1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <[email protected]>
29 * Brian Behlendorf <[email protected]>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 * Copyright (c) 2018 George Melikov. All Rights Reserved.
33 * Copyright (c) 2019 Datto, Inc. All rights reserved.
34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35 */
36
37 /*
38 * ZFS control directory (a.k.a. ".zfs")
39 *
40 * This directory provides a common location for all ZFS meta-objects.
41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42 * expand in the future. The elements are built dynamically, as the hierarchy
43 * does not actually exist on disk.
44 *
45 * For 'snapshot', we don't want to have all snapshots always mounted, because
46 * this would take up a huge amount of space in /etc/mnttab. We have three
47 * types of objects:
48 *
49 * ctldir ------> snapshotdir -------> snapshot
50 * |
51 * |
52 * V
53 * mounted fs
54 *
55 * The 'snapshot' node contains just enough information to lookup '..' and act
56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
57 * perform an automount of the underlying filesystem and return the
58 * corresponding inode.
59 *
60 * All mounts are handled automatically by an user mode helper which invokes
61 * the mount procedure. Unmounts are handled by allowing the mount
62 * point to expire so the kernel may automatically unmount it.
63 *
64 * The '.zfs', '.zfs/snapshot', and all directories created under
65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66 * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67 *
68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69 * (ie: snapshots) are complete ZFS filesystems and have their own unique
70 * zfsvfs_t. However, the fsid reported by these mounts will be the same
71 * as that used by the parent zfsvfs_t to make NFS happy.
72 */
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92
93 /*
94 * Two AVL trees are maintained which contain all currently automounted
95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
96 * entry which MUST:
97 *
98 * - be attached to both trees, and
99 * - be unique, no duplicate entries are allowed.
100 *
101 * The zfs_snapshots_by_name tree is indexed by the full dataset name
102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103 * objsetid. This allows for fast lookups either by name or objsetid.
104 */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108
109 /*
110 * Control Directory Tunables (.zfs)
111 */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 int zfs_admin_snapshot = 0;
114
115 typedef struct {
116 char *se_name; /* full snapshot name */
117 char *se_path; /* full mount path */
118 spa_t *se_spa; /* pool spa */
119 uint64_t se_objsetid; /* snapshot objset id */
120 struct dentry *se_root_dentry; /* snapshot root dentry */
121 taskqid_t se_taskqid; /* scheduled unmount taskqid */
122 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
123 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
124 zfs_refcount_t se_refcount; /* reference count */
125 } zfs_snapentry_t;
126
127 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
128
129 /*
130 * Allocate a new zfs_snapentry_t being careful to make a copy of the
131 * the snapshot name and provided mount point. No reference is taken.
132 */
133 static zfs_snapentry_t *
zfsctl_snapshot_alloc(const char * full_name,const char * full_path,spa_t * spa,uint64_t objsetid,struct dentry * root_dentry)134 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
135 uint64_t objsetid, struct dentry *root_dentry)
136 {
137 zfs_snapentry_t *se;
138
139 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
140
141 se->se_name = kmem_strdup(full_name);
142 se->se_path = kmem_strdup(full_path);
143 se->se_spa = spa;
144 se->se_objsetid = objsetid;
145 se->se_root_dentry = root_dentry;
146 se->se_taskqid = TASKQID_INVALID;
147
148 zfs_refcount_create(&se->se_refcount);
149
150 return (se);
151 }
152
153 /*
154 * Free a zfs_snapentry_t the caller must ensure there are no active
155 * references.
156 */
157 static void
zfsctl_snapshot_free(zfs_snapentry_t * se)158 zfsctl_snapshot_free(zfs_snapentry_t *se)
159 {
160 zfs_refcount_destroy(&se->se_refcount);
161 kmem_strfree(se->se_name);
162 kmem_strfree(se->se_path);
163
164 kmem_free(se, sizeof (zfs_snapentry_t));
165 }
166
167 /*
168 * Hold a reference on the zfs_snapentry_t.
169 */
170 static void
zfsctl_snapshot_hold(zfs_snapentry_t * se)171 zfsctl_snapshot_hold(zfs_snapentry_t *se)
172 {
173 zfs_refcount_add(&se->se_refcount, NULL);
174 }
175
176 /*
177 * Release a reference on the zfs_snapentry_t. When the number of
178 * references drops to zero the structure will be freed.
179 */
180 static void
zfsctl_snapshot_rele(zfs_snapentry_t * se)181 zfsctl_snapshot_rele(zfs_snapentry_t *se)
182 {
183 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
184 zfsctl_snapshot_free(se);
185 }
186
187 /*
188 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
189 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
190 * of the trees a reference is held.
