1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25 */
26
27 /*
28 * ZFS control directory (a.k.a. ".zfs")
29 *
30 * This directory provides a common location for all ZFS meta-objects.
31 * Currently, this is only the 'snapshot' directory, but this may expand in the
32 * future. The elements are built using the GFS primitives, as the hierarchy
33 * does not actually exist on disk.
34 *
35 * For 'snapshot', we don't want to have all snapshots always mounted, because
36 * this would take up a huge amount of space in /etc/mnttab. We have three
37 * types of objects:
38 *
39 * ctldir ------> snapshotdir -------> snapshot
40 * |
41 * |
42 * V
43 * mounted fs
44 *
45 * The 'snapshot' node contains just enough information to lookup '..' and act
46 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
47 * perform an automount of the underlying filesystem and return the
48 * corresponding vnode.
49 *
50 * All mounts are handled automatically by the kernel, but unmounts are
51 * (currently) handled from user land. The main reason is that there is no
52 * reliable way to auto-unmount the filesystem when it's "no longer in use".
53 * When the user unmounts a filesystem, we call zfsctl_unmount(), which
54 * unmounts any snapshots within the snapshot directory.
55 *
56 * The '.zfs', '.zfs/snapshot', and all directories created under
57 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
58 * share the same vfs_t as the head filesystem (what '.zfs' lives under).
59 *
60 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
61 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
62 * However, vnodes within these mounted on file systems have their v_vfsp
63 * fields set to the head filesystem to make NFS happy (see
64 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
65 * so that it cannot be freed until all snapshots have been unmounted.
66 */
67
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/libkern.h>
71 #include <sys/dirent.h>
72 #include <sys/zfs_context.h>
73 #include <sys/zfs_ctldir.h>
74 #include <sys/zfs_ioctl.h>
75 #include <sys/zfs_vfsops.h>
76 #include <sys/namei.h>
77 #include <sys/stat.h>
78 #include <sys/dmu.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_destroy.h>
81 #include <sys/dsl_deleg.h>
82 #include <sys/mount.h>
83 #include <sys/zap.h>
84 #include <sys/sysproto.h>
85
86 #include "zfs_namecheck.h"
87
88 #include <sys/kernel.h>
89 #include <sys/ccompat.h>
90
91 /* Common access mode for all virtual directories under the ctldir */
92 const uint16_t zfsctl_ctldir_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
93 S_IROTH | S_IXOTH;
94
95 /*
96 * "Synthetic" filesystem implementation.
97 */
98
99 /*
100 * Assert that A implies B.
101 */
102 #define KASSERT_IMPLY(A, B, msg) KASSERT(!(A) || (B), (msg));
103
104 static MALLOC_DEFINE(M_SFSNODES, "sfs_nodes", "synthetic-fs nodes");
105
106 typedef struct sfs_node {
107 char sn_name[ZFS_MAX_DATASET_NAME_LEN];
108 uint64_t sn_parent_id;
109 uint64_t sn_id;
110 } sfs_node_t;
111
112 /*
113 * Check the parent's ID as well as the node's to account for a chance
114 * that IDs originating from different domains (snapshot IDs, artificial
115 * IDs, znode IDs) may clash.
116 */
117 static int
sfs_compare_ids(struct vnode * vp,void * arg)118 sfs_compare_ids(struct vnode *vp, void *arg)
119 {
120 sfs_node_t *n1 = vp->v_data;
121 sfs_node_t *n2 = arg;
122 bool equal;
123
124 equal = n1->sn_id == n2->sn_id &&
125 n1->sn_parent_id == n2->sn_parent_id;
126
127 /* Zero means equality. */
128 return (!equal);
129 }
130
131 static int
sfs_vnode_get(const struct mount * mp,int flags,uint64_t parent_id,uint64_t id,struct vnode ** vpp)132 sfs_vnode_get(const struct mount *mp, int flags, uint64_t parent_id,
133 uint64_t id, struct vnode **vpp)
134 {
135 sfs_node_t search;
136 int err;
137
138 search.sn_id = id;
139 search.sn_parent_id = parent_id;
140 err = vfs_hash_get(mp, (uint32_t)id, flags, curthread, vpp,
141 sfs_compare_ids, &search);
142 return (err);
143 }
144
145 static int
sfs_vnode_insert(struct vnode * vp,int flags,uint64_t parent_id,uint64_t id,struct vnode ** vpp)146 sfs_vnode_insert(struct vnode *vp, int flags, uint64_t parent_id,
147 uint64_t id, struct vnode **vpp)
148 {
149 int err;
150
151 KASSERT(vp->v_data != NULL, ("sfs_vnode_insert with NULL v_data"));
152 err = vfs_hash_insert(vp, (uint32_t)id, flags, curthread, vpp,
153 sfs_compare_ids, vp->v_data);
154 return (err);
155 }
156
157 static void
sfs_vnode_remove(struct vnode * vp)158 sfs_vnode_remove(struct vnode *vp)
159 {
160 vfs_hash_remove(vp);
161 }
162
163 typedef void sfs_vnode_setup_fn(vnode_t *vp, void *arg);
164
165 static int
sfs_vgetx(struct mount * mp,int flags,uint64_t parent_id,uint64_t id,const char * tag,struct vop_vector * vops,sfs_vnode_setup_fn setup,void * arg,struct vnode ** vpp)166 sfs_vgetx(struct mount *mp, int flags, uint64_t parent_id, uint64_t id,
167 const char *tag, struct vop_vector *vops,
168 sfs_vnode_setup_fn setup, void *arg,
169 struct vnode **vpp)
170 {
171 struct vnode *vp;
172 int error;
173
174 error = sfs_vnode_get(mp, flags, parent_id, id, vpp);
175 if (error != 0 || *vpp != NULL) {
176 KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
177 "sfs vnode with no data");
178 return (error);
179 }
180
181 /* Allocate a new vnode/inode. */
182 error = getnewvnode(tag, mp, vops, &vp);
183 if (error != 0) {
184 *vpp = NULL;
185 return (error);
186 }
187
188 /*
189 * Exclusively lock the vnode vnode while it's being constructed.
