1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/sysmacros.h>
33 #include <sys/mntent.h>
34 #include <sys/u8_textprep.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/errno.h>
41 #include <sys/atomic.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zfs_acl.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zfs_rlock.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_vnops.h>
48 #include <sys/zfs_ctldir.h>
49 #include <sys/dnode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zpl.h>
52 #endif /* _KERNEL */
53 
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dmu_tx.h>
57 #include <sys/zfs_refcount.h>
58 #include <sys/stat.h>
59 #include <sys/zap.h>
60 #include <sys/zfs_znode.h>
61 #include <sys/sa.h>
62 #include <sys/zfs_sa.h>
63 #include <sys/zfs_stat.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 /*
69  * Functions needed for userland (ie: libzpool) are not put under
70  * #ifdef_KERNEL; the rest of the functions have dependencies
71  * (such as VFS logic) that will not compile easily in userland.
72  */
73 #ifdef _KERNEL
74 
75 static kmem_cache_t *znode_cache = NULL;
76 static kmem_cache_t *znode_hold_cache = NULL;
77 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
78 
79 /*
80  * This is used by the test suite so that it can delay znodes from being
81  * freed in order to inspect the unlinked set.
82  */
83 int zfs_unlink_suspend_progress = 0;
84 
85 /*
86  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
87  * z_rangelock. It will modify the offset and length of the lock to reflect
88  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
89  * called with the rangelock_t's rl_lock held, which avoids races.
90  */
91 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)92 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
93 {
94 	znode_t *zp = arg;
95 
96 	/*
97 	 * If in append mode, convert to writer and lock starting at the
98 	 * current end of file.
99 	 */
100 	if (new->lr_type == RL_APPEND) {
101 		new->lr_offset = zp->z_size;
102 		new->lr_type = RL_WRITER;
103 	}
104 
105 	/*
106 	 * If we need to grow the block size then lock the whole file range.
107 	 */
108 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
109 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
110 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
111 		new->lr_offset = 0;
112 		new->lr_length = UINT64_MAX;
113 	}
114 }
115 
116 /*ARGSUSED*/
117 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)118 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
119 {
120 	znode_t *zp = buf;
121 
122 	inode_init_once(ZTOI(zp));
123 	list_link_init(&zp->z_link_node);
124 
125 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
128 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
130 
131 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
132 
133 	zp->z_dirlocks = NULL;
134 	zp->z_acl_cached = NULL;
135 	zp->z_xattr_cached = NULL;
136 	zp->z_xattr_parent = 0;
137 	return (0);
138 }
139 
140 /*ARGSUSED*/
141 static void
zfs_znode_cache_destructor(void * buf,void * arg)142 zfs_znode_cache_destructor(void *buf, void *arg)
143 {
144 	znode_t *zp = buf;
145 
146 	ASSERT(!list_link_active(&zp->z_link_node));
147 	mutex_destroy(&zp->z_lock);
148 	rw_destroy(&zp->z_parent_lock);
149 	rw_destroy(&zp->z_name_lock);
150 	mutex_destroy(&zp->z_acl_lock);
151 	rw_destroy(&zp->z_xattr_lock);
152 	zfs_rangelock_fini(&zp->z_rangelock);
153 
154 	ASSERT(zp->z_dirlocks == NULL);
155 	ASSERT(zp->z_acl_cached == NULL);
156 	ASSERT(zp->z_xattr_cached == NULL);
157 }
158 
159 static int
zfs_znode_hold_cache_constructor(void * buf,void * arg,int kmflags)160 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
161 {
162 	znode_hold_t *zh = buf;
163 
164 	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
165 	zfs_refcount_create(&zh->zh_refcount);
166 	zh->zh_obj = ZFS_NO_OBJECT;
167 
168 	return (0);
169 }
170 
171 static void
zfs_znode_hold_cache_destructor(void * buf,void * arg)172 zfs_znode_hold_cache_destructor(void *buf, void *arg)
173 {
174 	znode_hold_t *zh = buf;
175 
176 	mutex_destroy(&zh->zh_lock);
177 	zfs_refcount_destroy(&zh->zh_refcount);
178 }
179 
180 void
zfs_znode_init(void)181 zfs_znode_init(void)
182 {
183 	/*
184 	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
185 	 * backed by kmalloc() when on the Linux slab in order that any
186 	 * wait_on_bit() operations on the related inode operate properly.