191 */
192 static void
zfsctl_snapshot_add(zfs_snapentry_t * se)193 zfsctl_snapshot_add(zfs_snapentry_t *se)
194 {
195 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
196 zfsctl_snapshot_hold(se);
197 avl_add(&zfs_snapshots_by_name, se);
198 avl_add(&zfs_snapshots_by_objsetid, se);
199 }
200
201 /*
202 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
203 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
204 * this can result in the structure being freed if that was the last
205 * remaining reference.
206 */
207 static void
zfsctl_snapshot_remove(zfs_snapentry_t * se)208 zfsctl_snapshot_remove(zfs_snapentry_t *se)
209 {
210 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
211 avl_remove(&zfs_snapshots_by_name, se);
212 avl_remove(&zfs_snapshots_by_objsetid, se);
213 zfsctl_snapshot_rele(se);
214 }
215
216 /*
217 * Snapshot name comparison function for the zfs_snapshots_by_name.
218 */
219 static int
snapentry_compare_by_name(const void * a,const void * b)220 snapentry_compare_by_name(const void *a, const void *b)
221 {
222 const zfs_snapentry_t *se_a = a;
223 const zfs_snapentry_t *se_b = b;
224 int ret;
225
226 ret = strcmp(se_a->se_name, se_b->se_name);
227
228 if (ret < 0)
229 return (-1);
230 else if (ret > 0)
231 return (1);
232 else
233 return (0);
234 }
235
236 /*
237 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
238 */
239 static int
snapentry_compare_by_objsetid(const void * a,const void * b)240 snapentry_compare_by_objsetid(const void *a, const void *b)
241 {
242 const zfs_snapentry_t *se_a = a;
243 const zfs_snapentry_t *se_b = b;
244
245 if (se_a->se_spa != se_b->se_spa)
246 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
247
248 if (se_a->se_objsetid < se_b->se_objsetid)
249 return (-1);
250 else if (se_a->se_objsetid > se_b->se_objsetid)
251 return (1);
252 else
253 return (0);
254 }
255
256 /*
257 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
258 * is found a pointer to the zfs_snapentry_t is returned and a reference
259 * taken on the structure. The caller is responsible for dropping the
260 * reference with zfsctl_snapshot_rele(). If the snapname is not found
261 * NULL will be returned.
262 */
263 static zfs_snapentry_t *
zfsctl_snapshot_find_by_name(const char * snapname)264 zfsctl_snapshot_find_by_name(const char *snapname)
265 {
266 zfs_snapentry_t *se, search;
267
268 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
269
270 search.se_name = (char *)snapname;
271 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
272 if (se)
273 zfsctl_snapshot_hold(se);
274
275 return (se);
276 }
277
278 /*
279 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
280 * rather than the snapname. In all other respects it behaves the same
281 * as zfsctl_snapshot_find_by_name().
282 */
283 static zfs_snapentry_t *
zfsctl_snapshot_find_by_objsetid(spa_t * spa,uint64_t objsetid)284 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
285 {
286 zfs_snapentry_t *se, search;
287
288 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
289
290 search.se_spa = spa;
291 search.se_objsetid = objsetid;
292 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
293 if (se)
294 zfsctl_snapshot_hold(se);
295
296 return (se);
297 }
298
299 /*
300 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
301 * removed, renamed, and added back to the new correct location in the tree.
302 */
303 static int
zfsctl_snapshot_rename(const char * old_snapname,const char * new_snapname)304 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
305 {
306 zfs_snapentry_t *se;
307
308 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
309
310 se = zfsctl_snapshot_find_by_name(old_snapname);
311 if (se == NULL)
312 return (SET_ERROR(ENOENT));
313
314 zfsctl_snapshot_remove(se);
315 kmem_strfree(se->se_name);
316 se->se_name = kmem_strdup(new_snapname);
317 zfsctl_snapshot_add(se);
318 zfsctl_snapshot_rele(se);
319
320 return (0);
321 }
322
323 /*
324 * Delayed task responsible for unmounting an expired automounted snapshot.
325 */
326 static void
snapentry_expire(void * data)327 snapentry_expire(void *data)
328 {
329 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
330 spa_t *spa = se->se_spa;
331 uint64_t objsetid = se->se_objsetid;
332
333 if (zfs_expire_snapshot <= 0) {
334 zfsctl_snapshot_rele(se);
335 return;
336 }
337
338 se->se_taskqid = TASKQID_INVALID;
339 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
340 zfsctl_snapshot_rele(se);
341
342 /*
343 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
344 * This can occur when the snapshot is busy.
