1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44
45 /*
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
50 *
51 * 1. they are committed to the pool by the DMU transaction group
52 * (txg), at which point they can be discarded; or
53 * 2. they are committed to the on-disk ZIL for the dataset being
54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 * requirement).
56 *
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
61 *
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
65 *
66 * - a single, per-dataset, ZIL header; which points to a chain of
67 * - zero or more ZIL blocks; each of which contains
68 * - zero or more ZIL records
69 *
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
73 *
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
77 *
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
82 */
83
84 /*
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
89 */
90 int zfs_commit_timeout_pct = 5;
91
92 /*
93 * Disable intent logging replay. This global ZIL switch affects all pools.
94 */
95 int zil_replay_disable = 0;
96 SYSCTL_DECL(_vfs_zfs);
97 SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98 &zil_replay_disable, 0, "Disable intent logging replay");
99
100 /*
101 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
102 * the disk(s) by the ZIL after an LWB write has completed. Setting this
103 * will cause ZIL corruption on power loss if a volatile out-of-order
104 * write cache is enabled.
105 */
106 boolean_t zil_nocacheflush = B_FALSE;
107 SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_nocacheflush, CTLFLAG_RWTUN,
108 &zil_nocacheflush, 0, "Disable ZIL cache flush");
109
110 boolean_t zfs_trim_enabled = B_TRUE;
111 SYSCTL_DECL(_vfs_zfs_trim);
112 SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
113 "Enable ZFS TRIM");
114
115 /*
116 * Limit SLOG write size per commit executed with synchronous priority.
117 * Any writes above that will be executed with lower (asynchronous) priority
118 * to limit potential SLOG device abuse by single active ZIL writer.
119 */
120 uint64_t zil_slog_bulk = 768 * 1024;
121 SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
122 &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
123
124 static kmem_cache_t *zil_lwb_cache;
125 static kmem_cache_t *zil_zcw_cache;
126
127 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
128 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
129
130 static int
zil_bp_compare(const void * x1,const void * x2)131 zil_bp_compare(const void *x1, const void *x2)
132 {
133 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
134 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
135
136 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
137 if (likely(cmp))
138 return (cmp);
139
140 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
141 }
142
143 static void
zil_bp_tree_init(zilog_t * zilog)144 zil_bp_tree_init(zilog_t *zilog)
145 {
146 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
147 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
148 }
149
150 static void
zil_bp_tree_fini(zilog_t * zilog)151 zil_bp_tree_fini(zilog_t *zilog)
152 {
153 avl_tree_t *t = &zilog->zl_bp_tree;
154 zil_bp_node_t *zn;
155 void *cookie = NULL;
156
157 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
158 kmem_free(zn, sizeof (zil_bp_node_t));
159
160 avl_destroy(t);
161 }
162
163 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)164 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
165 {
166 avl_tree_t *t = &zilog->zl_bp_tree;
167 const dva_t *dva;
168 zil_bp_node_t *zn;
169 avl_index_t where;
170
171 if (BP_IS_EMBEDDED(bp))
172 return (0);
173
174 dva = BP_IDENTITY(bp);
175
176 if (avl_find(t, dva, &where) != NULL)
177 return (SET_ERROR(EEXIST));
178
179 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
180 zn->zn_dva = *dva;
181 avl_insert(t, zn, where);
182
183 return (0);
184 }
185
186 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)187 zil_header_in_syncing_context(zilog_t *zilog)
188 {
189 return ((zil_header_t *)zilog->zl_header);
190 }
191
192 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)193 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
194 {
195 zio_cksum_t *zc = &bp->blk_cksum;
196
197 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
198 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
199 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
200 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
201 }
202
203 /*
204 * Read a log block and make sure it's valid.
205 */
206 static int
zil_read_log_block(zilog_t * zilog,const blkptr_t * bp,blkptr_t * nbp,void * dst,char ** end)207 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
208 char **end)
209 {
210 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
211 arc_flags_t aflags = ARC_FLAG_WAIT;
212 arc_buf_t *abuf = NULL;
213 zbookmark_phys_t zb;
214 int error;
215
216 if (zilog->zl_header->zh_claim_txg == 0)
217 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
218
219 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
220 zio_flags |= ZIO_FLAG_SPECULATIVE;
221
222 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
223 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
224
225 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
226 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
227
228 if (error == 0) {
229 zio_cksum_t cksum = bp->blk_cksum;
230
231 /*
232 * Validate the checksummed log block.
233 *
234 * Sequence numbers should be... sequential. The checksum
235 * verifier for the next block should be bp's checksum plus 1.
236 *
237 * Also check the log chain linkage and size used.
238 */
239 cksum.zc_word[ZIL_ZC_SEQ]++;
240
241 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
242 zil_chain_t *zilc = abuf->b_data;
243 char *lr = (char *)(zilc + 1);
244 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
245
246 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
247 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
248 error = SET_ERROR(ECKSUM);
249 } else {
250 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
251 bcopy(lr, dst, len);
252 *end = (char *)dst + len;
253 *nbp = zilc->zc_next_blk;
254 }
255 } else {
256 char *lr = abuf->b_data;
257 uint64_t size = BP_GET_LSIZE(bp);
258 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
259
260 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
262 (zilc->zc_nused > (size - sizeof (*zilc)))) {
263 error = SET_ERROR(ECKSUM);
264 } else {
265 ASSERT3U(zilc->zc_nused, <=,
266 SPA_OLD_MAXBLOCKSIZE);
267 bcopy(lr, dst, zilc->zc_nused);
268 *end = (char *)dst + zilc->zc_nused;
269 *nbp = zilc->zc_next_blk;
270 }
271 }
272
273 arc_buf_destroy(abuf, &abuf);
274 }
275
276 return (error);
277 }
278
279 /*
280 * Read a TX_WRITE log data block.
281 */
282 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)283 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
284 {
285 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
286 const blkptr_t *bp = &lr->lr_blkptr;
287 arc_flags_t aflags = ARC_FLAG_WAIT;
288 arc_buf_t *abuf = NULL;
289 zbookmark_phys_t zb;
290 int error;
291
292 if (BP_IS_HOLE(bp)) {
293 if (wbuf != NULL)
294 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
295 return (0);
296 }
297
298 if (zilog->zl_header->zh_claim_txg == 0)
299 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
300
301 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
302 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
303
304 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
305 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
306
307 if (error == 0) {
308 if (wbuf != NULL)
309 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
310 arc_buf_destroy(abuf, &abuf);
311 }
312
313 return (error);
314 }
315
316 /*
317 * Parse the intent log, and call parse_func for each valid record within.
318 */
319 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg)320 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
321 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
322 {
323 const zil_header_t *zh = zilog->zl_header;
324 boolean_t claimed = !!zh->zh_claim_txg;
325 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
326 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
327 uint64_t max_blk_seq = 0;
328 uint64_t max_lr_seq = 0;
329 uint64_t blk_count = 0;
330 uint64_t lr_count = 0;
331 blkptr_t blk, next_blk;
332 char *lrbuf, *lrp;
333 int error = 0;
334
335 /*
336 * Old logs didn't record the maximum zh_claim_lr_seq.
337 */
338 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
339 claim_lr_seq = UINT64_MAX;
340
341 /*
342 * Starting at the block pointed to by zh_log we read the log chain.
343 * For each block in the chain we strongly check that block to
344 * ensure its validity. We stop when an invalid block is found.
345 * For each block pointer in the chain we call parse_blk_func().
346 * For each record in each valid block we call parse_lr_func().
347 * If the log has been claimed, stop if we encounter a sequence
348 * number greater than the highest claimed sequence number.
349 */
350 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
351 zil_bp_tree_init(zilog);
352
353 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
354 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
355 int reclen;
356 char *end;
357
358 if (blk_seq > claim_blk_seq)
359 break;
360 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
361 break;
362 ASSERT3U(max_blk_seq, <, blk_seq);
363 max_blk_seq = blk_seq;
364 blk_count++;
365
366 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
367 break;
368
369 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
370 if (error != 0)
371 break;
372
373 for (lrp = lrbuf; lrp < end; lrp += reclen) {
374 lr_t *lr = (lr_t *)lrp;
375 reclen = lr->lrc_reclen;
376 ASSERT3U(reclen, >=, sizeof (lr_t));
377 if (lr->lrc_seq > claim_lr_seq)
378 goto done;
379 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
380 goto done;
381 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
382 max_lr_seq = lr->lrc_seq;
383 lr_count++;
384 }
385 }
386 done:
387 zilog->zl_parse_error = error;
388 zilog->zl_parse_blk_seq = max_blk_seq;
389 zilog->zl_parse_lr_seq = max_lr_seq;
390 zilog->zl_parse_blk_count = blk_count;
391 zilog->zl_parse_lr_count = lr_count;
392
393 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
394 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
395
396 zil_bp_tree_fini(zilog);
397 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
398
399 return (error);
400 }
401
402 /* ARGSUSED */
403 static int
zil_clear_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)404 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
405 {
406 ASSERT(!BP_IS_HOLE(bp));
407
408 /*
409 * As we call this function from the context of a rewind to a
410 * checkpoint, each ZIL block whose txg is later than the txg
411 * that we rewind to is invalid. Thus, we return -1 so
412 * zil_parse() doesn't attempt to read it.
413 */
414 if (bp->blk_birth >= first_txg)
415 return (-1);
416
417 if (zil_bp_tree_add(zilog, bp) != 0)
418 return (0);
419
420 zio_free(zilog->zl_spa, first_txg, bp);
421 return (0);
422 }
423
424 /* ARGSUSED */
425 static int
zil_noop_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)426 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
427 {
428 return (0);
429 }
430
431 static int
zil_claim_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)432 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
433 {
434 /*
435 * Claim log block if not already committed and not already claimed.
436 * If tx == NULL, just verify that the block is claimable.
437 */
438 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
439 zil_bp_tree_add(zilog, bp) != 0)
440 return (0);
441
442 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
443 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
444 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
445 }
446
447 static int
zil_claim_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)448 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
449 {
450 lr_write_t *lr = (lr_write_t *)lrc;
451 int error;
452
453 if (lrc->lrc_txtype != TX_WRITE)
454 return (0);
455
456 /*
457 * If the block is not readable, don't claim it. This can happen
458 * in normal operation when a log block is written to disk before
459 * some of the dmu_sync() blocks it points to. In this case, the
460 * transaction cannot have been committed to anyone (we would have
461 * waited for all writes to be stable first), so it is semantically
462 * correct to declare this the end of the log.
463 */
464 if (lr->lr_blkptr.blk_birth >= first_txg &&
465 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
466 return (error);
467 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
468 }
469
470 /* ARGSUSED */
471 static int
zil_free_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t claim_txg)472 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
473 {
474 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
475
476 return (0);
477 }
478
479 static int
zil_free_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t claim_txg)480 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
481 {
482 lr_write_t *lr = (lr_write_t *)lrc;
483 blkptr_t *bp = &lr->lr_blkptr;
484
485 /*
486 * If we previously claimed it, we need to free it.
487 */
488 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
489 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
490 !BP_IS_HOLE(bp))
491 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
492
493 return (0);
494 }
495
496 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)497 zil_lwb_vdev_compare(const void *x1, const void *x2)
498 {
499 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
500 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
501
502 return (AVL_CMP(v1, v2));
503 }
504
505 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,blkptr_t * bp,boolean_t slog,uint64_t txg)506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
507 {
508 lwb_t *lwb;
509
510 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511 lwb->lwb_zilog = zilog;
512 lwb->lwb_blk = *bp;
513 lwb->lwb_slog = slog;
514 lwb->lwb_state = LWB_STATE_CLOSED;
515 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516 lwb->lwb_max_txg = txg;
517 lwb->lwb_write_zio = NULL;
518 lwb->lwb_root_zio = NULL;
519 lwb->lwb_tx = NULL;
520 lwb->lwb_issued_timestamp = 0;
521 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522 lwb->lwb_nused = sizeof (zil_chain_t);
523 lwb->lwb_sz = BP_GET_LSIZE(bp);
524 } else {
525 lwb->lwb_nused = 0;
526 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
527 }
528
529 mutex_enter(&zilog->zl_lock);
530 list_insert_tail(&zilog->zl_lwb_list, lwb);
531 mutex_exit(&zilog->zl_lock);
532
533 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535 VERIFY(list_is_empty(&lwb->lwb_waiters));
536
537 return (lwb);
538 }
539
540 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
542 {
543 ASSERT(MUTEX_HELD(&zilog->zl_lock));
544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 VERIFY(list_is_empty(&lwb->lwb_waiters));
546 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
552
553 /*
554 * Clear the zilog's field to indicate this lwb is no longer
555 * valid, and prevent use-after-free errors.
556 */
557 if (zilog->zl_last_lwb_opened == lwb)
558 zilog->zl_last_lwb_opened = NULL;
559
560 kmem_cache_free(zil_lwb_cache, lwb);
561 }
562
563 /*
564 * Called when we create in-memory log transactions so that we know
565 * to cleanup the itxs at the end of spa_sync().
