsigned Dfmt;
1458 unsigned Nfmt;
1459 decodeDfmtNfmt(Id, Dfmt, Nfmt);
1460 return isValidNfmt(Nfmt, STI);
1461 }
1462
isValidNfmt(unsigned Id,const MCSubtargetInfo & STI)1463 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1464 return !getNfmtName(Id, STI).empty();
1465 }
1466
encodeDfmtNfmt(unsigned Dfmt,unsigned Nfmt)1467 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1468 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1469 }
1470
decodeDfmtNfmt(unsigned Format,unsigned & Dfmt,unsigned & Nfmt)1471 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1472 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1473 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1474 }
1475
getUnifiedFormat(const StringRef Name,const MCSubtargetInfo & STI)1476 int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
1477 if (isGFX11Plus(STI)) {
1478 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
1479 if (Name == UfmtSymbolicGFX11[Id])
1480 return Id;
1481 }
1482 } else {
1483 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
1484 if (Name == UfmtSymbolicGFX10[Id])
1485 return Id;
1486 }
1487 }
1488 return UFMT_UNDEF;
1489 }
1490
getUnifiedFormatName(unsigned Id,const MCSubtargetInfo & STI)1491 StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI) {
1492 if(isValidUnifiedFormat(Id, STI))
1493 return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
1494 return "";
1495 }
1496
isValidUnifiedFormat(unsigned Id,const MCSubtargetInfo & STI)1497 bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
1498 return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
1499 }
1500
convertDfmtNfmt2Ufmt(unsigned Dfmt,unsigned Nfmt,const MCSubtargetInfo & STI)1501 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
1502 const MCSubtargetInfo &STI) {
1503 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1504 if (isGFX11Plus(STI)) {
1505 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
1506 if (Fmt == DfmtNfmt2UFmtGFX11[Id])
1507 return Id;
1508 }
1509 } else {
1510 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
1511 if (Fmt == DfmtNfmt2UFmtGFX10[Id])
1512 return Id;
1513 }
1514 }
1515 return UFMT_UNDEF;
1516 }
1517
isValidFormatEncoding(unsigned Val,const MCSubtargetInfo & STI)1518 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1519 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1520 }
1521
getDefaultFormatEncoding(const MCSubtargetInfo & STI)1522 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1523 if (isGFX10Plus(STI))
1524 return UFMT_DEFAULT;
1525 return DFMT_NFMT_DEFAULT;
1526 }
1527
1528 } // namespace MTBUFFormat
1529
1530 //===----------------------------------------------------------------------===//
1531 // SendMsg
1532 //===----------------------------------------------------------------------===//
1533
1534 namespace SendMsg {
1535
getMsgIdMask(const MCSubtargetInfo & STI)1536 static uint64_t getMsgIdMask(const MCSubtargetInfo &STI) {
1537 return isGFX11Plus(STI) ? ID_MASK_GFX11Plus_ : ID_MASK_PreGFX11_;
1538 }
1539
getMsgId(const StringRef Name,const MCSubtargetInfo & STI)1540 int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) {
1541 int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI);
1542 return (Idx < 0) ? Idx : Msg[Idx].Encoding;
1543 }
1544
isValidMsgId(int64_t MsgId,const MCSubtargetInfo & STI)1545 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
1546 return (MsgId & ~(getMsgIdMask(STI))) == 0;
1547 }
1548
getMsgName(int64_t MsgId,const MCSubtargetInfo & STI)1549 StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) {
1550 int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI);
1551 return (Idx < 0) ? "" : Msg[Idx].Name;
1552 }
1553
getMsgOpId(int64_t MsgId,const StringRef Name)1554 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1555 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1556 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1557 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1558 for (int i = F; i < L; ++i) {
1559 if (Name == S[i]) {
1560 return i;
1561 }
1562 }
1563 return OP_UNKNOWN_;
1564 }
1565
isValidMsgOp(int64_t MsgId,int64_t OpId,const MCSubtargetInfo & STI,bool Strict)1566 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1567 bool Strict) {
1568 assert(isValidMsgId(MsgId, STI));
1569
1570 if (!Strict)
1571 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1572
1573 if (MsgId == ID_SYSMSG)
1574 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1575 if (!isGFX11Plus(STI)) {
1576 switch (MsgId) {
1577 case ID_GS_PreGFX11:
1578 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1579 case ID_GS_DONE_PreGFX11:
1580 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1581 }
1582 }
1583 return OpId == OP_NONE_;
1584 }
1585
getMsgOpName(int64_t MsgId,int64_t OpId,const MCSubtargetInfo & STI)1586 StringRef getMsgOpName(int64_t MsgId, int64_t OpId,
1587 const MCSubtargetInfo &STI) {
1588 assert(msgRequiresOp(MsgId, STI));
1589 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1590 }
1591
isValidMsgStream(int64_t MsgId,int64_t OpId,int64_t StreamId,const MCSubtargetInfo & STI,bool Strict)1592 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1593 const MCSubtargetInfo &STI, bool Strict) {
1594 assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1595
1596 if (!Strict)
1597 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1598
1599 if (!isGFX11Plus(STI)) {
1600 switch (MsgId) {
1601 case ID_GS_PreGFX11:
1602 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1603 case ID_GS_DONE_PreGFX11:
1604 return (OpId == OP_GS_NOP) ?
