1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44 
45 /*
46  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47  * calls that change the file system. Each itx has enough information to
48  * be able to replay them after a system crash, power loss, or
49  * equivalent failure mode. These are stored in memory until either:
50  *
51  *   1. they are committed to the pool by the DMU transaction group
52  *      (txg), at which point they can be discarded; or
53  *   2. they are committed to the on-disk ZIL for the dataset being
54  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55  *      requirement).
56  *
57  * In the event of a crash or power loss, the itxs contained by each
58  * dataset's on-disk ZIL will be replayed when that dataset is first
59  * instantianted (e.g. if the dataset is a normal fileystem, when it is
60  * first mounted).
61  *
62  * As hinted at above, there is one ZIL per dataset (both the in-memory
63  * representation, and the on-disk representation). The on-disk format
64  * consists of 3 parts:
65  *
66  * 	- a single, per-dataset, ZIL header; which points to a chain of
67  * 	- zero or more ZIL blocks; each of which contains
68  * 	- zero or more ZIL records
69  *
70  * A ZIL record holds the information necessary to replay a single
71  * system call transaction. A ZIL block can hold many ZIL records, and
72  * the blocks are chained together, similarly to a singly linked list.
73  *
74  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75  * block in the chain, and the ZIL header points to the first block in
76  * the chain.
77  *
78  * Note, there is not a fixed place in the pool to hold these ZIL
79  * blocks; they are dynamically allocated and freed as needed from the
80  * blocks available on the pool, though they can be preferentially
81  * allocated from a dedicated "log" vdev.
82  */
83 
84 /*
85  * This controls the amount of time that a ZIL block (lwb) will remain
86  * "open" when it isn't "full", and it has a thread waiting for it to be
87  * committed to stable storage. Please refer to the zil_commit_waiter()
88  * function (and the comments within it) for more details.
89  */
90 int zfs_commit_timeout_pct = 5;
91 
92 /*
93  * Disable intent logging replay.  This global ZIL switch affects all pools.
94  */
95 int zil_replay_disable = 0;
96 SYSCTL_DECL(_vfs_zfs);
97 SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98     &zil_replay_disable, 0, "Disable intent logging replay");
99 
100 /*
101  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
102  * the disk(s) by the ZIL after an LWB write has completed. Setting this
103  * will cause ZIL corruption on power loss if a volatile out-of-order
104  * write cache is enabled.
105  */
106 boolean_t zil_nocacheflush = B_FALSE;
107 SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_nocacheflush, CTLFLAG_RWTUN,
108     &zil_nocacheflush, 0, "Disable ZIL cache flush");
109 
110 boolean_t zfs_trim_enabled = B_TRUE;
111 SYSCTL_DECL(_vfs_zfs_trim);
112 SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
113     "Enable ZFS TRIM");
114 
115 /*
116  * Limit SLOG write size per commit executed with synchronous priority.
117  * Any writes above that will be executed with lower (asynchronous) priority
118  * to limit potential SLOG device abuse by single active ZIL writer.
119  */
120 uint64_t zil_slog_bulk = 768 * 1024;
121 SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
122     &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
123 
124 static kmem_cache_t *zil_lwb_cache;
125 static kmem_cache_t *zil_zcw_cache;
126 
127 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
128     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
129 
130 static int
zil_bp_compare(const void * x1,const void * x2)131 zil_bp_compare(const void *x1, const void *x2)
132 {
133 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
134 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
135 
136 	int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
137 	if (likely(cmp))
138 		return (cmp);
139 
140 	return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
141 }
142 
143 static void
zil_bp_tree_init(zilog_t * zilog)144 zil_bp_tree_init(zilog_t *zilog)
145 {
146 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
147 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
148 }
149 
150 static void
zil_bp_tree_fini(zilog_t * zilog)151 zil_bp_tree_fini(zilog_t *zilog)
152 {
153 	avl_tree_t *t = &zilog->zl_bp_tree;
154 	zil_bp_node_t *zn;
155 	void *cookie = NULL;
156 
157 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
158 		kmem_free(zn, sizeof (zil_bp_node_t));
159 
160 	avl_destroy(t);
161 }
162 
163 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)164 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
165 {
166 	avl_tree_t *t = &zilog->zl_bp_tree;
167 	const dva_t *dva;
168 	zil_bp_node_t *zn;
169 	avl_index_t where;
170 
171 	if (BP_IS_EMBEDDED(bp))
172 		return (0);
173 
174 	dva = BP_IDENTITY(bp);
175 
176 	if (avl_find(t, dva, &where) != NULL)
177 		return (SET_ERROR(EEXIST));
178 
179 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
180 	zn->zn_dva = *dva;
181 	avl_insert(t, zn, where);
182 
183 	return (0);
184 }
185 
186 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)187 zil_header_in_syncing_context(zilog_t *zilog)
188 {
189 	return ((zil_header_t *)zilog->zl_header);
190 }
191 
192 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)193 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
194 {
195 	zio_cksum_t *zc = &bp->blk_cksum;
196 
197 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
198 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
199 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
200 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
201 }
202 
203 /*
204  * Read a log block and make sure it's valid.
205  */
206 static int
zil_read_log_block(zilog_t * zilog,const blkptr_t * bp,blkptr_t * nbp,void * dst,char ** end)207 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
208     char **end)
209 {
210 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
211 	arc_flags_t aflags = ARC_FLAG_WAIT;
212 	arc_buf_t *abuf = NULL;
213 	zbookmark_phys_t zb;
214 	int error;
215 
216 	if (zilog->zl_header->zh_claim_txg == 0)
217 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
218 
219 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
220 		zio_flags |= ZIO_FLAG_SPECULATIVE;
221 
222 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
223 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
224 
225 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
226 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
227 
228 	if (error == 0) {
229 		zio_cksum_t cksum = bp->blk_cksum;
230 
231 		/*
232 		 * Validate the checksummed log block.
233 		 *
234 		 * Sequence numbers should be... sequential.  The checksum
235 		 * verifier for the next block should be bp's checksum plus 1.
236 		 *
237 		 * Also check the log chain linkage and size used.
238 		 */
239 		cksum.zc_word[ZIL_ZC_SEQ]++;
240 
241 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
242 			zil_chain_t *zilc = abuf->b_data;
243 			char *lr = (char *)(zilc + 1);
244 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
245 
246 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
247 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
248 				error = SET_ERROR(ECKSUM);
249 			} else {
250 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
251 				bcopy(lr, dst, len);
252 				*end = (char *)dst + len;
253 				*nbp = zilc->zc_next_blk;
254 			}
255 		} else {
256 			char *lr = abuf->b_data;
257 			uint64_t size = BP_GET_LSIZE(bp);
258 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
259 
260 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
262 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
263 				error = SET_ERROR(ECKSUM);
264 			} else {
265 				ASSERT3U(zilc->zc_nused, <=,
266 				    SPA_OLD_MAXBLOCKSIZE);
267 				bcopy(lr, dst, zilc->zc_nused);
268 				*end = (char *)dst + zilc->zc_nused;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		}
272 
273 		arc_buf_destroy(abuf, &abuf);
274 	}
275 
276 	return (error);
277 }
278 
279 /*
280  * Read a TX_WRITE log data block.
281  */
282 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)283 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
284 {
285 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
286 	const blkptr_t *bp = &lr->lr_blkptr;
287 	arc_flags_t aflags = ARC_FLAG_WAIT;
288 	arc_buf_t *abuf = NULL;
289 	zbookmark_phys_t zb;
290 	int error;
291 
292 	if (BP_IS_HOLE(bp)) {
293 		if (wbuf != NULL)
294 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
295 		return (0);
296 	}
297 
298 	if (zilog->zl_header->zh_claim_txg == 0)
299 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
300 
301 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
302 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
303 
304 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
305 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
306 
307 	if (error == 0) {
308 		if (wbuf != NULL)
309 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
310 		arc_buf_destroy(abuf, &abuf);
311 	}
312 
313 	return (error);
314 }
315 
316 /*
317  * Parse the intent log, and call parse_func for each valid record within.
318  */
319 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg)320 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
321     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
322 {
323 	const zil_header_t *zh = zilog->zl_header;
324 	boolean_t claimed = !!zh->zh_claim_txg;
325 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
326 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
327 	uint64_t max_blk_seq = 0;
328 	uint64_t max_lr_seq = 0;
329 	uint64_t blk_count = 0;
330 	uint64_t lr_count = 0;
331 	blkptr_t blk, next_blk;
332 	char *lrbuf, *lrp;
333 	int error = 0;
334 
335 	/*
336 	 * Old logs didn't record the maximum zh_claim_lr_seq.
337 	 */
338 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
339 		claim_lr_seq = UINT64_MAX;
340 
341 	/*
342 	 * Starting at the block pointed to by zh_log we read the log chain.
343 	 * For each block in the chain we strongly check that block to
344 	 * ensure its validity.  We stop when an invalid block is found.
345 	 * For each block pointer in the chain we call parse_blk_func().
346 	 * For each record in each valid block we call parse_lr_func().
347 	 * If the log has been claimed, stop if we encounter a sequence
348 	 * number greater than the highest claimed sequence number.
349 	 */
350 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
351 	zil_bp_tree_init(zilog);
352 
353 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
354 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
355 		int reclen;
356 		char *end;
357 
358 		if (blk_seq > claim_blk_seq)
359 			break;
360 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
361 			break;
362 		ASSERT3U(max_blk_seq, <, blk_seq);
363 		max_blk_seq = blk_seq;
364 		blk_count++;
365 
366 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
367 			break;
368 
369 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
370 		if (error != 0)
371 			break;
372 
373 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
374 			lr_t *lr = (lr_t *)lrp;
375 			reclen = lr->lrc_reclen;
376 			ASSERT3U(reclen, >=, sizeof (lr_t));
377 			if (lr->lrc_seq > claim_lr_seq)
378 				goto done;
379 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
380 				goto done;
381 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
382 			max_lr_seq = lr->lrc_seq;
383 			lr_count++;
384 		}
385 	}
386 done:
387 	zilog->zl_parse_error = error;
388 	zilog->zl_parse_blk_seq = max_blk_seq;
389 	zilog->zl_parse_lr_seq = max_lr_seq;
390 	zilog->zl_parse_blk_count = blk_count;
391 	zilog->zl_parse_lr_count = lr_count;
392 
393 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
394 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
395 
396 	zil_bp_tree_fini(zilog);
397 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
398 
399 	return (error);
400 }
401 
402 /* ARGSUSED */
403 static int
zil_clear_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)404 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
405 {
406 	ASSERT(!BP_IS_HOLE(bp));
407 
408 	/*
409 	 * As we call this function from the context of a rewind to a
410 	 * checkpoint, each ZIL block whose txg is later than the txg
411 	 * that we rewind to is invalid. Thus, we return -1 so
412 	 * zil_parse() doesn't attempt to read it.
413 	 */
414 	if (bp->blk_birth >= first_txg)
415 		return (-1);
416 
417 	if (zil_bp_tree_add(zilog, bp) != 0)
418 		return (0);
419 
420 	zio_free(zilog->zl_spa, first_txg, bp);
421 	return (0);
422 }
423 
424 /* ARGSUSED */
425 static int
zil_noop_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)426 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
427 {
428 	return (0);
429 }
430 
431 static int
zil_claim_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)432 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
433 {
434 	/*
435 	 * Claim log block if not already committed and not already claimed.
436 	 * If tx == NULL, just verify that the block is claimable.
437 	 */
438 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
439 	    zil_bp_tree_add(zilog, bp) != 0)
440 		return (0);
441 
442 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
443 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
444 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
445 }
446 
447 static int
zil_claim_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)448 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
449 {
450 	lr_write_t *lr = (lr_write_t *)lrc;
451 	int error;
452 
453 	if (lrc->lrc_txtype != TX_WRITE)
454 		return (0);
455 
456 	/*
457 	 * If the block is not readable, don't claim it.  This can happen
458 	 * in normal operation when a log block is written to disk before
459 	 * some of the dmu_sync() blocks it points to.  In this case, the
460 	 * transaction cannot have been committed to anyone (we would have
461 	 * waited for all writes to be stable first), so it is semantically
462 	 * correct to declare this the end of the log.
463 	 */
464 	if (lr->lr_blkptr.blk_birth >= first_txg &&
465 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
466 		return (error);
467 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
468 }
469 
470 /* ARGSUSED */
471 static int
zil_free_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t claim_txg)472 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
473 {
474 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
475 
476 	return (0);
477 }
478 
479 static int
zil_free_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t claim_txg)480 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
481 {
482 	lr_write_t *lr = (lr_write_t *)lrc;
483 	blkptr_t *bp = &lr->lr_blkptr;
484 
485 	/*
486 	 * If we previously claimed it, we need to free it.
487 	 */
488 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
489 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
490 	    !BP_IS_HOLE(bp))
491 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
492 
493 	return (0);
494 }
495 
496 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)497 zil_lwb_vdev_compare(const void *x1, const void *x2)
498 {
499 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
500 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
501 
502 	return (AVL_CMP(v1, v2));
503 }
504 
505 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,blkptr_t * bp,boolean_t slog,uint64_t txg)506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
507 {
508 	lwb_t *lwb;
509 
510 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511 	lwb->lwb_zilog = zilog;
512 	lwb->lwb_blk = *bp;
513 	lwb->lwb_slog = slog;
514 	lwb->lwb_state = LWB_STATE_CLOSED;
515 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516 	lwb->lwb_max_txg = txg;
517 	lwb->lwb_write_zio = NULL;
518 	lwb->lwb_root_zio = NULL;
519 	lwb->lwb_tx = NULL;
520 	lwb->lwb_issued_timestamp = 0;
521 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522 		lwb->lwb_nused = sizeof (zil_chain_t);
523 		lwb->lwb_sz = BP_GET_LSIZE(bp);
524 	} else {
525 		lwb->lwb_nused = 0;
526 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
527 	}
528 
529 	mutex_enter(&zilog->zl_lock);
530 	list_insert_tail(&zilog->zl_lwb_list, lwb);
531 	mutex_exit(&zilog->zl_lock);
532 
533 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535 	VERIFY(list_is_empty(&lwb->lwb_waiters));
536 
537 	return (lwb);
538 }
539 
540 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
542 {
543 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
544 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 	VERIFY(list_is_empty(&lwb->lwb_waiters));
546 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
552 
553 	/*
554 	 * Clear the zilog's field to indicate this lwb is no longer
555 	 * valid, and prevent use-after-free errors.
