1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <[email protected]>
5 * Copyright (c) 2004, 2005 Bosko Milekic <[email protected]>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * uma_core.c Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel. The intent is to be flexible as well as
36 * efficient. A primary design goal is to return unused memory to the rest of
37 * the system. This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46 /*
47 * TODO:
48 * - Improve memory usage for large allocations
49 * - Investigate cache size adjustments
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/smr.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_dumpset.h>
96 #include <vm/uma.h>
97 #include <vm/uma_int.h>
98 #include <vm/uma_dbg.h>
99
100 #include <ddb/ddb.h>
101
102 #ifdef DEBUG_MEMGUARD
103 #include <vm/memguard.h>
104 #endif
105
106 #include <machine/md_var.h>
107
108 #ifdef INVARIANTS
109 #define UMA_ALWAYS_CTORDTOR 1
110 #else
111 #define UMA_ALWAYS_CTORDTOR 0
112 #endif
113
114 /*
115 * This is the zone and keg from which all zones are spawned.
116 */
117 static uma_zone_t kegs;
118 static uma_zone_t zones;
119
120 /*
121 * On INVARIANTS builds, the slab contains a second bitset of the same size,
122 * "dbg_bits", which is laid out immediately after us_free.
123 */
124 #ifdef INVARIANTS
125 #define SLAB_BITSETS 2
126 #else
127 #define SLAB_BITSETS 1
128 #endif
129
130 /*
131 * These are the two zones from which all offpage uma_slab_ts are allocated.
132 *
133 * One zone is for slab headers that can represent a larger number of items,
134 * making the slabs themselves more efficient, and the other zone is for
135 * headers that are smaller and represent fewer items, making the headers more
136 * efficient.
137 */
138 #define SLABZONE_SIZE(setsize) \
139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16)
141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE
142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE)
143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE)
144 static uma_zone_t slabzones[2];
145
146 /*
147 * The initial hash tables come out of this zone so they can be allocated
148 * prior to malloc coming up.
149 */
150 static uma_zone_t hashzone;
151
152 /* The boot-time adjusted value for cache line alignment. */
153 int uma_align_cache = 64 - 1;
154
155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157
158 /*
159 * Are we allowed to allocate buckets?
160 */
161 static int bucketdisable = 1;
162
163 /* Linked list of all kegs in the system */
164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165
166 /* Linked list of all cache-only zones in the system */
167 static LIST_HEAD(,uma_zone) uma_cachezones =
168 LIST_HEAD_INITIALIZER(uma_cachezones);
169
170 /* This RW lock protects the keg list */
171 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
172
173 /*
174 * First available virual address for boot time allocations.
175 */
176 static vm_offset_t bootstart;
177 static vm_offset_t bootmem;
178
179 static struct sx uma_reclaim_lock;
180
181 /*
182 * kmem soft limit, initialized by uma_set_limit(). Ensure that early
183 * allocations don't trigger a wakeup of the reclaim thread.
184 */
185 unsigned long uma_kmem_limit = LONG_MAX;
186 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
187 "UMA kernel memory soft limit");
188 unsigned long uma_kmem_total;
189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
190 "UMA kernel memory usage");
191
192 /* Is the VM done starting up? */
193 static enum {
194 BOOT_COLD,
195 BOOT_KVA,
196 BOOT_PCPU,
197 BOOT_RUNNING,
198 BOOT_SHUTDOWN,
199 } booted = BOOT_COLD;
200
201 /*
202 * This is the handle used to schedule events that need to happen
203 * outside of the allocation fast path.
204 */
205 static struct callout uma_callout;
206 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
207
208 /*
209 * This structure is passed as the zone ctor arg so that I don't have to create
210 * a special allocation function just for zones.
211 */
212 struct uma_zctor_args {
213 const char *name;
214 size_t size;
215 uma_ctor ctor;
216 uma_dtor dtor;
217 uma_init uminit;
218 uma_fini fini;
219 uma_import import;
220 uma_release release;
221 void *arg;
222 uma_keg_t keg;
223 int align;
224 uint32_t flags;
225 };
226
227 struct uma_kctor_args {
228 uma_zone_t zone;
229 size_t size;
230 uma_init uminit;
231 uma_fini fini;
232 int align;
233 uint32_t flags;
234 };
235
236 struct uma_bucket_zone {
237 uma_zone_t ubz_zone;
238 const char *ubz_name;
239 int ubz_entries; /* Number of items it can hold. */
240 int ubz_maxsize; /* Maximum allocation size per-item. */
241 };
242
243 /*
244 * Compute the actual number of bucket entries to pack them in power
245 * of two sizes for more efficient space utilization.
246 */
247 #define BUCKET_SIZE(n) \
248 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
249
250 #define BUCKET_MAX BUCKET_SIZE(256)
251
252 struct uma_bucket_zone bucket_zones[] = {
253 /* Literal bucket sizes. */
254 { NULL, "2 Bucket", 2, 4096 },
255 { NULL, "4 Bucket", 4, 3072 },
256 { NULL, "8 Bucket", 8, 2048 },
257 { NULL, "16 Bucket", 16, 1024 },
258 /* Rounded down power of 2 sizes for efficiency. */
259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
263 { NULL, NULL, 0}
264 };
265
266 /*
267 * Flags and enumerations to be passed to internal functions.
268 */
269 enum zfreeskip {
270 SKIP_NONE = 0,
271 SKIP_CNT = 0x00000001,
272 SKIP_DTOR = 0x00010000,
273 SKIP_FINI = 0x00020000,
274 };
275
276 /* Prototypes.. */
277
278 void uma_startup1(vm_offset_t);
279 void uma_startup2(void);
280
281 #ifndef FSTACK
282 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
283 #endif
284 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void page_free(void *, vm_size_t, uint8_t);
289 static void pcpu_page_free(void *, vm_size_t, uint8_t);
290 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
291 static void cache_drain(uma_zone_t);
292 static void bucket_drain(uma_zone_t, uma_bucket_t);
293 static void bucket_cache_reclaim(uma_zone_t zone, bool);
294 static int keg_ctor(void *, int, void *, int);
295 static void keg_dtor(void *, int, void *);
296 static int zone_ctor(void *, int, void *, int);
297 static void zone_dtor(void *, int, void *);
298 static inline void item_dtor(uma_zone_t zone, void *item, int size,
299 void *udata, enum zfreeskip skip);
300 static int zero_init(void *, int, int);
301 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
302 int itemdomain, bool ws);
303 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
304 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
305 static void zone_timeout(uma_zone_t zone, void *);
306 static int hash_alloc(struct uma_hash *, u_int);
307 static int hash_expand(struct uma_hash *, struct uma_hash *);
308 static void hash_free(struct uma_hash *hash);
309 static void uma_timeout(void *);
310 static void uma_shutdown(void);
311 static void *zone_alloc_item(uma_zone_t, void *, int, int);
312 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
313 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
314 static void zone_free_limit(uma_zone_t zone, int count);
315 static void bucket_enable(void);
316 static void bucket_init(void);
317 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
318 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
319 static void bucket_zone_drain(void);
320 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
321 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
322 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
323 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
324 uma_fini fini, int align, uint32_t flags);
325 static int zone_import(void *, void **, int, int, int);
326 static void zone_release(void *, void **, int);
327 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
328 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int);
329
330 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
331 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
332 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
333 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
334 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
335 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
336 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
337
338 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
339
340 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
341 "Memory allocation debugging");
342
343 #ifdef INVARIANTS
344 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
345 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
346
347 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
348 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
349 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
350 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
351
352 static u_int dbg_divisor = 1;
353 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
354 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
355 "Debug & thrash every this item in memory allocator");
356
357 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
358 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
360 &uma_dbg_cnt, "memory items debugged");
361 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
362 &uma_skip_cnt, "memory items skipped, not debugged");
363 #endif
364
365 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
366 "Universal Memory Allocator");
367
368 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
369 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
370
371 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
372 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
373
374 static int zone_warnings = 1;
375 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
376 "Warn when UMA zones becomes full");
377
378 static int multipage_slabs = 1;
379 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
380 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
381 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
382 "UMA may choose larger slab sizes for better efficiency");
383
384 /*
385 * Select the slab zone for an offpage slab with the given maximum item count.
386 */
387 static inline uma_zone_t
slabzone(int ipers)388 slabzone(int ipers)
389 {
390
391 return (slabzones[ipers > SLABZONE0_SETSIZE]);
392 }
393
394 /*
395 * This routine checks to see whether or not it's safe to enable buckets.
396 */
397 static void
bucket_enable(void)398 bucket_enable(void)
399 {
400
401 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
402 bucketdisable = vm_page_count_min();
403 }
404
405 /*
406 * Initialize bucket_zones, the array of zones of buckets of various sizes.
407 *
408 * For each zone, calculate the memory required for each bucket, consisting
409 * of the header and an array of pointers.
410 */
411 static void
bucket_init(void)412 bucket_init(void)
413 {
414 struct uma_bucket_zone *ubz;
415 int size;
416
417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
418 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
419 size += sizeof(void *) * ubz->ubz_entries;
420 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
421 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
422 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
423 UMA_ZONE_FIRSTTOUCH);
424 }
425 }
426
427 /*
428 * Given a desired number of entries for a bucket, return the zone from which
429 * to allocate the bucket.
430 */
431 static struct uma_bucket_zone *
bucket_zone_lookup(int entries)432 bucket_zone_lookup(int entries)
433 {
434 struct uma_bucket_zone *ubz;
435
436 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
437 if (ubz->ubz_entries >= entries)
438 return (ubz);
439 ubz--;
440 return (ubz);
441 }
442
443 static int
bucket_select(int size)444 bucket_select(int size)
445 {
446 struct uma_bucket_zone *ubz;
447
448 ubz = &bucket_zones[0];
449 if (size > ubz->ubz_maxsize)
450 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
451
452 for (; ubz->ubz_entries != 0; ubz++)
453 if (ubz->ubz_maxsize < size)
454 break;
455 ubz--;
456 return (ubz->ubz_entries);
457 }
458
459 static uma_bucket_t
bucket_alloc(uma_zone_t zone,void * udata,int flags)460 bucket_alloc(uma_zone_t zone, void *udata, int flags)
461 {
462 struct uma_bucket_zone *ubz;
463 uma_bucket_t bucket;
464
465 /*
466 * Don't allocate buckets early in boot.
467 */
468 if (__predict_false(booted < BOOT_KVA))
469 return (NULL);
470
471 /*
472 * To limit bucket recursion we store the original zone flags
473 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
474 * NOVM flag to persist even through deep recursions. We also
475 * store ZFLAG_BUCKET once we have recursed attempting to allocate
476 * a bucket for a bucket zone so we do not allow infinite bucket
477 * recursion. This cookie will even persist to frees of unused
478 * buckets via the allocation path or bucket allocations in the
479 * free path.
480 */
481 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
482 udata = (void *)(uintptr_t)zone->uz_flags;
483 else {
484 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
485 return (NULL);
486 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
487 }
488 if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
489 flags |= M_NOVM;
490 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
491 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
492 ubz++;
493 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
494 if (bucket) {
495 #ifdef INVARIANTS
496 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
497 #endif
498 bucket->ub_cnt = 0;
499 bucket->ub_entries = min(ubz->ubz_entries,
500 zone->uz_bucket_size_max);
501 bucket->ub_seq = SMR_SEQ_INVALID;
502 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
503 zone->uz_name, zone, bucket);
504 }
505
506 return (bucket);
507 }
508
509 static void
bucket_free(uma_zone_t zone,uma_bucket_t bucket,void * udata)510 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
511 {
512 struct uma_bucket_zone *ubz;
513
514 if (bucket->ub_cnt != 0)
515 bucket_drain(zone, bucket);
516
517 KASSERT(bucket->ub_cnt == 0,
518 ("bucket_free: Freeing a non free bucket."));
519 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
520 ("bucket_free: Freeing an SMR bucket."));
521 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
522 udata = (void *)(uintptr_t)zone->uz_flags;
523 ubz = bucket_zone_lookup(bucket->ub_entries);
524 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
525 }
526
527 static void
bucket_zone_drain(void)528 bucket_zone_drain(void)
529 {
530 struct uma_bucket_zone *ubz;
531
532 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
533 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN);
534 }
535
536 /*
537 * Acquire the domain lock and record contention.
538 */
539 static uma_zone_domain_t
zone_domain_lock(uma_zone_t zone,int domain)540 zone_domain_lock(uma_zone_t zone, int domain)
541 {
542 uma_zone_domain_t zdom;
543 bool lockfail;
544
545 zdom = ZDOM_GET(zone, domain);
546 lockfail = false;
547 if (ZDOM_OWNED(zdom))
548 lockfail = true;
549 ZDOM_LOCK(zdom);
550 /* This is unsynchronized. The counter does not need to be precise. */
551 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
552 zone->uz_bucket_size++;
553 return (zdom);
554 }
555
556 /*
557 * Search for the domain with the least cached items and return it if it
558 * is out of balance with the preferred domain.
559 */
560 static __noinline int
zone_domain_lowest(uma_zone_t zone,int pref)561 zone_domain_lowest(uma_zone_t zone, int pref)
562 {
563 long least, nitems, prefitems;
564 int domain;
565 int i;
566
567 prefitems = least = LONG_MAX;
568 domain = 0;
569 for (i = 0; i < vm_ndomains; i++) {
570 nitems = ZDOM_GET(zone, i)->uzd_nitems;
571 if (nitems < least) {
572 domain = i;
573 least = nitems;
574 }
575 if (domain == pref)
576 prefitems = nitems;
577 }
578 if (prefitems < least * 2)
579 return (pref);
580
581 return (domain);
582 }
583
584 /*
585 * Search for the domain with the most cached items and return it or the
586 * preferred domain if it has enough to proceed.
587 */
588 static __noinline int
zone_domain_highest(uma_zone_t zone,int pref)589 zone_domain_highest(uma_zone_t zone, int pref)
590 {
591 long most, nitems;
592 int domain;
593 int i;
594
595 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
596 return (pref);
597
598 most = 0;
599 domain = 0;
600 for (i = 0; i < vm_ndomains; i++) {
601 nitems = ZDOM_GET(zone, i)->uzd_nitems;
602 if (nitems > most) {
603 domain = i;
604 most = nitems;
605 }
606 }
607
608 return (domain);
609 }
610
611 /*
612 * Safely subtract cnt from imax.
613 */
614 static void
zone_domain_imax_sub(uma_zone_domain_t zdom,int cnt)615 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt)
616 {
617 long new;
618 long old;
619
620 old = zdom->uzd_imax;
621 do {
622 if (old <= cnt)
623 new = 0;
624 else
625 new = old - cnt;
626 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0);
627 }
628
629 /*
630 * Set the maximum imax value.
631 */
632 static void
zone_domain_imax_set(uma_zone_domain_t zdom,int nitems)633 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
634 {
635 long old;
636
637 old = zdom->uzd_imax;
638 do {
639 if (old >= nitems)
640 break;
641 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
642 }
643
644 /*
645 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
646 * zone's caches. If a bucket is found the zone is not locked on return.
647 */
648 static uma_bucket_t
zone_fetch_bucket(uma_zone_t zone,uma_zone_domain_t zdom,bool reclaim)649 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
650 {
651 uma_bucket_t bucket;
652 int i;
653 bool dtor = false;
654
655 ZDOM_LOCK_ASSERT(zdom);
656
657 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
658 return (NULL);
659
660 /* SMR Buckets can not be re-used until readers expire. */
661 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
662 bucket->ub_seq != SMR_SEQ_INVALID) {
663 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
664 return (NULL);
665 bucket->ub_seq = SMR_SEQ_INVALID;
666 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
667 if (STAILQ_NEXT(bucket, ub_link) != NULL)
668 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
669 }
670 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
671
672 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
673 ("%s: item count underflow (%ld, %d)",
674 __func__, zdom->uzd_nitems, bucket->ub_cnt));
675 KASSERT(bucket->ub_cnt > 0,
676 ("%s: empty bucket in bucket cache", __func__));
677 zdom->uzd_nitems -= bucket->ub_cnt;
678
679 /*
680 * Shift the bounds of the current WSS interval to avoid
681 * perturbing the estimate.
682 */
683 if (reclaim) {
684 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
685 zone_domain_imax_sub(zdom, bucket->ub_cnt);
686 } else if (zdom->uzd_imin > zdom->uzd_nitems)
687 zdom->uzd_imin = zdom->uzd_nitems;
688
689 ZDOM_UNLOCK(zdom);
690 if (dtor)
691 for (i = 0; i < bucket->ub_cnt; i++)
692 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
693 NULL, SKIP_NONE);
694
695 return (bucket);
696 }
697
698 /*
699 * Insert a full bucket into the specified cache. The "ws" parameter indicates
700 * whether the bucket's contents should be counted as part of the zone's working
701 * set. The bucket may be freed if it exceeds the bucket limit.
702 */
703 static void
zone_put_bucket(uma_zone_t zone,int domain,uma_bucket_t bucket,void * udata,const bool ws)704 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
705 const bool ws)
706 {
707 uma_zone_domain_t zdom;
708
709 /* We don't cache empty buckets. This can happen after a reclaim. */
710 if (bucket->ub_cnt == 0)
711 goto out;
712 zdom = zone_domain_lock(zone, domain);
713
714 /*
715 * Conditionally set the maximum number of items.
716 */
717 zdom->uzd_nitems += bucket->ub_cnt;
718 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
719 if (ws)
720 zone_domain_imax_set(zdom, zdom->uzd_nitems);
721 if (STAILQ_EMPTY(&zdom->uzd_buckets))
722 zdom->uzd_seq = bucket->ub_seq;
723
724 /*
725 * Try to promote reuse of recently used items. For items
726 * protected by SMR, try to defer reuse to minimize polling.
727 */
728 if (bucket->ub_seq == SMR_SEQ_INVALID)
729 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
730 else
731 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
732 ZDOM_UNLOCK(zdom);
733 return;
734 }
735 zdom->uzd_nitems -= bucket->ub_cnt;
736 ZDOM_UNLOCK(zdom);
737 out:
738 bucket_free(zone, bucket, udata);
739 }
740
741 /* Pops an item out of a per-cpu cache bucket. */
742 static inline void *
cache_bucket_pop(uma_cache_t cache,uma_cache_bucket_t bucket)743 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
744 {
745 void *item;
746
747 CRITICAL_ASSERT(curthread);
748
749 bucket->ucb_cnt--;
750 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
751 #ifdef INVARIANTS
752 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
753 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
754 #endif
755 cache->uc_allocs++;
756
757 return (item);
758 }
759
760 /* Pushes an item into a per-cpu cache bucket. */
761 static inline void
cache_bucket_push(uma_cache_t cache,uma_cache_bucket_t bucket,void * item)762 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
763 {
764
765 CRITICAL_ASSERT(curthread);
766 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
767 ("uma_zfree: Freeing to non free bucket index."));
768
769 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
770 bucket->ucb_cnt++;
771 cache->uc_frees++;
772 }
773
774 /*
775 * Unload a UMA bucket from a per-cpu cache.
776 */
777 static inline uma_bucket_t
cache_bucket_unload(uma_cache_bucket_t bucket)778 cache_bucket_unload(uma_cache_bucket_t bucket)
779 {
780 uma_bucket_t b;
781
782 b = bucket->ucb_bucket;
783 if (b != NULL) {
784 MPASS(b->ub_entries == bucket->ucb_entries);
785 b->ub_cnt = bucket->ucb_cnt;
786 bucket->ucb_bucket = NULL;
787 bucket->ucb_entries = bucket->ucb_cnt = 0;
788 }
789
790 return (b);
791 }
792
793 static inline uma_bucket_t
cache_bucket_unload_alloc(uma_cache_t cache)794 cache_bucket_unload_alloc(uma_cache_t cache)
795 {
796
797 return (cache_bucket_unload(&cache->uc_allocbucket));
798 }
799
800 static inline uma_bucket_t
cache_bucket_unload_free(uma_cache_t cache)801 cache_bucket_unload_free(uma_cache_t cache)
802 {
803
804 return (cache_bucket_unload(&cache->uc_freebucket));
805 }
806
807 static inline uma_bucket_t
cache_bucket_unload_cross(uma_cache_t cache)808 cache_bucket_unload_cross(uma_cache_t cache)
809 {
810
811 return (cache_bucket_unload(&cache->uc_crossbucket));
812 }
813
814 /*
815 * Load a bucket into a per-cpu cache bucket.
