1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "AMDGPUBaseInfo.h"
11 #include "AMDGPUTargetTransformInfo.h"
12 #include "AMDGPU.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48
49 namespace {
50
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
getBitMask(unsigned Shift,unsigned Width)52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53 return ((1 << Width) - 1) << Shift;
54 }
55
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
packBits(unsigned Src,unsigned Dst,unsigned Shift,unsigned Width)59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61 Dst |= (Src << Shift) & getBitMask(Shift, Width);
62 return Dst;
63 }
64
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
unpackBits(unsigned Src,unsigned Shift,unsigned Width)68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69 return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71
72 /// \returns Vmcnt bit shift (lower bits).
getVmcntBitShiftLo()73 unsigned getVmcntBitShiftLo() { return 0; }
74
75 /// \returns Vmcnt bit width (lower bits).
getVmcntBitWidthLo()76 unsigned getVmcntBitWidthLo() { return 4; }
77
78 /// \returns Expcnt bit shift.
getExpcntBitShift()79 unsigned getExpcntBitShift() { return 4; }
80
81 /// \returns Expcnt bit width.
getExpcntBitWidth()82 unsigned getExpcntBitWidth() { return 3; }
83
84 /// \returns Lgkmcnt bit shift.
getLgkmcntBitShift()85 unsigned getLgkmcntBitShift() { return 8; }
86
87 /// \returns Lgkmcnt bit width.
getLgkmcntBitWidth()88 unsigned getLgkmcntBitWidth() { return 4; }
89
90 /// \returns Vmcnt bit shift (higher bits).
getVmcntBitShiftHi()91 unsigned getVmcntBitShiftHi() { return 14; }
92
93 /// \returns Vmcnt bit width (higher bits).
getVmcntBitWidthHi()94 unsigned getVmcntBitWidthHi() { return 2; }
95
96 } // end namespace anonymous
97
98 namespace llvm {
99
100 namespace AMDGPU {
101
102 struct MIMGInfo {
103 uint16_t Opcode;
104 uint16_t BaseOpcode;
105 uint8_t MIMGEncoding;
106 uint8_t VDataDwords;
107 uint8_t VAddrDwords;
108 };
109
110 #define GET_MIMGBaseOpcodesTable_IMPL
111 #define GET_MIMGDimInfoTable_IMPL
112 #define GET_MIMGInfoTable_IMPL
113 #define GET_MIMGLZMappingTable_IMPL
114 #include "AMDGPUGenSearchableTables.inc"
115
getMIMGOpcode(unsigned BaseOpcode,unsigned MIMGEncoding,unsigned VDataDwords,unsigned VAddrDwords)116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
117 unsigned VDataDwords, unsigned VAddrDwords) {
118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
119 VDataDwords, VAddrDwords);
120 return Info ? Info->Opcode : -1;
121 }
122
getMaskedMIMGOp(unsigned Opc,unsigned NewChannels)123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125 const MIMGInfo *NewInfo =
126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127 NewChannels, OrigInfo->VAddrDwords);
128 return NewInfo ? NewInfo->Opcode : -1;
129 }
130
131 struct MUBUFInfo {
132 uint16_t Opcode;
133 uint16_t BaseOpcode;
134 uint8_t dwords;
135 bool has_vaddr;
136 bool has_srsrc;
137 bool has_soffset;
138 };
139
140 #define GET_MUBUFInfoTable_DECL
141 #define GET_MUBUFInfoTable_IMPL
142 #include "AMDGPUGenSearchableTables.inc"
143
getMUBUFBaseOpcode(unsigned Opc)144 int getMUBUFBaseOpcode(unsigned Opc) {
145 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
146 return Info ? Info->BaseOpcode : -1;
147 }
148
getMUBUFOpcode(unsigned BaseOpc,unsigned Dwords)149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
150 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
151 return Info ? Info->Opcode : -1;
152 }
153
getMUBUFDwords(unsigned Opc)154 int getMUBUFDwords(unsigned Opc) {
155 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
156 return Info ? Info->dwords : 0;
157 }
158
getMUBUFHasVAddr(unsigned Opc)159 bool getMUBUFHasVAddr(unsigned Opc) {
160 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
161 return Info ? Info->has_vaddr : false;
162 }
163
getMUBUFHasSrsrc(unsigned Opc)164 bool getMUBUFHasSrsrc(unsigned Opc) {
165 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
166 return Info ? Info->has_srsrc : false;
167 }
168
getMUBUFHasSoffset(unsigned Opc)169 bool getMUBUFHasSoffset(unsigned Opc) {
170 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
171 return Info ? Info->has_soffset : false;
172 }
173
174 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any
175 // header files, so we need to wrap it in a function that takes unsigned
176 // instead.