1605 (StreamId == STREAM_ID_NONE_) :
1606 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1607 }
1608 }
1609 return StreamId == STREAM_ID_NONE_;
1610 }
1611
msgRequiresOp(int64_t MsgId,const MCSubtargetInfo & STI)1612 bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
1613 return MsgId == ID_SYSMSG ||
1614 (!isGFX11Plus(STI) &&
1615 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
1616 }
1617
msgSupportsStream(int64_t MsgId,int64_t OpId,const MCSubtargetInfo & STI)1618 bool msgSupportsStream(int64_t MsgId, int64_t OpId,
1619 const MCSubtargetInfo &STI) {
1620 return !isGFX11Plus(STI) &&
1621 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
1622 OpId != OP_GS_NOP;
1623 }
1624
decodeMsg(unsigned Val,uint16_t & MsgId,uint16_t & OpId,uint16_t & StreamId,const MCSubtargetInfo & STI)1625 void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
1626 uint16_t &StreamId, const MCSubtargetInfo &STI) {
1627 MsgId = Val & getMsgIdMask(STI);
1628 if (isGFX11Plus(STI)) {
1629 OpId = 0;
1630 StreamId = 0;
1631 } else {
1632 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1633 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1634 }
1635 }
1636
encodeMsg(uint64_t MsgId,uint64_t OpId,uint64_t StreamId)1637 uint64_t encodeMsg(uint64_t MsgId,
1638 uint64_t OpId,
1639 uint64_t StreamId) {
1640 return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
1641 }
1642
1643 } // namespace SendMsg
1644
1645 //===----------------------------------------------------------------------===//
1646 //
1647 //===----------------------------------------------------------------------===//
1648
getInitialPSInputAddr(const Function & F)1649 unsigned getInitialPSInputAddr(const Function &F) {
1650 return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1651 }
1652
getHasColorExport(const Function & F)1653 bool getHasColorExport(const Function &F) {
1654 // As a safe default always respond as if PS has color exports.
1655 return getIntegerAttribute(
1656 F, "amdgpu-color-export",
1657 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1658 }
1659
getHasDepthExport(const Function & F)1660 bool getHasDepthExport(const Function &F) {
1661 return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1662 }
1663
isShader(CallingConv::ID cc)1664 bool isShader(CallingConv::ID cc) {
1665 switch(cc) {
1666 case CallingConv::AMDGPU_VS:
1667 case CallingConv::AMDGPU_LS:
1668 case CallingConv::AMDGPU_HS:
1669 case CallingConv::AMDGPU_ES:
1670 case CallingConv::AMDGPU_GS:
1671 case CallingConv::AMDGPU_PS:
1672 case CallingConv::AMDGPU_CS:
1673 return true;
1674 default:
1675 return false;
1676 }
1677 }
1678
isGraphics(CallingConv::ID cc)1679 bool isGraphics(CallingConv::ID cc) {
1680 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1681 }
1682
isCompute(CallingConv::ID cc)1683 bool isCompute(CallingConv::ID cc) {
1684 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1685 }
1686
isEntryFunctionCC(CallingConv::ID CC)1687 bool isEntryFunctionCC(CallingConv::ID CC) {
1688 switch (CC) {
1689 case CallingConv::AMDGPU_KERNEL:
1690 case CallingConv::SPIR_KERNEL:
1691 case CallingConv::AMDGPU_VS:
1692 case CallingConv::AMDGPU_GS:
1693 case CallingConv::AMDGPU_PS:
1694 case CallingConv::AMDGPU_CS:
1695 case CallingConv::AMDGPU_ES:
1696 case CallingConv::AMDGPU_HS:
1697 case CallingConv::AMDGPU_LS:
1698 return true;
1699 default:
1700 return false;
1701 }
1702 }
1703
isModuleEntryFunctionCC(CallingConv::ID CC)1704 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1705 switch (CC) {
1706 case CallingConv::AMDGPU_Gfx:
1707 return true;
1708 default:
1709 return isEntryFunctionCC(CC);
1710 }
1711 }
1712
isKernelCC(const Function * Func)1713 bool isKernelCC(const Function *Func) {
1714 return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1715 }
1716
hasXNACK(const MCSubtargetInfo & STI)1717 bool hasXNACK(const MCSubtargetInfo &STI) {
1718 return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1719 }
1720
hasSRAMECC(const MCSubtargetInfo & STI)1721 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1722 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1723 }
1724
hasMIMG_R128(const MCSubtargetInfo & STI)1725 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1726 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1727 }
1728
hasGFX10A16(const MCSubtargetInfo & STI)1729 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1730 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1731 }
1732
hasG16(const MCSubtargetInfo & STI)1733 bool hasG16(const MCSubtargetInfo &STI) {
1734 return STI.getFeatureBits()[AMDGPU::FeatureG16];
1735 }
1736
hasPackedD16(const MCSubtargetInfo & STI)1737 bool hasPackedD16(const MCSubtargetInfo &STI) {
1738 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem] && !isCI(STI) &&
1739 !isSI(STI);
1740 }
1741
isSI(const MCSubtargetInfo & STI)1742 bool isSI(const MCSubtargetInfo &STI) {