345 */
346 rw_enter(&zfs_snapshot_lock, RW_READER);
347 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
348 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
349 zfsctl_snapshot_rele(se);
350 }
351 rw_exit(&zfs_snapshot_lock);
352 }
353
354 /*
355 * Cancel an automatic unmount of a snapname. This callback is responsible
356 * for dropping the reference on the zfs_snapentry_t which was taken when
357 * during dispatch.
358 */
359 static void
zfsctl_snapshot_unmount_cancel(zfs_snapentry_t * se)360 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
361 {
362 if (taskq_cancel_id(system_delay_taskq, se->se_taskqid) == 0) {
363 se->se_taskqid = TASKQID_INVALID;
364 zfsctl_snapshot_rele(se);
365 }
366 }
367
368 /*
369 * Dispatch the unmount task for delayed handling with a hold protecting it.
370 */
371 static void
zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t * se,int delay)372 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
373 {
374 ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
375
376 if (delay <= 0)
377 return;
378
379 zfsctl_snapshot_hold(se);
380 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
381 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
382 }
383
384 /*
385 * Schedule an automatic unmount of objset id to occur in delay seconds from
386 * now. Any previous delayed unmount will be cancelled in favor of the
387 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
388 * and held until the outstanding task is handled or cancelled.
389 */
390 int
zfsctl_snapshot_unmount_delay(spa_t * spa,uint64_t objsetid,int delay)391 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
392 {
393 zfs_snapentry_t *se;
394 int error = ENOENT;
395
396 rw_enter(&zfs_snapshot_lock, RW_READER);
397 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
398 zfsctl_snapshot_unmount_cancel(se);
399 zfsctl_snapshot_unmount_delay_impl(se, delay);
400 zfsctl_snapshot_rele(se);
401 error = 0;
402 }
403 rw_exit(&zfs_snapshot_lock);
404
405 return (error);
406 }
407
408 /*
409 * Check if snapname is currently mounted. Returned non-zero when mounted
410 * and zero when unmounted.
411 */
412 static boolean_t
zfsctl_snapshot_ismounted(const char * snapname)413 zfsctl_snapshot_ismounted(const char *snapname)
414 {
415 zfs_snapentry_t *se;
416 boolean_t ismounted = B_FALSE;
417
418 rw_enter(&zfs_snapshot_lock, RW_READER);
419 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
420 zfsctl_snapshot_rele(se);
421 ismounted = B_TRUE;
422 }
423 rw_exit(&zfs_snapshot_lock);
424
425 return (ismounted);
426 }
427
428 /*
429 * Check if the given inode is a part of the virtual .zfs directory.
430 */
431 boolean_t
zfsctl_is_node(struct inode * ip)432 zfsctl_is_node(struct inode *ip)
433 {
434 return (ITOZ(ip)->z_is_ctldir);
435 }
436
437 /*
438 * Check if the given inode is a .zfs/snapshots/snapname directory.
439 */
440 boolean_t
zfsctl_is_snapdir(struct inode * ip)441 zfsctl_is_snapdir(struct inode *ip)
442 {
443 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
444 }
445
446 /*
447 * Allocate a new inode with the passed id and ops.
448 */
449 static struct inode *
zfsctl_inode_alloc(zfsvfs_t * zfsvfs,uint64_t id,const struct file_operations * fops,const struct inode_operations * ops)450 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
451 const struct file_operations *fops, const struct inode_operations *ops)
452 {
453 inode_timespec_t now;
454 struct inode *ip;
455 znode_t *zp;
456
457 ip = new_inode(zfsvfs->z_sb);
458 if (ip == NULL)
459 return (NULL);
460
461 now = current_time(ip);
462 zp = ITOZ(ip);
463 ASSERT3P(zp->z_dirlocks, ==, NULL);
464 ASSERT3P(zp->z_acl_cached, ==, NULL);
465 ASSERT3P(zp->z_xattr_cached, ==, NULL);
466 zp->z_id = id;
467 zp->z_unlinked = B_FALSE;
468 zp->z_atime_dirty = B_FALSE;
469 zp->z_zn_prefetch = B_FALSE;
470 zp->z_is_sa = B_FALSE;
471 zp->z_is_mapped = B_FALSE;
472 zp->z_is_ctldir = B_TRUE;
473 zp->z_is_stale = B_FALSE;
474 zp->z_sa_hdl = NULL;
475 zp->z_blksz = 0;
476 zp->z_seq = 0;
477 zp->z_mapcnt = 0;
478 zp->z_size = 0;
479 zp->z_pflags = 0;
480 zp->z_mode = 0;
481 zp->z_sync_cnt = 0;
482 ip->i_generation = 0;
483 ip->i_ino = id;
484 ip->i_mode = (S_IFDIR | S_IRWXUGO);
485 ip->i_uid = SUID_TO_KUID(0);
486 ip->i_gid = SGID_TO_KGID(0);
487 ip->i_blkbits = SPA_MINBLOCKSHIFT;
488 ip->i_atime = now;
489 ip->i_mtime = now;
490 ip->i_ctime = now;
491 ip->i_fop = fops;
492 ip->i_op = ops;
493 #if defined(IOP_XATTR)
494 ip->i_opflags &= ~IOP_XATTR;
495 #endif
496
497 if (insert_inode_locked(ip)) {
498 unlock_new_inode(ip);
499 iput(ip);
500 return (NULL);
501 }
502
503 mutex_enter(&zfsvfs->z_znodes_lock);
504 list_insert_tail(&zfsvfs->z_all_znodes, zp);
505 zfsvfs->z_nr_znodes++;
506 membar_producer();
507 mutex_exit(&zfsvfs->z_znodes_lock);
508
509 unlock_new_inode(ip);
510
511 return (ip);
512 }
513
514 /*
515 * Lookup the inode with given id, it will be allocated if needed.