556 	 */
557 	if (zilog->zl_last_lwb_opened == lwb)
558 		zilog->zl_last_lwb_opened = NULL;
559 
560 	kmem_cache_free(zil_lwb_cache, lwb);
561 }
562 
563 /*
564  * Called when we create in-memory log transactions so that we know
565  * to cleanup the itxs at the end of spa_sync().
566  */
567 void
zilog_dirty(zilog_t * zilog,uint64_t txg)568 zilog_dirty(zilog_t *zilog, uint64_t txg)
569 {
570 	dsl_pool_t *dp = zilog->zl_dmu_pool;
571 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
572 
573 	ASSERT(spa_writeable(zilog->zl_spa));
574 
575 	if (ds->ds_is_snapshot)
576 		panic("dirtying snapshot!");
577 
578 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579 		/* up the hold count until we can be written out */
580 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
581 
582 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
583 	}
584 }
585 
586 /*
587  * Determine if the zil is dirty in the specified txg. Callers wanting to
588  * ensure that the dirty state does not change must hold the itxg_lock for
589  * the specified txg. Holding the lock will ensure that the zil cannot be
590  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591  * state.
592  */
593 boolean_t
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
595 {
596 	dsl_pool_t *dp = zilog->zl_dmu_pool;
597 
598 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599 		return (B_TRUE);
600 	return (B_FALSE);
601 }
602 
603 /*
604  * Determine if the zil is dirty. The zil is considered dirty if it has
605  * any pending itx records that have not been cleaned by zil_clean().
606  */
607 boolean_t
zilog_is_dirty(zilog_t * zilog)608 zilog_is_dirty(zilog_t *zilog)
609 {
610 	dsl_pool_t *dp = zilog->zl_dmu_pool;
611 
612 	for (int t = 0; t < TXG_SIZE; t++) {
613 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614 			return (B_TRUE);
615 	}
616 	return (B_FALSE);
617 }
618 
619 /*
620  * Create an on-disk intent log.
621  */
622 static lwb_t *
zil_create(zilog_t * zilog)623 zil_create(zilog_t *zilog)
624 {
625 	const zil_header_t *zh = zilog->zl_header;
626 	lwb_t *lwb = NULL;
627 	uint64_t txg = 0;
628 	dmu_tx_t *tx = NULL;
629 	blkptr_t blk;
630 	int error = 0;
631 	boolean_t slog = FALSE;
632 
633 	/*
634 	 * Wait for any previous destroy to complete.
635 	 */
636 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
637 
638 	ASSERT(zh->zh_claim_txg == 0);
639 	ASSERT(zh->zh_replay_seq == 0);
640 
641 	blk = zh->zh_log;
642 
643 	/*
644 	 * Allocate an initial log block if:
645 	 *    - there isn't one already
646 	 *    - the existing block is the wrong endianess
647 	 */
648 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649 		tx = dmu_tx_create(zilog->zl_os);
650 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652 		txg = dmu_tx_get_txg(tx);
653 
654 		if (!BP_IS_HOLE(&blk)) {
655 			zio_free(zilog->zl_spa, txg, &blk);
656 			BP_ZERO(&blk);
657 		}
658 
659 		error = zio_alloc_zil(zilog->zl_spa,
660 		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
661 		    ZIL_MIN_BLKSZ, &slog);
662 
663 		if (error == 0)
664 			zil_init_log_chain(zilog, &blk);
665 	}
666 
667 	/*
668 	 * Allocate a log write block (lwb) for the first log block.
669 	 */
670 	if (error == 0)
671 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
672 
673 	/*
674 	 * If we just allocated the first log block, commit our transaction
675 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
676 	 * (zh is part of the MOS, so we cannot modify it in open context.)
677 	 */
678 	if (tx != NULL) {
679 		dmu_tx_commit(tx);
680 		txg_wait_synced(zilog->zl_dmu_pool, txg);
681 	}
682 
683 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
684 
685 	return (lwb);
686 }
687 
688 /*
689  * In one tx, free all log blocks and clear the log header. If keep_first
690  * is set, then we're replaying a log with no content. We want to keep the
691  * first block, however, so that the first synchronous transaction doesn't
692  * require a txg_wait_synced() in zil_create(). We don't need to
693  * txg_wait_synced() here either when keep_first is set, because both
694  * zil_create() and zil_destroy() will wait for any in-progress destroys
695  * to complete.
696  */
697 void
zil_destroy(zilog_t * zilog,boolean_t keep_first)698 zil_destroy(zilog_t *zilog, boolean_t keep_first)
699 {
700 	const zil_header_t *zh = zilog->zl_header;
701 	lwb_t *lwb;
702 	dmu_tx_t *tx;
703 	uint64_t txg;
704 
705 	/*
706 	 * Wait for any previous destroy to complete.
707 	 */
708 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
709 
710 	zilog->zl_old_header = *zh;		/* debugging aid */
711 
712 	if (BP_IS_HOLE(&zh->zh_log))
713 		return;
714 
715 	tx = dmu_tx_create(zilog->zl_os);
716 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
717 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
718 	txg = dmu_tx_get_txg(tx);
719 
720 	mutex_enter(&zilog->zl_lock);
721 
722 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
723 	zilog->zl_destroy_txg = txg;
724 	zilog->zl_keep_first = keep_first;
725 
726 	if (!list_is_empty(&zilog->zl_lwb_list)) {
727 		ASSERT(zh->zh_claim_txg == 0);
728 		VERIFY(!keep_first);
729 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
730 			list_remove(&zilog->zl_lwb_list, lwb);
731 			if (lwb->lwb_buf != NULL)
732 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
733 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
734 			zil_free_lwb(zilog, lwb);
735 		}
736 	} else if (!keep_first) {
737 		zil_destroy_sync(zilog, tx);
738 	}
739 	mutex_exit(&zilog->zl_lock);
740 
741 	dmu_tx_commit(tx);
742 }
743 
744 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)745 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
746 {
747 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
748 	(void) zil_parse(zilog, zil_free_log_block,
749 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
750 }
751 
752 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)753 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
754 {
755 	dmu_tx_t *tx = txarg;
756 	zilog_t *zilog;
757 	uint64_t first_txg;
758 	zil_header_t *zh;
759 	objset_t *os;
760 	int error;
761 
762 	error = dmu_objset_own_obj(dp, ds->ds_object,
763 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
764 	if (error != 0) {
765 		/*
766 		 * EBUSY indicates that the objset is inconsistent, in which
767 		 * case it can not have a ZIL.
768 		 */
769 		if (error != EBUSY) {
770 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
771 			    (unsigned long long)ds->ds_object, error);
772 		}
773 		return (0);
774 	}
775 
776 	zilog = dmu_objset_zil(os);
777 	zh = zil_header_in_syncing_context(zilog);
778 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
779 	first_txg = spa_min_claim_txg(zilog->zl_spa);
780 
781 	/*
782 	 * If the spa_log_state is not set to be cleared, check whether
783 	 * the current uberblock is a checkpoint one and if the current
784 	 * header has been claimed before moving on.
785 	 *
786 	 * If the current uberblock is a checkpointed uberblock then
787 	 * one of the following scenarios took place:
788 	 *
789 	 * 1] We are currently rewinding to the checkpoint of the pool.
790 	 * 2] We crashed in the middle of a checkpoint rewind but we
791 	 *    did manage to write the checkpointed uberblock to the
792 	 *    vdev labels, so when we tried to import the pool again
793 	 *    the checkpointed uberblock was selected from the import
794 	 *    procedure.
795 	 *
796 	 * In both cases we want to zero out all the ZIL blocks, except
797 	 * the ones that have been claimed at the time of the checkpoint
798 	 * (their zh_claim_txg != 0). The reason is that these blocks
799 	 * may be corrupted since we may have reused their locations on
800 	 * disk after we took the checkpoint.
801 	 *
802 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
803 	 * when we first figure out whether the current uberblock is
804 	 * checkpointed or not. Unfortunately, that would discard all
805 	 * the logs, including the ones that are claimed, and we would
806 	 * leak space.
807 	 */
808 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
809 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
810 	    zh->zh_claim_txg == 0)) {
811 		if (!BP_IS_HOLE(&zh->zh_log)) {
812 			(void) zil_parse(zilog, zil_clear_log_block,
813 			    zil_noop_log_record, tx, first_txg);
814 		}
815 		BP_ZERO(&zh->zh_log);
816 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
817 		dmu_objset_disown(os, FTAG);
818 		return (0);
819 	}
820 
821 	/*
822 	 * If we are not rewinding and opening the pool normally, then
823 	 * the min_claim_txg should be equal to the first txg of the pool.
824 	 */
825 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
826 
827 	/*
828 	 * Claim all log blocks if we haven't already done so, and remember
829 	 * the highest claimed sequence number.  This ensures that if we can
830 	 * read only part of the log now (e.g. due to a missing device),
831 	 * but we can read the entire log later, we will not try to replay
832 	 * or destroy beyond the last block we successfully claimed.
833 	 */
834 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
835 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
836 		(void) zil_parse(zilog, zil_claim_log_block,
837 		    zil_claim_log_record, tx, first_txg);
838 		zh->zh_claim_txg = first_txg;
839 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
840 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
841 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
842 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
843 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
844 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
845 	}
846 
847 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
848 	dmu_objset_disown(os, FTAG);
849 	return (0);
850 }
851 
852 /*
853  * Check the log by walking the log chain.
854  * Checksum errors are ok as they indicate the end of the chain.
855  * Any other error (no device or read failure) returns an error.
856  */
857 /* ARGSUSED */
858 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)859 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
860 {
861 	zilog_t *zilog;
862 	objset_t *os;
863 	blkptr_t *bp;
864 	int error;
865 
866 	ASSERT(tx == NULL);
867 
868 	error = dmu_objset_from_ds(ds, &os);
869 	if (error != 0) {
870 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
871 		    (unsigned long long)ds->ds_object, error);
872 		return (0);
873 	}
874 
875 	zilog = dmu_objset_zil(os);
876 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
877 
878 	if (!BP_IS_HOLE(bp)) {
879 		vdev_t *vd;
880 		boolean_t valid = B_TRUE;
881 
882 		/*
883 		 * Check the first block and determine if it's on a log device
884 		 * which may have been removed or faulted prior to loading this
885 		 * pool.  If so, there's no point in checking the rest of the
886 		 * log as its content should have already been synced to the
887 		 * pool.
888 		 */
889 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
890 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
891 		if (vd->vdev_islog && vdev_is_dead(vd))
892 			valid = vdev_log_state_valid(vd);
893 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
894 
895 		if (!valid)
896 			return (0);
897 
898 		/*
899 		 * Check whether the current uberblock is checkpointed (e.g.
900 		 * we are rewinding) and whether the current header has been
901 		 * claimed or not. If it hasn't then skip verifying it. We
902 		 * do this because its ZIL blocks may be part of the pool's
903 		 * state before the rewind, which is no longer valid.
904 		 */
905 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
906 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
907 		    zh->zh_claim_txg == 0)
908 			return (0);
909 	}
910 
911 	/*
912 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
913 	 * any blocks, but just determine whether it is possible to do so.
914 	 * In addition to checking the log chain, zil_claim_log_block()
915 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
916 	 * which will update spa_max_claim_txg.  See spa_load() for details.
917 	 */
918 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
919 	    zilog->zl_header->zh_claim_txg ? -1ULL :
920 	    spa_min_claim_txg(os->os_spa));
921 
922 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
923 }
924 
925 /*
926  * When an itx is "skipped", this function is used to properly mark the
927  * waiter as "done, and signal any thread(s) waiting on it. An itx can
928  * be skipped (and not committed to an lwb) for a variety of reasons,
929  * one of them being that the itx was committed via spa_sync(), prior to
930  * it being committed to an lwb; this can happen if a thread calling
931  * zil_commit() is racing with spa_sync().
932  */
933 static void
zil_commit_waiter_skip(zil_commit_waiter_t * zcw)934 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
935 {
936 	mutex_enter(&zcw->zcw_lock);
937 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
938 	zcw->zcw_done = B_TRUE;
939 	cv_broadcast(&zcw->zcw_cv);
940 	mutex_exit(&zcw->zcw_lock);
941 }
942 
943 /*
944  * This function is used when the given waiter is to be linked into an
945  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
946  * At this point, the waiter will no longer be referenced by the itx,
947  * and instead, will be referenced by the lwb.
948  */
949 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)950 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
951 {
952 	/*
953 	 * The lwb_waiters field of the lwb is protected by the zilog's
954 	 * zl_lock, thus it must be held when calling this function.
955 	 */
956 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
957 
958 	mutex_enter(&zcw->zcw_lock);
959 	ASSERT(!list_link_active(&zcw->zcw_node));
960 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
961 	ASSERT3P(lwb, !=, NULL);
962 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
963 	    lwb->lwb_state == LWB_STATE_ISSUED ||
964 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
965 
966 	list_insert_tail(&lwb->lwb_waiters, zcw);
967 	zcw->zcw_lwb = lwb;
968 	mutex_exit(&zcw->zcw_lock);
969 }
970 
971 /*
972  * This function is used when zio_alloc_zil() fails to allocate a ZIL
973  * block, and the given waiter must be linked to the "nolwb waiters"
974  * list inside of zil_process_commit_list().