816 */
817 static inline void
cache_bucket_load(uma_cache_bucket_t bucket,uma_bucket_t b)818 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
819 {
820
821 CRITICAL_ASSERT(curthread);
822 MPASS(bucket->ucb_bucket == NULL);
823 MPASS(b->ub_seq == SMR_SEQ_INVALID);
824
825 bucket->ucb_bucket = b;
826 bucket->ucb_cnt = b->ub_cnt;
827 bucket->ucb_entries = b->ub_entries;
828 }
829
830 static inline void
cache_bucket_load_alloc(uma_cache_t cache,uma_bucket_t b)831 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
832 {
833
834 cache_bucket_load(&cache->uc_allocbucket, b);
835 }
836
837 static inline void
cache_bucket_load_free(uma_cache_t cache,uma_bucket_t b)838 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
839 {
840
841 cache_bucket_load(&cache->uc_freebucket, b);
842 }
843
844 #ifdef NUMA
845 static inline void
cache_bucket_load_cross(uma_cache_t cache,uma_bucket_t b)846 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
847 {
848
849 cache_bucket_load(&cache->uc_crossbucket, b);
850 }
851 #endif
852
853 /*
854 * Copy and preserve ucb_spare.
855 */
856 static inline void
cache_bucket_copy(uma_cache_bucket_t b1,uma_cache_bucket_t b2)857 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
858 {
859
860 b1->ucb_bucket = b2->ucb_bucket;
861 b1->ucb_entries = b2->ucb_entries;
862 b1->ucb_cnt = b2->ucb_cnt;
863 }
864
865 /*
866 * Swap two cache buckets.
867 */
868 static inline void
cache_bucket_swap(uma_cache_bucket_t b1,uma_cache_bucket_t b2)869 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
870 {
871 struct uma_cache_bucket b3;
872
873 CRITICAL_ASSERT(curthread);
874
875 cache_bucket_copy(&b3, b1);
876 cache_bucket_copy(b1, b2);
877 cache_bucket_copy(b2, &b3);
878 }
879
880 /*
881 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
882 */
883 static uma_bucket_t
cache_fetch_bucket(uma_zone_t zone,uma_cache_t cache,int domain)884 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
885 {
886 uma_zone_domain_t zdom;
887 uma_bucket_t bucket;
888
889 /*
890 * Avoid the lock if possible.
891 */
892 zdom = ZDOM_GET(zone, domain);
893 if (zdom->uzd_nitems == 0)
894 return (NULL);
895
896 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
897 !smr_poll(zone->uz_smr, zdom->uzd_seq, false))
898 return (NULL);
899
900 /*
901 * Check the zone's cache of buckets.
902 */
903 zdom = zone_domain_lock(zone, domain);
904 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
905 return (bucket);
906 ZDOM_UNLOCK(zdom);
907
908 return (NULL);
909 }
910
911 static void
zone_log_warning(uma_zone_t zone)912 zone_log_warning(uma_zone_t zone)
913 {
914 static const struct timeval warninterval = { 300, 0 };
915
916 if (!zone_warnings || zone->uz_warning == NULL)
917 return;
918
919 if (ratecheck(&zone->uz_ratecheck, &warninterval))
920 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
921 }
922
923 static inline void
zone_maxaction(uma_zone_t zone)924 zone_maxaction(uma_zone_t zone)
925 {
926
927 if (zone->uz_maxaction.ta_func != NULL)
928 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
929 }
930
931 /*
932 * Routine called by timeout which is used to fire off some time interval
933 * based calculations. (stats, hash size, etc.)
934 *
935 * Arguments:
936 * arg Unused
937 *
938 * Returns:
939 * Nothing
940 */
941 static void
uma_timeout(void * unused)942 uma_timeout(void *unused)
943 {
944 bucket_enable();
945 zone_foreach(zone_timeout, NULL);
946
947 /* Reschedule this event */
948 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
949 }
950
951 /*
952 * Update the working set size estimate for the zone's bucket cache.
953 * The constants chosen here are somewhat arbitrary. With an update period of
954 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the
955 * last 100s.
956 */
957 static void
zone_domain_update_wss(uma_zone_domain_t zdom)958 zone_domain_update_wss(uma_zone_domain_t zdom)
959 {
960 long wss;
961
962 ZDOM_LOCK(zdom);
963 MPASS(zdom->uzd_imax >= zdom->uzd_imin);
964 wss = zdom->uzd_imax - zdom->uzd_imin;
965 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems;
966 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5;
967 ZDOM_UNLOCK(zdom);
968 }
969
970 /*
971 * Routine to perform timeout driven calculations. This expands the
972 * hashes and does per cpu statistics aggregation.
973 *
974 * Returns nothing.
975 */
976 static void
zone_timeout(uma_zone_t zone,void * unused)977 zone_timeout(uma_zone_t zone, void *unused)
978 {
979 uma_keg_t keg;
980 u_int slabs, pages;
981
982 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
983 goto update_wss;
984
985 keg = zone->uz_keg;
986
987 /*
988 * Hash zones are non-numa by definition so the first domain
989 * is the only one present.
990 */
991 KEG_LOCK(keg, 0);
992 pages = keg->uk_domain[0].ud_pages;
993
994 /*
995 * Expand the keg hash table.
996 *
997 * This is done if the number of slabs is larger than the hash size.
998 * What I'm trying to do here is completely reduce collisions. This
999 * may be a little aggressive. Should I allow for two collisions max?
1000 */
1001 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1002 struct uma_hash newhash;
1003 struct uma_hash oldhash;
1004 int ret;
1005
1006 /*
1007 * This is so involved because allocating and freeing
1008 * while the keg lock is held will lead to deadlock.
1009 * I have to do everything in stages and check for
1010 * races.
1011 */
1012 KEG_UNLOCK(keg, 0);
1013 ret = hash_alloc(&newhash, 1 << fls(slabs));
1014 KEG_LOCK(keg, 0);
1015 if (ret) {
1016 if (hash_expand(&keg->uk_hash, &newhash)) {
1017 oldhash = keg->uk_hash;
1018 keg->uk_hash = newhash;
1019 } else
1020 oldhash = newhash;
1021
1022 KEG_UNLOCK(keg, 0);
1023 hash_free(&oldhash);
1024 goto update_wss;
1025 }
1026 }
1027 KEG_UNLOCK(keg, 0);
1028
1029 update_wss:
1030 for (int i = 0; i < vm_ndomains; i++)
1031 zone_domain_update_wss(ZDOM_GET(zone, i));
1032 }
1033
1034 /*
1035 * Allocate and zero fill the next sized hash table from the appropriate
1036 * backing store.
1037 *
1038 * Arguments:
1039 * hash A new hash structure with the old hash size in uh_hashsize
1040 *
1041 * Returns:
1042 * 1 on success and 0 on failure.
1043 */
1044 static int
hash_alloc(struct uma_hash * hash,u_int size)1045 hash_alloc(struct uma_hash *hash, u_int size)
1046 {
1047 size_t alloc;
1048
1049 KASSERT(powerof2(size), ("hash size must be power of 2"));
1050 if (size > UMA_HASH_SIZE_INIT) {
1051 hash->uh_hashsize = size;
1052 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1053 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1054 } else {
1055 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1056 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1057 UMA_ANYDOMAIN, M_WAITOK);
1058 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1059 }
1060 if (hash->uh_slab_hash) {
1061 bzero(hash->uh_slab_hash, alloc);
1062 hash->uh_hashmask = hash->uh_hashsize - 1;
1063 return (1);
1064 }
1065
1066 return (0);
1067 }
1068
1069 /*
1070 * Expands the hash table for HASH zones. This is done from zone_timeout
1071 * to reduce collisions. This must not be done in the regular allocation
1072 * path, otherwise, we can recurse on the vm while allocating pages.
1073 *
1074 * Arguments:
1075 * oldhash The hash you want to expand
1076 * newhash The hash structure for the new table
1077 *
1078 * Returns:
1079 * Nothing
1080 *
1081 * Discussion:
1082 */
1083 static int
hash_expand(struct uma_hash * oldhash,struct uma_hash * newhash)1084 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1085 {
1086 uma_hash_slab_t slab;
1087 u_int hval;
1088 u_int idx;
1089
1090 if (!newhash->uh_slab_hash)
1091 return (0);
1092
1093 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1094 return (0);
1095
1096 /*
1097 * I need to investigate hash algorithms for resizing without a
1098 * full rehash.
1099 */
1100
1101 for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1102 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1103 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1104 LIST_REMOVE(slab, uhs_hlink);
1105 hval = UMA_HASH(newhash, slab->uhs_data);
1106 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1107 slab, uhs_hlink);
1108 }
1109
1110 return (1);
1111 }
1112
1113 /*
1114 * Free the hash bucket to the appropriate backing store.
1115 *
1116 * Arguments:
1117 * slab_hash The hash bucket we're freeing
1118 * hashsize The number of entries in that hash bucket
1119 *
1120 * Returns:
1121 * Nothing
1122 */
1123 static void
hash_free(struct uma_hash * hash)1124 hash_free(struct uma_hash *hash)
1125 {
1126 if (hash->uh_slab_hash == NULL)
1127 return;
1128 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1129 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1130 else
1131 free(hash->uh_slab_hash, M_UMAHASH);
1132 }
1133
1134 /*
1135 * Frees all outstanding items in a bucket
1136 *
1137 * Arguments:
1138 * zone The zone to free to, must be unlocked.
1139 * bucket The free/alloc bucket with items.
1140 *
1141 * Returns:
1142 * Nothing
1143 */
1144 static void
bucket_drain(uma_zone_t zone,uma_bucket_t bucket)1145 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1146 {
1147 int i;
1148
1149 if (bucket->ub_cnt == 0)
1150 return;
1151
1152 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1153 bucket->ub_seq != SMR_SEQ_INVALID) {
1154 smr_wait(zone->uz_smr, bucket->ub_seq);
1155 bucket->ub_seq = SMR_SEQ_INVALID;
1156 for (i = 0; i < bucket->ub_cnt; i++)
1157 item_dtor(zone, bucket->ub_bucket[i],
1158 zone->uz_size, NULL, SKIP_NONE);
1159 }
1160 if (zone->uz_fini)
1161 for (i = 0; i < bucket->ub_cnt; i++)
1162 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1163 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1164 if (zone->uz_max_items > 0)
1165 zone_free_limit(zone, bucket->ub_cnt);
1166 #ifdef INVARIANTS
1167 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1168 #endif
1169 bucket->ub_cnt = 0;
1170 }
1171
1172 /*
1173 * Drains the per cpu caches for a zone.
1174 *
1175 * NOTE: This may only be called while the zone is being torn down, and not
1176 * during normal operation. This is necessary in order that we do not have
1177 * to migrate CPUs to drain the per-CPU caches.
1178 *
1179 * Arguments:
1180 * zone The zone to drain, must be unlocked.
1181 *
1182 * Returns:
1183 * Nothing
1184 */
1185 static void
cache_drain(uma_zone_t zone)1186 cache_drain(uma_zone_t zone)
1187 {
1188 uma_cache_t cache;
1189 uma_bucket_t bucket;
1190 smr_seq_t seq;
1191 int cpu;
1192
1193 /*
1194 * XXX: It is safe to not lock the per-CPU caches, because we're
1195 * tearing down the zone anyway. I.e., there will be no further use
1196 * of the caches at this point.
1197 *
1198 * XXX: It would good to be able to assert that the zone is being
1199 * torn down to prevent improper use of cache_drain().
1200 */
1201 seq = SMR_SEQ_INVALID;
1202 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1203 seq = smr_advance(zone->uz_smr);
1204 CPU_FOREACH(cpu) {
1205 cache = &zone->uz_cpu[cpu];
1206 bucket = cache_bucket_unload_alloc(cache);
1207 if (bucket != NULL)
1208 bucket_free(zone, bucket, NULL);
1209 bucket = cache_bucket_unload_free(cache);
1210 if (bucket != NULL) {
1211 bucket->ub_seq = seq;
1212 bucket_free(zone, bucket, NULL);
1213 }
1214 bucket = cache_bucket_unload_cross(cache);
1215 if (bucket != NULL) {
1216 bucket->ub_seq = seq;
1217 bucket_free(zone, bucket, NULL);
1218 }
1219 }
1220 bucket_cache_reclaim(zone, true);
1221 }
1222
1223 static void
cache_shrink(uma_zone_t zone,void * unused)1224 cache_shrink(uma_zone_t zone, void *unused)
1225 {
1226
1227 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1228 return;
1229
1230 zone->uz_bucket_size =
1231 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1232 }
1233
1234 static void
cache_drain_safe_cpu(uma_zone_t zone,void * unused)1235 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1236 {
1237 uma_cache_t cache;
1238 uma_bucket_t b1, b2, b3;
1239 int domain;
1240
1241 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1242 return;
1243
1244 b1 = b2 = b3 = NULL;
1245 critical_enter();
1246 cache = &zone->uz_cpu[curcpu];
1247 domain = PCPU_GET(domain);
1248 b1 = cache_bucket_unload_alloc(cache);
1249
1250 /*
1251 * Don't flush SMR zone buckets. This leaves the zone without a
1252 * bucket and forces every free to synchronize().
1253 */
1254 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1255 b2 = cache_bucket_unload_free(cache);
1256 b3 = cache_bucket_unload_cross(cache);
1257 }
1258 critical_exit();
1259
1260 if (b1 != NULL)
1261 zone_free_bucket(zone, b1, NULL, domain, false);
1262 if (b2 != NULL)
1263 zone_free_bucket(zone, b2, NULL, domain, false);
1264 if (b3 != NULL) {
1265 /* Adjust the domain so it goes to zone_free_cross. */
1266 domain = (domain + 1) % vm_ndomains;
1267 zone_free_bucket(zone, b3, NULL, domain, false);
1268 }
1269 }
1270
1271 /*
1272 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1273 * This is an expensive call because it needs to bind to all CPUs
1274 * one by one and enter a critical section on each of them in order
1275 * to safely access their cache buckets.
1276 * Zone lock must not be held on call this function.
1277 */
1278 static void
pcpu_cache_drain_safe(uma_zone_t zone)1279 pcpu_cache_drain_safe(uma_zone_t zone)
1280 {
1281 int cpu;
1282
1283 /*
1284 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1285 */
1286 if (zone)
1287 cache_shrink(zone, NULL);
1288 else
1289 zone_foreach(cache_shrink, NULL);
1290
1291 CPU_FOREACH(cpu) {
1292 thread_lock(curthread);
1293 sched_bind(curthread, cpu);
1294 thread_unlock(curthread);
1295
1296 if (zone)
1297 cache_drain_safe_cpu(zone, NULL);
1298 else
1299 zone_foreach(cache_drain_safe_cpu, NULL);
1300 }
1301 thread_lock(curthread);
1302 sched_unbind(curthread);
1303 thread_unlock(curthread);
1304 }
1305
1306 /*
1307 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller
1308 * requested a drain, otherwise the per-domain caches are trimmed to either
1309 * estimated working set size.
1310 */
1311 static void
bucket_cache_reclaim(uma_zone_t zone,bool drain)1312 bucket_cache_reclaim(uma_zone_t zone, bool drain)
1313 {
1314 uma_zone_domain_t zdom;
1315 uma_bucket_t bucket;
1316 long target;
1317 int i;
1318
1319 /*
1320 * Shrink the zone bucket size to ensure that the per-CPU caches
1321 * don't grow too large.
1322 */
1323 if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1324 zone->uz_bucket_size--;
1325
1326 for (i = 0; i < vm_ndomains; i++) {
1327 /*
1328 * The cross bucket is partially filled and not part of
1329 * the item count. Reclaim it individually here.
1330 */
1331 zdom = ZDOM_GET(zone, i);
1332 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1333 ZONE_CROSS_LOCK(zone);
1334 bucket = zdom->uzd_cross;
1335 zdom->uzd_cross = NULL;
1336 ZONE_CROSS_UNLOCK(zone);
1337 if (bucket != NULL)
1338 bucket_free(zone, bucket, NULL);
1339 }
1340
1341 /*
1342 * If we were asked to drain the zone, we are done only once
1343 * this bucket cache is empty. Otherwise, we reclaim items in
1344 * excess of the zone's estimated working set size. If the
1345 * difference nitems - imin is larger than the WSS estimate,
1346 * then the estimate will grow at the end of this interval and
1347 * we ignore the historical average.
1348 */
1349 ZDOM_LOCK(zdom);
1350 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems -
1351 zdom->uzd_imin);
1352 while (zdom->uzd_nitems > target) {
1353 bucket = zone_fetch_bucket(zone, zdom, true);
1354 if (bucket == NULL)
1355 break;
1356 bucket_free(zone, bucket, NULL);
1357 ZDOM_LOCK(zdom);
1358 }
1359 ZDOM_UNLOCK(zdom);
1360 }
1361 }
1362
1363 static void
keg_free_slab(uma_keg_t keg,uma_slab_t slab,int start)1364 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1365 {
1366 uint8_t *mem;
1367 int i;
1368 uint8_t flags;
1369
1370 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1371 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1372
1373 mem = slab_data(slab, keg);
1374 flags = slab->us_flags;
1375 i = start;
1376 if (keg->uk_fini != NULL) {
1377 for (i--; i > -1; i--)
1378 #ifdef INVARIANTS
1379 /*
1380 * trash_fini implies that dtor was trash_dtor. trash_fini
1381 * would check that memory hasn't been modified since free,
1382 * which executed trash_dtor.
1383 * That's why we need to run uma_dbg_kskip() check here,
1384 * albeit we don't make skip check for other init/fini
1385 * invocations.
1386 */
1387 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1388 keg->uk_fini != trash_fini)
1389 #endif
1390 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1391 }
1392 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1393 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1394 NULL, SKIP_NONE);
1395 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
1396 uma_total_dec(PAGE_SIZE * keg->uk_ppera);
1397 }
1398
1399 static void
keg_drain_domain(uma_keg_t keg,int domain)1400 keg_drain_domain(uma_keg_t keg, int domain)
1401 {
1402 struct slabhead freeslabs;
1403 uma_domain_t dom;
1404 uma_slab_t slab, tmp;
1405 uint32_t i, stofree, stokeep, partial;
1406
1407 dom = &keg->uk_domain[domain];
1408 LIST_INIT(&freeslabs);
1409
1410 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1411 keg->uk_name, keg, domain, dom->ud_free_items);
1412
1413 KEG_LOCK(keg, domain);
1414
1415 /*
1416 * Are the free items in partially allocated slabs sufficient to meet
1417 * the reserve? If not, compute the number of fully free slabs that must
1418 * be kept.
1419 */
1420 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1421 if (partial < keg->uk_reserve) {
1422 stokeep = min(dom->ud_free_slabs,
1423 howmany(keg->uk_reserve - partial, keg->uk_ipers));
1424 } else {
1425 stokeep = 0;
1426 }
1427 stofree = dom->ud_free_slabs - stokeep;
1428
1429 /*
1430 * Partition the free slabs into two sets: those that must be kept in
1431 * order to maintain the reserve, and those that may be released back to
1432 * the system. Since one set may be much larger than the other,
1433 * populate the smaller of the two sets and swap them if necessary.
1434 */
1435 for (i = min(stofree, stokeep); i > 0; i--) {
1436 slab = LIST_FIRST(&dom->ud_free_slab);
1437 LIST_REMOVE(slab, us_link);
1438 LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1439 }
1440 if (stofree > stokeep)
1441 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1442
1443 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1444 LIST_FOREACH(slab, &freeslabs, us_link)
1445 UMA_HASH_REMOVE(&keg->uk_hash, slab);
1446 }
1447 dom->ud_free_items -= stofree * keg->uk_ipers;
1448 dom->ud_free_slabs -= stofree;
1449 dom->ud_pages -= stofree * keg->uk_ppera;
1450 KEG_UNLOCK(keg, domain);
1451
1452 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1453 keg_free_slab(keg, slab, keg->uk_ipers);
1454 }
1455
1456 /*
1457 * Frees pages from a keg back to the system. This is done on demand from
1458 * the pageout daemon.
1459 *
1460 * Returns nothing.
1461 */
1462 static void
keg_drain(uma_keg_t keg)1463 keg_drain(uma_keg_t keg)
1464 {
1465 int i;
1466
1467 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1468 return;
1469 for (i = 0; i < vm_ndomains; i++)
1470 keg_drain_domain(keg, i);
1471 }
1472
1473 static void
zone_reclaim(uma_zone_t zone,int waitok,bool drain)1474 zone_reclaim(uma_zone_t zone, int waitok, bool drain)
1475 {
1476
1477 /*
1478 * Set draining to interlock with zone_dtor() so we can release our
1479 * locks as we go. Only dtor() should do a WAITOK call since it
1480 * is the only call that knows the structure will still be available
1481 * when it wakes up.
1482 */
1483 ZONE_LOCK(zone);
1484 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) {
1485 if (waitok == M_NOWAIT)
1486 goto out;
1487 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain",
1488 1);
1489 }
1490 zone->uz_flags |= UMA_ZFLAG_RECLAIMING;
1491 ZONE_UNLOCK(zone);
1492 bucket_cache_reclaim(zone, drain);
1493
1494 /*
1495 * The DRAINING flag protects us from being freed while
1496 * we're running. Normally the uma_rwlock would protect us but we
1497 * must be able to release and acquire the right lock for each keg.