566 */
567 void
zilog_dirty(zilog_t * zilog,uint64_t txg)568 zilog_dirty(zilog_t *zilog, uint64_t txg)
569 {
570 dsl_pool_t *dp = zilog->zl_dmu_pool;
571 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
572
573 ASSERT(spa_writeable(zilog->zl_spa));
574
575 if (ds->ds_is_snapshot)
576 panic("dirtying snapshot!");
577
578 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579 /* up the hold count until we can be written out */
580 dmu_buf_add_ref(ds->ds_dbuf, zilog);
581
582 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
583 }
584 }
585
586 /*
587 * Determine if the zil is dirty in the specified txg. Callers wanting to
588 * ensure that the dirty state does not change must hold the itxg_lock for
589 * the specified txg. Holding the lock will ensure that the zil cannot be
590 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591 * state.
592 */
593 boolean_t
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
595 {
596 dsl_pool_t *dp = zilog->zl_dmu_pool;
597
598 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599 return (B_TRUE);
600 return (B_FALSE);
601 }
602
603 /*
604 * Determine if the zil is dirty. The zil is considered dirty if it has
605 * any pending itx records that have not been cleaned by zil_clean().
606 */
607 boolean_t
zilog_is_dirty(zilog_t * zilog)608 zilog_is_dirty(zilog_t *zilog)
609 {
610 dsl_pool_t *dp = zilog->zl_dmu_pool;
611
612 for (int t = 0; t < TXG_SIZE; t++) {
613 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614 return (B_TRUE);
615 }
616 return (B_FALSE);
617 }
618
619 /*
620 * Create an on-disk intent log.
621 */
622 static lwb_t *
zil_create(zilog_t * zilog)623 zil_create(zilog_t *zilog)
624 {
625 const zil_header_t *zh = zilog->zl_header;
626 lwb_t *lwb = NULL;
627 uint64_t txg = 0;
628 dmu_tx_t *tx = NULL;
629 blkptr_t blk;
630 int error = 0;
631 boolean_t slog = FALSE;
632
633 /*
634 * Wait for any previous destroy to complete.
635 */
636 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
637
638 ASSERT(zh->zh_claim_txg == 0);
639 ASSERT(zh->zh_replay_seq == 0);
640
641 blk = zh->zh_log;
642
643 /*
644 * Allocate an initial log block if:
645 * - there isn't one already
646 * - the existing block is the wrong endianess
647 */
648 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649 tx = dmu_tx_create(zilog->zl_os);
650 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652 txg = dmu_tx_get_txg(tx);
653
654 if (!BP_IS_HOLE(&blk)) {
655 zio_free(zilog->zl_spa, txg, &blk);
656 BP_ZERO(&blk);
657 }
658
659 error = zio_alloc_zil(zilog->zl_spa,
660 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
661 ZIL_MIN_BLKSZ, &slog);
662
663 if (error == 0)
664 zil_init_log_chain(zilog, &blk);
665 }
666
667 /*
668 * Allocate a log write block (lwb) for the first log block.
669 */
670 if (error == 0)
671 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
672
673 /*
674 * If we just allocated the first log block, commit our transaction
675 * and wait for zil_sync() to stuff the block poiner into zh_log.
676 * (zh is part of the MOS, so we cannot modify it in open context.)
677 */
678 if (tx != NULL) {
679 dmu_tx_commit(tx);
680 txg_wait_synced(zilog->zl_dmu_pool, txg);
681 }
682
683 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
684
685 return (lwb);
686 }
687
688 /*
689 * In one tx, free all log blocks and clear the log header. If keep_first
690 * is set, then we're replaying a log with no content. We want to keep the
691 * first block, however, so that the first synchronous transaction doesn't
692 * require a txg_wait_synced() in zil_create(). We don't need to
693 * txg_wait_synced() here either when keep_first is set, because both
694 * zil_create() and zil_destroy() will wait for any in-progress destroys
695 * to complete.
696 */
697 void
zil_destroy(zilog_t * zilog,boolean_t keep_first)698 zil_destroy(zilog_t *zilog, boolean_t keep_first)
699 {
700 const zil_header_t *zh = zilog->zl_header;
701 lwb_t *lwb;
702 dmu_tx_t *tx;
703 uint64_t txg;
704
705 /*
706 * Wait for any previous destroy to complete.
707 */
708 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
709
710 zilog->zl_old_header = *zh; /* debugging aid */
711
712 if (BP_IS_HOLE(&zh->zh_log))
713 return;
714
715 tx = dmu_tx_create(zilog->zl_os);
716 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
717 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
718 txg = dmu_tx_get_txg(tx);
719
720 mutex_enter(&zilog->zl_lock);
721
722 ASSERT3U(zilog->zl_destroy_txg, <, txg);
723 zilog->zl_destroy_txg = txg;
724 zilog->zl_keep_first = keep_first;
725
726 if (!list_is_empty(&zilog->zl_lwb_list)) {
727 ASSERT(zh->zh_claim_txg == 0);
728 VERIFY(!keep_first);
729 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
730 list_remove(&zilog->zl_lwb_list, lwb);
731 if (lwb->lwb_buf != NULL)
732 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
733 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
734 zil_free_lwb(zilog, lwb);
735 }
736 } else if (!keep_first) {
737 zil_destroy_sync(zilog, tx);
738 }
739 mutex_exit(&zilog->zl_lock);
740
741 dmu_tx_commit(tx);
742 }
743
744 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)745 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
746 {
747 ASSERT(list_is_empty(&zilog->zl_lwb_list));
748 (void) zil_parse(zilog, zil_free_log_block,
749 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
750 }
751
752 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)753 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
754 {
755 dmu_tx_t *tx = txarg;
756 zilog_t *zilog;
757 uint64_t first_txg;
758 zil_header_t *zh;
759 objset_t *os;
760 int error;
761
762 error = dmu_objset_own_obj(dp, ds->ds_object,
763 DMU_OST_ANY, B_FALSE, FTAG, &os);
764 if (error != 0) {
765 /*
766 * EBUSY indicates that the objset is inconsistent, in which
767 * case it can not have a ZIL.
768 */
769 if (error != EBUSY) {
770 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
771 (unsigned long long)ds->ds_object, error);
772 }
773 return (0);
774 }
775
776 zilog = dmu_objset_zil(os);
777 zh = zil_header_in_syncing_context(zilog);
778 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
779 first_txg = spa_min_claim_txg(zilog->zl_spa);
780
781 /*
782 * If the spa_log_state is not set to be cleared, check whether
783 * the current uberblock is a checkpoint one and if the current
784 * header has been claimed before moving on.
785 *
786 * If the current uberblock is a checkpointed uberblock then
787 * one of the following scenarios took place:
788 *
789 * 1] We are currently rewinding to the checkpoint of the pool.
790 * 2] We crashed in the middle of a checkpoint rewind but we
791 * did manage to write the checkpointed uberblock to the
792 * vdev labels, so when we tried to import the pool again
793 * the checkpointed uberblock was selected from the import
794 * procedure.
795 *
796 * In both cases we want to zero out all the ZIL blocks, except
797 * the ones that have been claimed at the time of the checkpoint
798 * (their zh_claim_txg != 0). The reason is that these blocks
799 * may be corrupted since we may have reused their locations on
800 * disk after we took the checkpoint.
801 *
802 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
803 * when we first figure out whether the current uberblock is
804 * checkpointed or not. Unfortunately, that would discard all
805 * the logs, including the ones that are claimed, and we would
806 * leak space.
807 */
808 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
809 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
810 zh->zh_claim_txg == 0)) {
811 if (!BP_IS_HOLE(&zh->zh_log)) {
812 (void) zil_parse(zilog, zil_clear_log_block,
813 zil_noop_log_record, tx, first_txg);
814 }
815 BP_ZERO(&zh->zh_log);
816 dsl_dataset_dirty(dmu_objset_ds(os), tx);
817 dmu_objset_disown(os, FTAG);
818 return (0);
819 }
820
821 /*
822 * If we are not rewinding and opening the pool normally, then
823 * the min_claim_txg should be equal to the first txg of the pool.
824 */
825 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
826
827 /*
828 * Claim all log blocks if we haven't already done so, and remember
829 * the highest claimed sequence number. This ensures that if we can
830 * read only part of the log now (e.g. due to a missing device),
831 * but we can read the entire log later, we will not try to replay
832 * or destroy beyond the last block we successfully claimed.
833 */
834 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
835 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
836 (void) zil_parse(zilog, zil_claim_log_block,
837 zil_claim_log_record, tx, first_txg);
838 zh->zh_claim_txg = first_txg;
839 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
840 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
841 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
842 zh->zh_flags |= ZIL_REPLAY_NEEDED;
843 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
844 dsl_dataset_dirty(dmu_objset_ds(os), tx);
845 }
846
847 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
848 dmu_objset_disown(os, FTAG);
849 return (0);
850 }
851
852 /*
853 * Check the log by walking the log chain.
854 * Checksum errors are ok as they indicate the end of the chain.
855 * Any other error (no device or read failure) returns an error.
856 */
857 /* ARGSUSED */
858 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)859 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
860 {
861 zilog_t *zilog;
862 objset_t *os;
863 blkptr_t *bp;
864 int error;
865
866 ASSERT(tx == NULL);
867
868 error = dmu_objset_from_ds(ds, &os);
869 if (error != 0) {
870 cmn_err(CE_WARN, "can't open objset %llu, error %d",
871 (unsigned long long)ds->ds_object, error);
872 return (0);
873 }
874
875 zilog = dmu_objset_zil(os);
876 bp = (blkptr_t *)&zilog->zl_header->zh_log;
877
878 if (!BP_IS_HOLE(bp)) {
879 vdev_t *vd;
880 boolean_t valid = B_TRUE;
881
882 /*
883 * Check the first block and determine if it's on a log device
884 * which may have been removed or faulted prior to loading this
885 * pool. If so, there's no point in checking the rest of the
886 * log as its content should have already been synced to the
887 * pool.
888 */
889 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
890 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
891 if (vd->vdev_islog && vdev_is_dead(vd))
892 valid = vdev_log_state_valid(vd);
893 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
894
895 if (!valid)
896 return (0);
897
898 /*
899 * Check whether the current uberblock is checkpointed (e.g.
900 * we are rewinding) and whether the current header has been
901 * claimed or not. If it hasn't then skip verifying it. We
902 * do this because its ZIL blocks may be part of the pool's
903 * state before the rewind, which is no longer valid.
904 */
905 zil_header_t *zh = zil_header_in_syncing_context(zilog);
906 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
907 zh->zh_claim_txg == 0)
908 return (0);
909 }
910
911 /*
912 * Because tx == NULL, zil_claim_log_block() will not actually claim
913 * any blocks, but just determine whether it is possible to do so.
914 * In addition to checking the log chain, zil_claim_log_block()
915 * will invoke zio_claim() with a done func of spa_claim_notify(),
916 * which will update spa_max_claim_txg. See spa_load() for details.
917 */
918 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
919 zilog->zl_header->zh_claim_txg ? -1ULL :
920 spa_min_claim_txg(os->os_spa));
921
922 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
923 }
924
925 /*
926 * When an itx is "skipped", this function is used to properly mark the
927 * waiter as "done, and signal any thread(s) waiting on it. An itx can
928 * be skipped (and not committed to an lwb) for a variety of reasons,
929 * one of them being that the itx was committed via spa_sync(), prior to
930 * it being committed to an lwb; this can happen if a thread calling
931 * zil_commit() is racing with spa_sync().
932 */
933 static void
zil_commit_waiter_skip(zil_commit_waiter_t * zcw)934 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
935 {
936 mutex_enter(&zcw->zcw_lock);
937 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
938 zcw->zcw_done = B_TRUE;
939 cv_broadcast(&zcw->zcw_cv);
940 mutex_exit(&zcw->zcw_lock);
941 }
942
943 /*
944 * This function is used when the given waiter is to be linked into an
945 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
946 * At this point, the waiter will no longer be referenced by the itx,
947 * and instead, will be referenced by the lwb.
948 */
949 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)950 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
951 {
952 /*
953 * The lwb_waiters field of the lwb is protected by the zilog's
954 * zl_lock, thus it must be held when calling this function.
955 */
956 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
957
958 mutex_enter(&zcw->zcw_lock);
959 ASSERT(!list_link_active(&zcw->zcw_node));
960 ASSERT3P(zcw->zcw_lwb, ==, NULL);
961 ASSERT3P(lwb, !=, NULL);
962 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
963 lwb->lwb_state == LWB_STATE_ISSUED ||
964 lwb->lwb_state == LWB_STATE_WRITE_DONE);
965
966 list_insert_tail(&lwb->lwb_waiters, zcw);
967 zcw->zcw_lwb = lwb;
968 mutex_exit(&zcw->zcw_lock);
969 }
970
971 /*
972 * This function is used when zio_alloc_zil() fails to allocate a ZIL
973 * block, and the given waiter must be linked to the "nolwb waiters"
974 * list inside of zil_process_commit_list().