516 */
517 static struct inode *
zfsctl_inode_lookup(zfsvfs_t * zfsvfs,uint64_t id,const struct file_operations * fops,const struct inode_operations * ops)518 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
519 const struct file_operations *fops, const struct inode_operations *ops)
520 {
521 struct inode *ip = NULL;
522
523 while (ip == NULL) {
524 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
525 if (ip)
526 break;
527
528 /* May fail due to concurrent zfsctl_inode_alloc() */
529 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
530 }
531
532 return (ip);
533 }
534
535 /*
536 * Create the '.zfs' directory. This directory is cached as part of the VFS
537 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
538 * therefore checks against a vfs_count of 2 instead of 1. This reference
539 * is removed when the ctldir is destroyed in the unmount. All other entities
540 * under the '.zfs' directory are created dynamically as needed.
541 *
542 * Because the dynamically created '.zfs' directory entries assume the use
543 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
544 */
545 int
zfsctl_create(zfsvfs_t * zfsvfs)546 zfsctl_create(zfsvfs_t *zfsvfs)
547 {
548 ASSERT(zfsvfs->z_ctldir == NULL);
549
550 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
551 &zpl_fops_root, &zpl_ops_root);
552 if (zfsvfs->z_ctldir == NULL)
553 return (SET_ERROR(ENOENT));
554
555 return (0);
556 }
557
558 /*
559 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
560 * Only called when the filesystem is unmounted.
561 */
562 void
zfsctl_destroy(zfsvfs_t * zfsvfs)563 zfsctl_destroy(zfsvfs_t *zfsvfs)
564 {
565 if (zfsvfs->z_issnap) {
566 zfs_snapentry_t *se;
567 spa_t *spa = zfsvfs->z_os->os_spa;
568 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
569
570 rw_enter(&zfs_snapshot_lock, RW_WRITER);
571 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
572 if (se != NULL)
573 zfsctl_snapshot_remove(se);
574 rw_exit(&zfs_snapshot_lock);
575 if (se != NULL) {
576 zfsctl_snapshot_unmount_cancel(se);
577 zfsctl_snapshot_rele(se);
578 }
579 } else if (zfsvfs->z_ctldir) {
580 iput(zfsvfs->z_ctldir);
581 zfsvfs->z_ctldir = NULL;
582 }
583 }
584
585 /*
586 * Given a root znode, retrieve the associated .zfs directory.
587 * Add a hold to the vnode and return it.
588 */
589 struct inode *
zfsctl_root(znode_t * zp)590 zfsctl_root(znode_t *zp)
591 {
592 ASSERT(zfs_has_ctldir(zp));
593 igrab(ZTOZSB(zp)->z_ctldir);
594 return (ZTOZSB(zp)->z_ctldir);
595 }
596
597 /*
598 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
599 * already mounted in gen field. We do this because nfsd lookup will not
600 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
601 * this and do automount and return ESTALE to force nfsd revalidate and follow
602 * mount.