975  */
976 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)977 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
978 {
979 	mutex_enter(&zcw->zcw_lock);
980 	ASSERT(!list_link_active(&zcw->zcw_node));
981 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
982 	list_insert_tail(nolwb, zcw);
983 	mutex_exit(&zcw->zcw_lock);
984 }
985 
986 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)987 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
988 {
989 	avl_tree_t *t = &lwb->lwb_vdev_tree;
990 	avl_index_t where;
991 	zil_vdev_node_t *zv, zvsearch;
992 	int ndvas = BP_GET_NDVAS(bp);
993 	int i;
994 
995 	if (zil_nocacheflush)
996 		return;
997 
998 	mutex_enter(&lwb->lwb_vdev_lock);
999 	for (i = 0; i < ndvas; i++) {
1000 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1001 		if (avl_find(t, &zvsearch, &where) == NULL) {
1002 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1003 			zv->zv_vdev = zvsearch.zv_vdev;
1004 			avl_insert(t, zv, where);
1005 		}
1006 	}
1007 	mutex_exit(&lwb->lwb_vdev_lock);
1008 }
1009 
1010 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1011 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1012 {
1013 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1014 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1015 	void *cookie = NULL;
1016 	zil_vdev_node_t *zv;
1017 
1018 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1019 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1020 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1021 
1022 	/*
1023 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1024 	 * not need the protection of lwb_vdev_lock (it will only be modified
1025 	 * while holding zilog->zl_lock) as its writes and those of its
1026 	 * children have all completed.  The younger 'nlwb' may be waiting on
1027 	 * future writes to additional vdevs.
1028 	 */
1029 	mutex_enter(&nlwb->lwb_vdev_lock);
1030 	/*
1031 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1032 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1033 	 */
1034 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1035 		avl_index_t where;
1036 
1037 		if (avl_find(dst, zv, &where) == NULL) {
1038 			avl_insert(dst, zv, where);
1039 		} else {
1040 			kmem_free(zv, sizeof (*zv));
1041 		}
1042 	}
1043 	mutex_exit(&nlwb->lwb_vdev_lock);
1044 }
1045 
1046 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1047 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1048 {
1049 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1050 }
1051 
1052 /*
1053  * This function is a called after all vdevs associated with a given lwb
1054  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1055  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1056  * all "previous" lwb's will have completed before this function is
1057  * called; i.e. this function is called for all previous lwbs before
1058  * it's called for "this" lwb (enforced via zio the dependencies
1059  * configured in zil_lwb_set_zio_dependency()).
1060  *
1061  * The intention is for this function to be called as soon as the
1062  * contents of an lwb are considered "stable" on disk, and will survive
1063  * any sudden loss of power. At this point, any threads waiting for the
1064  * lwb to reach this state are signalled, and the "waiter" structures
1065  * are marked "done".
1066  */
1067 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1068 zil_lwb_flush_vdevs_done(zio_t *zio)
1069 {
1070 	lwb_t *lwb = zio->io_private;
1071 	zilog_t *zilog = lwb->lwb_zilog;
1072 	dmu_tx_t *tx = lwb->lwb_tx;
1073 	zil_commit_waiter_t *zcw;
1074 
1075 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1076 
1077 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1078 
1079 	mutex_enter(&zilog->zl_lock);
1080 
1081 	/*
1082 	 * Ensure the lwb buffer pointer is cleared before releasing the
1083 	 * txg. If we have had an allocation failure and the txg is
1084 	 * waiting to sync then we want zil_sync() to remove the lwb so
1085 	 * that it's not picked up as the next new one in
1086 	 * zil_process_commit_list(). zil_sync() will only remove the
1087 	 * lwb if lwb_buf is null.
1088 	 */
1089 	lwb->lwb_buf = NULL;
1090 	lwb->lwb_tx = NULL;
1091 
1092 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1093 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1094 
1095 	lwb->lwb_root_zio = NULL;
1096 
1097 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1098 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1099 
1100 	if (zilog->zl_last_lwb_opened == lwb) {
1101 		/*
1102 		 * Remember the highest committed log sequence number
1103 		 * for ztest. We only update this value when all the log
1104 		 * writes succeeded, because ztest wants to ASSERT that
1105 		 * it got the whole log chain.
1106 		 */
1107 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1108 	}
1109 
1110 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1111 		mutex_enter(&zcw->zcw_lock);
1112 
1113 		ASSERT(list_link_active(&zcw->zcw_node));
1114 		list_remove(&lwb->lwb_waiters, zcw);
1115 
1116 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1117 		zcw->zcw_lwb = NULL;
1118 
1119 		zcw->zcw_zio_error = zio->io_error;
1120 
1121 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1122 		zcw->zcw_done = B_TRUE;
1123 		cv_broadcast(&zcw->zcw_cv);
1124 
1125 		mutex_exit(&zcw->zcw_lock);
1126 	}
1127 
1128 	mutex_exit(&zilog->zl_lock);
1129 
1130 	/*
1131 	 * Now that we've written this log block, we have a stable pointer
1132 	 * to the next block in the chain, so it's OK to let the txg in
1133 	 * which we allocated the next block sync.
1134 	 */
1135 	dmu_tx_commit(tx);
1136 }
1137 
1138 /*
1139  * This is called when an lwb's write zio completes. The callback's
1140  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1141  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1142  * in writing out this specific lwb's data, and in the case that cache
1143  * flushes have been deferred, vdevs involved in writing the data for
1144  * previous lwbs. The writes corresponding to all the vdevs in the
1145  * lwb_vdev_tree will have completed by the time this is called, due to
1146  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1147  * which takes deferred flushes into account. The lwb will be "done"
1148  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1149  * completion callback for the lwb's root zio.
1150  */
1151 static void
zil_lwb_write_done(zio_t * zio)1152 zil_lwb_write_done(zio_t *zio)
1153 {
1154 	lwb_t *lwb = zio->io_private;
1155 	spa_t *spa = zio->io_spa;
1156 	zilog_t *zilog = lwb->lwb_zilog;
1157 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1158 	void *cookie = NULL;
1159 	zil_vdev_node_t *zv;
1160 	lwb_t *nlwb;
1161 
1162 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1163 
1164 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1165 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1166 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1167 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1168 	ASSERT(!BP_IS_GANG(zio->io_bp));
1169 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1170 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1171 
1172 	abd_put(zio->io_abd);
1173 
1174 	mutex_enter(&zilog->zl_lock);
1175 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1176 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1177 	lwb->lwb_write_zio = NULL;
1178 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1179 	mutex_exit(&zilog->zl_lock);
1180 
1181 	if (avl_numnodes(t) == 0)
1182 		return;
1183 
1184 	/*
1185 	 * If there was an IO error, we're not going to call zio_flush()
1186 	 * on these vdevs, so we simply empty the tree and free the
1187 	 * nodes. We avoid calling zio_flush() since there isn't any
1188 	 * good reason for doing so, after the lwb block failed to be
1189 	 * written out.
1190 	 */
1191 	if (zio->io_error != 0) {
1192 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1193 			kmem_free(zv, sizeof (*zv));
1194 		return;
1195 	}
1196 
1197 	/*
1198 	 * If this lwb does not have any threads waiting for it to
1199 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1200 	 * command to the vdevs written to by "this" lwb, and instead
1201 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1202 	 * command for those vdevs. Thus, we merge the vdev tree of
1203 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1204 	 * and assume the "next" lwb will handle flushing the vdevs (or
1205 	 * deferring the flush(s) again).
1206 	 *
1207 	 * This is a useful performance optimization, especially for
1208 	 * workloads with lots of async write activity and few sync
1209 	 * write and/or fsync activity, as it has the potential to
1210 	 * coalesce multiple flush commands to a vdev into one.
1211 	 */
1212 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1213 		zil_lwb_flush_defer(lwb, nlwb);
1214 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1215 		return;
1216 	}
1217 
1218 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1219 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1220 		if (vd != NULL)
1221 			zio_flush(lwb->lwb_root_zio, vd);
1222 		kmem_free(zv, sizeof (*zv));
1223 	}
1224 }
1225 
1226 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1227 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1228 {
1229 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1230 
1231 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1232 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1233 
1234 	/*
1235 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1236 	 * lwb/zio dependency chain, which is used to preserve the
1237 	 * ordering of lwb completions that is required by the semantics
1238 	 * of the ZIL. Each new lwb zio becomes a parent of the
1239 	 * "previous" lwb zio, such that the new lwb's zio cannot
1240 	 * complete until the "previous" lwb's zio completes.
1241 	 *
1242 	 * This is required by the semantics of zil_commit(); the commit
1243 	 * waiters attached to the lwbs will be woken in the lwb zio's
1244 	 * completion callback, so this zio dependency graph ensures the
1245 	 * waiters are woken in the correct order (the same order the
1246 	 * lwbs were created).
1247 	 */
1248 	if (last_lwb_opened != NULL &&
1249 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1250 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1251 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1252 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1253 
1254 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1255 		zio_add_child(lwb->lwb_root_zio,
1256 		    last_lwb_opened->lwb_root_zio);
1257 
1258 		/*
1259 		 * If the previous lwb's write hasn't already completed,
1260 		 * we also want to order the completion of the lwb write
1261 		 * zios (above, we only order the completion of the lwb
1262 		 * root zios). This is required because of how we can
1263 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1264 		 *
1265 		 * When the DKIOCFLUSHWRITECACHE commands are defered,
1266 		 * the previous lwb will rely on this lwb to flush the
1267 		 * vdevs written to by that previous lwb. Thus, we need
1268 		 * to ensure this lwb doesn't issue the flush until
1269 		 * after the previous lwb's write completes. We ensure
1270 		 * this ordering by setting the zio parent/child
1271 		 * relationship here.
1272 		 *
1273 		 * Without this relationship on the lwb's write zio,
1274 		 * it's possible for this lwb's write to complete prior
1275 		 * to the previous lwb's write completing; and thus, the
1276 		 * vdevs for the previous lwb would be flushed prior to
1277 		 * that lwb's data being written to those vdevs (the
1278 		 * vdevs are flushed in the lwb write zio's completion
1279 		 * handler, zil_lwb_write_done()).
1280 		 */
1281 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1282 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1283 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1284 
1285 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1286 			zio_add_child(lwb->lwb_write_zio,
1287 			    last_lwb_opened->lwb_write_zio);
1288 		}
1289 	}
1290 }
1291 
1292 
1293 /*
1294  * This function's purpose is to "open" an lwb such that it is ready to
1295  * accept new itxs being committed to it. To do this, the lwb's zio
1296  * structures are created, and linked to the lwb. This function is
1297  * idempotent; if the passed in lwb has already been opened, this
1298  * function is essentially a no-op.
1299  */
1300 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1301 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1302 {
1303 	zbookmark_phys_t zb;
1304 	zio_priority_t prio;
1305 
1306 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1307 	ASSERT3P(lwb, !=, NULL);
1308 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1309 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1310 
1311 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1312 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1313 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1314 
1315 	if (lwb->lwb_root_zio == NULL) {
1316 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1317 		    BP_GET_LSIZE(&lwb->lwb_blk));
1318 
1319 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1320 			prio = ZIO_PRIORITY_SYNC_WRITE;
1321 		else
1322 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1323 
1324 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1325 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1326 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1327 
1328 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1329 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1330 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1331 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1332 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1333 
1334 		lwb->lwb_state = LWB_STATE_OPENED;
1335 
1336 		mutex_enter(&zilog->zl_lock);
1337 		zil_lwb_set_zio_dependency(zilog, lwb);
1338 		zilog->zl_last_lwb_opened = lwb;
1339 		mutex_exit(&zilog->zl_lock);
1340 	}
1341 
1342 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1343 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1344 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1345 }
1346 
1347 /*
1348  * Define a limited set of intent log block sizes.
1349  *
1350  * These must be a multiple of 4KB. Note only the amount used (again
1351  * aligned to 4KB) actually gets written. However, we can't always just
1352  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1353  */
1354 uint64_t zil_block_buckets[] = {
1355     4096,		/* non TX_WRITE */
1356     8192+4096,		/* data base */
1357     32*1024 + 4096, 	/* NFS writes */
1358     UINT64_MAX
1359 };
1360 
1361 /*
1362  * Start a log block write and advance to the next log block.
1363  * Calls are serialized.
1364  */
1365 static lwb_t *
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1366 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1367 {
1368 	lwb_t *nlwb = NULL;
1369 	zil_chain_t *zilc;
1370 	spa_t *spa = zilog->zl_spa;
1371 	blkptr_t *bp;
1372 	dmu_tx_t *tx;
1373 	uint64_t txg;
1374 	uint64_t zil_blksz, wsz;
1375 	int i, error;
1376 	boolean_t slog;
1377 
1378 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1379 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1380 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1381 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1382 
1383 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1384 		zilc = (zil_chain_t *)lwb->lwb_buf;
1385 		bp = &zilc->zc_next_blk;
1386 	} else {
1387 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1388 		bp = &zilc->zc_next_blk;
1389 	}
1390 
1391 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1392 
1393 	/*
1394 	 * Allocate the next block and save its address in this block
1395 	 * before writing it in order to establish the log chain.
1396 	 * Note that if the allocation of nlwb synced before we wrote
1397 	 * the block that points at it (lwb), we'd leak it if we crashed.
1398 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1399 	 * We dirty the dataset to ensure that zil_sync() will be called
1400 	 * to clean up in the event of allocation failure or I/O failure.
1401 	 */
1402 
1403 	tx = dmu_tx_create(zilog->zl_os);
1404 
1405 	/*
1406 	 * Since we are not going to create any new dirty data, and we
1407 	 * can even help with clearing the existing dirty data, we
1408 	 * should not be subject to the dirty data based delays. We
1409 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1410 	 */
1411 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1412 
1413 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1414 	txg = dmu_tx_get_txg(tx);
1415 
1416 	lwb->lwb_tx = tx;
1417 
1418 	/*
1419 	 * Log blocks are pre-allocated. Here we select the size of the next
1420 	 * block, based on size used in the last block.
