1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 */
29
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53
54 /*
55 * ==========================================================================
56 * I/O type descriptions
57 * ==========================================================================
58 */
59 const char *zio_type_name[ZIO_TYPES] = {
60 /*
61 * Note: Linux kernel thread name length is limited
62 * so these names will differ from upstream open zfs.
63 */
64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69
70 /*
71 * ==========================================================================
72 * I/O kmem caches
73 * ==========================================================================
74 */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86
87 #define BP_SPANB(indblkshift, level) \
88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define COMPARE_META_LEVEL 0x80000000ul
90 /*
91 * The following actions directly effect the spa's sync-to-convergence logic.
92 * The values below define the sync pass when we start performing the action.
93 * Care should be taken when changing these values as they directly impact
94 * spa_sync() performance. Tuning these values may introduce subtle performance
95 * pathologies and should only be done in the context of performance analysis.
96 * These tunables will eventually be removed and replaced with #defines once
97 * enough analysis has been done to determine optimal values.
98 *
99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100 * regular blocks are not deferred.
101 *
102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103 * compression (including of metadata). In practice, we don't have this
104 * many sync passes, so this has no effect.
105 *
106 * The original intent was that disabling compression would help the sync
107 * passes to converge. However, in practice disabling compression increases
108 * the average number of sync passes, because when we turn compression off, a
109 * lot of block's size will change and thus we have to re-allocate (not
110 * overwrite) them. It also increases the number of 128KB allocations (e.g.
111 * for indirect blocks and spacemaps) because these will not be compressed.
112 * The 128K allocations are especially detrimental to performance on highly
113 * fragmented systems, which may have very few free segments of this size,
114 * and may need to load new metaslabs to satisfy 128K allocations.
115 */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119
120 /*
121 * An allocating zio is one that either currently has the DVA allocate
122 * stage set or will have it later in its lifetime.
123 */
124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125
126 /*
127 * Enable smaller cores by excluding metadata
128 * allocations as well.
129 */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138
139 static inline void __zio_execute(zio_t *zio);
140
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142
143 void
zio_init(void)144 zio_init(void)
145 {
146 size_t c;
147
148 zio_cache = kmem_cache_create("zio_cache",
149 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150 zio_link_cache = kmem_cache_create("zio_link_cache",
151 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152
153 /*
154 * For small buffers, we want a cache for each multiple of
155 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
156 * for each quarter-power of 2.
157 */
158 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
159 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
160 size_t p2 = size;
161 size_t align = 0;
162 size_t data_cflags, cflags;
163
164 data_cflags = KMC_NODEBUG;
165 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
166 KMC_NODEBUG : 0;
167
168 #if defined(_ILP32) && defined(_KERNEL)
169 /*
170 * Cache size limited to 1M on 32-bit platforms until ARC
171 * buffers no longer require virtual address space.
172 */
173 if (size > zfs_max_recordsize)
174 break;
175 #endif
176
177 while (!ISP2(p2))
178 p2 &= p2 - 1;
179
180 #ifndef _KERNEL
181 /*
182 * If we are using watchpoints, put each buffer on its own page,
183 * to eliminate the performance overhead of trapping to the
184 * kernel when modifying a non-watched buffer that shares the
185 * page with a watched buffer.
186 */
187 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
188 continue;
189 /*
190 * Here's the problem - on 4K native devices in userland on
191 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
192 * will fail with EINVAL, causing zdb (and others) to coredump.
193 * Since userland probably doesn't need optimized buffer caches,
194 * we just force 4K alignment on everything.
195 */
196 align = 8 * SPA_MINBLOCKSIZE;
197 #else
198 if (size < PAGESIZE) {
199 align = SPA_MINBLOCKSIZE;
200 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
201 align = PAGESIZE;
202 }
203 #endif
204
205 if (align != 0) {
206 char name[36];
207 if (cflags == data_cflags) {
208 /*
209 * Resulting kmem caches would be identical.
210 * Save memory by creating only one.
211 */
212 (void) snprintf(name, sizeof (name),
213 "zio_buf_comb_%lu", (ulong_t)size);
214 zio_buf_cache[c] = kmem_cache_create(name,
215 size, align, NULL, NULL, NULL, NULL, NULL,
216 cflags);
217 zio_data_buf_cache[c] = zio_buf_cache[c];
218 continue;
219 }
220 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
221 (ulong_t)size);
222 zio_buf_cache[c] = kmem_cache_create(name, size,
223 align, NULL, NULL, NULL, NULL, NULL, cflags);
224
225 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
226 (ulong_t)size);
227 zio_data_buf_cache[c] = kmem_cache_create(name, size,
228 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
229 }
230 }
231
232 while (--c != 0) {
233 ASSERT(zio_buf_cache[c] != NULL);
234 if (zio_buf_cache[c - 1] == NULL)
235 zio_buf_cache[c - 1] = zio_buf_cache[c];
236
237 ASSERT(zio_data_buf_cache[c] != NULL);
238 if (zio_data_buf_cache[c - 1] == NULL)
239 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
240 }
241
242 zio_inject_init();
243
244 lz4_init();
245 }
246
247 void
zio_fini(void)248 zio_fini(void)
249 {
250 size_t i, j, n;
251 kmem_cache_t *cache;
252
253 n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
254
255 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
256 for (i = 0; i < n; i++) {
257 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
258 (void) printf("zio_fini: [%d] %llu != %llu\n",
259 (int)((i + 1) << SPA_MINBLOCKSHIFT),
260 (long long unsigned)zio_buf_cache_allocs[i],
261 (long long unsigned)zio_buf_cache_frees[i]);
262 }
263 #endif
264
265 /*
266 * The same kmem cache can show up multiple times in both zio_buf_cache
267 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
268 * sort it out.
269 */
270 for (i = 0; i < n; i++) {
271 cache = zio_buf_cache[i];
272 if (cache == NULL)
273 continue;
274 for (j = i; j < n; j++) {
275 if (cache == zio_buf_cache[j])
276 zio_buf_cache[j] = NULL;
277 if (cache == zio_data_buf_cache[j])
278 zio_data_buf_cache[j] = NULL;
279 }
280 kmem_cache_destroy(cache);
281 }
282
283 for (i = 0; i < n; i++) {
284 cache = zio_data_buf_cache[i];
285 if (cache == NULL)
286 continue;
287 for (j = i; j < n; j++) {
288 if (cache == zio_data_buf_cache[j])
289 zio_data_buf_cache[j] = NULL;
290 }
291 kmem_cache_destroy(cache);
292 }
293
294 for (i = 0; i < n; i++) {
295 if (zio_buf_cache[i] != NULL)
296 panic("zio_fini: zio_buf_cache[%d] != NULL", (int)i);
297 if (zio_data_buf_cache[i] != NULL)
298 panic("zio_fini: zio_data_buf_cache[%d] != NULL", (int)i);
299 }
300
301 kmem_cache_destroy(zio_link_cache);
302 kmem_cache_destroy(zio_cache);
303
304 zio_inject_fini();
305
306 lz4_fini();
307 }
308
309 /*
310 * ==========================================================================
311 * Allocate and free I/O buffers
312 * ==========================================================================
313 */
314
315 /*
316 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
317 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
318 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
319 * excess / transient data in-core during a crashdump.
320 */
321 void *
zio_buf_alloc(size_t size)322 zio_buf_alloc(size_t size)
323 {
324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325
326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
328 atomic_add_64(&zio_buf_cache_allocs[c], 1);
329 #endif
330
331 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
332 }
333
334 /*
335 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
336 * crashdump if the kernel panics. This exists so that we will limit the amount
337 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
338 * of kernel heap dumped to disk when the kernel panics)
339 */
340 void *
zio_data_buf_alloc(size_t size)341 zio_data_buf_alloc(size_t size)
342 {
343 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
344
345 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
346
347 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
348 }
349
350 void
zio_buf_free(void * buf,size_t size)351 zio_buf_free(void *buf, size_t size)
352 {
353 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
354
355 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
356 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
357 atomic_add_64(&zio_buf_cache_frees[c], 1);
358 #endif
359
360 kmem_cache_free(zio_buf_cache[c], buf);
361 }
362
363 void
zio_data_buf_free(void * buf,size_t size)364 zio_data_buf_free(void *buf, size_t size)
365 {
366 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
367
368 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
369
370 kmem_cache_free(zio_data_buf_cache[c], buf);
371 }
372
373 static void
zio_abd_free(void * abd,size_t size)374 zio_abd_free(void *abd, size_t size)
375 {
376 abd_free((abd_t *)abd);
377 }
378
379 /*
380 * ==========================================================================
381 * Push and pop I/O transform buffers
382 * ==========================================================================
383 */
384 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)385 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
386 zio_transform_func_t *transform)
387 {
388 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
389
390 zt->zt_orig_abd = zio->io_abd;
391 zt->zt_orig_size = zio->io_size;
392 zt->zt_bufsize = bufsize;
393 zt->zt_transform = transform;
394
395 zt->zt_next = zio->io_transform_stack;
396 zio->io_transform_stack = zt;
397
398 zio->io_abd = data;
399 zio->io_size = size;
400 }
401
402 void
zio_pop_transforms(zio_t * zio)403 zio_pop_transforms(zio_t *zio)
404 {
405 zio_transform_t *zt;
406
407 while ((zt = zio->io_transform_stack) != NULL) {
408 if (zt->zt_transform != NULL)
409 zt->zt_transform(zio,
410 zt->zt_orig_abd, zt->zt_orig_size);
411
412 if (zt->zt_bufsize != 0)
413 abd_free(zio->io_abd);
414
415 zio->io_abd = zt->zt_orig_abd;
416 zio->io_size = zt->zt_orig_size;
417 zio->io_transform_stack = zt->zt_next;
418
419 kmem_free(zt, sizeof (zio_transform_t));
420 }
421 }
422
423 /*
424 * ==========================================================================
425 * I/O transform callbacks for subblocks, decompression, and decryption
426 * ==========================================================================
427 */
428 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)429 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
430 {
431 ASSERT(zio->io_size > size);
432
433 if (zio->io_type == ZIO_TYPE_READ)
434 abd_copy(data, zio->io_abd, size);
435 }
436
437 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)438 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
439 {
440 if (zio->io_error == 0) {
441 void *tmp = abd_borrow_buf(data, size);
442 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
443 zio->io_abd, tmp, zio->io_size, size,
444 &zio->io_prop.zp_complevel);
445 abd_return_buf_copy(data, tmp, size);
446
447 if (zio_injection_enabled && ret == 0)
448 ret = zio_handle_fault_injection(zio, EINVAL);
449
450 if (ret != 0)
451 zio->io_error = SET_ERROR(EIO);
452 }
453 }
454
455 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)456 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
457 {
458 int ret;
459 void *tmp;
460 blkptr_t *bp = zio->io_bp;
461 spa_t *spa = zio->io_spa;
462 uint64_t dsobj = zio->io_bookmark.zb_objset;
463 uint64_t lsize = BP_GET_LSIZE(bp);
464 dmu_object_type_t ot = BP_GET_TYPE(bp);
465 uint8_t salt[ZIO_DATA_SALT_LEN];
466 uint8_t iv[ZIO_DATA_IV_LEN];
467 uint8_t mac[ZIO_DATA_MAC_LEN];
468 boolean_t no_crypt = B_FALSE;
469
470 ASSERT(BP_USES_CRYPT(bp));
471 ASSERT3U(size, !=, 0);
472
473 if (zio->io_error != 0)
474 return;
475
476 /*
477 * Verify the cksum of MACs stored in an indirect bp. It will always
478 * be possible to verify this since it does not require an encryption
479 * key.
480 */
481 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
482 zio_crypt_decode_mac_bp(bp, mac);
483
484 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
485 /*
486 * We haven't decompressed the data yet, but
487 * zio_crypt_do_indirect_mac_checksum() requires
488 * decompressed data to be able to parse out the MACs
489 * from the indirect block. We decompress it now and
490 * throw away the result after we are finished.
491 */
492 tmp = zio_buf_alloc(lsize);
493 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
494 zio->io_abd, tmp, zio->io_size, lsize,
495 &zio->io_prop.zp_complevel);
496 if (ret != 0) {
497 ret = SET_ERROR(EIO);
498 goto error;
499 }
500 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
501 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
502 zio_buf_free(tmp, lsize);
503 } else {
504 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
505 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
506 }
507 abd_copy(data, zio->io_abd, size);
508
509 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
510 ret = zio_handle_decrypt_injection(spa,
511 &zio->io_bookmark, ot, ECKSUM);
512 }
513 if (ret != 0)
514 goto error;
515
516 return;
517 }
518
519 /*
520 * If this is an authenticated block, just check the MAC. It would be
521 * nice to separate this out into its own flag, but for the moment
522 * enum zio_flag is out of bits.
523 */
524 if (BP_IS_AUTHENTICATED(bp)) {
525 if (ot == DMU_OT_OBJSET) {
526 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
527 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
528 } else {
529 zio_crypt_decode_mac_bp(bp, mac);
530 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
531 zio->io_abd, size, mac);
532 if (zio_injection_enabled && ret == 0) {
533 ret = zio_handle_decrypt_injection(spa,
534 &zio->io_bookmark, ot, ECKSUM);
535 }
536 }
537 abd_copy(data, zio->io_abd, size);
538
539 if (ret != 0)
540 goto error;
541
542 return;
543 }
544
545 zio_crypt_decode_params_bp(bp, salt, iv);
546
547 if (ot == DMU_OT_INTENT_LOG) {
548 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
549 zio_crypt_decode_mac_zil(tmp, mac);
550 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
551 } else {
552 zio_crypt_decode_mac_bp(bp, mac);
553 }
554
555 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
556 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
557 zio->io_abd, &no_crypt);
558 if (no_crypt)
559 abd_copy(data, zio->io_abd, size);
560
561 if (ret != 0)
562 goto error;
563
564 return;
565
566 error:
567 /* assert that the key was found unless this was speculative */
568 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
569
570 /*
571 * If there was a decryption / authentication error return EIO as
572 * the io_error. If this was not a speculative zio, create an ereport.
573 */
574 if (ret == ECKSUM) {
575 zio->io_error = SET_ERROR(EIO);
576 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
577 spa_log_error(spa, &zio->io_bookmark);
578 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
579 spa, NULL, &zio->io_bookmark, zio, 0);
580 }
581 } else {
582 zio->io_error = ret;
583 }
584 }
585
586 /*
587 * ==========================================================================
588 * I/O parent/child relationships and pipeline interlocks
589 * ==========================================================================
590 */
591 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)592 zio_walk_parents(zio_t *cio, zio_link_t **zl)
593 {
594 list_t *pl = &cio->io_parent_list;
595
596 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
597 if (*zl == NULL)
598 return (NULL);
599
600 ASSERT((*zl)->zl_child == cio);
601 return ((*zl)->zl_parent);
602 }
603
604 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)605 zio_walk_children(zio_t *pio, zio_link_t **zl)
606 {
607 list_t *cl = &pio->io_child_list;
608
609 ASSERT(MUTEX_HELD(&pio->io_lock));
610
611 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
612 if (*zl == NULL)
613 return (NULL);
614
615 ASSERT((*zl)->zl_parent == pio);
616 return ((*zl)->zl_child);
617 }
618
619 zio_t *
zio_unique_parent(zio_t * cio)620 zio_unique_parent(zio_t *cio)
621 {
622 zio_link_t *zl = NULL;
623 zio_t *pio = zio_walk_parents(cio, &zl);
624
625 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
626 return (pio);
627 }
628
629 void
zio_add_child(zio_t * pio,zio_t * cio)630 zio_add_child(zio_t *pio, zio_t *cio)
631 {
632 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
633
634 /*
635 * Logical I/Os can have logical, gang, or vdev children.
636 * Gang I/Os can have gang or vdev children.
637 * Vdev I/Os can only have vdev children.
638 * The following ASSERT captures all of these constraints.
639 */
640 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
641
642 zl->zl_parent = pio;
643 zl->zl_child = cio;
644
645 mutex_enter(&pio->io_lock);
646 mutex_enter(&cio->io_lock);
647
648 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
649
650 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
651 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
652
653 list_insert_head(&pio->io_child_list, zl);
654 list_insert_head(&cio->io_parent_list, zl);
655
656 pio->io_child_count++;
657 cio->io_parent_count++;
658
659 mutex_exit(&cio->io_lock);
660 mutex_exit(&pio->io_lock);
661 }
662
663 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)664 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
665 {
666 ASSERT(zl->zl_parent == pio);
667 ASSERT(zl->zl_child == cio);
668
669 mutex_enter(&pio->io_lock);
670 mutex_enter(&cio->io_lock);
671
672 list_remove(&pio->io_child_list, zl);
673 list_remove(&cio->io_parent_list, zl);
674
675 pio->io_child_count--;
676 cio->io_parent_count--;
677
678 mutex_exit(&cio->io_lock);
679 mutex_exit(&pio->io_lock);
680 kmem_cache_free(zio_link_cache, zl);
681 }
682
683 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)684 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
685 {
686 boolean_t waiting = B_FALSE;
687
688 mutex_enter(&zio->io_lock);
689 ASSERT(zio->io_stall == NULL);
690 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
691 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
692 continue;
693
694 uint64_t *countp = &zio->io_children[c][wait];
695 if (*countp != 0) {
696 zio->io_stage >>= 1;
697 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
698 zio->io_stall = countp;
699 waiting = B_TRUE;
700 break;
701 }
702 }
703 mutex_exit(&zio->io_lock);
704 return (waiting);
705 }
706
707 __attribute__((always_inline))
708 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)709 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
710 zio_t **next_to_executep)
711 {
712 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
713 int *errorp = &pio->io_child_error[zio->io_child_type];
714
715 mutex_enter(&pio->io_lock);
716 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
717 *errorp = zio_worst_error(*errorp, zio->io_error);
718 pio->io_reexecute |= zio->io_reexecute;
719 ASSERT3U(*countp, >, 0);
720
721 (*countp)--;
722
723 if (*countp == 0 && pio->io_stall == countp) {
724 zio_taskq_type_t type =
725 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
726 ZIO_TASKQ_INTERRUPT;
727 pio->io_stall = NULL;
728 mutex_exit(&pio->io_lock);
729
730 /*
731 * If we can tell the caller to execute this parent next, do
732 * so. Otherwise dispatch the parent zio as its own task.