getMCOpcode(uint16_t Opcode,unsigned Gen)177 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
178 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
179 }
180
181 namespace IsaInfo {
182
streamIsaVersion(const MCSubtargetInfo * STI,raw_ostream & Stream)183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
184 auto TargetTriple = STI->getTargetTriple();
185 auto Version = getIsaVersion(STI->getCPU());
186
187 Stream << TargetTriple.getArchName() << '-'
188 << TargetTriple.getVendorName() << '-'
189 << TargetTriple.getOSName() << '-'
190 << TargetTriple.getEnvironmentName() << '-'
191 << "gfx"
192 << Version.Major
193 << Version.Minor
194 << Version.Stepping;
195
196 if (hasXNACK(*STI))
197 Stream << "+xnack";
198 if (hasSRAMECC(*STI))
199 Stream << "+sram-ecc";
200
201 Stream.flush();
202 }
203
hasCodeObjectV3(const MCSubtargetInfo * STI)204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
205 return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
206 STI->getFeatureBits().test(FeatureCodeObjectV3);
207 }
208
getWavefrontSize(const MCSubtargetInfo * STI)209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
210 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
211 return 16;
212 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
213 return 32;
214
215 return 64;
216 }
217
getLocalMemorySize(const MCSubtargetInfo * STI)218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
219 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
220 return 32768;
221 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
222 return 65536;
223
224 return 0;
225 }
226
getEUsPerCU(const MCSubtargetInfo * STI)227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
228 return 4;
229 }
230
getMaxWorkGroupsPerCU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
232 unsigned FlatWorkGroupSize) {
233 if (!STI->getFeatureBits().test(FeatureGCN))
234 return 8;
235 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
236 if (N == 1)
237 return 40;
238 N = 40 / N;
239 return std::min(N, 16u);
240 }
241
getMaxWavesPerCU(const MCSubtargetInfo * STI)242 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
243 return getMaxWavesPerEU() * getEUsPerCU(STI);
244 }
245
getMaxWavesPerCU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)246 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
247 unsigned FlatWorkGroupSize) {
248 return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
249 }
250
getMinWavesPerEU(const MCSubtargetInfo * STI)251 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
252 return 1;
253 }
254
getMaxWavesPerEU()255 unsigned getMaxWavesPerEU() {
256 // FIXME: Need to take scratch memory into account.
257 return 10;
258 }
259
getMaxWavesPerEU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)260 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
261 unsigned FlatWorkGroupSize) {
262 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
263 getEUsPerCU(STI)) / getEUsPerCU(STI);
264 }
265
getMinFlatWorkGroupSize(const MCSubtargetInfo * STI)266 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
267 return 1;
268 }
269
getMaxFlatWorkGroupSize(const MCSubtargetInfo * STI)270 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
271 return 2048;
272 }
273
getWavesPerWorkGroup(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)274 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
275 unsigned FlatWorkGroupSize) {
276 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
277 getWavefrontSize(STI);
278 }
279
getSGPRAllocGranule(const MCSubtargetInfo * STI)280 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
281 IsaVersion Version = getIsaVersion(STI->getCPU());
282 if (Version.Major >= 8)
283 return 16;
284 return 8;
285 }
286
getSGPREncodingGranule(const MCSubtargetInfo * STI)287 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
288 return 8;
289 }
290
getTotalNumSGPRs(const MCSubtargetInfo * STI)291 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
292 IsaVersion Version = getIsaVersion(STI->getCPU());
293 if (Version.Major >= 8)
294 return 800;
295 return 512;
296 }
297
getAddressableNumSGPRs(const MCSubtargetInfo * STI)298 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
299 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
300 return FIXED_NUM_SGPRS_FOR_INIT_BUG;
301
302 IsaVersion Version = getIsaVersion(STI->getCPU());
303 if (Version.Major >= 8)
304 return 102;
305 return 104;
306 }
307
getMinNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)308 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
309 assert(WavesPerEU != 0);
310
311 if (WavesPerEU >= getMaxWavesPerEU())