1421 	 * - first find the smallest bucket that will fit the block from a
1422 	 *   limited set of block sizes. This is because it's faster to write
1423 	 *   blocks allocated from the same metaslab as they are adjacent or
1424 	 *   close.
1425 	 * - next find the maximum from the new suggested size and an array of
1426 	 *   previous sizes. This lessens a picket fence effect of wrongly
1427 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1428 	 *   requests.
1429 	 *
1430 	 * Note we only write what is used, but we can't just allocate
1431 	 * the maximum block size because we can exhaust the available
1432 	 * pool log space.
1433 	 */
1434 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1435 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1436 		continue;
1437 	zil_blksz = zil_block_buckets[i];
1438 	if (zil_blksz == UINT64_MAX)
1439 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1440 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1441 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1442 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1443 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1444 
1445 	BP_ZERO(bp);
1446 
1447 	/* pass the old blkptr in order to spread log blocks across devs */
1448 	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1449 	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1450 	if (error == 0) {
1451 		ASSERT3U(bp->blk_birth, ==, txg);
1452 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1453 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1454 
1455 		/*
1456 		 * Allocate a new log write block (lwb).
1457 		 */
1458 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1459 	}
1460 
1461 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1462 		/* For Slim ZIL only write what is used. */
1463 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1464 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1465 		zio_shrink(lwb->lwb_write_zio, wsz);
1466 
1467 	} else {
1468 		wsz = lwb->lwb_sz;
1469 	}
1470 
1471 	zilc->zc_pad = 0;
1472 	zilc->zc_nused = lwb->lwb_nused;
1473 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1474 
1475 	/*
1476 	 * clear unused data for security
1477 	 */
1478 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1479 
1480 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1481 
1482 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1483 	lwb->lwb_issued_timestamp = gethrtime();
1484 	lwb->lwb_state = LWB_STATE_ISSUED;
1485 
1486 	zio_nowait(lwb->lwb_root_zio);
1487 	zio_nowait(lwb->lwb_write_zio);
1488 
1489 	/*
1490 	 * If there was an allocation failure then nlwb will be null which
1491 	 * forces a txg_wait_synced().
1492 	 */
1493 	return (nlwb);
1494 }
1495 
1496 static lwb_t *
zil_lwb_commit(zilog_t * zilog,itx_t * itx,lwb_t * lwb)1497 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1498 {
1499 	lr_t *lrcb, *lrc;
1500 	lr_write_t *lrwb, *lrw;
1501 	char *lr_buf;
1502 	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1503 
1504 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1505 	ASSERT3P(lwb, !=, NULL);
1506 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1507 
1508 	zil_lwb_write_open(zilog, lwb);
1509 
1510 	lrc = &itx->itx_lr;
1511 	lrw = (lr_write_t *)lrc;
1512 
1513 	/*
1514 	 * A commit itx doesn't represent any on-disk state; instead
1515 	 * it's simply used as a place holder on the commit list, and
1516 	 * provides a mechanism for attaching a "commit waiter" onto the
1517 	 * correct lwb (such that the waiter can be signalled upon
1518 	 * completion of that lwb). Thus, we don't process this itx's
1519 	 * log record if it's a commit itx (these itx's don't have log
1520 	 * records), and instead link the itx's waiter onto the lwb's
1521 	 * list of waiters.
1522 	 *
1523 	 * For more details, see the comment above zil_commit().
1524 	 */
1525 	if (lrc->lrc_txtype == TX_COMMIT) {
1526 		mutex_enter(&zilog->zl_lock);
1527 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1528 		itx->itx_private = NULL;
1529 		mutex_exit(&zilog->zl_lock);
1530 		return (lwb);
1531 	}
1532 
1533 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1534 		dlen = P2ROUNDUP_TYPED(
1535 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1536 	} else {
1537 		dlen = 0;
1538 	}
1539 	reclen = lrc->lrc_reclen;
1540 	zilog->zl_cur_used += (reclen + dlen);
1541 	txg = lrc->lrc_txg;
1542 
1543 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1544 
1545 cont:
1546 	/*
1547 	 * If this record won't fit in the current log block, start a new one.
1548 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1549 	 */
1550 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1551 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1552 	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1553 	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1554 		lwb = zil_lwb_write_issue(zilog, lwb);
1555 		if (lwb == NULL)
1556 			return (NULL);
1557 		zil_lwb_write_open(zilog, lwb);
1558 		ASSERT(LWB_EMPTY(lwb));
1559 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1560 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1561 	}
1562 
1563 	dnow = MIN(dlen, lwb_sp - reclen);
1564 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1565 	bcopy(lrc, lr_buf, reclen);
1566 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1567 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1568 
1569 	/*
1570 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1571 	 */
1572 	if (lrc->lrc_txtype == TX_WRITE) {
1573 		if (txg > spa_freeze_txg(zilog->zl_spa))
1574 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1575 		if (itx->itx_wr_state != WR_COPIED) {
1576 			char *dbuf;
1577 			int error;
1578 
1579 			if (itx->itx_wr_state == WR_NEED_COPY) {
1580 				dbuf = lr_buf + reclen;
1581 				lrcb->lrc_reclen += dnow;
1582 				if (lrwb->lr_length > dnow)
1583 					lrwb->lr_length = dnow;
1584 				lrw->lr_offset += dnow;
1585 				lrw->lr_length -= dnow;
1586 			} else {
1587 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1588 				dbuf = NULL;
1589 			}
1590 
1591 			/*
1592 			 * We pass in the "lwb_write_zio" rather than
1593 			 * "lwb_root_zio" so that the "lwb_write_zio"
1594 			 * becomes the parent of any zio's created by
1595 			 * the "zl_get_data" callback. The vdevs are
1596 			 * flushed after the "lwb_write_zio" completes,
1597 			 * so we want to make sure that completion
1598 			 * callback waits for these additional zio's,
1599 			 * such that the vdevs used by those zio's will
1600 			 * be included in the lwb's vdev tree, and those
1601 			 * vdevs will be properly flushed. If we passed
1602 			 * in "lwb_root_zio" here, then these additional
1603 			 * vdevs may not be flushed; e.g. if these zio's
1604 			 * completed after "lwb_write_zio" completed.
1605 			 */
1606 			error = zilog->zl_get_data(itx->itx_private,
1607 			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1608 
1609 			if (error == EIO) {
1610 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1611 				return (lwb);
1612 			}
1613 			if (error != 0) {
1614 				ASSERT(error == ENOENT || error == EEXIST ||
1615 				    error == EALREADY);
1616 				return (lwb);
1617 			}
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * We're actually making an entry, so update lrc_seq to be the
1623 	 * log record sequence number.  Note that this is generally not
1624 	 * equal to the itx sequence number because not all transactions
1625 	 * are synchronous, and sometimes spa_sync() gets there first.
1626 	 */
1627 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1628 	lwb->lwb_nused += reclen + dnow;
1629 
1630 	zil_lwb_add_txg(lwb, txg);
1631 
1632 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1633 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1634 
1635 	dlen -= dnow;
1636 	if (dlen > 0) {
1637 		zilog->zl_cur_used += reclen;
1638 		goto cont;
1639 	}
1640 
1641 	return (lwb);
1642 }
1643 
1644 itx_t *
zil_itx_create(uint64_t txtype,size_t lrsize)1645 zil_itx_create(uint64_t txtype, size_t lrsize)
1646 {
1647 	itx_t *itx;
1648 
1649 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1650 
1651 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1652 	itx->itx_lr.lrc_txtype = txtype;
1653 	itx->itx_lr.lrc_reclen = lrsize;
1654 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1655 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1656 
1657 	return (itx);
1658 }
1659 
1660 void
zil_itx_destroy(itx_t * itx)1661 zil_itx_destroy(itx_t *itx)
1662 {
1663 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1664 }
1665 
1666 /*
1667  * Free up the sync and async itxs. The itxs_t has already been detached
1668  * so no locks are needed.
1669  */
1670 static void
zil_itxg_clean(itxs_t * itxs)1671 zil_itxg_clean(itxs_t *itxs)
1672 {
1673 	itx_t *itx;
1674 	list_t *list;
1675 	avl_tree_t *t;
1676 	void *cookie;
1677 	itx_async_node_t *ian;
1678 
1679 	list = &itxs->i_sync_list;
1680 	while ((itx = list_head(list)) != NULL) {
1681 		/*
1682 		 * In the general case, commit itxs will not be found
1683 		 * here, as they'll be committed to an lwb via
1684 		 * zil_lwb_commit(), and free'd in that function. Having
1685 		 * said that, it is still possible for commit itxs to be
1686 		 * found here, due to the following race:
1687 		 *
1688 		 *	- a thread calls zil_commit() which assigns the
1689 		 *	  commit itx to a per-txg i_sync_list
1690 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1691 		 *	  while the waiter is still on the i_sync_list
1692 		 *
1693 		 * There's nothing to prevent syncing the txg while the
1694 		 * waiter is on the i_sync_list. This normally doesn't
1695 		 * happen because spa_sync() is slower than zil_commit(),
1696 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1697 		 * because zil_create() or zil_commit_writer_stall() is
1698 		 * called) we will hit this case.
1699 		 */
1700 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1701 			zil_commit_waiter_skip(itx->itx_private);
1702 
1703 		list_remove(list, itx);
1704 		zil_itx_destroy(itx);
1705 	}
1706 
1707 	cookie = NULL;
1708 	t = &itxs->i_async_tree;
1709 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1710 		list = &ian->ia_list;
1711 		while ((itx = list_head(list)) != NULL) {
1712 			list_remove(list, itx);
1713 			/* commit itxs should never be on the async lists. */
1714 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1715 			zil_itx_destroy(itx);
1716 		}
1717 		list_destroy(list);
1718 		kmem_free(ian, sizeof (itx_async_node_t));
1719 	}
1720 	avl_destroy(t);
1721 
1722 	kmem_free(itxs, sizeof (itxs_t));
1723 }
1724 
1725 static int
zil_aitx_compare(const void * x1,const void * x2)1726 zil_aitx_compare(const void *x1, const void *x2)
1727 {
1728 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1729 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1730 
1731 	return (AVL_CMP(o1, o2));
1732 }
1733 
1734 /*
1735  * Remove all async itx with the given oid.
1736  */
1737 static void
zil_remove_async(zilog_t * zilog,uint64_t oid)1738 zil_remove_async(zilog_t *zilog, uint64_t oid)
1739 {
1740 	uint64_t otxg, txg;
1741 	itx_async_node_t *ian;
1742 	avl_tree_t *t;
1743 	avl_index_t where;
1744 	list_t clean_list;
1745 	itx_t *itx;
1746 
1747 	ASSERT(oid != 0);
1748 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1749 
1750 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1751 		otxg = ZILTEST_TXG;
1752 	else
1753 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1754 
1755 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1756 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1757 
1758 		mutex_enter(&itxg->itxg_lock);
1759 		if (itxg->itxg_txg != txg) {
1760 			mutex_exit(&itxg->itxg_lock);
1761 			continue;
1762 		}
1763 
1764 		/*
1765 		 * Locate the object node and append its list.
1766 		 */
1767 		t = &itxg->itxg_itxs->i_async_tree;
1768 		ian = avl_find(t, &oid, &where);
1769 		if (ian != NULL)
1770 			list_move_tail(&clean_list, &ian->ia_list);
1771 		mutex_exit(&itxg->itxg_lock);
1772 	}
1773 	while ((itx = list_head(&clean_list)) != NULL) {
1774 		list_remove(&clean_list, itx);
1775 		/* commit itxs should never be on the async lists. */
1776 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1777 		zil_itx_destroy(itx);
1778 	}
1779 	list_destroy(&clean_list);
1780 }
1781 
1782 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)1783 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1784 {
1785 	uint64_t txg;
1786 	itxg_t *itxg;
1787 	itxs_t *itxs, *clean = NULL;
1788 
1789 	/*
1790 	 * Object ids can be re-instantiated in the next txg so
1791 	 * remove any async transactions to avoid future leaks.
1792 	 * This can happen if a fsync occurs on the re-instantiated
1793 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1794 	 * the new file data and flushes a write record for the old object.
1795 	 */
1796 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1797 		zil_remove_async(zilog, itx->itx_oid);
1798 
1799 	/*
1800 	 * Ensure the data of a renamed file is committed before the rename.
1801 	 */
1802 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1803 		zil_async_to_sync(zilog, itx->itx_oid);
1804 
1805 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1806 		txg = ZILTEST_TXG;
1807 	else
1808 		txg = dmu_tx_get_txg(tx);
1809 
1810 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1811 	mutex_enter(&itxg->itxg_lock);
1812 	itxs = itxg->itxg_itxs;
1813 	if (itxg->itxg_txg != txg) {
1814 		if (itxs != NULL) {
1815 			/*
1816 			 * The zil_clean callback hasn't got around to cleaning
1817 			 * this itxg. Save the itxs for release below.
1818 			 * This should be rare.
1819 			 */
1820 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1821 			    "txg %llu", itxg->itxg_txg);
1822 			clean = itxg->itxg_itxs;
1823 		}
1824 		itxg->itxg_txg = txg;
1825 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1826 
1827 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1828 		    offsetof(itx_t, itx_node));
1829 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1830 		    sizeof (itx_async_node_t),
1831 		    offsetof(itx_async_node_t, ia_node));
1832 	}
1833 	if (itx->itx_sync) {
1834 		list_insert_tail(&itxs->i_sync_list, itx);
1835 	} else {
1836 		avl_tree_t *t = &itxs->i_async_tree;
1837 		uint64_t foid =
1838 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1839 		itx_async_node_t *ian;
1840 		avl_index_t where;
1841 
1842 		ian = avl_find(t, &foid, &where);
1843 		if (ian == NULL) {
1844 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1845 			list_create(&ian->ia_list, sizeof (itx_t),
1846 			    offsetof(itx_t, itx_node));
1847 			ian->ia_foid = foid;
1848 			avl_insert(t, ian, where);
1849 		}
1850 		list_insert_tail(&ian->ia_list, itx);
1851 	}
1852 
1853 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1854 
1855 	/*
1856 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1857 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1858 	 * need to be careful to always dirty the ZIL using the "real"
1859 	 * TXG (not itxg_txg) even when the SPA is frozen.