975 */
976 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)977 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
978 {
979 mutex_enter(&zcw->zcw_lock);
980 ASSERT(!list_link_active(&zcw->zcw_node));
981 ASSERT3P(zcw->zcw_lwb, ==, NULL);
982 list_insert_tail(nolwb, zcw);
983 mutex_exit(&zcw->zcw_lock);
984 }
985
986 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)987 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
988 {
989 avl_tree_t *t = &lwb->lwb_vdev_tree;
990 avl_index_t where;
991 zil_vdev_node_t *zv, zvsearch;
992 int ndvas = BP_GET_NDVAS(bp);
993 int i;
994
995 if (zil_nocacheflush)
996 return;
997
998 mutex_enter(&lwb->lwb_vdev_lock);
999 for (i = 0; i < ndvas; i++) {
1000 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1001 if (avl_find(t, &zvsearch, &where) == NULL) {
1002 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1003 zv->zv_vdev = zvsearch.zv_vdev;
1004 avl_insert(t, zv, where);
1005 }
1006 }
1007 mutex_exit(&lwb->lwb_vdev_lock);
1008 }
1009
1010 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1011 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1012 {
1013 avl_tree_t *src = &lwb->lwb_vdev_tree;
1014 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1015 void *cookie = NULL;
1016 zil_vdev_node_t *zv;
1017
1018 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1019 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1020 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1021
1022 /*
1023 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1024 * not need the protection of lwb_vdev_lock (it will only be modified
1025 * while holding zilog->zl_lock) as its writes and those of its
1026 * children have all completed. The younger 'nlwb' may be waiting on
1027 * future writes to additional vdevs.
1028 */
1029 mutex_enter(&nlwb->lwb_vdev_lock);
1030 /*
1031 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1032 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1033 */
1034 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1035 avl_index_t where;
1036
1037 if (avl_find(dst, zv, &where) == NULL) {
1038 avl_insert(dst, zv, where);
1039 } else {
1040 kmem_free(zv, sizeof (*zv));
1041 }
1042 }
1043 mutex_exit(&nlwb->lwb_vdev_lock);
1044 }
1045
1046 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1047 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1048 {
1049 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1050 }
1051
1052 /*
1053 * This function is a called after all vdevs associated with a given lwb
1054 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1055 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1056 * all "previous" lwb's will have completed before this function is
1057 * called; i.e. this function is called for all previous lwbs before
1058 * it's called for "this" lwb (enforced via zio the dependencies
1059 * configured in zil_lwb_set_zio_dependency()).
1060 *
1061 * The intention is for this function to be called as soon as the
1062 * contents of an lwb are considered "stable" on disk, and will survive
1063 * any sudden loss of power. At this point, any threads waiting for the
1064 * lwb to reach this state are signalled, and the "waiter" structures
1065 * are marked "done".
1066 */
1067 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1068 zil_lwb_flush_vdevs_done(zio_t *zio)
1069 {
1070 lwb_t *lwb = zio->io_private;
1071 zilog_t *zilog = lwb->lwb_zilog;
1072 dmu_tx_t *tx = lwb->lwb_tx;
1073 zil_commit_waiter_t *zcw;
1074
1075 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1076
1077 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1078
1079 mutex_enter(&zilog->zl_lock);
1080
1081 /*
1082 * Ensure the lwb buffer pointer is cleared before releasing the
1083 * txg. If we have had an allocation failure and the txg is
1084 * waiting to sync then we want zil_sync() to remove the lwb so
1085 * that it's not picked up as the next new one in
1086 * zil_process_commit_list(). zil_sync() will only remove the
1087 * lwb if lwb_buf is null.
1088 */
1089 lwb->lwb_buf = NULL;
1090 lwb->lwb_tx = NULL;
1091
1092 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1093 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1094
1095 lwb->lwb_root_zio = NULL;
1096
1097 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1098 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1099
1100 if (zilog->zl_last_lwb_opened == lwb) {
1101 /*
1102 * Remember the highest committed log sequence number
1103 * for ztest. We only update this value when all the log
1104 * writes succeeded, because ztest wants to ASSERT that
1105 * it got the whole log chain.
1106 */
1107 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1108 }
1109
1110 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1111 mutex_enter(&zcw->zcw_lock);
1112
1113 ASSERT(list_link_active(&zcw->zcw_node));
1114 list_remove(&lwb->lwb_waiters, zcw);
1115
1116 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1117 zcw->zcw_lwb = NULL;
1118
1119 zcw->zcw_zio_error = zio->io_error;
1120
1121 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1122 zcw->zcw_done = B_TRUE;
1123 cv_broadcast(&zcw->zcw_cv);
1124
1125 mutex_exit(&zcw->zcw_lock);
1126 }
1127
1128 mutex_exit(&zilog->zl_lock);
1129
1130 /*
1131 * Now that we've written this log block, we have a stable pointer
1132 * to the next block in the chain, so it's OK to let the txg in
1133 * which we allocated the next block sync.
1134 */
1135 dmu_tx_commit(tx);
1136 }
1137
1138 /*
1139 * This is called when an lwb's write zio completes. The callback's
1140 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1141 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1142 * in writing out this specific lwb's data, and in the case that cache
1143 * flushes have been deferred, vdevs involved in writing the data for
1144 * previous lwbs. The writes corresponding to all the vdevs in the
1145 * lwb_vdev_tree will have completed by the time this is called, due to
1146 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1147 * which takes deferred flushes into account. The lwb will be "done"
1148 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1149 * completion callback for the lwb's root zio.
1150 */
1151 static void
zil_lwb_write_done(zio_t * zio)1152 zil_lwb_write_done(zio_t *zio)
1153 {
1154 lwb_t *lwb = zio->io_private;
1155 spa_t *spa = zio->io_spa;
1156 zilog_t *zilog = lwb->lwb_zilog;
1157 avl_tree_t *t = &lwb->lwb_vdev_tree;
1158 void *cookie = NULL;
1159 zil_vdev_node_t *zv;
1160 lwb_t *nlwb;
1161
1162 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1163
1164 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1165 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1166 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1167 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1168 ASSERT(!BP_IS_GANG(zio->io_bp));
1169 ASSERT(!BP_IS_HOLE(zio->io_bp));
1170 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1171
1172 abd_put(zio->io_abd);
1173
1174 mutex_enter(&zilog->zl_lock);
1175 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1176 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1177 lwb->lwb_write_zio = NULL;
1178 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1179 mutex_exit(&zilog->zl_lock);
1180
1181 if (avl_numnodes(t) == 0)
1182 return;
1183
1184 /*
1185 * If there was an IO error, we're not going to call zio_flush()
1186 * on these vdevs, so we simply empty the tree and free the
1187 * nodes. We avoid calling zio_flush() since there isn't any
1188 * good reason for doing so, after the lwb block failed to be
1189 * written out.
1190 */
1191 if (zio->io_error != 0) {
1192 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1193 kmem_free(zv, sizeof (*zv));
1194 return;
1195 }
1196
1197 /*
1198 * If this lwb does not have any threads waiting for it to
1199 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1200 * command to the vdevs written to by "this" lwb, and instead
1201 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1202 * command for those vdevs. Thus, we merge the vdev tree of
1203 * "this" lwb with the vdev tree of the "next" lwb in the list,
1204 * and assume the "next" lwb will handle flushing the vdevs (or
1205 * deferring the flush(s) again).
1206 *
1207 * This is a useful performance optimization, especially for
1208 * workloads with lots of async write activity and few sync
1209 * write and/or fsync activity, as it has the potential to
1210 * coalesce multiple flush commands to a vdev into one.
1211 */
1212 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1213 zil_lwb_flush_defer(lwb, nlwb);
1214 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1215 return;
1216 }
1217
1218 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1219 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1220 if (vd != NULL)
1221 zio_flush(lwb->lwb_root_zio, vd);
1222 kmem_free(zv, sizeof (*zv));
1223 }
1224 }
1225
1226 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1227 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1228 {
1229 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1230
1231 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1232 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1233
1234 /*
1235 * The zilog's "zl_last_lwb_opened" field is used to build the
1236 * lwb/zio dependency chain, which is used to preserve the
1237 * ordering of lwb completions that is required by the semantics
1238 * of the ZIL. Each new lwb zio becomes a parent of the
1239 * "previous" lwb zio, such that the new lwb's zio cannot
1240 * complete until the "previous" lwb's zio completes.
1241 *
1242 * This is required by the semantics of zil_commit(); the commit
1243 * waiters attached to the lwbs will be woken in the lwb zio's
1244 * completion callback, so this zio dependency graph ensures the
1245 * waiters are woken in the correct order (the same order the
1246 * lwbs were created).
1247 */
1248 if (last_lwb_opened != NULL &&
1249 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1250 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1251 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1252 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1253
1254 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1255 zio_add_child(lwb->lwb_root_zio,
1256 last_lwb_opened->lwb_root_zio);
1257
1258 /*
1259 * If the previous lwb's write hasn't already completed,
1260 * we also want to order the completion of the lwb write
1261 * zios (above, we only order the completion of the lwb
1262 * root zios). This is required because of how we can
1263 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1264 *
1265 * When the DKIOCFLUSHWRITECACHE commands are defered,
1266 * the previous lwb will rely on this lwb to flush the
1267 * vdevs written to by that previous lwb. Thus, we need
1268 * to ensure this lwb doesn't issue the flush until
1269 * after the previous lwb's write completes. We ensure
1270 * this ordering by setting the zio parent/child
1271 * relationship here.
1272 *
1273 * Without this relationship on the lwb's write zio,
1274 * it's possible for this lwb's write to complete prior
1275 * to the previous lwb's write completing; and thus, the
1276 * vdevs for the previous lwb would be flushed prior to
1277 * that lwb's data being written to those vdevs (the
1278 * vdevs are flushed in the lwb write zio's completion
1279 * handler, zil_lwb_write_done()).
1280 */
1281 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1282 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1283 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1284
1285 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1286 zio_add_child(lwb->lwb_write_zio,
1287 last_lwb_opened->lwb_write_zio);
1288 }
1289 }
1290 }
1291
1292
1293 /*
1294 * This function's purpose is to "open" an lwb such that it is ready to
1295 * accept new itxs being committed to it. To do this, the lwb's zio
1296 * structures are created, and linked to the lwb. This function is
1297 * idempotent; if the passed in lwb has already been opened, this
1298 * function is essentially a no-op.
1299 */
1300 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1301 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1302 {
1303 zbookmark_phys_t zb;
1304 zio_priority_t prio;
1305
1306 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1307 ASSERT3P(lwb, !=, NULL);
1308 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1309 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1310
1311 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1312 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1313 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1314
1315 if (lwb->lwb_root_zio == NULL) {
1316 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1317 BP_GET_LSIZE(&lwb->lwb_blk));
1318
1319 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1320 prio = ZIO_PRIORITY_SYNC_WRITE;
1321 else
1322 prio = ZIO_PRIORITY_ASYNC_WRITE;
1323
1324 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1325 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1326 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1327
1328 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1329 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1330 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1331 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1332 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1333
1334 lwb->lwb_state = LWB_STATE_OPENED;
1335
1336 mutex_enter(&zilog->zl_lock);
1337 zil_lwb_set_zio_dependency(zilog, lwb);
1338 zilog->zl_last_lwb_opened = lwb;
1339 mutex_exit(&zilog->zl_lock);
1340 }
1341
1342 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1343 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1344 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1345 }
1346
1347 /*
1348 * Define a limited set of intent log block sizes.
1349 *
1350 * These must be a multiple of 4KB. Note only the amount used (again
1351 * aligned to 4KB) actually gets written. However, we can't always just
1352 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1353 */
1354 uint64_t zil_block_buckets[] = {
1355 4096, /* non TX_WRITE */
1356 8192+4096, /* data base */
1357 32*1024 + 4096, /* NFS writes */
1358 UINT64_MAX
1359 };
1360
1361 /*
1362 * Start a log block write and advance to the next log block.
1363 * Calls are serialized.
1364 */
1365 static lwb_t *
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1366 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1367 {
1368 lwb_t *nlwb = NULL;
1369 zil_chain_t *zilc;
1370 spa_t *spa = zilog->zl_spa;
1371 blkptr_t *bp;
1372 dmu_tx_t *tx;
1373 uint64_t txg;
1374 uint64_t zil_blksz, wsz;
1375 int i, error;
1376 boolean_t slog;
1377
1378 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1379 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1380 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1381 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1382
1383 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1384 zilc = (zil_chain_t *)lwb->lwb_buf;
1385 bp = &zilc->zc_next_blk;
1386 } else {
1387 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1388 bp = &zilc->zc_next_blk;
1389 }
1390
1391 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1392
1393 /*
1394 * Allocate the next block and save its address in this block
1395 * before writing it in order to establish the log chain.
1396 * Note that if the allocation of nlwb synced before we wrote
1397 * the block that points at it (lwb), we'd leak it if we crashed.
1398 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1399 * We dirty the dataset to ensure that zil_sync() will be called
1400 * to clean up in the event of allocation failure or I/O failure.
1401 */
1402
1403 tx = dmu_tx_create(zilog->zl_os);
1404
1405 /*
1406 * Since we are not going to create any new dirty data, and we
1407 * can even help with clearing the existing dirty data, we
1408 * should not be subject to the dirty data based delays. We
1409 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1410 */
1411 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1412
1413 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1414 txg = dmu_tx_get_txg(tx);
1415
1416 lwb->lwb_tx = tx;
1417
1418 /*
1419 * Log blocks are pre-allocated. Here we select the size of the next
1420 * block, based on size used in the last block.
1421 * - first find the smallest bucket that will fit the block from a
1422 * limited set of block sizes. This is because it's faster to write
1423 * blocks allocated from the same metaslab as they are adjacent or
1424 * close.
1425 * - next find the maximum from the new suggested size and an array of
1426 * previous sizes. This lessens a picket fence effect of wrongly
1427 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1428 * requests.
1429 *
1430 * Note we only write what is used, but we can't just allocate
1431 * the maximum block size because we can exhaust the available
1432 * pool log space.