603 */
604 static int
zfsctl_snapdir_fid(struct inode * ip,fid_t * fidp)605 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
606 {
607 zfid_short_t *zfid = (zfid_short_t *)fidp;
608 zfid_long_t *zlfid = (zfid_long_t *)fidp;
609 uint32_t gen = 0;
610 uint64_t object;
611 uint64_t objsetid;
612 int i;
613 struct dentry *dentry;
614
615 if (fidp->fid_len < LONG_FID_LEN) {
616 fidp->fid_len = LONG_FID_LEN;
617 return (SET_ERROR(ENOSPC));
618 }
619
620 object = ip->i_ino;
621 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
622 zfid->zf_len = LONG_FID_LEN;
623
624 dentry = d_obtain_alias(igrab(ip));
625 if (!IS_ERR(dentry)) {
626 gen = !!d_mountpoint(dentry);
627 dput(dentry);
628 }
629
630 for (i = 0; i < sizeof (zfid->zf_object); i++)
631 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
632
633 for (i = 0; i < sizeof (zfid->zf_gen); i++)
634 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
635
636 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
637 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
638
639 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
640 zlfid->zf_setgen[i] = 0;
641
642 return (0);
643 }
644
645 /*
646 * Generate an appropriate fid for an entry in the .zfs directory.
647 */
648 int
zfsctl_fid(struct inode * ip,fid_t * fidp)649 zfsctl_fid(struct inode *ip, fid_t *fidp)
650 {
651 znode_t *zp = ITOZ(ip);
652 zfsvfs_t *zfsvfs = ITOZSB(ip);
653 uint64_t object = zp->z_id;
654 zfid_short_t *zfid;
655 int i;
656
657 ZFS_ENTER(zfsvfs);
658
659 if (zfsctl_is_snapdir(ip)) {
660 ZFS_EXIT(zfsvfs);
661 return (zfsctl_snapdir_fid(ip, fidp));
662 }
663
664 if (fidp->fid_len < SHORT_FID_LEN) {
665 fidp->fid_len = SHORT_FID_LEN;
666 ZFS_EXIT(zfsvfs);
667 return (SET_ERROR(ENOSPC));
668 }
669
670 zfid = (zfid_short_t *)fidp;
671
672 zfid->zf_len = SHORT_FID_LEN;
673
674 for (i = 0; i < sizeof (zfid->zf_object); i++)
675 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
676
677 /* .zfs znodes always have a generation number of 0 */
678 for (i = 0; i < sizeof (zfid->zf_gen); i++)
679 zfid->zf_gen[i] = 0;
680
681 ZFS_EXIT(zfsvfs);
682 return (0);
683 }
684
685 /*
686 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
687 */
688 static int
zfsctl_snapshot_name(zfsvfs_t * zfsvfs,const char * snap_name,int len,char * full_name)689 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
690 char *full_name)
691 {
692 objset_t *os = zfsvfs->z_os;
693
694 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
695 return (SET_ERROR(EILSEQ));
696
697 dmu_objset_name(os, full_name);
698 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
699 return (SET_ERROR(ENAMETOOLONG));
700
701 (void) strcat(full_name, "@");
702 (void) strcat(full_name, snap_name);
703
704 return (0);
705 }
706
707 /*
708 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
709 */
710 static int
zfsctl_snapshot_path_objset(zfsvfs_t * zfsvfs,uint64_t objsetid,int path_len,char * full_path)711 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
712 int path_len, char *full_path)
713 {
714 objset_t *os = zfsvfs->z_os;
715 fstrans_cookie_t cookie;
716 char *snapname;
717 boolean_t case_conflict;
718 uint64_t id, pos = 0;
719 int error = 0;
720
721 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
722 return (SET_ERROR(ENOENT));
723
724 cookie = spl_fstrans_mark();
725 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
726
727 while (error == 0) {
728 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
729 error = dmu_snapshot_list_next(zfsvfs->z_os,
730 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
731 &case_conflict);
732 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
733 if (error)
734 goto out;
735
736 if (id == objsetid)
737 break;
738 }
739
740 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
741 zfsvfs->z_vfs->vfs_mntpoint, snapname);
742 out:
743 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
744 spl_fstrans_unmark(cookie);
745
746 return (error);
747 }
748
749 /*
750 * Special case the handling of "..".