1743 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1744 }
1745
isCI(const MCSubtargetInfo & STI)1746 bool isCI(const MCSubtargetInfo &STI) {
1747 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1748 }
1749
isVI(const MCSubtargetInfo & STI)1750 bool isVI(const MCSubtargetInfo &STI) {
1751 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1752 }
1753
isGFX9(const MCSubtargetInfo & STI)1754 bool isGFX9(const MCSubtargetInfo &STI) {
1755 return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1756 }
1757
isGFX9_GFX10(const MCSubtargetInfo & STI)1758 bool isGFX9_GFX10(const MCSubtargetInfo &STI) {
1759 return isGFX9(STI) || isGFX10(STI);
1760 }
1761
isGFX8_GFX9_GFX10(const MCSubtargetInfo & STI)1762 bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI) {
1763 return isVI(STI) || isGFX9(STI) || isGFX10(STI);
1764 }
1765
isGFX8Plus(const MCSubtargetInfo & STI)1766 bool isGFX8Plus(const MCSubtargetInfo &STI) {
1767 return isVI(STI) || isGFX9Plus(STI);
1768 }
1769
isGFX9Plus(const MCSubtargetInfo & STI)1770 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1771 return isGFX9(STI) || isGFX10Plus(STI);
1772 }
1773
isGFX10(const MCSubtargetInfo & STI)1774 bool isGFX10(const MCSubtargetInfo &STI) {
1775 return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1776 }
1777
isGFX10Plus(const MCSubtargetInfo & STI)1778 bool isGFX10Plus(const MCSubtargetInfo &STI) {
1779 return isGFX10(STI) || isGFX11Plus(STI);
1780 }
1781
isGFX11(const MCSubtargetInfo & STI)1782 bool isGFX11(const MCSubtargetInfo &STI) {
1783 return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1784 }
1785
isGFX11Plus(const MCSubtargetInfo & STI)1786 bool isGFX11Plus(const MCSubtargetInfo &STI) {
1787 return isGFX11(STI);
1788 }
1789
isNotGFX11Plus(const MCSubtargetInfo & STI)1790 bool isNotGFX11Plus(const MCSubtargetInfo &STI) {
1791 return !isGFX11Plus(STI);
1792 }
1793
isNotGFX10Plus(const MCSubtargetInfo & STI)1794 bool isNotGFX10Plus(const MCSubtargetInfo &STI) {
1795 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1796 }
1797
isGFX10Before1030(const MCSubtargetInfo & STI)1798 bool isGFX10Before1030(const MCSubtargetInfo &STI) {
1799 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1800 }
1801
isGCN3Encoding(const MCSubtargetInfo & STI)1802 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1803 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1804 }
1805
isGFX10_AEncoding(const MCSubtargetInfo & STI)1806 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1807 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1808 }
1809
isGFX10_BEncoding(const MCSubtargetInfo & STI)1810 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1811 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1812 }
1813
hasGFX10_3Insts(const MCSubtargetInfo & STI)1814 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1815 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1816 }
1817
isGFX90A(const MCSubtargetInfo & STI)1818 bool isGFX90A(const MCSubtargetInfo &STI) {
1819 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1820 }
1821
isGFX940(const MCSubtargetInfo & STI)1822 bool isGFX940(const MCSubtargetInfo &STI) {
1823 return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts];
1824 }
1825
hasArchitectedFlatScratch(const MCSubtargetInfo & STI)1826 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1827 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1828 }
1829
hasMAIInsts(const MCSubtargetInfo & STI)1830 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1831 return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1832 }
1833
hasVOPD(const MCSubtargetInfo & STI)1834 bool hasVOPD(const MCSubtargetInfo &STI) {
1835 return STI.getFeatureBits()[AMDGPU::FeatureVOPD];
1836 }
1837
getTotalNumVGPRs(bool has90AInsts,int32_t ArgNumAGPR,int32_t ArgNumVGPR)1838 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1839 int32_t ArgNumVGPR) {
1840 if (has90AInsts && ArgNumAGPR)
1841 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1842 return std::max(ArgNumVGPR, ArgNumAGPR);
1843 }
1844
isSGPR(unsigned Reg,const MCRegisterInfo * TRI)1845 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1846 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1847 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1848 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1849 Reg == AMDGPU::SCC;
1850 }
1851
1852 #define MAP_REG2REG \
1853 using namespace AMDGPU; \
1854 switch(Reg) { \
1855 default: return Reg; \
1856 CASE_CI_VI(FLAT_SCR) \
1857 CASE_CI_VI(FLAT_SCR_LO) \
1858 CASE_CI_VI(FLAT_SCR_HI) \
1859 CASE_VI_GFX9PLUS(TTMP0) \
1860 CASE_VI_GFX9PLUS(TTMP1) \
1861 CASE_VI_GFX9PLUS(TTMP2) \
1862 CASE_VI_GFX9PLUS(TTMP3) \
1863 CASE_VI_GFX9PLUS(TTMP4) \
1864 CASE_VI_GFX9PLUS(TTMP5) \
1865 CASE_VI_GFX9PLUS(TTMP6) \
1866 CASE_VI_GFX9PLUS(TTMP7) \