1860 	 */
1861 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1862 	mutex_exit(&itxg->itxg_lock);
1863 
1864 	/* Release the old itxs now we've dropped the lock */
1865 	if (clean != NULL)
1866 		zil_itxg_clean(clean);
1867 }
1868 
1869 /*
1870  * If there are any in-memory intent log transactions which have now been
1871  * synced then start up a taskq to free them. We should only do this after we
1872  * have written out the uberblocks (i.e. txg has been comitted) so that
1873  * don't inadvertently clean out in-memory log records that would be required
1874  * by zil_commit().
1875  */
1876 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)1877 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1878 {
1879 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1880 	itxs_t *clean_me;
1881 
1882 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1883 
1884 	mutex_enter(&itxg->itxg_lock);
1885 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1886 		mutex_exit(&itxg->itxg_lock);
1887 		return;
1888 	}
1889 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1890 	ASSERT3U(itxg->itxg_txg, !=, 0);
1891 	clean_me = itxg->itxg_itxs;
1892 	itxg->itxg_itxs = NULL;
1893 	itxg->itxg_txg = 0;
1894 	mutex_exit(&itxg->itxg_lock);
1895 	/*
1896 	 * Preferably start a task queue to free up the old itxs but
1897 	 * if taskq_dispatch can't allocate resources to do that then
1898 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1899 	 * created a bad performance problem.
1900 	 */
1901 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1902 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1903 	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1904 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1905 		zil_itxg_clean(clean_me);
1906 }
1907 
1908 /*
1909  * This function will traverse the queue of itxs that need to be
1910  * committed, and move them onto the ZIL's zl_itx_commit_list.
1911  */
1912 static void
zil_get_commit_list(zilog_t * zilog)1913 zil_get_commit_list(zilog_t *zilog)
1914 {
1915 	uint64_t otxg, txg;
1916 	list_t *commit_list = &zilog->zl_itx_commit_list;
1917 
1918 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1919 
1920 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1921 		otxg = ZILTEST_TXG;
1922 	else
1923 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1924 
1925 	/*
1926 	 * This is inherently racy, since there is nothing to prevent
1927 	 * the last synced txg from changing. That's okay since we'll
1928 	 * only commit things in the future.
1929 	 */
1930 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1931 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1932 
1933 		mutex_enter(&itxg->itxg_lock);
1934 		if (itxg->itxg_txg != txg) {
1935 			mutex_exit(&itxg->itxg_lock);
1936 			continue;
1937 		}
1938 
1939 		/*
1940 		 * If we're adding itx records to the zl_itx_commit_list,
1941 		 * then the zil better be dirty in this "txg". We can assert
1942 		 * that here since we're holding the itxg_lock which will
1943 		 * prevent spa_sync from cleaning it. Once we add the itxs
1944 		 * to the zl_itx_commit_list we must commit it to disk even
1945 		 * if it's unnecessary (i.e. the txg was synced).
1946 		 */
1947 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1948 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1949 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1950 
1951 		mutex_exit(&itxg->itxg_lock);
1952 	}
1953 }
1954 
1955 /*
1956  * Move the async itxs for a specified object to commit into sync lists.
1957  */
1958 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)1959 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1960 {
1961 	uint64_t otxg, txg;
1962 	itx_async_node_t *ian;
1963 	avl_tree_t *t;
1964 	avl_index_t where;
1965 
1966 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1967 		otxg = ZILTEST_TXG;
1968 	else
1969 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1970 
1971 	/*
1972 	 * This is inherently racy, since there is nothing to prevent
1973 	 * the last synced txg from changing.
1974 	 */
1975 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1976 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1977 
1978 		mutex_enter(&itxg->itxg_lock);
1979 		if (itxg->itxg_txg != txg) {
1980 			mutex_exit(&itxg->itxg_lock);
1981 			continue;
1982 		}
1983 
1984 		/*
1985 		 * If a foid is specified then find that node and append its
1986 		 * list. Otherwise walk the tree appending all the lists
1987 		 * to the sync list. We add to the end rather than the
1988 		 * beginning to ensure the create has happened.
1989 		 */
1990 		t = &itxg->itxg_itxs->i_async_tree;
1991 		if (foid != 0) {
1992 			ian = avl_find(t, &foid, &where);
1993 			if (ian != NULL) {
1994 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1995 				    &ian->ia_list);
1996 			}
1997 		} else {
1998 			void *cookie = NULL;
1999 
2000 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2001 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2002 				    &ian->ia_list);
2003 				list_destroy(&ian->ia_list);
2004 				kmem_free(ian, sizeof (itx_async_node_t));
2005 			}
2006 		}
2007 		mutex_exit(&itxg->itxg_lock);
2008 	}
2009 }
2010 
2011 /*
2012  * This function will prune commit itxs that are at the head of the
2013  * commit list (it won't prune past the first non-commit itx), and
2014  * either: a) attach them to the last lwb that's still pending
2015  * completion, or b) skip them altogether.
2016  *
2017  * This is used as a performance optimization to prevent commit itxs
2018  * from generating new lwbs when it's unnecessary to do so.
2019  */
2020 static void
zil_prune_commit_list(zilog_t * zilog)2021 zil_prune_commit_list(zilog_t *zilog)
2022 {
2023 	itx_t *itx;
2024 
2025 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2026 
2027 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2028 		lr_t *lrc = &itx->itx_lr;
2029 		if (lrc->lrc_txtype != TX_COMMIT)
2030 			break;
2031 
2032 		mutex_enter(&zilog->zl_lock);
2033 
2034 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2035 		if (last_lwb == NULL ||
2036 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2037 			/*
2038 			 * All of the itxs this waiter was waiting on
2039 			 * must have already completed (or there were
2040 			 * never any itx's for it to wait on), so it's
2041 			 * safe to skip this waiter and mark it done.
2042 			 */
2043 			zil_commit_waiter_skip(itx->itx_private);
2044 		} else {
2045 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2046 			itx->itx_private = NULL;
2047 		}
2048 
2049 		mutex_exit(&zilog->zl_lock);
2050 
2051 		list_remove(&zilog->zl_itx_commit_list, itx);
2052 		zil_itx_destroy(itx);
2053 	}
2054 
2055 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2056 }
2057 
2058 static void
zil_commit_writer_stall(zilog_t * zilog)2059 zil_commit_writer_stall(zilog_t *zilog)
2060 {
2061 	/*
2062 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2063 	 * disk, we must call txg_wait_synced() to ensure all of the
2064 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2065 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2066 	 * to zil_process_commit_list()) will have to call zil_create(),
2067 	 * and start a new ZIL chain.
2068 	 *
2069 	 * Since zil_alloc_zil() failed, the lwb that was previously
2070 	 * issued does not have a pointer to the "next" lwb on disk.
2071 	 * Thus, if another ZIL writer thread was to allocate the "next"
2072 	 * on-disk lwb, that block could be leaked in the event of a
2073 	 * crash (because the previous lwb on-disk would not point to
2074 	 * it).
2075 	 *
2076 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2077 	 * ensure no new threads enter zil_process_commit_list() until
2078 	 * all lwb's in the zl_lwb_list have been synced and freed
2079 	 * (which is achieved via the txg_wait_synced() call).
2080 	 */
2081 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2082 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2083 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2084 }
2085 
2086 /*
2087  * This function will traverse the commit list, creating new lwbs as
2088  * needed, and committing the itxs from the commit list to these newly
2089  * created lwbs. Additionally, as a new lwb is created, the previous
2090  * lwb will be issued to the zio layer to be written to disk.
2091  */
2092 static void
zil_process_commit_list(zilog_t * zilog)2093 zil_process_commit_list(zilog_t *zilog)
2094 {
2095 	spa_t *spa = zilog->zl_spa;
2096 	list_t nolwb_waiters;
2097 	lwb_t *lwb;
2098 	itx_t *itx;
2099 
2100 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2101 
2102 	/*
2103 	 * Return if there's nothing to commit before we dirty the fs by
2104 	 * calling zil_create().
2105 	 */
2106 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2107 		return;
2108 
2109 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2110 	    offsetof(zil_commit_waiter_t, zcw_node));
2111 
2112 	lwb = list_tail(&zilog->zl_lwb_list);
2113 	if (lwb == NULL) {
2114 		lwb = zil_create(zilog);
2115 	} else {
2116 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2117 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2118 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2119 	}
2120 
2121 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2122 		lr_t *lrc = &itx->itx_lr;
2123 		uint64_t txg = lrc->lrc_txg;
2124 
2125 		ASSERT3U(txg, !=, 0);
2126 
2127 		if (lrc->lrc_txtype == TX_COMMIT) {
2128 			DTRACE_PROBE2(zil__process__commit__itx,
2129 			    zilog_t *, zilog, itx_t *, itx);
2130 		} else {
2131 			DTRACE_PROBE2(zil__process__normal__itx,
2132 			    zilog_t *, zilog, itx_t *, itx);
2133 		}
2134 
2135 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2136 		boolean_t frozen = txg > spa_freeze_txg(spa);
2137 
2138 		/*
2139 		 * If the txg of this itx has already been synced out, then
2140 		 * we don't need to commit this itx to an lwb. This is
2141 		 * because the data of this itx will have already been
2142 		 * written to the main pool. This is inherently racy, and
2143 		 * it's still ok to commit an itx whose txg has already
2144 		 * been synced; this will result in a write that's
2145 		 * unnecessary, but will do no harm.
2146 		 *
2147 		 * With that said, we always want to commit TX_COMMIT itxs
2148 		 * to an lwb, regardless of whether or not that itx's txg
2149 		 * has been synced out. We do this to ensure any OPENED lwb
2150 		 * will always have at least one zil_commit_waiter_t linked
2151 		 * to the lwb.
2152 		 *
2153 		 * As a counter-example, if we skipped TX_COMMIT itx's
2154 		 * whose txg had already been synced, the following
2155 		 * situation could occur if we happened to be racing with
2156 		 * spa_sync:
2157 		 *
2158 		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2159 		 *    itx's txg is 10 and the last synced txg is 9.
2160 		 * 2. spa_sync finishes syncing out txg 10.
2161 		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2162 		 *    whose txg is 10, so we skip it rather than committing
2163 		 *    it to the lwb used in (1).
2164 		 *
2165 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2166 		 * itx in the commit list, than it's possible for the lwb
2167 		 * used in (1) to remain in the OPENED state indefinitely.
2168 		 *
2169 		 * To prevent the above scenario from occuring, ensuring
2170 		 * that once an lwb is OPENED it will transition to ISSUED
2171 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2172 		 * an lwb here, even if that itx's txg has already been
2173 		 * synced.
2174 		 *
2175 		 * Finally, if the pool is frozen, we _always_ commit the
2176 		 * itx.  The point of freezing the pool is to prevent data
2177 		 * from being written to the main pool via spa_sync, and
2178 		 * instead rely solely on the ZIL to persistently store the
2179 		 * data; i.e.  when the pool is frozen, the last synced txg
2180 		 * value can't be trusted.
2181 		 */
2182 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2183 			if (lwb != NULL) {
2184 				lwb = zil_lwb_commit(zilog, itx, lwb);
2185 			} else if (lrc->lrc_txtype == TX_COMMIT) {
2186 				ASSERT3P(lwb, ==, NULL);
2187 				zil_commit_waiter_link_nolwb(
2188 				    itx->itx_private, &nolwb_waiters);
2189 			}
2190 		}
2191 
2192 		list_remove(&zilog->zl_itx_commit_list, itx);
2193 		zil_itx_destroy(itx);
2194 	}
2195 
2196 	if (lwb == NULL) {
2197 		/*
2198 		 * This indicates zio_alloc_zil() failed to allocate the
2199 		 * "next" lwb on-disk. When this happens, we must stall
2200 		 * the ZIL write pipeline; see the comment within
2201 		 * zil_commit_writer_stall() for more details.
2202 		 */
2203 		zil_commit_writer_stall(zilog);
2204 
2205 		/*
2206 		 * Additionally, we have to signal and mark the "nolwb"
2207 		 * waiters as "done" here, since without an lwb, we
2208 		 * can't do this via zil_lwb_flush_vdevs_done() like
2209 		 * normal.
2210 		 */
2211 		zil_commit_waiter_t *zcw;
2212 		while (zcw = list_head(&nolwb_waiters)) {
2213 			zil_commit_waiter_skip(zcw);
2214 			list_remove(&nolwb_waiters, zcw);
2215 		}
2216 	} else {
2217 		ASSERT(list_is_empty(&nolwb_waiters));
2218 		ASSERT3P(lwb, !=, NULL);
2219 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2220 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2221 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2222 
2223 		/*
2224 		 * At this point, the ZIL block pointed at by the "lwb"
2225 		 * variable is in one of the following states: "closed"
2226 		 * or "open".
2227 		 *
2228 		 * If its "closed", then no itxs have been committed to
2229 		 * it, so there's no point in issuing its zio (i.e.
2230 		 * it's "empty").
2231 		 *
2232 		 * If its "open" state, then it contains one or more
2233 		 * itxs that eventually need to be committed to stable
2234 		 * storage. In this case we intentionally do not issue
2235 		 * the lwb's zio to disk yet, and instead rely on one of
2236 		 * the following two mechanisms for issuing the zio:
2237 		 *
2238 		 * 1. Ideally, there will be more ZIL activity occuring
2239 		 * on the system, such that this function will be
2240 		 * immediately called again (not necessarily by the same
2241 		 * thread) and this lwb's zio will be issued via
2242 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2243 		 * be "full" when it is issued to disk, and we'll make
2244 		 * use of the lwb's size the best we can.