312 return 0;
313
314 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
315 if (STI->getFeatureBits().test(FeatureTrapHandler))
316 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
317 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
318 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
319 }
320
getMaxNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU,bool Addressable)321 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
322 bool Addressable) {
323 assert(WavesPerEU != 0);
324
325 IsaVersion Version = getIsaVersion(STI->getCPU());
326 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
327 if (Version.Major >= 8 && !Addressable)
328 AddressableNumSGPRs = 112;
329 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
330 if (STI->getFeatureBits().test(FeatureTrapHandler))
331 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
332 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
333 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
334 }
335
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed,bool XNACKUsed)336 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
337 bool FlatScrUsed, bool XNACKUsed) {
338 unsigned ExtraSGPRs = 0;
339 if (VCCUsed)
340 ExtraSGPRs = 2;
341
342 IsaVersion Version = getIsaVersion(STI->getCPU());
343 if (Version.Major < 8) {
344 if (FlatScrUsed)
345 ExtraSGPRs = 4;
346 } else {
347 if (XNACKUsed)
348 ExtraSGPRs = 4;
349
350 if (FlatScrUsed)
351 ExtraSGPRs = 6;
352 }
353
354 return ExtraSGPRs;
355 }
356
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed)357 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
358 bool FlatScrUsed) {
359 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
360 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
361 }
362
getNumSGPRBlocks(const MCSubtargetInfo * STI,unsigned NumSGPRs)363 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
364 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
365 // SGPRBlocks is actual number of SGPR blocks minus 1.
366 return NumSGPRs / getSGPREncodingGranule(STI) - 1;
367 }
368
getVGPRAllocGranule(const MCSubtargetInfo * STI)369 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
370 return 4;
371 }
372
getVGPREncodingGranule(const MCSubtargetInfo * STI)373 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
374 return getVGPRAllocGranule(STI);
375 }
376
getTotalNumVGPRs(const MCSubtargetInfo * STI)377 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
378 return 256;
379 }
380
getAddressableNumVGPRs(const MCSubtargetInfo * STI)381 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
382 return getTotalNumVGPRs(STI);
383 }
384
getMinNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)385 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
386 assert(WavesPerEU != 0);
387
388 if (WavesPerEU >= getMaxWavesPerEU())
389 return 0;
390 unsigned MinNumVGPRs =
391 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
392 getVGPRAllocGranule(STI)) + 1;
393 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
394 }
395
getMaxNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)396 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
397 assert(WavesPerEU != 0);
398
399 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
400 getVGPRAllocGranule(STI));
401 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
402 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
403 }
404
getNumVGPRBlocks(const MCSubtargetInfo * STI,unsigned NumVGPRs)405 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
406 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
407 // VGPRBlocks is actual number of VGPR blocks minus 1.
408 return NumVGPRs / getVGPREncodingGranule(STI) - 1;
409 }
410
411 } // end namespace IsaInfo
412
initDefaultAMDKernelCodeT(amd_kernel_code_t & Header,const MCSubtargetInfo * STI)413 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
414 const MCSubtargetInfo *STI) {
415 IsaVersion Version = getIsaVersion(STI->getCPU());
416
417 memset(&Header, 0, sizeof(Header));
418
419 Header.amd_kernel_code_version_major = 1;
420 Header.amd_kernel_code_version_minor = 2;
421 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
422 Header.amd_machine_version_major = Version.Major;
423 Header.amd_machine_version_minor = Version.Minor;
424 Header.amd_machine_version_stepping = Version.Stepping;
425 Header.kernel_code_entry_byte_offset = sizeof(Header);
426 // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
427 Header.wavefront_size = 6;
428
429 // If the code object does not support indirect functions, then the value must
430 // be 0xffffffff.