190 */
191 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
192 error = insmntque(vp, mp);
193 if (error != 0) {
194 *vpp = NULL;
195 return (error);
196 }
197
198 setup(vp, arg);
199
200 error = sfs_vnode_insert(vp, flags, parent_id, id, vpp);
201 if (error != 0 || *vpp != NULL) {
202 KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
203 "sfs vnode with no data");
204 return (error);
205 }
206
207 *vpp = vp;
208 return (0);
209 }
210
211 static void
sfs_print_node(sfs_node_t * node)212 sfs_print_node(sfs_node_t *node)
213 {
214 printf("\tname = %s\n", node->sn_name);
215 printf("\tparent_id = %ju\n", (uintmax_t)node->sn_parent_id);
216 printf("\tid = %ju\n", (uintmax_t)node->sn_id);
217 }
218
219 static sfs_node_t *
sfs_alloc_node(size_t size,const char * name,uint64_t parent_id,uint64_t id)220 sfs_alloc_node(size_t size, const char *name, uint64_t parent_id, uint64_t id)
221 {
222 struct sfs_node *node;
223
224 KASSERT(strlen(name) < sizeof (node->sn_name),
225 ("sfs node name is too long"));
226 KASSERT(size >= sizeof (*node), ("sfs node size is too small"));
227 node = malloc(size, M_SFSNODES, M_WAITOK | M_ZERO);
228 strlcpy(node->sn_name, name, sizeof (node->sn_name));
229 node->sn_parent_id = parent_id;
230 node->sn_id = id;
231
232 return (node);
233 }
234
235 static void
sfs_destroy_node(sfs_node_t * node)236 sfs_destroy_node(sfs_node_t *node)
237 {
238 free(node, M_SFSNODES);
239 }
240
241 static void *
sfs_reclaim_vnode(vnode_t * vp)242 sfs_reclaim_vnode(vnode_t *vp)
243 {
244 void *data;
245
246 sfs_vnode_remove(vp);
247 data = vp->v_data;
248 vp->v_data = NULL;
249 return (data);
250 }
251
252 static int
sfs_readdir_common(uint64_t parent_id,uint64_t id,struct vop_readdir_args * ap,uio_t * uio,off_t * offp)253 sfs_readdir_common(uint64_t parent_id, uint64_t id, struct vop_readdir_args *ap,
254 uio_t *uio, off_t *offp)
255 {
256 struct dirent entry;
257 int error;
258
259 /* Reset ncookies for subsequent use of vfs_read_dirent. */
260 if (ap->a_ncookies != NULL)
261 *ap->a_ncookies = 0;
262
263 if (uio->uio_resid < sizeof (entry))
264 return (SET_ERROR(EINVAL));
265
266 if (uio->uio_offset < 0)
267 return (SET_ERROR(EINVAL));
268 if (uio->uio_offset == 0) {
269 entry.d_fileno = id;
270 entry.d_type = DT_DIR;
271 entry.d_name[0] = '.';
272 entry.d_name[1] = '\0';
273 entry.d_namlen = 1;
274 entry.d_reclen = sizeof (entry);
275 error = vfs_read_dirent(ap, &entry, uio->uio_offset);
276 if (error != 0)
277 return (SET_ERROR(error));
278 }
279
280 if (uio->uio_offset < sizeof (entry))
281 return (SET_ERROR(EINVAL));
282 if (uio->uio_offset == sizeof (entry)) {
283 entry.d_fileno = parent_id;
284 entry.d_type = DT_DIR;
285 entry.d_name[0] = '.';
286 entry.d_name[1] = '.';
287 entry.d_name[2] = '\0';
288 entry.d_namlen = 2;
289 entry.d_reclen = sizeof (entry);
290 error = vfs_read_dirent(ap, &entry, uio->uio_offset);
291 if (error != 0)
292 return (SET_ERROR(error));
293 }
294
295 if (offp != NULL)
296 *offp = 2 * sizeof (entry);
297 return (0);
298 }
299
300
301 /*
302 * .zfs inode namespace
303 *
304 * We need to generate unique inode numbers for all files and directories
305 * within the .zfs pseudo-filesystem. We use the following scheme:
306 *
307 * ENTRY ZFSCTL_INODE
308 * .zfs 1
309 * .zfs/snapshot 2
310 * .zfs/snapshot/<snap> objectid(snap)
311 */
312 #define ZFSCTL_INO_SNAP(id) (id)
313
314 static struct vop_vector zfsctl_ops_root;
315 static struct vop_vector zfsctl_ops_snapdir;
316 static struct vop_vector zfsctl_ops_snapshot;
317
318 void
zfsctl_init(void)319 zfsctl_init(void)
320 {
321 }
322
323 void
zfsctl_fini(void)324 zfsctl_fini(void)
325 {
326 }
327
328 boolean_t
zfsctl_is_node(vnode_t * vp)329 zfsctl_is_node(vnode_t *vp)
330 {
331 return (vn_matchops(vp, zfsctl_ops_root) ||
332 vn_matchops(vp, zfsctl_ops_snapdir) ||
333 vn_matchops(vp, zfsctl_ops_snapshot));
334
335 }
336
337 typedef struct zfsctl_root {
338 sfs_node_t node;
339 sfs_node_t *snapdir;
340 timestruc_t cmtime;
341 } zfsctl_root_t;
342
343
344 /*
345 * Create the '.zfs' directory.
346 */
347 void
zfsctl_create(zfsvfs_t * zfsvfs)348 zfsctl_create(zfsvfs_t *zfsvfs)
349 {
350 zfsctl_root_t *dot_zfs;
351 sfs_node_t *snapdir;
352 vnode_t *rvp;
353 uint64_t crtime[2];
354
355 ASSERT(zfsvfs->z_ctldir == NULL);
356
357 snapdir = sfs_alloc_node(sizeof (*snapdir), "snapshot", ZFSCTL_INO_ROOT,
358 ZFSCTL_INO_SNAPDIR);
359 dot_zfs = (zfsctl_root_t *)sfs_alloc_node(sizeof (*dot_zfs), ".zfs", 0,
360 ZFSCTL_INO_ROOT);
361 dot_zfs->snapdir = snapdir;
362
363 VERIFY(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp) == 0);
364 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
365 &crtime, sizeof (crtime)));
366 ZFS_TIME_DECODE(&dot_zfs->cmtime, crtime);
367 vput(rvp);
368
369 zfsvfs->z_ctldir = dot_zfs;
370 }
371
372 /*
373 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted.