1433 */
1434 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1435 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1436 continue;
1437 zil_blksz = zil_block_buckets[i];
1438 if (zil_blksz == UINT64_MAX)
1439 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1440 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1441 for (i = 0; i < ZIL_PREV_BLKS; i++)
1442 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1443 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1444
1445 BP_ZERO(bp);
1446
1447 /* pass the old blkptr in order to spread log blocks across devs */
1448 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1449 txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1450 if (error == 0) {
1451 ASSERT3U(bp->blk_birth, ==, txg);
1452 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1453 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1454
1455 /*
1456 * Allocate a new log write block (lwb).
1457 */
1458 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1459 }
1460
1461 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1462 /* For Slim ZIL only write what is used. */
1463 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1464 ASSERT3U(wsz, <=, lwb->lwb_sz);
1465 zio_shrink(lwb->lwb_write_zio, wsz);
1466
1467 } else {
1468 wsz = lwb->lwb_sz;
1469 }
1470
1471 zilc->zc_pad = 0;
1472 zilc->zc_nused = lwb->lwb_nused;
1473 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1474
1475 /*
1476 * clear unused data for security
1477 */
1478 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1479
1480 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1481
1482 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1483 lwb->lwb_issued_timestamp = gethrtime();
1484 lwb->lwb_state = LWB_STATE_ISSUED;
1485
1486 zio_nowait(lwb->lwb_root_zio);
1487 zio_nowait(lwb->lwb_write_zio);
1488
1489 /*
1490 * If there was an allocation failure then nlwb will be null which
1491 * forces a txg_wait_synced().
1492 */
1493 return (nlwb);
1494 }
1495
1496 static lwb_t *
zil_lwb_commit(zilog_t * zilog,itx_t * itx,lwb_t * lwb)1497 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1498 {
1499 lr_t *lrcb, *lrc;
1500 lr_write_t *lrwb, *lrw;
1501 char *lr_buf;
1502 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1503
1504 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1505 ASSERT3P(lwb, !=, NULL);
1506 ASSERT3P(lwb->lwb_buf, !=, NULL);
1507
1508 zil_lwb_write_open(zilog, lwb);
1509
1510 lrc = &itx->itx_lr;
1511 lrw = (lr_write_t *)lrc;
1512
1513 /*
1514 * A commit itx doesn't represent any on-disk state; instead
1515 * it's simply used as a place holder on the commit list, and
1516 * provides a mechanism for attaching a "commit waiter" onto the
1517 * correct lwb (such that the waiter can be signalled upon
1518 * completion of that lwb). Thus, we don't process this itx's
1519 * log record if it's a commit itx (these itx's don't have log
1520 * records), and instead link the itx's waiter onto the lwb's
1521 * list of waiters.
1522 *
1523 * For more details, see the comment above zil_commit().
1524 */
1525 if (lrc->lrc_txtype == TX_COMMIT) {
1526 mutex_enter(&zilog->zl_lock);
1527 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1528 itx->itx_private = NULL;
1529 mutex_exit(&zilog->zl_lock);
1530 return (lwb);
1531 }
1532
1533 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1534 dlen = P2ROUNDUP_TYPED(
1535 lrw->lr_length, sizeof (uint64_t), uint64_t);
1536 } else {
1537 dlen = 0;
1538 }
1539 reclen = lrc->lrc_reclen;
1540 zilog->zl_cur_used += (reclen + dlen);
1541 txg = lrc->lrc_txg;
1542
1543 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1544
1545 cont:
1546 /*
1547 * If this record won't fit in the current log block, start a new one.
1548 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1549 */
1550 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1551 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1552 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1553 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1554 lwb = zil_lwb_write_issue(zilog, lwb);
1555 if (lwb == NULL)
1556 return (NULL);
1557 zil_lwb_write_open(zilog, lwb);
1558 ASSERT(LWB_EMPTY(lwb));
1559 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1560 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1561 }
1562
1563 dnow = MIN(dlen, lwb_sp - reclen);
1564 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1565 bcopy(lrc, lr_buf, reclen);
1566 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1567 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1568
1569 /*
1570 * If it's a write, fetch the data or get its blkptr as appropriate.
1571 */
1572 if (lrc->lrc_txtype == TX_WRITE) {
1573 if (txg > spa_freeze_txg(zilog->zl_spa))
1574 txg_wait_synced(zilog->zl_dmu_pool, txg);
1575 if (itx->itx_wr_state != WR_COPIED) {
1576 char *dbuf;
1577 int error;
1578
1579 if (itx->itx_wr_state == WR_NEED_COPY) {
1580 dbuf = lr_buf + reclen;
1581 lrcb->lrc_reclen += dnow;
1582 if (lrwb->lr_length > dnow)
1583 lrwb->lr_length = dnow;
1584 lrw->lr_offset += dnow;
1585 lrw->lr_length -= dnow;
1586 } else {
1587 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1588 dbuf = NULL;
1589 }
1590
1591 /*
1592 * We pass in the "lwb_write_zio" rather than
1593 * "lwb_root_zio" so that the "lwb_write_zio"
1594 * becomes the parent of any zio's created by
1595 * the "zl_get_data" callback. The vdevs are
1596 * flushed after the "lwb_write_zio" completes,
1597 * so we want to make sure that completion
1598 * callback waits for these additional zio's,
1599 * such that the vdevs used by those zio's will
1600 * be included in the lwb's vdev tree, and those
1601 * vdevs will be properly flushed. If we passed
1602 * in "lwb_root_zio" here, then these additional
1603 * vdevs may not be flushed; e.g. if these zio's
1604 * completed after "lwb_write_zio" completed.
1605 */
1606 error = zilog->zl_get_data(itx->itx_private,
1607 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1608
1609 if (error == EIO) {
1610 txg_wait_synced(zilog->zl_dmu_pool, txg);
1611 return (lwb);
1612 }
1613 if (error != 0) {
1614 ASSERT(error == ENOENT || error == EEXIST ||
1615 error == EALREADY);
1616 return (lwb);
1617 }
1618 }
1619 }
1620
1621 /*
1622 * We're actually making an entry, so update lrc_seq to be the
1623 * log record sequence number. Note that this is generally not
1624 * equal to the itx sequence number because not all transactions
1625 * are synchronous, and sometimes spa_sync() gets there first.
1626 */
1627 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1628 lwb->lwb_nused += reclen + dnow;
1629
1630 zil_lwb_add_txg(lwb, txg);
1631
1632 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1633 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1634
1635 dlen -= dnow;
1636 if (dlen > 0) {
1637 zilog->zl_cur_used += reclen;
1638 goto cont;
1639 }
1640
1641 return (lwb);
1642 }
1643
1644 itx_t *
zil_itx_create(uint64_t txtype,size_t lrsize)1645 zil_itx_create(uint64_t txtype, size_t lrsize)
1646 {
1647 itx_t *itx;
1648
1649 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1650
1651 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1652 itx->itx_lr.lrc_txtype = txtype;
1653 itx->itx_lr.lrc_reclen = lrsize;
1654 itx->itx_lr.lrc_seq = 0; /* defensive */
1655 itx->itx_sync = B_TRUE; /* default is synchronous */
1656
1657 return (itx);
1658 }
1659
1660 void
zil_itx_destroy(itx_t * itx)1661 zil_itx_destroy(itx_t *itx)
1662 {
1663 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1664 }
1665
1666 /*
1667 * Free up the sync and async itxs. The itxs_t has already been detached
1668 * so no locks are needed.
1669 */
1670 static void
zil_itxg_clean(itxs_t * itxs)1671 zil_itxg_clean(itxs_t *itxs)
1672 {
1673 itx_t *itx;
1674 list_t *list;
1675 avl_tree_t *t;
1676 void *cookie;
1677 itx_async_node_t *ian;
1678
1679 list = &itxs->i_sync_list;
1680 while ((itx = list_head(list)) != NULL) {
1681 /*
1682 * In the general case, commit itxs will not be found
1683 * here, as they'll be committed to an lwb via
1684 * zil_lwb_commit(), and free'd in that function. Having
1685 * said that, it is still possible for commit itxs to be
1686 * found here, due to the following race:
1687 *
1688 * - a thread calls zil_commit() which assigns the
1689 * commit itx to a per-txg i_sync_list
1690 * - zil_itxg_clean() is called (e.g. via spa_sync())
1691 * while the waiter is still on the i_sync_list
1692 *
1693 * There's nothing to prevent syncing the txg while the
1694 * waiter is on the i_sync_list. This normally doesn't
1695 * happen because spa_sync() is slower than zil_commit(),
1696 * but if zil_commit() calls txg_wait_synced() (e.g.
1697 * because zil_create() or zil_commit_writer_stall() is
1698 * called) we will hit this case.
1699 */
1700 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1701 zil_commit_waiter_skip(itx->itx_private);
1702
1703 list_remove(list, itx);
1704 zil_itx_destroy(itx);
1705 }
1706
1707 cookie = NULL;
1708 t = &itxs->i_async_tree;
1709 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1710 list = &ian->ia_list;
1711 while ((itx = list_head(list)) != NULL) {
1712 list_remove(list, itx);
1713 /* commit itxs should never be on the async lists. */
1714 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1715 zil_itx_destroy(itx);
1716 }
1717 list_destroy(list);
1718 kmem_free(ian, sizeof (itx_async_node_t));
1719 }
1720 avl_destroy(t);
1721
1722 kmem_free(itxs, sizeof (itxs_t));
1723 }
1724
1725 static int
zil_aitx_compare(const void * x1,const void * x2)1726 zil_aitx_compare(const void *x1, const void *x2)
1727 {
1728 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1729 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1730
1731 return (AVL_CMP(o1, o2));
1732 }
1733
1734 /*
1735 * Remove all async itx with the given oid.
1736 */
1737 static void
zil_remove_async(zilog_t * zilog,uint64_t oid)1738 zil_remove_async(zilog_t *zilog, uint64_t oid)
1739 {
1740 uint64_t otxg, txg;
1741 itx_async_node_t *ian;
1742 avl_tree_t *t;
1743 avl_index_t where;
1744 list_t clean_list;
1745 itx_t *itx;
1746
1747 ASSERT(oid != 0);
1748 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1749
1750 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1751 otxg = ZILTEST_TXG;
1752 else
1753 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1754
1755 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1756 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1757
1758 mutex_enter(&itxg->itxg_lock);
1759 if (itxg->itxg_txg != txg) {
1760 mutex_exit(&itxg->itxg_lock);
1761 continue;
1762 }
1763
1764 /*
1765 * Locate the object node and append its list.
1766 */
1767 t = &itxg->itxg_itxs->i_async_tree;
1768 ian = avl_find(t, &oid, &where);
1769 if (ian != NULL)
1770 list_move_tail(&clean_list, &ian->ia_list);
1771 mutex_exit(&itxg->itxg_lock);
1772 }
1773 while ((itx = list_head(&clean_list)) != NULL) {
1774 list_remove(&clean_list, itx);
1775 /* commit itxs should never be on the async lists. */
1776 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1777 zil_itx_destroy(itx);
1778 }
1779 list_destroy(&clean_list);
1780 }
1781
1782 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)1783 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1784 {
1785 uint64_t txg;
1786 itxg_t *itxg;
1787 itxs_t *itxs, *clean = NULL;
1788
1789 /*
1790 * Object ids can be re-instantiated in the next txg so
1791 * remove any async transactions to avoid future leaks.
1792 * This can happen if a fsync occurs on the re-instantiated
1793 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1794 * the new file data and flushes a write record for the old object.
1795 */
1796 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1797 zil_remove_async(zilog, itx->itx_oid);
1798
1799 /*
1800 * Ensure the data of a renamed file is committed before the rename.
1801 */
1802 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1803 zil_async_to_sync(zilog, itx->itx_oid);
1804
1805 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1806 txg = ZILTEST_TXG;
1807 else
1808 txg = dmu_tx_get_txg(tx);
1809
1810 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1811 mutex_enter(&itxg->itxg_lock);
1812 itxs = itxg->itxg_itxs;
1813 if (itxg->itxg_txg != txg) {
1814 if (itxs != NULL) {
1815 /*
1816 * The zil_clean callback hasn't got around to cleaning
1817 * this itxg. Save the itxs for release below.
1818 * This should be rare.
1819 */
1820 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1821 "txg %llu", itxg->itxg_txg);
1822 clean = itxg->itxg_itxs;
1823 }
1824 itxg->itxg_txg = txg;
1825 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1826
1827 list_create(&itxs->i_sync_list, sizeof (itx_t),
1828 offsetof(itx_t, itx_node));
1829 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1830 sizeof (itx_async_node_t),
1831 offsetof(itx_async_node_t, ia_node));
1832 }
1833 if (itx->itx_sync) {
1834 list_insert_tail(&itxs->i_sync_list, itx);
1835 } else {
1836 avl_tree_t *t = &itxs->i_async_tree;
1837 uint64_t foid =
1838 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1839 itx_async_node_t *ian;
1840 avl_index_t where;
1841
1842 ian = avl_find(t, &foid, &where);
1843 if (ian == NULL) {
1844 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1845 list_create(&ian->ia_list, sizeof (itx_t),
1846 offsetof(itx_t, itx_node));
1847 ian->ia_foid = foid;
1848 avl_insert(t, ian, where);
1849 }
1850 list_insert_tail(&ian->ia_list, itx);
1851 }
1852
1853 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1854
1855 /*
1856 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1857 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1858 * need to be careful to always dirty the ZIL using the "real"
1859 * TXG (not itxg_txg) even when the SPA is frozen.