431 Header.call_convention = -1;
432
433 // These alignment values are specified in powers of two, so alignment =
434 // 2^n. The minimum alignment is 2^4 = 16.
435 Header.kernarg_segment_alignment = 4;
436 Header.group_segment_alignment = 4;
437 Header.private_segment_alignment = 4;
438 }
439
getDefaultAmdhsaKernelDescriptor()440 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
441 amdhsa::kernel_descriptor_t KD;
442 memset(&KD, 0, sizeof(KD));
443 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
444 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
445 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
446 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
447 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
448 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
449 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
450 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
451 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
452 return KD;
453 }
454
isGroupSegment(const GlobalValue * GV)455 bool isGroupSegment(const GlobalValue *GV) {
456 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
457 }
458
isGlobalSegment(const GlobalValue * GV)459 bool isGlobalSegment(const GlobalValue *GV) {
460 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
461 }
462
isReadOnlySegment(const GlobalValue * GV)463 bool isReadOnlySegment(const GlobalValue *GV) {
464 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
465 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
466 }
467
shouldEmitConstantsToTextSection(const Triple & TT)468 bool shouldEmitConstantsToTextSection(const Triple &TT) {
469 return TT.getOS() != Triple::AMDHSA;
470 }
471
getIntegerAttribute(const Function & F,StringRef Name,int Default)472 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
473 Attribute A = F.getFnAttribute(Name);
474 int Result = Default;
475
476 if (A.isStringAttribute()) {
477 StringRef Str = A.getValueAsString();
478 if (Str.getAsInteger(0, Result)) {
479 LLVMContext &Ctx = F.getContext();
480 Ctx.emitError("can't parse integer attribute " + Name);
481 }
482 }
483
484 return Result;
485 }
486
getIntegerPairAttribute(const Function & F,StringRef Name,std::pair<int,int> Default,bool OnlyFirstRequired)487 std::pair<int, int> getIntegerPairAttribute(const Function &F,
488 StringRef Name,
489 std::pair<int, int> Default,
490 bool OnlyFirstRequired) {
491 Attribute A = F.getFnAttribute(Name);
492 if (!A.isStringAttribute())
493 return Default;
494
495 LLVMContext &Ctx = F.getContext();
496 std::pair<int, int> Ints = Default;
497 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
498 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
499 Ctx.emitError("can't parse first integer attribute " + Name);
500 return Default;
501 }
502 if (Strs.second.trim().getAsInteger(0, Ints.second)) {
503 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
504 Ctx.emitError("can't parse second integer attribute " + Name);
505 return Default;
506 }
507 }
508
509 return Ints;
510 }
511
getVmcntBitMask(const IsaVersion & Version)512 unsigned getVmcntBitMask(const IsaVersion &Version) {
513 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
514 if (Version.Major < 9)
515 return VmcntLo;
516
517 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
518 return VmcntLo | VmcntHi;
519 }
520
getExpcntBitMask(const IsaVersion & Version)521 unsigned getExpcntBitMask(const IsaVersion &Version) {
522 return (1 << getExpcntBitWidth()) - 1;
523 }
524
getLgkmcntBitMask(const IsaVersion & Version)525 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
526 return (1 << getLgkmcntBitWidth()) - 1;
527 }
528
getWaitcntBitMask(const IsaVersion & Version)529 unsigned getWaitcntBitMask(const IsaVersion &Version) {
530 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
531 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
532 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
533 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
534 if (Version.Major < 9)
535 return Waitcnt;
536
537 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
538 return Waitcnt | VmcntHi;
539 }
540
decodeVmcnt(const IsaVersion & Version,unsigned Waitcnt)541 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
542 unsigned VmcntLo =
543 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
544 if (Version.Major < 9)
545 return VmcntLo;
546
547 unsigned VmcntHi =
548 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
549 VmcntHi <<= getVmcntBitWidthLo();
550 return VmcntLo | VmcntHi;
551 }
552