374 * The nodes must not have any associated vnodes by now as they should be
375 * vflush-ed.
376 */
377 void
zfsctl_destroy(zfsvfs_t * zfsvfs)378 zfsctl_destroy(zfsvfs_t *zfsvfs)
379 {
380 sfs_destroy_node(zfsvfs->z_ctldir->snapdir);
381 sfs_destroy_node((sfs_node_t *)zfsvfs->z_ctldir);
382 zfsvfs->z_ctldir = NULL;
383 }
384
385 static int
zfsctl_fs_root_vnode(struct mount * mp,void * arg __unused,int flags,struct vnode ** vpp)386 zfsctl_fs_root_vnode(struct mount *mp, void *arg __unused, int flags,
387 struct vnode **vpp)
388 {
389 return (VFS_ROOT(mp, flags, vpp));
390 }
391
392 static void
zfsctl_common_vnode_setup(vnode_t * vp,void * arg)393 zfsctl_common_vnode_setup(vnode_t *vp, void *arg)
394 {
395 ASSERT_VOP_ELOCKED(vp, __func__);
396
397 /* We support shared locking. */
398 VN_LOCK_ASHARE(vp);
399 vp->v_type = VDIR;
400 vp->v_data = arg;
401 }
402
403 static int
zfsctl_root_vnode(struct mount * mp,void * arg __unused,int flags,struct vnode ** vpp)404 zfsctl_root_vnode(struct mount *mp, void *arg __unused, int flags,
405 struct vnode **vpp)
406 {
407 void *node;
408 int err;
409
410 node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir;
411 err = sfs_vgetx(mp, flags, 0, ZFSCTL_INO_ROOT, "zfs", &zfsctl_ops_root,
412 zfsctl_common_vnode_setup, node, vpp);
413 return (err);
414 }
415
416 static int
zfsctl_snapdir_vnode(struct mount * mp,void * arg __unused,int flags,struct vnode ** vpp)417 zfsctl_snapdir_vnode(struct mount *mp, void *arg __unused, int flags,
418 struct vnode **vpp)
419 {
420 void *node;
421 int err;
422
423 node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir->snapdir;
424 err = sfs_vgetx(mp, flags, ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, "zfs",
425 &zfsctl_ops_snapdir, zfsctl_common_vnode_setup, node, vpp);
426 return (err);
427 }
428
429 /*
430 * Given a root znode, retrieve the associated .zfs directory.
431 * Add a hold to the vnode and return it.
432 */
433 int
zfsctl_root(zfsvfs_t * zfsvfs,int flags,vnode_t ** vpp)434 zfsctl_root(zfsvfs_t *zfsvfs, int flags, vnode_t **vpp)
435 {
436 int error;
437
438 error = zfsctl_root_vnode(zfsvfs->z_vfs, NULL, flags, vpp);
439 return (error);
440 }
441
442 /*
443 * Common open routine. Disallow any write access.
444 */
445 static int
zfsctl_common_open(struct vop_open_args * ap)446 zfsctl_common_open(struct vop_open_args *ap)
447 {
448 int flags = ap->a_mode;
449
450 if (flags & FWRITE)
451 return (SET_ERROR(EACCES));
452
453 return (0);
454 }
455
456 /*
457 * Common close routine. Nothing to do here.
458 */
459 /* ARGSUSED */
460 static int
zfsctl_common_close(struct vop_close_args * ap)461 zfsctl_common_close(struct vop_close_args *ap)
462 {
463 return (0);
464 }
465
466 /*
467 * Common access routine. Disallow writes.
468 */
469 static int
zfsctl_common_access(struct vop_access_args * ap)470 zfsctl_common_access(struct vop_access_args *ap)
471 {
472 accmode_t accmode = ap->a_accmode;
473
474 if (accmode & VWRITE)
475 return (SET_ERROR(EACCES));
476 return (0);
477 }
478
479 /*
480 * Common getattr function. Fill in basic information.
481 */
482 static void
zfsctl_common_getattr(vnode_t * vp,vattr_t * vap)483 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
484 {
485 timestruc_t now;
486 sfs_node_t *node;
487
488 node = vp->v_data;
489
490 vap->va_uid = 0;
491 vap->va_gid = 0;
492 vap->va_rdev = 0;
493 /*
494 * We are a purely virtual object, so we have no
495 * blocksize or allocated blocks.
496 */
497 vap->va_blksize = 0;
498 vap->va_nblocks = 0;
499 vap->va_seq = 0;
500 vn_fsid(vp, vap);
501 vap->va_mode = zfsctl_ctldir_mode;
502 vap->va_type = VDIR;
503 /*
504 * We live in the now (for atime).