187 	 */
188 	ASSERT(znode_cache == NULL);
189 	znode_cache = kmem_cache_create("zfs_znode_cache",
190 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
191 	    zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
192 
193 	ASSERT(znode_hold_cache == NULL);
194 	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
195 	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
196 	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
197 }
198 
199 void
zfs_znode_fini(void)200 zfs_znode_fini(void)
201 {
202 	/*
203 	 * Cleanup zcache
204 	 */
205 	if (znode_cache)
206 		kmem_cache_destroy(znode_cache);
207 	znode_cache = NULL;
208 
209 	if (znode_hold_cache)
210 		kmem_cache_destroy(znode_hold_cache);
211 	znode_hold_cache = NULL;
212 }
213 
214 /*
215  * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
216  * serialize access to a znode and its SA buffer while the object is being
217  * created or destroyed.  This kind of locking would normally reside in the
218  * znode itself but in this case that's impossible because the znode and SA
219  * buffer may not yet exist.  Therefore the locking is handled externally
220  * with an array of mutexs and AVLs trees which contain per-object locks.
221  *
222  * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
223  * in to the correct AVL tree and finally the per-object lock is held.  In
224  * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
225  * released, removed from the AVL tree and destroyed if there are no waiters.
226  *
227  * This scheme has two important properties:
228  *
229  * 1) No memory allocations are performed while holding one of the z_hold_locks.
230  *    This ensures evict(), which can be called from direct memory reclaim, will
231  *    never block waiting on a z_hold_locks which just happens to have hashed
232  *    to the same index.
233  *
234  * 2) All locks used to serialize access to an object are per-object and never
235  *    shared.  This minimizes lock contention without creating a large number
236  *    of dedicated locks.
237  *
238  * On the downside it does require znode_lock_t structures to be frequently
239  * allocated and freed.  However, because these are backed by a kmem cache
240  * and very short lived this cost is minimal.
241  */
242 int
zfs_znode_hold_compare(const void * a,const void * b)243 zfs_znode_hold_compare(const void *a, const void *b)
244 {
245 	const znode_hold_t *zh_a = (const znode_hold_t *)a;
246 	const znode_hold_t *zh_b = (const znode_hold_t *)b;
247 
248 	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
249 }
250 
251 static boolean_t __maybe_unused
zfs_znode_held(zfsvfs_t * zfsvfs,uint64_t obj)252 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
253 {
254 	znode_hold_t *zh, search;
255 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
256 	boolean_t held;
257 
258 	search.zh_obj = obj;
259 
260 	mutex_enter(&zfsvfs->z_hold_locks[i]);
261 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
262 	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
263 	mutex_exit(&zfsvfs->z_hold_locks[i]);
264 
265 	return (held);
266 }
267 
268 static znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t * zfsvfs,uint64_t obj)269 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
270 {
271 	znode_hold_t *zh, *zh_new, search;
272 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
273 	boolean_t found = B_FALSE;
274 
275 	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
276 	zh_new->zh_obj = obj;
277 	search.zh_obj = obj;
278 
279 	mutex_enter(&zfsvfs->z_hold_locks[i]);
280 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
281 	if (likely(zh == NULL)) {
282 		zh = zh_new;
283 		avl_add(&zfsvfs->z_hold_trees[i], zh);
284 	} else {
285 		ASSERT3U(zh->zh_obj, ==, obj);
286 		found = B_TRUE;
287 	}
288 	zfs_refcount_add(&zh->zh_refcount, NULL);