decodeExpcnt(const IsaVersion & Version,unsigned Waitcnt)553 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
554 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
555 }
556
decodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt)557 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
558 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
559 }
560
decodeWaitcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned & Vmcnt,unsigned & Expcnt,unsigned & Lgkmcnt)561 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
562 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
563 Vmcnt = decodeVmcnt(Version, Waitcnt);
564 Expcnt = decodeExpcnt(Version, Waitcnt);
565 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
566 }
567
decodeWaitcnt(const IsaVersion & Version,unsigned Encoded)568 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
569 Waitcnt Decoded;
570 Decoded.VmCnt = decodeVmcnt(Version, Encoded);
571 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
572 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
573 return Decoded;
574 }
575
encodeVmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Vmcnt)576 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
577 unsigned Vmcnt) {
578 Waitcnt =
579 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
580 if (Version.Major < 9)
581 return Waitcnt;
582
583 Vmcnt >>= getVmcntBitWidthLo();
584 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
585 }
586
encodeExpcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Expcnt)587 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
588 unsigned Expcnt) {
589 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
590 }
591
encodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Lgkmcnt)592 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
593 unsigned Lgkmcnt) {
594 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
595 }
596
encodeWaitcnt(const IsaVersion & Version,unsigned Vmcnt,unsigned Expcnt,unsigned Lgkmcnt)597 unsigned encodeWaitcnt(const IsaVersion &Version,
598 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
599 unsigned Waitcnt = getWaitcntBitMask(Version);
600 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
601 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
602 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
603 return Waitcnt;
604 }
605
encodeWaitcnt(const IsaVersion & Version,const Waitcnt & Decoded)606 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
607 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
608 }
609
getInitialPSInputAddr(const Function & F)610 unsigned getInitialPSInputAddr(const Function &F) {
611 return getIntegerAttribute(F, "InitialPSInputAddr", 0);
612 }
613
isShader(CallingConv::ID cc)614 bool isShader(CallingConv::ID cc) {
615 switch(cc) {
616 case CallingConv::AMDGPU_VS:
617 case CallingConv::AMDGPU_LS:
618 case CallingConv::AMDGPU_HS:
619 case CallingConv::AMDGPU_ES:
620 case CallingConv::AMDGPU_GS:
621 case CallingConv::AMDGPU_PS:
622 case CallingConv::AMDGPU_CS:
623 return true;
624 default:
625 return false;
626 }
627 }
628
isCompute(CallingConv::ID cc)629 bool isCompute(CallingConv::ID cc) {
630 return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
631 }
632
isEntryFunctionCC(CallingConv::ID CC)633 bool isEntryFunctionCC(CallingConv::ID CC) {
634 switch (CC) {
635 case CallingConv::AMDGPU_KERNEL:
636 case CallingConv::SPIR_KERNEL:
637 case CallingConv::AMDGPU_VS:
638 case CallingConv::AMDGPU_GS:
639 case CallingConv::AMDGPU_PS:
640 case CallingConv::AMDGPU_CS:
641 case CallingConv::AMDGPU_ES:
642 case CallingConv::AMDGPU_HS:
643 case CallingConv::AMDGPU_LS:
644 return true;
645 default:
646 return false;
647 }
648 }
649
hasXNACK(const MCSubtargetInfo & STI)650 bool hasXNACK(const MCSubtargetInfo &STI) {
651 return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
652 }
653
hasSRAMECC(const MCSubtargetInfo & STI)654 bool hasSRAMECC(const MCSubtargetInfo &STI) {
655 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
656 }
657
hasMIMG_R128(const MCSubtargetInfo & STI)658 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
659 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
660 }
661
hasPackedD16(const MCSubtargetInfo & STI)662 bool hasPackedD16(const MCSubtargetInfo &STI) {
663 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
664 }
665
isSI(const MCSubtargetInfo & STI)666 bool isSI(const MCSubtargetInfo &STI) {
667 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
668 }
669
isCI(const MCSubtargetInfo & STI)670 bool isCI(const MCSubtargetInfo &STI) {
671 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
672 }