505 */
506 gethrestime(&now);
507 vap->va_atime = now;
508 /* FreeBSD: Reset chflags(2) flags. */
509 vap->va_flags = 0;
510
511 vap->va_nodeid = node->sn_id;
512
513 /* At least '.' and '..'. */
514 vap->va_nlink = 2;
515 }
516
517 #ifndef _OPENSOLARIS_SYS_VNODE_H_
518 struct vop_fid_args {
519 struct vnode *a_vp;
520 struct fid *a_fid;
521 };
522 #endif
523
524 static int
zfsctl_common_fid(struct vop_fid_args * ap)525 zfsctl_common_fid(struct vop_fid_args *ap)
526 {
527 vnode_t *vp = ap->a_vp;
528 fid_t *fidp = (void *)ap->a_fid;
529 sfs_node_t *node = vp->v_data;
530 uint64_t object = node->sn_id;
531 zfid_short_t *zfid;
532 int i;
533
534 zfid = (zfid_short_t *)fidp;
535 zfid->zf_len = SHORT_FID_LEN;
536
537 for (i = 0; i < sizeof (zfid->zf_object); i++)
538 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
539
540 /* .zfs nodes always have a generation number of 0 */
541 for (i = 0; i < sizeof (zfid->zf_gen); i++)
542 zfid->zf_gen[i] = 0;
543
544 return (0);
545 }
546
547 #ifndef _SYS_SYSPROTO_H_
548 struct vop_reclaim_args {
549 struct vnode *a_vp;
550 struct thread *a_td;
551 };
552 #endif
553
554 static int
zfsctl_common_reclaim(struct vop_reclaim_args * ap)555 zfsctl_common_reclaim(struct vop_reclaim_args *ap)
556 {
557 vnode_t *vp = ap->a_vp;
558
559 (void) sfs_reclaim_vnode(vp);
560 return (0);
561 }
562
563 #ifndef _SYS_SYSPROTO_H_
564 struct vop_print_args {
565 struct vnode *a_vp;
566 };
567 #endif
568
569 static int
zfsctl_common_print(struct vop_print_args * ap)570 zfsctl_common_print(struct vop_print_args *ap)
571 {
572 sfs_print_node(ap->a_vp->v_data);
573 return (0);
574 }
575
576 #ifndef _SYS_SYSPROTO_H_
577 struct vop_getattr_args {
578 struct vnode *a_vp;
579 struct vattr *a_vap;
580 struct ucred *a_cred;
581 };
582 #endif
583
584 /*
585 * Get root directory attributes.
586 */
587 static int
zfsctl_root_getattr(struct vop_getattr_args * ap)588 zfsctl_root_getattr(struct vop_getattr_args *ap)
589 {
590 struct vnode *vp = ap->a_vp;
591 struct vattr *vap = ap->a_vap;
592 zfsctl_root_t *node = vp->v_data;
593
594 zfsctl_common_getattr(vp, vap);
595 vap->va_ctime = node->cmtime;
596 vap->va_mtime = vap->va_ctime;
597 vap->va_birthtime = vap->va_ctime;
598 vap->va_nlink += 1; /* snapdir */
599 vap->va_size = vap->va_nlink;
600 return (0);
601 }
602
603 /*
604 * When we lookup "." we still can be asked to lock it
605 * differently, can't we?
606 */
607 static int
zfsctl_relock_dot(vnode_t * dvp,int ltype)608 zfsctl_relock_dot(vnode_t *dvp, int ltype)
609 {
610 vref(dvp);
611 if (ltype != VOP_ISLOCKED(dvp)) {
612 if (ltype == LK_EXCLUSIVE)
613 vn_lock(dvp, LK_UPGRADE | LK_RETRY);
614 else /* if (ltype == LK_SHARED) */
615 vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
616
617 /* Relock for the "." case may left us with reclaimed vnode. */
618 if (VN_IS_DOOMED(dvp)) {
619 vrele(dvp);
620 return (SET_ERROR(ENOENT));
621 }
622 }
623 return (0);
624 }
625
626 /*
627 * Special case the handling of "..".
628 */
629 static int
zfsctl_root_lookup(struct vop_lookup_args * ap)630 zfsctl_root_lookup(struct vop_lookup_args *ap)
631 {
632 struct componentname *cnp = ap->a_cnp;
633 vnode_t *dvp = ap->a_dvp;
634 vnode_t **vpp = ap->a_vpp;
635 int flags = ap->a_cnp->cn_flags;
636 int lkflags = ap->a_cnp->cn_lkflags;
637 int nameiop = ap->a_cnp->cn_nameiop;
638 int err;
639
640 ASSERT(dvp->v_type == VDIR);
641
642 if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
643 return (SET_ERROR(ENOTSUP));
644
645 if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
646 err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
647 if (err == 0)
648 *vpp = dvp;
649 } else if ((flags & ISDOTDOT) != 0) {
650 err = vn_vget_ino_gen(dvp, zfsctl_fs_root_vnode, NULL,
651 lkflags, vpp);
652 } else if (strncmp(cnp->cn_nameptr, "snapshot", cnp->cn_namelen) == 0) {
653 err = zfsctl_snapdir_vnode(dvp->v_mount, NULL, lkflags, vpp);
654 } else {
655 err = SET_ERROR(ENOENT);
656 }
657 if (err != 0)
658 *vpp = NULL;
659 return (err);
660 }
661
662 static int
zfsctl_root_readdir(struct vop_readdir_args * ap)663 zfsctl_root_readdir(struct vop_readdir_args *ap)
664 {
665 struct dirent entry;
666 vnode_t *vp = ap->a_vp;
667 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
668 zfsctl_root_t *node = vp->v_data;
669 uio_t *uio = ap->a_uio;
670 int *eofp = ap->a_eofflag;
671 off_t dots_offset;
672 int error;
673
674 ASSERT(vp->v_type == VDIR);
675
676 error = sfs_readdir_common(zfsvfs->z_root, ZFSCTL_INO_ROOT, ap, uio,
677 &dots_offset);
678 if (error != 0) {
679 if (error == ENAMETOOLONG) /* ran out of destination space */
680 error = 0;
681 return (error);
682 }
683 if (uio->uio_offset != dots_offset)
684 return (SET_ERROR(EINVAL));
685
686 CTASSERT(sizeof (node->snapdir->sn_name) <= sizeof (entry.d_name));
687 entry.d_fileno = node->snapdir->sn_id;
688 entry.d_type = DT_DIR;
689 strcpy(entry.d_name, node->snapdir->sn_name);
690 entry.d_namlen = strlen(entry.d_name);
691 entry.d_reclen = sizeof (entry);
692 error = vfs_read_dirent(ap, &entry, uio->uio_offset);
693 if (error != 0) {
694 if (error == ENAMETOOLONG)
695 error = 0;
696 return (SET_ERROR(error));
697 }
698 if (eofp != NULL)
699 *eofp = 1;
700 return (0);
701 }
702
703 static int
zfsctl_root_vptocnp(struct vop_vptocnp_args * ap)704 zfsctl_root_vptocnp(struct vop_vptocnp_args *ap)
705 {
706 static const char dotzfs_name[4] = ".zfs";
707 vnode_t *dvp;
708 int error;
709
710 if (*ap->a_buflen < sizeof (dotzfs_name))
711 return (SET_ERROR(ENOMEM));
712
713 error = vn_vget_ino_gen(ap->a_vp, zfsctl_fs_root_vnode, NULL,
714 LK_SHARED, &dvp);
715 if (error != 0)
716 return (SET_ERROR(error));
717
718 VOP_UNLOCK1(dvp);
719 *ap->a_vpp = dvp;
720 *ap->a_buflen -= sizeof (dotzfs_name);
721 bcopy(dotzfs_name, ap->a_buf + *ap->a_buflen, sizeof (dotzfs_name));
722 return (0);
723 }
724
725 static int
zfsctl_common_pathconf(struct vop_pathconf_args * ap)726 zfsctl_common_pathconf(struct vop_pathconf_args *ap)
727 {
728 /*
729 * We care about ACL variables so that user land utilities like ls
730 * can display them correctly. Since the ctldir's st_dev is set to be
731 * the same as the parent dataset, we must support all variables that
732 * it supports.