1498 */
1499 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1500 keg_drain(zone->uz_keg);
1501 ZONE_LOCK(zone);
1502 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING;
1503 wakeup(zone);
1504 out:
1505 ZONE_UNLOCK(zone);
1506 }
1507
1508 static void
zone_drain(uma_zone_t zone,void * unused)1509 zone_drain(uma_zone_t zone, void *unused)
1510 {
1511
1512 zone_reclaim(zone, M_NOWAIT, true);
1513 }
1514
1515 static void
zone_trim(uma_zone_t zone,void * unused)1516 zone_trim(uma_zone_t zone, void *unused)
1517 {
1518
1519 zone_reclaim(zone, M_NOWAIT, false);
1520 }
1521
1522 /*
1523 * Allocate a new slab for a keg and inserts it into the partial slab list.
1524 * The keg should be unlocked on entry. If the allocation succeeds it will
1525 * be locked on return.
1526 *
1527 * Arguments:
1528 * flags Wait flags for the item initialization routine
1529 * aflags Wait flags for the slab allocation
1530 *
1531 * Returns:
1532 * The slab that was allocated or NULL if there is no memory and the
1533 * caller specified M_NOWAIT.
1534 */
1535 static uma_slab_t
keg_alloc_slab(uma_keg_t keg,uma_zone_t zone,int domain,int flags,int aflags)1536 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1537 int aflags)
1538 {
1539 uma_domain_t dom;
1540 uma_alloc allocf;
1541 uma_slab_t slab;
1542 unsigned long size;
1543 uint8_t *mem;
1544 uint8_t sflags;
1545 int i;
1546
1547 KASSERT(domain >= 0 && domain < vm_ndomains,
1548 ("keg_alloc_slab: domain %d out of range", domain));
1549
1550 allocf = keg->uk_allocf;
1551 slab = NULL;
1552 mem = NULL;
1553 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1554 uma_hash_slab_t hslab;
1555 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1556 domain, aflags);
1557 if (hslab == NULL)
1558 goto fail;
1559 slab = &hslab->uhs_slab;
1560 }
1561
1562 /*
1563 * This reproduces the old vm_zone behavior of zero filling pages the
1564 * first time they are added to a zone.
1565 *
1566 * Malloced items are zeroed in uma_zalloc.
1567 */
1568
1569 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1570 aflags |= M_ZERO;
1571 else
1572 aflags &= ~M_ZERO;
1573
1574 if (keg->uk_flags & UMA_ZONE_NODUMP)
1575 aflags |= M_NODUMP;
1576
1577 /* zone is passed for legacy reasons. */
1578 size = keg->uk_ppera * PAGE_SIZE;
1579 mem = allocf(zone, size, domain, &sflags, aflags);
1580 if (mem == NULL) {
1581 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1582 zone_free_item(slabzone(keg->uk_ipers),
1583 slab_tohashslab(slab), NULL, SKIP_NONE);
1584 goto fail;
1585 }
1586 uma_total_inc(size);
1587
1588 /* For HASH zones all pages go to the same uma_domain. */
1589 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1590 domain = 0;
1591
1592 /* Point the slab into the allocated memory */
1593 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1594 slab = (uma_slab_t )(mem + keg->uk_pgoff);
1595 else
1596 slab_tohashslab(slab)->uhs_data = mem;
1597
1598 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1599 for (i = 0; i < keg->uk_ppera; i++)
1600 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1601 zone, slab);
1602
1603 slab->us_freecount = keg->uk_ipers;
1604 slab->us_flags = sflags;
1605 slab->us_domain = domain;
1606
1607 BIT_FILL(keg->uk_ipers, &slab->us_free);
1608 #ifdef INVARIANTS
1609 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1610 #endif
1611
1612 if (keg->uk_init != NULL) {
1613 for (i = 0; i < keg->uk_ipers; i++)
1614 if (keg->uk_init(slab_item(slab, keg, i),
1615 keg->uk_size, flags) != 0)
1616 break;
1617 if (i != keg->uk_ipers) {
1618 keg_free_slab(keg, slab, i);
1619 goto fail;
1620 }
1621 }
1622 KEG_LOCK(keg, domain);
1623
1624 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1625 slab, keg->uk_name, keg);
1626
1627 if (keg->uk_flags & UMA_ZFLAG_HASH)
1628 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1629
1630 /*
1631 * If we got a slab here it's safe to mark it partially used
1632 * and return. We assume that the caller is going to remove
1633 * at least one item.
1634 */
1635 dom = &keg->uk_domain[domain];
1636 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1637 dom->ud_pages += keg->uk_ppera;
1638 dom->ud_free_items += keg->uk_ipers;
1639
1640 return (slab);
1641
1642 fail:
1643 return (NULL);
1644 }
1645
1646 #ifndef FSTACK
1647 /*
1648 * This function is intended to be used early on in place of page_alloc() so
1649 * that we may use the boot time page cache to satisfy allocations before
1650 * the VM is ready.
1651 */
1652 static void *
startup_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1653 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1654 int wait)
1655 {
1656 vm_paddr_t pa;
1657 vm_page_t m;
1658 void *mem;
1659 int pages;
1660 int i;
1661
1662 pages = howmany(bytes, PAGE_SIZE);
1663 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1664
1665 *pflag = UMA_SLAB_BOOT;
1666 m = vm_page_alloc_contig_domain(NULL, 0, domain,
1667 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages,
1668 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
1669 if (m == NULL)
1670 return (NULL);
1671
1672 pa = VM_PAGE_TO_PHYS(m);
1673 for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1674 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1675 defined(__riscv) || defined(__powerpc64__)
1676 if ((wait & M_NODUMP) == 0)
1677 dump_add_page(pa);
1678 #endif
1679 }
1680 /* Allocate KVA and indirectly advance bootmem. */
1681 mem = (void *)pmap_map(&bootmem, m->phys_addr,
1682 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE);
1683 if ((wait & M_ZERO) != 0)
1684 bzero(mem, pages * PAGE_SIZE);
1685
1686 return (mem);
1687 }
1688
1689 static void
startup_free(void * mem,vm_size_t bytes)1690 startup_free(void *mem, vm_size_t bytes)
1691 {
1692 vm_offset_t va;
1693 vm_page_t m;
1694
1695 va = (vm_offset_t)mem;
1696 m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1697
1698 /*
1699 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid
1700 * unmapping ranges of the direct map.
1701 */
1702 if (va >= bootstart && va + bytes <= bootmem)
1703 pmap_remove(kernel_pmap, va, va + bytes);
1704 for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1705 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1706 defined(__riscv) || defined(__powerpc64__)
1707 dump_drop_page(VM_PAGE_TO_PHYS(m));
1708 #endif
1709 vm_page_unwire_noq(m);
1710 vm_page_free(m);
1711 }
1712 }
1713 #endif
1714
1715 /*
1716 * Allocates a number of pages from the system
1717 *
1718 * Arguments:
1719 * bytes The number of bytes requested
1720 * wait Shall we wait?
1721 *
1722 * Returns:
1723 * A pointer to the alloced memory or possibly
1724 * NULL if M_NOWAIT is set.
1725 */
1726 static void *
page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1727 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1728 int wait)
1729 {
1730 void *p; /* Returned page */
1731
1732 *pflag = UMA_SLAB_KERNEL;
1733 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1734
1735 return (p);
1736 }
1737
1738 #ifndef FSTACK
1739 static void *
pcpu_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1740 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1741 int wait)
1742 {
1743 struct pglist alloctail;
1744 vm_offset_t addr, zkva;
1745 int cpu, flags;
1746 vm_page_t p, p_next;
1747 #ifdef NUMA
1748 struct pcpu *pc;
1749 #endif
1750
1751 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1752
1753 TAILQ_INIT(&alloctail);
1754 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1755 malloc2vm_flags(wait);
1756 *pflag = UMA_SLAB_KERNEL;
1757 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1758 if (CPU_ABSENT(cpu)) {
1759 p = vm_page_alloc(NULL, 0, flags);
1760 } else {
1761 #ifndef NUMA
1762 p = vm_page_alloc(NULL, 0, flags);
1763 #else
1764 pc = pcpu_find(cpu);
1765 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1766 p = NULL;
1767 else
1768 p = vm_page_alloc_domain(NULL, 0,
1769 pc->pc_domain, flags);
1770 if (__predict_false(p == NULL))
1771 p = vm_page_alloc(NULL, 0, flags);
1772 #endif
1773 }
1774 if (__predict_false(p == NULL))
1775 goto fail;
1776 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1777 }
1778 if ((addr = kva_alloc(bytes)) == 0)
1779 goto fail;
1780 zkva = addr;
1781 TAILQ_FOREACH(p, &alloctail, listq) {
1782 pmap_qenter(zkva, &p, 1);
1783 zkva += PAGE_SIZE;
1784 }
1785 return ((void*)addr);
1786 fail:
1787 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1788 vm_page_unwire_noq(p);
1789 vm_page_free(p);
1790 }
1791 return (NULL);
1792 }
1793
1794 /*
1795 * Allocates a number of pages from within an object
1796 *
1797 * Arguments:
1798 * bytes The number of bytes requested
1799 * wait Shall we wait?
1800 *
1801 * Returns:
1802 * A pointer to the alloced memory or possibly
1803 * NULL if M_NOWAIT is set.
1804 */
1805 static void *
noobj_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)1806 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1807 int wait)
1808 {
1809 TAILQ_HEAD(, vm_page) alloctail;
1810 u_long npages;
1811 vm_offset_t retkva, zkva;
1812 vm_page_t p, p_next;
1813 uma_keg_t keg;
1814
1815 TAILQ_INIT(&alloctail);
1816 keg = zone->uz_keg;
1817
1818 npages = howmany(bytes, PAGE_SIZE);
1819 while (npages > 0) {
1820 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1821 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1822 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1823 VM_ALLOC_NOWAIT));
1824 if (p != NULL) {
1825 /*
1826 * Since the page does not belong to an object, its
1827 * listq is unused.
1828 */
1829 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1830 npages--;
1831 continue;
1832 }
1833 /*
1834 * Page allocation failed, free intermediate pages and
1835 * exit.
1836 */
1837 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1838 vm_page_unwire_noq(p);
1839 vm_page_free(p);
1840 }
1841 return (NULL);
1842 }
1843 *flags = UMA_SLAB_PRIV;
1844 zkva = keg->uk_kva +
1845 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1846 retkva = zkva;
1847 TAILQ_FOREACH(p, &alloctail, listq) {
1848 pmap_qenter(zkva, &p, 1);
1849 zkva += PAGE_SIZE;
1850 }
1851
1852 return ((void *)retkva);
1853 }
1854
1855 /*
1856 * Allocate physically contiguous pages.
1857 */
1858 static void *
contig_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1859 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1860 int wait)
1861 {
1862
1863 *pflag = UMA_SLAB_KERNEL;
1864 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
1865 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
1866 }
1867 #else
1868 static void *
pcpu_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1869 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1870 int wait)
1871 {
1872 *pflag = UMA_SLAB_KERNEL;
1873 return page_alloc(zone, bytes, domain, pflag, wait);
1874 }
1875
1876 static void *
contig_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1877 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1878 int wait)
1879 {
1880
1881 *pflag = UMA_SLAB_KERNEL;
1882 return page_alloc(zone, bytes, domain, pflag, wait);
1883 }
1884
1885 static void *
startup_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1886 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1887 int wait)
1888 {
1889 *pflag = UMA_SLAB_BOOT;
1890 return page_alloc(zone, bytes, domain, pflag, wait);
1891 }
1892
1893 static void
startup_free(void * mem,vm_size_t bytes)1894 startup_free(void *mem, vm_size_t bytes)
1895 {
1896 kmem_free((vm_offset_t)mem, bytes);
1897 }
1898
1899 #endif
1900
1901 /*
1902 * Frees a number of pages to the system
1903 *
1904 * Arguments:
1905 * mem A pointer to the memory to be freed
1906 * size The size of the memory being freed
1907 * flags The original p->us_flags field
1908 *
1909 * Returns:
1910 * Nothing
1911 */
1912 static void
page_free(void * mem,vm_size_t size,uint8_t flags)1913 page_free(void *mem, vm_size_t size, uint8_t flags)
1914 {
1915
1916 if ((flags & UMA_SLAB_BOOT) != 0) {
1917 startup_free(mem, size);
1918 return;
1919 }
1920
1921 KASSERT((flags & UMA_SLAB_KERNEL) != 0,
1922 ("UMA: page_free used with invalid flags %x", flags));
1923
1924 kmem_free((vm_offset_t)mem, size);
1925 }
1926
1927 #ifndef FSTACK
1928 /*
1929 * Frees pcpu zone allocations
1930 *
1931 * Arguments:
1932 * mem A pointer to the memory to be freed
1933 * size The size of the memory being freed
1934 * flags The original p->us_flags field
1935 *
1936 * Returns:
1937 * Nothing
1938 */
1939 static void
pcpu_page_free(void * mem,vm_size_t size,uint8_t flags)1940 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1941 {
1942 vm_offset_t sva, curva;
1943 vm_paddr_t paddr;
1944 vm_page_t m;
1945
1946 MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1947
1948 if ((flags & UMA_SLAB_BOOT) != 0) {
1949 startup_free(mem, size);
1950 return;
1951 }
1952
1953 sva = (vm_offset_t)mem;
1954 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1955 paddr = pmap_kextract(curva);
1956 m = PHYS_TO_VM_PAGE(paddr);
1957 vm_page_unwire_noq(m);
1958 vm_page_free(m);
1959 }
1960 pmap_qremove(sva, size >> PAGE_SHIFT);
1961 kva_free(sva, size);
1962 }
1963 #else
1964 static void
pcpu_page_free(void * mem,vm_size_t size,uint8_t flags)1965 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1966 {
1967 page_free(mem, size, flags);
1968 }
1969 #endif
1970
1971 /*
1972 * Zero fill initializer
1973 *
1974 * Arguments/Returns follow uma_init specifications
1975 */
1976 static int
zero_init(void * mem,int size,int flags)1977 zero_init(void *mem, int size, int flags)
1978 {
1979 bzero(mem, size);
1980 return (0);
1981 }
1982
1983 #ifdef INVARIANTS
1984 static struct noslabbits *
slab_dbg_bits(uma_slab_t slab,uma_keg_t keg)1985 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
1986 {
1987
1988 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
1989 }
1990 #endif
1991
1992 /*
1993 * Actual size of embedded struct slab (!OFFPAGE).
1994 */
1995 static size_t
slab_sizeof(int nitems)1996 slab_sizeof(int nitems)
1997 {
1998 size_t s;
1999
2000 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2001 return (roundup(s, UMA_ALIGN_PTR + 1));
2002 }
2003
2004 #define UMA_FIXPT_SHIFT 31
2005 #define UMA_FRAC_FIXPT(n, d) \
2006 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2007 #define UMA_FIXPT_PCT(f) \
2008 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2009 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100)
2010 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2011
2012 /*
2013 * Compute the number of items that will fit in a slab. If hdr is true, the
2014 * item count may be limited to provide space in the slab for an inline slab
2015 * header. Otherwise, all slab space will be provided for item storage.
2016 */
2017 static u_int
slab_ipers_hdr(u_int size,u_int rsize,u_int slabsize,bool hdr)2018 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2019 {
2020 u_int ipers;
2021 u_int padpi;
2022
2023 /* The padding between items is not needed after the last item. */
2024 padpi = rsize - size;
2025
2026 if (hdr) {
2027 /*
2028 * Start with the maximum item count and remove items until
2029 * the slab header first alongside the allocatable memory.
2030 */
2031 for (ipers = MIN(SLAB_MAX_SETSIZE,
2032 (slabsize + padpi - slab_sizeof(1)) / rsize);
2033 ipers > 0 &&
2034 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2035 ipers--)
2036 continue;
2037 } else {
2038 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2039 }
2040
2041 return (ipers);
2042 }
2043
2044 struct keg_layout_result {
2045 u_int format;
2046 u_int slabsize;
2047 u_int ipers;
2048 u_int eff;
2049 };
2050
2051 static void
keg_layout_one(uma_keg_t keg,u_int rsize,u_int slabsize,u_int fmt,struct keg_layout_result * kl)2052 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2053 struct keg_layout_result *kl)
2054 {
2055 u_int total;
2056
2057 kl->format = fmt;
2058 kl->slabsize = slabsize;
2059
2060 /* Handle INTERNAL as inline with an extra page. */
2061 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2062 kl->format &= ~UMA_ZFLAG_INTERNAL;
2063 kl->slabsize += PAGE_SIZE;
2064 }
2065
2066 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2067 (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2068
2069 /* Account for memory used by an offpage slab header. */
2070 total = kl->slabsize;
2071 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2072 total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2073
2074 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2075 }
2076
2077 /*
2078 * Determine the format of a uma keg. This determines where the slab header
2079 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2080 *
2081 * Arguments
2082 * keg The zone we should initialize
2083 *
2084 * Returns
2085 * Nothing
2086 */
2087 static void
keg_layout(uma_keg_t keg)2088 keg_layout(uma_keg_t keg)
2089 {
2090 struct keg_layout_result kl = {}, kl_tmp;
2091 u_int fmts[2];
2092 u_int alignsize;
2093 u_int nfmt;
2094 u_int pages;
2095 u_int rsize;
2096 u_int slabsize;
2097 u_int i, j;
2098
2099 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2100 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2101 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2102 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2103 __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2104 PRINT_UMA_ZFLAGS));
2105 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2106 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2107 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2108 PRINT_UMA_ZFLAGS));
2109
2110 alignsize = keg->uk_align + 1;
2111
2112 /*
2113 * Calculate the size of each allocation (rsize) according to
2114 * alignment. If the requested size is smaller than we have
2115 * allocation bits for we round it up.
2116 */
2117 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2118 rsize = roundup2(rsize, alignsize);
2119
2120 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2121 /*
2122 * We want one item to start on every align boundary in a page.
2123 * To do this we will span pages. We will also extend the item
2124 * by the size of align if it is an even multiple of align.
2125 * Otherwise, it would fall on the same boundary every time.
2126 */
2127 if ((rsize & alignsize) == 0)
2128 rsize += alignsize;
2129 slabsize = rsize * (PAGE_SIZE / alignsize);
2130 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2131 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2132 slabsize = round_page(slabsize);
2133 } else {
2134 /*
2135 * Start with a slab size of as many pages as it takes to
2136 * represent a single item. We will try to fit as many
2137 * additional items into the slab as possible.
2138 */
2139 slabsize = round_page(keg->uk_size);
2140 }
2141
2142 /* Build a list of all of the available formats for this keg. */
2143 nfmt = 0;
2144
2145 /* Evaluate an inline slab layout. */
2146 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2147 fmts[nfmt++] = 0;
2148
2149 /* TODO: vm_page-embedded slab. */
2150
2151 /*
2152 * We can't do OFFPAGE if we're internal or if we've been
2153 * asked to not go to the VM for buckets. If we do this we
2154 * may end up going to the VM for slabs which we do not want
2155 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2156 * In those cases, evaluate a pseudo-format called INTERNAL
2157 * which has an inline slab header and one extra page to
2158 * guarantee that it fits.
2159 *
2160 * Otherwise, see if using an OFFPAGE slab will improve our
2161 * efficiency.
2162 */
2163 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2164 fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2165 else
2166 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2167
2168 /*
2169 * Choose a slab size and format which satisfy the minimum efficiency.
2170 * Prefer the smallest slab size that meets the constraints.
2171 *
2172 * Start with a minimum slab size, to accommodate CACHESPREAD. Then,
2173 * for small items (up to PAGE_SIZE), the iteration increment is one
2174 * page; and for large items, the increment is one item.
2175 */
2176 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2177 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2178 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2179 rsize, i));
2180 for ( ; ; i++) {
2181 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2182 round_page(rsize * (i - 1) + keg->uk_size);
2183
2184 for (j = 0; j < nfmt; j++) {
2185 /* Only if we have no viable format yet. */
2186 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2187 kl.ipers > 0)
2188 continue;
2189
2190 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2191 if (kl_tmp.eff <= kl.eff)
2192 continue;
2193
2194 kl = kl_tmp;
2195
2196 CTR6(KTR_UMA, "keg %s layout: format %#x "
2197 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2198 keg->uk_name, kl.format, kl.ipers, rsize,
2199 kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2200
2201 /* Stop when we reach the minimum efficiency. */
2202 if (kl.eff >= UMA_MIN_EFF)
2203 break;
2204 }
2205
2206 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2207 slabsize >= SLAB_MAX_SETSIZE * rsize ||
2208 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2209 break;
2210 }
2211
2212 pages = atop(kl.slabsize);
2213 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2214 pages *= mp_maxid + 1;
2215
2216 keg->uk_rsize = rsize;
2217 keg->uk_ipers = kl.ipers;
2218 keg->uk_ppera = pages;
2219 keg->uk_flags |= kl.format;
2220
2221 /*
2222 * How do we find the slab header if it is offpage or if not all item
2223 * start addresses are in the same page? We could solve the latter
2224 * case with vaddr alignment, but we don't.