673
isVI(const MCSubtargetInfo & STI)674 bool isVI(const MCSubtargetInfo &STI) {
675 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
676 }
677
isGFX9(const MCSubtargetInfo & STI)678 bool isGFX9(const MCSubtargetInfo &STI) {
679 return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
680 }
681
isGCN3Encoding(const MCSubtargetInfo & STI)682 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
683 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
684 }
685
isSGPR(unsigned Reg,const MCRegisterInfo * TRI)686 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
687 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
688 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
689 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
690 Reg == AMDGPU::SCC;
691 }
692
isRegIntersect(unsigned Reg0,unsigned Reg1,const MCRegisterInfo * TRI)693 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
694 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
695 if (*R == Reg1) return true;
696 }
697 return false;
698 }
699
700 #define MAP_REG2REG \
701 using namespace AMDGPU; \
702 switch(Reg) { \
703 default: return Reg; \
704 CASE_CI_VI(FLAT_SCR) \
705 CASE_CI_VI(FLAT_SCR_LO) \
706 CASE_CI_VI(FLAT_SCR_HI) \
707 CASE_VI_GFX9(TTMP0) \
708 CASE_VI_GFX9(TTMP1) \
709 CASE_VI_GFX9(TTMP2) \
710 CASE_VI_GFX9(TTMP3) \
711 CASE_VI_GFX9(TTMP4) \
712 CASE_VI_GFX9(TTMP5) \
713 CASE_VI_GFX9(TTMP6) \
714 CASE_VI_GFX9(TTMP7) \
715 CASE_VI_GFX9(TTMP8) \
716 CASE_VI_GFX9(TTMP9) \
717 CASE_VI_GFX9(TTMP10) \
718 CASE_VI_GFX9(TTMP11) \
719 CASE_VI_GFX9(TTMP12) \
720 CASE_VI_GFX9(TTMP13) \
721 CASE_VI_GFX9(TTMP14) \
722 CASE_VI_GFX9(TTMP15) \
723 CASE_VI_GFX9(TTMP0_TTMP1) \
724 CASE_VI_GFX9(TTMP2_TTMP3) \
725 CASE_VI_GFX9(TTMP4_TTMP5) \
726 CASE_VI_GFX9(TTMP6_TTMP7) \
727 CASE_VI_GFX9(TTMP8_TTMP9) \
728 CASE_VI_GFX9(TTMP10_TTMP11) \
729 CASE_VI_GFX9(TTMP12_TTMP13) \
730 CASE_VI_GFX9(TTMP14_TTMP15) \
731 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
732 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
733 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
734 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
735 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
736 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
737 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
738 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
739 }
740
741 #define CASE_CI_VI(node) \
742 assert(!isSI(STI)); \
743 case node: return isCI(STI) ? node##_ci : node##_vi;
744
745 #define CASE_VI_GFX9(node) \
746 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
747
getMCReg(unsigned Reg,const MCSubtargetInfo & STI)748 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
749 if (STI.getTargetTriple().getArch() == Triple::r600)
750 return Reg;
751 MAP_REG2REG
752 }
753
754 #undef CASE_CI_VI
755 #undef CASE_VI_GFX9
756
757 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
758 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
759
mc2PseudoReg(unsigned Reg)760 unsigned mc2PseudoReg(unsigned Reg) {
761 MAP_REG2REG
762 }
763
764 #undef CASE_CI_VI
765 #undef CASE_VI_GFX9
766 #undef MAP_REG2REG
767
isSISrcOperand(const MCInstrDesc & Desc,unsigned OpNo)768 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
769 assert(OpNo < Desc.NumOperands);
770 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
771 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
772 OpType <= AMDGPU::OPERAND_SRC_LAST;
773 }
774
isSISrcFPOperand(const MCInstrDesc & Desc,unsigned OpNo)775 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
776 assert(OpNo < Desc.NumOperands);
777 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
778 switch (OpType) {
779 case AMDGPU::OPERAND_REG_IMM_FP32:
780 case AMDGPU::OPERAND_REG_IMM_FP64:
781 case AMDGPU::OPERAND_REG_IMM_FP16:
782 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
783 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
784 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
785 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
786 return true;
787 default:
788 return false;
789 }
790 }
791
isSISrcInlinableOperand(const MCInstrDesc & Desc,unsigned OpNo)792 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
793 assert(OpNo < Desc.NumOperands);
794 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
795 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
796 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
797 }
798
799 // Avoid using MCRegisterClass::getSize, since that function will go away
800 // (move from MC* level to Target* level). Return size in bits.