1867 CASE_VI_GFX9PLUS(TTMP8) \
1868 CASE_VI_GFX9PLUS(TTMP9) \
1869 CASE_VI_GFX9PLUS(TTMP10) \
1870 CASE_VI_GFX9PLUS(TTMP11) \
1871 CASE_VI_GFX9PLUS(TTMP12) \
1872 CASE_VI_GFX9PLUS(TTMP13) \
1873 CASE_VI_GFX9PLUS(TTMP14) \
1874 CASE_VI_GFX9PLUS(TTMP15) \
1875 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1876 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1877 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1878 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1879 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1880 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1881 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1882 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1883 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1884 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1885 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1886 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1887 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1888 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1889 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1890 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1891 CASE_GFXPRE11_GFX11PLUS(M0) \
1892 CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
1893 CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
1894 }
1895
1896 #define CASE_CI_VI(node) \
1897 assert(!isSI(STI)); \
1898 case node: return isCI(STI) ? node##_ci : node##_vi;
1899
1900 #define CASE_VI_GFX9PLUS(node) \
1901 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1902
1903 #define CASE_GFXPRE11_GFX11PLUS(node) \
1904 case node: return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
1905
1906 #define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
1907 case node: return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
1908
getMCReg(unsigned Reg,const MCSubtargetInfo & STI)1909 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1910 if (STI.getTargetTriple().getArch() == Triple::r600)
1911 return Reg;
1912 MAP_REG2REG
1913 }
1914
1915 #undef CASE_CI_VI
1916 #undef CASE_VI_GFX9PLUS
1917 #undef CASE_GFXPRE11_GFX11PLUS
1918 #undef CASE_GFXPRE11_GFX11PLUS_TO
1919
1920 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
1921 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1922 #define CASE_GFXPRE11_GFX11PLUS(node) case node##_gfx11plus: case node##_gfxpre11: return node;
1923 #define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
1924
mc2PseudoReg(unsigned Reg)1925 unsigned mc2PseudoReg(unsigned Reg) {
1926 MAP_REG2REG
1927 }
1928
1929 #undef CASE_CI_VI
1930 #undef CASE_VI_GFX9PLUS
1931 #undef CASE_GFXPRE11_GFX11PLUS
1932 #undef CASE_GFXPRE11_GFX11PLUS_TO
1933 #undef MAP_REG2REG
1934
isSISrcOperand(const MCInstrDesc & Desc,unsigned OpNo)1935 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1936 assert(OpNo < Desc.NumOperands);
1937 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1938 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1939 OpType <= AMDGPU::OPERAND_SRC_LAST;
1940 }
1941
isSISrcFPOperand(const MCInstrDesc & Desc,unsigned OpNo)1942 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1943 assert(OpNo < Desc.NumOperands);
1944 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1945 switch (OpType) {
1946 case AMDGPU::OPERAND_REG_IMM_FP32:
1947 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1948 case AMDGPU::OPERAND_REG_IMM_FP64:
1949 case AMDGPU::OPERAND_REG_IMM_FP16:
1950 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1951 case AMDGPU::OPERAND_REG_IMM_V2FP16:
1952 case AMDGPU::OPERAND_REG_IMM_V2INT16:
1953 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1954 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1955 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1956 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1957 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1958 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1959 case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1960 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1961 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1962 case AMDGPU::OPERAND_REG_IMM_V2FP32:
1963 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1964 case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1965 return true;
1966 default:
1967 return false;
1968 }
1969 }
1970
isSISrcInlinableOperand(const MCInstrDesc & Desc,unsigned OpNo)1971 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1972 assert(OpNo < Desc.NumOperands);
1973 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1974 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1975 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1976 }
1977
1978 // Avoid using MCRegisterClass::getSize, since that function will go away
1979 // (move from MC* level to Target* level). Return size in bits.