751 */
752 int
zfsctl_root_lookup(struct inode * dip,const char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)753 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
754 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
755 {
756 zfsvfs_t *zfsvfs = ITOZSB(dip);
757 int error = 0;
758
759 ZFS_ENTER(zfsvfs);
760
761 if (strcmp(name, "..") == 0) {
762 *ipp = dip->i_sb->s_root->d_inode;
763 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
764 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
765 &zpl_fops_snapdir, &zpl_ops_snapdir);
766 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
767 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
768 &zpl_fops_shares, &zpl_ops_shares);
769 } else {
770 *ipp = NULL;
771 }
772
773 if (*ipp == NULL)
774 error = SET_ERROR(ENOENT);
775
776 ZFS_EXIT(zfsvfs);
777
778 return (error);
779 }
780
781 /*
782 * Lookup entry point for the 'snapshot' directory. Try to open the
783 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
784 */
785 int
zfsctl_snapdir_lookup(struct inode * dip,const char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)786 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
787 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
788 {
789 zfsvfs_t *zfsvfs = ITOZSB(dip);
790 uint64_t id;
791 int error;
792
793 ZFS_ENTER(zfsvfs);
794
795 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
796 if (error) {
797 ZFS_EXIT(zfsvfs);
798 return (error);
799 }
800
801 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
802 &simple_dir_operations, &simple_dir_inode_operations);
803 if (*ipp == NULL)
804 error = SET_ERROR(ENOENT);
805
806 ZFS_EXIT(zfsvfs);
807
808 return (error);
809 }
810
811 /*
812 * Renaming a directory under '.zfs/snapshot' will automatically trigger
813 * a rename of the snapshot to the new given name. The rename is confined
814 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
815 */
816 int
zfsctl_snapdir_rename(struct inode * sdip,const char * snm,struct inode * tdip,const char * tnm,cred_t * cr,int flags)817 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
818 struct inode *tdip, const char *tnm, cred_t *cr, int flags)
819 {
820 zfsvfs_t *zfsvfs = ITOZSB(sdip);
821 char *to, *from, *real, *fsname;
822 int error;
823
824 if (!zfs_admin_snapshot)
825 return (SET_ERROR(EACCES));
826
827 ZFS_ENTER(zfsvfs);
828
829 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
830 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
831 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
832 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
833
834 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
835 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
836 ZFS_MAX_DATASET_NAME_LEN, NULL);
837 if (error == 0) {
838 snm = real;
839 } else if (error != ENOTSUP) {
840 goto out;
841 }
842 }
843
844 dmu_objset_name(zfsvfs->z_os, fsname);
845
846 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
847 ZFS_MAX_DATASET_NAME_LEN, from);
848 if (error == 0)
849 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
850 ZFS_MAX_DATASET_NAME_LEN, to);
851 if (error == 0)
852 error = zfs_secpolicy_rename_perms(from, to, cr);
853 if (error != 0)
854 goto out;
855
856 /*
857 * Cannot move snapshots out of the snapdir.
858 */
859 if (sdip != tdip) {
860 error = SET_ERROR(EINVAL);
861 goto out;
862 }
863
864 /*
865 * No-op when names are identical.
866 */
867 if (strcmp(snm, tnm) == 0) {
868 error = 0;
869 goto out;
870 }
871
872 rw_enter(&zfs_snapshot_lock, RW_WRITER);
873
874 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
875 if (error == 0)
876 (void) zfsctl_snapshot_rename(snm, tnm);
877
878 rw_exit(&zfs_snapshot_lock);
879 out:
880 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
881 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
882 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
883 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
884
885 ZFS_EXIT(zfsvfs);
886
887 return (error);
888 }
889
890 /*
891 * Removing a directory under '.zfs/snapshot' will automatically trigger
892 * the removal of the snapshot with the given name.
893 */
894 int
zfsctl_snapdir_remove(struct inode * dip,const char * name,cred_t * cr,int flags)895 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
896 int flags)
897 {
898 zfsvfs_t *zfsvfs = ITOZSB(dip);
899 char *snapname, *real;
900 int error;
901
902 if (!zfs_admin_snapshot)
903 return (SET_ERROR(EACCES));
904
905 ZFS_ENTER(zfsvfs);
906
907 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
908 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
909
910 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
911 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
912 ZFS_MAX_DATASET_NAME_LEN, NULL);
913 if (error == 0) {
914 name = real;
915 } else if (error != ENOTSUP) {
916 goto out;
917 }
918 }
919
920 error = zfsctl_snapshot_name(ITOZSB(dip), name,
921 ZFS_MAX_DATASET_NAME_LEN, snapname);
922 if (error == 0)
923 error = zfs_secpolicy_destroy_perms(snapname, cr);
924 if (error != 0)
925 goto out;
926
927 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
928 if ((error == 0) || (error == ENOENT))
929 error = dsl_destroy_snapshot(snapname, B_FALSE);
930 out:
931 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
932 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
933
934 ZFS_EXIT(zfsvfs);
935
936 return (error);
937 }
938
939 /*
940 * Creating a directory under '.zfs/snapshot' will automatically trigger
941 * the creation of a new snapshot with the given name.