733 *
734 * Having the caller execute the parent when possible reduces
735 * locking on the zio taskq's, reduces context switch
736 * overhead, and has no recursion penalty. Note that one
737 * read from disk typically causes at least 3 zio's: a
738 * zio_null(), the logical zio_read(), and then a physical
739 * zio. When the physical ZIO completes, we are able to call
740 * zio_done() on all 3 of these zio's from one invocation of
741 * zio_execute() by returning the parent back to
742 * zio_execute(). Since the parent isn't executed until this
743 * thread returns back to zio_execute(), the caller should do
744 * so promptly.
745 *
746 * In other cases, dispatching the parent prevents
747 * overflowing the stack when we have deeply nested
748 * parent-child relationships, as we do with the "mega zio"
749 * of writes for spa_sync(), and the chain of ZIL blocks.
750 */
751 if (next_to_executep != NULL && *next_to_executep == NULL) {
752 *next_to_executep = pio;
753 } else {
754 zio_taskq_dispatch(pio, type, B_FALSE);
755 }
756 } else {
757 mutex_exit(&pio->io_lock);
758 }
759 }
760
761 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)762 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
763 {
764 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
765 zio->io_error = zio->io_child_error[c];
766 }
767
768 int
zio_bookmark_compare(const void * x1,const void * x2)769 zio_bookmark_compare(const void *x1, const void *x2)
770 {
771 const zio_t *z1 = x1;
772 const zio_t *z2 = x2;
773
774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
775 return (-1);
776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
777 return (1);
778
779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
780 return (-1);
781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
782 return (1);
783
784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
785 return (-1);
786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
787 return (1);
788
789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
790 return (-1);
791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
792 return (1);
793
794 if (z1 < z2)
795 return (-1);
796 if (z1 > z2)
797 return (1);
798
799 return (0);
800 }
801
802 /*
803 * ==========================================================================
804 * Create the various types of I/O (read, write, free, etc)
805 * ==========================================================================
806 */
807 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,enum zio_flag flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
810 void *private, zio_type_t type, zio_priority_t priority,
811 enum zio_flag flags, vdev_t *vd, uint64_t offset,
812 const zbookmark_phys_t *zb, enum zio_stage stage,
813 enum zio_stage pipeline)
814 {
815 zio_t *zio;
816
817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
820
821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
823 ASSERT(vd || stage == ZIO_STAGE_OPEN);
824
825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
826
827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
828 bzero(zio, sizeof (zio_t));
829
830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
832
833 list_create(&zio->io_parent_list, sizeof (zio_link_t),
834 offsetof(zio_link_t, zl_parent_node));
835 list_create(&zio->io_child_list, sizeof (zio_link_t),
836 offsetof(zio_link_t, zl_child_node));
837 metaslab_trace_init(&zio->io_alloc_list);
838
839 if (vd != NULL)
840 zio->io_child_type = ZIO_CHILD_VDEV;
841 else if (flags & ZIO_FLAG_GANG_CHILD)
842 zio->io_child_type = ZIO_CHILD_GANG;
843 else if (flags & ZIO_FLAG_DDT_CHILD)
844 zio->io_child_type = ZIO_CHILD_DDT;
845 else
846 zio->io_child_type = ZIO_CHILD_LOGICAL;
847
848 if (bp != NULL) {
849 zio->io_bp = (blkptr_t *)bp;
850 zio->io_bp_copy = *bp;
851 zio->io_bp_orig = *bp;
852 if (type != ZIO_TYPE_WRITE ||
853 zio->io_child_type == ZIO_CHILD_DDT)
854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
855 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
856 zio->io_logical = zio;
857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
858 pipeline |= ZIO_GANG_STAGES;
859 }
860
861 zio->io_spa = spa;
862 zio->io_txg = txg;
863 zio->io_done = done;
864 zio->io_private = private;
865 zio->io_type = type;
866 zio->io_priority = priority;
867 zio->io_vd = vd;
868 zio->io_offset = offset;
869 zio->io_orig_abd = zio->io_abd = data;
870 zio->io_orig_size = zio->io_size = psize;
871 zio->io_lsize = lsize;
872 zio->io_orig_flags = zio->io_flags = flags;
873 zio->io_orig_stage = zio->io_stage = stage;
874 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
875 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
876
877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
879
880 if (zb != NULL)
881 zio->io_bookmark = *zb;
882
883 if (pio != NULL) {
884 if (zio->io_metaslab_class == NULL)
885 zio->io_metaslab_class = pio->io_metaslab_class;
886 if (zio->io_logical == NULL)
887 zio->io_logical = pio->io_logical;
888 if (zio->io_child_type == ZIO_CHILD_GANG)
889 zio->io_gang_leader = pio->io_gang_leader;
890 zio_add_child(pio, zio);
891 }
892
893 taskq_init_ent(&zio->io_tqent);
894
895 return (zio);
896 }
897
898 static void
zio_destroy(zio_t * zio)899 zio_destroy(zio_t *zio)
900 {
901 metaslab_trace_fini(&zio->io_alloc_list);
902 list_destroy(&zio->io_parent_list);
903 list_destroy(&zio->io_child_list);
904 mutex_destroy(&zio->io_lock);
905 cv_destroy(&zio->io_cv);
906 kmem_cache_free(zio_cache, zio);
907 }
908
909 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,enum zio_flag flags)910 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
911 void *private, enum zio_flag flags)
912 {
913 zio_t *zio;
914
915 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
916 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
917 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
918
919 return (zio);
920 }
921
922 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,enum zio_flag flags)923 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
924 {
925 return (zio_null(NULL, spa, NULL, done, private, flags));
926 }
927
928 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)929 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
930 enum blk_verify_flag blk_verify, const char *fmt, ...)
931 {
932 va_list adx;
933 char buf[256];
934
935 va_start(adx, fmt);
936 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
937 va_end(adx);
938
939 switch (blk_verify) {
940 case BLK_VERIFY_HALT:
941 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
942 zfs_panic_recover("%s: %s", spa_name(spa), buf);
943 break;
944 case BLK_VERIFY_LOG:
945 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
946 break;
947 case BLK_VERIFY_ONLY:
948 break;
949 }
950
951 return (1);
952 }
953
954 /*
955 * Verify the block pointer fields contain reasonable values. This means
956 * it only contains known object types, checksum/compression identifiers,
957 * block sizes within the maximum allowed limits, valid DVAs, etc.
958 *
959 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
960 * argument controls the behavior when an invalid field is detected.
961 *
962 * Modes for zfs_blkptr_verify:
963 * 1) BLK_VERIFY_ONLY (evaluate the block)
964 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
965 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
966 */
967 boolean_t
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,boolean_t config_held,enum blk_verify_flag blk_verify)968 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
969 enum blk_verify_flag blk_verify)
970 {
971 int errors = 0;
972
973 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
974 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
975 "blkptr at %p has invalid TYPE %llu",
976 bp, (longlong_t)BP_GET_TYPE(bp));
977 }
978 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
979 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
980 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
981 "blkptr at %p has invalid CHECKSUM %llu",
982 bp, (longlong_t)BP_GET_CHECKSUM(bp));
983 }
984 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
985 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 "blkptr at %p has invalid COMPRESS %llu",
988 bp, (longlong_t)BP_GET_COMPRESS(bp));
989 }
990 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 "blkptr at %p has invalid LSIZE %llu",
993 bp, (longlong_t)BP_GET_LSIZE(bp));
994 }
995 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
996 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
997 "blkptr at %p has invalid PSIZE %llu",
998 bp, (longlong_t)BP_GET_PSIZE(bp));
999 }
1000
1001 if (BP_IS_EMBEDDED(bp)) {
1002 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1003 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1004 "blkptr at %p has invalid ETYPE %llu",
1005 bp, (longlong_t)BPE_GET_ETYPE(bp));
1006 }
1007 }
1008
1009 /*
1010 * Do not verify individual DVAs if the config is not trusted. This
1011 * will be done once the zio is executed in vdev_mirror_map_alloc.
1012 */
1013 if (!spa->spa_trust_config)
1014 return (B_TRUE);
1015
1016 if (!config_held)
1017 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1018 else
1019 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1020 /*
1021 * Pool-specific checks.
1022 *
1023 * Note: it would be nice to verify that the blk_birth and
1024 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1025 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1026 * that are in the log) to be arbitrarily large.
1027 */
1028 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1029 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
1030
1031 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1032 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1033 "blkptr at %p DVA %u has invalid VDEV %llu",
1034 bp, i, (longlong_t)vdevid);
1035 continue;
1036 }
1037 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1038 if (vd == NULL) {
1039 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1040 "blkptr at %p DVA %u has invalid VDEV %llu",
1041 bp, i, (longlong_t)vdevid);
1042 continue;
1043 }
1044 if (vd->vdev_ops == &vdev_hole_ops) {
1045 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1046 "blkptr at %p DVA %u has hole VDEV %llu",
1047 bp, i, (longlong_t)vdevid);
1048 continue;
1049 }
1050 if (vd->vdev_ops == &vdev_missing_ops) {
1051 /*
1052 * "missing" vdevs are valid during import, but we
1053 * don't have their detailed info (e.g. asize), so
1054 * we can't perform any more checks on them.
1055 */
1056 continue;
1057 }
1058 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1059 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1060 if (BP_IS_GANG(bp))
1061 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1062 if (offset + asize > vd->vdev_asize) {
1063 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1064 "blkptr at %p DVA %u has invalid OFFSET %llu",
1065 bp, i, (longlong_t)offset);
1066 }
1067 }
1068 if (errors > 0)
1069 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1070 if (!config_held)
1071 spa_config_exit(spa, SCL_VDEV, bp);
1072
1073 return (errors == 0);
1074 }
1075
1076 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1077 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1078 {
1079 uint64_t vdevid = DVA_GET_VDEV(dva);
1080
1081 if (vdevid >= spa->spa_root_vdev->vdev_children)
1082 return (B_FALSE);
1083
1084 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1085 if (vd == NULL)
1086 return (B_FALSE);
1087
1088 if (vd->vdev_ops == &vdev_hole_ops)
1089 return (B_FALSE);
1090
1091 if (vd->vdev_ops == &vdev_missing_ops) {
1092 return (B_FALSE);
1093 }
1094
1095 uint64_t offset = DVA_GET_OFFSET(dva);
1096 uint64_t asize = DVA_GET_ASIZE(dva);
1097
1098 if (BP_IS_GANG(bp))
1099 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1100 if (offset + asize > vd->vdev_asize)
1101 return (B_FALSE);
1102
1103 return (B_TRUE);
1104 }
1105
1106 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)1107 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1108 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1109 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1110 {
1111 zio_t *zio;
1112
1113 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1114 BLK_VERIFY_HALT);
1115
1116 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1117 data, size, size, done, private,
1118 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1119 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1120 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1121
1122 return (zio);
1123 }
1124
1125 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * physdone,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,const zbookmark_phys_t * zb)1126 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1127 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1128 zio_done_func_t *ready, zio_done_func_t *children_ready,
1129 zio_done_func_t *physdone, zio_done_func_t *done,
1130 void *private, zio_priority_t priority, enum zio_flag flags,
1131 const zbookmark_phys_t *zb)
1132 {
1133 zio_t *zio;
1134
1135 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1136 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1137 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1138 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1139 DMU_OT_IS_VALID(zp->zp_type) &&
1140 zp->zp_level < 32 &&
1141 zp->zp_copies > 0 &&
1142 zp->zp_copies <= spa_max_replication(spa));
1143
1144 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1145 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1146 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1147 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1148
1149 zio->io_ready = ready;
1150 zio->io_children_ready = children_ready;
1151 zio->io_physdone = physdone;
1152 zio->io_prop = *zp;
1153
1154 /*
1155 * Data can be NULL if we are going to call zio_write_override() to
1156 * provide the already-allocated BP. But we may need the data to
1157 * verify a dedup hit (if requested). In this case, don't try to
1158 * dedup (just take the already-allocated BP verbatim). Encrypted
1159 * dedup blocks need data as well so we also disable dedup in this
1160 * case.
1161 */
1162 if (data == NULL &&
1163 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1164 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1165 }
1166
1167 return (zio);
1168 }
1169
1170 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,zbookmark_phys_t * zb)1171 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1172 uint64_t size, zio_done_func_t *done, void *private,
1173 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1174 {
1175 zio_t *zio;
1176
1177 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1178 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1179 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1180
1181 return (zio);
1182 }
1183
1184 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite)1185 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1186 {
1187 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1188 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1189 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1190 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1191
1192 /*
1193 * We must reset the io_prop to match the values that existed
1194 * when the bp was first written by dmu_sync() keeping in mind
1195 * that nopwrite and dedup are mutually exclusive.
1196 */
1197 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1198 zio->io_prop.zp_nopwrite = nopwrite;
1199 zio->io_prop.zp_copies = copies;
1200 zio->io_bp_override = bp;
1201 }
1202
1203 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1204 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1205 {
1206
1207 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1208
1209 /*
1210 * The check for EMBEDDED is a performance optimization. We
1211 * process the free here (by ignoring it) rather than
1212 * putting it on the list and then processing it in zio_free_sync().
1213 */
1214 if (BP_IS_EMBEDDED(bp))
1215 return;
1216 metaslab_check_free(spa, bp);
1217
1218 /*
1219 * Frees that are for the currently-syncing txg, are not going to be
1220 * deferred, and which will not need to do a read (i.e. not GANG or
1221 * DEDUP), can be processed immediately. Otherwise, put them on the
1222 * in-memory list for later processing.
1223 *
1224 * Note that we only defer frees after zfs_sync_pass_deferred_free
1225 * when the log space map feature is disabled. [see relevant comment
1226 * in spa_sync_iterate_to_convergence()]
1227 */
1228 if (BP_IS_GANG(bp) ||
1229 BP_GET_DEDUP(bp) ||
1230 txg != spa->spa_syncing_txg ||
1231 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1232 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1233 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1234 } else {
1235 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1236 }
1237 }
1238
1239 /*
1240 * To improve performance, this function may return NULL if we were able
1241 * to do the free immediately. This avoids the cost of creating a zio
1242 * (and linking it to the parent, etc).
1243 */
1244 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,enum zio_flag flags)1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1246 enum zio_flag flags)
1247 {
1248 ASSERT(!BP_IS_HOLE(bp));
1249 ASSERT(spa_syncing_txg(spa) == txg);
1250
1251 if (BP_IS_EMBEDDED(bp))
1252 return (NULL);
1253
1254 metaslab_check_free(spa, bp);
1255 arc_freed(spa, bp);
1256 dsl_scan_freed(spa, bp);
1257
1258 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1259 /*
1260 * GANG and DEDUP blocks can induce a read (for the gang block
1261 * header, or the DDT), so issue them asynchronously so that
1262 * this thread is not tied up.
1263 */
1264 enum zio_stage stage =
1265 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1266
1267 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1268 BP_GET_PSIZE(bp), NULL, NULL,
1269 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1270 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1271 } else {
1272 metaslab_free(spa, bp, txg, B_FALSE);
1273 return (NULL);
1274 }
1275 }
1276
1277 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,enum zio_flag flags)1278 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1279 zio_done_func_t *done, void *private, enum zio_flag flags)
1280 {
1281 zio_t *zio;
1282
1283 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1284 BLK_VERIFY_HALT);
1285
1286 if (BP_IS_EMBEDDED(bp))
1287 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1288
1289 /*
1290 * A claim is an allocation of a specific block. Claims are needed
1291 * to support immediate writes in the intent log. The issue is that
1292 * immediate writes contain committed data, but in a txg that was
1293 * *not* committed. Upon opening the pool after an unclean shutdown,
1294 * the intent log claims all blocks that contain immediate write data
1295 * so that the SPA knows they're in use.
1296 *
1297 * All claims *must* be resolved in the first txg -- before the SPA
1298 * starts allocating blocks -- so that nothing is allocated twice.
1299 * If txg == 0 we just verify that the block is claimable.
1300 */
1301 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1302 spa_min_claim_txg(spa));
1303 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1304 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1305
1306 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1307 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1308 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1309 ASSERT0(zio->io_queued_timestamp);
1310
1311 return (zio);
1312 }
1313
1314 zio_t *
zio_ioctl(zio_t * pio,spa_t * spa,vdev_t * vd,int cmd,zio_done_func_t * done,void * private,enum zio_flag flags)1315 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1316 zio_done_func_t *done, void *private, enum zio_flag flags)
1317 {
1318 zio_t *zio;
1319 int c;
1320
1321 if (vd->vdev_children == 0) {
1322 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1323 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1324 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1325
1326 zio->io_cmd = cmd;
1327 } else {
1328 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1329
1330 for (c = 0; c < vd->vdev_children; c++)
1331 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1332 done, private, flags));
1333 }
1334
1335 return (zio);
1336 }
1337
1338 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,enum trim_flag trim_flags)1339 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1340 zio_done_func_t *done, void *private, zio_priority_t priority,
1341 enum zio_flag flags, enum trim_flag trim_flags)
1342 {
1343 zio_t *zio;
1344
1345 ASSERT0(vd->vdev_children);
1346 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1347 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1348 ASSERT3U(size, !=, 0);
1349
1350 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1351 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1352 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1353 zio->io_trim_flags = trim_flags;
1354
1355 return (zio);
1356 }
1357
1358 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)1359 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1360 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1361 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1362 {
1363 zio_t *zio;
1364
1365 ASSERT(vd->vdev_children == 0);
1366 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1367 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1368 ASSERT3U(offset + size, <=, vd->vdev_psize);
1369
1370 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1371 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1372 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1373
1374 zio->io_prop.zp_checksum = checksum;
1375
1376 return (zio);
1377 }
1378
1379 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,enum zio_flag flags,boolean_t labels)1380 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1381 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1382 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1383 {
1384 zio_t *zio;
1385
1386 ASSERT(vd->vdev_children == 0);
1387 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1388 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1389 ASSERT3U(offset + size, <=, vd->vdev_psize);
1390
1391 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1392 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1393 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1394
1395 zio->io_prop.zp_checksum = checksum;
1396
1397 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1398 /*
1399 * zec checksums are necessarily destructive -- they modify
1400 * the end of the write buffer to hold the verifier/checksum.