289 	mutex_exit(&zfsvfs->z_hold_locks[i]);
290 
291 	if (found == B_TRUE)
292 		kmem_cache_free(znode_hold_cache, zh_new);
293 
294 	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
295 	ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
296 	mutex_enter(&zh->zh_lock);
297 
298 	return (zh);
299 }
300 
301 static void
zfs_znode_hold_exit(zfsvfs_t * zfsvfs,znode_hold_t * zh)302 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
303 {
304 	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
305 	boolean_t remove = B_FALSE;
306 
307 	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
308 	ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
309 	mutex_exit(&zh->zh_lock);
310 
311 	mutex_enter(&zfsvfs->z_hold_locks[i]);
312 	if (zfs_refcount_remove(&zh->zh_refcount, NULL) == 0) {
313 		avl_remove(&zfsvfs->z_hold_trees[i], zh);
314 		remove = B_TRUE;
315 	}
316 	mutex_exit(&zfsvfs->z_hold_locks[i]);
317 
318 	if (remove == B_TRUE)
319 		kmem_cache_free(znode_hold_cache, zh);
320 }
321 
322 dev_t
zfs_cmpldev(uint64_t dev)323 zfs_cmpldev(uint64_t dev)
324 {
325 	return (dev);
326 }
327 
328 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)329 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
330     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
331 {
332 	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
333 
334 	mutex_enter(&zp->z_lock);
335 
336 	ASSERT(zp->z_sa_hdl == NULL);
337 	ASSERT(zp->z_acl_cached == NULL);
338 	if (sa_hdl == NULL) {
339 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
340 		    SA_HDL_SHARED, &zp->z_sa_hdl));
341 	} else {
342 		zp->z_sa_hdl = sa_hdl;
343 		sa_set_userp(sa_hdl, zp);
344 	}
345 
346 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
347 
348 	mutex_exit(&zp->z_lock);
349 }
350 
351 void
zfs_znode_dmu_fini(znode_t * zp)352 zfs_znode_dmu_fini(znode_t *zp)
353 {
354 	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) || zp->z_unlinked ||
355 	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
356 
357 	sa_handle_destroy(zp->z_sa_hdl);
358 	zp->z_sa_hdl = NULL;
359 }
360 
361 /*
362  * Called by new_inode() to allocate a new inode.
363  */
364 int
zfs_inode_alloc(struct super_block * sb,struct inode ** ip)365 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
366 {
367 	znode_t *zp;
368 
369 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
370 	*ip = ZTOI(zp);
371 
372 	return (0);
373 }
374 
375 /*
376  * Called in multiple places when an inode should be destroyed.
377  */
378 void
zfs_inode_destroy(struct inode * ip)379 zfs_inode_destroy(struct inode *ip)
380 {
381 	znode_t *zp = ITOZ(ip);
382 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
383 
384 	mutex_enter(&zfsvfs->z_znodes_lock);
385 	if (list_link_active(&zp->z_link_node)) {
386 		list_remove(&zfsvfs->z_all_znodes, zp);
387 		zfsvfs->z_nr_znodes--;
388 	}
389 	mutex_exit(&zfsvfs->z_znodes_lock);
390 
391 	if (zp->z_acl_cached) {
392 		zfs_acl_free(zp->z_acl_cached);
393 		zp->z_acl_cached = NULL;
394 	}
395 
396 	if (zp->z_xattr_cached) {
397 		nvlist_free(zp->z_xattr_cached);
398 		zp->z_xattr_cached = NULL;
399 	}
400 
401 	kmem_cache_free(znode_cache, zp);
402 }
403 
404 static void
zfs_inode_set_ops(zfsvfs_t * zfsvfs,struct inode * ip)405 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
406 {
407 	uint64_t rdev = 0;
408 
409 	switch (ip->i_mode & S_IFMT) {
410 	case S_IFREG:
411 		ip->i_op = &zpl_inode_operations;
412 		ip->i_fop = &zpl_file_operations;
413 		ip->i_mapping->a_ops = &zpl_address_space_operations;
414 		break;
415 
416 	case S_IFDIR:
417 		ip->i_op = &zpl_dir_inode_operations;
418 		ip->i_fop = &zpl_dir_file_operations;
419 		ITOZ(ip)->z_zn_prefetch = B_TRUE;
420 		break;
421 
422 	case S_IFLNK:
423 		ip->i_op = &zpl_symlink_inode_operations;
424 		break;
425 
426 	/*
427 	 * rdev is only stored in a SA only for device files.