942 */
943 int
zfsctl_snapdir_mkdir(struct inode * dip,const char * dirname,vattr_t * vap,struct inode ** ipp,cred_t * cr,int flags)944 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
945 struct inode **ipp, cred_t *cr, int flags)
946 {
947 zfsvfs_t *zfsvfs = ITOZSB(dip);
948 char *dsname;
949 int error;
950
951 if (!zfs_admin_snapshot)
952 return (SET_ERROR(EACCES));
953
954 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
955
956 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
957 error = SET_ERROR(EILSEQ);
958 goto out;
959 }
960
961 dmu_objset_name(zfsvfs->z_os, dsname);
962
963 error = zfs_secpolicy_snapshot_perms(dsname, cr);
964 if (error != 0)
965 goto out;
966
967 if (error == 0) {
968 error = dmu_objset_snapshot_one(dsname, dirname);
969 if (error != 0)
970 goto out;
971
972 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
973 0, cr, NULL, NULL);
974 }
975 out:
976 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
977
978 return (error);
979 }
980
981 /*
982 * Flush everything out of the kernel's export table and such.
983 * This is needed as once the snapshot is used over NFS, its
984 * entries in svc_export and svc_expkey caches hold reference
985 * to the snapshot mount point. There is no known way of flushing
986 * only the entries related to the snapshot.
987 */
988 static void
exportfs_flush(void)989 exportfs_flush(void)
990 {
991 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
992 char *envp[] = { NULL };
993
994 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
995 }
996
997 /*
998 * Attempt to unmount a snapshot by making a call to user space.
999 * There is no assurance that this can or will succeed, is just a
1000 * best effort. In the case where it does fail, perhaps because
1001 * it's in use, the unmount will fail harmlessly.
1002 */
1003 int
zfsctl_snapshot_unmount(const char * snapname,int flags)1004 zfsctl_snapshot_unmount(const char *snapname, int flags)
1005 {
1006 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1007 NULL };
1008 char *envp[] = { NULL };
1009 zfs_snapentry_t *se;
1010 int error;
1011
1012 rw_enter(&zfs_snapshot_lock, RW_READER);
1013 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1014 rw_exit(&zfs_snapshot_lock);
1015 return (SET_ERROR(ENOENT));
1016 }
1017 rw_exit(&zfs_snapshot_lock);
1018
1019 exportfs_flush();
1020
1021 if (flags & MNT_FORCE)
1022 argv[4] = "-fn";
1023 argv[5] = se->se_path;
1024 dprintf("unmount; path=%s\n", se->se_path);
1025 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1026 zfsctl_snapshot_rele(se);
1027
1028
1029 /*
1030 * The umount system utility will return 256 on error. We must
1031 * assume this error is because the file system is busy so it is
1032 * converted to the more sensible EBUSY.
1033 */
1034 if (error)
1035 error = SET_ERROR(EBUSY);
1036
1037 return (error);
1038 }
1039
1040 int
zfsctl_snapshot_mount(struct path * path,int flags)1041 zfsctl_snapshot_mount(struct path *path, int flags)
1042 {
1043 struct dentry *dentry = path->dentry;
1044 struct inode *ip = dentry->d_inode;
1045 zfsvfs_t *zfsvfs;
1046 zfsvfs_t *snap_zfsvfs;
1047 zfs_snapentry_t *se;
1048 char *full_name, *full_path;
1049 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1050 NULL };
1051 char *envp[] = { NULL };
1052 int error;
1053 struct path spath;
1054
1055 if (ip == NULL)
1056 return (SET_ERROR(EISDIR));
1057
1058 zfsvfs = ITOZSB(ip);
1059 ZFS_ENTER(zfsvfs);
1060
1061 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1062 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1063
1064 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1065 ZFS_MAX_DATASET_NAME_LEN, full_name);
1066 if (error)
1067 goto error;
1068
1069 /*
1070 * Construct a mount point path from sb of the ctldir inode and dirent
1071 * name, instead of from d_path(), so that chroot'd process doesn't fail
1072 * on mount.zfs(8).
1073 */
1074 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1075 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1076 dname(dentry));
1077
1078 /*
1079 * Multiple concurrent automounts of a snapshot are never allowed.
1080 * The snapshot may be manually mounted as many times as desired.
1081 */
1082 if (zfsctl_snapshot_ismounted(full_name)) {
1083 error = 0;
1084 goto error;
1085 }
1086
1087 /*
1088 * Attempt to mount the snapshot from user space. Normally this
1089 * would be done using the vfs_kern_mount() function, however that
1090 * function is marked GPL-only and cannot be used. On error we
1091 * careful to log the real error to the console and return EISDIR
1092 * to safely abort the automount. This should be very rare.
1093 *
1094 * If the user mode helper happens to return EBUSY, a concurrent
1095 * mount is already in progress in which case the error is ignored.