733 */
734 switch (ap->a_name) {
735 case _PC_LINK_MAX:
736 *ap->a_retval = MIN(LONG_MAX, ZFS_LINK_MAX);
737 return (0);
738
739 case _PC_FILESIZEBITS:
740 *ap->a_retval = 64;
741 return (0);
742
743 case _PC_MIN_HOLE_SIZE:
744 *ap->a_retval = (int)SPA_MINBLOCKSIZE;
745 return (0);
746
747 case _PC_ACL_EXTENDED:
748 *ap->a_retval = 0;
749 return (0);
750
751 case _PC_ACL_NFS4:
752 *ap->a_retval = 1;
753 return (0);
754
755 case _PC_ACL_PATH_MAX:
756 *ap->a_retval = ACL_MAX_ENTRIES;
757 return (0);
758
759 case _PC_NAME_MAX:
760 *ap->a_retval = NAME_MAX;
761 return (0);
762
763 default:
764 return (vop_stdpathconf(ap));
765 }
766 }
767
768 /*
769 * Returns a trivial ACL
770 */
771 static int
zfsctl_common_getacl(struct vop_getacl_args * ap)772 zfsctl_common_getacl(struct vop_getacl_args *ap)
773 {
774 int i;
775
776 if (ap->a_type != ACL_TYPE_NFS4)
777 return (EINVAL);
778
779 acl_nfs4_sync_acl_from_mode(ap->a_aclp, zfsctl_ctldir_mode, 0);
780 /*
781 * acl_nfs4_sync_acl_from_mode assumes that the owner can always modify
782 * attributes. That is not the case for the ctldir, so we must clear
783 * those bits. We also must clear ACL_READ_NAMED_ATTRS, because xattrs
784 * aren't supported by the ctldir.
785 */
786 for (i = 0; i < ap->a_aclp->acl_cnt; i++) {
787 struct acl_entry *entry;
788 entry = &(ap->a_aclp->acl_entry[i]);
789 entry->ae_perm &= ~(ACL_WRITE_ACL | ACL_WRITE_OWNER |
790 ACL_WRITE_ATTRIBUTES | ACL_WRITE_NAMED_ATTRS |
791 ACL_READ_NAMED_ATTRS);
792 }
793
794 return (0);
795 }
796
797 static struct vop_vector zfsctl_ops_root = {
798 .vop_default = &default_vnodeops,
799 #if __FreeBSD_version >= 1300121
800 .vop_fplookup_vexec = VOP_EAGAIN,
801 #endif
802 .vop_open = zfsctl_common_open,
803 .vop_close = zfsctl_common_close,
804 .vop_ioctl = VOP_EINVAL,
805 .vop_getattr = zfsctl_root_getattr,
806 .vop_access = zfsctl_common_access,
807 .vop_readdir = zfsctl_root_readdir,
808 .vop_lookup = zfsctl_root_lookup,
809 .vop_inactive = VOP_NULL,
810 .vop_reclaim = zfsctl_common_reclaim,
811 .vop_fid = zfsctl_common_fid,
812 .vop_print = zfsctl_common_print,
813 .vop_vptocnp = zfsctl_root_vptocnp,
814 .vop_pathconf = zfsctl_common_pathconf,
815 .vop_getacl = zfsctl_common_getacl,
816 };
817 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_root);
818
819 static int
zfsctl_snapshot_zname(vnode_t * vp,const char * name,int len,char * zname)820 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
821 {
822 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
823
824 dmu_objset_name(os, zname);
825 if (strlen(zname) + 1 + strlen(name) >= len)
826 return (SET_ERROR(ENAMETOOLONG));
827 (void) strcat(zname, "@");
828 (void) strcat(zname, name);
829 return (0);
830 }
831
832 static int
zfsctl_snapshot_lookup(vnode_t * vp,const char * name,uint64_t * id)833 zfsctl_snapshot_lookup(vnode_t *vp, const char *name, uint64_t *id)
834 {
835 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
836 int err;
837
838 err = dsl_dataset_snap_lookup(dmu_objset_ds(os), name, id);
839 return (err);
840 }
841
842 /*
843 * Given a vnode get a root vnode of a filesystem mounted on top of
844 * the vnode, if any. The root vnode is referenced and locked.
845 * If no filesystem is mounted then the orinal vnode remains referenced
846 * and locked. If any error happens the orinal vnode is unlocked and
847 * released.