getRegBitWidth(unsigned RCID)801 unsigned getRegBitWidth(unsigned RCID) {
802 switch (RCID) {
803 case AMDGPU::SGPR_32RegClassID:
804 case AMDGPU::VGPR_32RegClassID:
805 case AMDGPU::VS_32RegClassID:
806 case AMDGPU::SReg_32RegClassID:
807 case AMDGPU::SReg_32_XM0RegClassID:
808 return 32;
809 case AMDGPU::SGPR_64RegClassID:
810 case AMDGPU::VS_64RegClassID:
811 case AMDGPU::SReg_64RegClassID:
812 case AMDGPU::VReg_64RegClassID:
813 case AMDGPU::SReg_64_XEXECRegClassID:
814 return 64;
815 case AMDGPU::VReg_96RegClassID:
816 return 96;
817 case AMDGPU::SGPR_128RegClassID:
818 case AMDGPU::SReg_128RegClassID:
819 case AMDGPU::VReg_128RegClassID:
820 return 128;
821 case AMDGPU::SReg_256RegClassID:
822 case AMDGPU::VReg_256RegClassID:
823 return 256;
824 case AMDGPU::SReg_512RegClassID:
825 case AMDGPU::VReg_512RegClassID:
826 return 512;
827 default:
828 llvm_unreachable("Unexpected register class");
829 }
830 }
831
getRegBitWidth(const MCRegisterClass & RC)832 unsigned getRegBitWidth(const MCRegisterClass &RC) {
833 return getRegBitWidth(RC.getID());
834 }
835
getRegOperandSize(const MCRegisterInfo * MRI,const MCInstrDesc & Desc,unsigned OpNo)836 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
837 unsigned OpNo) {
838 assert(OpNo < Desc.NumOperands);
839 unsigned RCID = Desc.OpInfo[OpNo].RegClass;
840 return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
841 }
842
isInlinableLiteral64(int64_t Literal,bool HasInv2Pi)843 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
844 if (Literal >= -16 && Literal <= 64)
845 return true;
846
847 uint64_t Val = static_cast<uint64_t>(Literal);
848 return (Val == DoubleToBits(0.0)) ||
849 (Val == DoubleToBits(1.0)) ||
850 (Val == DoubleToBits(-1.0)) ||
851 (Val == DoubleToBits(0.5)) ||
852 (Val == DoubleToBits(-0.5)) ||
853 (Val == DoubleToBits(2.0)) ||
854 (Val == DoubleToBits(-2.0)) ||
855 (Val == DoubleToBits(4.0)) ||
856 (Val == DoubleToBits(-4.0)) ||
857 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
858 }
859
isInlinableLiteral32(int32_t Literal,bool HasInv2Pi)860 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
861 if (Literal >= -16 && Literal <= 64)
862 return true;
863
864 // The actual type of the operand does not seem to matter as long
865 // as the bits match one of the inline immediate values. For example:
866 //
867 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
868 // so it is a legal inline immediate.
869 //
870 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
871 // floating-point, so it is a legal inline immediate.
872
873 uint32_t Val = static_cast<uint32_t>(Literal);
874 return (Val == FloatToBits(0.0f)) ||
875 (Val == FloatToBits(1.0f)) ||
876 (Val == FloatToBits(-1.0f)) ||
877 (Val == FloatToBits(0.5f)) ||
878 (Val == FloatToBits(-0.5f)) ||
879 (Val == FloatToBits(2.0f)) ||
880 (Val == FloatToBits(-2.0f)) ||
881 (Val == FloatToBits(4.0f)) ||
882 (Val == FloatToBits(-4.0f)) ||
883 (Val == 0x3e22f983 && HasInv2Pi);
884 }
885
isInlinableLiteral16(int16_t Literal,bool HasInv2Pi)886 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
887 if (!HasInv2Pi)
888 return false;
889
890 if (Literal >= -16 && Literal <= 64)
891 return true;
892
893 uint16_t Val = static_cast<uint16_t>(Literal);
894 return Val == 0x3C00 || // 1.0
895 Val == 0xBC00 || // -1.0
896 Val == 0x3800 || // 0.5
897 Val == 0xB800 || // -0.5
898 Val == 0x4000 || // 2.0
899 Val == 0xC000 || // -2.0
900 Val == 0x4400 || // 4.0
901 Val == 0xC400 || // -4.0
902 Val == 0x3118; // 1/2pi
903 }
904
isInlinableLiteralV216(int32_t Literal,bool HasInv2Pi)905 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
906 assert(HasInv2Pi);
907
908 int16_t Lo16 = static_cast<int16_t>(Literal);
909 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
910 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
911 }
912
isArgPassedInSGPR(const Argument * A)913 bool isArgPassedInSGPR(const Argument *A) {
914 const Function *F = A->getParent();
915
916 // Arguments to compute shaders are never a source of divergence.