2225 */
2226 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2227 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2228 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2229 keg->uk_flags |= UMA_ZFLAG_HASH;
2230 else
2231 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2232 }
2233
2234 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2235 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2236 pages);
2237 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2238 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2239 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2240 keg->uk_ipers, pages));
2241 }
2242
2243 /*
2244 * Keg header ctor. This initializes all fields, locks, etc. And inserts
2245 * the keg onto the global keg list.
2246 *
2247 * Arguments/Returns follow uma_ctor specifications
2248 * udata Actually uma_kctor_args
2249 */
2250 static int
keg_ctor(void * mem,int size,void * udata,int flags)2251 keg_ctor(void *mem, int size, void *udata, int flags)
2252 {
2253 struct uma_kctor_args *arg = udata;
2254 uma_keg_t keg = mem;
2255 uma_zone_t zone;
2256 int i;
2257
2258 bzero(keg, size);
2259 keg->uk_size = arg->size;
2260 keg->uk_init = arg->uminit;
2261 keg->uk_fini = arg->fini;
2262 keg->uk_align = arg->align;
2263 keg->uk_reserve = 0;
2264 keg->uk_flags = arg->flags;
2265
2266 /*
2267 * We use a global round-robin policy by default. Zones with
2268 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2269 * case the iterator is never run.
2270 */
2271 keg->uk_dr.dr_policy = DOMAINSET_RR();
2272 keg->uk_dr.dr_iter = 0;
2273
2274 /*
2275 * The primary zone is passed to us at keg-creation time.
2276 */
2277 zone = arg->zone;
2278 keg->uk_name = zone->uz_name;
2279
2280 if (arg->flags & UMA_ZONE_ZINIT)
2281 keg->uk_init = zero_init;
2282
2283 if (arg->flags & UMA_ZONE_MALLOC)
2284 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2285
2286 #ifndef SMP
2287 keg->uk_flags &= ~UMA_ZONE_PCPU;
2288 #endif
2289
2290 keg_layout(keg);
2291
2292 /*
2293 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2294 * work on. Use round-robin for everything else.
2295 *
2296 * Zones may override the default by specifying either.
2297 */
2298 #ifdef NUMA
2299 if ((keg->uk_flags &
2300 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2301 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2302 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2303 keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2304 #endif
2305
2306 /*
2307 * If we haven't booted yet we need allocations to go through the
2308 * startup cache until the vm is ready.
2309 */
2310 #ifdef UMA_MD_SMALL_ALLOC
2311 if (keg->uk_ppera == 1)
2312 keg->uk_allocf = uma_small_alloc;
2313 else
2314 #endif
2315 if (booted < BOOT_KVA)
2316 keg->uk_allocf = startup_alloc;
2317 else if (keg->uk_flags & UMA_ZONE_PCPU)
2318 keg->uk_allocf = pcpu_page_alloc;
2319 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2320 keg->uk_allocf = contig_alloc;
2321 else
2322 keg->uk_allocf = page_alloc;
2323 #ifdef UMA_MD_SMALL_ALLOC
2324 if (keg->uk_ppera == 1)
2325 keg->uk_freef = uma_small_free;
2326 else
2327 #endif
2328 if (keg->uk_flags & UMA_ZONE_PCPU)
2329 keg->uk_freef = pcpu_page_free;
2330 else
2331 keg->uk_freef = page_free;
2332
2333 /*
2334 * Initialize keg's locks.
2335 */
2336 for (i = 0; i < vm_ndomains; i++)
2337 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2338
2339 /*
2340 * If we're putting the slab header in the actual page we need to
2341 * figure out where in each page it goes. See slab_sizeof
2342 * definition.
2343 */
2344 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2345 size_t shsize;
2346
2347 shsize = slab_sizeof(keg->uk_ipers);
2348 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2349 /*
2350 * The only way the following is possible is if with our
2351 * UMA_ALIGN_PTR adjustments we are now bigger than
2352 * UMA_SLAB_SIZE. I haven't checked whether this is
2353 * mathematically possible for all cases, so we make
2354 * sure here anyway.
2355 */
2356 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2357 ("zone %s ipers %d rsize %d size %d slab won't fit",
2358 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2359 }
2360
2361 if (keg->uk_flags & UMA_ZFLAG_HASH)
2362 hash_alloc(&keg->uk_hash, 0);
2363
2364 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2365
2366 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2367
2368 rw_wlock(&uma_rwlock);
2369 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2370 rw_wunlock(&uma_rwlock);
2371 return (0);
2372 }
2373
2374 static void
zone_kva_available(uma_zone_t zone,void * unused)2375 zone_kva_available(uma_zone_t zone, void *unused)
2376 {
2377 uma_keg_t keg;
2378
2379 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2380 return;
2381 KEG_GET(zone, keg);
2382
2383 if (keg->uk_allocf == startup_alloc) {
2384 /* Switch to the real allocator. */
2385 if (keg->uk_flags & UMA_ZONE_PCPU)
2386 keg->uk_allocf = pcpu_page_alloc;
2387 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2388 keg->uk_ppera > 1)
2389 keg->uk_allocf = contig_alloc;
2390 else
2391 keg->uk_allocf = page_alloc;
2392 }
2393 }
2394
2395 static void
zone_alloc_counters(uma_zone_t zone,void * unused)2396 zone_alloc_counters(uma_zone_t zone, void *unused)
2397 {
2398
2399 zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2400 zone->uz_frees = counter_u64_alloc(M_WAITOK);
2401 zone->uz_fails = counter_u64_alloc(M_WAITOK);
2402 zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2403 }
2404
2405 static void
zone_alloc_sysctl(uma_zone_t zone,void * unused)2406 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2407 {
2408 uma_zone_domain_t zdom;
2409 uma_domain_t dom;
2410 uma_keg_t keg;
2411 struct sysctl_oid *oid, *domainoid;
2412 int domains, i, cnt;
2413 static const char *nokeg = "cache zone";
2414 char *c;
2415
2416 /*
2417 * Make a sysctl safe copy of the zone name by removing
2418 * any special characters and handling dups by appending
2419 * an index.
2420 */
2421 if (zone->uz_namecnt != 0) {
2422 /* Count the number of decimal digits and '_' separator. */
2423 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2424 cnt /= 10;
2425 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2426 M_UMA, M_WAITOK);
2427 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2428 zone->uz_namecnt);
2429 } else
2430 zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2431 for (c = zone->uz_ctlname; *c != '\0'; c++)
2432 if (strchr("./\\ -", *c) != NULL)
2433 *c = '_';
2434
2435 /*
2436 * Basic parameters at the root.
2437 */
2438 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2439 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2440 oid = zone->uz_oid;
2441 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2442 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2443 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2444 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2445 zone, 0, sysctl_handle_uma_zone_flags, "A",
2446 "Allocator configuration flags");
2447 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2448 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2449 "Desired per-cpu cache size");
2450 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2451 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2452 "Maximum allowed per-cpu cache size");
2453
2454 /*
2455 * keg if present.
2456 */
2457 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2458 domains = vm_ndomains;
2459 else
2460 domains = 1;
2461 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2462 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2463 keg = zone->uz_keg;
2464 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2465 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2466 "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2467 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2468 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2469 "Real object size with alignment");
2470 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2471 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2472 "pages per-slab allocation");
2473 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2474 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2475 "items available per-slab");
2476 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2477 "align", CTLFLAG_RD, &keg->uk_align, 0,
2478 "item alignment mask");
2479 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2480 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2481 "number of reserved items");
2482 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2483 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2484 keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2485 "Slab utilization (100 - internal fragmentation %)");
2486 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2487 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2488 for (i = 0; i < domains; i++) {
2489 dom = &keg->uk_domain[i];
2490 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2491 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2492 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2493 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2494 "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2495 "Total pages currently allocated from VM");
2496 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2497 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2498 "items free in the slab layer");
2499 }
2500 } else
2501 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2502 "name", CTLFLAG_RD, nokeg, "Keg name");
2503
2504 /*
2505 * Information about zone limits.
2506 */
2507 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2508 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2509 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2510 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2511 zone, 0, sysctl_handle_uma_zone_items, "QU",
2512 "Current number of allocated items if limit is set");
2513 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2514 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2515 "Maximum number of allocated and cached items");
2516 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2517 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2518 "Number of threads sleeping at limit");
2519 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2520 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2521 "Total zone limit sleeps");
2522 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2523 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2524 "Maximum number of items in each domain's bucket cache");
2525
2526 /*
2527 * Per-domain zone information.
2528 */
2529 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2530 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2531 for (i = 0; i < domains; i++) {
2532 zdom = ZDOM_GET(zone, i);
2533 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2534 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2535 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2536 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2537 "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2538 "number of items in this domain");
2539 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2540 "imax", CTLFLAG_RD, &zdom->uzd_imax,
2541 "maximum item count in this period");
2542 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2543 "imin", CTLFLAG_RD, &zdom->uzd_imin,
2544 "minimum item count in this period");
2545 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2546 "wss", CTLFLAG_RD, &zdom->uzd_wss,
2547 "Working set size");
2548 }
2549
2550 /*
2551 * General statistics.
2552 */
2553 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2554 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2555 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2556 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2557 zone, 1, sysctl_handle_uma_zone_cur, "I",
2558 "Current number of allocated items");
2559 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2560 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2561 zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2562 "Total allocation calls");
2563 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2564 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2565 zone, 0, sysctl_handle_uma_zone_frees, "QU",
2566 "Total free calls");
2567 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2568 "fails", CTLFLAG_RD, &zone->uz_fails,
2569 "Number of allocation failures");
2570 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2571 "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2572 "Free calls from the wrong domain");
2573 }
2574
2575 struct uma_zone_count {
2576 const char *name;
2577 int count;
2578 };
2579
2580 static void
zone_count(uma_zone_t zone,void * arg)2581 zone_count(uma_zone_t zone, void *arg)
2582 {
2583 struct uma_zone_count *cnt;
2584
2585 cnt = arg;
2586 /*
2587 * Some zones are rapidly created with identical names and
2588 * destroyed out of order. This can lead to gaps in the count.
2589 * Use one greater than the maximum observed for this name.
2590 */
2591 if (strcmp(zone->uz_name, cnt->name) == 0)
2592 cnt->count = MAX(cnt->count,
2593 zone->uz_namecnt + 1);
2594 }
2595
2596 static void
zone_update_caches(uma_zone_t zone)2597 zone_update_caches(uma_zone_t zone)
2598 {
2599 int i;
2600
2601 for (i = 0; i <= mp_maxid; i++) {
2602 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2603 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2604 }
2605 }
2606
2607 /*
2608 * Zone header ctor. This initializes all fields, locks, etc.
2609 *
2610 * Arguments/Returns follow uma_ctor specifications
2611 * udata Actually uma_zctor_args
2612 */
2613 static int
zone_ctor(void * mem,int size,void * udata,int flags)2614 zone_ctor(void *mem, int size, void *udata, int flags)
2615 {
2616 struct uma_zone_count cnt;
2617 struct uma_zctor_args *arg = udata;
2618 uma_zone_domain_t zdom;
2619 uma_zone_t zone = mem;
2620 uma_zone_t z;
2621 uma_keg_t keg;
2622 int i;
2623
2624 bzero(zone, size);
2625 zone->uz_name = arg->name;
2626 zone->uz_ctor = arg->ctor;
2627 zone->uz_dtor = arg->dtor;
2628 zone->uz_init = NULL;
2629 zone->uz_fini = NULL;
2630 zone->uz_sleeps = 0;
2631 zone->uz_bucket_size = 0;
2632 zone->uz_bucket_size_min = 0;
2633 zone->uz_bucket_size_max = BUCKET_MAX;
2634 zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2635 zone->uz_warning = NULL;
2636 /* The domain structures follow the cpu structures. */
2637 zone->uz_bucket_max = ULONG_MAX;
2638 timevalclear(&zone->uz_ratecheck);
2639
2640 /* Count the number of duplicate names. */
2641 cnt.name = arg->name;
2642 cnt.count = 0;
2643 zone_foreach(zone_count, &cnt);
2644 zone->uz_namecnt = cnt.count;
2645 ZONE_CROSS_LOCK_INIT(zone);
2646
2647 for (i = 0; i < vm_ndomains; i++) {
2648 zdom = ZDOM_GET(zone, i);
2649 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2650 STAILQ_INIT(&zdom->uzd_buckets);
2651 }
2652
2653 #ifdef INVARIANTS
2654 if (arg->uminit == trash_init && arg->fini == trash_fini)
2655 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2656 #endif
2657
2658 /*
2659 * This is a pure cache zone, no kegs.
2660 */
2661 if (arg->import) {
2662 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2663 ("zone_ctor: Import specified for non-cache zone."));
2664 zone->uz_flags = arg->flags;
2665 zone->uz_size = arg->size;
2666 zone->uz_import = arg->import;
2667 zone->uz_release = arg->release;
2668 zone->uz_arg = arg->arg;
2669 #ifdef NUMA
2670 /*
2671 * Cache zones are round-robin unless a policy is
2672 * specified because they may have incompatible
2673 * constraints.
2674 */
2675 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2676 zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2677 #endif
2678 rw_wlock(&uma_rwlock);
2679 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2680 rw_wunlock(&uma_rwlock);
2681 goto out;
2682 }
2683
2684 /*
2685 * Use the regular zone/keg/slab allocator.
2686 */
2687 zone->uz_import = zone_import;
2688 zone->uz_release = zone_release;
2689 zone->uz_arg = zone;
2690 keg = arg->keg;
2691
2692 if (arg->flags & UMA_ZONE_SECONDARY) {
2693 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2694 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2695 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2696 zone->uz_init = arg->uminit;
2697 zone->uz_fini = arg->fini;
2698 zone->uz_flags |= UMA_ZONE_SECONDARY;
2699 rw_wlock(&uma_rwlock);
2700 ZONE_LOCK(zone);
2701 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2702 if (LIST_NEXT(z, uz_link) == NULL) {
2703 LIST_INSERT_AFTER(z, zone, uz_link);
2704 break;
2705 }
2706 }
2707 ZONE_UNLOCK(zone);
2708 rw_wunlock(&uma_rwlock);
2709 } else if (keg == NULL) {
2710 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2711 arg->align, arg->flags)) == NULL)
2712 return (ENOMEM);
2713 } else {
2714 struct uma_kctor_args karg;
2715 int error;
2716
2717 /* We should only be here from uma_startup() */
2718 karg.size = arg->size;
2719 karg.uminit = arg->uminit;
2720 karg.fini = arg->fini;
2721 karg.align = arg->align;
2722 karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2723 karg.zone = zone;
2724 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2725 flags);
2726 if (error)
2727 return (error);
2728 }
2729
2730 /* Inherit properties from the keg. */
2731 zone->uz_keg = keg;
2732 zone->uz_size = keg->uk_size;
2733 zone->uz_flags |= (keg->uk_flags &
2734 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2735
2736 out:
2737 if (booted >= BOOT_PCPU) {
2738 zone_alloc_counters(zone, NULL);
2739 if (booted >= BOOT_RUNNING)
2740 zone_alloc_sysctl(zone, NULL);
2741 } else {
2742 zone->uz_allocs = EARLY_COUNTER;
2743 zone->uz_frees = EARLY_COUNTER;
2744 zone->uz_fails = EARLY_COUNTER;
2745 }
2746
2747 /* Caller requests a private SMR context. */
2748 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2749 zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2750
2751 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2752 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2753 ("Invalid zone flag combination"));
2754 if (arg->flags & UMA_ZFLAG_INTERNAL)
2755 zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2756 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2757 zone->uz_bucket_size = BUCKET_MAX;
2758 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2759 zone->uz_bucket_size = 0;
2760 else
2761 zone->uz_bucket_size = bucket_select(zone->uz_size);
2762 zone->uz_bucket_size_min = zone->uz_bucket_size;
2763 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2764 zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2765 zone_update_caches(zone);
2766
2767 return (0);
2768 }
2769
2770 /*
2771 * Keg header dtor. This frees all data, destroys locks, frees the hash
2772 * table and removes the keg from the global list.
2773 *
2774 * Arguments/Returns follow uma_dtor specifications
2775 * udata unused
2776 */
2777 static void
keg_dtor(void * arg,int size,void * udata)2778 keg_dtor(void *arg, int size, void *udata)
2779 {
2780 uma_keg_t keg;
2781 uint32_t free, pages;
2782 int i;
2783
2784 keg = (uma_keg_t)arg;
2785 free = pages = 0;
2786 for (i = 0; i < vm_ndomains; i++) {
2787 free += keg->uk_domain[i].ud_free_items;
2788 pages += keg->uk_domain[i].ud_pages;
2789 KEG_LOCK_FINI(keg, i);
2790 }
2791 if (pages != 0)
2792 printf("Freed UMA keg (%s) was not empty (%u items). "
2793 " Lost %u pages of memory.\n",
2794 keg->uk_name ? keg->uk_name : "",
2795 pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2796
2797 hash_free(&keg->uk_hash);
2798 }
2799
2800 /*
2801 * Zone header dtor.
2802 *
2803 * Arguments/Returns follow uma_dtor specifications
2804 * udata unused
2805 */
2806 static void
zone_dtor(void * arg,int size,void * udata)2807 zone_dtor(void *arg, int size, void *udata)
2808 {
2809 uma_zone_t zone;
2810 uma_keg_t keg;
2811 int i;
2812
2813 zone = (uma_zone_t)arg;
2814
2815 sysctl_remove_oid(zone->uz_oid, 1, 1);
2816
2817 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
2818 cache_drain(zone);
2819
2820 rw_wlock(&uma_rwlock);
2821 LIST_REMOVE(zone, uz_link);
2822 rw_wunlock(&uma_rwlock);
2823 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2824 keg = zone->uz_keg;
2825 keg->uk_reserve = 0;
2826 }
2827 zone_reclaim(zone, M_WAITOK, true);
2828
2829 /*
2830 * We only destroy kegs from non secondary/non cache zones.
2831 */
2832 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2833 keg = zone->uz_keg;
2834 rw_wlock(&uma_rwlock);
2835 LIST_REMOVE(keg, uk_link);
2836 rw_wunlock(&uma_rwlock);
2837 zone_free_item(kegs, keg, NULL, SKIP_NONE);
2838 }
2839 counter_u64_free(zone->uz_allocs);
2840 counter_u64_free(zone->uz_frees);
2841 counter_u64_free(zone->uz_fails);
2842 counter_u64_free(zone->uz_xdomain);
2843 free(zone->uz_ctlname, M_UMA);
2844 for (i = 0; i < vm_ndomains; i++)
2845 ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
2846 ZONE_CROSS_LOCK_FINI(zone);
2847 }
2848
2849 static void
zone_foreach_unlocked(void (* zfunc)(uma_zone_t,void * arg),void * arg)2850 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2851 {
2852 uma_keg_t keg;
2853 uma_zone_t zone;
2854
2855 LIST_FOREACH(keg, &uma_kegs, uk_link) {
2856 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
2857 zfunc(zone, arg);
2858 }
2859 LIST_FOREACH(zone, &uma_cachezones, uz_link)
2860 zfunc(zone, arg);
2861 }
2862
2863 /*
2864 * Traverses every zone in the system and calls a callback
2865 *
2866 * Arguments:
2867 * zfunc A pointer to a function which accepts a zone
2868 * as an argument.
2869 *
2870 * Returns:
2871 * Nothing
2872 */
2873 static void
zone_foreach(void (* zfunc)(uma_zone_t,void * arg),void * arg)2874 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2875 {
2876
2877 rw_rlock(&uma_rwlock);
2878 zone_foreach_unlocked(zfunc, arg);
2879 rw_runlock(&uma_rwlock);
2880 }
2881
2882 /*
2883 * Initialize the kernel memory allocator. This is done after pages can be
2884 * allocated but before general KVA is available.