getRegBitWidth(unsigned RCID)1980 unsigned getRegBitWidth(unsigned RCID) {
1981 switch (RCID) {
1982 case AMDGPU::VGPR_LO16RegClassID:
1983 case AMDGPU::VGPR_HI16RegClassID:
1984 case AMDGPU::SGPR_LO16RegClassID:
1985 case AMDGPU::AGPR_LO16RegClassID:
1986 return 16;
1987 case AMDGPU::SGPR_32RegClassID:
1988 case AMDGPU::VGPR_32RegClassID:
1989 case AMDGPU::VRegOrLds_32RegClassID:
1990 case AMDGPU::AGPR_32RegClassID:
1991 case AMDGPU::VS_32RegClassID:
1992 case AMDGPU::AV_32RegClassID:
1993 case AMDGPU::SReg_32RegClassID:
1994 case AMDGPU::SReg_32_XM0RegClassID:
1995 case AMDGPU::SRegOrLds_32RegClassID:
1996 return 32;
1997 case AMDGPU::SGPR_64RegClassID:
1998 case AMDGPU::VS_64RegClassID:
1999 case AMDGPU::SReg_64RegClassID:
2000 case AMDGPU::VReg_64RegClassID:
2001 case AMDGPU::AReg_64RegClassID:
2002 case AMDGPU::SReg_64_XEXECRegClassID:
2003 case AMDGPU::VReg_64_Align2RegClassID:
2004 case AMDGPU::AReg_64_Align2RegClassID:
2005 case AMDGPU::AV_64RegClassID:
2006 case AMDGPU::AV_64_Align2RegClassID:
2007 return 64;
2008 case AMDGPU::SGPR_96RegClassID:
2009 case AMDGPU::SReg_96RegClassID:
2010 case AMDGPU::VReg_96RegClassID:
2011 case AMDGPU::AReg_96RegClassID:
2012 case AMDGPU::VReg_96_Align2RegClassID:
2013 case AMDGPU::AReg_96_Align2RegClassID:
2014 case AMDGPU::AV_96RegClassID:
2015 case AMDGPU::AV_96_Align2RegClassID:
2016 return 96;
2017 case AMDGPU::SGPR_128RegClassID:
2018 case AMDGPU::SReg_128RegClassID:
2019 case AMDGPU::VReg_128RegClassID:
2020 case AMDGPU::AReg_128RegClassID:
2021 case AMDGPU::VReg_128_Align2RegClassID:
2022 case AMDGPU::AReg_128_Align2RegClassID:
2023 case AMDGPU::AV_128RegClassID:
2024 case AMDGPU::AV_128_Align2RegClassID:
2025 return 128;
2026 case AMDGPU::SGPR_160RegClassID:
2027 case AMDGPU::SReg_160RegClassID:
2028 case AMDGPU::VReg_160RegClassID:
2029 case AMDGPU::AReg_160RegClassID:
2030 case AMDGPU::VReg_160_Align2RegClassID:
2031 case AMDGPU::AReg_160_Align2RegClassID:
2032 case AMDGPU::AV_160RegClassID:
2033 case AMDGPU::AV_160_Align2RegClassID:
2034 return 160;
2035 case AMDGPU::SGPR_192RegClassID:
2036 case AMDGPU::SReg_192RegClassID:
2037 case AMDGPU::VReg_192RegClassID:
2038 case AMDGPU::AReg_192RegClassID:
2039 case AMDGPU::VReg_192_Align2RegClassID:
2040 case AMDGPU::AReg_192_Align2RegClassID:
2041 case AMDGPU::AV_192RegClassID:
2042 case AMDGPU::AV_192_Align2RegClassID:
2043 return 192;
2044 case AMDGPU::SGPR_224RegClassID:
2045 case AMDGPU::SReg_224RegClassID:
2046 case AMDGPU::VReg_224RegClassID:
2047 case AMDGPU::AReg_224RegClassID:
2048 case AMDGPU::VReg_224_Align2RegClassID:
2049 case AMDGPU::AReg_224_Align2RegClassID:
2050 case AMDGPU::AV_224RegClassID:
2051 case AMDGPU::AV_224_Align2RegClassID:
2052 return 224;
2053 case AMDGPU::SGPR_256RegClassID:
2054 case AMDGPU::SReg_256RegClassID:
2055 case AMDGPU::VReg_256RegClassID:
2056 case AMDGPU::AReg_256RegClassID:
2057 case AMDGPU::VReg_256_Align2RegClassID:
2058 case AMDGPU::AReg_256_Align2RegClassID:
2059 case AMDGPU::AV_256RegClassID:
2060 case AMDGPU::AV_256_Align2RegClassID:
2061 return 256;
2062 case AMDGPU::SGPR_512RegClassID:
2063 case AMDGPU::SReg_512RegClassID:
2064 case AMDGPU::VReg_512RegClassID:
2065 case AMDGPU::AReg_512RegClassID:
2066 case AMDGPU::VReg_512_Align2RegClassID:
2067 case AMDGPU::AReg_512_Align2RegClassID:
2068 case AMDGPU::AV_512RegClassID:
2069 case AMDGPU::AV_512_Align2RegClassID:
2070 return 512;
2071 case AMDGPU::SGPR_1024RegClassID:
2072 case AMDGPU::SReg_1024RegClassID:
2073 case AMDGPU::VReg_1024RegClassID:
2074 case AMDGPU::AReg_1024RegClassID:
2075 case AMDGPU::VReg_1024_Align2RegClassID:
2076 case AMDGPU::AReg_1024_Align2RegClassID:
2077 case AMDGPU::AV_1024RegClassID:
2078 case AMDGPU::AV_1024_Align2RegClassID:
2079 return 1024;
2080 default:
2081 llvm_unreachable("Unexpected register class");
2082 }
2083 }
2084
getRegBitWidth(const MCRegisterClass & RC)2085 unsigned getRegBitWidth(const MCRegisterClass &RC) {
2086 return getRegBitWidth(RC.getID());
2087 }
2088
getRegOperandSize(const MCRegisterInfo * MRI,const MCInstrDesc & Desc,unsigned OpNo)2089 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