428 	 */
429 	case S_IFCHR:
430 	case S_IFBLK:
431 		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
432 		    sizeof (rdev));
433 		/*FALLTHROUGH*/
434 	case S_IFIFO:
435 	case S_IFSOCK:
436 		init_special_inode(ip, ip->i_mode, rdev);
437 		ip->i_op = &zpl_special_inode_operations;
438 		break;
439 
440 	default:
441 		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
442 		    (u_longlong_t)ip->i_ino, ip->i_mode);
443 
444 		/* Assume the inode is a file and attempt to continue */
445 		ip->i_mode = S_IFREG | 0644;
446 		ip->i_op = &zpl_inode_operations;
447 		ip->i_fop = &zpl_file_operations;
448 		ip->i_mapping->a_ops = &zpl_address_space_operations;
449 		break;
450 	}
451 }
452 
453 static void
zfs_set_inode_flags(znode_t * zp,struct inode * ip)454 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
455 {
456 	/*
457 	 * Linux and Solaris have different sets of file attributes, so we
458 	 * restrict this conversion to the intersection of the two.
459 	 */
460 #ifdef HAVE_INODE_SET_FLAGS
461 	unsigned int flags = 0;
462 	if (zp->z_pflags & ZFS_IMMUTABLE)
463 		flags |= S_IMMUTABLE;
464 	if (zp->z_pflags & ZFS_APPENDONLY)
465 		flags |= S_APPEND;
466 
467 	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
468 #else
469 	if (zp->z_pflags & ZFS_IMMUTABLE)
470 		ip->i_flags |= S_IMMUTABLE;
471 	else
472 		ip->i_flags &= ~S_IMMUTABLE;
473 
474 	if (zp->z_pflags & ZFS_APPENDONLY)
475 		ip->i_flags |= S_APPEND;
476 	else
477 		ip->i_flags &= ~S_APPEND;
478 #endif
479 }
480 
481 /*
482  * Update the embedded inode given the znode.  We should work toward
483  * eliminating this function as soon as possible by removing values
484  * which are duplicated between the znode and inode.  If the generic
485  * inode has the correct field it should be used, and the ZFS code
486  * updated to access the inode.  This can be done incrementally.
487  */
488 void
zfs_inode_update(znode_t * zp)489 zfs_inode_update(znode_t *zp)
490 {
491 	zfsvfs_t	*zfsvfs;
492 	struct inode	*ip;
493 	uint32_t	blksize;
494 	u_longlong_t	i_blocks;
495 
496 	ASSERT(zp != NULL);
497 	zfsvfs = ZTOZSB(zp);
498 	ip = ZTOI(zp);
499 
500 	/* Skip .zfs control nodes which do not exist on disk. */
501 	if (zfsctl_is_node(ip))
502 		return;
503 
504 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
505 
506 	spin_lock(&ip->i_lock);
507 	ip->i_mode = zp->z_mode;
508 	ip->i_blocks = i_blocks;
509 	i_size_write(ip, zp->z_size);
510 	spin_unlock(&ip->i_lock);
511 }
512 
513 
514 /*
515  * Construct a znode+inode and initialize.