848 */
849 static int
zfsctl_mounted_here(vnode_t ** vpp,int flags)850 zfsctl_mounted_here(vnode_t **vpp, int flags)
851 {
852 struct mount *mp;
853 int err;
854
855 ASSERT_VOP_LOCKED(*vpp, __func__);
856 ASSERT3S((*vpp)->v_type, ==, VDIR);
857
858 if ((mp = (*vpp)->v_mountedhere) != NULL) {
859 err = vfs_busy(mp, 0);
860 KASSERT(err == 0, ("vfs_busy(mp, 0) failed with %d", err));
861 KASSERT(vrefcnt(*vpp) > 1, ("unreferenced mountpoint"));
862 vput(*vpp);
863 err = VFS_ROOT(mp, flags, vpp);
864 vfs_unbusy(mp);
865 return (err);
866 }
867 return (EJUSTRETURN);
868 }
869
870 typedef struct {
871 const char *snap_name;
872 uint64_t snap_id;
873 } snapshot_setup_arg_t;
874
875 static void
zfsctl_snapshot_vnode_setup(vnode_t * vp,void * arg)876 zfsctl_snapshot_vnode_setup(vnode_t *vp, void *arg)
877 {
878 snapshot_setup_arg_t *ssa = arg;
879 sfs_node_t *node;
880
881 ASSERT_VOP_ELOCKED(vp, __func__);
882
883 node = sfs_alloc_node(sizeof (sfs_node_t),
884 ssa->snap_name, ZFSCTL_INO_SNAPDIR, ssa->snap_id);
885 zfsctl_common_vnode_setup(vp, node);
886
887 /* We have to support recursive locking. */
888 VN_LOCK_AREC(vp);
889 }
890
891 /*
892 * Lookup entry point for the 'snapshot' directory. Try to open the
893 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
894 * Perform a mount of the associated dataset on top of the vnode.
895 * There are four possibilities:
896 * - the snapshot node and vnode do not exist
897 * - the snapshot vnode is covered by the mounted snapshot
898 * - the snapshot vnode is not covered yet, the mount operation is in progress
899 * - the snapshot vnode is not covered, because the snapshot has been unmounted
900 * The last two states are transient and should be relatively short-lived.
901 */
902 static int
zfsctl_snapdir_lookup(struct vop_lookup_args * ap)903 zfsctl_snapdir_lookup(struct vop_lookup_args *ap)
904 {
905 vnode_t *dvp = ap->a_dvp;
906 vnode_t **vpp = ap->a_vpp;
907 struct componentname *cnp = ap->a_cnp;
908 char name[NAME_MAX + 1];
909 char fullname[ZFS_MAX_DATASET_NAME_LEN];
910 char *mountpoint;
911 size_t mountpoint_len;
912 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
913 uint64_t snap_id;
914 int nameiop = cnp->cn_nameiop;
915 int lkflags = cnp->cn_lkflags;
916 int flags = cnp->cn_flags;
917 int err;
918
919 ASSERT(dvp->v_type == VDIR);
920
921 if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
922 return (SET_ERROR(ENOTSUP));
923
924 if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
925 err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
926 if (err == 0)
927 *vpp = dvp;
928 return (err);
929 }
930 if (flags & ISDOTDOT) {
931 err = vn_vget_ino_gen(dvp, zfsctl_root_vnode, NULL, lkflags,
932 vpp);
933 return (err);
934 }
935
936 if (cnp->cn_namelen >= sizeof (name))
937 return (SET_ERROR(ENAMETOOLONG));
938
939 strlcpy(name, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
940 err = zfsctl_snapshot_lookup(dvp, name, &snap_id);
941 if (err != 0)
942 return (SET_ERROR(ENOENT));
943
944 for (;;) {
945 snapshot_setup_arg_t ssa;
946
947 ssa.snap_name = name;
948 ssa.snap_id = snap_id;
949 err = sfs_vgetx(dvp->v_mount, LK_SHARED, ZFSCTL_INO_SNAPDIR,
950 snap_id, "zfs", &zfsctl_ops_snapshot,
951 zfsctl_snapshot_vnode_setup, &ssa, vpp);
952 if (err != 0)
953 return (err);
954
955 /* Check if a new vnode has just been created. */
956 if (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE)
957 break;
958
959 /*
960 * Check if a snapshot is already mounted on top of the vnode.
961 */
962 err = zfsctl_mounted_here(vpp, lkflags);
963 if (err != EJUSTRETURN)
964 return (err);
965
966 /*
967 * If the vnode is not covered, then either the mount operation
968 * is in progress or the snapshot has already been unmounted
969 * but the vnode hasn't been inactivated and reclaimed yet.
970 * We can try to re-use the vnode in the latter case.
971 */
972 VI_LOCK(*vpp);
973 if (((*vpp)->v_iflag & VI_MOUNT) == 0) {
974 /*
975 * Upgrade to exclusive lock in order to:
976 * - avoid race conditions
977 * - satisfy the contract of mount_snapshot()
978 */
979 err = VOP_LOCK(*vpp, LK_TRYUPGRADE | LK_INTERLOCK);
980 if (err == 0)
981 break;
982 } else {
983 VI_UNLOCK(*vpp);
984 }
985
986 /*
987 * In this state we can loop on uncontested locks and starve
988 * the thread doing the lengthy, non-trivial mount operation.
989 * So, yield to prevent that from happening.
990 */
991 vput(*vpp);
992 kern_yield(PRI_USER);
993 }
994
995 VERIFY0(zfsctl_snapshot_zname(dvp, name, sizeof (fullname), fullname));
996
997 mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
998 strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(name) + 1;
999 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
1000 (void) snprintf(mountpoint, mountpoint_len,
1001 "%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
1002 dvp->v_vfsp->mnt_stat.f_mntonname, name);
1003
1004 err = mount_snapshot(curthread, vpp, "zfs", mountpoint, fullname, 0);
1005 kmem_free(mountpoint, mountpoint_len);
1006 if (err == 0) {
1007 /*
1008 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
1009 *
1010 * This is where we lie about our v_vfsp in order to
1011 * make .zfs/snapshot/<snapname> accessible over NFS
1012 * without requiring manual mounts of <snapname>.