2245 		 *
2246 		 * 2. If there isn't sufficient ZIL activity occuring on
2247 		 * the system, such that this lwb's zio isn't issued via
2248 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2249 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2250 		 * to be "full" by the time its zio is issued, and means
2251 		 * the size of the lwb was "too large" given the amount
2252 		 * of ZIL activity occuring on the system at that time.
2253 		 *
2254 		 * We do this for a couple of reasons:
2255 		 *
2256 		 * 1. To try and reduce the number of IOPs needed to
2257 		 * write the same number of itxs. If an lwb has space
2258 		 * available in it's buffer for more itxs, and more itxs
2259 		 * will be committed relatively soon (relative to the
2260 		 * latency of performing a write), then it's beneficial
2261 		 * to wait for these "next" itxs. This way, more itxs
2262 		 * can be committed to stable storage with fewer writes.
2263 		 *
2264 		 * 2. To try and use the largest lwb block size that the
2265 		 * incoming rate of itxs can support. Again, this is to
2266 		 * try and pack as many itxs into as few lwbs as
2267 		 * possible, without significantly impacting the latency
2268 		 * of each individual itx.
2269 		 */
2270 	}
2271 }
2272 
2273 /*
2274  * This function is responsible for ensuring the passed in commit waiter
2275  * (and associated commit itx) is committed to an lwb. If the waiter is
2276  * not already committed to an lwb, all itxs in the zilog's queue of
2277  * itxs will be processed. The assumption is the passed in waiter's
2278  * commit itx will found in the queue just like the other non-commit
2279  * itxs, such that when the entire queue is processed, the waiter will
2280  * have been commited to an lwb.
2281  *
2282  * The lwb associated with the passed in waiter is not guaranteed to
2283  * have been issued by the time this function completes. If the lwb is
2284  * not issued, we rely on future calls to zil_commit_writer() to issue
2285  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2286  */
2287 static void
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)2288 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2289 {
2290 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2291 	ASSERT(spa_writeable(zilog->zl_spa));
2292 
2293 	mutex_enter(&zilog->zl_issuer_lock);
2294 
2295 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2296 		/*
2297 		 * It's possible that, while we were waiting to acquire
2298 		 * the "zl_issuer_lock", another thread committed this
2299 		 * waiter to an lwb. If that occurs, we bail out early,
2300 		 * without processing any of the zilog's queue of itxs.
2301 		 *
2302 		 * On certain workloads and system configurations, the
2303 		 * "zl_issuer_lock" can become highly contended. In an
2304 		 * attempt to reduce this contention, we immediately drop
2305 		 * the lock if the waiter has already been processed.
2306 		 *
2307 		 * We've measured this optimization to reduce CPU spent
2308 		 * contending on this lock by up to 5%, using a system
2309 		 * with 32 CPUs, low latency storage (~50 usec writes),
2310 		 * and 1024 threads performing sync writes.
2311 		 */
2312 		goto out;
2313 	}
2314 
2315 	zil_get_commit_list(zilog);
2316 	zil_prune_commit_list(zilog);
2317 	zil_process_commit_list(zilog);
2318 
2319 out:
2320 	mutex_exit(&zilog->zl_issuer_lock);
2321 }
2322 
2323 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)2324 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2325 {
2326 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2327 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2328 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2329 
2330 	lwb_t *lwb = zcw->zcw_lwb;
2331 	ASSERT3P(lwb, !=, NULL);
2332 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2333 
2334 	/*
2335 	 * If the lwb has already been issued by another thread, we can
2336 	 * immediately return since there's no work to be done (the
2337 	 * point of this function is to issue the lwb). Additionally, we
2338 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2339 	 * acquiring it when it's not necessary to do so.
2340 	 */
2341 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2342 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2343 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2344 		return;
2345 
2346 	/*
2347 	 * In order to call zil_lwb_write_issue() we must hold the
2348 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2349 	 * since we're already holding the commit waiter's "zcw_lock",
2350 	 * and those two locks are aquired in the opposite order
2351 	 * elsewhere.
2352 	 */
2353 	mutex_exit(&zcw->zcw_lock);
2354 	mutex_enter(&zilog->zl_issuer_lock);
2355 	mutex_enter(&zcw->zcw_lock);
2356 
2357 	/*
2358 	 * Since we just dropped and re-acquired the commit waiter's
2359 	 * lock, we have to re-check to see if the waiter was marked
2360 	 * "done" during that process. If the waiter was marked "done",
2361 	 * the "lwb" pointer is no longer valid (it can be free'd after
2362 	 * the waiter is marked "done"), so without this check we could
2363 	 * wind up with a use-after-free error below.
2364 	 */
2365 	if (zcw->zcw_done)
2366 		goto out;
2367 
2368 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2369 
2370 	/*
2371 	 * We've already checked this above, but since we hadn't acquired
2372 	 * the zilog's zl_issuer_lock, we have to perform this check a
2373 	 * second time while holding the lock.
2374 	 *
2375 	 * We don't need to hold the zl_lock since the lwb cannot transition
2376 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2377 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2378 	 * that transition since we treat the lwb the same, whether it's in
2379 	 * the ISSUED or DONE states.
2380 	 *
2381 	 * The important thing, is we treat the lwb differently depending on
2382 	 * if it's ISSUED or OPENED, and block any other threads that might
2383 	 * attempt to issue this lwb. For that reason we hold the
2384 	 * zl_issuer_lock when checking the lwb_state; we must not call
2385 	 * zil_lwb_write_issue() if the lwb had already been issued.
2386 	 *
2387 	 * See the comment above the lwb_state_t structure definition for
2388 	 * more details on the lwb states, and locking requirements.
2389 	 */
2390 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2391 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2392 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2393 		goto out;
2394 
2395 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2396 
2397 	/*
2398 	 * As described in the comments above zil_commit_waiter() and
2399 	 * zil_process_commit_list(), we need to issue this lwb's zio
2400 	 * since we've reached the commit waiter's timeout and it still
2401 	 * hasn't been issued.
2402 	 */
2403 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2404 
2405 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2406 
2407 	/*
2408 	 * Since the lwb's zio hadn't been issued by the time this thread
2409 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2410 	 * to influence the zil block size selection algorithm.
2411 	 *
2412 	 * By having to issue the lwb's zio here, it means the size of the
2413 	 * lwb was too large, given the incoming throughput of itxs.  By
2414 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2415 	 * block size selection algorithm, so it can take this informaiton
2416 	 * into account, and potentially select a smaller size for the
2417 	 * next lwb block that is allocated.
2418 	 */
2419 	zilog->zl_cur_used = 0;
2420 
2421 	if (nlwb == NULL) {
2422 		/*
2423 		 * When zil_lwb_write_issue() returns NULL, this
2424 		 * indicates zio_alloc_zil() failed to allocate the
2425 		 * "next" lwb on-disk. When this occurs, the ZIL write
2426 		 * pipeline must be stalled; see the comment within the
2427 		 * zil_commit_writer_stall() function for more details.
2428 		 *
2429 		 * We must drop the commit waiter's lock prior to
2430 		 * calling zil_commit_writer_stall() or else we can wind
2431 		 * up with the following deadlock:
2432 		 *
2433 		 * - This thread is waiting for the txg to sync while
2434 		 *   holding the waiter's lock; txg_wait_synced() is
2435 		 *   used within txg_commit_writer_stall().
2436 		 *
2437 		 * - The txg can't sync because it is waiting for this
2438 		 *   lwb's zio callback to call dmu_tx_commit().
2439 		 *
2440 		 * - The lwb's zio callback can't call dmu_tx_commit()
2441 		 *   because it's blocked trying to acquire the waiter's
2442 		 *   lock, which occurs prior to calling dmu_tx_commit()
2443 		 */
2444 		mutex_exit(&zcw->zcw_lock);
2445 		zil_commit_writer_stall(zilog);
2446 		mutex_enter(&zcw->zcw_lock);
2447 	}
2448 
2449 out:
2450 	mutex_exit(&zilog->zl_issuer_lock);
2451 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2452 }
2453 
2454 /*
2455  * This function is responsible for performing the following two tasks:
2456  *
2457  * 1. its primary responsibility is to block until the given "commit
2458  *    waiter" is considered "done".
2459  *
2460  * 2. its secondary responsibility is to issue the zio for the lwb that
2461  *    the given "commit waiter" is waiting on, if this function has
2462  *    waited "long enough" and the lwb is still in the "open" state.
2463  *
2464  * Given a sufficient amount of itxs being generated and written using
2465  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2466  * function. If this does not occur, this secondary responsibility will
2467  * ensure the lwb is issued even if there is not other synchronous
2468  * activity on the system.
2469  *
2470  * For more details, see zil_process_commit_list(); more specifically,
2471  * the comment at the bottom of that function.
2472  */
2473 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)2474 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2475 {
2476 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2477 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2478 	ASSERT(spa_writeable(zilog->zl_spa));
2479 
2480 	mutex_enter(&zcw->zcw_lock);
2481 
2482 	/*
2483 	 * The timeout is scaled based on the lwb latency to avoid
2484 	 * significantly impacting the latency of each individual itx.
2485 	 * For more details, see the comment at the bottom of the
2486 	 * zil_process_commit_list() function.
2487 	 */
2488 	int pct = MAX(zfs_commit_timeout_pct, 1);
2489 #if defined(illumos) || !defined(_KERNEL)
2490 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2491 	hrtime_t wakeup = gethrtime() + sleep;
2492 #else
2493 	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2494 	sbintime_t wakeup = getsbinuptime() + sleep;
2495 #endif
2496 	boolean_t timedout = B_FALSE;
2497 
2498 	while (!zcw->zcw_done) {
2499 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2500 
2501 		lwb_t *lwb = zcw->zcw_lwb;
2502 
2503 		/*
2504 		 * Usually, the waiter will have a non-NULL lwb field here,
2505 		 * but it's possible for it to be NULL as a result of
2506 		 * zil_commit() racing with spa_sync().
2507 		 *
2508 		 * When zil_clean() is called, it's possible for the itxg
2509 		 * list (which may be cleaned via a taskq) to contain
2510 		 * commit itxs. When this occurs, the commit waiters linked
2511 		 * off of these commit itxs will not be committed to an
2512 		 * lwb.  Additionally, these commit waiters will not be
2513 		 * marked done until zil_commit_waiter_skip() is called via
2514 		 * zil_itxg_clean().
2515 		 *
2516 		 * Thus, it's possible for this commit waiter (i.e. the
2517 		 * "zcw" variable) to be found in this "in between" state;
2518 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2519 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2520 		 */
2521 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2522 
2523 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2524 			ASSERT3B(timedout, ==, B_FALSE);
2525 
2526 			/*
2527 			 * If the lwb hasn't been issued yet, then we
2528 			 * need to wait with a timeout, in case this
2529 			 * function needs to issue the lwb after the
2530 			 * timeout is reached; responsibility (2) from
2531 			 * the comment above this function.
2532 			 */
2533 #if defined(illumos) || !defined(_KERNEL)
2534 			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2535 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2536 			    CALLOUT_FLAG_ABSOLUTE);
2537 
2538 			if (timeleft >= 0 || zcw->zcw_done)
2539 				continue;
2540 #else
2541 			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2542 			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2543 			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2544 				continue;
2545 #endif
2546 
2547 			timedout = B_TRUE;
2548 			zil_commit_waiter_timeout(zilog, zcw);
2549 
2550 			if (!zcw->zcw_done) {
2551 				/*
2552 				 * If the commit waiter has already been
2553 				 * marked "done", it's possible for the
2554 				 * waiter's lwb structure to have already
2555 				 * been freed.  Thus, we can only reliably
2556 				 * make these assertions if the waiter
2557 				 * isn't done.
2558 				 */
2559 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2560 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2561 			}
2562 		} else {
2563 			/*
2564 			 * If the lwb isn't open, then it must have already
2565 			 * been issued. In that case, there's no need to
2566 			 * use a timeout when waiting for the lwb to
2567 			 * complete.
2568 			 *
2569 			 * Additionally, if the lwb is NULL, the waiter
2570 			 * will soon be signalled and marked done via
2571 			 * zil_clean() and zil_itxg_clean(), so no timeout
2572 			 * is required.
2573 			 */
2574 
2575 			IMPLY(lwb != NULL,
2576 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2577 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2578 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2579 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2580 		}
2581 	}
2582 
2583 	mutex_exit(&zcw->zcw_lock);
2584 }
2585 
2586 static zil_commit_waiter_t *
zil_alloc_commit_waiter()2587 zil_alloc_commit_waiter()
2588 {
2589 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2590 
2591 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2592 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2593 	list_link_init(&zcw->zcw_node);
2594 	zcw->zcw_lwb = NULL;
2595 	zcw->zcw_done = B_FALSE;
2596 	zcw->zcw_zio_error = 0;
2597 
2598 	return (zcw);
2599 }
2600 
2601 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)2602 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2603 {
2604 	ASSERT(!list_link_active(&zcw->zcw_node));
2605 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2606 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2607 	mutex_destroy(&zcw->zcw_lock);
2608 	cv_destroy(&zcw->zcw_cv);
2609 	kmem_cache_free(zil_zcw_cache, zcw);
2610 }
2611 
2612 /*
2613  * This function is used to create a TX_COMMIT itx and assign it. This
2614  * way, it will be linked into the ZIL's list of synchronous itxs, and
2615  * then later committed to an lwb (or skipped) when
2616  * zil_process_commit_list() is called.
2617  */
2618 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)2619 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2620 {
2621 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2622 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2623 
2624 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2625 	itx->itx_sync = B_TRUE;
2626 	itx->itx_private = zcw;
2627 
2628 	zil_itx_assign(zilog, itx, tx);
2629 
2630 	dmu_tx_commit(tx);
2631 }
2632 
2633 /*
2634  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2635  *
2636  * When writing ZIL transactions to the on-disk representation of the
2637  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2638  * itxs can be committed to a single lwb. Once a lwb is written and
2639  * committed to stable storage (i.e. the lwb is written, and vdevs have
2640  * been flushed), each itx that was committed to that lwb is also
2641  * considered to be committed to stable storage.