1860 */
1861 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1862 mutex_exit(&itxg->itxg_lock);
1863
1864 /* Release the old itxs now we've dropped the lock */
1865 if (clean != NULL)
1866 zil_itxg_clean(clean);
1867 }
1868
1869 /*
1870 * If there are any in-memory intent log transactions which have now been
1871 * synced then start up a taskq to free them. We should only do this after we
1872 * have written out the uberblocks (i.e. txg has been comitted) so that
1873 * don't inadvertently clean out in-memory log records that would be required
1874 * by zil_commit().
1875 */
1876 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)1877 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1878 {
1879 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1880 itxs_t *clean_me;
1881
1882 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1883
1884 mutex_enter(&itxg->itxg_lock);
1885 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1886 mutex_exit(&itxg->itxg_lock);
1887 return;
1888 }
1889 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1890 ASSERT3U(itxg->itxg_txg, !=, 0);
1891 clean_me = itxg->itxg_itxs;
1892 itxg->itxg_itxs = NULL;
1893 itxg->itxg_txg = 0;
1894 mutex_exit(&itxg->itxg_lock);
1895 /*
1896 * Preferably start a task queue to free up the old itxs but
1897 * if taskq_dispatch can't allocate resources to do that then
1898 * free it in-line. This should be rare. Note, using TQ_SLEEP
1899 * created a bad performance problem.
1900 */
1901 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1902 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1903 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1904 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1905 zil_itxg_clean(clean_me);
1906 }
1907
1908 /*
1909 * This function will traverse the queue of itxs that need to be
1910 * committed, and move them onto the ZIL's zl_itx_commit_list.
1911 */
1912 static void
zil_get_commit_list(zilog_t * zilog)1913 zil_get_commit_list(zilog_t *zilog)
1914 {
1915 uint64_t otxg, txg;
1916 list_t *commit_list = &zilog->zl_itx_commit_list;
1917
1918 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1919
1920 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1921 otxg = ZILTEST_TXG;
1922 else
1923 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1924
1925 /*
1926 * This is inherently racy, since there is nothing to prevent
1927 * the last synced txg from changing. That's okay since we'll
1928 * only commit things in the future.
1929 */
1930 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1931 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1932
1933 mutex_enter(&itxg->itxg_lock);
1934 if (itxg->itxg_txg != txg) {
1935 mutex_exit(&itxg->itxg_lock);
1936 continue;
1937 }
1938
1939 /*
1940 * If we're adding itx records to the zl_itx_commit_list,
1941 * then the zil better be dirty in this "txg". We can assert
1942 * that here since we're holding the itxg_lock which will
1943 * prevent spa_sync from cleaning it. Once we add the itxs
1944 * to the zl_itx_commit_list we must commit it to disk even
1945 * if it's unnecessary (i.e. the txg was synced).
1946 */
1947 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1948 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1949 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1950
1951 mutex_exit(&itxg->itxg_lock);
1952 }
1953 }
1954
1955 /*
1956 * Move the async itxs for a specified object to commit into sync lists.
1957 */
1958 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)1959 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1960 {
1961 uint64_t otxg, txg;
1962 itx_async_node_t *ian;
1963 avl_tree_t *t;
1964 avl_index_t where;
1965
1966 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1967 otxg = ZILTEST_TXG;
1968 else
1969 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1970
1971 /*
1972 * This is inherently racy, since there is nothing to prevent
1973 * the last synced txg from changing.
1974 */
1975 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1976 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1977
1978 mutex_enter(&itxg->itxg_lock);
1979 if (itxg->itxg_txg != txg) {
1980 mutex_exit(&itxg->itxg_lock);
1981 continue;
1982 }
1983
1984 /*
1985 * If a foid is specified then find that node and append its
1986 * list. Otherwise walk the tree appending all the lists
1987 * to the sync list. We add to the end rather than the
1988 * beginning to ensure the create has happened.
1989 */
1990 t = &itxg->itxg_itxs->i_async_tree;
1991 if (foid != 0) {
1992 ian = avl_find(t, &foid, &where);
1993 if (ian != NULL) {
1994 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1995 &ian->ia_list);
1996 }
1997 } else {
1998 void *cookie = NULL;
1999
2000 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2001 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2002 &ian->ia_list);
2003 list_destroy(&ian->ia_list);
2004 kmem_free(ian, sizeof (itx_async_node_t));
2005 }
2006 }
2007 mutex_exit(&itxg->itxg_lock);
2008 }
2009 }
2010
2011 /*
2012 * This function will prune commit itxs that are at the head of the
2013 * commit list (it won't prune past the first non-commit itx), and
2014 * either: a) attach them to the last lwb that's still pending
2015 * completion, or b) skip them altogether.
2016 *
2017 * This is used as a performance optimization to prevent commit itxs
2018 * from generating new lwbs when it's unnecessary to do so.
2019 */
2020 static void
zil_prune_commit_list(zilog_t * zilog)2021 zil_prune_commit_list(zilog_t *zilog)
2022 {
2023 itx_t *itx;
2024
2025 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2026
2027 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2028 lr_t *lrc = &itx->itx_lr;
2029 if (lrc->lrc_txtype != TX_COMMIT)
2030 break;
2031
2032 mutex_enter(&zilog->zl_lock);
2033
2034 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2035 if (last_lwb == NULL ||
2036 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2037 /*
2038 * All of the itxs this waiter was waiting on
2039 * must have already completed (or there were
2040 * never any itx's for it to wait on), so it's
2041 * safe to skip this waiter and mark it done.
2042 */
2043 zil_commit_waiter_skip(itx->itx_private);
2044 } else {
2045 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2046 itx->itx_private = NULL;
2047 }
2048
2049 mutex_exit(&zilog->zl_lock);
2050
2051 list_remove(&zilog->zl_itx_commit_list, itx);
2052 zil_itx_destroy(itx);
2053 }
2054
2055 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2056 }
2057
2058 static void
zil_commit_writer_stall(zilog_t * zilog)2059 zil_commit_writer_stall(zilog_t *zilog)
2060 {
2061 /*
2062 * When zio_alloc_zil() fails to allocate the next lwb block on
2063 * disk, we must call txg_wait_synced() to ensure all of the
2064 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2065 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2066 * to zil_process_commit_list()) will have to call zil_create(),
2067 * and start a new ZIL chain.
2068 *
2069 * Since zil_alloc_zil() failed, the lwb that was previously
2070 * issued does not have a pointer to the "next" lwb on disk.
2071 * Thus, if another ZIL writer thread was to allocate the "next"
2072 * on-disk lwb, that block could be leaked in the event of a
2073 * crash (because the previous lwb on-disk would not point to
2074 * it).
2075 *
2076 * We must hold the zilog's zl_issuer_lock while we do this, to
2077 * ensure no new threads enter zil_process_commit_list() until
2078 * all lwb's in the zl_lwb_list have been synced and freed
2079 * (which is achieved via the txg_wait_synced() call).
2080 */
2081 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2082 txg_wait_synced(zilog->zl_dmu_pool, 0);
2083 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2084 }
2085
2086 /*
2087 * This function will traverse the commit list, creating new lwbs as
2088 * needed, and committing the itxs from the commit list to these newly
2089 * created lwbs. Additionally, as a new lwb is created, the previous
2090 * lwb will be issued to the zio layer to be written to disk.
2091 */
2092 static void
zil_process_commit_list(zilog_t * zilog)2093 zil_process_commit_list(zilog_t *zilog)
2094 {
2095 spa_t *spa = zilog->zl_spa;
2096 list_t nolwb_waiters;
2097 lwb_t *lwb;
2098 itx_t *itx;
2099
2100 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2101
2102 /*
2103 * Return if there's nothing to commit before we dirty the fs by
2104 * calling zil_create().
2105 */
2106 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2107 return;
2108
2109 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2110 offsetof(zil_commit_waiter_t, zcw_node));
2111
2112 lwb = list_tail(&zilog->zl_lwb_list);
2113 if (lwb == NULL) {
2114 lwb = zil_create(zilog);
2115 } else {
2116 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2117 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2118 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2119 }
2120
2121 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2122 lr_t *lrc = &itx->itx_lr;
2123 uint64_t txg = lrc->lrc_txg;
2124
2125 ASSERT3U(txg, !=, 0);
2126
2127 if (lrc->lrc_txtype == TX_COMMIT) {
2128 DTRACE_PROBE2(zil__process__commit__itx,
2129 zilog_t *, zilog, itx_t *, itx);
2130 } else {
2131 DTRACE_PROBE2(zil__process__normal__itx,
2132 zilog_t *, zilog, itx_t *, itx);
2133 }
2134
2135 boolean_t synced = txg <= spa_last_synced_txg(spa);
2136 boolean_t frozen = txg > spa_freeze_txg(spa);
2137
2138 /*
2139 * If the txg of this itx has already been synced out, then
2140 * we don't need to commit this itx to an lwb. This is
2141 * because the data of this itx will have already been
2142 * written to the main pool. This is inherently racy, and
2143 * it's still ok to commit an itx whose txg has already
2144 * been synced; this will result in a write that's
2145 * unnecessary, but will do no harm.
2146 *
2147 * With that said, we always want to commit TX_COMMIT itxs
2148 * to an lwb, regardless of whether or not that itx's txg
2149 * has been synced out. We do this to ensure any OPENED lwb
2150 * will always have at least one zil_commit_waiter_t linked
2151 * to the lwb.
2152 *
2153 * As a counter-example, if we skipped TX_COMMIT itx's
2154 * whose txg had already been synced, the following
2155 * situation could occur if we happened to be racing with
2156 * spa_sync:
2157 *
2158 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2159 * itx's txg is 10 and the last synced txg is 9.
2160 * 2. spa_sync finishes syncing out txg 10.
2161 * 3. we move to the next itx in the list, it's a TX_COMMIT
2162 * whose txg is 10, so we skip it rather than committing
2163 * it to the lwb used in (1).
2164 *
2165 * If the itx that is skipped in (3) is the last TX_COMMIT
2166 * itx in the commit list, than it's possible for the lwb
2167 * used in (1) to remain in the OPENED state indefinitely.
2168 *
2169 * To prevent the above scenario from occuring, ensuring
2170 * that once an lwb is OPENED it will transition to ISSUED
2171 * and eventually DONE, we always commit TX_COMMIT itx's to
2172 * an lwb here, even if that itx's txg has already been
2173 * synced.
2174 *
2175 * Finally, if the pool is frozen, we _always_ commit the
2176 * itx. The point of freezing the pool is to prevent data
2177 * from being written to the main pool via spa_sync, and
2178 * instead rely solely on the ZIL to persistently store the
2179 * data; i.e. when the pool is frozen, the last synced txg
2180 * value can't be trusted.
2181 */
2182 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2183 if (lwb != NULL) {
2184 lwb = zil_lwb_commit(zilog, itx, lwb);
2185 } else if (lrc->lrc_txtype == TX_COMMIT) {
2186 ASSERT3P(lwb, ==, NULL);
2187 zil_commit_waiter_link_nolwb(
2188 itx->itx_private, &nolwb_waiters);
2189 }
2190 }
2191
2192 list_remove(&zilog->zl_itx_commit_list, itx);
2193 zil_itx_destroy(itx);
2194 }
2195
2196 if (lwb == NULL) {
2197 /*
2198 * This indicates zio_alloc_zil() failed to allocate the
2199 * "next" lwb on-disk. When this happens, we must stall
2200 * the ZIL write pipeline; see the comment within
2201 * zil_commit_writer_stall() for more details.
2202 */
2203 zil_commit_writer_stall(zilog);
2204
2205 /*
2206 * Additionally, we have to signal and mark the "nolwb"
2207 * waiters as "done" here, since without an lwb, we
2208 * can't do this via zil_lwb_flush_vdevs_done() like
2209 * normal.
2210 */
2211 zil_commit_waiter_t *zcw;
2212 while (zcw = list_head(&nolwb_waiters)) {
2213 zil_commit_waiter_skip(zcw);
2214 list_remove(&nolwb_waiters, zcw);
2215 }
2216 } else {
2217 ASSERT(list_is_empty(&nolwb_waiters));
2218 ASSERT3P(lwb, !=, NULL);
2219 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2220 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2221 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2222
2223 /*
2224 * At this point, the ZIL block pointed at by the "lwb"
2225 * variable is in one of the following states: "closed"
2226 * or "open".
2227 *
2228 * If its "closed", then no itxs have been committed to
2229 * it, so there's no point in issuing its zio (i.e.
2230 * it's "empty").
2231 *
2232 * If its "open" state, then it contains one or more
2233 * itxs that eventually need to be committed to stable
2234 * storage. In this case we intentionally do not issue
2235 * the lwb's zio to disk yet, and instead rely on one of
2236 * the following two mechanisms for issuing the zio:
2237 *
2238 * 1. Ideally, there will be more ZIL activity occuring
2239 * on the system, such that this function will be
2240 * immediately called again (not necessarily by the same
2241 * thread) and this lwb's zio will be issued via
2242 * zil_lwb_commit(). This way, the lwb is guaranteed to
2243 * be "full" when it is issued to disk, and we'll make
2244 * use of the lwb's size the best we can.