2090 unsigned OpNo) {
2091 assert(OpNo < Desc.NumOperands);
2092 unsigned RCID = Desc.OpInfo[OpNo].RegClass;
2093 return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
2094 }
2095
isInlinableLiteral64(int64_t Literal,bool HasInv2Pi)2096 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2097 if (isInlinableIntLiteral(Literal))
2098 return true;
2099
2100 uint64_t Val = static_cast<uint64_t>(Literal);
2101 return (Val == DoubleToBits(0.0)) ||
2102 (Val == DoubleToBits(1.0)) ||
2103 (Val == DoubleToBits(-1.0)) ||
2104 (Val == DoubleToBits(0.5)) ||
2105 (Val == DoubleToBits(-0.5)) ||
2106 (Val == DoubleToBits(2.0)) ||
2107 (Val == DoubleToBits(-2.0)) ||
2108 (Val == DoubleToBits(4.0)) ||
2109 (Val == DoubleToBits(-4.0)) ||
2110 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2111 }
2112
isInlinableLiteral32(int32_t Literal,bool HasInv2Pi)2113 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2114 if (isInlinableIntLiteral(Literal))
2115 return true;
2116
2117 // The actual type of the operand does not seem to matter as long
2118 // as the bits match one of the inline immediate values. For example:
2119 //
2120 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
2121 // so it is a legal inline immediate.
2122 //
2123 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
2124 // floating-point, so it is a legal inline immediate.
2125
2126 uint32_t Val = static_cast<uint32_t>(Literal);
2127 return (Val == FloatToBits(0.0f)) ||
2128 (Val == FloatToBits(1.0f)) ||
2129 (Val == FloatToBits(-1.0f)) ||
2130 (Val == FloatToBits(0.5f)) ||
2131 (Val == FloatToBits(-0.5f)) ||
2132 (Val == FloatToBits(2.0f)) ||
2133 (Val == FloatToBits(-2.0f)) ||
2134 (Val == FloatToBits(4.0f)) ||
2135 (Val == FloatToBits(-4.0f)) ||
2136 (Val == 0x3e22f983 && HasInv2Pi);
2137 }
2138
isInlinableLiteral16(int16_t Literal,bool HasInv2Pi)2139 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
2140 if (!HasInv2Pi)
2141 return false;
2142
2143 if (isInlinableIntLiteral(Literal))
2144 return true;
2145
2146 uint16_t Val = static_cast<uint16_t>(Literal);
2147 return Val == 0x3C00 || // 1.0
2148 Val == 0xBC00 || // -1.0
2149 Val == 0x3800 || // 0.5
2150 Val == 0xB800 || // -0.5
2151 Val == 0x4000 || // 2.0
2152 Val == 0xC000 || // -2.0
2153 Val == 0x4400 || // 4.0
2154 Val == 0xC400 || // -4.0
2155 Val == 0x3118; // 1/2pi
2156 }
2157
isInlinableLiteralV216(int32_t Literal,bool HasInv2Pi)2158 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
2159 assert(HasInv2Pi);
2160
2161 if (isInt<16>(Literal) || isUInt<16>(Literal)) {
2162 int16_t Trunc = static_cast<int16_t>(Literal);
2163 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
2164 }
2165 if (!(Literal & 0xffff))
2166 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
2167
2168 int16_t Lo16 = static_cast<int16_t>(Literal);
2169 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2170 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
2171 }
2172
isInlinableIntLiteralV216(int32_t Literal)2173 bool isInlinableIntLiteralV216(int32_t Literal) {
2174 int16_t Lo16 = static_cast<int16_t>(Literal);
2175 if (isInt<16>(Literal) || isUInt<16>(Literal))
2176 return isInlinableIntLiteral(Lo16);
2177
2178 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2179 if (!(Literal & 0xffff))
2180 return isInlinableIntLiteral(Hi16);
2181 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
2182 }
2183
isFoldableLiteralV216(int32_t Literal,bool HasInv2Pi)2184 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
2185 assert(HasInv2Pi);
2186
2187 int16_t Lo16 = static_cast<int16_t>(Literal);
2188 if (isInt<16>(Literal) || isUInt<16>(Literal))
2189 return true;
2190
2191 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
2192 if (!(Literal & 0xffff))
2193 return true;
2194 return Lo16 == Hi16;
2195 }
2196
isArgPassedInSGPR(const Argument * A)2197 bool isArgPassedInSGPR(const Argument *A) {
2198 const Function *F = A->getParent();
2199
2200 // Arguments to compute shaders are never a source of divergence.