1401 * Therefore, we must make a local copy in case the data is
1402 * being written to multiple places in parallel.
1403 */
1404 abd_t *wbuf = abd_alloc_sametype(data, size);
1405 abd_copy(wbuf, data, size);
1406
1407 zio_push_transform(zio, wbuf, size, size, NULL);
1408 }
1409
1410 return (zio);
1411 }
1412
1413 /*
1414 * Create a child I/O to do some work for us.
1415 */
1416 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)1417 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1418 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1419 enum zio_flag flags, zio_done_func_t *done, void *private)
1420 {
1421 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1422 zio_t *zio;
1423
1424 /*
1425 * vdev child I/Os do not propagate their error to the parent.
1426 * Therefore, for correct operation the caller *must* check for
1427 * and handle the error in the child i/o's done callback.
1428 * The only exceptions are i/os that we don't care about
1429 * (OPTIONAL or REPAIR).
1430 */
1431 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1432 done != NULL);
1433
1434 if (type == ZIO_TYPE_READ && bp != NULL) {
1435 /*
1436 * If we have the bp, then the child should perform the
1437 * checksum and the parent need not. This pushes error
1438 * detection as close to the leaves as possible and
1439 * eliminates redundant checksums in the interior nodes.
1440 */
1441 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1442 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1443 }
1444
1445 if (vd->vdev_ops->vdev_op_leaf) {
1446 ASSERT0(vd->vdev_children);
1447 offset += VDEV_LABEL_START_SIZE;
1448 }
1449
1450 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1451
1452 /*
1453 * If we've decided to do a repair, the write is not speculative --
1454 * even if the original read was.
1455 */
1456 if (flags & ZIO_FLAG_IO_REPAIR)
1457 flags &= ~ZIO_FLAG_SPECULATIVE;
1458
1459 /*
1460 * If we're creating a child I/O that is not associated with a
1461 * top-level vdev, then the child zio is not an allocating I/O.
1462 * If this is a retried I/O then we ignore it since we will
1463 * have already processed the original allocating I/O.
1464 */
1465 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1466 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1467 ASSERT(pio->io_metaslab_class != NULL);
1468 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1469 ASSERT(type == ZIO_TYPE_WRITE);
1470 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1471 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1472 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1473 pio->io_child_type == ZIO_CHILD_GANG);
1474
1475 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1476 }
1477
1478
1479 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1480 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1481 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1482 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1483
1484 zio->io_physdone = pio->io_physdone;
1485 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1486 zio->io_logical->io_phys_children++;
1487
1488 return (zio);
1489 }
1490
1491 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,enum zio_flag flags,zio_done_func_t * done,void * private)1492 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1493 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1494 zio_done_func_t *done, void *private)
1495 {
1496 zio_t *zio;
1497
1498 ASSERT(vd->vdev_ops->vdev_op_leaf);
1499
1500 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1501 data, size, size, done, private, type, priority,
1502 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1503 vd, offset, NULL,
1504 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1505
1506 return (zio);
1507 }
1508
1509 void
zio_flush(zio_t * zio,vdev_t * vd)1510 zio_flush(zio_t *zio, vdev_t *vd)
1511 {
1512 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1513 NULL, NULL,
1514 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1515 }
1516
1517 void
zio_shrink(zio_t * zio,uint64_t size)1518 zio_shrink(zio_t *zio, uint64_t size)
1519 {
1520 ASSERT3P(zio->io_executor, ==, NULL);
1521 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1522 ASSERT3U(size, <=, zio->io_size);
1523
1524 /*
1525 * We don't shrink for raidz because of problems with the
1526 * reconstruction when reading back less than the block size.
1527 * Note, BP_IS_RAIDZ() assumes no compression.
1528 */
1529 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1530 if (!BP_IS_RAIDZ(zio->io_bp)) {
1531 /* we are not doing a raw write */
1532 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1533 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1534 }
1535 }
1536
1537 /*
1538 * ==========================================================================
1539 * Prepare to read and write logical blocks
1540 * ==========================================================================
1541 */
1542
1543 static zio_t *
zio_read_bp_init(zio_t * zio)1544 zio_read_bp_init(zio_t *zio)
1545 {
1546 blkptr_t *bp = zio->io_bp;
1547 uint64_t psize =
1548 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1549
1550 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1551
1552 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1553 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1554 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1556 psize, psize, zio_decompress);
1557 }
1558
1559 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1560 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1561 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1562 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1563 psize, psize, zio_decrypt);
1564 }
1565
1566 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1567 int psize = BPE_GET_PSIZE(bp);
1568 void *data = abd_borrow_buf(zio->io_abd, psize);
1569
1570 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1571 decode_embedded_bp_compressed(bp, data);
1572 abd_return_buf_copy(zio->io_abd, data, psize);
1573 } else {
1574 ASSERT(!BP_IS_EMBEDDED(bp));
1575 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1576 }
1577
1578 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1579 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1580
1581 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1582 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1583
1584 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1585 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1586
1587 return (zio);
1588 }
1589
1590 static zio_t *
zio_write_bp_init(zio_t * zio)1591 zio_write_bp_init(zio_t *zio)
1592 {
1593 if (!IO_IS_ALLOCATING(zio))
1594 return (zio);
1595
1596 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1597
1598 if (zio->io_bp_override) {
1599 blkptr_t *bp = zio->io_bp;
1600 zio_prop_t *zp = &zio->io_prop;
1601
1602 ASSERT(bp->blk_birth != zio->io_txg);
1603 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1604
1605 *bp = *zio->io_bp_override;
1606 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1607
1608 if (BP_IS_EMBEDDED(bp))
1609 return (zio);
1610
1611 /*
1612 * If we've been overridden and nopwrite is set then
1613 * set the flag accordingly to indicate that a nopwrite
1614 * has already occurred.
1615 */
1616 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1617 ASSERT(!zp->zp_dedup);
1618 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1619 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1620 return (zio);
1621 }
1622
1623 ASSERT(!zp->zp_nopwrite);
1624
1625 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1626 return (zio);
1627
1628 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1629 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1630
1631 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1632 !zp->zp_encrypt) {
1633 BP_SET_DEDUP(bp, 1);
1634 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1635 return (zio);
1636 }
1637
1638 /*
1639 * We were unable to handle this as an override bp, treat
1640 * it as a regular write I/O.
1641 */
1642 zio->io_bp_override = NULL;
1643 *bp = zio->io_bp_orig;
1644 zio->io_pipeline = zio->io_orig_pipeline;
1645 }
1646
1647 return (zio);
1648 }
1649
1650 static zio_t *
zio_write_compress(zio_t * zio)1651 zio_write_compress(zio_t *zio)
1652 {
1653 spa_t *spa = zio->io_spa;
1654 zio_prop_t *zp = &zio->io_prop;
1655 enum zio_compress compress = zp->zp_compress;
1656 blkptr_t *bp = zio->io_bp;
1657 uint64_t lsize = zio->io_lsize;
1658 uint64_t psize = zio->io_size;
1659 int pass = 1;
1660
1661 /*
1662 * If our children haven't all reached the ready stage,
1663 * wait for them and then repeat this pipeline stage.
1664 */
1665 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1666 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1667 return (NULL);
1668 }
1669
1670 if (!IO_IS_ALLOCATING(zio))
1671 return (zio);
1672
1673 if (zio->io_children_ready != NULL) {
1674 /*
1675 * Now that all our children are ready, run the callback
1676 * associated with this zio in case it wants to modify the
1677 * data to be written.
1678 */
1679 ASSERT3U(zp->zp_level, >, 0);
1680 zio->io_children_ready(zio);
1681 }
1682
1683 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1684 ASSERT(zio->io_bp_override == NULL);
1685
1686 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1687 /*
1688 * We're rewriting an existing block, which means we're
1689 * working on behalf of spa_sync(). For spa_sync() to
1690 * converge, it must eventually be the case that we don't
1691 * have to allocate new blocks. But compression changes
1692 * the blocksize, which forces a reallocate, and makes
1693 * convergence take longer. Therefore, after the first
1694 * few passes, stop compressing to ensure convergence.
1695 */
1696 pass = spa_sync_pass(spa);
1697
1698 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1699 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1700 ASSERT(!BP_GET_DEDUP(bp));
1701
1702 if (pass >= zfs_sync_pass_dont_compress)
1703 compress = ZIO_COMPRESS_OFF;
1704
1705 /* Make sure someone doesn't change their mind on overwrites */
1706 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1707 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1708 }
1709
1710 /* If it's a compressed write that is not raw, compress the buffer. */
1711 if (compress != ZIO_COMPRESS_OFF &&
1712 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1713 void *cbuf = zio_buf_alloc(lsize);
1714 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1715 zp->zp_complevel);
1716 if (psize == 0 || psize >= lsize) {
1717 compress = ZIO_COMPRESS_OFF;
1718 zio_buf_free(cbuf, lsize);
1719 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1720 psize <= BPE_PAYLOAD_SIZE &&
1721 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1722 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1723 encode_embedded_bp_compressed(bp,
1724 cbuf, compress, lsize, psize);
1725 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1726 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1727 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1728 zio_buf_free(cbuf, lsize);
1729 bp->blk_birth = zio->io_txg;
1730 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1731 ASSERT(spa_feature_is_active(spa,
1732 SPA_FEATURE_EMBEDDED_DATA));
1733 return (zio);
1734 } else {
1735 /*
1736 * Round compressed size up to the minimum allocation
1737 * size of the smallest-ashift device, and zero the
1738 * tail. This ensures that the compressed size of the
1739 * BP (and thus compressratio property) are correct,
1740 * in that we charge for the padding used to fill out
1741 * the last sector.
1742 */
1743 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1744 size_t rounded = (size_t)roundup(psize,
1745 spa->spa_min_alloc);
1746 if (rounded >= lsize) {
1747 compress = ZIO_COMPRESS_OFF;
1748 zio_buf_free(cbuf, lsize);
1749 psize = lsize;
1750 } else {
1751 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1752 abd_take_ownership_of_buf(cdata, B_TRUE);
1753 abd_zero_off(cdata, psize, rounded - psize);
1754 psize = rounded;
1755 zio_push_transform(zio, cdata,
1756 psize, lsize, NULL);
1757 }
1758 }
1759
1760 /*
1761 * We were unable to handle this as an override bp, treat
1762 * it as a regular write I/O.
1763 */
1764 zio->io_bp_override = NULL;
1765 *bp = zio->io_bp_orig;
1766 zio->io_pipeline = zio->io_orig_pipeline;
1767
1768 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1769 zp->zp_type == DMU_OT_DNODE) {
1770 /*
1771 * The DMU actually relies on the zio layer's compression
1772 * to free metadnode blocks that have had all contained
1773 * dnodes freed. As a result, even when doing a raw
1774 * receive, we must check whether the block can be compressed
1775 * to a hole.
1776 */
1777 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1778 zio->io_abd, NULL, lsize, zp->zp_complevel);
1779 if (psize == 0 || psize >= lsize)
1780 compress = ZIO_COMPRESS_OFF;
1781 } else {
1782 ASSERT3U(psize, !=, 0);
1783 }
1784
1785 /*
1786 * The final pass of spa_sync() must be all rewrites, but the first
1787 * few passes offer a trade-off: allocating blocks defers convergence,
1788 * but newly allocated blocks are sequential, so they can be written
1789 * to disk faster. Therefore, we allow the first few passes of
1790 * spa_sync() to allocate new blocks, but force rewrites after that.
1791 * There should only be a handful of blocks after pass 1 in any case.
1792 */
1793 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1794 BP_GET_PSIZE(bp) == psize &&
1795 pass >= zfs_sync_pass_rewrite) {
1796 VERIFY3U(psize, !=, 0);
1797 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1798
1799 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1800 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1801 } else {
1802 BP_ZERO(bp);
1803 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1804 }
1805
1806 if (psize == 0) {
1807 if (zio->io_bp_orig.blk_birth != 0 &&
1808 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1809 BP_SET_LSIZE(bp, lsize);
1810 BP_SET_TYPE(bp, zp->zp_type);
1811 BP_SET_LEVEL(bp, zp->zp_level);
1812 BP_SET_BIRTH(bp, zio->io_txg, 0);
1813 }
1814 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1815 } else {
1816 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1817 BP_SET_LSIZE(bp, lsize);
1818 BP_SET_TYPE(bp, zp->zp_type);
1819 BP_SET_LEVEL(bp, zp->zp_level);
1820 BP_SET_PSIZE(bp, psize);
1821 BP_SET_COMPRESS(bp, compress);
1822 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1823 BP_SET_DEDUP(bp, zp->zp_dedup);
1824 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1825 if (zp->zp_dedup) {
1826 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1827 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1828 ASSERT(!zp->zp_encrypt ||
1829 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1830 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1831 }
1832 if (zp->zp_nopwrite) {
1833 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1834 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1835 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1836 }
1837 }
1838 return (zio);
1839 }
1840
1841 static zio_t *
zio_free_bp_init(zio_t * zio)1842 zio_free_bp_init(zio_t *zio)
1843 {
1844 blkptr_t *bp = zio->io_bp;
1845
1846 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1847 if (BP_GET_DEDUP(bp))
1848 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1849 }
1850
1851 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1852
1853 return (zio);
1854 }
1855
1856 /*
1857 * ==========================================================================
1858 * Execute the I/O pipeline
1859 * ==========================================================================
1860 */
1861
1862 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)1863 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1864 {
1865 spa_t *spa = zio->io_spa;
1866 zio_type_t t = zio->io_type;
1867 int flags = (cutinline ? TQ_FRONT : 0);
1868
1869 /*
1870 * If we're a config writer or a probe, the normal issue and
1871 * interrupt threads may all be blocked waiting for the config lock.
1872 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1873 */
1874 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1875 t = ZIO_TYPE_NULL;
1876
1877 /*
1878 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1879 */
1880 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1881 t = ZIO_TYPE_NULL;
1882
1883 /*
1884 * If this is a high priority I/O, then use the high priority taskq if
1885 * available.
1886 */
1887 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1888 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1889 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1890 q++;
1891
1892 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1893
1894 /*
1895 * NB: We are assuming that the zio can only be dispatched
1896 * to a single taskq at a time. It would be a grievous error
1897 * to dispatch the zio to another taskq at the same time.
1898 */
1899 ASSERT(taskq_empty_ent(&zio->io_tqent));
1900 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1901 flags, &zio->io_tqent);
1902 }
1903
1904 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)1905 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1906 {
1907 spa_t *spa = zio->io_spa;
1908
1909 taskq_t *tq = taskq_of_curthread();
1910
1911 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1912 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1913 uint_t i;
1914 for (i = 0; i < tqs->stqs_count; i++) {
1915 if (tqs->stqs_taskq[i] == tq)
1916 return (B_TRUE);
1917 }
1918 }
1919
1920 return (B_FALSE);
1921 }
1922
1923 static zio_t *
zio_issue_async(zio_t * zio)1924 zio_issue_async(zio_t *zio)
1925 {
1926 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1927
1928 return (NULL);
1929 }
1930
1931 void
zio_interrupt(zio_t * zio)1932 zio_interrupt(zio_t *zio)
1933 {
1934 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1935 }
1936
1937 void
zio_delay_interrupt(zio_t * zio)1938 zio_delay_interrupt(zio_t *zio)
1939 {
1940 /*
1941 * The timeout_generic() function isn't defined in userspace, so
1942 * rather than trying to implement the function, the zio delay
1943 * functionality has been disabled for userspace builds.
1944 */
1945
1946 #ifdef _KERNEL
1947 /*
1948 * If io_target_timestamp is zero, then no delay has been registered
1949 * for this IO, thus jump to the end of this function and "skip" the
1950 * delay; issuing it directly to the zio layer.
1951 */
1952 if (zio->io_target_timestamp != 0) {
1953 hrtime_t now = gethrtime();
1954
1955 if (now >= zio->io_target_timestamp) {
1956 /*
1957 * This IO has already taken longer than the target
1958 * delay to complete, so we don't want to delay it
1959 * any longer; we "miss" the delay and issue it
1960 * directly to the zio layer. This is likely due to
1961 * the target latency being set to a value less than
1962 * the underlying hardware can satisfy (e.g. delay
1963 * set to 1ms, but the disks take 10ms to complete an
1964 * IO request).
1965 */
1966
1967 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1968 hrtime_t, now);
1969
1970 zio_interrupt(zio);
1971 } else {
1972 taskqid_t tid;
1973 hrtime_t diff = zio->io_target_timestamp - now;
1974 clock_t expire_at_tick = ddi_get_lbolt() +
1975 NSEC_TO_TICK(diff);
1976
1977 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1978 hrtime_t, now, hrtime_t, diff);
1979
1980 if (NSEC_TO_TICK(diff) == 0) {
1981 /* Our delay is less than a jiffy - just spin */
1982 zfs_sleep_until(zio->io_target_timestamp);
1983 zio_interrupt(zio);
1984 } else {
1985 /*
1986 * Use taskq_dispatch_delay() in the place of
1987 * OpenZFS's timeout_generic().
1988 */
1989 tid = taskq_dispatch_delay(system_taskq,
1990 (task_func_t *)zio_interrupt,
1991 zio, TQ_NOSLEEP, expire_at_tick);
1992 if (tid == TASKQID_INVALID) {
1993 /*
1994 * Couldn't allocate a task. Just
1995 * finish the zio without a delay.