2245 *
2246 * 2. If there isn't sufficient ZIL activity occuring on
2247 * the system, such that this lwb's zio isn't issued via
2248 * zil_lwb_commit(), zil_commit_waiter() will issue the
2249 * lwb's zio. If this occurs, the lwb is not guaranteed
2250 * to be "full" by the time its zio is issued, and means
2251 * the size of the lwb was "too large" given the amount
2252 * of ZIL activity occuring on the system at that time.
2253 *
2254 * We do this for a couple of reasons:
2255 *
2256 * 1. To try and reduce the number of IOPs needed to
2257 * write the same number of itxs. If an lwb has space
2258 * available in it's buffer for more itxs, and more itxs
2259 * will be committed relatively soon (relative to the
2260 * latency of performing a write), then it's beneficial
2261 * to wait for these "next" itxs. This way, more itxs
2262 * can be committed to stable storage with fewer writes.
2263 *
2264 * 2. To try and use the largest lwb block size that the
2265 * incoming rate of itxs can support. Again, this is to
2266 * try and pack as many itxs into as few lwbs as
2267 * possible, without significantly impacting the latency
2268 * of each individual itx.
2269 */
2270 }
2271 }
2272
2273 /*
2274 * This function is responsible for ensuring the passed in commit waiter
2275 * (and associated commit itx) is committed to an lwb. If the waiter is
2276 * not already committed to an lwb, all itxs in the zilog's queue of
2277 * itxs will be processed. The assumption is the passed in waiter's
2278 * commit itx will found in the queue just like the other non-commit
2279 * itxs, such that when the entire queue is processed, the waiter will
2280 * have been commited to an lwb.
2281 *
2282 * The lwb associated with the passed in waiter is not guaranteed to
2283 * have been issued by the time this function completes. If the lwb is
2284 * not issued, we rely on future calls to zil_commit_writer() to issue
2285 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2286 */
2287 static void
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)2288 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2289 {
2290 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2291 ASSERT(spa_writeable(zilog->zl_spa));
2292
2293 mutex_enter(&zilog->zl_issuer_lock);
2294
2295 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2296 /*
2297 * It's possible that, while we were waiting to acquire
2298 * the "zl_issuer_lock", another thread committed this
2299 * waiter to an lwb. If that occurs, we bail out early,
2300 * without processing any of the zilog's queue of itxs.
2301 *
2302 * On certain workloads and system configurations, the
2303 * "zl_issuer_lock" can become highly contended. In an
2304 * attempt to reduce this contention, we immediately drop
2305 * the lock if the waiter has already been processed.
2306 *
2307 * We've measured this optimization to reduce CPU spent
2308 * contending on this lock by up to 5%, using a system
2309 * with 32 CPUs, low latency storage (~50 usec writes),
2310 * and 1024 threads performing sync writes.
2311 */
2312 goto out;
2313 }
2314
2315 zil_get_commit_list(zilog);
2316 zil_prune_commit_list(zilog);
2317 zil_process_commit_list(zilog);
2318
2319 out:
2320 mutex_exit(&zilog->zl_issuer_lock);
2321 }
2322
2323 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)2324 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2325 {
2326 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2327 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2328 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2329
2330 lwb_t *lwb = zcw->zcw_lwb;
2331 ASSERT3P(lwb, !=, NULL);
2332 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2333
2334 /*
2335 * If the lwb has already been issued by another thread, we can
2336 * immediately return since there's no work to be done (the
2337 * point of this function is to issue the lwb). Additionally, we
2338 * do this prior to acquiring the zl_issuer_lock, to avoid
2339 * acquiring it when it's not necessary to do so.
2340 */
2341 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2342 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2343 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2344 return;
2345
2346 /*
2347 * In order to call zil_lwb_write_issue() we must hold the
2348 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2349 * since we're already holding the commit waiter's "zcw_lock",
2350 * and those two locks are aquired in the opposite order
2351 * elsewhere.
2352 */
2353 mutex_exit(&zcw->zcw_lock);
2354 mutex_enter(&zilog->zl_issuer_lock);
2355 mutex_enter(&zcw->zcw_lock);
2356
2357 /*
2358 * Since we just dropped and re-acquired the commit waiter's
2359 * lock, we have to re-check to see if the waiter was marked
2360 * "done" during that process. If the waiter was marked "done",
2361 * the "lwb" pointer is no longer valid (it can be free'd after
2362 * the waiter is marked "done"), so without this check we could
2363 * wind up with a use-after-free error below.
2364 */
2365 if (zcw->zcw_done)
2366 goto out;
2367
2368 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2369
2370 /*
2371 * We've already checked this above, but since we hadn't acquired
2372 * the zilog's zl_issuer_lock, we have to perform this check a
2373 * second time while holding the lock.
2374 *
2375 * We don't need to hold the zl_lock since the lwb cannot transition
2376 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2377 * _can_ transition from ISSUED to DONE, but it's OK to race with
2378 * that transition since we treat the lwb the same, whether it's in
2379 * the ISSUED or DONE states.
2380 *
2381 * The important thing, is we treat the lwb differently depending on
2382 * if it's ISSUED or OPENED, and block any other threads that might
2383 * attempt to issue this lwb. For that reason we hold the
2384 * zl_issuer_lock when checking the lwb_state; we must not call
2385 * zil_lwb_write_issue() if the lwb had already been issued.
2386 *
2387 * See the comment above the lwb_state_t structure definition for
2388 * more details on the lwb states, and locking requirements.
2389 */
2390 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2391 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2392 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2393 goto out;
2394
2395 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2396
2397 /*
2398 * As described in the comments above zil_commit_waiter() and
2399 * zil_process_commit_list(), we need to issue this lwb's zio
2400 * since we've reached the commit waiter's timeout and it still
2401 * hasn't been issued.
2402 */
2403 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2404
2405 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2406
2407 /*
2408 * Since the lwb's zio hadn't been issued by the time this thread
2409 * reached its timeout, we reset the zilog's "zl_cur_used" field
2410 * to influence the zil block size selection algorithm.
2411 *
2412 * By having to issue the lwb's zio here, it means the size of the
2413 * lwb was too large, given the incoming throughput of itxs. By
2414 * setting "zl_cur_used" to zero, we communicate this fact to the
2415 * block size selection algorithm, so it can take this informaiton
2416 * into account, and potentially select a smaller size for the
2417 * next lwb block that is allocated.
2418 */
2419 zilog->zl_cur_used = 0;
2420
2421 if (nlwb == NULL) {
2422 /*
2423 * When zil_lwb_write_issue() returns NULL, this
2424 * indicates zio_alloc_zil() failed to allocate the
2425 * "next" lwb on-disk. When this occurs, the ZIL write
2426 * pipeline must be stalled; see the comment within the
2427 * zil_commit_writer_stall() function for more details.
2428 *
2429 * We must drop the commit waiter's lock prior to
2430 * calling zil_commit_writer_stall() or else we can wind
2431 * up with the following deadlock:
2432 *
2433 * - This thread is waiting for the txg to sync while
2434 * holding the waiter's lock; txg_wait_synced() is
2435 * used within txg_commit_writer_stall().
2436 *
2437 * - The txg can't sync because it is waiting for this
2438 * lwb's zio callback to call dmu_tx_commit().
2439 *
2440 * - The lwb's zio callback can't call dmu_tx_commit()
2441 * because it's blocked trying to acquire the waiter's
2442 * lock, which occurs prior to calling dmu_tx_commit()
2443 */
2444 mutex_exit(&zcw->zcw_lock);
2445 zil_commit_writer_stall(zilog);
2446 mutex_enter(&zcw->zcw_lock);
2447 }
2448
2449 out:
2450 mutex_exit(&zilog->zl_issuer_lock);
2451 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2452 }
2453
2454 /*
2455 * This function is responsible for performing the following two tasks:
2456 *
2457 * 1. its primary responsibility is to block until the given "commit
2458 * waiter" is considered "done".
2459 *
2460 * 2. its secondary responsibility is to issue the zio for the lwb that
2461 * the given "commit waiter" is waiting on, if this function has
2462 * waited "long enough" and the lwb is still in the "open" state.
2463 *
2464 * Given a sufficient amount of itxs being generated and written using
2465 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2466 * function. If this does not occur, this secondary responsibility will
2467 * ensure the lwb is issued even if there is not other synchronous
2468 * activity on the system.
2469 *
2470 * For more details, see zil_process_commit_list(); more specifically,
2471 * the comment at the bottom of that function.
2472 */
2473 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)2474 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2475 {
2476 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2477 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2478 ASSERT(spa_writeable(zilog->zl_spa));
2479
2480 mutex_enter(&zcw->zcw_lock);
2481
2482 /*
2483 * The timeout is scaled based on the lwb latency to avoid
2484 * significantly impacting the latency of each individual itx.
2485 * For more details, see the comment at the bottom of the
2486 * zil_process_commit_list() function.
2487 */
2488 int pct = MAX(zfs_commit_timeout_pct, 1);
2489 #if defined(illumos) || !defined(_KERNEL)
2490 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2491 hrtime_t wakeup = gethrtime() + sleep;
2492 #else
2493 sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2494 sbintime_t wakeup = getsbinuptime() + sleep;
2495 #endif
2496 boolean_t timedout = B_FALSE;
2497
2498 while (!zcw->zcw_done) {
2499 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2500
2501 lwb_t *lwb = zcw->zcw_lwb;
2502
2503 /*
2504 * Usually, the waiter will have a non-NULL lwb field here,
2505 * but it's possible for it to be NULL as a result of
2506 * zil_commit() racing with spa_sync().
2507 *
2508 * When zil_clean() is called, it's possible for the itxg
2509 * list (which may be cleaned via a taskq) to contain
2510 * commit itxs. When this occurs, the commit waiters linked
2511 * off of these commit itxs will not be committed to an
2512 * lwb. Additionally, these commit waiters will not be
2513 * marked done until zil_commit_waiter_skip() is called via
2514 * zil_itxg_clean().
2515 *
2516 * Thus, it's possible for this commit waiter (i.e. the
2517 * "zcw" variable) to be found in this "in between" state;
2518 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2519 * been skipped, so it's "zcw_done" field is still B_FALSE.
2520 */
2521 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2522
2523 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2524 ASSERT3B(timedout, ==, B_FALSE);
2525
2526 /*
2527 * If the lwb hasn't been issued yet, then we
2528 * need to wait with a timeout, in case this
2529 * function needs to issue the lwb after the
2530 * timeout is reached; responsibility (2) from
2531 * the comment above this function.
2532 */
2533 #if defined(illumos) || !defined(_KERNEL)
2534 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2535 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2536 CALLOUT_FLAG_ABSOLUTE);
2537
2538 if (timeleft >= 0 || zcw->zcw_done)
2539 continue;
2540 #else
2541 int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2542 &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2543 if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2544 continue;
2545 #endif
2546
2547 timedout = B_TRUE;
2548 zil_commit_waiter_timeout(zilog, zcw);
2549
2550 if (!zcw->zcw_done) {
2551 /*
2552 * If the commit waiter has already been
2553 * marked "done", it's possible for the
2554 * waiter's lwb structure to have already
2555 * been freed. Thus, we can only reliably
2556 * make these assertions if the waiter
2557 * isn't done.
2558 */
2559 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2560 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2561 }
2562 } else {
2563 /*
2564 * If the lwb isn't open, then it must have already
2565 * been issued. In that case, there's no need to
2566 * use a timeout when waiting for the lwb to
2567 * complete.
2568 *
2569 * Additionally, if the lwb is NULL, the waiter
2570 * will soon be signalled and marked done via
2571 * zil_clean() and zil_itxg_clean(), so no timeout
2572 * is required.
2573 */
2574
2575 IMPLY(lwb != NULL,
2576 lwb->lwb_state == LWB_STATE_ISSUED ||
2577 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2578 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2579 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2580 }
2581 }
2582
2583 mutex_exit(&zcw->zcw_lock);
2584 }
2585
2586 static zil_commit_waiter_t *
zil_alloc_commit_waiter()2587 zil_alloc_commit_waiter()
2588 {
2589 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2590
2591 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2592 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2593 list_link_init(&zcw->zcw_node);
2594 zcw->zcw_lwb = NULL;
2595 zcw->zcw_done = B_FALSE;
2596 zcw->zcw_zio_error = 0;
2597
2598 return (zcw);
2599 }
2600
2601 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)2602 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2603 {
2604 ASSERT(!list_link_active(&zcw->zcw_node));
2605 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2606 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2607 mutex_destroy(&zcw->zcw_lock);
2608 cv_destroy(&zcw->zcw_cv);
2609 kmem_cache_free(zil_zcw_cache, zcw);
2610 }
2611
2612 /*
2613 * This function is used to create a TX_COMMIT itx and assign it. This
2614 * way, it will be linked into the ZIL's list of synchronous itxs, and
2615 * then later committed to an lwb (or skipped) when
2616 * zil_process_commit_list() is called.
2617 */
2618 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)2619 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2620 {
2621 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2622 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2623
2624 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2625 itx->itx_sync = B_TRUE;
2626 itx->itx_private = zcw;
2627
2628 zil_itx_assign(zilog, itx, tx);
2629
2630 dmu_tx_commit(tx);
2631 }
2632
2633 /*
2634 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2635 *
2636 * When writing ZIL transactions to the on-disk representation of the
2637 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2638 * itxs can be committed to a single lwb. Once a lwb is written and
2639 * committed to stable storage (i.e. the lwb is written, and vdevs have
2640 * been flushed), each itx that was committed to that lwb is also
2641 * considered to be committed to stable storage.