2201 CallingConv::ID CC = F->getCallingConv();
2202 switch (CC) {
2203 case CallingConv::AMDGPU_KERNEL:
2204 case CallingConv::SPIR_KERNEL:
2205 return true;
2206 case CallingConv::AMDGPU_VS:
2207 case CallingConv::AMDGPU_LS:
2208 case CallingConv::AMDGPU_HS:
2209 case CallingConv::AMDGPU_ES:
2210 case CallingConv::AMDGPU_GS:
2211 case CallingConv::AMDGPU_PS:
2212 case CallingConv::AMDGPU_CS:
2213 case CallingConv::AMDGPU_Gfx:
2214 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
2215 // Everything else is in VGPRs.
2216 return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
2217 F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
2218 default:
2219 // TODO: Should calls support inreg for SGPR inputs?
2220 return false;
2221 }
2222 }
2223
hasSMEMByteOffset(const MCSubtargetInfo & ST)2224 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
2225 return isGCN3Encoding(ST) || isGFX10Plus(ST);
2226 }
2227
hasSMRDSignedImmOffset(const MCSubtargetInfo & ST)2228 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
2229 return isGFX9Plus(ST);
2230 }
2231
isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo & ST,int64_t EncodedOffset)2232 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
2233 int64_t EncodedOffset) {
2234 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
2235 : isUInt<8>(EncodedOffset);
2236 }
2237
isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo & ST,int64_t EncodedOffset,bool IsBuffer)2238 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
2239 int64_t EncodedOffset,
2240 bool IsBuffer) {
2241 return !IsBuffer &&
2242 hasSMRDSignedImmOffset(ST) &&
2243 isInt<21>(EncodedOffset);
2244 }
2245
isDwordAligned(uint64_t ByteOffset)2246 static bool isDwordAligned(uint64_t ByteOffset) {
2247 return (ByteOffset & 3) == 0;
2248 }
2249
convertSMRDOffsetUnits(const MCSubtargetInfo & ST,uint64_t ByteOffset)2250 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
2251 uint64_t ByteOffset) {
2252 if (hasSMEMByteOffset(ST))
2253 return ByteOffset;
2254
2255 assert(isDwordAligned(ByteOffset));
2256 return ByteOffset >> 2;
2257 }
2258
getSMRDEncodedOffset(const MCSubtargetInfo & ST,int64_t ByteOffset,bool IsBuffer)2259 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
2260 int64_t ByteOffset, bool IsBuffer) {
2261 // The signed version is always a byte offset.
2262 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
2263 assert(hasSMEMByteOffset(ST));
2264 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
2265 }
2266
2267 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
2268 return None;
2269
2270 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
2271 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
2272 ? Optional<int64_t>(EncodedOffset)
2273 : None;
2274 }
2275
getSMRDEncodedLiteralOffset32(const MCSubtargetInfo & ST,int64_t ByteOffset)2276 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
2277 int64_t ByteOffset) {
2278 if (!isCI(ST) || !isDwordAligned(ByteOffset))
2279 return None;
2280
2281 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
2282 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
2283 }
2284
getNumFlatOffsetBits(const MCSubtargetInfo & ST,bool Signed)2285 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
2286 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9 and GFX11+.
2287 if (AMDGPU::isGFX10(ST))
2288 return Signed ? 12 : 11;
2289
2290 return Signed ? 13 : 12;
2291 }
2292
2293 // Given Imm, split it into the values to put into the SOffset and ImmOffset
2294 // fields in an MUBUF instruction. Return false if it is not possible (due to a
2295 // hardware bug needing a workaround).