1996 */
1997 zio_interrupt(zio);
1998 }
1999 }
2000 }
2001 return;
2002 }
2003 #endif
2004 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2005 zio_interrupt(zio);
2006 }
2007
2008 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2009 zio_deadman_impl(zio_t *pio, int ziodepth)
2010 {
2011 zio_t *cio, *cio_next;
2012 zio_link_t *zl = NULL;
2013 vdev_t *vd = pio->io_vd;
2014
2015 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2016 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2017 zbookmark_phys_t *zb = &pio->io_bookmark;
2018 uint64_t delta = gethrtime() - pio->io_timestamp;
2019 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2020
2021 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2022 "delta=%llu queued=%llu io=%llu "
2023 "path=%s last=%llu "
2024 "type=%d priority=%d flags=0x%x "
2025 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
2026 "objset=%llu object=%llu level=%llu blkid=%llu "
2027 "offset=%llu size=%llu error=%d",
2028 ziodepth, pio, pio->io_timestamp,
2029 delta, pio->io_delta, pio->io_delay,
2030 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2031 pio->io_type, pio->io_priority, pio->io_flags,
2032 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2033 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2034 pio->io_offset, pio->io_size, pio->io_error);
2035 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2036 pio->io_spa, vd, zb, pio, 0);
2037
2038 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2039 taskq_empty_ent(&pio->io_tqent)) {
2040 zio_interrupt(pio);
2041 }
2042 }
2043
2044 mutex_enter(&pio->io_lock);
2045 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2046 cio_next = zio_walk_children(pio, &zl);
2047 zio_deadman_impl(cio, ziodepth + 1);
2048 }
2049 mutex_exit(&pio->io_lock);
2050 }
2051
2052 /*
2053 * Log the critical information describing this zio and all of its children
2054 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055 */
2056 void
zio_deadman(zio_t * pio,char * tag)2057 zio_deadman(zio_t *pio, char *tag)
2058 {
2059 spa_t *spa = pio->io_spa;
2060 char *name = spa_name(spa);
2061
2062 if (!zfs_deadman_enabled || spa_suspended(spa))
2063 return;
2064
2065 zio_deadman_impl(pio, 0);
2066
2067 switch (spa_get_deadman_failmode(spa)) {
2068 case ZIO_FAILURE_MODE_WAIT:
2069 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2070 break;
2071
2072 case ZIO_FAILURE_MODE_CONTINUE:
2073 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2074 break;
2075
2076 case ZIO_FAILURE_MODE_PANIC:
2077 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2078 break;
2079 }
2080 }
2081
2082 /*
2083 * Execute the I/O pipeline until one of the following occurs:
2084 * (1) the I/O completes; (2) the pipeline stalls waiting for
2085 * dependent child I/Os; (3) the I/O issues, so we're waiting
2086 * for an I/O completion interrupt; (4) the I/O is delegated by
2087 * vdev-level caching or aggregation; (5) the I/O is deferred
2088 * due to vdev-level queueing; (6) the I/O is handed off to
2089 * another thread. In all cases, the pipeline stops whenever
2090 * there's no CPU work; it never burns a thread in cv_wait_io().
2091 *
2092 * There's no locking on io_stage because there's no legitimate way
2093 * for multiple threads to be attempting to process the same I/O.
2094 */
2095 static zio_pipe_stage_t *zio_pipeline[];
2096
2097 /*
2098 * zio_execute() is a wrapper around the static function
2099 * __zio_execute() so that we can force __zio_execute() to be
2100 * inlined. This reduces stack overhead which is important
2101 * because __zio_execute() is called recursively in several zio
2102 * code paths. zio_execute() itself cannot be inlined because
2103 * it is externally visible.
2104 */
2105 void
zio_execute(zio_t * zio)2106 zio_execute(zio_t *zio)
2107 {
2108 fstrans_cookie_t cookie;
2109
2110 cookie = spl_fstrans_mark();
2111 __zio_execute(zio);
2112 spl_fstrans_unmark(cookie);
2113 }
2114
2115 /*
2116 * Used to determine if in the current context the stack is sized large
2117 * enough to allow zio_execute() to be called recursively. A minimum
2118 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119 */
2120 static boolean_t
zio_execute_stack_check(zio_t * zio)2121 zio_execute_stack_check(zio_t *zio)
2122 {
2123 #if !defined(HAVE_LARGE_STACKS)
2124 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125
2126 /* Executing in txg_sync_thread() context. */
2127 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2128 return (B_TRUE);
2129
2130 /* Pool initialization outside of zio_taskq context. */
2131 if (dp && spa_is_initializing(dp->dp_spa) &&
2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2133 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2134 return (B_TRUE);
2135 #endif /* HAVE_LARGE_STACKS */
2136
2137 return (B_FALSE);
2138 }
2139
2140 __attribute__((always_inline))
2141 static inline void
__zio_execute(zio_t * zio)2142 __zio_execute(zio_t *zio)
2143 {
2144 ASSERT3U(zio->io_queued_timestamp, >, 0);
2145
2146 while (zio->io_stage < ZIO_STAGE_DONE) {
2147 enum zio_stage pipeline = zio->io_pipeline;
2148 enum zio_stage stage = zio->io_stage;
2149
2150 zio->io_executor = curthread;
2151
2152 ASSERT(!MUTEX_HELD(&zio->io_lock));
2153 ASSERT(ISP2(stage));
2154 ASSERT(zio->io_stall == NULL);
2155
2156 do {
2157 stage <<= 1;
2158 } while ((stage & pipeline) == 0);
2159
2160 ASSERT(stage <= ZIO_STAGE_DONE);
2161
2162 /*
2163 * If we are in interrupt context and this pipeline stage
2164 * will grab a config lock that is held across I/O,
2165 * or may wait for an I/O that needs an interrupt thread
2166 * to complete, issue async to avoid deadlock.
2167 *
2168 * For VDEV_IO_START, we cut in line so that the io will
2169 * be sent to disk promptly.
2170 */
2171 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2172 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2173 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2174 zio_requeue_io_start_cut_in_line : B_FALSE;
2175 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2176 return;
2177 }
2178
2179 /*
2180 * If the current context doesn't have large enough stacks
2181 * the zio must be issued asynchronously to prevent overflow.
2182 */
2183 if (zio_execute_stack_check(zio)) {
2184 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2185 zio_requeue_io_start_cut_in_line : B_FALSE;
2186 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2187 return;
2188 }
2189
2190 zio->io_stage = stage;
2191 zio->io_pipeline_trace |= zio->io_stage;
2192
2193 /*
2194 * The zio pipeline stage returns the next zio to execute
2195 * (typically the same as this one), or NULL if we should
2196 * stop.
2197 */
2198 zio = zio_pipeline[highbit64(stage) - 1](zio);
2199
2200 if (zio == NULL)
2201 return;
2202 }
2203 }
2204
2205
2206 /*
2207 * ==========================================================================
2208 * Initiate I/O, either sync or async
2209 * ==========================================================================
2210 */
2211 int
zio_wait(zio_t * zio)2212 zio_wait(zio_t *zio)
2213 {
2214 /*
2215 * Some routines, like zio_free_sync(), may return a NULL zio
2216 * to avoid the performance overhead of creating and then destroying
2217 * an unneeded zio. For the callers' simplicity, we accept a NULL
2218 * zio and ignore it.
2219 */
2220 if (zio == NULL)
2221 return (0);
2222
2223 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2224 int error;
2225
2226 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2227 ASSERT3P(zio->io_executor, ==, NULL);
2228
2229 zio->io_waiter = curthread;
2230 ASSERT0(zio->io_queued_timestamp);
2231 zio->io_queued_timestamp = gethrtime();
2232
2233 __zio_execute(zio);
2234
2235 mutex_enter(&zio->io_lock);
2236 while (zio->io_executor != NULL) {
2237 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2238 ddi_get_lbolt() + timeout);
2239
2240 if (zfs_deadman_enabled && error == -1 &&
2241 gethrtime() - zio->io_queued_timestamp >
2242 spa_deadman_ziotime(zio->io_spa)) {
2243 mutex_exit(&zio->io_lock);
2244 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2245 zio_deadman(zio, FTAG);
2246 mutex_enter(&zio->io_lock);
2247 }
2248 }
2249 mutex_exit(&zio->io_lock);
2250
2251 error = zio->io_error;
2252 zio_destroy(zio);
2253
2254 return (error);
2255 }
2256
2257 void
zio_nowait(zio_t * zio)2258 zio_nowait(zio_t *zio)
2259 {
2260 /*
2261 * See comment in zio_wait().
2262 */
2263 if (zio == NULL)
2264 return;
2265
2266 ASSERT3P(zio->io_executor, ==, NULL);
2267
2268 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2269 zio_unique_parent(zio) == NULL) {
2270 zio_t *pio;
2271
2272 /*
2273 * This is a logical async I/O with no parent to wait for it.
2274 * We add it to the spa_async_root_zio "Godfather" I/O which
2275 * will ensure they complete prior to unloading the pool.
2276 */
2277 spa_t *spa = zio->io_spa;
2278 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2279
2280 zio_add_child(pio, zio);
2281 }
2282
2283 ASSERT0(zio->io_queued_timestamp);
2284 zio->io_queued_timestamp = gethrtime();
2285 __zio_execute(zio);
2286 }
2287
2288 /*
2289 * ==========================================================================
2290 * Reexecute, cancel, or suspend/resume failed I/O
2291 * ==========================================================================
2292 */
2293
2294 static void
zio_reexecute(zio_t * pio)2295 zio_reexecute(zio_t *pio)
2296 {
2297 zio_t *cio, *cio_next;
2298
2299 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2300 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2301 ASSERT(pio->io_gang_leader == NULL);
2302 ASSERT(pio->io_gang_tree == NULL);
2303
2304 pio->io_flags = pio->io_orig_flags;
2305 pio->io_stage = pio->io_orig_stage;
2306 pio->io_pipeline = pio->io_orig_pipeline;
2307 pio->io_reexecute = 0;
2308 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2309 pio->io_pipeline_trace = 0;
2310 pio->io_error = 0;
2311 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2312 pio->io_state[w] = 0;
2313 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2314 pio->io_child_error[c] = 0;
2315
2316 if (IO_IS_ALLOCATING(pio))
2317 BP_ZERO(pio->io_bp);
2318
2319 /*
2320 * As we reexecute pio's children, new children could be created.
2321 * New children go to the head of pio's io_child_list, however,
2322 * so we will (correctly) not reexecute them. The key is that
2323 * the remainder of pio's io_child_list, from 'cio_next' onward,
2324 * cannot be affected by any side effects of reexecuting 'cio'.
2325 */
2326 zio_link_t *zl = NULL;
2327 mutex_enter(&pio->io_lock);
2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 cio_next = zio_walk_children(pio, &zl);
2330 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2331 pio->io_children[cio->io_child_type][w]++;
2332 mutex_exit(&pio->io_lock);
2333 zio_reexecute(cio);
2334 mutex_enter(&pio->io_lock);
2335 }
2336 mutex_exit(&pio->io_lock);
2337
2338 /*
2339 * Now that all children have been reexecuted, execute the parent.
2340 * We don't reexecute "The Godfather" I/O here as it's the
2341 * responsibility of the caller to wait on it.
2342 */
2343 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2344 pio->io_queued_timestamp = gethrtime();
2345 __zio_execute(pio);
2346 }
2347 }
2348
2349 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2351 {
2352 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2353 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2354 "failure and the failure mode property for this pool "
2355 "is set to panic.", spa_name(spa));
2356
2357 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2358 "failure and has been suspended.\n", spa_name(spa));
2359
2360 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2361 NULL, NULL, 0);
2362
2363 mutex_enter(&spa->spa_suspend_lock);
2364
2365 if (spa->spa_suspend_zio_root == NULL)
2366 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2367 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2368 ZIO_FLAG_GODFATHER);
2369
2370 spa->spa_suspended = reason;
2371
2372 if (zio != NULL) {
2373 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2374 ASSERT(zio != spa->spa_suspend_zio_root);
2375 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2376 ASSERT(zio_unique_parent(zio) == NULL);
2377 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2378 zio_add_child(spa->spa_suspend_zio_root, zio);
2379 }
2380
2381 mutex_exit(&spa->spa_suspend_lock);
2382 }
2383
2384 int
zio_resume(spa_t * spa)2385 zio_resume(spa_t *spa)
2386 {
2387 zio_t *pio;
2388
2389 /*
2390 * Reexecute all previously suspended i/o.
2391 */
2392 mutex_enter(&spa->spa_suspend_lock);
2393 spa->spa_suspended = ZIO_SUSPEND_NONE;
2394 cv_broadcast(&spa->spa_suspend_cv);
2395 pio = spa->spa_suspend_zio_root;
2396 spa->spa_suspend_zio_root = NULL;
2397 mutex_exit(&spa->spa_suspend_lock);
2398
2399 if (pio == NULL)
2400 return (0);
2401
2402 zio_reexecute(pio);
2403 return (zio_wait(pio));
2404 }
2405
2406 void
zio_resume_wait(spa_t * spa)2407 zio_resume_wait(spa_t *spa)
2408 {
2409 mutex_enter(&spa->spa_suspend_lock);
2410 while (spa_suspended(spa))
2411 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2412 mutex_exit(&spa->spa_suspend_lock);
2413 }
2414
2415 /*
2416 * ==========================================================================
2417 * Gang blocks.
2418 *
2419 * A gang block is a collection of small blocks that looks to the DMU
2420 * like one large block. When zio_dva_allocate() cannot find a block
2421 * of the requested size, due to either severe fragmentation or the pool
2422 * being nearly full, it calls zio_write_gang_block() to construct the
2423 * block from smaller fragments.
2424 *
2425 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2426 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2427 * an indirect block: it's an array of block pointers. It consumes
2428 * only one sector and hence is allocatable regardless of fragmentation.
2429 * The gang header's bps point to its gang members, which hold the data.
2430 *
2431 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2432 * as the verifier to ensure uniqueness of the SHA256 checksum.
2433 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2434 * not the gang header. This ensures that data block signatures (needed for
2435 * deduplication) are independent of how the block is physically stored.
2436 *
2437 * Gang blocks can be nested: a gang member may itself be a gang block.
2438 * Thus every gang block is a tree in which root and all interior nodes are
2439 * gang headers, and the leaves are normal blocks that contain user data.
2440 * The root of the gang tree is called the gang leader.
2441 *
2442 * To perform any operation (read, rewrite, free, claim) on a gang block,
2443 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2444 * in the io_gang_tree field of the original logical i/o by recursively
2445 * reading the gang leader and all gang headers below it. This yields
2446 * an in-core tree containing the contents of every gang header and the
2447 * bps for every constituent of the gang block.
2448 *
2449 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2450 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2451 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2452 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2453 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2454 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2455 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2456 * of the gang header plus zio_checksum_compute() of the data to update the
2457 * gang header's blk_cksum as described above.
2458 *
2459 * The two-phase assemble/issue model solves the problem of partial failure --
2460 * what if you'd freed part of a gang block but then couldn't read the
2461 * gang header for another part? Assembling the entire gang tree first
2462 * ensures that all the necessary gang header I/O has succeeded before
2463 * starting the actual work of free, claim, or write. Once the gang tree
2464 * is assembled, free and claim are in-memory operations that cannot fail.
2465 *
2466 * In the event that a gang write fails, zio_dva_unallocate() walks the
2467 * gang tree to immediately free (i.e. insert back into the space map)
2468 * everything we've allocated. This ensures that we don't get ENOSPC
2469 * errors during repeated suspend/resume cycles due to a flaky device.
2470 *
2471 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2472 * the gang tree, we won't modify the block, so we can safely defer the free
2473 * (knowing that the block is still intact). If we *can* assemble the gang
2474 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2475 * each constituent bp and we can allocate a new block on the next sync pass.
2476 *
2477 * In all cases, the gang tree allows complete recovery from partial failure.
2478 * ==========================================================================
2479 */
2480
2481 static void
zio_gang_issue_func_done(zio_t * zio)2482 zio_gang_issue_func_done(zio_t *zio)
2483 {
2484 abd_put(zio->io_abd);
2485 }
2486
2487 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2489 uint64_t offset)
2490 {
2491 if (gn != NULL)
2492 return (pio);
2493
2494 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2495 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2496 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2497 &pio->io_bookmark));
2498 }
2499
2500 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2502 uint64_t offset)
2503 {
2504 zio_t *zio;
2505
2506 if (gn != NULL) {
2507 abd_t *gbh_abd =
2508 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2509 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2510 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2511 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2512 &pio->io_bookmark);
2513 /*
2514 * As we rewrite each gang header, the pipeline will compute
2515 * a new gang block header checksum for it; but no one will
2516 * compute a new data checksum, so we do that here. The one
2517 * exception is the gang leader: the pipeline already computed
2518 * its data checksum because that stage precedes gang assembly.
2519 * (Presently, nothing actually uses interior data checksums;
2520 * this is just good hygiene.)
2521 */
2522 if (gn != pio->io_gang_leader->io_gang_tree) {
2523 abd_t *buf = abd_get_offset(data, offset);
2524
2525 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2526 buf, BP_GET_PSIZE(bp));
2527
2528 abd_put(buf);
2529 }
2530 /*
2531 * If we are here to damage data for testing purposes,
2532 * leave the GBH alone so that we can detect the damage.
2533 */
2534 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2535 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2536 } else {
2537 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2538 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2539 zio_gang_issue_func_done, NULL, pio->io_priority,
2540 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2541 }
2542
2543 return (zio);
2544 }
2545
2546 /* ARGSUSED */
2547 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2549 uint64_t offset)
2550 {
2551 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2552 ZIO_GANG_CHILD_FLAGS(pio));
2553 if (zio == NULL) {
2554 zio = zio_null(pio, pio->io_spa,
2555 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2556 }
2557 return (zio);
2558 }
2559
2560 /* ARGSUSED */
2561 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2563 uint64_t offset)
2564 {
2565 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2566 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2567 }
2568
2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2570 NULL,
2571 zio_read_gang,
2572 zio_rewrite_gang,
2573 zio_free_gang,
2574 zio_claim_gang,
2575 NULL
2576 };
2577
2578 static void zio_gang_tree_assemble_done(zio_t *zio);
2579
2580 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)2581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2582 {
2583 zio_gang_node_t *gn;
2584
2585 ASSERT(*gnpp == NULL);
2586
2587 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2588 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2589 *gnpp = gn;
2590
2591 return (gn);
2592 }
2593
2594 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2595 zio_gang_node_free(zio_gang_node_t **gnpp)
2596 {
2597 zio_gang_node_t *gn = *gnpp;
2598
2599 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2600 ASSERT(gn->gn_child[g] == NULL);
2601
2602 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2603 kmem_free(gn, sizeof (*gn));
2604 *gnpp = NULL;
2605 }
2606
2607 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2608 zio_gang_tree_free(zio_gang_node_t **gnpp)
2609 {
2610 zio_gang_node_t *gn = *gnpp;
2611
2612 if (gn == NULL)
2613 return;
2614
2615 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2616 zio_gang_tree_free(&gn->gn_child[g]);
2617
2618 zio_gang_node_free(gnpp);
2619 }
2620
2621 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2623 {
2624 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2625 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2626
2627 ASSERT(gio->io_gang_leader == gio);
2628 ASSERT(BP_IS_GANG(bp));
2629
2630 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2631 zio_gang_tree_assemble_done, gn, gio->io_priority,
2632 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2633 }
2634
2635 static void
zio_gang_tree_assemble_done(zio_t * zio)2636 zio_gang_tree_assemble_done(zio_t *zio)
2637 {
2638 zio_t *gio = zio->io_gang_leader;
2639 zio_gang_node_t *gn = zio->io_private;
2640 blkptr_t *bp = zio->io_bp;
2641
2642 ASSERT(gio == zio_unique_parent(zio));
2643 ASSERT(zio->io_child_count == 0);
2644
2645 if (zio->io_error)
2646 return;
2647
2648 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2649 if (BP_SHOULD_BYTESWAP(bp))
2650 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2651
2652 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2653 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2654 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2655
2656 abd_put(zio->io_abd);
2657
2658 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2659 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2660 if (!BP_IS_GANG(gbp))
2661 continue;
2662 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2663 }
2664 }
2665
2666 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2668 uint64_t offset)
2669 {
2670 zio_t *gio = pio->io_gang_leader;
2671 zio_t *zio;
2672
2673 ASSERT(BP_IS_GANG(bp) == !!gn);
2674 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2675 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2676
2677 /*
2678 * If you're a gang header, your data is in gn->gn_gbh.