1013 */
1014 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
1015 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
1016
1017 /* Clear the root flag (set via VFS_ROOT) as well. */
1018 (*vpp)->v_vflag &= ~VV_ROOT;
1019 }
1020
1021 if (err != 0)
1022 *vpp = NULL;
1023 return (err);
1024 }
1025
1026 static int
zfsctl_snapdir_readdir(struct vop_readdir_args * ap)1027 zfsctl_snapdir_readdir(struct vop_readdir_args *ap)
1028 {
1029 char snapname[ZFS_MAX_DATASET_NAME_LEN];
1030 struct dirent entry;
1031 vnode_t *vp = ap->a_vp;
1032 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1033 uio_t *uio = ap->a_uio;
1034 int *eofp = ap->a_eofflag;
1035 off_t dots_offset;
1036 int error;
1037
1038 ASSERT(vp->v_type == VDIR);
1039
1040 error = sfs_readdir_common(ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, ap, uio,
1041 &dots_offset);
1042 if (error != 0) {
1043 if (error == ENAMETOOLONG) /* ran out of destination space */
1044 error = 0;
1045 return (error);
1046 }
1047
1048 ZFS_ENTER(zfsvfs);
1049 for (;;) {
1050 uint64_t cookie;
1051 uint64_t id;
1052
1053 cookie = uio->uio_offset - dots_offset;
1054
1055 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1056 error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1057 snapname, &id, &cookie, NULL);
1058 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1059 if (error != 0) {
1060 if (error == ENOENT) {
1061 if (eofp != NULL)
1062 *eofp = 1;
1063 error = 0;
1064 }
1065 ZFS_EXIT(zfsvfs);
1066 return (error);
1067 }
1068
1069 entry.d_fileno = id;
1070 entry.d_type = DT_DIR;
1071 strcpy(entry.d_name, snapname);
1072 entry.d_namlen = strlen(entry.d_name);
1073 entry.d_reclen = sizeof (entry);
1074 error = vfs_read_dirent(ap, &entry, uio->uio_offset);
1075 if (error != 0) {
1076 if (error == ENAMETOOLONG)
1077 error = 0;
1078 ZFS_EXIT(zfsvfs);
1079 return (SET_ERROR(error));
1080 }
1081 uio->uio_offset = cookie + dots_offset;
1082 }
1083 /* NOTREACHED */
1084 }
1085
1086 static int
zfsctl_snapdir_getattr(struct vop_getattr_args * ap)1087 zfsctl_snapdir_getattr(struct vop_getattr_args *ap)
1088 {
1089 vnode_t *vp = ap->a_vp;
1090 vattr_t *vap = ap->a_vap;
1091 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1092 dsl_dataset_t *ds;
1093 uint64_t snap_count;
1094 int err;
1095
1096 ZFS_ENTER(zfsvfs);
1097 ds = dmu_objset_ds(zfsvfs->z_os);
1098 zfsctl_common_getattr(vp, vap);
1099 vap->va_ctime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1100 vap->va_mtime = vap->va_ctime;
1101 vap->va_birthtime = vap->va_ctime;
1102 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
1103 err = zap_count(dmu_objset_pool(ds->ds_objset)->dp_meta_objset,
1104 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
1105 if (err != 0) {
1106 ZFS_EXIT(zfsvfs);
1107 return (err);
1108 }
1109 vap->va_nlink += snap_count;
1110 }
1111 vap->va_size = vap->va_nlink;
1112
1113 ZFS_EXIT(zfsvfs);
1114 return (0);
1115 }
1116
1117 static struct vop_vector zfsctl_ops_snapdir = {
1118 .vop_default = &default_vnodeops,
1119 #if __FreeBSD_version >= 1300121
1120 .vop_fplookup_vexec = VOP_EAGAIN,
1121 #endif
1122 .vop_open = zfsctl_common_open,
1123 .vop_close = zfsctl_common_close,
1124 .vop_getattr = zfsctl_snapdir_getattr,
1125 .vop_access = zfsctl_common_access,
1126 .vop_readdir = zfsctl_snapdir_readdir,
1127 .vop_lookup = zfsctl_snapdir_lookup,
1128 .vop_reclaim = zfsctl_common_reclaim,
1129 .vop_fid = zfsctl_common_fid,
1130 .vop_print = zfsctl_common_print,
1131 .vop_pathconf = zfsctl_common_pathconf,
1132 .vop_getacl = zfsctl_common_getacl,
1133 };
1134 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapdir);
1135
1136
1137 static int
zfsctl_snapshot_inactive(struct vop_inactive_args * ap)1138 zfsctl_snapshot_inactive(struct vop_inactive_args *ap)
1139 {
1140 vnode_t *vp = ap->a_vp;
1141
1142 VERIFY(vrecycle(vp) == 1);
1143 return (0);
1144 }
1145
1146 static int
zfsctl_snapshot_reclaim(struct vop_reclaim_args * ap)1147 zfsctl_snapshot_reclaim(struct vop_reclaim_args *ap)
1148 {
1149 vnode_t *vp = ap->a_vp;
1150 void *data = vp->v_data;
1151
1152 sfs_reclaim_vnode(vp);
1153 sfs_destroy_node(data);
1154 return (0);
1155 }
1156
1157 static int
zfsctl_snapshot_vptocnp(struct vop_vptocnp_args * ap)1158 zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
1159 {
1160 struct mount *mp;
1161 vnode_t *dvp;
1162 vnode_t *vp;
1163 sfs_node_t *node;
1164 size_t len;
1165 int locked;
1166 int error;
1167
1168 vp = ap->a_vp;
1169 node = vp->v_data;
1170 len = strlen(node->sn_name);
1171 if (*ap->a_buflen < len)
1172 return (SET_ERROR(ENOMEM));
1173
1174 /*
1175 * Prevent unmounting of the snapshot while the vnode lock
1176 * is not held. That is not strictly required, but allows
1177 * us to assert that an uncovered snapshot vnode is never
1178 * "leaked".
1179 */
1180 mp = vp->v_mountedhere;
1181 if (mp == NULL)
1182 return (SET_ERROR(ENOENT));
1183 error = vfs_busy(mp, 0);
1184 KASSERT(error == 0, ("vfs_busy(mp, 0) failed with %d", error));
1185
1186 /*
1187 * We can vput the vnode as we can now depend on the reference owned
1188 * by the busied mp. But we also need to hold the vnode, because
1189 * the reference may go after vfs_unbusy() which has to be called
1190 * before we can lock the vnode again.