2642 *
2643 * When an itx is committed to an lwb, the log record (lr_t) contained
2644 * by the itx is copied into the lwb's zio buffer, and once this buffer
2645 * is written to disk, it becomes an on-disk ZIL block.
2646 *
2647 * As itxs are generated, they're inserted into the ZIL's queue of
2648 * uncommitted itxs. The semantics of zil_commit() are such that it will
2649 * block until all itxs that were in the queue when it was called, are
2650 * committed to stable storage.
2651 *
2652 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2653 * itxs, for all objects in the dataset, will be committed to stable
2654 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2655 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2656 * that correspond to the foid passed in, will be committed to stable
2657 * storage prior to zil_commit() returning.
2658 *
2659 * Generally speaking, when zil_commit() is called, the consumer doesn't
2660 * actually care about _all_ of the uncommitted itxs. Instead, they're
2661 * simply trying to waiting for a specific itx to be committed to disk,
2662 * but the interface(s) for interacting with the ZIL don't allow such
2663 * fine-grained communication. A better interface would allow a consumer
2664 * to create and assign an itx, and then pass a reference to this itx to
2665 * zil_commit(); such that zil_commit() would return as soon as that
2666 * specific itx was committed to disk (instead of waiting for _all_
2667 * itxs to be committed).
2668 *
2669 * When a thread calls zil_commit() a special "commit itx" will be
2670 * generated, along with a corresponding "waiter" for this commit itx.
2671 * zil_commit() will wait on this waiter's CV, such that when the waiter
2672 * is marked done, and signalled, zil_commit() will return.
2673 *
2674 * This commit itx is inserted into the queue of uncommitted itxs. This
2675 * provides an easy mechanism for determining which itxs were in the
2676 * queue prior to zil_commit() having been called, and which itxs were
2677 * added after zil_commit() was called.
2678 *
2679 * The commit it is special; it doesn't have any on-disk representation.
2680 * When a commit itx is "committed" to an lwb, the waiter associated
2681 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2682 * completes, each waiter on the lwb's list is marked done and signalled
2683 * -- allowing the thread waiting on the waiter to return from zil_commit().
2684 *
2685 * It's important to point out a few critical factors that allow us
2686 * to make use of the commit itxs, commit waiters, per-lwb lists of
2687 * commit waiters, and zio completion callbacks like we're doing:
2688 *
2689 * 1. The list of waiters for each lwb is traversed, and each commit
2690 * waiter is marked "done" and signalled, in the zio completion
2691 * callback of the lwb's zio[*].
2692 *
2693 * * Actually, the waiters are signalled in the zio completion
2694 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2695 * that are sent to the vdevs upon completion of the lwb zio.
2696 *
2697 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2698 * itxs, the order in which they are inserted is preserved[*]; as
2699 * itxs are added to the queue, they are added to the tail of
2700 * in-memory linked lists.
2701 *
2702 * When committing the itxs to lwbs (to be written to disk), they
2703 * are committed in the same order in which the itxs were added to
2704 * the uncommitted queue's linked list(s); i.e. the linked list of
2705 * itxs to commit is traversed from head to tail, and each itx is
2706 * committed to an lwb in that order.
2707 *
2708 * * To clarify:
2709 *
2710 * - the order of "sync" itxs is preserved w.r.t. other
2711 * "sync" itxs, regardless of the corresponding objects.
2712 * - the order of "async" itxs is preserved w.r.t. other
2713 * "async" itxs corresponding to the same object.
2714 * - the order of "async" itxs is *not* preserved w.r.t. other
2715 * "async" itxs corresponding to different objects.
2716 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2717 * versa) is *not* preserved, even for itxs that correspond
2718 * to the same object.
2719 *
2720 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2721 * zil_get_commit_list(), and zil_process_commit_list().
2722 *
2723 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2724 * lwb cannot be considered committed to stable storage, until its
2725 * "previous" lwb is also committed to stable storage. This fact,
2726 * coupled with the fact described above, means that itxs are
2727 * committed in (roughly) the order in which they were generated.
2728 * This is essential because itxs are dependent on prior itxs.
2729 * Thus, we *must not* deem an itx as being committed to stable
2730 * storage, until *all* prior itxs have also been committed to
2731 * stable storage.
2732 *
2733 * To enforce this ordering of lwb zio's, while still leveraging as
2734 * much of the underlying storage performance as possible, we rely
2735 * on two fundamental concepts:
2736 *
2737 * 1. The creation and issuance of lwb zio's is protected by
2738 * the zilog's "zl_issuer_lock", which ensures only a single
2739 * thread is creating and/or issuing lwb's at a time
2740 * 2. The "previous" lwb is a child of the "current" lwb
2741 * (leveraging the zio parent-child depenency graph)
2742 *
2743 * By relying on this parent-child zio relationship, we can have
2744 * many lwb zio's concurrently issued to the underlying storage,
2745 * but the order in which they complete will be the same order in
2746 * which they were created.
2747 */
2748 void
zil_commit(zilog_t * zilog,uint64_t foid)2749 zil_commit(zilog_t *zilog, uint64_t foid)
2750 {
2751 /*
2752 * We should never attempt to call zil_commit on a snapshot for
2753 * a couple of reasons:
2754 *
2755 * 1. A snapshot may never be modified, thus it cannot have any
2756 * in-flight itxs that would have modified the dataset.
2757 *
2758 * 2. By design, when zil_commit() is called, a commit itx will
2759 * be assigned to this zilog; as a result, the zilog will be
2760 * dirtied. We must not dirty the zilog of a snapshot; there's
2761 * checks in the code that enforce this invariant, and will
2762 * cause a panic if it's not upheld.
2763 */
2764 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2765
2766 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2767 return;
2768
2769 if (!spa_writeable(zilog->zl_spa)) {
2770 /*
2771 * If the SPA is not writable, there should never be any
2772 * pending itxs waiting to be committed to disk. If that
2773 * weren't true, we'd skip writing those itxs out, and
2774 * would break the sematics of zil_commit(); thus, we're
2775 * verifying that truth before we return to the caller.
2776 */
2777 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2778 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2779 for (int i = 0; i < TXG_SIZE; i++)
2780 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2781 return;
2782 }
2783
2784 /*
2785 * If the ZIL is suspended, we don't want to dirty it by calling
2786 * zil_commit_itx_assign() below, nor can we write out
2787 * lwbs like would be done in zil_commit_write(). Thus, we
2788 * simply rely on txg_wait_synced() to maintain the necessary
2789 * semantics, and avoid calling those functions altogether.
2790 */
2791 if (zilog->zl_suspend > 0) {
2792 txg_wait_synced(zilog->zl_dmu_pool, 0);
2793 return;
2794 }
2795
2796 zil_commit_impl(zilog, foid);
2797 }
2798
2799 void
zil_commit_impl(zilog_t * zilog,uint64_t foid)2800 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2801 {
2802 /*
2803 * Move the "async" itxs for the specified foid to the "sync"
2804 * queues, such that they will be later committed (or skipped)
2805 * to an lwb when zil_process_commit_list() is called.
2806 *
2807 * Since these "async" itxs must be committed prior to this
2808 * call to zil_commit returning, we must perform this operation
2809 * before we call zil_commit_itx_assign().
2810 */
2811 zil_async_to_sync(zilog, foid);
2812
2813 /*
2814 * We allocate a new "waiter" structure which will initially be
2815 * linked to the commit itx using the itx's "itx_private" field.
2816 * Since the commit itx doesn't represent any on-disk state,
2817 * when it's committed to an lwb, rather than copying the its
2818 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2819 * added to the lwb's list of waiters. Then, when the lwb is
2820 * committed to stable storage, each waiter in the lwb's list of
2821 * waiters will be marked "done", and signalled.
2822 *
2823 * We must create the waiter and assign the commit itx prior to
2824 * calling zil_commit_writer(), or else our specific commit itx
2825 * is not guaranteed to be committed to an lwb prior to calling
2826 * zil_commit_waiter().
2827 */
2828 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2829 zil_commit_itx_assign(zilog, zcw);
2830
2831 zil_commit_writer(zilog, zcw);
2832 zil_commit_waiter(zilog, zcw);
2833
2834 if (zcw->zcw_zio_error != 0) {
2835 /*
2836 * If there was an error writing out the ZIL blocks that
2837 * this thread is waiting on, then we fallback to
2838 * relying on spa_sync() to write out the data this
2839 * thread is waiting on. Obviously this has performance
2840 * implications, but the expectation is for this to be
2841 * an exceptional case, and shouldn't occur often.
2842 */
2843 DTRACE_PROBE2(zil__commit__io__error,
2844 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2845 txg_wait_synced(zilog->zl_dmu_pool, 0);
2846 }
2847
2848 zil_free_commit_waiter(zcw);
2849 }
2850
2851 /*
2852 * Called in syncing context to free committed log blocks and update log header.
2853 */
2854 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)2855 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2856 {
2857 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2858 uint64_t txg = dmu_tx_get_txg(tx);
2859 spa_t *spa = zilog->zl_spa;
2860 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2861 lwb_t *lwb;
2862
2863 /*
2864 * We don't zero out zl_destroy_txg, so make sure we don't try
2865 * to destroy it twice.
2866 */
2867 if (spa_sync_pass(spa) != 1)
2868 return;
2869
2870 mutex_enter(&zilog->zl_lock);
2871
2872 ASSERT(zilog->zl_stop_sync == 0);
2873
2874 if (*replayed_seq != 0) {
2875 ASSERT(zh->zh_replay_seq < *replayed_seq);
2876 zh->zh_replay_seq = *replayed_seq;
2877 *replayed_seq = 0;
2878 }
2879
2880 if (zilog->zl_destroy_txg == txg) {
2881 blkptr_t blk = zh->zh_log;
2882
2883 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2884
2885 bzero(zh, sizeof (zil_header_t));
2886 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2887
2888 if (zilog->zl_keep_first) {
2889 /*
2890 * If this block was part of log chain that couldn't
2891 * be claimed because a device was missing during
2892 * zil_claim(), but that device later returns,
2893 * then this block could erroneously appear valid.
2894 * To guard against this, assign a new GUID to the new
2895 * log chain so it doesn't matter what blk points to.
2896 */
2897 zil_init_log_chain(zilog, &blk);
2898 zh->zh_log = blk;
2899 }
2900 }
2901
2902 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2903 zh->zh_log = lwb->lwb_blk;
2904 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2905 break;
2906 list_remove(&zilog->zl_lwb_list, lwb);
2907 zio_free(spa, txg, &lwb->lwb_blk);
2908 zil_free_lwb(zilog, lwb);
2909
2910 /*
2911 * If we don't have anything left in the lwb list then
2912 * we've had an allocation failure and we need to zero
2913 * out the zil_header blkptr so that we don't end
2914 * up freeing the same block twice.
2915 */
2916 if (list_head(&zilog->zl_lwb_list) == NULL)
2917 BP_ZERO(&zh->zh_log);
2918 }
2919 mutex_exit(&zilog->zl_lock);
2920 }
2921
2922 /* ARGSUSED */
2923 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)2924 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2925 {
2926 lwb_t *lwb = vbuf;
2927 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2928 offsetof(zil_commit_waiter_t, zcw_node));
2929 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2930 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2931 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2932 return (0);
2933 }
2934
2935 /* ARGSUSED */
2936 static void
zil_lwb_dest(void * vbuf,void * unused)2937 zil_lwb_dest(void *vbuf, void *unused)
2938 {
2939 lwb_t *lwb = vbuf;
2940 mutex_destroy(&lwb->lwb_vdev_lock);
2941 avl_destroy(&lwb->lwb_vdev_tree);
2942 list_destroy(&lwb->lwb_waiters);
2943 }
2944
2945 void
zil_init(void)2946 zil_init(void)
2947 {
2948 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2949 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2950
2951 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2952 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2953 }
2954
2955 void
zil_fini(void)2956 zil_fini(void)
2957 {
2958 kmem_cache_destroy(zil_zcw_cache);
2959 kmem_cache_destroy(zil_lwb_cache);
2960 }
2961
2962 void
zil_set_sync(zilog_t * zilog,uint64_t sync)2963 zil_set_sync(zilog_t *zilog, uint64_t sync)
2964 {
2965 zilog->zl_sync = sync;
2966 }
2967
2968 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)2969 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2970 {
2971 zilog->zl_logbias = logbias;
2972 }
2973
2974 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)2975 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2976 {
2977 zilog_t *zilog;
2978
2979 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2980
2981 zilog->zl_header = zh_phys;
2982 zilog->zl_os = os;
2983 zilog->zl_spa = dmu_objset_spa(os);
2984 zilog->zl_dmu_pool = dmu_objset_pool(os);
2985 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2986 zilog->zl_logbias = dmu_objset_logbias(os);
2987 zilog->zl_sync = dmu_objset_syncprop(os);
2988 zilog->zl_dirty_max_txg = 0;
2989 zilog->zl_last_lwb_opened = NULL;
2990 zilog->zl_last_lwb_latency = 0;
2991
2992 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2993 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2994
2995 for (int i = 0; i < TXG_SIZE; i++) {
2996 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2997 MUTEX_DEFAULT, NULL);
2998 }
2999
3000 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3001 offsetof(lwb_t, lwb_node));
3002
3003 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3004 offsetof(itx_t, itx_node));
3005
3006 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3007
3008 return (zilog);
3009 }
3010
3011 void
zil_free(zilog_t * zilog)3012 zil_free(zilog_t *zilog)
3013 {
3014 zilog->zl_stop_sync = 1;
3015
3016 ASSERT0(zilog->zl_suspend);
3017 ASSERT0(zilog->zl_suspending);
3018
3019 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3020 list_destroy(&zilog->zl_lwb_list);
3021
3022 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3023 list_destroy(&zilog->zl_itx_commit_list);
3024
3025 for (int i = 0; i < TXG_SIZE; i++) {
3026 /*
3027 * It's possible for an itx to be generated that doesn't dirty
3028 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3029 * callback to remove the entry. We remove those here.