2679 * If you're a gang member, your data is in 'data' and gn == NULL.
2680 */
2681 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2682
2683 if (gn != NULL) {
2684 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2685
2686 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2687 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2688 if (BP_IS_HOLE(gbp))
2689 continue;
2690 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2691 offset);
2692 offset += BP_GET_PSIZE(gbp);
2693 }
2694 }
2695
2696 if (gn == gio->io_gang_tree)
2697 ASSERT3U(gio->io_size, ==, offset);
2698
2699 if (zio != pio)
2700 zio_nowait(zio);
2701 }
2702
2703 static zio_t *
zio_gang_assemble(zio_t * zio)2704 zio_gang_assemble(zio_t *zio)
2705 {
2706 blkptr_t *bp = zio->io_bp;
2707
2708 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2709 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2710
2711 zio->io_gang_leader = zio;
2712
2713 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2714
2715 return (zio);
2716 }
2717
2718 static zio_t *
zio_gang_issue(zio_t * zio)2719 zio_gang_issue(zio_t *zio)
2720 {
2721 blkptr_t *bp = zio->io_bp;
2722
2723 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2724 return (NULL);
2725 }
2726
2727 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2728 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2729
2730 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2731 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2732 0);
2733 else
2734 zio_gang_tree_free(&zio->io_gang_tree);
2735
2736 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2737
2738 return (zio);
2739 }
2740
2741 static void
zio_write_gang_member_ready(zio_t * zio)2742 zio_write_gang_member_ready(zio_t *zio)
2743 {
2744 zio_t *pio = zio_unique_parent(zio);
2745 dva_t *cdva = zio->io_bp->blk_dva;
2746 dva_t *pdva = pio->io_bp->blk_dva;
2747 uint64_t asize;
2748 zio_t *gio __maybe_unused = zio->io_gang_leader;
2749
2750 if (BP_IS_HOLE(zio->io_bp))
2751 return;
2752
2753 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2754
2755 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2756 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2757 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2758 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2759 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2760
2761 mutex_enter(&pio->io_lock);
2762 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2763 ASSERT(DVA_GET_GANG(&pdva[d]));
2764 asize = DVA_GET_ASIZE(&pdva[d]);
2765 asize += DVA_GET_ASIZE(&cdva[d]);
2766 DVA_SET_ASIZE(&pdva[d], asize);
2767 }
2768 mutex_exit(&pio->io_lock);
2769 }
2770
2771 static void
zio_write_gang_done(zio_t * zio)2772 zio_write_gang_done(zio_t *zio)
2773 {
2774 /*
2775 * The io_abd field will be NULL for a zio with no data. The io_flags
2776 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2777 * check for it here as it is cleared in zio_ready.
2778 */
2779 if (zio->io_abd != NULL)
2780 abd_put(zio->io_abd);
2781 }
2782
2783 static zio_t *
zio_write_gang_block(zio_t * pio)2784 zio_write_gang_block(zio_t *pio)
2785 {
2786 spa_t *spa = pio->io_spa;
2787 metaslab_class_t *mc = spa_normal_class(spa);
2788 blkptr_t *bp = pio->io_bp;
2789 zio_t *gio = pio->io_gang_leader;
2790 zio_t *zio;
2791 zio_gang_node_t *gn, **gnpp;
2792 zio_gbh_phys_t *gbh;
2793 abd_t *gbh_abd;
2794 uint64_t txg = pio->io_txg;
2795 uint64_t resid = pio->io_size;
2796 uint64_t lsize;
2797 int copies = gio->io_prop.zp_copies;
2798 int gbh_copies;
2799 zio_prop_t zp;
2800 int error;
2801 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2802
2803 /*
2804 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2805 * have a third copy.
2806 */
2807 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2808 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2809 gbh_copies = SPA_DVAS_PER_BP - 1;
2810
2811 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2812 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2813 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2814 ASSERT(has_data);
2815
2816 flags |= METASLAB_ASYNC_ALLOC;
2817 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2818 mca_alloc_slots, pio));
2819
2820 /*
2821 * The logical zio has already placed a reservation for
2822 * 'copies' allocation slots but gang blocks may require
2823 * additional copies. These additional copies
2824 * (i.e. gbh_copies - copies) are guaranteed to succeed
2825 * since metaslab_class_throttle_reserve() always allows
2826 * additional reservations for gang blocks.
2827 */
2828 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2829 pio->io_allocator, pio, flags));
2830 }
2831
2832 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2833 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2834 &pio->io_alloc_list, pio, pio->io_allocator);
2835 if (error) {
2836 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2837 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2838 ASSERT(has_data);
2839
2840 /*
2841 * If we failed to allocate the gang block header then
2842 * we remove any additional allocation reservations that
2843 * we placed here. The original reservation will
2844 * be removed when the logical I/O goes to the ready
2845 * stage.
2846 */
2847 metaslab_class_throttle_unreserve(mc,
2848 gbh_copies - copies, pio->io_allocator, pio);
2849 }
2850
2851 pio->io_error = error;
2852 return (pio);
2853 }
2854
2855 if (pio == gio) {
2856 gnpp = &gio->io_gang_tree;
2857 } else {
2858 gnpp = pio->io_private;
2859 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2860 }
2861
2862 gn = zio_gang_node_alloc(gnpp);
2863 gbh = gn->gn_gbh;
2864 bzero(gbh, SPA_GANGBLOCKSIZE);
2865 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2866
2867 /*
2868 * Create the gang header.
2869 */
2870 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2871 zio_write_gang_done, NULL, pio->io_priority,
2872 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2873
2874 /*
2875 * Create and nowait the gang children.
2876 */
2877 for (int g = 0; resid != 0; resid -= lsize, g++) {
2878 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2879 SPA_MINBLOCKSIZE);
2880 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2881
2882 zp.zp_checksum = gio->io_prop.zp_checksum;
2883 zp.zp_compress = ZIO_COMPRESS_OFF;
2884 zp.zp_complevel = gio->io_prop.zp_complevel;
2885 zp.zp_type = DMU_OT_NONE;
2886 zp.zp_level = 0;
2887 zp.zp_copies = gio->io_prop.zp_copies;
2888 zp.zp_dedup = B_FALSE;
2889 zp.zp_dedup_verify = B_FALSE;
2890 zp.zp_nopwrite = B_FALSE;
2891 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2892 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2893 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2894 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2895 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2896
2897 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2898 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2899 resid) : NULL, lsize, lsize, &zp,
2900 zio_write_gang_member_ready, NULL, NULL,
2901 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2902 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2903
2904 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2905 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2906 ASSERT(has_data);
2907
2908 /*
2909 * Gang children won't throttle but we should
2910 * account for their work, so reserve an allocation
2911 * slot for them here.
2912 */
2913 VERIFY(metaslab_class_throttle_reserve(mc,
2914 zp.zp_copies, cio->io_allocator, cio, flags));
2915 }
2916 zio_nowait(cio);
2917 }
2918
2919 /*
2920 * Set pio's pipeline to just wait for zio to finish.
2921 */
2922 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2923
2924 /*
2925 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2926 */
2927 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2928
2929 zio_nowait(zio);
2930
2931 return (pio);
2932 }
2933
2934 /*
2935 * The zio_nop_write stage in the pipeline determines if allocating a
2936 * new bp is necessary. The nopwrite feature can handle writes in
2937 * either syncing or open context (i.e. zil writes) and as a result is
2938 * mutually exclusive with dedup.
2939 *
2940 * By leveraging a cryptographically secure checksum, such as SHA256, we
2941 * can compare the checksums of the new data and the old to determine if
2942 * allocating a new block is required. Note that our requirements for
2943 * cryptographic strength are fairly weak: there can't be any accidental
2944 * hash collisions, but we don't need to be secure against intentional
2945 * (malicious) collisions. To trigger a nopwrite, you have to be able
2946 * to write the file to begin with, and triggering an incorrect (hash
2947 * collision) nopwrite is no worse than simply writing to the file.
2948 * That said, there are no known attacks against the checksum algorithms
2949 * used for nopwrite, assuming that the salt and the checksums
2950 * themselves remain secret.
2951 */
2952 static zio_t *
zio_nop_write(zio_t * zio)2953 zio_nop_write(zio_t *zio)
2954 {
2955 blkptr_t *bp = zio->io_bp;
2956 blkptr_t *bp_orig = &zio->io_bp_orig;
2957 zio_prop_t *zp = &zio->io_prop;
2958
2959 ASSERT(BP_GET_LEVEL(bp) == 0);
2960 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2961 ASSERT(zp->zp_nopwrite);
2962 ASSERT(!zp->zp_dedup);
2963 ASSERT(zio->io_bp_override == NULL);
2964 ASSERT(IO_IS_ALLOCATING(zio));
2965
2966 /*
2967 * Check to see if the original bp and the new bp have matching
2968 * characteristics (i.e. same checksum, compression algorithms, etc).
2969 * If they don't then just continue with the pipeline which will
2970 * allocate a new bp.
2971 */
2972 if (BP_IS_HOLE(bp_orig) ||
2973 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2974 ZCHECKSUM_FLAG_NOPWRITE) ||
2975 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2976 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2977 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2978 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2979 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2980 return (zio);
2981
2982 /*
2983 * If the checksums match then reset the pipeline so that we
2984 * avoid allocating a new bp and issuing any I/O.
2985 */
2986 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2987 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2988 ZCHECKSUM_FLAG_NOPWRITE);
2989 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2990 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2991 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2992 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2993 sizeof (uint64_t)) == 0);
2994
2995 /*
2996 * If we're overwriting a block that is currently on an
2997 * indirect vdev, then ignore the nopwrite request and
2998 * allow a new block to be allocated on a concrete vdev.
2999 */
3000 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3001 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3002 DVA_GET_VDEV(&bp->blk_dva[0]));
3003 if (tvd->vdev_ops == &vdev_indirect_ops) {
3004 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3005 return (zio);
3006 }
3007 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3008
3009 *bp = *bp_orig;
3010 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3011 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3012 }
3013
3014 return (zio);
3015 }
3016
3017 /*
3018 * ==========================================================================
3019 * Dedup
3020 * ==========================================================================
3021 */
3022 static void
zio_ddt_child_read_done(zio_t * zio)3023 zio_ddt_child_read_done(zio_t *zio)
3024 {
3025 blkptr_t *bp = zio->io_bp;
3026 ddt_entry_t *dde = zio->io_private;
3027 ddt_phys_t *ddp;
3028 zio_t *pio = zio_unique_parent(zio);
3029
3030 mutex_enter(&pio->io_lock);
3031 ddp = ddt_phys_select(dde, bp);
3032 if (zio->io_error == 0)
3033 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3034
3035 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3036 dde->dde_repair_abd = zio->io_abd;
3037 else
3038 abd_free(zio->io_abd);
3039 mutex_exit(&pio->io_lock);
3040 }
3041
3042 static zio_t *
zio_ddt_read_start(zio_t * zio)3043 zio_ddt_read_start(zio_t *zio)
3044 {
3045 blkptr_t *bp = zio->io_bp;
3046
3047 ASSERT(BP_GET_DEDUP(bp));
3048 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3049 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3050
3051 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3052 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3053 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3054 ddt_phys_t *ddp = dde->dde_phys;
3055 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3056 blkptr_t blk;
3057
3058 ASSERT(zio->io_vsd == NULL);
3059 zio->io_vsd = dde;
3060
3061 if (ddp_self == NULL)
3062 return (zio);
3063
3064 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3065 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3066 continue;
3067 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3068 &blk);
3069 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3070 abd_alloc_for_io(zio->io_size, B_TRUE),
3071 zio->io_size, zio_ddt_child_read_done, dde,
3072 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3073 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3074 }
3075 return (zio);
3076 }
3077
3078 zio_nowait(zio_read(zio, zio->io_spa, bp,
3079 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3080 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3081
3082 return (zio);
3083 }
3084
3085 static zio_t *
zio_ddt_read_done(zio_t * zio)3086 zio_ddt_read_done(zio_t *zio)
3087 {
3088 blkptr_t *bp = zio->io_bp;
3089
3090 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3091 return (NULL);
3092 }
3093
3094 ASSERT(BP_GET_DEDUP(bp));
3095 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3096 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3097
3098 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3099 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3100 ddt_entry_t *dde = zio->io_vsd;
3101 if (ddt == NULL) {
3102 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3103 return (zio);
3104 }
3105 if (dde == NULL) {
3106 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3107 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3108 return (NULL);
3109 }
3110 if (dde->dde_repair_abd != NULL) {
3111 abd_copy(zio->io_abd, dde->dde_repair_abd,
3112 zio->io_size);
3113 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3114 }
3115 ddt_repair_done(ddt, dde);
3116 zio->io_vsd = NULL;
3117 }
3118
3119 ASSERT(zio->io_vsd == NULL);
3120
3121 return (zio);
3122 }
3123
3124 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3125 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3126 {
3127 spa_t *spa = zio->io_spa;
3128 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3129
3130 ASSERT(!(zio->io_bp_override && do_raw));
3131
3132 /*
3133 * Note: we compare the original data, not the transformed data,
3134 * because when zio->io_bp is an override bp, we will not have
3135 * pushed the I/O transforms. That's an important optimization
3136 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3137 * However, we should never get a raw, override zio so in these
3138 * cases we can compare the io_abd directly. This is useful because
3139 * it allows us to do dedup verification even if we don't have access
3140 * to the original data (for instance, if the encryption keys aren't
3141 * loaded).
3142 */
3143
3144 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3145 zio_t *lio = dde->dde_lead_zio[p];
3146
3147 if (lio != NULL && do_raw) {
3148 return (lio->io_size != zio->io_size ||
3149 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3150 } else if (lio != NULL) {
3151 return (lio->io_orig_size != zio->io_orig_size ||
3152 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3153 }
3154 }
3155
3156 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3157 ddt_phys_t *ddp = &dde->dde_phys[p];
3158
3159 if (ddp->ddp_phys_birth != 0 && do_raw) {
3160 blkptr_t blk = *zio->io_bp;
3161 uint64_t psize;
3162 abd_t *tmpabd;
3163 int error;
3164
3165 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3166 psize = BP_GET_PSIZE(&blk);
3167
3168 if (psize != zio->io_size)
3169 return (B_TRUE);
3170
3171 ddt_exit(ddt);
3172
3173 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3174
3175 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3176 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3177 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3178 ZIO_FLAG_RAW, &zio->io_bookmark));
3179
3180 if (error == 0) {
3181 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3182 error = SET_ERROR(ENOENT);
3183 }
3184
3185 abd_free(tmpabd);
3186 ddt_enter(ddt);
3187 return (error != 0);
3188 } else if (ddp->ddp_phys_birth != 0) {
3189 arc_buf_t *abuf = NULL;
3190 arc_flags_t aflags = ARC_FLAG_WAIT;
3191 blkptr_t blk = *zio->io_bp;
3192 int error;
3193
3194 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3195
3196 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3197 return (B_TRUE);
3198
3199 ddt_exit(ddt);
3200
3201 error = arc_read(NULL, spa, &blk,
3202 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3203 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3204 &aflags, &zio->io_bookmark);
3205
3206 if (error == 0) {
3207 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3208 zio->io_orig_size) != 0)
3209 error = SET_ERROR(ENOENT);
3210 arc_buf_destroy(abuf, &abuf);
3211 }
3212
3213 ddt_enter(ddt);
3214 return (error != 0);
3215 }
3216 }
3217
3218 return (B_FALSE);
3219 }
3220
3221 static void
zio_ddt_child_write_ready(zio_t * zio)3222 zio_ddt_child_write_ready(zio_t *zio)
3223 {
3224 int p = zio->io_prop.zp_copies;
3225 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3226 ddt_entry_t *dde = zio->io_private;
3227 ddt_phys_t *ddp = &dde->dde_phys[p];
3228 zio_t *pio;
3229
3230 if (zio->io_error)
3231 return;
3232
3233 ddt_enter(ddt);
3234
3235 ASSERT(dde->dde_lead_zio[p] == zio);
3236
3237 ddt_phys_fill(ddp, zio->io_bp);
3238
3239 zio_link_t *zl = NULL;
3240 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3241 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3242
3243 ddt_exit(ddt);
3244 }
3245
3246 static void
zio_ddt_child_write_done(zio_t * zio)3247 zio_ddt_child_write_done(zio_t *zio)
3248 {
3249 int p = zio->io_prop.zp_copies;
3250 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3251 ddt_entry_t *dde = zio->io_private;
3252 ddt_phys_t *ddp = &dde->dde_phys[p];
3253
3254 ddt_enter(ddt);
3255
3256 ASSERT(ddp->ddp_refcnt == 0);
3257 ASSERT(dde->dde_lead_zio[p] == zio);
3258 dde->dde_lead_zio[p] = NULL;
3259
3260 if (zio->io_error == 0) {
3261 zio_link_t *zl = NULL;
3262 while (zio_walk_parents(zio, &zl) != NULL)
3263 ddt_phys_addref(ddp);
3264 } else {
3265 ddt_phys_clear(ddp);
3266 }
3267
3268 ddt_exit(ddt);
3269 }
3270
3271 static zio_t *
zio_ddt_write(zio_t * zio)3272 zio_ddt_write(zio_t *zio)
3273 {
3274 spa_t *spa = zio->io_spa;
3275 blkptr_t *bp = zio->io_bp;
3276 uint64_t txg = zio->io_txg;
3277 zio_prop_t *zp = &zio->io_prop;
3278 int p = zp->zp_copies;
3279 zio_t *cio = NULL;
3280 ddt_t *ddt = ddt_select(spa, bp);
3281 ddt_entry_t *dde;
3282 ddt_phys_t *ddp;
3283
3284 ASSERT(BP_GET_DEDUP(bp));
3285 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3286 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3287 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3288
3289 ddt_enter(ddt);
3290 dde = ddt_lookup(ddt, bp, B_TRUE);
3291 ddp = &dde->dde_phys[p];
3292
3293 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3294 /*
3295 * If we're using a weak checksum, upgrade to a strong checksum
3296 * and try again. If we're already using a strong checksum,
3297 * we can't resolve it, so just convert to an ordinary write.