1096 * Take note that if the program was executed successfully the return
1097 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1098 */
1099 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1100 argv[5] = full_name;
1101 argv[6] = full_path;
1102 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1103 if (error) {
1104 if (!(error & MOUNT_BUSY << 8)) {
1105 zfs_dbgmsg("Unable to automount %s error=%d",
1106 full_path, error);
1107 error = SET_ERROR(EISDIR);
1108 } else {
1109 /*
1110 * EBUSY, this could mean a concurrent mount, or the
1111 * snapshot has already been mounted at completely
1112 * different place. We return 0 so VFS will retry. For
1113 * the latter case the VFS will retry several times
1114 * and return ELOOP, which is probably not a very good
1115 * behavior.
1116 */
1117 error = 0;
1118 }
1119 goto error;
1120 }
1121
1122 /*
1123 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1124 * to identify this as an automounted filesystem.
1125 */
1126 spath = *path;
1127 path_get(&spath);
1128 if (follow_down_one(&spath)) {
1129 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1130 snap_zfsvfs->z_parent = zfsvfs;
1131 dentry = spath.dentry;
1132 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1133
1134 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1135 se = zfsctl_snapshot_alloc(full_name, full_path,
1136 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1137 dentry);
1138 zfsctl_snapshot_add(se);
1139 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1140 rw_exit(&zfs_snapshot_lock);
1141 }
1142 path_put(&spath);
1143 error:
1144 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1145 kmem_free(full_path, MAXPATHLEN);
1146
1147 ZFS_EXIT(zfsvfs);
1148
1149 return (error);
1150 }
1151
1152 /*
1153 * Get the snapdir inode from fid
1154 */
1155 int
zfsctl_snapdir_vget(struct super_block * sb,uint64_t objsetid,int gen,struct inode ** ipp)1156 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1157 struct inode **ipp)
1158 {
1159 int error;
1160 struct path path;
1161 char *mnt;
1162 struct dentry *dentry;
1163
1164 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1165
1166 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1167 MAXPATHLEN, mnt);
1168 if (error)
1169 goto out;
1170
1171 /* Trigger automount */
1172 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1173 if (error)
1174 goto out;
1175
1176 path_put(&path);
1177 /*
1178 * Get the snapdir inode. Note, we don't want to use the above
1179 * path because it contains the root of the snapshot rather
1180 * than the snapdir.
1181 */
1182 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1183 if (*ipp == NULL) {
1184 error = SET_ERROR(ENOENT);
1185 goto out;
1186 }
1187
1188 /* check gen, see zfsctl_snapdir_fid */
1189 dentry = d_obtain_alias(igrab(*ipp));
1190 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1191 iput(*ipp);
1192 *ipp = NULL;
1193 error = SET_ERROR(ENOENT);
1194 }
1195 if (!IS_ERR(dentry))
1196 dput(dentry);
1197 out:
1198 kmem_free(mnt, MAXPATHLEN);
1199 return (error);
1200 }
1201
1202 int
zfsctl_shares_lookup(struct inode * dip,char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)1203 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1204 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1205 {
1206 zfsvfs_t *zfsvfs = ITOZSB(dip);
1207 znode_t *zp;
1208 znode_t *dzp;
1209 int error;
1210
1211 ZFS_ENTER(zfsvfs);
1212
1213 if (zfsvfs->z_shares_dir == 0) {
1214 ZFS_EXIT(zfsvfs);
1215 return (SET_ERROR(ENOTSUP));
1216 }
1217
1218 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1219 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1220 zrele(dzp);
1221 }
1222
1223 ZFS_EXIT(zfsvfs);
1224
1225 return (error);
1226 }
1227
1228 /*
1229 * Initialize the various pieces we'll need to create and manipulate .zfs
1230 * directories. Currently this is unused but available.
1231 */
1232 void
zfsctl_init(void)1233 zfsctl_init(void)
1234 {
1235 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1236 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1237 se_node_name));
1238 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1239 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1240 se_node_objsetid));
1241 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1242 }
1243
1244 /*
1245 * Cleanup the various pieces we needed for .zfs directories. In particular
1246 * ensure the expiry timer is canceled safely.
1247 */
1248 void
zfsctl_fini(void)1249 zfsctl_fini(void)
1250 {
1251 avl_destroy(&zfs_snapshots_by_name);
1252 avl_destroy(&zfs_snapshots_by_objsetid);
1253 rw_destroy(&zfs_snapshot_lock);
1254 }
1255
1256 module_param(zfs_admin_snapshot, int, 0644);
1257 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1258
1259 module_param(zfs_expire_snapshot, int, 0644);
1260 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1261