1191 */
1192 locked = VOP_ISLOCKED(vp);
1193 #if __FreeBSD_version >= 1300045
1194 enum vgetstate vs = vget_prep(vp);
1195 #else
1196 vhold(vp);
1197 #endif
1198 vput(vp);
1199
1200 /* Look up .zfs/snapshot, our parent. */
1201 error = zfsctl_snapdir_vnode(vp->v_mount, NULL, LK_SHARED, &dvp);
1202 if (error == 0) {
1203 VOP_UNLOCK1(dvp);
1204 *ap->a_vpp = dvp;
1205 *ap->a_buflen -= len;
1206 bcopy(node->sn_name, ap->a_buf + *ap->a_buflen, len);
1207 }
1208 vfs_unbusy(mp);
1209 #if __FreeBSD_version >= 1300045
1210 vget_finish(vp, locked | LK_RETRY, vs);
1211 #else
1212 vget(vp, locked | LK_VNHELD | LK_RETRY, curthread);
1213 #endif
1214 return (error);
1215 }
1216
1217 /*
1218 * These VP's should never see the light of day. They should always
1219 * be covered.
1220 */
1221 static struct vop_vector zfsctl_ops_snapshot = {
1222 #if __FreeBSD_version >= 1300121
1223 .vop_fplookup_vexec = VOP_EAGAIN,
1224 #endif
1225 .vop_inactive = zfsctl_snapshot_inactive,
1226 #if __FreeBSD_version >= 1300045
1227 .vop_need_inactive = vop_stdneed_inactive,
1228 #endif
1229 .vop_reclaim = zfsctl_snapshot_reclaim,
1230 .vop_vptocnp = zfsctl_snapshot_vptocnp,
1231 .vop_lock1 = vop_stdlock,
1232 .vop_unlock = vop_stdunlock,
1233 .vop_islocked = vop_stdislocked,
1234 .vop_advlockpurge = vop_stdadvlockpurge, /* called by vgone */
1235 .vop_print = zfsctl_common_print,
1236 };
1237 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapshot);
1238
1239 int
zfsctl_lookup_objset(vfs_t * vfsp,uint64_t objsetid,zfsvfs_t ** zfsvfsp)1240 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1241 {
1242 zfsvfs_t *zfsvfs __unused = vfsp->vfs_data;
1243 vnode_t *vp;
1244 int error;
1245
1246 ASSERT(zfsvfs->z_ctldir != NULL);
1247 *zfsvfsp = NULL;
1248 error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1249 ZFSCTL_INO_SNAPDIR, objsetid, &vp);
1250 if (error == 0 && vp != NULL) {
1251 /*
1252 * XXX Probably need to at least reference, if not busy, the mp.
1253 */
1254 if (vp->v_mountedhere != NULL)
1255 *zfsvfsp = vp->v_mountedhere->mnt_data;
1256 vput(vp);
1257 }
1258 if (*zfsvfsp == NULL)
1259 return (SET_ERROR(EINVAL));
1260 return (0);
1261 }
1262
1263 /*
1264 * Unmount any snapshots for the given filesystem. This is called from
1265 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1266 * snapshots.
1267 */
1268 int
zfsctl_umount_snapshots(vfs_t * vfsp,int fflags,cred_t * cr)1269 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1270 {
1271 char snapname[ZFS_MAX_DATASET_NAME_LEN];
1272 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1273 struct mount *mp;
1274 vnode_t *vp;
1275 uint64_t cookie;
1276 int error;
1277
1278 ASSERT(zfsvfs->z_ctldir != NULL);
1279
1280 cookie = 0;
1281 for (;;) {
1282 uint64_t id;
1283
1284 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1285 error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1286 snapname, &id, &cookie, NULL);
1287 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1288 if (error != 0) {
1289 if (error == ENOENT)
1290 error = 0;
1291 break;
1292 }
1293
1294 for (;;) {
1295 error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1296 ZFSCTL_INO_SNAPDIR, id, &vp);
1297 if (error != 0 || vp == NULL)
1298 break;
1299
1300 mp = vp->v_mountedhere;
1301
1302 /*
1303 * v_mountedhere being NULL means that the
1304 * (uncovered) vnode is in a transient state
1305 * (mounting or unmounting), so loop until it
1306 * settles down.
1307 */
1308 if (mp != NULL)
1309 break;
1310 vput(vp);
1311 }
1312 if (error != 0)
1313 break;
1314 if (vp == NULL)
1315 continue; /* no mountpoint, nothing to do */
1316
1317 /*
1318 * The mount-point vnode is kept locked to avoid spurious EBUSY
1319 * from a concurrent umount.
1320 * The vnode lock must have recursive locking enabled.
1321 */
1322 vfs_ref(mp);
1323 error = dounmount(mp, fflags, curthread);
1324 KASSERT_IMPLY(error == 0, vrefcnt(vp) == 1,
1325 ("extra references after unmount"));
1326 vput(vp);
1327 if (error != 0)
1328 break;
1329 }
1330 KASSERT_IMPLY((fflags & MS_FORCE) != 0, error == 0,
1331 ("force unmounting failed"));
1332 return (error);
1333 }
1334
1335 int
zfsctl_snapshot_unmount(const char * snapname,int flags __unused)1336 zfsctl_snapshot_unmount(const char *snapname, int flags __unused)
1337 {
1338 vfs_t *vfsp = NULL;
1339 zfsvfs_t *zfsvfs = NULL;
1340
1341 if (strchr(snapname, '@') == NULL)
1342 return (0);
1343
1344 int err = getzfsvfs(snapname, &zfsvfs);
1345 if (err != 0) {
1346 ASSERT3P(zfsvfs, ==, NULL);
1347 return (0);
1348 }
1349 vfsp = zfsvfs->z_vfs;
1350
1351 ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));
1352
1353 vfs_ref(vfsp);
1354 vfs_unbusy(vfsp);
1355 return (dounmount(vfsp, MS_FORCE, curthread));
1356 }
1357