3298 * (And automatically e-mail a paper to Nature?)
3299 */
3300 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3301 ZCHECKSUM_FLAG_DEDUP)) {
3302 zp->zp_checksum = spa_dedup_checksum(spa);
3303 zio_pop_transforms(zio);
3304 zio->io_stage = ZIO_STAGE_OPEN;
3305 BP_ZERO(bp);
3306 } else {
3307 zp->zp_dedup = B_FALSE;
3308 BP_SET_DEDUP(bp, B_FALSE);
3309 }
3310 ASSERT(!BP_GET_DEDUP(bp));
3311 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3312 ddt_exit(ddt);
3313 return (zio);
3314 }
3315
3316 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3317 if (ddp->ddp_phys_birth != 0)
3318 ddt_bp_fill(ddp, bp, txg);
3319 if (dde->dde_lead_zio[p] != NULL)
3320 zio_add_child(zio, dde->dde_lead_zio[p]);
3321 else
3322 ddt_phys_addref(ddp);
3323 } else if (zio->io_bp_override) {
3324 ASSERT(bp->blk_birth == txg);
3325 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3326 ddt_phys_fill(ddp, bp);
3327 ddt_phys_addref(ddp);
3328 } else {
3329 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3330 zio->io_orig_size, zio->io_orig_size, zp,
3331 zio_ddt_child_write_ready, NULL, NULL,
3332 zio_ddt_child_write_done, dde, zio->io_priority,
3333 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3334
3335 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3336 dde->dde_lead_zio[p] = cio;
3337 }
3338
3339 ddt_exit(ddt);
3340
3341 zio_nowait(cio);
3342
3343 return (zio);
3344 }
3345
3346 ddt_entry_t *freedde; /* for debugging */
3347
3348 static zio_t *
zio_ddt_free(zio_t * zio)3349 zio_ddt_free(zio_t *zio)
3350 {
3351 spa_t *spa = zio->io_spa;
3352 blkptr_t *bp = zio->io_bp;
3353 ddt_t *ddt = ddt_select(spa, bp);
3354 ddt_entry_t *dde;
3355 ddt_phys_t *ddp;
3356
3357 ASSERT(BP_GET_DEDUP(bp));
3358 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3359
3360 ddt_enter(ddt);
3361 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3362 if (dde) {
3363 ddp = ddt_phys_select(dde, bp);
3364 if (ddp)
3365 ddt_phys_decref(ddp);
3366 }
3367 ddt_exit(ddt);
3368
3369 return (zio);
3370 }
3371
3372 /*
3373 * ==========================================================================
3374 * Allocate and free blocks
3375 * ==========================================================================
3376 */
3377
3378 static zio_t *
zio_io_to_allocate(spa_t * spa,int allocator)3379 zio_io_to_allocate(spa_t *spa, int allocator)
3380 {
3381 zio_t *zio;
3382
3383 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3384
3385 zio = avl_first(&spa->spa_alloc_trees[allocator]);
3386 if (zio == NULL)
3387 return (NULL);
3388
3389 ASSERT(IO_IS_ALLOCATING(zio));
3390
3391 /*
3392 * Try to place a reservation for this zio. If we're unable to
3393 * reserve then we throttle.
3394 */
3395 ASSERT3U(zio->io_allocator, ==, allocator);
3396 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3397 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3398 return (NULL);
3399 }
3400
3401 avl_remove(&spa->spa_alloc_trees[allocator], zio);
3402 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3403
3404 return (zio);
3405 }
3406
3407 static zio_t *
zio_dva_throttle(zio_t * zio)3408 zio_dva_throttle(zio_t *zio)
3409 {
3410 spa_t *spa = zio->io_spa;
3411 zio_t *nio;
3412 metaslab_class_t *mc;
3413
3414 /* locate an appropriate allocation class */
3415 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3416 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3417
3418 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3419 !mc->mc_alloc_throttle_enabled ||
3420 zio->io_child_type == ZIO_CHILD_GANG ||
3421 zio->io_flags & ZIO_FLAG_NODATA) {
3422 return (zio);
3423 }
3424
3425 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3426
3427 ASSERT3U(zio->io_queued_timestamp, >, 0);
3428 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3429
3430 zbookmark_phys_t *bm = &zio->io_bookmark;
3431 /*
3432 * We want to try to use as many allocators as possible to help improve
3433 * performance, but we also want logically adjacent IOs to be physically
3434 * adjacent to improve sequential read performance. We chunk each object
3435 * into 2^20 block regions, and then hash based on the objset, object,
3436 * level, and region to accomplish both of these goals.
3437 */
3438 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3439 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3440 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3441 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3442 zio->io_metaslab_class = mc;
3443 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3444 nio = zio_io_to_allocate(spa, zio->io_allocator);
3445 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3446 return (nio);
3447 }
3448
3449 static void
zio_allocate_dispatch(spa_t * spa,int allocator)3450 zio_allocate_dispatch(spa_t *spa, int allocator)
3451 {
3452 zio_t *zio;
3453
3454 mutex_enter(&spa->spa_alloc_locks[allocator]);
3455 zio = zio_io_to_allocate(spa, allocator);
3456 mutex_exit(&spa->spa_alloc_locks[allocator]);
3457 if (zio == NULL)
3458 return;
3459
3460 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3461 ASSERT0(zio->io_error);
3462 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3463 }
3464
3465 static zio_t *
zio_dva_allocate(zio_t * zio)3466 zio_dva_allocate(zio_t *zio)
3467 {
3468 spa_t *spa = zio->io_spa;
3469 metaslab_class_t *mc;
3470 blkptr_t *bp = zio->io_bp;
3471 int error;
3472 int flags = 0;
3473
3474 if (zio->io_gang_leader == NULL) {
3475 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3476 zio->io_gang_leader = zio;
3477 }
3478
3479 ASSERT(BP_IS_HOLE(bp));
3480 ASSERT0(BP_GET_NDVAS(bp));
3481 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3482 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3483 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3484
3485 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3486 if (zio->io_flags & ZIO_FLAG_NODATA)
3487 flags |= METASLAB_DONT_THROTTLE;
3488 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3489 flags |= METASLAB_GANG_CHILD;
3490 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3491 flags |= METASLAB_ASYNC_ALLOC;
3492
3493 /*
3494 * if not already chosen, locate an appropriate allocation class
3495 */
3496 mc = zio->io_metaslab_class;
3497 if (mc == NULL) {
3498 mc = spa_preferred_class(spa, zio->io_size,
3499 zio->io_prop.zp_type, zio->io_prop.zp_level,
3500 zio->io_prop.zp_zpl_smallblk);
3501 zio->io_metaslab_class = mc;
3502 }
3503
3504 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3505 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3506 &zio->io_alloc_list, zio, zio->io_allocator);
3507
3508 /*
3509 * Fallback to normal class when an alloc class is full
3510 */
3511 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3512 /*
3513 * If throttling, transfer reservation over to normal class.
3514 * The io_allocator slot can remain the same even though we
3515 * are switching classes.
3516 */
3517 if (mc->mc_alloc_throttle_enabled &&
3518 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3519 metaslab_class_throttle_unreserve(mc,
3520 zio->io_prop.zp_copies, zio->io_allocator, zio);
3521 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3522
3523 mc = spa_normal_class(spa);
3524 VERIFY(metaslab_class_throttle_reserve(mc,
3525 zio->io_prop.zp_copies, zio->io_allocator, zio,
3526 flags | METASLAB_MUST_RESERVE));
3527 } else {
3528 mc = spa_normal_class(spa);
3529 }
3530 zio->io_metaslab_class = mc;
3531
3532 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3533 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3534 &zio->io_alloc_list, zio, zio->io_allocator);
3535 }
3536
3537 if (error != 0) {
3538 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3539 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3540 error);
3541 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3542 return (zio_write_gang_block(zio));
3543 zio->io_error = error;
3544 }
3545
3546 return (zio);
3547 }
3548
3549 static zio_t *
zio_dva_free(zio_t * zio)3550 zio_dva_free(zio_t *zio)
3551 {
3552 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3553
3554 return (zio);
3555 }
3556
3557 static zio_t *
zio_dva_claim(zio_t * zio)3558 zio_dva_claim(zio_t *zio)
3559 {
3560 int error;
3561
3562 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3563 if (error)
3564 zio->io_error = error;
3565
3566 return (zio);
3567 }
3568
3569 /*
3570 * Undo an allocation. This is used by zio_done() when an I/O fails
3571 * and we want to give back the block we just allocated.
3572 * This handles both normal blocks and gang blocks.
3573 */
3574 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)3575 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3576 {
3577 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3578 ASSERT(zio->io_bp_override == NULL);
3579
3580 if (!BP_IS_HOLE(bp))
3581 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3582
3583 if (gn != NULL) {
3584 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3585 zio_dva_unallocate(zio, gn->gn_child[g],
3586 &gn->gn_gbh->zg_blkptr[g]);
3587 }
3588 }
3589 }
3590
3591 /*
3592 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3593 */
3594 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)3595 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3596 uint64_t size, boolean_t *slog)
3597 {
3598 int error = 1;
3599 zio_alloc_list_t io_alloc_list;
3600
3601 ASSERT(txg > spa_syncing_txg(spa));
3602
3603 metaslab_trace_init(&io_alloc_list);
3604
3605 /*
3606 * Block pointer fields are useful to metaslabs for stats and debugging.
3607 * Fill in the obvious ones before calling into metaslab_alloc().
3608 */
3609 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3610 BP_SET_PSIZE(new_bp, size);
3611 BP_SET_LEVEL(new_bp, 0);
3612
3613 /*
3614 * When allocating a zil block, we don't have information about
3615 * the final destination of the block except the objset it's part
3616 * of, so we just hash the objset ID to pick the allocator to get
3617 * some parallelism.
3618 */
3619 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3620 int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3621 spa->spa_alloc_count;
3622 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp,
3623 1, txg, NULL, flags, &io_alloc_list, NULL, allocator);
3624 if (error == 0) {
3625 *slog = TRUE;
3626 } else {
3627 error = metaslab_alloc(spa, spa_normal_class(spa), size, new_bp,
3628 1, txg, NULL, flags, &io_alloc_list, NULL, allocator);
3629 if (error == 0)
3630 *slog = FALSE;
3631 }
3632 metaslab_trace_fini(&io_alloc_list);
3633
3634 if (error == 0) {
3635 BP_SET_LSIZE(new_bp, size);
3636 BP_SET_PSIZE(new_bp, size);
3637 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3638 BP_SET_CHECKSUM(new_bp,
3639 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3640 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3641 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3642 BP_SET_LEVEL(new_bp, 0);
3643 BP_SET_DEDUP(new_bp, 0);
3644 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3645
3646 /*
3647 * encrypted blocks will require an IV and salt. We generate
3648 * these now since we will not be rewriting the bp at
3649 * rewrite time.
3650 */
3651 if (os->os_encrypted) {
3652 uint8_t iv[ZIO_DATA_IV_LEN];
3653 uint8_t salt[ZIO_DATA_SALT_LEN];
3654
3655 BP_SET_CRYPT(new_bp, B_TRUE);
3656 VERIFY0(spa_crypt_get_salt(spa,
3657 dmu_objset_id(os), salt));
3658 VERIFY0(zio_crypt_generate_iv(iv));
3659
3660 zio_crypt_encode_params_bp(new_bp, salt, iv);
3661 }
3662 } else {
3663 zfs_dbgmsg("%s: zil block allocation failure: "
3664 "size %llu, error %d", spa_name(spa), size, error);
3665 }
3666
3667 return (error);
3668 }
3669
3670 /*
3671 * ==========================================================================
3672 * Read and write to physical devices
3673 * ==========================================================================
3674 */
3675
3676 /*
3677 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3678 * stops after this stage and will resume upon I/O completion.
3679 * However, there are instances where the vdev layer may need to
3680 * continue the pipeline when an I/O was not issued. Since the I/O
3681 * that was sent to the vdev layer might be different than the one
3682 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3683 * force the underlying vdev layers to call either zio_execute() or
3684 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3685 */
3686 static zio_t *
zio_vdev_io_start(zio_t * zio)3687 zio_vdev_io_start(zio_t *zio)
3688 {
3689 vdev_t *vd = zio->io_vd;
3690 uint64_t align;
3691 spa_t *spa = zio->io_spa;
3692
3693 zio->io_delay = 0;
3694
3695 ASSERT(zio->io_error == 0);
3696 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3697
3698 if (vd == NULL) {
3699 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3700 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3701
3702 /*
3703 * The mirror_ops handle multiple DVAs in a single BP.
3704 */
3705 vdev_mirror_ops.vdev_op_io_start(zio);
3706 return (NULL);
3707 }
3708
3709 ASSERT3P(zio->io_logical, !=, zio);
3710 if (zio->io_type == ZIO_TYPE_WRITE) {
3711 ASSERT(spa->spa_trust_config);
3712
3713 /*
3714 * Note: the code can handle other kinds of writes,
3715 * but we don't expect them.
3716 */
3717 if (zio->io_vd->vdev_removing) {
3718 ASSERT(zio->io_flags &
3719 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3720 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3721 }
3722 }
3723
3724 align = 1ULL << vd->vdev_top->vdev_ashift;
3725
3726 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3727 P2PHASE(zio->io_size, align) != 0) {
3728 /* Transform logical writes to be a full physical block size. */
3729 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3730 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3731 ASSERT(vd == vd->vdev_top);
3732 if (zio->io_type == ZIO_TYPE_WRITE) {
3733 abd_copy(abuf, zio->io_abd, zio->io_size);
3734 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3735 }
3736 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3737 }
3738
3739 /*
3740 * If this is not a physical io, make sure that it is properly aligned
3741 * before proceeding.
3742 */
3743 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3744 ASSERT0(P2PHASE(zio->io_offset, align));
3745 ASSERT0(P2PHASE(zio->io_size, align));
3746 } else {
3747 /*
3748 * For physical writes, we allow 512b aligned writes and assume
3749 * the device will perform a read-modify-write as necessary.
3750 */
3751 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3752 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3753 }
3754
3755 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3756
3757 /*
3758 * If this is a repair I/O, and there's no self-healing involved --
3759 * that is, we're just resilvering what we expect to resilver --
3760 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3761 * This prevents spurious resilvering.
3762 *
3763 * There are a few ways that we can end up creating these spurious
3764 * resilver i/os:
3765 *
3766 * 1. A resilver i/o will be issued if any DVA in the BP has a
3767 * dirty DTL. The mirror code will issue resilver writes to
3768 * each DVA, including the one(s) that are not on vdevs with dirty
3769 * DTLs.
3770 *
3771 * 2. With nested replication, which happens when we have a
3772 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3773 * For example, given mirror(replacing(A+B), C), it's likely that
3774 * only A is out of date (it's the new device). In this case, we'll
3775 * read from C, then use the data to resilver A+B -- but we don't
3776 * actually want to resilver B, just A. The top-level mirror has no
3777 * way to know this, so instead we just discard unnecessary repairs
3778 * as we work our way down the vdev tree.
3779 *
3780 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3781 * The same logic applies to any form of nested replication: ditto
3782 * + mirror, RAID-Z + replacing, etc.
3783 *
3784 * However, indirect vdevs point off to other vdevs which may have
3785 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3786 * will be properly bypassed instead.
3787 *
3788 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3789 * a dRAID spare vdev. For example, when a dRAID spare is first
3790 * used, its spare blocks need to be written to but the leaf vdev's
3791 * of such blocks can have empty DTL_PARTIAL.
3792 *
3793 * There seemed no clean way to allow such writes while bypassing
3794 * spurious ones. At this point, just avoid all bypassing for dRAID
3795 * for correctness.
3796 */
3797 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3798 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3799 zio->io_txg != 0 && /* not a delegated i/o */
3800 vd->vdev_ops != &vdev_indirect_ops &&
3801 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3802 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3803 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3804 zio_vdev_io_bypass(zio);
3805 return (zio);
3806 }
3807
3808 /*
3809 * Select the next best leaf I/O to process. Distributed spares are
3810 * excluded since they dispatch the I/O directly to a leaf vdev after
3811 * applying the dRAID mapping.