2885 */
2886 void
uma_startup1(vm_offset_t virtual_avail)2887 uma_startup1(vm_offset_t virtual_avail)
2888 {
2889 struct uma_zctor_args args;
2890 size_t ksize, zsize, size;
2891 uma_keg_t primarykeg;
2892 uintptr_t m;
2893 int domain;
2894 uint8_t pflag;
2895
2896 bootstart = bootmem = virtual_avail;
2897
2898 rw_init(&uma_rwlock, "UMA lock");
2899 sx_init(&uma_reclaim_lock, "umareclaim");
2900
2901 ksize = sizeof(struct uma_keg) +
2902 (sizeof(struct uma_domain) * vm_ndomains);
2903 ksize = roundup(ksize, UMA_SUPER_ALIGN);
2904 zsize = sizeof(struct uma_zone) +
2905 (sizeof(struct uma_cache) * (mp_maxid + 1)) +
2906 (sizeof(struct uma_zone_domain) * vm_ndomains);
2907 zsize = roundup(zsize, UMA_SUPER_ALIGN);
2908
2909 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
2910 size = (zsize * 2) + ksize;
2911 for (domain = 0; domain < vm_ndomains; domain++) {
2912 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
2913 M_NOWAIT | M_ZERO);
2914 if (m != 0)
2915 break;
2916 }
2917 zones = (uma_zone_t)m;
2918 m += zsize;
2919 kegs = (uma_zone_t)m;
2920 m += zsize;
2921 primarykeg = (uma_keg_t)m;
2922
2923 /* "manually" create the initial zone */
2924 memset(&args, 0, sizeof(args));
2925 args.name = "UMA Kegs";
2926 args.size = ksize;
2927 args.ctor = keg_ctor;
2928 args.dtor = keg_dtor;
2929 args.uminit = zero_init;
2930 args.fini = NULL;
2931 args.keg = primarykeg;
2932 args.align = UMA_SUPER_ALIGN - 1;
2933 args.flags = UMA_ZFLAG_INTERNAL;
2934 zone_ctor(kegs, zsize, &args, M_WAITOK);
2935
2936 args.name = "UMA Zones";
2937 args.size = zsize;
2938 args.ctor = zone_ctor;
2939 args.dtor = zone_dtor;
2940 args.uminit = zero_init;
2941 args.fini = NULL;
2942 args.keg = NULL;
2943 args.align = UMA_SUPER_ALIGN - 1;
2944 args.flags = UMA_ZFLAG_INTERNAL;
2945 zone_ctor(zones, zsize, &args, M_WAITOK);
2946
2947 /* Now make zones for slab headers */
2948 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
2949 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2950 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
2951 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2952
2953 hashzone = uma_zcreate("UMA Hash",
2954 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2955 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2956
2957 bucket_init();
2958 smr_init();
2959 }
2960
2961 #ifndef FSTACK
2962 #ifndef UMA_MD_SMALL_ALLOC
2963 extern void vm_radix_reserve_kva(void);
2964 #endif
2965 #endif
2966
2967 /*
2968 * Advertise the availability of normal kva allocations and switch to
2969 * the default back-end allocator. Marks the KVA we consumed on startup
2970 * as used in the map.
2971 */
2972 void
uma_startup2(void)2973 uma_startup2(void)
2974 {
2975 #ifndef FSTACK
2976 if (bootstart != bootmem) {
2977 vm_map_lock(kernel_map);
2978 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
2979 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
2980 vm_map_unlock(kernel_map);
2981 }
2982
2983 #ifndef UMA_MD_SMALL_ALLOC
2984 /* Set up radix zone to use noobj_alloc. */
2985 vm_radix_reserve_kva();
2986 #endif
2987 #endif
2988
2989 booted = BOOT_KVA;
2990 zone_foreach_unlocked(zone_kva_available, NULL);
2991 bucket_enable();
2992 }
2993
2994 /*
2995 * Allocate counters as early as possible so that boot-time allocations are
2996 * accounted more precisely.
2997 */
2998 static void
uma_startup_pcpu(void * arg __unused)2999 uma_startup_pcpu(void *arg __unused)
3000 {
3001
3002 zone_foreach_unlocked(zone_alloc_counters, NULL);
3003 booted = BOOT_PCPU;
3004 }
3005 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3006
3007 /*
3008 * Finish our initialization steps.
3009 */
3010 static void
uma_startup3(void * arg __unused)3011 uma_startup3(void *arg __unused)
3012 {
3013
3014 #ifdef INVARIANTS
3015 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3016 uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3017 uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3018 #endif
3019 zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3020 callout_init(&uma_callout, 1);
3021 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
3022 booted = BOOT_RUNNING;
3023
3024 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3025 EVENTHANDLER_PRI_FIRST);
3026 }
3027 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3028
3029 static void
uma_shutdown(void)3030 uma_shutdown(void)
3031 {
3032
3033 booted = BOOT_SHUTDOWN;
3034 }
3035
3036 static uma_keg_t
uma_kcreate(uma_zone_t zone,size_t size,uma_init uminit,uma_fini fini,int align,uint32_t flags)3037 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3038 int align, uint32_t flags)
3039 {
3040 struct uma_kctor_args args;
3041
3042 args.size = size;
3043 args.uminit = uminit;
3044 args.fini = fini;
3045 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
3046 args.flags = flags;
3047 args.zone = zone;
3048 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3049 }
3050
3051 /* Public functions */
3052 /* See uma.h */
3053 void
uma_set_align(int align)3054 uma_set_align(int align)
3055 {
3056
3057 if (align != UMA_ALIGN_CACHE)
3058 uma_align_cache = align;
3059 }
3060
3061 /* See uma.h */
3062 uma_zone_t
uma_zcreate(const char * name,size_t size,uma_ctor ctor,uma_dtor dtor,uma_init uminit,uma_fini fini,int align,uint32_t flags)3063 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3064 uma_init uminit, uma_fini fini, int align, uint32_t flags)
3065
3066 {
3067 struct uma_zctor_args args;
3068 uma_zone_t res;
3069
3070 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3071 align, name));
3072
3073 /* This stuff is essential for the zone ctor */
3074 memset(&args, 0, sizeof(args));
3075 args.name = name;
3076 args.size = size;
3077 args.ctor = ctor;
3078 args.dtor = dtor;
3079 args.uminit = uminit;
3080 args.fini = fini;
3081 #ifdef INVARIANTS
3082 /*
3083 * Inject procedures which check for memory use after free if we are
3084 * allowed to scramble the memory while it is not allocated. This
3085 * requires that: UMA is actually able to access the memory, no init
3086 * or fini procedures, no dependency on the initial value of the
3087 * memory, and no (legitimate) use of the memory after free. Note,
3088 * the ctor and dtor do not need to be empty.
3089 */
3090 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3091 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3092 args.uminit = trash_init;
3093 args.fini = trash_fini;
3094 }
3095 #endif
3096 args.align = align;
3097 args.flags = flags;
3098 args.keg = NULL;
3099
3100 sx_slock(&uma_reclaim_lock);
3101 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3102 sx_sunlock(&uma_reclaim_lock);
3103
3104 return (res);
3105 }
3106
3107 /* See uma.h */
3108 uma_zone_t
uma_zsecond_create(const char * name,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_zone_t primary)3109 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3110 uma_init zinit, uma_fini zfini, uma_zone_t primary)
3111 {
3112 struct uma_zctor_args args;
3113 uma_keg_t keg;
3114 uma_zone_t res;
3115
3116 keg = primary->uz_keg;
3117 memset(&args, 0, sizeof(args));
3118 args.name = name;
3119 args.size = keg->uk_size;
3120 args.ctor = ctor;
3121 args.dtor = dtor;
3122 args.uminit = zinit;
3123 args.fini = zfini;
3124 args.align = keg->uk_align;
3125 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3126 args.keg = keg;
3127
3128 sx_slock(&uma_reclaim_lock);
3129 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3130 sx_sunlock(&uma_reclaim_lock);
3131
3132 return (res);
3133 }
3134
3135 /* See uma.h */
3136 uma_zone_t
uma_zcache_create(const char * name,int size,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_import zimport,uma_release zrelease,void * arg,int flags)3137 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3138 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3139 void *arg, int flags)
3140 {
3141 struct uma_zctor_args args;
3142
3143 memset(&args, 0, sizeof(args));
3144 args.name = name;
3145 args.size = size;
3146 args.ctor = ctor;
3147 args.dtor = dtor;
3148 args.uminit = zinit;
3149 args.fini = zfini;
3150 args.import = zimport;
3151 args.release = zrelease;
3152 args.arg = arg;
3153 args.align = 0;
3154 args.flags = flags | UMA_ZFLAG_CACHE;
3155
3156 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3157 }
3158
3159 /* See uma.h */
3160 void
uma_zdestroy(uma_zone_t zone)3161 uma_zdestroy(uma_zone_t zone)
3162 {
3163
3164 /*
3165 * Large slabs are expensive to reclaim, so don't bother doing
3166 * unnecessary work if we're shutting down.
3167 */
3168 if (booted == BOOT_SHUTDOWN &&
3169 zone->uz_fini == NULL && zone->uz_release == zone_release)
3170 return;
3171 sx_slock(&uma_reclaim_lock);
3172 zone_free_item(zones, zone, NULL, SKIP_NONE);
3173 sx_sunlock(&uma_reclaim_lock);
3174 }
3175
3176 void
uma_zwait(uma_zone_t zone)3177 uma_zwait(uma_zone_t zone)
3178 {
3179
3180 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3181 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3182 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3183 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3184 else
3185 uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3186 }
3187
3188 void *
uma_zalloc_pcpu_arg(uma_zone_t zone,void * udata,int flags)3189 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3190 {
3191 void *item, *pcpu_item;
3192 #ifdef SMP
3193 int i;
3194
3195 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3196 #endif
3197 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3198 if (item == NULL)
3199 return (NULL);
3200 pcpu_item = zpcpu_base_to_offset(item);
3201 if (flags & M_ZERO) {
3202 #ifdef SMP
3203 for (i = 0; i <= mp_maxid; i++)
3204 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3205 #else
3206 bzero(item, zone->uz_size);
3207 #endif
3208 }
3209 return (pcpu_item);
3210 }
3211
3212 /*
3213 * A stub while both regular and pcpu cases are identical.
3214 */
3215 void
uma_zfree_pcpu_arg(uma_zone_t zone,void * pcpu_item,void * udata)3216 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3217 {
3218 void *item;
3219
3220 #ifdef SMP
3221 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3222 #endif
3223 item = zpcpu_offset_to_base(pcpu_item);
3224 uma_zfree_arg(zone, item, udata);
3225 }
3226
3227 static inline void *
item_ctor(uma_zone_t zone,int uz_flags,int size,void * udata,int flags,void * item)3228 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3229 void *item)
3230 {
3231 #ifdef INVARIANTS
3232 bool skipdbg;
3233
3234 skipdbg = uma_dbg_zskip(zone, item);
3235 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3236 zone->uz_ctor != trash_ctor)
3237 trash_ctor(item, size, udata, flags);
3238 #endif
3239 /* Check flags before loading ctor pointer. */
3240 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3241 __predict_false(zone->uz_ctor != NULL) &&
3242 zone->uz_ctor(item, size, udata, flags) != 0) {
3243 counter_u64_add(zone->uz_fails, 1);
3244 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3245 return (NULL);
3246 }
3247 #ifdef INVARIANTS
3248 if (!skipdbg)
3249 uma_dbg_alloc(zone, NULL, item);
3250 #endif
3251 if (__predict_false(flags & M_ZERO))
3252 return (memset(item, 0, size));
3253
3254 return (item);
3255 }
3256
3257 static inline void
item_dtor(uma_zone_t zone,void * item,int size,void * udata,enum zfreeskip skip)3258 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3259 enum zfreeskip skip)
3260 {
3261 #ifdef INVARIANTS
3262 bool skipdbg;
3263
3264 skipdbg = uma_dbg_zskip(zone, item);
3265 if (skip == SKIP_NONE && !skipdbg) {
3266 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3267 uma_dbg_free(zone, udata, item);
3268 else
3269 uma_dbg_free(zone, NULL, item);
3270 }
3271 #endif
3272 if (__predict_true(skip < SKIP_DTOR)) {
3273 if (zone->uz_dtor != NULL)
3274 zone->uz_dtor(item, size, udata);
3275 #ifdef INVARIANTS
3276 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3277 zone->uz_dtor != trash_dtor)
3278 trash_dtor(item, size, udata);
3279 #endif
3280 }
3281 }
3282
3283 #ifdef NUMA
3284 static int
item_domain(void * item)3285 item_domain(void *item)
3286 {
3287 int domain;
3288
3289 domain = vm_phys_domain(vtophys(item));
3290 KASSERT(domain >= 0 && domain < vm_ndomains,
3291 ("%s: unknown domain for item %p", __func__, item));
3292 return (domain);
3293 }
3294 #endif
3295
3296 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3297 #define UMA_ZALLOC_DEBUG
3298 static int
uma_zalloc_debug(uma_zone_t zone,void ** itemp,void * udata,int flags)3299 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3300 {
3301 int error;
3302
3303 error = 0;
3304 #ifdef WITNESS
3305 if (flags & M_WAITOK) {
3306 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3307 "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3308 }
3309 #endif
3310
3311 #ifdef INVARIANTS
3312 KASSERT((flags & M_EXEC) == 0,
3313 ("uma_zalloc_debug: called with M_EXEC"));
3314 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3315 ("uma_zalloc_debug: called within spinlock or critical section"));
3316 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3317 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3318 #endif
3319
3320 #ifdef DEBUG_MEMGUARD
3321 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3322 void *item;
3323 item = memguard_alloc(zone->uz_size, flags);
3324 if (item != NULL) {
3325 error = EJUSTRETURN;
3326 if (zone->uz_init != NULL &&
3327 zone->uz_init(item, zone->uz_size, flags) != 0) {
3328 *itemp = NULL;
3329 return (error);
3330 }
3331 if (zone->uz_ctor != NULL &&
3332 zone->uz_ctor(item, zone->uz_size, udata,
3333 flags) != 0) {
3334 counter_u64_add(zone->uz_fails, 1);
3335 zone->uz_fini(item, zone->uz_size);
3336 *itemp = NULL;
3337 return (error);
3338 }
3339 *itemp = item;
3340 return (error);
3341 }
3342 /* This is unfortunate but should not be fatal. */
3343 }
3344 #endif
3345 return (error);
3346 }
3347
3348 static int
uma_zfree_debug(uma_zone_t zone,void * item,void * udata)3349 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3350 {
3351 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3352 ("uma_zfree_debug: called with spinlock or critical section held"));
3353
3354 #ifdef DEBUG_MEMGUARD
3355 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3356 if (zone->uz_dtor != NULL)
3357 zone->uz_dtor(item, zone->uz_size, udata);
3358 if (zone->uz_fini != NULL)
3359 zone->uz_fini(item, zone->uz_size);
3360 memguard_free(item);
3361 return (EJUSTRETURN);
3362 }
3363 #endif
3364 return (0);
3365 }
3366 #endif
3367
3368 static inline void *
cache_alloc_item(uma_zone_t zone,uma_cache_t cache,uma_cache_bucket_t bucket,void * udata,int flags)3369 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3370 void *udata, int flags)
3371 {
3372 void *item;
3373 int size, uz_flags;
3374
3375 item = cache_bucket_pop(cache, bucket);
3376 size = cache_uz_size(cache);
3377 uz_flags = cache_uz_flags(cache);
3378 critical_exit();
3379 return (item_ctor(zone, uz_flags, size, udata, flags, item));
3380 }
3381
3382 static __noinline void *
cache_alloc_retry(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3383 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3384 {
3385 uma_cache_bucket_t bucket;
3386 int domain;
3387
3388 while (cache_alloc(zone, cache, udata, flags)) {
3389 cache = &zone->uz_cpu[curcpu];
3390 bucket = &cache->uc_allocbucket;
3391 if (__predict_false(bucket->ucb_cnt == 0))
3392 continue;
3393 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3394 }
3395 critical_exit();
3396
3397 /*
3398 * We can not get a bucket so try to return a single item.
3399 */
3400 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3401 domain = PCPU_GET(domain);
3402 else
3403 domain = UMA_ANYDOMAIN;
3404 return (zone_alloc_item(zone, udata, domain, flags));
3405 }
3406
3407 /* See uma.h */
3408 void *
uma_zalloc_smr(uma_zone_t zone,int flags)3409 uma_zalloc_smr(uma_zone_t zone, int flags)
3410 {
3411 uma_cache_bucket_t bucket;
3412 uma_cache_t cache;
3413
3414 #ifdef UMA_ZALLOC_DEBUG
3415 void *item;
3416
3417 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3418 ("uma_zalloc_arg: called with non-SMR zone."));
3419 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3420 return (item);
3421 #endif
3422
3423 critical_enter();
3424 cache = &zone->uz_cpu[curcpu];
3425 bucket = &cache->uc_allocbucket;
3426 if (__predict_false(bucket->ucb_cnt == 0))
3427 return (cache_alloc_retry(zone, cache, NULL, flags));
3428 return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3429 }
3430
3431 /* See uma.h */
3432 void *
uma_zalloc_arg(uma_zone_t zone,void * udata,int flags)3433 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3434 {
3435 uma_cache_bucket_t bucket;
3436 uma_cache_t cache;
3437
3438 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3439 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3440
3441 /* This is the fast path allocation */
3442 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3443 zone, flags);
3444
3445 #ifdef UMA_ZALLOC_DEBUG
3446 void *item;
3447
3448 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3449 ("uma_zalloc_arg: called with SMR zone."));
3450 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3451 return (item);
3452 #endif
3453
3454 /*
3455 * If possible, allocate from the per-CPU cache. There are two
3456 * requirements for safe access to the per-CPU cache: (1) the thread
3457 * accessing the cache must not be preempted or yield during access,
3458 * and (2) the thread must not migrate CPUs without switching which
3459 * cache it accesses. We rely on a critical section to prevent
3460 * preemption and migration. We release the critical section in
3461 * order to acquire the zone mutex if we are unable to allocate from
3462 * the current cache; when we re-acquire the critical section, we
3463 * must detect and handle migration if it has occurred.
3464 */
3465 critical_enter();
3466 cache = &zone->uz_cpu[curcpu];
3467 bucket = &cache->uc_allocbucket;
3468 if (__predict_false(bucket->ucb_cnt == 0))
3469 return (cache_alloc_retry(zone, cache, udata, flags));
3470 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3471 }
3472
3473 /*
3474 * Replenish an alloc bucket and possibly restore an old one. Called in
3475 * a critical section. Returns in a critical section.
3476 *
3477 * A false return value indicates an allocation failure.
3478 * A true return value indicates success and the caller should retry.
3479 */
3480 static __noinline bool
cache_alloc(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3481 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3482 {
3483 uma_bucket_t bucket;
3484 int curdomain, domain;
3485 bool new;
3486
3487 CRITICAL_ASSERT(curthread);
3488
3489 /*
3490 * If we have run out of items in our alloc bucket see
3491 * if we can switch with the free bucket.
3492 *
3493 * SMR Zones can't re-use the free bucket until the sequence has
3494 * expired.
3495 */
3496 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3497 cache->uc_freebucket.ucb_cnt != 0) {
3498 cache_bucket_swap(&cache->uc_freebucket,
3499 &cache->uc_allocbucket);
3500 return (true);
3501 }
3502
3503 /*
3504 * Discard any empty allocation bucket while we hold no locks.
3505 */
3506 bucket = cache_bucket_unload_alloc(cache);
3507 critical_exit();
3508
3509 if (bucket != NULL) {
3510 KASSERT(bucket->ub_cnt == 0,
3511 ("cache_alloc: Entered with non-empty alloc bucket."));
3512 bucket_free(zone, bucket, udata);
3513 }
3514
3515 /*
3516 * Attempt to retrieve the item from the per-CPU cache has failed, so
3517 * we must go back to the zone. This requires the zdom lock, so we
3518 * must drop the critical section, then re-acquire it when we go back
3519 * to the cache. Since the critical section is released, we may be
3520 * preempted or migrate. As such, make sure not to maintain any
3521 * thread-local state specific to the cache from prior to releasing
3522 * the critical section.
3523 */
3524 domain = PCPU_GET(domain);
3525 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3526 VM_DOMAIN_EMPTY(domain))
3527 domain = zone_domain_highest(zone, domain);
3528 bucket = cache_fetch_bucket(zone, cache, domain);
3529 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3530 bucket = zone_alloc_bucket(zone, udata, domain, flags);
3531 new = true;
3532 } else {
3533 new = false;
3534 }
3535
3536 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3537 zone->uz_name, zone, bucket);
3538 if (bucket == NULL) {
3539 critical_enter();
3540 return (false);
3541 }
3542
3543 /*
3544 * See if we lost the race or were migrated. Cache the
3545 * initialized bucket to make this less likely or claim
3546 * the memory directly.
3547 */
3548 critical_enter();
3549 cache = &zone->uz_cpu[curcpu];
3550 if (cache->uc_allocbucket.ucb_bucket == NULL &&
3551 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3552 (curdomain = PCPU_GET(domain)) == domain ||
3553 VM_DOMAIN_EMPTY(curdomain))) {
3554 if (new)
3555 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3556 bucket->ub_cnt);
3557 cache_bucket_load_alloc(cache, bucket);
3558 return (true);
3559 }
3560
3561 /*
3562 * We lost the race, release this bucket and start over.
3563 */
3564 critical_exit();
3565 zone_put_bucket(zone, domain, bucket, udata, false);
3566 critical_enter();
3567
3568 return (true);
3569 }
3570
3571 void *
uma_zalloc_domain(uma_zone_t zone,void * udata,int domain,int flags)3572 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3573 {
3574 #ifdef NUMA
3575 uma_bucket_t bucket;
3576 uma_zone_domain_t zdom;
3577 void *item;
3578 #endif
3579
3580 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3581 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3582
3583 /* This is the fast path allocation */
3584 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3585 zone->uz_name, zone, domain, flags);
3586
3587 if (flags & M_WAITOK) {
3588 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3589 "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
3590 }
3591 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3592 ("uma_zalloc_domain: called with spinlock or critical section held"));
3593 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3594 ("uma_zalloc_domain: called with SMR zone."));
3595 #ifdef NUMA
3596 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3597 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3598
3599 if (vm_ndomains == 1)
3600 return (uma_zalloc_arg(zone, udata, flags));
3601
3602 /*
3603 * Try to allocate from the bucket cache before falling back to the keg.