2642  *
2643  * When an itx is committed to an lwb, the log record (lr_t) contained
2644  * by the itx is copied into the lwb's zio buffer, and once this buffer
2645  * is written to disk, it becomes an on-disk ZIL block.
2646  *
2647  * As itxs are generated, they're inserted into the ZIL's queue of
2648  * uncommitted itxs. The semantics of zil_commit() are such that it will
2649  * block until all itxs that were in the queue when it was called, are
2650  * committed to stable storage.
2651  *
2652  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2653  * itxs, for all objects in the dataset, will be committed to stable
2654  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2655  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2656  * that correspond to the foid passed in, will be committed to stable
2657  * storage prior to zil_commit() returning.
2658  *
2659  * Generally speaking, when zil_commit() is called, the consumer doesn't
2660  * actually care about _all_ of the uncommitted itxs. Instead, they're
2661  * simply trying to waiting for a specific itx to be committed to disk,
2662  * but the interface(s) for interacting with the ZIL don't allow such
2663  * fine-grained communication. A better interface would allow a consumer
2664  * to create and assign an itx, and then pass a reference to this itx to
2665  * zil_commit(); such that zil_commit() would return as soon as that
2666  * specific itx was committed to disk (instead of waiting for _all_
2667  * itxs to be committed).
2668  *
2669  * When a thread calls zil_commit() a special "commit itx" will be
2670  * generated, along with a corresponding "waiter" for this commit itx.
2671  * zil_commit() will wait on this waiter's CV, such that when the waiter
2672  * is marked done, and signalled, zil_commit() will return.
2673  *
2674  * This commit itx is inserted into the queue of uncommitted itxs. This
2675  * provides an easy mechanism for determining which itxs were in the
2676  * queue prior to zil_commit() having been called, and which itxs were
2677  * added after zil_commit() was called.
2678  *
2679  * The commit it is special; it doesn't have any on-disk representation.
2680  * When a commit itx is "committed" to an lwb, the waiter associated
2681  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2682  * completes, each waiter on the lwb's list is marked done and signalled
2683  * -- allowing the thread waiting on the waiter to return from zil_commit().
2684  *
2685  * It's important to point out a few critical factors that allow us
2686  * to make use of the commit itxs, commit waiters, per-lwb lists of
2687  * commit waiters, and zio completion callbacks like we're doing:
2688  *
2689  *   1. The list of waiters for each lwb is traversed, and each commit
2690  *      waiter is marked "done" and signalled, in the zio completion
2691  *      callback of the lwb's zio[*].
2692  *
2693  *      * Actually, the waiters are signalled in the zio completion
2694  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2695  *        that are sent to the vdevs upon completion of the lwb zio.
2696  *
2697  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2698  *      itxs, the order in which they are inserted is preserved[*]; as
2699  *      itxs are added to the queue, they are added to the tail of
2700  *      in-memory linked lists.
2701  *
2702  *      When committing the itxs to lwbs (to be written to disk), they
2703  *      are committed in the same order in which the itxs were added to
2704  *      the uncommitted queue's linked list(s); i.e. the linked list of
2705  *      itxs to commit is traversed from head to tail, and each itx is
2706  *      committed to an lwb in that order.
2707  *
2708  *      * To clarify:
2709  *
2710  *        - the order of "sync" itxs is preserved w.r.t. other
2711  *          "sync" itxs, regardless of the corresponding objects.
2712  *        - the order of "async" itxs is preserved w.r.t. other
2713  *          "async" itxs corresponding to the same object.
2714  *        - the order of "async" itxs is *not* preserved w.r.t. other
2715  *          "async" itxs corresponding to different objects.
2716  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2717  *          versa) is *not* preserved, even for itxs that correspond
2718  *          to the same object.
2719  *
2720  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2721  *      zil_get_commit_list(), and zil_process_commit_list().
2722  *
2723  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2724  *      lwb cannot be considered committed to stable storage, until its
2725  *      "previous" lwb is also committed to stable storage. This fact,
2726  *      coupled with the fact described above, means that itxs are
2727  *      committed in (roughly) the order in which they were generated.
2728  *      This is essential because itxs are dependent on prior itxs.
2729  *      Thus, we *must not* deem an itx as being committed to stable
2730  *      storage, until *all* prior itxs have also been committed to
2731  *      stable storage.
2732  *
2733  *      To enforce this ordering of lwb zio's, while still leveraging as
2734  *      much of the underlying storage performance as possible, we rely
2735  *      on two fundamental concepts:
2736  *
2737  *          1. The creation and issuance of lwb zio's is protected by
2738  *             the zilog's "zl_issuer_lock", which ensures only a single
2739  *             thread is creating and/or issuing lwb's at a time
2740  *          2. The "previous" lwb is a child of the "current" lwb
2741  *             (leveraging the zio parent-child depenency graph)
2742  *
2743  *      By relying on this parent-child zio relationship, we can have
2744  *      many lwb zio's concurrently issued to the underlying storage,
2745  *      but the order in which they complete will be the same order in
2746  *      which they were created.
2747  */
2748 void
zil_commit(zilog_t * zilog,uint64_t foid)2749 zil_commit(zilog_t *zilog, uint64_t foid)
2750 {
2751 	/*
2752 	 * We should never attempt to call zil_commit on a snapshot for
2753 	 * a couple of reasons:
2754 	 *
2755 	 * 1. A snapshot may never be modified, thus it cannot have any
2756 	 *    in-flight itxs that would have modified the dataset.
2757 	 *
2758 	 * 2. By design, when zil_commit() is called, a commit itx will
2759 	 *    be assigned to this zilog; as a result, the zilog will be
2760 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2761 	 *    checks in the code that enforce this invariant, and will
2762 	 *    cause a panic if it's not upheld.
2763 	 */
2764 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2765 
2766 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2767 		return;
2768 
2769 	if (!spa_writeable(zilog->zl_spa)) {
2770 		/*
2771 		 * If the SPA is not writable, there should never be any
2772 		 * pending itxs waiting to be committed to disk. If that
2773 		 * weren't true, we'd skip writing those itxs out, and
2774 		 * would break the sematics of zil_commit(); thus, we're
2775 		 * verifying that truth before we return to the caller.
2776 		 */
2777 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2778 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2779 		for (int i = 0; i < TXG_SIZE; i++)
2780 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2781 		return;
2782 	}
2783 
2784 	/*
2785 	 * If the ZIL is suspended, we don't want to dirty it by calling
2786 	 * zil_commit_itx_assign() below, nor can we write out
2787 	 * lwbs like would be done in zil_commit_write(). Thus, we
2788 	 * simply rely on txg_wait_synced() to maintain the necessary
2789 	 * semantics, and avoid calling those functions altogether.
2790 	 */
2791 	if (zilog->zl_suspend > 0) {
2792 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2793 		return;
2794 	}
2795 
2796 	zil_commit_impl(zilog, foid);
2797 }
2798 
2799 void
zil_commit_impl(zilog_t * zilog,uint64_t foid)2800 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2801 {
2802 	/*
2803 	 * Move the "async" itxs for the specified foid to the "sync"
2804 	 * queues, such that they will be later committed (or skipped)
2805 	 * to an lwb when zil_process_commit_list() is called.
2806 	 *
2807 	 * Since these "async" itxs must be committed prior to this
2808 	 * call to zil_commit returning, we must perform this operation
2809 	 * before we call zil_commit_itx_assign().
2810 	 */
2811 	zil_async_to_sync(zilog, foid);
2812 
2813 	/*
2814 	 * We allocate a new "waiter" structure which will initially be
2815 	 * linked to the commit itx using the itx's "itx_private" field.
2816 	 * Since the commit itx doesn't represent any on-disk state,
2817 	 * when it's committed to an lwb, rather than copying the its
2818 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2819 	 * added to the lwb's list of waiters. Then, when the lwb is
2820 	 * committed to stable storage, each waiter in the lwb's list of
2821 	 * waiters will be marked "done", and signalled.
2822 	 *
2823 	 * We must create the waiter and assign the commit itx prior to
2824 	 * calling zil_commit_writer(), or else our specific commit itx
2825 	 * is not guaranteed to be committed to an lwb prior to calling
2826 	 * zil_commit_waiter().
2827 	 */
2828 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2829 	zil_commit_itx_assign(zilog, zcw);
2830 
2831 	zil_commit_writer(zilog, zcw);
2832 	zil_commit_waiter(zilog, zcw);
2833 
2834 	if (zcw->zcw_zio_error != 0) {
2835 		/*
2836 		 * If there was an error writing out the ZIL blocks that
2837 		 * this thread is waiting on, then we fallback to
2838 		 * relying on spa_sync() to write out the data this
2839 		 * thread is waiting on. Obviously this has performance
2840 		 * implications, but the expectation is for this to be
2841 		 * an exceptional case, and shouldn't occur often.
2842 		 */
2843 		DTRACE_PROBE2(zil__commit__io__error,
2844 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2845 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2846 	}
2847 
2848 	zil_free_commit_waiter(zcw);
2849 }
2850 
2851 /*
2852  * Called in syncing context to free committed log blocks and update log header.
2853  */
2854 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)2855 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2856 {
2857 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2858 	uint64_t txg = dmu_tx_get_txg(tx);
2859 	spa_t *spa = zilog->zl_spa;
2860 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2861 	lwb_t *lwb;
2862 
2863 	/*
2864 	 * We don't zero out zl_destroy_txg, so make sure we don't try
2865 	 * to destroy it twice.
2866 	 */
2867 	if (spa_sync_pass(spa) != 1)
2868 		return;
2869 
2870 	mutex_enter(&zilog->zl_lock);
2871 
2872 	ASSERT(zilog->zl_stop_sync == 0);
2873 
2874 	if (*replayed_seq != 0) {
2875 		ASSERT(zh->zh_replay_seq < *replayed_seq);
2876 		zh->zh_replay_seq = *replayed_seq;
2877 		*replayed_seq = 0;
2878 	}
2879 
2880 	if (zilog->zl_destroy_txg == txg) {
2881 		blkptr_t blk = zh->zh_log;
2882 
2883 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2884 
2885 		bzero(zh, sizeof (zil_header_t));
2886 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2887 
2888 		if (zilog->zl_keep_first) {
2889 			/*
2890 			 * If this block was part of log chain that couldn't
2891 			 * be claimed because a device was missing during
2892 			 * zil_claim(), but that device later returns,
2893 			 * then this block could erroneously appear valid.
2894 			 * To guard against this, assign a new GUID to the new
2895 			 * log chain so it doesn't matter what blk points to.
2896 			 */
2897 			zil_init_log_chain(zilog, &blk);
2898 			zh->zh_log = blk;
2899 		}
2900 	}
2901 
2902 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2903 		zh->zh_log = lwb->lwb_blk;
2904 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2905 			break;
2906 		list_remove(&zilog->zl_lwb_list, lwb);
2907 		zio_free(spa, txg, &lwb->lwb_blk);
2908 		zil_free_lwb(zilog, lwb);
2909 
2910 		/*
2911 		 * If we don't have anything left in the lwb list then
2912 		 * we've had an allocation failure and we need to zero
2913 		 * out the zil_header blkptr so that we don't end
2914 		 * up freeing the same block twice.
2915 		 */
2916 		if (list_head(&zilog->zl_lwb_list) == NULL)
2917 			BP_ZERO(&zh->zh_log);
2918 	}
2919 	mutex_exit(&zilog->zl_lock);
2920 }
2921 
2922 /* ARGSUSED */
2923 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)2924 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2925 {
2926 	lwb_t *lwb = vbuf;
2927 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2928 	    offsetof(zil_commit_waiter_t, zcw_node));
2929 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2930 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2931 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2932 	return (0);
2933 }
2934 
2935 /* ARGSUSED */
2936 static void
zil_lwb_dest(void * vbuf,void * unused)2937 zil_lwb_dest(void *vbuf, void *unused)
2938 {
2939 	lwb_t *lwb = vbuf;
2940 	mutex_destroy(&lwb->lwb_vdev_lock);
2941 	avl_destroy(&lwb->lwb_vdev_tree);
2942 	list_destroy(&lwb->lwb_waiters);
2943 }
2944 
2945 void
zil_init(void)2946 zil_init(void)
2947 {
2948 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2949 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2950 
2951 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2952 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2953 }
2954 
2955 void
zil_fini(void)2956 zil_fini(void)
2957 {
2958 	kmem_cache_destroy(zil_zcw_cache);
2959 	kmem_cache_destroy(zil_lwb_cache);
2960 }
2961 
2962 void
zil_set_sync(zilog_t * zilog,uint64_t sync)2963 zil_set_sync(zilog_t *zilog, uint64_t sync)
2964 {
2965 	zilog->zl_sync = sync;
2966 }
2967 
2968 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)2969 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2970 {
2971 	zilog->zl_logbias = logbias;
2972 }
2973 
2974 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)2975 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2976 {
2977 	zilog_t *zilog;
2978 
2979 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2980 
2981 	zilog->zl_header = zh_phys;
2982 	zilog->zl_os = os;
2983 	zilog->zl_spa = dmu_objset_spa(os);
2984 	zilog->zl_dmu_pool = dmu_objset_pool(os);
2985 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2986 	zilog->zl_logbias = dmu_objset_logbias(os);
2987 	zilog->zl_sync = dmu_objset_syncprop(os);
2988 	zilog->zl_dirty_max_txg = 0;
2989 	zilog->zl_last_lwb_opened = NULL;
2990 	zilog->zl_last_lwb_latency = 0;
2991 
2992 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2993 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2994 
2995 	for (int i = 0; i < TXG_SIZE; i++) {
2996 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2997 		    MUTEX_DEFAULT, NULL);
2998 	}
2999 
3000 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3001 	    offsetof(lwb_t, lwb_node));
3002 
3003 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3004 	    offsetof(itx_t, itx_node));
3005 
3006 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3007 
3008 	return (zilog);
3009 }
3010 
3011 void
zil_free(zilog_t * zilog)3012 zil_free(zilog_t *zilog)
3013 {
3014 	zilog->zl_stop_sync = 1;
3015 
3016 	ASSERT0(zilog->zl_suspend);
3017 	ASSERT0(zilog->zl_suspending);
3018 
3019 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3020 	list_destroy(&zilog->zl_lwb_list);
3021 
3022 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3023 	list_destroy(&zilog->zl_itx_commit_list);
3024 
3025 	for (int i = 0; i < TXG_SIZE; i++) {
3026 		/*
3027 		 * It's possible for an itx to be generated that doesn't dirty
3028 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3029 		 * callback to remove the entry. We remove those here.