3812 */
3813 if (vd->vdev_ops->vdev_op_leaf &&
3814 vd->vdev_ops != &vdev_draid_spare_ops &&
3815 (zio->io_type == ZIO_TYPE_READ ||
3816 zio->io_type == ZIO_TYPE_WRITE ||
3817 zio->io_type == ZIO_TYPE_TRIM)) {
3818
3819 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3820 return (zio);
3821
3822 if ((zio = vdev_queue_io(zio)) == NULL)
3823 return (NULL);
3824
3825 if (!vdev_accessible(vd, zio)) {
3826 zio->io_error = SET_ERROR(ENXIO);
3827 zio_interrupt(zio);
3828 return (NULL);
3829 }
3830 zio->io_delay = gethrtime();
3831 }
3832
3833 vd->vdev_ops->vdev_op_io_start(zio);
3834 return (NULL);
3835 }
3836
3837 static zio_t *
zio_vdev_io_done(zio_t * zio)3838 zio_vdev_io_done(zio_t *zio)
3839 {
3840 vdev_t *vd = zio->io_vd;
3841 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3842 boolean_t unexpected_error = B_FALSE;
3843
3844 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3845 return (NULL);
3846 }
3847
3848 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3849 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3850
3851 if (zio->io_delay)
3852 zio->io_delay = gethrtime() - zio->io_delay;
3853
3854 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3855 vd->vdev_ops != &vdev_draid_spare_ops) {
3856 vdev_queue_io_done(zio);
3857
3858 if (zio->io_type == ZIO_TYPE_WRITE)
3859 vdev_cache_write(zio);
3860
3861 if (zio_injection_enabled && zio->io_error == 0)
3862 zio->io_error = zio_handle_device_injections(vd, zio,
3863 EIO, EILSEQ);
3864
3865 if (zio_injection_enabled && zio->io_error == 0)
3866 zio->io_error = zio_handle_label_injection(zio, EIO);
3867
3868 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3869 if (!vdev_accessible(vd, zio)) {
3870 zio->io_error = SET_ERROR(ENXIO);
3871 } else {
3872 unexpected_error = B_TRUE;
3873 }
3874 }
3875 }
3876
3877 ops->vdev_op_io_done(zio);
3878
3879 if (unexpected_error)
3880 VERIFY(vdev_probe(vd, zio) == NULL);
3881
3882 return (zio);
3883 }
3884
3885 /*
3886 * This function is used to change the priority of an existing zio that is
3887 * currently in-flight. This is used by the arc to upgrade priority in the
3888 * event that a demand read is made for a block that is currently queued
3889 * as a scrub or async read IO. Otherwise, the high priority read request
3890 * would end up having to wait for the lower priority IO.
3891 */
3892 void
zio_change_priority(zio_t * pio,zio_priority_t priority)3893 zio_change_priority(zio_t *pio, zio_priority_t priority)
3894 {
3895 zio_t *cio, *cio_next;
3896 zio_link_t *zl = NULL;
3897
3898 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3899
3900 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3901 vdev_queue_change_io_priority(pio, priority);
3902 } else {
3903 pio->io_priority = priority;
3904 }
3905
3906 mutex_enter(&pio->io_lock);
3907 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3908 cio_next = zio_walk_children(pio, &zl);
3909 zio_change_priority(cio, priority);
3910 }
3911 mutex_exit(&pio->io_lock);
3912 }
3913
3914 /*
3915 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3916 * disk, and use that to finish the checksum ereport later.
3917 */
3918 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)3919 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3920 const abd_t *good_buf)
3921 {
3922 /* no processing needed */
3923 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3924 }
3925
3926 /*ARGSUSED*/
3927 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr,void * ignored)3928 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3929 {
3930 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3931
3932 abd_copy(abd, zio->io_abd, zio->io_size);
3933
3934 zcr->zcr_cbinfo = zio->io_size;
3935 zcr->zcr_cbdata = abd;
3936 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3937 zcr->zcr_free = zio_abd_free;
3938 }
3939
3940 static zio_t *
zio_vdev_io_assess(zio_t * zio)3941 zio_vdev_io_assess(zio_t *zio)
3942 {
3943 vdev_t *vd = zio->io_vd;
3944
3945 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3946 return (NULL);
3947 }
3948
3949 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3950 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3951
3952 if (zio->io_vsd != NULL) {
3953 zio->io_vsd_ops->vsd_free(zio);
3954 zio->io_vsd = NULL;
3955 }
3956
3957 if (zio_injection_enabled && zio->io_error == 0)
3958 zio->io_error = zio_handle_fault_injection(zio, EIO);
3959
3960 /*
3961 * If the I/O failed, determine whether we should attempt to retry it.
3962 *
3963 * On retry, we cut in line in the issue queue, since we don't want
3964 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3965 */
3966 if (zio->io_error && vd == NULL &&
3967 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3968 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3969 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3970 zio->io_error = 0;
3971 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3972 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3973 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3974 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3975 zio_requeue_io_start_cut_in_line);
3976 return (NULL);
3977 }
3978
3979 /*
3980 * If we got an error on a leaf device, convert it to ENXIO
3981 * if the device is not accessible at all.
3982 */
3983 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3984 !vdev_accessible(vd, zio))
3985 zio->io_error = SET_ERROR(ENXIO);
3986
3987 /*
3988 * If we can't write to an interior vdev (mirror or RAID-Z),
3989 * set vdev_cant_write so that we stop trying to allocate from it.
3990 */
3991 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3992 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3993 vd->vdev_cant_write = B_TRUE;
3994 }
3995
3996 /*
3997 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3998 * attempts will ever succeed. In this case we set a persistent
3999 * boolean flag so that we don't bother with it in the future.
4000 */
4001 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4002 zio->io_type == ZIO_TYPE_IOCTL &&
4003 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4004 vd->vdev_nowritecache = B_TRUE;
4005
4006 if (zio->io_error)
4007 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4008
4009 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4010 zio->io_physdone != NULL) {
4011 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4012 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4013 zio->io_physdone(zio->io_logical);
4014 }
4015
4016 return (zio);
4017 }
4018
4019 void
zio_vdev_io_reissue(zio_t * zio)4020 zio_vdev_io_reissue(zio_t *zio)
4021 {
4022 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4023 ASSERT(zio->io_error == 0);
4024
4025 zio->io_stage >>= 1;
4026 }
4027
4028 void
zio_vdev_io_redone(zio_t * zio)4029 zio_vdev_io_redone(zio_t *zio)
4030 {
4031 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4032
4033 zio->io_stage >>= 1;
4034 }
4035
4036 void
zio_vdev_io_bypass(zio_t * zio)4037 zio_vdev_io_bypass(zio_t *zio)
4038 {
4039 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4040 ASSERT(zio->io_error == 0);
4041
4042 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4043 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4044 }
4045
4046 /*
4047 * ==========================================================================
4048 * Encrypt and store encryption parameters
4049 * ==========================================================================
4050 */
4051
4052
4053 /*
4054 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4055 * managing the storage of encryption parameters and passing them to the
4056 * lower-level encryption functions.
4057 */
4058 static zio_t *
zio_encrypt(zio_t * zio)4059 zio_encrypt(zio_t *zio)
4060 {
4061 zio_prop_t *zp = &zio->io_prop;
4062 spa_t *spa = zio->io_spa;
4063 blkptr_t *bp = zio->io_bp;
4064 uint64_t psize = BP_GET_PSIZE(bp);
4065 uint64_t dsobj = zio->io_bookmark.zb_objset;
4066 dmu_object_type_t ot = BP_GET_TYPE(bp);
4067 void *enc_buf = NULL;
4068 abd_t *eabd = NULL;
4069 uint8_t salt[ZIO_DATA_SALT_LEN];
4070 uint8_t iv[ZIO_DATA_IV_LEN];
4071 uint8_t mac[ZIO_DATA_MAC_LEN];
4072 boolean_t no_crypt = B_FALSE;
4073
4074 /* the root zio already encrypted the data */
4075 if (zio->io_child_type == ZIO_CHILD_GANG)
4076 return (zio);
4077
4078 /* only ZIL blocks are re-encrypted on rewrite */
4079 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4080 return (zio);
4081
4082 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4083 BP_SET_CRYPT(bp, B_FALSE);
4084 return (zio);
4085 }
4086
4087 /* if we are doing raw encryption set the provided encryption params */
4088 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4089 ASSERT0(BP_GET_LEVEL(bp));
4090 BP_SET_CRYPT(bp, B_TRUE);
4091 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4092 if (ot != DMU_OT_OBJSET)
4093 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4094
4095 /* dnode blocks must be written out in the provided byteorder */
4096 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4097 ot == DMU_OT_DNODE) {
4098 void *bswap_buf = zio_buf_alloc(psize);
4099 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4100
4101 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4102 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4103 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4104 psize);
4105
4106 abd_take_ownership_of_buf(babd, B_TRUE);
4107 zio_push_transform(zio, babd, psize, psize, NULL);
4108 }
4109
4110 if (DMU_OT_IS_ENCRYPTED(ot))
4111 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4112 return (zio);
4113 }
4114
4115 /* indirect blocks only maintain a cksum of the lower level MACs */
4116 if (BP_GET_LEVEL(bp) > 0) {
4117 BP_SET_CRYPT(bp, B_TRUE);
4118 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4119 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4120 mac));
4121 zio_crypt_encode_mac_bp(bp, mac);
4122 return (zio);
4123 }
4124
4125 /*
4126 * Objset blocks are a special case since they have 2 256-bit MACs
4127 * embedded within them.
4128 */
4129 if (ot == DMU_OT_OBJSET) {
4130 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4131 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4132 BP_SET_CRYPT(bp, B_TRUE);
4133 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4134 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4135 return (zio);
4136 }
4137
4138 /* unencrypted object types are only authenticated with a MAC */
4139 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4140 BP_SET_CRYPT(bp, B_TRUE);
4141 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4142 zio->io_abd, psize, mac));
4143 zio_crypt_encode_mac_bp(bp, mac);
4144 return (zio);
4145 }
4146
4147 /*
4148 * Later passes of sync-to-convergence may decide to rewrite data
4149 * in place to avoid more disk reallocations. This presents a problem
4150 * for encryption because this constitutes rewriting the new data with
4151 * the same encryption key and IV. However, this only applies to blocks
4152 * in the MOS (particularly the spacemaps) and we do not encrypt the
4153 * MOS. We assert that the zio is allocating or an intent log write
4154 * to enforce this.
4155 */
4156 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4157 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4158 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4159 ASSERT3U(psize, !=, 0);
4160
4161 enc_buf = zio_buf_alloc(psize);
4162 eabd = abd_get_from_buf(enc_buf, psize);
4163 abd_take_ownership_of_buf(eabd, B_TRUE);
4164
4165 /*
4166 * For an explanation of what encryption parameters are stored
4167 * where, see the block comment in zio_crypt.c.
4168 */
4169 if (ot == DMU_OT_INTENT_LOG) {
4170 zio_crypt_decode_params_bp(bp, salt, iv);
4171 } else {
4172 BP_SET_CRYPT(bp, B_TRUE);
4173 }
4174
4175 /* Perform the encryption. This should not fail */
4176 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4177 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4178 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4179
4180 /* encode encryption metadata into the bp */
4181 if (ot == DMU_OT_INTENT_LOG) {
4182 /*
4183 * ZIL blocks store the MAC in the embedded checksum, so the
4184 * transform must always be applied.
4185 */
4186 zio_crypt_encode_mac_zil(enc_buf, mac);
4187 zio_push_transform(zio, eabd, psize, psize, NULL);
4188 } else {
4189 BP_SET_CRYPT(bp, B_TRUE);
4190 zio_crypt_encode_params_bp(bp, salt, iv);
4191 zio_crypt_encode_mac_bp(bp, mac);
4192
4193 if (no_crypt) {
4194 ASSERT3U(ot, ==, DMU_OT_DNODE);
4195 abd_free(eabd);
4196 } else {
4197 zio_push_transform(zio, eabd, psize, psize, NULL);
4198 }
4199 }
4200
4201 return (zio);
4202 }
4203
4204 /*
4205 * ==========================================================================
4206 * Generate and verify checksums
4207 * ==========================================================================
4208 */
4209 static zio_t *
zio_checksum_generate(zio_t * zio)4210 zio_checksum_generate(zio_t *zio)
4211 {
4212 blkptr_t *bp = zio->io_bp;
4213 enum zio_checksum checksum;
4214
4215 if (bp == NULL) {
4216 /*
4217 * This is zio_write_phys().
4218 * We're either generating a label checksum, or none at all.
4219 */
4220 checksum = zio->io_prop.zp_checksum;
4221
4222 if (checksum == ZIO_CHECKSUM_OFF)
4223 return (zio);
4224
4225 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4226 } else {
4227 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4228 ASSERT(!IO_IS_ALLOCATING(zio));
4229 checksum = ZIO_CHECKSUM_GANG_HEADER;
4230 } else {
4231 checksum = BP_GET_CHECKSUM(bp);
4232 }
4233 }
4234
4235 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4236
4237 return (zio);
4238 }
4239
4240 static zio_t *
zio_checksum_verify(zio_t * zio)4241 zio_checksum_verify(zio_t *zio)
4242 {
4243 zio_bad_cksum_t info;
4244 blkptr_t *bp = zio->io_bp;
4245 int error;
4246
4247 ASSERT(zio->io_vd != NULL);
4248
4249 if (bp == NULL) {
4250 /*
4251 * This is zio_read_phys().
4252 * We're either verifying a label checksum, or nothing at all.
4253 */
4254 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4255 return (zio);
4256
4257 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4258 }
4259
4260 if ((error = zio_checksum_error(zio, &info)) != 0) {
4261 zio->io_error = error;
4262 if (error == ECKSUM &&
4263 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4264 int ret = zfs_ereport_start_checksum(zio->io_spa,
4265 zio->io_vd, &zio->io_bookmark, zio,
4266 zio->io_offset, zio->io_size, NULL, &info);
4267
4268 if (ret != EALREADY) {
4269 mutex_enter(&zio->io_vd->vdev_stat_lock);
4270 zio->io_vd->vdev_stat.vs_checksum_errors++;
4271 mutex_exit(&zio->io_vd->vdev_stat_lock);
4272 }
4273 }
4274 }
4275
4276 return (zio);
4277 }
4278
4279 /*
4280 * Called by RAID-Z to ensure we don't compute the checksum twice.
4281 */
4282 void
zio_checksum_verified(zio_t * zio)4283 zio_checksum_verified(zio_t *zio)
4284 {
4285 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4286 }
4287
4288 /*
4289 * ==========================================================================
4290 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4291 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4292 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4293 * indicate errors that are specific to one I/O, and most likely permanent.
4294 * Any other error is presumed to be worse because we weren't expecting it.
4295 * ==========================================================================
4296 */
4297 int
zio_worst_error(int e1,int e2)4298 zio_worst_error(int e1, int e2)
4299 {
4300 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4301 int r1, r2;
4302
4303 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4304 if (e1 == zio_error_rank[r1])
4305 break;
4306
4307 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4308 if (e2 == zio_error_rank[r2])
4309 break;
4310
4311 return (r1 > r2 ? e1 : e2);
4312 }
4313
4314 /*
4315 * ==========================================================================
4316 * I/O completion
4317 * ==========================================================================
4318 */
4319 static zio_t *
zio_ready(zio_t * zio)4320 zio_ready(zio_t *zio)
4321 {
4322 blkptr_t *bp = zio->io_bp;
4323 zio_t *pio, *pio_next;
4324 zio_link_t *zl = NULL;
4325
4326 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4327 ZIO_WAIT_READY)) {
4328 return (NULL);
4329 }
4330
4331 if (zio->io_ready) {
4332 ASSERT(IO_IS_ALLOCATING(zio));
4333 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4334 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4335 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4336
4337 zio->io_ready(zio);
4338 }
4339
4340 if (bp != NULL && bp != &zio->io_bp_copy)
4341 zio->io_bp_copy = *bp;
4342
4343 if (zio->io_error != 0) {
4344 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4345
4346 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4347 ASSERT(IO_IS_ALLOCATING(zio));
4348 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4349 ASSERT(zio->io_metaslab_class != NULL);
4350
4351 /*
4352 * We were unable to allocate anything, unreserve and
4353 * issue the next I/O to allocate.
4354 */
4355 metaslab_class_throttle_unreserve(
4356 zio->io_metaslab_class, zio->io_prop.zp_copies,
4357 zio->io_allocator, zio);
4358 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4359 }
4360 }
4361
4362 mutex_enter(&zio->io_lock);
4363 zio->io_state[ZIO_WAIT_READY] = 1;
4364 pio = zio_walk_parents(zio, &zl);
4365 mutex_exit(&zio->io_lock);
4366
4367 /*
4368 * As we notify zio's parents, new parents could be added.
4369 * New parents go to the head of zio's io_parent_list, however,
4370 * so we will (correctly) not notify them. The remainder of zio's
4371 * io_parent_list, from 'pio_next' onward, cannot change because
4372 * all parents must wait for us to be done before they can be done.
4373 */
4374 for (; pio != NULL; pio = pio_next) {
4375 pio_next = zio_walk_parents(zio, &zl);
4376 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4377 }
4378
4379 if (zio->io_flags & ZIO_FLAG_NODATA) {
4380 if (BP_IS_GANG(bp)) {
4381 zio->io_flags &= ~ZIO_FLAG_NODATA;
4382 } else {
4383 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4384 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4385 }
4386 }
4387
4388 if (zio_injection_enabled &&
4389 zio->io_spa->spa_syncing_txg == zio->io_txg)
4390 zio_handle_ignored_writes(zio);
4391
4392 return (zio);
4393 }
4394
4395 /*
4396 * Update the allocation throttle accounting.
4397 */
4398 static void
zio_dva_throttle_done(zio_t * zio)4399 zio_dva_throttle_done(zio_t *zio)
4400 {
4401 zio_t *lio __maybe_unused = zio->io_logical;
4402 zio_t *pio = zio_unique_parent(zio);
4403 vdev_t *vd = zio->io_vd;
4404 int flags = METASLAB_ASYNC_ALLOC;
4405
4406 ASSERT3P(zio->io_bp, !=, NULL);
4407 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4408 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4409 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4410 ASSERT(vd != NULL);
4411 ASSERT3P(vd, ==, vd->vdev_top);
4412 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4413 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4414 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4415 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4416 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4417
4418 /*
4419 * Parents of gang children can have two flavors -- ones that
4420 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4421 * and ones that allocated the constituent blocks. The allocation
4422 * throttle needs to know the allocating parent zio so we must find
4423 * it here.
4424 */
4425 if (pio->io_child_type == ZIO_CHILD_GANG) {
4426 /*
4427 * If our parent is a rewrite gang child then our grandparent
4428 * would have been the one that performed the allocation.