3604 * We could try harder and attempt to allocate from per-CPU caches or
3605 * the per-domain cross-domain buckets, but the complexity is probably
3606 * not worth it. It is more important that frees of previous
3607 * cross-domain allocations do not blow up the cache.
3608 */
3609 zdom = zone_domain_lock(zone, domain);
3610 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3611 item = bucket->ub_bucket[bucket->ub_cnt - 1];
3612 #ifdef INVARIANTS
3613 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3614 #endif
3615 bucket->ub_cnt--;
3616 zone_put_bucket(zone, domain, bucket, udata, true);
3617 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3618 flags, item);
3619 if (item != NULL) {
3620 KASSERT(item_domain(item) == domain,
3621 ("%s: bucket cache item %p from wrong domain",
3622 __func__, item));
3623 counter_u64_add(zone->uz_allocs, 1);
3624 }
3625 return (item);
3626 }
3627 ZDOM_UNLOCK(zdom);
3628 return (zone_alloc_item(zone, udata, domain, flags));
3629 #else
3630 return (uma_zalloc_arg(zone, udata, flags));
3631 #endif
3632 }
3633
3634 /*
3635 * Find a slab with some space. Prefer slabs that are partially used over those
3636 * that are totally full. This helps to reduce fragmentation.
3637 *
3638 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check
3639 * only 'domain'.
3640 */
3641 static uma_slab_t
keg_first_slab(uma_keg_t keg,int domain,bool rr)3642 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3643 {
3644 uma_domain_t dom;
3645 uma_slab_t slab;
3646 int start;
3647
3648 KASSERT(domain >= 0 && domain < vm_ndomains,
3649 ("keg_first_slab: domain %d out of range", domain));
3650 KEG_LOCK_ASSERT(keg, domain);
3651
3652 slab = NULL;
3653 start = domain;
3654 do {
3655 dom = &keg->uk_domain[domain];
3656 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3657 return (slab);
3658 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3659 LIST_REMOVE(slab, us_link);
3660 dom->ud_free_slabs--;
3661 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3662 return (slab);
3663 }
3664 if (rr)
3665 domain = (domain + 1) % vm_ndomains;
3666 } while (domain != start);
3667
3668 return (NULL);
3669 }
3670
3671 /*
3672 * Fetch an existing slab from a free or partial list. Returns with the
3673 * keg domain lock held if a slab was found or unlocked if not.
3674 */
3675 static uma_slab_t
keg_fetch_free_slab(uma_keg_t keg,int domain,bool rr,int flags)3676 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3677 {
3678 uma_slab_t slab;
3679 uint32_t reserve;
3680
3681 /* HASH has a single free list. */
3682 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3683 domain = 0;
3684
3685 KEG_LOCK(keg, domain);
3686 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3687 if (keg->uk_domain[domain].ud_free_items <= reserve ||
3688 (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3689 KEG_UNLOCK(keg, domain);
3690 return (NULL);
3691 }
3692 return (slab);
3693 }
3694
3695 static uma_slab_t
keg_fetch_slab(uma_keg_t keg,uma_zone_t zone,int rdomain,const int flags)3696 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3697 {
3698 struct vm_domainset_iter di;
3699 uma_slab_t slab;
3700 int aflags, domain;
3701 bool rr;
3702
3703 restart:
3704 /*
3705 * Use the keg's policy if upper layers haven't already specified a
3706 * domain (as happens with first-touch zones).
3707 *
3708 * To avoid races we run the iterator with the keg lock held, but that
3709 * means that we cannot allow the vm_domainset layer to sleep. Thus,
3710 * clear M_WAITOK and handle low memory conditions locally.
3711 */
3712 rr = rdomain == UMA_ANYDOMAIN;
3713 if (rr) {
3714 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3715 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3716 &aflags);
3717 } else {
3718 aflags = flags;
3719 domain = rdomain;
3720 }
3721
3722 for (;;) {
3723 slab = keg_fetch_free_slab(keg, domain, rr, flags);
3724 if (slab != NULL)
3725 return (slab);
3726
3727 /*
3728 * M_NOVM means don't ask at all!
3729 */
3730 if (flags & M_NOVM)
3731 break;
3732
3733 slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3734 if (slab != NULL)
3735 return (slab);
3736 if (!rr && (flags & M_WAITOK) == 0)
3737 break;
3738 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
3739 if ((flags & M_WAITOK) != 0) {
3740 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
3741 goto restart;
3742 }
3743 break;
3744 }
3745 }
3746
3747 /*
3748 * We might not have been able to get a slab but another cpu
3749 * could have while we were unlocked. Check again before we
3750 * fail.
3751 */
3752 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
3753 return (slab);
3754
3755 return (NULL);
3756 }
3757
3758 static void *
slab_alloc_item(uma_keg_t keg,uma_slab_t slab)3759 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
3760 {
3761 uma_domain_t dom;
3762 void *item;
3763 int freei;
3764
3765 KEG_LOCK_ASSERT(keg, slab->us_domain);
3766
3767 dom = &keg->uk_domain[slab->us_domain];
3768 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
3769 BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
3770 item = slab_item(slab, keg, freei);
3771 slab->us_freecount--;
3772 dom->ud_free_items--;
3773
3774 /*
3775 * Move this slab to the full list. It must be on the partial list, so
3776 * we do not need to update the free slab count. In particular,
3777 * keg_fetch_slab() always returns slabs on the partial list.
3778 */
3779 if (slab->us_freecount == 0) {
3780 LIST_REMOVE(slab, us_link);
3781 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
3782 }
3783
3784 return (item);
3785 }
3786
3787 static int
zone_import(void * arg,void ** bucket,int max,int domain,int flags)3788 zone_import(void *arg, void **bucket, int max, int domain, int flags)
3789 {
3790 uma_domain_t dom;
3791 uma_zone_t zone;
3792 uma_slab_t slab;
3793 uma_keg_t keg;
3794 #ifdef NUMA
3795 int stripe;
3796 #endif
3797 int i;
3798
3799 zone = arg;
3800 slab = NULL;
3801 keg = zone->uz_keg;
3802 /* Try to keep the buckets totally full */
3803 for (i = 0; i < max; ) {
3804 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
3805 break;
3806 #ifdef NUMA
3807 stripe = howmany(max, vm_ndomains);
3808 #endif
3809 dom = &keg->uk_domain[slab->us_domain];
3810 do {
3811 bucket[i++] = slab_alloc_item(keg, slab);
3812 if (dom->ud_free_items <= keg->uk_reserve) {
3813 /*
3814 * Avoid depleting the reserve after a
3815 * successful item allocation, even if
3816 * M_USE_RESERVE is specified.
3817 */
3818 KEG_UNLOCK(keg, slab->us_domain);
3819 goto out;
3820 }
3821 #ifdef NUMA
3822 /*
3823 * If the zone is striped we pick a new slab for every
3824 * N allocations. Eliminating this conditional will
3825 * instead pick a new domain for each bucket rather
3826 * than stripe within each bucket. The current option
3827 * produces more fragmentation and requires more cpu
3828 * time but yields better distribution.
3829 */
3830 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
3831 vm_ndomains > 1 && --stripe == 0)
3832 break;
3833 #endif
3834 } while (slab->us_freecount != 0 && i < max);
3835 KEG_UNLOCK(keg, slab->us_domain);
3836
3837 /* Don't block if we allocated any successfully. */
3838 flags &= ~M_WAITOK;
3839 flags |= M_NOWAIT;
3840 }
3841 out:
3842 return i;
3843 }
3844
3845 static int
zone_alloc_limit_hard(uma_zone_t zone,int count,int flags)3846 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
3847 {
3848 uint64_t old, new, total, max;
3849
3850 /*
3851 * The hard case. We're going to sleep because there were existing
3852 * sleepers or because we ran out of items. This routine enforces
3853 * fairness by keeping fifo order.
3854 *
3855 * First release our ill gotten gains and make some noise.
3856 */
3857 for (;;) {
3858 zone_free_limit(zone, count);
3859 zone_log_warning(zone);
3860 zone_maxaction(zone);
3861 if (flags & M_NOWAIT)
3862 return (0);
3863
3864 /*
3865 * We need to allocate an item or set ourself as a sleeper
3866 * while the sleepq lock is held to avoid wakeup races. This
3867 * is essentially a home rolled semaphore.
3868 */
3869 sleepq_lock(&zone->uz_max_items);
3870 old = zone->uz_items;
3871 do {
3872 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
3873 /* Cache the max since we will evaluate twice. */
3874 max = zone->uz_max_items;
3875 if (UZ_ITEMS_SLEEPERS(old) != 0 ||
3876 UZ_ITEMS_COUNT(old) >= max)
3877 new = old + UZ_ITEMS_SLEEPER;
3878 else
3879 new = old + MIN(count, max - old);
3880 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
3881
3882 /* We may have successfully allocated under the sleepq lock. */
3883 if (UZ_ITEMS_SLEEPERS(new) == 0) {
3884 sleepq_release(&zone->uz_max_items);
3885 return (new - old);
3886 }
3887
3888 /*
3889 * This is in a different cacheline from uz_items so that we
3890 * don't constantly invalidate the fastpath cacheline when we
3891 * adjust item counts. This could be limited to toggling on
3892 * transitions.
3893 */
3894 atomic_add_32(&zone->uz_sleepers, 1);
3895 atomic_add_64(&zone->uz_sleeps, 1);
3896
3897 /*
3898 * We have added ourselves as a sleeper. The sleepq lock
3899 * protects us from wakeup races. Sleep now and then retry.
3900 */
3901 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
3902 sleepq_wait(&zone->uz_max_items, PVM);
3903
3904 /*
3905 * After wakeup, remove ourselves as a sleeper and try
3906 * again. We no longer have the sleepq lock for protection.
3907 *
3908 * Subract ourselves as a sleeper while attempting to add
3909 * our count.
3910 */
3911 atomic_subtract_32(&zone->uz_sleepers, 1);
3912 old = atomic_fetchadd_64(&zone->uz_items,
3913 -(UZ_ITEMS_SLEEPER - count));
3914 /* We're no longer a sleeper. */
3915 old -= UZ_ITEMS_SLEEPER;
3916
3917 /*
3918 * If we're still at the limit, restart. Notably do not
3919 * block on other sleepers. Cache the max value to protect
3920 * against changes via sysctl.
3921 */
3922 total = UZ_ITEMS_COUNT(old);
3923 max = zone->uz_max_items;
3924 if (total >= max)
3925 continue;
3926 /* Truncate if necessary, otherwise wake other sleepers. */
3927 if (total + count > max) {
3928 zone_free_limit(zone, total + count - max);
3929 count = max - total;
3930 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
3931 wakeup_one(&zone->uz_max_items);
3932
3933 return (count);
3934 }
3935 }
3936
3937 /*
3938 * Allocate 'count' items from our max_items limit. Returns the number
3939 * available. If M_NOWAIT is not specified it will sleep until at least
3940 * one item can be allocated.
3941 */
3942 static int
zone_alloc_limit(uma_zone_t zone,int count,int flags)3943 zone_alloc_limit(uma_zone_t zone, int count, int flags)
3944 {
3945 uint64_t old;
3946 uint64_t max;
3947
3948 max = zone->uz_max_items;
3949 MPASS(max > 0);
3950
3951 /*
3952 * We expect normal allocations to succeed with a simple
3953 * fetchadd.
3954 */
3955 old = atomic_fetchadd_64(&zone->uz_items, count);
3956 if (__predict_true(old + count <= max))
3957 return (count);
3958
3959 /*
3960 * If we had some items and no sleepers just return the
3961 * truncated value. We have to release the excess space
3962 * though because that may wake sleepers who weren't woken
3963 * because we were temporarily over the limit.
3964 */
3965 if (old < max) {
3966 zone_free_limit(zone, (old + count) - max);
3967 return (max - old);
3968 }
3969 return (zone_alloc_limit_hard(zone, count, flags));
3970 }
3971
3972 /*
3973 * Free a number of items back to the limit.
3974 */
3975 static void
zone_free_limit(uma_zone_t zone,int count)3976 zone_free_limit(uma_zone_t zone, int count)
3977 {
3978 uint64_t old;
3979
3980 MPASS(count > 0);
3981
3982 /*
3983 * In the common case we either have no sleepers or
3984 * are still over the limit and can just return.
3985 */
3986 old = atomic_fetchadd_64(&zone->uz_items, -count);
3987 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
3988 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
3989 return;
3990
3991 /*
3992 * Moderate the rate of wakeups. Sleepers will continue
3993 * to generate wakeups if necessary.
3994 */
3995 wakeup_one(&zone->uz_max_items);
3996 }
3997
3998 static uma_bucket_t
zone_alloc_bucket(uma_zone_t zone,void * udata,int domain,int flags)3999 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4000 {
4001 uma_bucket_t bucket;
4002 int maxbucket, cnt;
4003
4004 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4005 zone, domain);
4006
4007 /* Avoid allocs targeting empty domains. */
4008 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4009 domain = UMA_ANYDOMAIN;
4010 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4011 domain = UMA_ANYDOMAIN;
4012
4013 if (zone->uz_max_items > 0)
4014 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4015 M_NOWAIT);
4016 else
4017 maxbucket = zone->uz_bucket_size;
4018 if (maxbucket == 0)
4019 return (false);
4020
4021 /* Don't wait for buckets, preserve caller's NOVM setting. */
4022 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4023 if (bucket == NULL) {
4024 cnt = 0;
4025 goto out;
4026 }
4027
4028 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4029 MIN(maxbucket, bucket->ub_entries), domain, flags);
4030
4031 /*
4032 * Initialize the memory if necessary.
4033 */
4034 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4035 int i;
4036
4037 for (i = 0; i < bucket->ub_cnt; i++)
4038 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
4039 flags) != 0)
4040 break;
4041 /*
4042 * If we couldn't initialize the whole bucket, put the
4043 * rest back onto the freelist.
4044 */
4045 if (i != bucket->ub_cnt) {
4046 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4047 bucket->ub_cnt - i);
4048 #ifdef INVARIANTS
4049 bzero(&bucket->ub_bucket[i],
4050 sizeof(void *) * (bucket->ub_cnt - i));
4051 #endif
4052 bucket->ub_cnt = i;
4053 }
4054 }
4055
4056 cnt = bucket->ub_cnt;
4057 if (bucket->ub_cnt == 0) {
4058 bucket_free(zone, bucket, udata);
4059 counter_u64_add(zone->uz_fails, 1);
4060 bucket = NULL;
4061 }
4062 out:
4063 if (zone->uz_max_items > 0 && cnt < maxbucket)
4064 zone_free_limit(zone, maxbucket - cnt);
4065
4066 return (bucket);
4067 }
4068
4069 /*
4070 * Allocates a single item from a zone.
4071 *
4072 * Arguments
4073 * zone The zone to alloc for.
4074 * udata The data to be passed to the constructor.
4075 * domain The domain to allocate from or UMA_ANYDOMAIN.
4076 * flags M_WAITOK, M_NOWAIT, M_ZERO.
4077 *
4078 * Returns
4079 * NULL if there is no memory and M_NOWAIT is set
4080 * An item if successful
4081 */
4082
4083 static void *
zone_alloc_item(uma_zone_t zone,void * udata,int domain,int flags)4084 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4085 {
4086 void *item;
4087
4088 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4089 counter_u64_add(zone->uz_fails, 1);
4090 return (NULL);
4091 }
4092
4093 /* Avoid allocs targeting empty domains. */
4094 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4095 domain = UMA_ANYDOMAIN;
4096
4097 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4098 goto fail_cnt;
4099
4100 /*
4101 * We have to call both the zone's init (not the keg's init)
4102 * and the zone's ctor. This is because the item is going from
4103 * a keg slab directly to the user, and the user is expecting it
4104 * to be both zone-init'd as well as zone-ctor'd.
4105 */
4106 if (zone->uz_init != NULL) {
4107 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
4108 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4109 goto fail_cnt;
4110 }
4111 }
4112 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4113 item);
4114 if (item == NULL)
4115 goto fail;
4116
4117 counter_u64_add(zone->uz_allocs, 1);
4118 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4119 zone->uz_name, zone);
4120
4121 return (item);
4122
4123 fail_cnt:
4124 counter_u64_add(zone->uz_fails, 1);
4125 fail:
4126 if (zone->uz_max_items > 0)
4127 zone_free_limit(zone, 1);
4128 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4129 zone->uz_name, zone);
4130
4131 return (NULL);
4132 }
4133
4134 /* See uma.h */
4135 void
uma_zfree_smr(uma_zone_t zone,void * item)4136 uma_zfree_smr(uma_zone_t zone, void *item)
4137 {
4138 uma_cache_t cache;
4139 uma_cache_bucket_t bucket;
4140 int itemdomain, uz_flags;
4141
4142 #ifdef UMA_ZALLOC_DEBUG
4143 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4144 ("uma_zfree_smr: called with non-SMR zone."));
4145 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4146 SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4147 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4148 return;
4149 #endif
4150 cache = &zone->uz_cpu[curcpu];
4151 uz_flags = cache_uz_flags(cache);
4152 itemdomain = 0;
4153 #ifdef NUMA
4154 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4155 itemdomain = item_domain(item);
4156 #endif
4157 critical_enter();
4158 do {
4159 cache = &zone->uz_cpu[curcpu];
4160 /* SMR Zones must free to the free bucket. */
4161 bucket = &cache->uc_freebucket;
4162 #ifdef NUMA
4163 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4164 PCPU_GET(domain) != itemdomain) {
4165 bucket = &cache->uc_crossbucket;
4166 }
4167 #endif
4168 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4169 cache_bucket_push(cache, bucket, item);
4170 critical_exit();
4171 return;
4172 }
4173 } while (cache_free(zone, cache, NULL, item, itemdomain));
4174 critical_exit();
4175
4176 /*
4177 * If nothing else caught this, we'll just do an internal free.
4178 */
4179 zone_free_item(zone, item, NULL, SKIP_NONE);
4180 }
4181
4182 /* See uma.h */
4183 void
uma_zfree_arg(uma_zone_t zone,void * item,void * udata)4184 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4185 {
4186 uma_cache_t cache;
4187 uma_cache_bucket_t bucket;
4188 int itemdomain, uz_flags;
4189
4190 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4191 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4192
4193 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone);
4194
4195 #ifdef UMA_ZALLOC_DEBUG
4196 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4197 ("uma_zfree_arg: called with SMR zone."));
4198 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4199 return;
4200 #endif
4201 /* uma_zfree(..., NULL) does nothing, to match free(9). */
4202 if (item == NULL)
4203 return;
4204
4205 /*
4206 * We are accessing the per-cpu cache without a critical section to
4207 * fetch size and flags. This is acceptable, if we are preempted we
4208 * will simply read another cpu's line.
4209 */
4210 cache = &zone->uz_cpu[curcpu];
4211 uz_flags = cache_uz_flags(cache);
4212 if (UMA_ALWAYS_CTORDTOR ||
4213 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4214 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4215
4216 /*
4217 * The race here is acceptable. If we miss it we'll just have to wait
4218 * a little longer for the limits to be reset.
4219 */
4220 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4221 if (atomic_load_32(&zone->uz_sleepers) > 0)
4222 goto zfree_item;
4223 }
4224
4225 /*
4226 * If possible, free to the per-CPU cache. There are two
4227 * requirements for safe access to the per-CPU cache: (1) the thread
4228 * accessing the cache must not be preempted or yield during access,
4229 * and (2) the thread must not migrate CPUs without switching which
4230 * cache it accesses. We rely on a critical section to prevent
4231 * preemption and migration. We release the critical section in
4232 * order to acquire the zone mutex if we are unable to free to the
4233 * current cache; when we re-acquire the critical section, we must
4234 * detect and handle migration if it has occurred.
4235 */
4236 itemdomain = 0;
4237 #ifdef NUMA
4238 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4239 itemdomain = item_domain(item);
4240 #endif
4241 critical_enter();
4242 do {
4243 cache = &zone->uz_cpu[curcpu];
4244 /*
4245 * Try to free into the allocbucket first to give LIFO
4246 * ordering for cache-hot datastructures. Spill over
4247 * into the freebucket if necessary. Alloc will swap
4248 * them if one runs dry.