3030 		 *
3031 		 * Also free up the ziltest itxs.
3032 		 */
3033 		if (zilog->zl_itxg[i].itxg_itxs)
3034 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3035 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3036 	}
3037 
3038 	mutex_destroy(&zilog->zl_issuer_lock);
3039 	mutex_destroy(&zilog->zl_lock);
3040 
3041 	cv_destroy(&zilog->zl_cv_suspend);
3042 
3043 	kmem_free(zilog, sizeof (zilog_t));
3044 }
3045 
3046 /*
3047  * Open an intent log.
3048  */
3049 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data)3050 zil_open(objset_t *os, zil_get_data_t *get_data)
3051 {
3052 	zilog_t *zilog = dmu_objset_zil(os);
3053 
3054 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3055 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3056 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3057 
3058 	zilog->zl_get_data = get_data;
3059 
3060 	return (zilog);
3061 }
3062 
3063 /*
3064  * Close an intent log.
3065  */
3066 void
zil_close(zilog_t * zilog)3067 zil_close(zilog_t *zilog)
3068 {
3069 	lwb_t *lwb;
3070 	uint64_t txg;
3071 
3072 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3073 		zil_commit(zilog, 0);
3074 	} else {
3075 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3076 		ASSERT0(zilog->zl_dirty_max_txg);
3077 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3078 	}
3079 
3080 	mutex_enter(&zilog->zl_lock);
3081 	lwb = list_tail(&zilog->zl_lwb_list);
3082 	if (lwb == NULL)
3083 		txg = zilog->zl_dirty_max_txg;
3084 	else
3085 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3086 	mutex_exit(&zilog->zl_lock);
3087 
3088 	/*
3089 	 * We need to use txg_wait_synced() to wait long enough for the
3090 	 * ZIL to be clean, and to wait for all pending lwbs to be
3091 	 * written out.
3092 	 */
3093 	if (txg)
3094 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3095 
3096 	if (txg < spa_freeze_txg(zilog->zl_spa))
3097 		ASSERT(!zilog_is_dirty(zilog));
3098 
3099 	zilog->zl_get_data = NULL;
3100 
3101 	/*
3102 	 * We should have only one lwb left on the list; remove it now.
3103 	 */
3104 	mutex_enter(&zilog->zl_lock);
3105 	lwb = list_head(&zilog->zl_lwb_list);
3106 	if (lwb != NULL) {
3107 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3108 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3109 		list_remove(&zilog->zl_lwb_list, lwb);
3110 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3111 		zil_free_lwb(zilog, lwb);
3112 	}
3113 	mutex_exit(&zilog->zl_lock);
3114 }
3115 
3116 static char *suspend_tag = "zil suspending";
3117 
3118 /*
3119  * Suspend an intent log.  While in suspended mode, we still honor
3120  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3121  * On old version pools, we suspend the log briefly when taking a
3122  * snapshot so that it will have an empty intent log.
3123  *
3124  * Long holds are not really intended to be used the way we do here --
3125  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3126  * could fail.  Therefore we take pains to only put a long hold if it is
3127  * actually necessary.  Fortunately, it will only be necessary if the
3128  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3129  * will already have a long hold, so we are not really making things any worse.
3130  *
3131  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3132  * zvol_state_t), and use their mechanism to prevent their hold from being
3133  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3134  * very little gain.
3135  *
3136  * if cookiep == NULL, this does both the suspend & resume.
3137  * Otherwise, it returns with the dataset "long held", and the cookie
3138  * should be passed into zil_resume().
3139  */
3140 int
zil_suspend(const char * osname,void ** cookiep)3141 zil_suspend(const char *osname, void **cookiep)
3142 {
3143 	objset_t *os;
3144 	zilog_t *zilog;
3145 	const zil_header_t *zh;
3146 	int error;
3147 
3148 	error = dmu_objset_hold(osname, suspend_tag, &os);
3149 	if (error != 0)
3150 		return (error);
3151 	zilog = dmu_objset_zil(os);
3152 
3153 	mutex_enter(&zilog->zl_lock);
3154 	zh = zilog->zl_header;
3155 
3156 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3157 		mutex_exit(&zilog->zl_lock);
3158 		dmu_objset_rele(os, suspend_tag);
3159 		return (SET_ERROR(EBUSY));
3160 	}
3161 
3162 	/*
3163 	 * Don't put a long hold in the cases where we can avoid it.  This
3164 	 * is when there is no cookie so we are doing a suspend & resume
3165 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3166 	 * for the suspend because it's already suspended, or there's no ZIL.
3167 	 */
3168 	if (cookiep == NULL && !zilog->zl_suspending &&
3169 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3170 		mutex_exit(&zilog->zl_lock);
3171 		dmu_objset_rele(os, suspend_tag);
3172 		return (0);
3173 	}
3174 
3175 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3176 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3177 
3178 	zilog->zl_suspend++;
3179 
3180 	if (zilog->zl_suspend > 1) {
3181 		/*
3182 		 * Someone else is already suspending it.
3183 		 * Just wait for them to finish.
3184 		 */
3185 
3186 		while (zilog->zl_suspending)
3187 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3188 		mutex_exit(&zilog->zl_lock);
3189 
3190 		if (cookiep == NULL)
3191 			zil_resume(os);
3192 		else
3193 			*cookiep = os;
3194 		return (0);
3195 	}
3196 
3197 	/*
3198 	 * If there is no pointer to an on-disk block, this ZIL must not
3199 	 * be active (e.g. filesystem not mounted), so there's nothing
3200 	 * to clean up.
3201 	 */
3202 	if (BP_IS_HOLE(&zh->zh_log)) {
3203 		ASSERT(cookiep != NULL); /* fast path already handled */
3204 
3205 		*cookiep = os;
3206 		mutex_exit(&zilog->zl_lock);
3207 		return (0);
3208 	}
3209 
3210 	zilog->zl_suspending = B_TRUE;
3211 	mutex_exit(&zilog->zl_lock);
3212 
3213 	/*
3214 	 * We need to use zil_commit_impl to ensure we wait for all
3215 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3216 	 * to disk before proceeding. If we used zil_commit instead, it
3217 	 * would just call txg_wait_synced(), because zl_suspend is set.
3218 	 * txg_wait_synced() doesn't wait for these lwb's to be
3219 	 * LWB_STATE_FLUSH_DONE before returning.
3220 	 */
3221 	zil_commit_impl(zilog, 0);
3222 
3223 	/*
3224 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3225 	 * use txg_wait_synced() to ensure the data from the zilog has
3226 	 * migrated to the main pool before calling zil_destroy().
3227 	 */
3228 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3229 
3230 	zil_destroy(zilog, B_FALSE);
3231 
3232 	mutex_enter(&zilog->zl_lock);
3233 	zilog->zl_suspending = B_FALSE;
3234 	cv_broadcast(&zilog->zl_cv_suspend);
3235 	mutex_exit(&zilog->zl_lock);
3236 
3237 	if (cookiep == NULL)
3238 		zil_resume(os);
3239 	else
3240 		*cookiep = os;
3241 	return (0);
3242 }
3243 
3244 void
zil_resume(void * cookie)3245 zil_resume(void *cookie)
3246 {
3247 	objset_t *os = cookie;
3248 	zilog_t *zilog = dmu_objset_zil(os);
3249 
3250 	mutex_enter(&zilog->zl_lock);
3251 	ASSERT(zilog->zl_suspend != 0);
3252 	zilog->zl_suspend--;
3253 	mutex_exit(&zilog->zl_lock);
3254 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3255 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3256 }
3257 
3258 typedef struct zil_replay_arg {
3259 	zil_replay_func_t **zr_replay;
3260 	void		*zr_arg;
3261 	boolean_t	zr_byteswap;
3262 	char		*zr_lr;
3263 } zil_replay_arg_t;
3264 
3265 static int
zil_replay_error(zilog_t * zilog,lr_t * lr,int error)3266 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3267 {
3268 	char name[ZFS_MAX_DATASET_NAME_LEN];
3269 
3270 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3271 
3272 	dmu_objset_name(zilog->zl_os, name);
3273 
3274 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3275 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3276 	    (u_longlong_t)lr->lrc_seq,
3277 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3278 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3279 
3280 	return (error);
3281 }
3282 
3283 static int
zil_replay_log_record(zilog_t * zilog,lr_t * lr,void * zra,uint64_t claim_txg)3284 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3285 {
3286 	zil_replay_arg_t *zr = zra;
3287 	const zil_header_t *zh = zilog->zl_header;
3288 	uint64_t reclen = lr->lrc_reclen;
3289 	uint64_t txtype = lr->lrc_txtype;
3290 	int error = 0;
3291 
3292 	zilog->zl_replaying_seq = lr->lrc_seq;
3293 
3294 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3295 		return (0);
3296 
3297 	if (lr->lrc_txg < claim_txg)		/* already committed */
3298 		return (0);
3299 
3300 	/* Strip case-insensitive bit, still present in log record */
3301 	txtype &= ~TX_CI;
3302 
3303 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3304 		return (zil_replay_error(zilog, lr, EINVAL));
3305 
3306 	/*
3307 	 * If this record type can be logged out of order, the object
3308 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3309 	 */
3310 	if (TX_OOO(txtype)) {
3311 		error = dmu_object_info(zilog->zl_os,
3312 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3313 		if (error == ENOENT || error == EEXIST)
3314 			return (0);
3315 	}
3316 
3317 	/*
3318 	 * Make a copy of the data so we can revise and extend it.
3319 	 */
3320 	bcopy(lr, zr->zr_lr, reclen);
3321 
3322 	/*
3323 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3324 	 */
3325 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3326 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3327 		    zr->zr_lr + reclen);
3328 		if (error != 0)
3329 			return (zil_replay_error(zilog, lr, error));
3330 	}
3331 
3332 	/*
3333 	 * The log block containing this lr may have been byteswapped
3334 	 * so that we can easily examine common fields like lrc_txtype.
3335 	 * However, the log is a mix of different record types, and only the
3336 	 * replay vectors know how to byteswap their records.  Therefore, if
3337 	 * the lr was byteswapped, undo it before invoking the replay vector.
3338 	 */
3339 	if (zr->zr_byteswap)
3340 		byteswap_uint64_array(zr->zr_lr, reclen);
3341 
3342 	/*
3343 	 * We must now do two things atomically: replay this log record,
3344 	 * and update the log header sequence number to reflect the fact that
3345 	 * we did so. At the end of each replay function the sequence number
3346 	 * is updated if we are in replay mode.
3347 	 */
3348 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3349 	if (error != 0) {
3350 		/*
3351 		 * The DMU's dnode layer doesn't see removes until the txg
3352 		 * commits, so a subsequent claim can spuriously fail with
3353 		 * EEXIST. So if we receive any error we try syncing out
3354 		 * any removes then retry the transaction.  Note that we
3355 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3356 		 */
3357 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3358 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3359 		if (error != 0)
3360 			return (zil_replay_error(zilog, lr, error));
3361 	}
3362 	return (0);
3363 }
3364 
3365 /* ARGSUSED */
3366 static int
zil_incr_blks(zilog_t * zilog,blkptr_t * bp,void * arg,uint64_t claim_txg)3367 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3368 {
3369 	zilog->zl_replay_blks++;
3370 
3371 	return (0);
3372 }
3373 
3374 /*
3375  * If this dataset has a non-empty intent log, replay it and destroy it.
3376  */
3377 void
zil_replay(objset_t * os,void * arg,zil_replay_func_t * replay_func[TX_MAX_TYPE])3378 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3379 {
3380 	zilog_t *zilog = dmu_objset_zil(os);
3381 	const zil_header_t *zh = zilog->zl_header;
3382 	zil_replay_arg_t zr;
3383 
3384 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3385 		zil_destroy(zilog, B_TRUE);
3386 		return;
3387 	}
3388 
3389 	zr.zr_replay = replay_func;
3390 	zr.zr_arg = arg;
3391 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3392 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3393 
3394 	/*
3395 	 * Wait for in-progress removes to sync before starting replay.
3396 	 */
3397 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3398 
3399 	zilog->zl_replay = B_TRUE;
3400 	zilog->zl_replay_time = ddi_get_lbolt();
3401 	ASSERT(zilog->zl_replay_blks == 0);
3402 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3403 	    zh->zh_claim_txg);
3404 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3405 
3406 	zil_destroy(zilog, B_FALSE);
3407 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3408 	zilog->zl_replay = B_FALSE;
3409 }
3410 
3411 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)3412 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3413 {
3414 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3415 		return (B_TRUE);
3416 
3417 	if (zilog->zl_replay) {
3418 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3419 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3420 		    zilog->zl_replaying_seq;
3421 		return (B_TRUE);
3422 	}
3423 
3424 	return (B_FALSE);
3425 }
3426 
3427 /* ARGSUSED */
3428 int
zil_reset(const char * osname,void * arg)3429 zil_reset(const char *osname, void *arg)
3430 {
3431 	int error;
3432 
3433 	error = zil_suspend(osname, NULL);
3434 	if (error != 0)
3435 		return (SET_ERROR(EEXIST));
3436 	return (0);
3437 }
3438