3030 *
3031 * Also free up the ziltest itxs.
3032 */
3033 if (zilog->zl_itxg[i].itxg_itxs)
3034 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3035 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3036 }
3037
3038 mutex_destroy(&zilog->zl_issuer_lock);
3039 mutex_destroy(&zilog->zl_lock);
3040
3041 cv_destroy(&zilog->zl_cv_suspend);
3042
3043 kmem_free(zilog, sizeof (zilog_t));
3044 }
3045
3046 /*
3047 * Open an intent log.
3048 */
3049 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data)3050 zil_open(objset_t *os, zil_get_data_t *get_data)
3051 {
3052 zilog_t *zilog = dmu_objset_zil(os);
3053
3054 ASSERT3P(zilog->zl_get_data, ==, NULL);
3055 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3056 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3057
3058 zilog->zl_get_data = get_data;
3059
3060 return (zilog);
3061 }
3062
3063 /*
3064 * Close an intent log.
3065 */
3066 void
zil_close(zilog_t * zilog)3067 zil_close(zilog_t *zilog)
3068 {
3069 lwb_t *lwb;
3070 uint64_t txg;
3071
3072 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3073 zil_commit(zilog, 0);
3074 } else {
3075 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3076 ASSERT0(zilog->zl_dirty_max_txg);
3077 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3078 }
3079
3080 mutex_enter(&zilog->zl_lock);
3081 lwb = list_tail(&zilog->zl_lwb_list);
3082 if (lwb == NULL)
3083 txg = zilog->zl_dirty_max_txg;
3084 else
3085 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3086 mutex_exit(&zilog->zl_lock);
3087
3088 /*
3089 * We need to use txg_wait_synced() to wait long enough for the
3090 * ZIL to be clean, and to wait for all pending lwbs to be
3091 * written out.
3092 */
3093 if (txg)
3094 txg_wait_synced(zilog->zl_dmu_pool, txg);
3095
3096 if (txg < spa_freeze_txg(zilog->zl_spa))
3097 ASSERT(!zilog_is_dirty(zilog));
3098
3099 zilog->zl_get_data = NULL;
3100
3101 /*
3102 * We should have only one lwb left on the list; remove it now.
3103 */
3104 mutex_enter(&zilog->zl_lock);
3105 lwb = list_head(&zilog->zl_lwb_list);
3106 if (lwb != NULL) {
3107 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3108 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3109 list_remove(&zilog->zl_lwb_list, lwb);
3110 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3111 zil_free_lwb(zilog, lwb);
3112 }
3113 mutex_exit(&zilog->zl_lock);
3114 }
3115
3116 static char *suspend_tag = "zil suspending";
3117
3118 /*
3119 * Suspend an intent log. While in suspended mode, we still honor
3120 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3121 * On old version pools, we suspend the log briefly when taking a
3122 * snapshot so that it will have an empty intent log.
3123 *
3124 * Long holds are not really intended to be used the way we do here --
3125 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3126 * could fail. Therefore we take pains to only put a long hold if it is
3127 * actually necessary. Fortunately, it will only be necessary if the
3128 * objset is currently mounted (or the ZVOL equivalent). In that case it
3129 * will already have a long hold, so we are not really making things any worse.
3130 *
3131 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3132 * zvol_state_t), and use their mechanism to prevent their hold from being
3133 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3134 * very little gain.
3135 *
3136 * if cookiep == NULL, this does both the suspend & resume.
3137 * Otherwise, it returns with the dataset "long held", and the cookie
3138 * should be passed into zil_resume().
3139 */
3140 int
zil_suspend(const char * osname,void ** cookiep)3141 zil_suspend(const char *osname, void **cookiep)
3142 {
3143 objset_t *os;
3144 zilog_t *zilog;
3145 const zil_header_t *zh;
3146 int error;
3147
3148 error = dmu_objset_hold(osname, suspend_tag, &os);
3149 if (error != 0)
3150 return (error);
3151 zilog = dmu_objset_zil(os);
3152
3153 mutex_enter(&zilog->zl_lock);
3154 zh = zilog->zl_header;
3155
3156 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3157 mutex_exit(&zilog->zl_lock);
3158 dmu_objset_rele(os, suspend_tag);
3159 return (SET_ERROR(EBUSY));
3160 }
3161
3162 /*
3163 * Don't put a long hold in the cases where we can avoid it. This
3164 * is when there is no cookie so we are doing a suspend & resume
3165 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3166 * for the suspend because it's already suspended, or there's no ZIL.
3167 */
3168 if (cookiep == NULL && !zilog->zl_suspending &&
3169 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3170 mutex_exit(&zilog->zl_lock);
3171 dmu_objset_rele(os, suspend_tag);
3172 return (0);
3173 }
3174
3175 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3176 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3177
3178 zilog->zl_suspend++;
3179
3180 if (zilog->zl_suspend > 1) {
3181 /*
3182 * Someone else is already suspending it.
3183 * Just wait for them to finish.
3184 */
3185
3186 while (zilog->zl_suspending)
3187 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3188 mutex_exit(&zilog->zl_lock);
3189
3190 if (cookiep == NULL)
3191 zil_resume(os);
3192 else
3193 *cookiep = os;
3194 return (0);
3195 }
3196
3197 /*
3198 * If there is no pointer to an on-disk block, this ZIL must not
3199 * be active (e.g. filesystem not mounted), so there's nothing
3200 * to clean up.
3201 */
3202 if (BP_IS_HOLE(&zh->zh_log)) {
3203 ASSERT(cookiep != NULL); /* fast path already handled */
3204
3205 *cookiep = os;
3206 mutex_exit(&zilog->zl_lock);
3207 return (0);
3208 }
3209
3210 zilog->zl_suspending = B_TRUE;
3211 mutex_exit(&zilog->zl_lock);
3212
3213 /*
3214 * We need to use zil_commit_impl to ensure we wait for all
3215 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3216 * to disk before proceeding. If we used zil_commit instead, it
3217 * would just call txg_wait_synced(), because zl_suspend is set.
3218 * txg_wait_synced() doesn't wait for these lwb's to be
3219 * LWB_STATE_FLUSH_DONE before returning.
3220 */
3221 zil_commit_impl(zilog, 0);
3222
3223 /*
3224 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3225 * use txg_wait_synced() to ensure the data from the zilog has
3226 * migrated to the main pool before calling zil_destroy().
3227 */
3228 txg_wait_synced(zilog->zl_dmu_pool, 0);
3229
3230 zil_destroy(zilog, B_FALSE);
3231
3232 mutex_enter(&zilog->zl_lock);
3233 zilog->zl_suspending = B_FALSE;
3234 cv_broadcast(&zilog->zl_cv_suspend);
3235 mutex_exit(&zilog->zl_lock);
3236
3237 if (cookiep == NULL)
3238 zil_resume(os);
3239 else
3240 *cookiep = os;
3241 return (0);
3242 }
3243
3244 void
zil_resume(void * cookie)3245 zil_resume(void *cookie)
3246 {
3247 objset_t *os = cookie;
3248 zilog_t *zilog = dmu_objset_zil(os);
3249
3250 mutex_enter(&zilog->zl_lock);
3251 ASSERT(zilog->zl_suspend != 0);
3252 zilog->zl_suspend--;
3253 mutex_exit(&zilog->zl_lock);
3254 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3255 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3256 }
3257
3258 typedef struct zil_replay_arg {
3259 zil_replay_func_t **zr_replay;
3260 void *zr_arg;
3261 boolean_t zr_byteswap;
3262 char *zr_lr;
3263 } zil_replay_arg_t;
3264
3265 static int
zil_replay_error(zilog_t * zilog,lr_t * lr,int error)3266 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3267 {
3268 char name[ZFS_MAX_DATASET_NAME_LEN];
3269
3270 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3271
3272 dmu_objset_name(zilog->zl_os, name);
3273
3274 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3275 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3276 (u_longlong_t)lr->lrc_seq,
3277 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3278 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3279
3280 return (error);
3281 }
3282
3283 static int
zil_replay_log_record(zilog_t * zilog,lr_t * lr,void * zra,uint64_t claim_txg)3284 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3285 {
3286 zil_replay_arg_t *zr = zra;
3287 const zil_header_t *zh = zilog->zl_header;
3288 uint64_t reclen = lr->lrc_reclen;
3289 uint64_t txtype = lr->lrc_txtype;
3290 int error = 0;
3291
3292 zilog->zl_replaying_seq = lr->lrc_seq;
3293
3294 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3295 return (0);
3296
3297 if (lr->lrc_txg < claim_txg) /* already committed */
3298 return (0);
3299
3300 /* Strip case-insensitive bit, still present in log record */
3301 txtype &= ~TX_CI;
3302
3303 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3304 return (zil_replay_error(zilog, lr, EINVAL));
3305
3306 /*
3307 * If this record type can be logged out of order, the object
3308 * (lr_foid) may no longer exist. That's legitimate, not an error.
3309 */
3310 if (TX_OOO(txtype)) {
3311 error = dmu_object_info(zilog->zl_os,
3312 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3313 if (error == ENOENT || error == EEXIST)
3314 return (0);
3315 }
3316
3317 /*
3318 * Make a copy of the data so we can revise and extend it.
3319 */
3320 bcopy(lr, zr->zr_lr, reclen);
3321
3322 /*
3323 * If this is a TX_WRITE with a blkptr, suck in the data.
3324 */
3325 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3326 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3327 zr->zr_lr + reclen);
3328 if (error != 0)
3329 return (zil_replay_error(zilog, lr, error));
3330 }
3331
3332 /*
3333 * The log block containing this lr may have been byteswapped
3334 * so that we can easily examine common fields like lrc_txtype.
3335 * However, the log is a mix of different record types, and only the
3336 * replay vectors know how to byteswap their records. Therefore, if
3337 * the lr was byteswapped, undo it before invoking the replay vector.
3338 */
3339 if (zr->zr_byteswap)
3340 byteswap_uint64_array(zr->zr_lr, reclen);
3341
3342 /*
3343 * We must now do two things atomically: replay this log record,
3344 * and update the log header sequence number to reflect the fact that
3345 * we did so. At the end of each replay function the sequence number
3346 * is updated if we are in replay mode.
3347 */
3348 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3349 if (error != 0) {
3350 /*
3351 * The DMU's dnode layer doesn't see removes until the txg
3352 * commits, so a subsequent claim can spuriously fail with
3353 * EEXIST. So if we receive any error we try syncing out
3354 * any removes then retry the transaction. Note that we
3355 * specify B_FALSE for byteswap now, so we don't do it twice.
3356 */
3357 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3358 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3359 if (error != 0)
3360 return (zil_replay_error(zilog, lr, error));
3361 }
3362 return (0);
3363 }
3364
3365 /* ARGSUSED */
3366 static int
zil_incr_blks(zilog_t * zilog,blkptr_t * bp,void * arg,uint64_t claim_txg)3367 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3368 {
3369 zilog->zl_replay_blks++;
3370
3371 return (0);
3372 }
3373
3374 /*
3375 * If this dataset has a non-empty intent log, replay it and destroy it.
3376 */
3377 void
zil_replay(objset_t * os,void * arg,zil_replay_func_t * replay_func[TX_MAX_TYPE])3378 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3379 {
3380 zilog_t *zilog = dmu_objset_zil(os);
3381 const zil_header_t *zh = zilog->zl_header;
3382 zil_replay_arg_t zr;
3383
3384 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3385 zil_destroy(zilog, B_TRUE);
3386 return;
3387 }
3388
3389 zr.zr_replay = replay_func;
3390 zr.zr_arg = arg;
3391 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3392 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3393
3394 /*
3395 * Wait for in-progress removes to sync before starting replay.
3396 */
3397 txg_wait_synced(zilog->zl_dmu_pool, 0);
3398
3399 zilog->zl_replay = B_TRUE;
3400 zilog->zl_replay_time = ddi_get_lbolt();
3401 ASSERT(zilog->zl_replay_blks == 0);
3402 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3403 zh->zh_claim_txg);
3404 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3405
3406 zil_destroy(zilog, B_FALSE);
3407 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3408 zilog->zl_replay = B_FALSE;
3409 }
3410
3411 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)3412 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3413 {
3414 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3415 return (B_TRUE);
3416
3417 if (zilog->zl_replay) {
3418 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3419 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3420 zilog->zl_replaying_seq;
3421 return (B_TRUE);
3422 }
3423
3424 return (B_FALSE);
3425 }
3426
3427 /* ARGSUSED */
3428 int
zil_reset(const char * osname,void * arg)3429 zil_reset(const char *osname, void *arg)
3430 {
3431 int error;
3432
3433 error = zil_suspend(osname, NULL);
3434 if (error != 0)
3435 return (SET_ERROR(EEXIST));
3436 return (0);
3437 }
3438