4249 */
4250 bucket = &cache->uc_allocbucket;
4251 #ifdef NUMA
4252 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4253 PCPU_GET(domain) != itemdomain) {
4254 bucket = &cache->uc_crossbucket;
4255 } else
4256 #endif
4257 if (bucket->ucb_cnt == bucket->ucb_entries &&
4258 cache->uc_freebucket.ucb_cnt <
4259 cache->uc_freebucket.ucb_entries)
4260 cache_bucket_swap(&cache->uc_freebucket,
4261 &cache->uc_allocbucket);
4262 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4263 cache_bucket_push(cache, bucket, item);
4264 critical_exit();
4265 return;
4266 }
4267 } while (cache_free(zone, cache, udata, item, itemdomain));
4268 critical_exit();
4269
4270 /*
4271 * If nothing else caught this, we'll just do an internal free.
4272 */
4273 zfree_item:
4274 zone_free_item(zone, item, udata, SKIP_DTOR);
4275 }
4276
4277 #ifdef NUMA
4278 /*
4279 * sort crossdomain free buckets to domain correct buckets and cache
4280 * them.
4281 */
4282 static void
zone_free_cross(uma_zone_t zone,uma_bucket_t bucket,void * udata)4283 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4284 {
4285 struct uma_bucketlist emptybuckets, fullbuckets;
4286 uma_zone_domain_t zdom;
4287 uma_bucket_t b;
4288 smr_seq_t seq;
4289 void *item;
4290 int domain;
4291
4292 CTR3(KTR_UMA,
4293 "uma_zfree: zone %s(%p) draining cross bucket %p",
4294 zone->uz_name, zone, bucket);
4295
4296 /*
4297 * It is possible for buckets to arrive here out of order so we fetch
4298 * the current smr seq rather than accepting the bucket's.
4299 */
4300 seq = SMR_SEQ_INVALID;
4301 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4302 seq = smr_advance(zone->uz_smr);
4303
4304 /*
4305 * To avoid having ndomain * ndomain buckets for sorting we have a
4306 * lock on the current crossfree bucket. A full matrix with
4307 * per-domain locking could be used if necessary.
4308 */
4309 STAILQ_INIT(&emptybuckets);
4310 STAILQ_INIT(&fullbuckets);
4311 ZONE_CROSS_LOCK(zone);
4312 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4313 item = bucket->ub_bucket[bucket->ub_cnt - 1];
4314 domain = item_domain(item);
4315 zdom = ZDOM_GET(zone, domain);
4316 if (zdom->uzd_cross == NULL) {
4317 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4318 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4319 zdom->uzd_cross = b;
4320 } else {
4321 /*
4322 * Avoid allocating a bucket with the cross lock
4323 * held, since allocation can trigger a
4324 * cross-domain free and bucket zones may
4325 * allocate from each other.
4326 */
4327 ZONE_CROSS_UNLOCK(zone);
4328 b = bucket_alloc(zone, udata, M_NOWAIT);
4329 if (b == NULL)
4330 goto out;
4331 ZONE_CROSS_LOCK(zone);
4332 if (zdom->uzd_cross != NULL) {
4333 STAILQ_INSERT_HEAD(&emptybuckets, b,
4334 ub_link);
4335 } else {
4336 zdom->uzd_cross = b;
4337 }
4338 }
4339 }
4340 b = zdom->uzd_cross;
4341 b->ub_bucket[b->ub_cnt++] = item;
4342 b->ub_seq = seq;
4343 if (b->ub_cnt == b->ub_entries) {
4344 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4345 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4346 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4347 zdom->uzd_cross = b;
4348 }
4349 }
4350 ZONE_CROSS_UNLOCK(zone);
4351 out:
4352 if (bucket->ub_cnt == 0)
4353 bucket->ub_seq = SMR_SEQ_INVALID;
4354 bucket_free(zone, bucket, udata);
4355
4356 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4357 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4358 bucket_free(zone, b, udata);
4359 }
4360 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4361 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4362 domain = item_domain(b->ub_bucket[0]);
4363 zone_put_bucket(zone, domain, b, udata, true);
4364 }
4365 }
4366 #endif
4367
4368 static void
zone_free_bucket(uma_zone_t zone,uma_bucket_t bucket,void * udata,int itemdomain,bool ws)4369 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4370 int itemdomain, bool ws)
4371 {
4372
4373 #ifdef NUMA
4374 /*
4375 * Buckets coming from the wrong domain will be entirely for the
4376 * only other domain on two domain systems. In this case we can
4377 * simply cache them. Otherwise we need to sort them back to
4378 * correct domains.
4379 */
4380 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4381 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4382 zone_free_cross(zone, bucket, udata);
4383 return;
4384 }
4385 #endif
4386
4387 /*
4388 * Attempt to save the bucket in the zone's domain bucket cache.
4389 */
4390 CTR3(KTR_UMA,
4391 "uma_zfree: zone %s(%p) putting bucket %p on free list",
4392 zone->uz_name, zone, bucket);
4393 /* ub_cnt is pointing to the last free item */
4394 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4395 itemdomain = zone_domain_lowest(zone, itemdomain);
4396 zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4397 }
4398
4399 /*
4400 * Populate a free or cross bucket for the current cpu cache. Free any
4401 * existing full bucket either to the zone cache or back to the slab layer.
4402 *
4403 * Enters and returns in a critical section. false return indicates that
4404 * we can not satisfy this free in the cache layer. true indicates that
4405 * the caller should retry.
4406 */
4407 static __noinline bool
cache_free(uma_zone_t zone,uma_cache_t cache,void * udata,void * item,int itemdomain)4408 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item,
4409 int itemdomain)
4410 {
4411 uma_cache_bucket_t cbucket;
4412 uma_bucket_t newbucket, bucket;
4413
4414 CRITICAL_ASSERT(curthread);
4415
4416 if (zone->uz_bucket_size == 0)
4417 return false;
4418
4419 cache = &zone->uz_cpu[curcpu];
4420 newbucket = NULL;
4421
4422 /*
4423 * FIRSTTOUCH domains need to free to the correct zdom. When
4424 * enabled this is the zdom of the item. The bucket is the
4425 * cross bucket if the current domain and itemdomain do not match.
4426 */
4427 cbucket = &cache->uc_freebucket;
4428 #ifdef NUMA
4429 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4430 if (PCPU_GET(domain) != itemdomain) {
4431 cbucket = &cache->uc_crossbucket;
4432 if (cbucket->ucb_cnt != 0)
4433 counter_u64_add(zone->uz_xdomain,
4434 cbucket->ucb_cnt);
4435 }
4436 }
4437 #endif
4438 bucket = cache_bucket_unload(cbucket);
4439 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4440 ("cache_free: Entered with non-full free bucket."));
4441
4442 /* We are no longer associated with this CPU. */
4443 critical_exit();
4444
4445 /*
4446 * Don't let SMR zones operate without a free bucket. Force
4447 * a synchronize and re-use this one. We will only degrade
4448 * to a synchronize every bucket_size items rather than every
4449 * item if we fail to allocate a bucket.
4450 */
4451 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4452 if (bucket != NULL)
4453 bucket->ub_seq = smr_advance(zone->uz_smr);
4454 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4455 if (newbucket == NULL && bucket != NULL) {
4456 bucket_drain(zone, bucket);
4457 newbucket = bucket;
4458 bucket = NULL;
4459 }
4460 } else if (!bucketdisable)
4461 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4462
4463 if (bucket != NULL)
4464 zone_free_bucket(zone, bucket, udata, itemdomain, true);
4465
4466 critical_enter();
4467 if ((bucket = newbucket) == NULL)
4468 return (false);
4469 cache = &zone->uz_cpu[curcpu];
4470 #ifdef NUMA
4471 /*
4472 * Check to see if we should be populating the cross bucket. If it
4473 * is already populated we will fall through and attempt to populate
4474 * the free bucket.
4475 */
4476 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4477 if (PCPU_GET(domain) != itemdomain &&
4478 cache->uc_crossbucket.ucb_bucket == NULL) {
4479 cache_bucket_load_cross(cache, bucket);
4480 return (true);
4481 }
4482 }
4483 #endif
4484 /*
4485 * We may have lost the race to fill the bucket or switched CPUs.
4486 */
4487 if (cache->uc_freebucket.ucb_bucket != NULL) {
4488 critical_exit();
4489 bucket_free(zone, bucket, udata);
4490 critical_enter();
4491 } else
4492 cache_bucket_load_free(cache, bucket);
4493
4494 return (true);
4495 }
4496
4497 static void
slab_free_item(uma_zone_t zone,uma_slab_t slab,void * item)4498 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4499 {
4500 uma_keg_t keg;
4501 uma_domain_t dom;
4502 int freei;
4503
4504 keg = zone->uz_keg;
4505 KEG_LOCK_ASSERT(keg, slab->us_domain);
4506
4507 /* Do we need to remove from any lists? */
4508 dom = &keg->uk_domain[slab->us_domain];
4509 if (slab->us_freecount + 1 == keg->uk_ipers) {
4510 LIST_REMOVE(slab, us_link);
4511 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4512 dom->ud_free_slabs++;
4513 } else if (slab->us_freecount == 0) {
4514 LIST_REMOVE(slab, us_link);
4515 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4516 }
4517
4518 /* Slab management. */
4519 freei = slab_item_index(slab, keg, item);
4520 BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4521 slab->us_freecount++;
4522
4523 /* Keg statistics. */
4524 dom->ud_free_items++;
4525 }
4526
4527 static void
zone_release(void * arg,void ** bucket,int cnt)4528 zone_release(void *arg, void **bucket, int cnt)
4529 {
4530 struct mtx *lock;
4531 uma_zone_t zone;
4532 uma_slab_t slab;
4533 uma_keg_t keg;
4534 uint8_t *mem;
4535 void *item;
4536 int i;
4537
4538 zone = arg;
4539 keg = zone->uz_keg;
4540 lock = NULL;
4541 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4542 lock = KEG_LOCK(keg, 0);
4543 for (i = 0; i < cnt; i++) {
4544 item = bucket[i];
4545 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4546 slab = vtoslab((vm_offset_t)item);
4547 } else {
4548 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4549 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4550 slab = hash_sfind(&keg->uk_hash, mem);
4551 else
4552 slab = (uma_slab_t)(mem + keg->uk_pgoff);
4553 }
4554 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4555 if (lock != NULL)
4556 mtx_unlock(lock);
4557 lock = KEG_LOCK(keg, slab->us_domain);
4558 }
4559 slab_free_item(zone, slab, item);
4560 }
4561 if (lock != NULL)
4562 mtx_unlock(lock);
4563 }
4564
4565 /*
4566 * Frees a single item to any zone.
4567 *
4568 * Arguments:
4569 * zone The zone to free to
4570 * item The item we're freeing
4571 * udata User supplied data for the dtor
4572 * skip Skip dtors and finis
4573 */
4574 static __noinline void
zone_free_item(uma_zone_t zone,void * item,void * udata,enum zfreeskip skip)4575 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4576 {
4577
4578 /*
4579 * If a free is sent directly to an SMR zone we have to
4580 * synchronize immediately because the item can instantly
4581 * be reallocated. This should only happen in degenerate
4582 * cases when no memory is available for per-cpu caches.
4583 */
4584 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4585 smr_synchronize(zone->uz_smr);
4586
4587 item_dtor(zone, item, zone->uz_size, udata, skip);
4588
4589 if (skip < SKIP_FINI && zone->uz_fini)
4590 zone->uz_fini(item, zone->uz_size);
4591
4592 zone->uz_release(zone->uz_arg, &item, 1);
4593
4594 if (skip & SKIP_CNT)
4595 return;
4596
4597 counter_u64_add(zone->uz_frees, 1);
4598
4599 if (zone->uz_max_items > 0)
4600 zone_free_limit(zone, 1);
4601 }
4602
4603 /* See uma.h */
4604 int
uma_zone_set_max(uma_zone_t zone,int nitems)4605 uma_zone_set_max(uma_zone_t zone, int nitems)
4606 {
4607
4608 /*
4609 * If the limit is small, we may need to constrain the maximum per-CPU
4610 * cache size, or disable caching entirely.
4611 */
4612 uma_zone_set_maxcache(zone, nitems);
4613
4614 /*
4615 * XXX This can misbehave if the zone has any allocations with
4616 * no limit and a limit is imposed. There is currently no
4617 * way to clear a limit.
4618 */
4619 ZONE_LOCK(zone);
4620 zone->uz_max_items = nitems;
4621 zone->uz_flags |= UMA_ZFLAG_LIMIT;
4622 zone_update_caches(zone);
4623 /* We may need to wake waiters. */
4624 wakeup(&zone->uz_max_items);
4625 ZONE_UNLOCK(zone);
4626
4627 return (nitems);
4628 }
4629
4630 /* See uma.h */
4631 void
uma_zone_set_maxcache(uma_zone_t zone,int nitems)4632 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4633 {
4634 int bpcpu, bpdom, bsize, nb;
4635
4636 ZONE_LOCK(zone);
4637
4638 /*
4639 * Compute a lower bound on the number of items that may be cached in
4640 * the zone. Each CPU gets at least two buckets, and for cross-domain
4641 * frees we use an additional bucket per CPU and per domain. Select the
4642 * largest bucket size that does not exceed half of the requested limit,
4643 * with the left over space given to the full bucket cache.
4644 */
4645 bpdom = 0;
4646 bpcpu = 2;
4647 #ifdef NUMA
4648 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4649 bpcpu++;
4650 bpdom++;
4651 }
4652 #endif
4653 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4654 bsize = nitems / nb / 2;
4655 if (bsize > BUCKET_MAX)
4656 bsize = BUCKET_MAX;
4657 else if (bsize == 0 && nitems / nb > 0)
4658 bsize = 1;
4659 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4660 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4661 zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4662 zone->uz_bucket_max = nitems - nb * bsize;
4663 ZONE_UNLOCK(zone);
4664 }
4665
4666 /* See uma.h */
4667 int
uma_zone_get_max(uma_zone_t zone)4668 uma_zone_get_max(uma_zone_t zone)
4669 {
4670 int nitems;
4671
4672 nitems = atomic_load_64(&zone->uz_max_items);
4673
4674 return (nitems);
4675 }
4676
4677 /* See uma.h */
4678 void
uma_zone_set_warning(uma_zone_t zone,const char * warning)4679 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4680 {
4681
4682 ZONE_ASSERT_COLD(zone);
4683 zone->uz_warning = warning;
4684 }
4685
4686 /* See uma.h */
4687 void
uma_zone_set_maxaction(uma_zone_t zone,uma_maxaction_t maxaction)4688 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4689 {
4690
4691 ZONE_ASSERT_COLD(zone);
4692 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4693 }
4694
4695 /* See uma.h */
4696 int
uma_zone_get_cur(uma_zone_t zone)4697 uma_zone_get_cur(uma_zone_t zone)
4698 {
4699 int64_t nitems;
4700 u_int i;
4701
4702 nitems = 0;
4703 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4704 nitems = counter_u64_fetch(zone->uz_allocs) -
4705 counter_u64_fetch(zone->uz_frees);
4706 CPU_FOREACH(i)
4707 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4708 atomic_load_64(&zone->uz_cpu[i].uc_frees);
4709
4710 return (nitems < 0 ? 0 : nitems);
4711 }
4712
4713 static uint64_t
uma_zone_get_allocs(uma_zone_t zone)4714 uma_zone_get_allocs(uma_zone_t zone)
4715 {
4716 uint64_t nitems;
4717 u_int i;
4718
4719 nitems = 0;
4720 if (zone->uz_allocs != EARLY_COUNTER)
4721 nitems = counter_u64_fetch(zone->uz_allocs);
4722 CPU_FOREACH(i)
4723 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
4724
4725 return (nitems);
4726 }
4727
4728 static uint64_t
uma_zone_get_frees(uma_zone_t zone)4729 uma_zone_get_frees(uma_zone_t zone)
4730 {
4731 uint64_t nitems;
4732 u_int i;
4733
4734 nitems = 0;
4735 if (zone->uz_frees != EARLY_COUNTER)
4736 nitems = counter_u64_fetch(zone->uz_frees);
4737 CPU_FOREACH(i)
4738 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
4739
4740 return (nitems);
4741 }
4742
4743 #ifdef INVARIANTS
4744 /* Used only for KEG_ASSERT_COLD(). */
4745 static uint64_t
uma_keg_get_allocs(uma_keg_t keg)4746 uma_keg_get_allocs(uma_keg_t keg)
4747 {
4748 uma_zone_t z;
4749 uint64_t nitems;
4750
4751 nitems = 0;
4752 LIST_FOREACH(z, &keg->uk_zones, uz_link)
4753 nitems += uma_zone_get_allocs(z);
4754
4755 return (nitems);
4756 }
4757 #endif
4758
4759 /* See uma.h */
4760 void
uma_zone_set_init(uma_zone_t zone,uma_init uminit)4761 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
4762 {
4763 uma_keg_t keg;
4764
4765 KEG_GET(zone, keg);
4766 KEG_ASSERT_COLD(keg);
4767 keg->uk_init = uminit;
4768 }
4769
4770 /* See uma.h */
4771 void
uma_zone_set_fini(uma_zone_t zone,uma_fini fini)4772 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
4773 {
4774 uma_keg_t keg;
4775
4776 KEG_GET(zone, keg);
4777 KEG_ASSERT_COLD(keg);
4778 keg->uk_fini = fini;
4779 }
4780
4781 /* See uma.h */
4782 void
uma_zone_set_zinit(uma_zone_t zone,uma_init zinit)4783 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
4784 {
4785
4786 ZONE_ASSERT_COLD(zone);
4787 zone->uz_init = zinit;
4788 }
4789
4790 /* See uma.h */
4791 void
uma_zone_set_zfini(uma_zone_t zone,uma_fini zfini)4792 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
4793 {
4794
4795 ZONE_ASSERT_COLD(zone);
4796 zone->uz_fini = zfini;
4797 }
4798
4799 /* See uma.h */
4800 void
uma_zone_set_freef(uma_zone_t zone,uma_free freef)4801 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
4802 {
4803 uma_keg_t keg;
4804
4805 KEG_GET(zone, keg);
4806 KEG_ASSERT_COLD(keg);
4807 keg->uk_freef = freef;
4808 }
4809
4810 /* See uma.h */
4811 void
uma_zone_set_allocf(uma_zone_t zone,uma_alloc allocf)4812 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
4813 {
4814 uma_keg_t keg;
4815
4816 KEG_GET(zone, keg);
4817 KEG_ASSERT_COLD(keg);
4818 keg->uk_allocf = allocf;
4819 }
4820
4821 /* See uma.h */
4822 void
uma_zone_set_smr(uma_zone_t zone,smr_t smr)4823 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
4824 {
4825
4826 ZONE_ASSERT_COLD(zone);
4827
4828 KASSERT(smr != NULL, ("Got NULL smr"));
4829 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4830 ("zone %p (%s) already uses SMR", zone, zone->uz_name));
4831 zone->uz_flags |= UMA_ZONE_SMR;
4832 zone->uz_smr = smr;
4833 zone_update_caches(zone);
4834 }
4835
4836 smr_t
uma_zone_get_smr(uma_zone_t zone)4837 uma_zone_get_smr(uma_zone_t zone)
4838 {
4839
4840 return (zone->uz_smr);
4841 }
4842
4843 /* See uma.h */
4844 void
uma_zone_reserve(uma_zone_t zone,int items)4845 uma_zone_reserve(uma_zone_t zone, int items)
4846 {
4847 uma_keg_t keg;
4848
4849 KEG_GET(zone, keg);
4850 KEG_ASSERT_COLD(keg);
4851 keg->uk_reserve = items;
4852 }
4853
4854 #ifndef FSTACK
4855 /* See uma.h */
4856 int
uma_zone_reserve_kva(uma_zone_t zone,int count)4857 uma_zone_reserve_kva(uma_zone_t zone, int count)
4858 {
4859 uma_keg_t keg;
4860 vm_offset_t kva;
4861 u_int pages;
4862
4863 KEG_GET(zone, keg);
4864 KEG_ASSERT_COLD(keg);
4865 ZONE_ASSERT_COLD(zone);
4866
4867 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
4868
4869 #ifdef UMA_MD_SMALL_ALLOC
4870 if (keg->uk_ppera > 1) {
4871 #else
4872 if (1) {
4873 #endif
4874 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
4875 if (kva == 0)
4876 return (0);
4877 } else
4878 kva = 0;
4879
4880 MPASS(keg->uk_kva == 0);
4881 keg->uk_kva = kva;
4882 keg->uk_offset = 0;
4883 zone->uz_max_items = pages * keg->uk_ipers;
4884 #ifdef UMA_MD_SMALL_ALLOC
4885 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
4886 #else
4887 keg->uk_allocf = noobj_alloc;
4888 #endif
4889 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4890 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4891 zone_update_caches(zone);
4892
4893 return (1);
4894 }
4895 #endif
4896
4897 /* See uma.h */
4898 void
4899 uma_prealloc(uma_zone_t zone, int items)
4900 {
4901 struct vm_domainset_iter di;
4902 uma_domain_t dom;
4903 uma_slab_t slab;
4904 uma_keg_t keg;
4905 int aflags, domain, slabs;
4906
4907 KEG_GET(zone, keg);
4908 slabs = howmany(items, keg->uk_ipers);
4909 while (slabs-- > 0) {
4910 aflags = M_NOWAIT;
4911 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4912 &aflags);
4913 for (;;) {
4914 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
4915 aflags);
4916 if (slab != NULL) {
4917 dom = &keg->uk_domain[slab->us_domain];
4918 /*
4919 * keg_alloc_slab() always returns a slab on the
4920 * partial list.