4429 */
4430 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4431 pio = zio_unique_parent(pio);
4432 flags |= METASLAB_GANG_CHILD;
4433 }
4434
4435 ASSERT(IO_IS_ALLOCATING(pio));
4436 ASSERT3P(zio, !=, zio->io_logical);
4437 ASSERT(zio->io_logical != NULL);
4438 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4439 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4440 ASSERT(zio->io_metaslab_class != NULL);
4441
4442 mutex_enter(&pio->io_lock);
4443 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4444 pio->io_allocator, B_TRUE);
4445 mutex_exit(&pio->io_lock);
4446
4447 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4448 pio->io_allocator, pio);
4449
4450 /*
4451 * Call into the pipeline to see if there is more work that
4452 * needs to be done. If there is work to be done it will be
4453 * dispatched to another taskq thread.
4454 */
4455 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4456 }
4457
4458 static zio_t *
zio_done(zio_t * zio)4459 zio_done(zio_t *zio)
4460 {
4461 /*
4462 * Always attempt to keep stack usage minimal here since
4463 * we can be called recursively up to 19 levels deep.
4464 */
4465 const uint64_t psize = zio->io_size;
4466 zio_t *pio, *pio_next;
4467 zio_link_t *zl = NULL;
4468
4469 /*
4470 * If our children haven't all completed,
4471 * wait for them and then repeat this pipeline stage.
4472 */
4473 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4474 return (NULL);
4475 }
4476
4477 /*
4478 * If the allocation throttle is enabled, then update the accounting.
4479 * We only track child I/Os that are part of an allocating async
4480 * write. We must do this since the allocation is performed
4481 * by the logical I/O but the actual write is done by child I/Os.
4482 */
4483 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4484 zio->io_child_type == ZIO_CHILD_VDEV) {
4485 ASSERT(zio->io_metaslab_class != NULL);
4486 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4487 zio_dva_throttle_done(zio);
4488 }
4489
4490 /*
4491 * If the allocation throttle is enabled, verify that
4492 * we have decremented the refcounts for every I/O that was throttled.
4493 */
4494 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4495 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4496 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4497 ASSERT(zio->io_bp != NULL);
4498
4499 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4500 zio->io_allocator);
4501 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4502 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4503 }
4504
4505
4506 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4507 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4508 ASSERT(zio->io_children[c][w] == 0);
4509
4510 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4511 ASSERT(zio->io_bp->blk_pad[0] == 0);
4512 ASSERT(zio->io_bp->blk_pad[1] == 0);
4513 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4514 sizeof (blkptr_t)) == 0 ||
4515 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4516 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4517 zio->io_bp_override == NULL &&
4518 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4519 ASSERT3U(zio->io_prop.zp_copies, <=,
4520 BP_GET_NDVAS(zio->io_bp));
4521 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4522 (BP_COUNT_GANG(zio->io_bp) ==
4523 BP_GET_NDVAS(zio->io_bp)));
4524 }
4525 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4526 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4527 }
4528
4529 /*
4530 * If there were child vdev/gang/ddt errors, they apply to us now.
4531 */
4532 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4533 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4534 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4535
4536 /*
4537 * If the I/O on the transformed data was successful, generate any
4538 * checksum reports now while we still have the transformed data.
4539 */
4540 if (zio->io_error == 0) {
4541 while (zio->io_cksum_report != NULL) {
4542 zio_cksum_report_t *zcr = zio->io_cksum_report;
4543 uint64_t align = zcr->zcr_align;
4544 uint64_t asize = P2ROUNDUP(psize, align);
4545 abd_t *adata = zio->io_abd;
4546
4547 if (asize != psize) {
4548 adata = abd_alloc(asize, B_TRUE);
4549 abd_copy(adata, zio->io_abd, psize);
4550 abd_zero_off(adata, psize, asize - psize);
4551 }
4552
4553 zio->io_cksum_report = zcr->zcr_next;
4554 zcr->zcr_next = NULL;
4555 zcr->zcr_finish(zcr, adata);
4556 zfs_ereport_free_checksum(zcr);
4557
4558 if (asize != psize)
4559 abd_free(adata);
4560 }
4561 }
4562
4563 zio_pop_transforms(zio); /* note: may set zio->io_error */
4564
4565 vdev_stat_update(zio, psize);
4566
4567 /*
4568 * If this I/O is attached to a particular vdev is slow, exceeding
4569 * 30 seconds to complete, post an error described the I/O delay.
4570 * We ignore these errors if the device is currently unavailable.
4571 */
4572 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4573 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4574 /*
4575 * We want to only increment our slow IO counters if
4576 * the IO is valid (i.e. not if the drive is removed).
4577 *
4578 * zfs_ereport_post() will also do these checks, but
4579 * it can also ratelimit and have other failures, so we
4580 * need to increment the slow_io counters independent
4581 * of it.
4582 */
4583 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4584 zio->io_spa, zio->io_vd, zio)) {
4585 mutex_enter(&zio->io_vd->vdev_stat_lock);
4586 zio->io_vd->vdev_stat.vs_slow_ios++;
4587 mutex_exit(&zio->io_vd->vdev_stat_lock);
4588
4589 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4590 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4591 zio, 0);
4592 }
4593 }
4594 }
4595
4596 if (zio->io_error) {
4597 /*
4598 * If this I/O is attached to a particular vdev,
4599 * generate an error message describing the I/O failure
4600 * at the block level. We ignore these errors if the
4601 * device is currently unavailable.
4602 */
4603 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4604 !vdev_is_dead(zio->io_vd)) {
4605 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4606 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4607 if (ret != EALREADY) {
4608 mutex_enter(&zio->io_vd->vdev_stat_lock);
4609 if (zio->io_type == ZIO_TYPE_READ)
4610 zio->io_vd->vdev_stat.vs_read_errors++;
4611 else if (zio->io_type == ZIO_TYPE_WRITE)
4612 zio->io_vd->vdev_stat.vs_write_errors++;
4613 mutex_exit(&zio->io_vd->vdev_stat_lock);
4614 }
4615 }
4616
4617 if ((zio->io_error == EIO || !(zio->io_flags &
4618 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4619 zio == zio->io_logical) {
4620 /*
4621 * For logical I/O requests, tell the SPA to log the
4622 * error and generate a logical data ereport.
4623 */
4624 spa_log_error(zio->io_spa, &zio->io_bookmark);
4625 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4626 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4627 }
4628 }
4629
4630 if (zio->io_error && zio == zio->io_logical) {
4631 /*
4632 * Determine whether zio should be reexecuted. This will
4633 * propagate all the way to the root via zio_notify_parent().
4634 */
4635 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4636 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4637
4638 if (IO_IS_ALLOCATING(zio) &&
4639 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4640 if (zio->io_error != ENOSPC)
4641 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4642 else
4643 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4644 }
4645
4646 if ((zio->io_type == ZIO_TYPE_READ ||
4647 zio->io_type == ZIO_TYPE_FREE) &&
4648 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4649 zio->io_error == ENXIO &&
4650 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4651 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4652 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4653
4654 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4655 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4656
4657 /*
4658 * Here is a possibly good place to attempt to do
4659 * either combinatorial reconstruction or error correction
4660 * based on checksums. It also might be a good place
4661 * to send out preliminary ereports before we suspend
4662 * processing.
4663 */
4664 }
4665
4666 /*
4667 * If there were logical child errors, they apply to us now.
4668 * We defer this until now to avoid conflating logical child
4669 * errors with errors that happened to the zio itself when
4670 * updating vdev stats and reporting FMA events above.
4671 */
4672 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4673
4674 if ((zio->io_error || zio->io_reexecute) &&
4675 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4676 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4677 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4678
4679 zio_gang_tree_free(&zio->io_gang_tree);
4680
4681 /*
4682 * Godfather I/Os should never suspend.
4683 */
4684 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4685 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4686 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4687
4688 if (zio->io_reexecute) {
4689 /*
4690 * This is a logical I/O that wants to reexecute.
4691 *
4692 * Reexecute is top-down. When an i/o fails, if it's not
4693 * the root, it simply notifies its parent and sticks around.
4694 * The parent, seeing that it still has children in zio_done(),
4695 * does the same. This percolates all the way up to the root.
4696 * The root i/o will reexecute or suspend the entire tree.
4697 *
4698 * This approach ensures that zio_reexecute() honors
4699 * all the original i/o dependency relationships, e.g.
4700 * parents not executing until children are ready.
4701 */
4702 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4703
4704 zio->io_gang_leader = NULL;
4705
4706 mutex_enter(&zio->io_lock);
4707 zio->io_state[ZIO_WAIT_DONE] = 1;
4708 mutex_exit(&zio->io_lock);
4709
4710 /*
4711 * "The Godfather" I/O monitors its children but is
4712 * not a true parent to them. It will track them through
4713 * the pipeline but severs its ties whenever they get into
4714 * trouble (e.g. suspended). This allows "The Godfather"
4715 * I/O to return status without blocking.
4716 */
4717 zl = NULL;
4718 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4719 pio = pio_next) {
4720 zio_link_t *remove_zl = zl;
4721 pio_next = zio_walk_parents(zio, &zl);
4722
4723 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4724 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4725 zio_remove_child(pio, zio, remove_zl);
4726 /*
4727 * This is a rare code path, so we don't
4728 * bother with "next_to_execute".
4729 */
4730 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4731 NULL);
4732 }
4733 }
4734
4735 if ((pio = zio_unique_parent(zio)) != NULL) {
4736 /*
4737 * We're not a root i/o, so there's nothing to do
4738 * but notify our parent. Don't propagate errors
4739 * upward since we haven't permanently failed yet.
4740 */
4741 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4742 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4743 /*
4744 * This is a rare code path, so we don't bother with
4745 * "next_to_execute".
4746 */
4747 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4748 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4749 /*
4750 * We'd fail again if we reexecuted now, so suspend
4751 * until conditions improve (e.g. device comes online).
4752 */
4753 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4754 } else {
4755 /*
4756 * Reexecution is potentially a huge amount of work.
4757 * Hand it off to the otherwise-unused claim taskq.
4758 */
4759 ASSERT(taskq_empty_ent(&zio->io_tqent));
4760 spa_taskq_dispatch_ent(zio->io_spa,
4761 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4762 (task_func_t *)zio_reexecute, zio, 0,
4763 &zio->io_tqent);
4764 }
4765 return (NULL);
4766 }
4767
4768 ASSERT(zio->io_child_count == 0);
4769 ASSERT(zio->io_reexecute == 0);
4770 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4771
4772 /*
4773 * Report any checksum errors, since the I/O is complete.
4774 */
4775 while (zio->io_cksum_report != NULL) {
4776 zio_cksum_report_t *zcr = zio->io_cksum_report;
4777 zio->io_cksum_report = zcr->zcr_next;
4778 zcr->zcr_next = NULL;
4779 zcr->zcr_finish(zcr, NULL);
4780 zfs_ereport_free_checksum(zcr);
4781 }
4782
4783 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4784 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4785 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4786 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4787 }
4788
4789 /*
4790 * It is the responsibility of the done callback to ensure that this
4791 * particular zio is no longer discoverable for adoption, and as
4792 * such, cannot acquire any new parents.
4793 */
4794 if (zio->io_done)
4795 zio->io_done(zio);
4796
4797 mutex_enter(&zio->io_lock);
4798 zio->io_state[ZIO_WAIT_DONE] = 1;
4799 mutex_exit(&zio->io_lock);
4800
4801 /*
4802 * We are done executing this zio. We may want to execute a parent
4803 * next. See the comment in zio_notify_parent().
4804 */
4805 zio_t *next_to_execute = NULL;
4806 zl = NULL;
4807 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4808 zio_link_t *remove_zl = zl;
4809 pio_next = zio_walk_parents(zio, &zl);
4810 zio_remove_child(pio, zio, remove_zl);
4811 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4812 }
4813
4814 if (zio->io_waiter != NULL) {
4815 mutex_enter(&zio->io_lock);
4816 zio->io_executor = NULL;
4817 cv_broadcast(&zio->io_cv);
4818 mutex_exit(&zio->io_lock);
4819 } else {
4820 zio_destroy(zio);
4821 }
4822
4823 return (next_to_execute);
4824 }
4825
4826 /*
4827 * ==========================================================================
4828 * I/O pipeline definition
4829 * ==========================================================================
4830 */
4831 static zio_pipe_stage_t *zio_pipeline[] = {
4832 NULL,
4833 zio_read_bp_init,
4834 zio_write_bp_init,
4835 zio_free_bp_init,
4836 zio_issue_async,
4837 zio_write_compress,
4838 zio_encrypt,
4839 zio_checksum_generate,
4840 zio_nop_write,
4841 zio_ddt_read_start,
4842 zio_ddt_read_done,
4843 zio_ddt_write,
4844 zio_ddt_free,
4845 zio_gang_assemble,
4846 zio_gang_issue,
4847 zio_dva_throttle,
4848 zio_dva_allocate,
4849 zio_dva_free,
4850 zio_dva_claim,
4851 zio_ready,
4852 zio_vdev_io_start,
4853 zio_vdev_io_done,
4854 zio_vdev_io_assess,
4855 zio_checksum_verify,
4856 zio_done
4857 };
4858
4859
4860
4861
4862 /*
4863 * Compare two zbookmark_phys_t's to see which we would reach first in a
4864 * pre-order traversal of the object tree.
4865 *
4866 * This is simple in every case aside from the meta-dnode object. For all other
4867 * objects, we traverse them in order (object 1 before object 2, and so on).
4868 * However, all of these objects are traversed while traversing object 0, since
4869 * the data it points to is the list of objects. Thus, we need to convert to a
4870 * canonical representation so we can compare meta-dnode bookmarks to
4871 * non-meta-dnode bookmarks.
4872 *
4873 * We do this by calculating "equivalents" for each field of the zbookmark.
4874 * zbookmarks outside of the meta-dnode use their own object and level, and
4875 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4876 * blocks this bookmark refers to) by multiplying their blkid by their span
4877 * (the number of L0 blocks contained within one block at their level).
4878 * zbookmarks inside the meta-dnode calculate their object equivalent
4879 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4880 * level + 1<<31 (any value larger than a level could ever be) for their level.
4881 * This causes them to always compare before a bookmark in their object
4882 * equivalent, compare appropriately to bookmarks in other objects, and to
4883 * compare appropriately to other bookmarks in the meta-dnode.
4884 */
4885 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)4886 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4887 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4888 {
4889 /*
4890 * These variables represent the "equivalent" values for the zbookmark,
4891 * after converting zbookmarks inside the meta dnode to their
4892 * normal-object equivalents.
4893 */
4894 uint64_t zb1obj, zb2obj;
4895 uint64_t zb1L0, zb2L0;
4896 uint64_t zb1level, zb2level;
4897
4898 if (zb1->zb_object == zb2->zb_object &&
4899 zb1->zb_level == zb2->zb_level &&
4900 zb1->zb_blkid == zb2->zb_blkid)
4901 return (0);
4902
4903 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4904 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4905
4906 /*
4907 * BP_SPANB calculates the span in blocks.
4908 */
4909 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4910 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4911
4912 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4913 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4914 zb1L0 = 0;
4915 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4916 } else {
4917 zb1obj = zb1->zb_object;
4918 zb1level = zb1->zb_level;
4919 }
4920
4921 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4922 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4923 zb2L0 = 0;
4924 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4925 } else {
4926 zb2obj = zb2->zb_object;
4927 zb2level = zb2->zb_level;
4928 }
4929
4930 /* Now that we have a canonical representation, do the comparison. */
4931 if (zb1obj != zb2obj)
4932 return (zb1obj < zb2obj ? -1 : 1);
4933 else if (zb1L0 != zb2L0)
4934 return (zb1L0 < zb2L0 ? -1 : 1);
4935 else if (zb1level != zb2level)
4936 return (zb1level > zb2level ? -1 : 1);
4937 /*
4938 * This can (theoretically) happen if the bookmarks have the same object
4939 * and level, but different blkids, if the block sizes are not the same.
4940 * There is presently no way to change the indirect block sizes
4941 */
4942 return (0);
4943 }
4944
4945 /*
4946 * This function checks the following: given that last_block is the place that
4947 * our traversal stopped last time, does that guarantee that we've visited
4948 * every node under subtree_root? Therefore, we can't just use the raw output
4949 * of zbookmark_compare. We have to pass in a modified version of
4950 * subtree_root; by incrementing the block id, and then checking whether
4951 * last_block is before or equal to that, we can tell whether or not having
4952 * visited last_block implies that all of subtree_root's children have been
4953 * visited.
4954 */
4955 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)4956 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4957 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4958 {
4959 zbookmark_phys_t mod_zb = *subtree_root;
4960 mod_zb.zb_blkid++;
4961 ASSERT(last_block->zb_level == 0);
4962
4963 /* The objset_phys_t isn't before anything. */
4964 if (dnp == NULL)
4965 return (B_FALSE);
4966
4967 /*
4968 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4969 * data block size in sectors, because that variable is only used if
4970 * the bookmark refers to a block in the meta-dnode. Since we don't
4971 * know without examining it what object it refers to, and there's no
4972 * harm in passing in this value in other cases, we always pass it in.
4973 *
4974 * We pass in 0 for the indirect block size shift because zb2 must be
4975 * level 0. The indirect block size is only used to calculate the span
4976 * of the bookmark, but since the bookmark must be level 0, the span is
4977 * always 1, so the math works out.
4978 *
4979 * If you make changes to how the zbookmark_compare code works, be sure
4980 * to make sure that this code still works afterwards.
4981 */
4982 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4983 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4984 last_block) <= 0);
4985 }
4986
4987 EXPORT_SYMBOL(zio_type_name);
4988 EXPORT_SYMBOL(zio_buf_alloc);
4989 EXPORT_SYMBOL(zio_data_buf_alloc);
4990 EXPORT_SYMBOL(zio_buf_free);
4991 EXPORT_SYMBOL(zio_data_buf_free);
4992
4993 /* BEGIN CSTYLED */
4994 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4995 "Max I/O completion time (milliseconds) before marking it as slow");
4996
4997 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4998 "Prioritize requeued I/O");
4999
5000 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
5001 "Defer frees starting in this pass");
5002
5003 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5004 "Don't compress starting in this pass");
5005
5006 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5007 "Rewrite new bps starting in this pass");
5008
5009 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5010 "Throttle block allocations in the ZIO pipeline");
5011
5012 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5013 "Log all slow ZIOs, not just those with vdevs");
5014 /* END CSTYLED */
5015