917 CallingConv::ID CC = F->getCallingConv();
918 switch (CC) {
919 case CallingConv::AMDGPU_KERNEL:
920 case CallingConv::SPIR_KERNEL:
921 return true;
922 case CallingConv::AMDGPU_VS:
923 case CallingConv::AMDGPU_LS:
924 case CallingConv::AMDGPU_HS:
925 case CallingConv::AMDGPU_ES:
926 case CallingConv::AMDGPU_GS:
927 case CallingConv::AMDGPU_PS:
928 case CallingConv::AMDGPU_CS:
929 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
930 // Everything else is in VGPRs.
931 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
932 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
933 default:
934 // TODO: Should calls support inreg for SGPR inputs?
935 return false;
936 }
937 }
938
getSMRDEncodedOffset(const MCSubtargetInfo & ST,int64_t ByteOffset)939 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
940 if (isGCN3Encoding(ST))
941 return ByteOffset;
942 return ByteOffset >> 2;
943 }
944
isLegalSMRDImmOffset(const MCSubtargetInfo & ST,int64_t ByteOffset)945 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
946 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
947 return isGCN3Encoding(ST) ?
948 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
949 }
950
951 // Given Imm, split it into the values to put into the SOffset and ImmOffset
952 // fields in an MUBUF instruction. Return false if it is not possible (due to a
953 // hardware bug needing a workaround).
954 //
955 // The required alignment ensures that individual address components remain
956 // aligned if they are aligned to begin with. It also ensures that additional
957 // offsets within the given alignment can be added to the resulting ImmOffset.
splitMUBUFOffset(uint32_t Imm,uint32_t & SOffset,uint32_t & ImmOffset,const GCNSubtarget * Subtarget,uint32_t Align)958 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
959 const GCNSubtarget *Subtarget, uint32_t Align) {
960 const uint32_t MaxImm = alignDown(4095, Align);
961 uint32_t Overflow = 0;
962
963 if (Imm > MaxImm) {
964 if (Imm <= MaxImm + 64) {
965 // Use an SOffset inline constant for 4..64
966 Overflow = Imm - MaxImm;
967 Imm = MaxImm;
968 } else {
969 // Try to keep the same value in SOffset for adjacent loads, so that
970 // the corresponding register contents can be re-used.
971 //
972 // Load values with all low-bits (except for alignment bits) set into
973 // SOffset, so that a larger range of values can be covered using
974 // s_movk_i32.
975 //
976 // Atomic operations fail to work correctly when individual address
977 // components are unaligned, even if their sum is aligned.
978 uint32_t High = (Imm + Align) & ~4095;
979 uint32_t Low = (Imm + Align) & 4095;
980 Imm = Low;
981 Overflow = High - Align;
982 }
983 }
984
985 // There is a hardware bug in SI and CI which prevents address clamping in
986 // MUBUF instructions from working correctly with SOffsets. The immediate
987 // offset is unaffected.
988 if (Overflow > 0 &&
989 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
990 return false;
991
992 ImmOffset = Imm;
993 SOffset = Overflow;
994 return true;
995 }
996
997 namespace {
998
999 struct SourceOfDivergence {
1000 unsigned Intr;
1001 };
1002 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1003
1004 #define GET_SourcesOfDivergence_IMPL
1005 #include "AMDGPUGenSearchableTables.inc"
1006
1007 } // end anonymous namespace
1008
isIntrinsicSourceOfDivergence(unsigned IntrID)1009 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1010 return lookupSourceOfDivergence(IntrID);
1011 }
1012 } // namespace AMDGPU
1013 } // namespace llvm
1014