4921 */
4922 LIST_REMOVE(slab, us_link);
4923 LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
4924 us_link);
4925 dom->ud_free_slabs++;
4926 KEG_UNLOCK(keg, slab->us_domain);
4927 break;
4928 }
4929 if (vm_domainset_iter_policy(&di, &domain) != 0)
4930 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4931 }
4932 }
4933 }
4934
4935 /*
4936 * Returns a snapshot of memory consumption in bytes.
4937 */
4938 size_t
4939 uma_zone_memory(uma_zone_t zone)
4940 {
4941 size_t sz;
4942 int i;
4943
4944 sz = 0;
4945 if (zone->uz_flags & UMA_ZFLAG_CACHE) {
4946 for (i = 0; i < vm_ndomains; i++)
4947 sz += ZDOM_GET(zone, i)->uzd_nitems;
4948 return (sz * zone->uz_size);
4949 }
4950 for (i = 0; i < vm_ndomains; i++)
4951 sz += zone->uz_keg->uk_domain[i].ud_pages;
4952
4953 return (sz * PAGE_SIZE);
4954 }
4955
4956 /* See uma.h */
4957 void
4958 uma_reclaim(int req)
4959 {
4960
4961 CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
4962 sx_xlock(&uma_reclaim_lock);
4963 bucket_enable();
4964
4965 switch (req) {
4966 case UMA_RECLAIM_TRIM:
4967 zone_foreach(zone_trim, NULL);
4968 break;
4969 case UMA_RECLAIM_DRAIN:
4970 case UMA_RECLAIM_DRAIN_CPU:
4971 zone_foreach(zone_drain, NULL);
4972 if (req == UMA_RECLAIM_DRAIN_CPU) {
4973 pcpu_cache_drain_safe(NULL);
4974 zone_foreach(zone_drain, NULL);
4975 }
4976 break;
4977 default:
4978 panic("unhandled reclamation request %d", req);
4979 }
4980
4981 /*
4982 * Some slabs may have been freed but this zone will be visited early
4983 * we visit again so that we can free pages that are empty once other
4984 * zones are drained. We have to do the same for buckets.
4985 */
4986 zone_drain(slabzones[0], NULL);
4987 zone_drain(slabzones[1], NULL);
4988 bucket_zone_drain();
4989 sx_xunlock(&uma_reclaim_lock);
4990 }
4991
4992 static volatile int uma_reclaim_needed;
4993
4994 void
4995 uma_reclaim_wakeup(void)
4996 {
4997
4998 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
4999 wakeup(uma_reclaim);
5000 }
5001
5002 void
5003 uma_reclaim_worker(void *arg __unused)
5004 {
5005
5006 for (;;) {
5007 sx_xlock(&uma_reclaim_lock);
5008 while (atomic_load_int(&uma_reclaim_needed) == 0)
5009 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5010 hz);
5011 sx_xunlock(&uma_reclaim_lock);
5012 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5013 uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5014 atomic_store_int(&uma_reclaim_needed, 0);
5015 /* Don't fire more than once per-second. */
5016 pause("umarclslp", hz);
5017 }
5018 }
5019
5020 /* See uma.h */
5021 void
5022 uma_zone_reclaim(uma_zone_t zone, int req)
5023 {
5024
5025 switch (req) {
5026 case UMA_RECLAIM_TRIM:
5027 zone_trim(zone, NULL);
5028 break;
5029 case UMA_RECLAIM_DRAIN:
5030 zone_drain(zone, NULL);
5031 break;
5032 case UMA_RECLAIM_DRAIN_CPU:
5033 pcpu_cache_drain_safe(zone);
5034 zone_drain(zone, NULL);
5035 break;
5036 default:
5037 panic("unhandled reclamation request %d", req);
5038 }
5039 }
5040
5041 /* See uma.h */
5042 int
5043 uma_zone_exhausted(uma_zone_t zone)
5044 {
5045
5046 return (atomic_load_32(&zone->uz_sleepers) > 0);
5047 }
5048
5049 unsigned long
5050 uma_limit(void)
5051 {
5052
5053 return (uma_kmem_limit);
5054 }
5055
5056 void
5057 uma_set_limit(unsigned long limit)
5058 {
5059
5060 uma_kmem_limit = limit;
5061 }
5062
5063 unsigned long
5064 uma_size(void)
5065 {
5066
5067 return (atomic_load_long(&uma_kmem_total));
5068 }
5069
5070 long
5071 uma_avail(void)
5072 {
5073
5074 return (uma_kmem_limit - uma_size());
5075 }
5076
5077 #ifdef DDB
5078 /*
5079 * Generate statistics across both the zone and its per-cpu cache's. Return
5080 * desired statistics if the pointer is non-NULL for that statistic.
5081 *
5082 * Note: does not update the zone statistics, as it can't safely clear the
5083 * per-CPU cache statistic.
5084 *
5085 */
5086 static void
5087 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5088 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5089 {
5090 uma_cache_t cache;
5091 uint64_t allocs, frees, sleeps, xdomain;
5092 int cachefree, cpu;
5093
5094 allocs = frees = sleeps = xdomain = 0;
5095 cachefree = 0;
5096 CPU_FOREACH(cpu) {
5097 cache = &z->uz_cpu[cpu];
5098 cachefree += cache->uc_allocbucket.ucb_cnt;
5099 cachefree += cache->uc_freebucket.ucb_cnt;
5100 xdomain += cache->uc_crossbucket.ucb_cnt;
5101 cachefree += cache->uc_crossbucket.ucb_cnt;
5102 allocs += cache->uc_allocs;
5103 frees += cache->uc_frees;
5104 }
5105 allocs += counter_u64_fetch(z->uz_allocs);
5106 frees += counter_u64_fetch(z->uz_frees);
5107 xdomain += counter_u64_fetch(z->uz_xdomain);
5108 sleeps += z->uz_sleeps;
5109 if (cachefreep != NULL)
5110 *cachefreep = cachefree;
5111 if (allocsp != NULL)
5112 *allocsp = allocs;
5113 if (freesp != NULL)
5114 *freesp = frees;
5115 if (sleepsp != NULL)
5116 *sleepsp = sleeps;
5117 if (xdomainp != NULL)
5118 *xdomainp = xdomain;
5119 }
5120 #endif /* DDB */
5121
5122 static int
5123 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5124 {
5125 uma_keg_t kz;
5126 uma_zone_t z;
5127 int count;
5128
5129 count = 0;
5130 rw_rlock(&uma_rwlock);
5131 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5132 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5133 count++;
5134 }
5135 LIST_FOREACH(z, &uma_cachezones, uz_link)
5136 count++;
5137
5138 rw_runlock(&uma_rwlock);
5139 return (sysctl_handle_int(oidp, &count, 0, req));
5140 }
5141
5142 static void
5143 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5144 struct uma_percpu_stat *ups, bool internal)
5145 {
5146 uma_zone_domain_t zdom;
5147 uma_cache_t cache;
5148 int i;
5149
5150 for (i = 0; i < vm_ndomains; i++) {
5151 zdom = ZDOM_GET(z, i);
5152 uth->uth_zone_free += zdom->uzd_nitems;
5153 }
5154 uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5155 uth->uth_frees = counter_u64_fetch(z->uz_frees);
5156 uth->uth_fails = counter_u64_fetch(z->uz_fails);
5157 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5158 uth->uth_sleeps = z->uz_sleeps;
5159
5160 for (i = 0; i < mp_maxid + 1; i++) {
5161 bzero(&ups[i], sizeof(*ups));
5162 if (internal || CPU_ABSENT(i))
5163 continue;
5164 cache = &z->uz_cpu[i];
5165 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5166 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5167 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5168 ups[i].ups_allocs = cache->uc_allocs;
5169 ups[i].ups_frees = cache->uc_frees;
5170 }
5171 }
5172
5173 static int
5174 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5175 {
5176 struct uma_stream_header ush;
5177 struct uma_type_header uth;
5178 struct uma_percpu_stat *ups;
5179 struct sbuf sbuf;
5180 uma_keg_t kz;
5181 uma_zone_t z;
5182 uint64_t items;
5183 uint32_t kfree, pages;
5184 int count, error, i;
5185
5186 error = sysctl_wire_old_buffer(req, 0);
5187 if (error != 0)
5188 return (error);
5189 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5190 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5191 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5192
5193 count = 0;
5194 rw_rlock(&uma_rwlock);
5195 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5196 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5197 count++;
5198 }
5199
5200 LIST_FOREACH(z, &uma_cachezones, uz_link)
5201 count++;
5202
5203 /*
5204 * Insert stream header.
5205 */
5206 bzero(&ush, sizeof(ush));
5207 ush.ush_version = UMA_STREAM_VERSION;
5208 ush.ush_maxcpus = (mp_maxid + 1);
5209 ush.ush_count = count;
5210 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5211
5212 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5213 kfree = pages = 0;
5214 for (i = 0; i < vm_ndomains; i++) {
5215 kfree += kz->uk_domain[i].ud_free_items;
5216 pages += kz->uk_domain[i].ud_pages;
5217 }
5218 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5219 bzero(&uth, sizeof(uth));
5220 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5221 uth.uth_align = kz->uk_align;
5222 uth.uth_size = kz->uk_size;
5223 uth.uth_rsize = kz->uk_rsize;
5224 if (z->uz_max_items > 0) {
5225 items = UZ_ITEMS_COUNT(z->uz_items);
5226 uth.uth_pages = (items / kz->uk_ipers) *
5227 kz->uk_ppera;
5228 } else
5229 uth.uth_pages = pages;
5230 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5231 kz->uk_ppera;
5232 uth.uth_limit = z->uz_max_items;
5233 uth.uth_keg_free = kfree;
5234
5235 /*
5236 * A zone is secondary is it is not the first entry
5237 * on the keg's zone list.
5238 */
5239 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5240 (LIST_FIRST(&kz->uk_zones) != z))
5241 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5242 uma_vm_zone_stats(&uth, z, &sbuf, ups,
5243 kz->uk_flags & UMA_ZFLAG_INTERNAL);
5244 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5245 for (i = 0; i < mp_maxid + 1; i++)
5246 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5247 }
5248 }
5249 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5250 bzero(&uth, sizeof(uth));
5251 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5252 uth.uth_size = z->uz_size;
5253 uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5254 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5255 for (i = 0; i < mp_maxid + 1; i++)
5256 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5257 }
5258
5259 rw_runlock(&uma_rwlock);
5260 error = sbuf_finish(&sbuf);
5261 sbuf_delete(&sbuf);
5262 free(ups, M_TEMP);
5263 return (error);
5264 }
5265
5266 int
5267 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5268 {
5269 uma_zone_t zone = *(uma_zone_t *)arg1;
5270 int error, max;
5271
5272 max = uma_zone_get_max(zone);
5273 error = sysctl_handle_int(oidp, &max, 0, req);
5274 if (error || !req->newptr)
5275 return (error);
5276
5277 uma_zone_set_max(zone, max);
5278
5279 return (0);
5280 }
5281
5282 int
5283 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5284 {
5285 uma_zone_t zone;
5286 int cur;
5287
5288 /*
5289 * Some callers want to add sysctls for global zones that
5290 * may not yet exist so they pass a pointer to a pointer.
5291 */
5292 if (arg2 == 0)
5293 zone = *(uma_zone_t *)arg1;
5294 else
5295 zone = arg1;
5296 cur = uma_zone_get_cur(zone);
5297 return (sysctl_handle_int(oidp, &cur, 0, req));
5298 }
5299
5300 static int
5301 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5302 {
5303 uma_zone_t zone = arg1;
5304 uint64_t cur;
5305
5306 cur = uma_zone_get_allocs(zone);
5307 return (sysctl_handle_64(oidp, &cur, 0, req));
5308 }
5309
5310 static int
5311 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5312 {
5313 uma_zone_t zone = arg1;
5314 uint64_t cur;
5315
5316 cur = uma_zone_get_frees(zone);
5317 return (sysctl_handle_64(oidp, &cur, 0, req));
5318 }
5319
5320 static int
5321 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5322 {
5323 struct sbuf sbuf;
5324 uma_zone_t zone = arg1;
5325 int error;
5326
5327 sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5328 #pragma GCC diagnostic ignored "-Wformat"
5329 #pragma GCC diagnostic ignored "-Wformat-extra-args"
5330 if (zone->uz_flags != 0)
5331 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5332 else
5333 sbuf_printf(&sbuf, "0");
5334 #pragma GCC diagnostic error "-Wformat"
5335 #pragma GCC diagnostic ignored "-Wformat-extra-args"
5336 error = sbuf_finish(&sbuf);
5337 sbuf_delete(&sbuf);
5338
5339 return (error);
5340 }
5341
5342 static int
5343 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5344 {
5345 uma_keg_t keg = arg1;
5346 int avail, effpct, total;
5347
5348 total = keg->uk_ppera * PAGE_SIZE;
5349 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5350 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5351 /*
5352 * We consider the client's requested size and alignment here, not the
5353 * real size determination uk_rsize, because we also adjust the real
5354 * size for internal implementation reasons (max bitset size).
5355 */
5356 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5357 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5358 avail *= mp_maxid + 1;
5359 effpct = 100 * avail / total;
5360 return (sysctl_handle_int(oidp, &effpct, 0, req));
5361 }
5362
5363 static int
5364 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5365 {
5366 uma_zone_t zone = arg1;
5367 uint64_t cur;
5368
5369 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5370 return (sysctl_handle_64(oidp, &cur, 0, req));
5371 }
5372
5373 #ifdef INVARIANTS
5374 static uma_slab_t
5375 uma_dbg_getslab(uma_zone_t zone, void *item)
5376 {
5377 uma_slab_t slab;
5378 uma_keg_t keg;
5379 uint8_t *mem;
5380
5381 /*
5382 * It is safe to return the slab here even though the
5383 * zone is unlocked because the item's allocation state
5384 * essentially holds a reference.
5385 */
5386 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5387 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5388 return (NULL);
5389 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5390 return (vtoslab((vm_offset_t)mem));
5391 keg = zone->uz_keg;
5392 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5393 return ((uma_slab_t)(mem + keg->uk_pgoff));
5394 KEG_LOCK(keg, 0);
5395 slab = hash_sfind(&keg->uk_hash, mem);
5396 KEG_UNLOCK(keg, 0);
5397
5398 return (slab);
5399 }
5400
5401 static bool
5402 uma_dbg_zskip(uma_zone_t zone, void *mem)
5403 {
5404
5405 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5406 return (true);
5407
5408 return (uma_dbg_kskip(zone->uz_keg, mem));
5409 }
5410
5411 static bool
5412 uma_dbg_kskip(uma_keg_t keg, void *mem)
5413 {
5414 uintptr_t idx;
5415
5416 if (dbg_divisor == 0)
5417 return (true);
5418
5419 if (dbg_divisor == 1)
5420 return (false);
5421
5422 idx = (uintptr_t)mem >> PAGE_SHIFT;
5423 if (keg->uk_ipers > 1) {
5424 idx *= keg->uk_ipers;
5425 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5426 }
5427
5428 if ((idx / dbg_divisor) * dbg_divisor != idx) {
5429 counter_u64_add(uma_skip_cnt, 1);
5430 return (true);
5431 }
5432 counter_u64_add(uma_dbg_cnt, 1);
5433
5434 return (false);
5435 }
5436
5437 /*
5438 * Set up the slab's freei data such that uma_dbg_free can function.
5439 *
5440 */
5441 static void
5442 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5443 {
5444 uma_keg_t keg;
5445 int freei;
5446
5447 if (slab == NULL) {
5448 slab = uma_dbg_getslab(zone, item);
5449 if (slab == NULL)
5450 panic("uma: item %p did not belong to zone %s",
5451 item, zone->uz_name);
5452 }
5453 keg = zone->uz_keg;
5454 freei = slab_item_index(slab, keg, item);
5455
5456 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5457 slab_dbg_bits(slab, keg)))
5458 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5459 item, zone, zone->uz_name, slab, freei);
5460 }
5461
5462 /*
5463 * Verifies freed addresses. Checks for alignment, valid slab membership
5464 * and duplicate frees.
5465 *
5466 */
5467 static void
5468 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5469 {
5470 uma_keg_t keg;
5471 int freei;
5472
5473 if (slab == NULL) {
5474 slab = uma_dbg_getslab(zone, item);
5475 if (slab == NULL)
5476 panic("uma: Freed item %p did not belong to zone %s",
5477 item, zone->uz_name);
5478 }
5479 keg = zone->uz_keg;
5480 freei = slab_item_index(slab, keg, item);
5481
5482 if (freei >= keg->uk_ipers)
5483 panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5484 item, zone, zone->uz_name, slab, freei);
5485
5486 if (slab_item(slab, keg, freei) != item)
5487 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5488 item, zone, zone->uz_name, slab, freei);
5489
5490 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5491 slab_dbg_bits(slab, keg)))
5492 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5493 item, zone, zone->uz_name, slab, freei);
5494 }
5495 #endif /* INVARIANTS */
5496
5497 #ifdef DDB
5498 static int64_t
5499 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5500 uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5501 {
5502 uint64_t frees;
5503 int i;
5504
5505 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5506 *allocs = counter_u64_fetch(z->uz_allocs);
5507 frees = counter_u64_fetch(z->uz_frees);
5508 *sleeps = z->uz_sleeps;
5509 *cachefree = 0;
5510 *xdomain = 0;
5511 } else
5512 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5513 xdomain);
5514 for (i = 0; i < vm_ndomains; i++) {
5515 *cachefree += ZDOM_GET(z, i)->uzd_nitems;
5516 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5517 (LIST_FIRST(&kz->uk_zones) != z)))
5518 *cachefree += kz->uk_domain[i].ud_free_items;
5519 }
5520 *used = *allocs - frees;
5521 return (((int64_t)*used + *cachefree) * kz->uk_size);
5522 }
5523
5524 DB_SHOW_COMMAND(uma, db_show_uma)
5525 {
5526 const char *fmt_hdr, *fmt_entry;
5527 uma_keg_t kz;
5528 uma_zone_t z;
5529 uint64_t allocs, used, sleeps, xdomain;
5530 long cachefree;
5531 /* variables for sorting */
5532 uma_keg_t cur_keg;
5533 uma_zone_t cur_zone, last_zone;
5534 int64_t cur_size, last_size, size;
5535 int ties;
5536
5537 /* /i option produces machine-parseable CSV output */
5538 if (modif[0] == 'i') {
5539 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5540 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5541 } else {
5542 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5543 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5544 }
5545
5546 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5547 "Sleeps", "Bucket", "Total Mem", "XFree");
5548
5549 /* Sort the zones with largest size first. */
5550 last_zone = NULL;
5551 last_size = INT64_MAX;
5552 for (;;) {
5553 cur_zone = NULL;
5554 cur_size = -1;
5555 ties = 0;
5556 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5557 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5558 /*
5559 * In the case of size ties, print out zones
5560 * in the order they are encountered. That is,
5561 * when we encounter the most recently output
5562 * zone, we have already printed all preceding
5563 * ties, and we must print all following ties.
5564 */
5565 if (z == last_zone) {
5566 ties = 1;
5567 continue;
5568 }
5569 size = get_uma_stats(kz, z, &allocs, &used,
5570 &sleeps, &cachefree, &xdomain);
5571 if (size > cur_size && size < last_size + ties)
5572 {
5573 cur_size = size;
5574 cur_zone = z;
5575 cur_keg = kz;
5576 }
5577 }
5578 }
5579 if (cur_zone == NULL)
5580 break;
5581
5582 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5583 &sleeps, &cachefree, &xdomain);
5584 db_printf(fmt_entry, cur_zone->uz_name,
5585 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5586 (uintmax_t)allocs, (uintmax_t)sleeps,
5587 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5588 xdomain);
5589
5590 if (db_pager_quit)
5591 return;
5592 last_zone = cur_zone;
5593 last_size = cur_size;
5594 }
5595 }
5596
5597 DB_SHOW_COMMAND(umacache, db_show_umacache)
5598 {
5599 uma_zone_t z;
5600 uint64_t allocs, frees;
5601 long cachefree;
5602 int i;
5603
5604 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5605 "Requests", "Bucket");
5606 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5607 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5608 for (i = 0; i < vm_ndomains; i++)
5609 cachefree += ZDOM_GET(z, i)->uzd_nitems;
5610 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5611 z->uz_name, (uintmax_t)z->uz_size,
5612 (intmax_t)(allocs - frees), cachefree,
5613 (uintmax_t)allocs, z->uz_bucket_size);
5614 if (db_pager_quit)
5615 return;
5616 }
5617 }
5618 #endif /* DDB */
5619