2296 //
2297 // The required alignment ensures that individual address components remain
2298 // aligned if they are aligned to begin with. It also ensures that additional
2299 // offsets within the given alignment can be added to the resulting ImmOffset.
splitMUBUFOffset(uint32_t Imm,uint32_t & SOffset,uint32_t & ImmOffset,const GCNSubtarget * Subtarget,Align Alignment)2300 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
2301 const GCNSubtarget *Subtarget, Align Alignment) {
2302 const uint32_t MaxImm = alignDown(4095, Alignment.value());
2303 uint32_t Overflow = 0;
2304
2305 if (Imm > MaxImm) {
2306 if (Imm <= MaxImm + 64) {
2307 // Use an SOffset inline constant for 4..64
2308 Overflow = Imm - MaxImm;
2309 Imm = MaxImm;
2310 } else {
2311 // Try to keep the same value in SOffset for adjacent loads, so that
2312 // the corresponding register contents can be re-used.
2313 //
2314 // Load values with all low-bits (except for alignment bits) set into
2315 // SOffset, so that a larger range of values can be covered using
2316 // s_movk_i32.
2317 //
2318 // Atomic operations fail to work correctly when individual address
2319 // components are unaligned, even if their sum is aligned.
2320 uint32_t High = (Imm + Alignment.value()) & ~4095;
2321 uint32_t Low = (Imm + Alignment.value()) & 4095;
2322 Imm = Low;
2323 Overflow = High - Alignment.value();
2324 }
2325 }
2326
2327 // There is a hardware bug in SI and CI which prevents address clamping in
2328 // MUBUF instructions from working correctly with SOffsets. The immediate
2329 // offset is unaffected.
2330 if (Overflow > 0 &&
2331 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2332 return false;
2333
2334 ImmOffset = Imm;
2335 SOffset = Overflow;
2336 return true;
2337 }
2338
SIModeRegisterDefaults(const Function & F)2339 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2340 *this = getDefaultForCallingConv(F.getCallingConv());
2341
2342 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2343 if (!IEEEAttr.empty())
2344 IEEE = IEEEAttr == "true";
2345
2346 StringRef DX10ClampAttr
2347 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2348 if (!DX10ClampAttr.empty())
2349 DX10Clamp = DX10ClampAttr == "true";
2350
2351 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2352 if (!DenormF32Attr.empty()) {
2353 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2354 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2355 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2356 }
2357
2358 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2359 if (!DenormAttr.empty()) {
2360 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2361
2362 if (DenormF32Attr.empty()) {
2363 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2364 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2365 }
2366
2367 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2368 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2369 }
2370 }
2371
2372 namespace {
2373
2374 struct SourceOfDivergence {
2375 unsigned Intr;
2376 };
2377 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2378
2379 #define GET_SourcesOfDivergence_IMPL
2380 #define GET_Gfx9BufferFormat_IMPL
2381 #define GET_Gfx10BufferFormat_IMPL
2382 #define GET_Gfx11PlusBufferFormat_IMPL
2383 #include "AMDGPUGenSearchableTables.inc"
2384
2385 } // end anonymous namespace
2386
isIntrinsicSourceOfDivergence(unsigned IntrID)2387 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2388 return lookupSourceOfDivergence(IntrID);
2389 }
2390
getGcnBufferFormatInfo(uint8_t BitsPerComp,uint8_t NumComponents,uint8_t NumFormat,const MCSubtargetInfo & STI)2391 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2392 uint8_t NumComponents,
2393 uint8_t NumFormat,
2394 const MCSubtargetInfo &STI) {
2395 return isGFX11Plus(STI)
2396 ? getGfx11PlusBufferFormatInfo(BitsPerComp, NumComponents,
2397 NumFormat)
2398 : isGFX10(STI) ? getGfx10BufferFormatInfo(BitsPerComp,
2399 NumComponents, NumFormat)
2400 : getGfx9BufferFormatInfo(BitsPerComp,
2401 NumComponents, NumFormat);
2402 }
2403
getGcnBufferFormatInfo(uint8_t Format,const MCSubtargetInfo & STI)2404 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2405 const MCSubtargetInfo &STI) {
2406 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
2407 : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
2408 : getGfx9BufferFormatInfo(Format);
2409 }
2410
2411 } // namespace AMDGPU
2412
operator <<(raw_ostream & OS,const AMDGPU::IsaInfo::TargetIDSetting S)2413 raw_ostream &operator<<(raw_ostream &OS,
2414 const AMDGPU::IsaInfo::TargetIDSetting S) {
2415 switch (S) {
2416 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2417 OS << "Unsupported";
2418 break;
2419 case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2420 OS << "Any";
2421 break;
2422 case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2423 OS << "Off";
2424 break;
2425 case (AMDGPU::IsaInfo::TargetIDSetting::On):
2426 OS << "On";
2427 break;
2428 }
2429 return OS;
2430 }
2431
2432 } // namespace llvm
2433