516  *
517  * This does not do a call to dmu_set_user() that is
518  * up to the caller to do, in case you don't want to
519  * return the znode
520  */
521 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)522 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
523     dmu_object_type_t obj_type, sa_handle_t *hdl)
524 {
525 	znode_t	*zp;
526 	struct inode *ip;
527 	uint64_t mode;
528 	uint64_t parent;
529 	uint64_t tmp_gen;
530 	uint64_t links;
531 	uint64_t z_uid, z_gid;
532 	uint64_t atime[2], mtime[2], ctime[2];
533 	uint64_t projid = ZFS_DEFAULT_PROJID;
534 	sa_bulk_attr_t bulk[11];
535 	int count = 0;
536 
537 	ASSERT(zfsvfs != NULL);
538 
539 	ip = new_inode(zfsvfs->z_sb);
540 	if (ip == NULL)
541 		return (NULL);
542 
543 	zp = ITOZ(ip);
544 	ASSERT(zp->z_dirlocks == NULL);
545 	ASSERT3P(zp->z_acl_cached, ==, NULL);
546 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
547 	zp->z_unlinked = B_FALSE;
548 	zp->z_atime_dirty = B_FALSE;
549 	zp->z_is_mapped = B_FALSE;
550 	zp->z_is_ctldir = B_FALSE;
551 	zp->z_is_stale = B_FALSE;
552 	zp->z_suspended = B_FALSE;
553 	zp->z_sa_hdl = NULL;
554 	zp->z_mapcnt = 0;
555 	zp->z_id = db->db_object;
556 	zp->z_blksz = blksz;
557 	zp->z_seq = 0x7A4653;
558 	zp->z_sync_cnt = 0;
559 
560 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
561 
562 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
563 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
564 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
565 	    &zp->z_size, 8);
566 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
567 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
568 	    &zp->z_pflags, 8);
569 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
570 	    &parent, 8);
571 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
572 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
573 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
574 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
575 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
576 
577 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
578 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
579 	    (zp->z_pflags & ZFS_PROJID) &&
580 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
581 		if (hdl == NULL)
582 			sa_handle_destroy(zp->z_sa_hdl);
583 		zp->z_sa_hdl = NULL;
584 		goto error;
585 	}
586 
587 	zp->z_projid = projid;
588 	zp->z_mode = ip->i_mode = mode;
589 	ip->i_generation = (uint32_t)tmp_gen;
590 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
591 	set_nlink(ip, (uint32_t)links);
592 	zfs_uid_write(ip, z_uid);
593 	zfs_gid_write(ip, z_gid);
594 	zfs_set_inode_flags(zp, ip);
595 
596 	/* Cache the xattr parent id */
597 	if (zp->z_pflags & ZFS_XATTR)
598 		zp->z_xattr_parent = parent;
599 
600 	ZFS_TIME_DECODE(&ip->i_atime, atime);
601 	ZFS_TIME_DECODE(&ip->i_mtime, mtime);
602 	ZFS_TIME_DECODE(&ip->i_ctime, ctime);
603 
604 	ip->i_ino = zp->z_id;
605 	zfs_inode_update(zp);
606 	zfs_inode_set_ops(zfsvfs, ip);
607 
608 	/*
609 	 * The only way insert_inode_locked() can fail is if the ip->i_ino
610 	 * number is already hashed for this super block.  This can never
611 	 * happen because the inode numbers map 1:1 with the object numbers.
612 	 *
613 	 * The one exception is rolling back a mounted file system, but in
614 	 * this case all the active inode are unhashed during the rollback.
615 	 */
616 	VERIFY3S(insert_inode_locked(ip), ==, 0);
617 
618 	mutex_enter(&zfsvfs->z_znodes_lock);
619 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
620 	zfsvfs->z_nr_znodes++;
621 	mutex_exit(&zfsvfs->z_znodes_lock);
622 
623 	unlock_new_inode(ip);
624 	return (zp);
625 
626 error:
627 	iput(ip);
628 	return (NULL);
629 }
630 
631 /*
632  * Safely mark an inode dirty.  Inodes which are part of a read-only
633  * file system or snapshot may not be dirtied.
634  */
635 void
zfs_mark_inode_dirty(struct inode * ip)636 zfs_mark_inode_dirty(struct inode *ip)
637 {
638 	zfsvfs_t *zfsvfs = ITOZSB(ip);
639 
640 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
641 		return;
642 
643 	mark_inode_dirty(ip);
644 }
645 
646 static uint64_t empty_xattr;
647 static uint64_t pad[4];
648 static zfs_acl_phys_t acl_phys;
649 /*
650  * Create a new DMU object to hold a zfs znode.
651  *
652  *	IN:	dzp	- parent directory for new znode
653  *		vap	- file attributes for new znode
654  *		tx	- dmu transaction id for zap operations
655  *		cr	- credentials of caller
656  *		flag	- flags:
657  *			  IS_ROOT_NODE	- new object will be root
658  *			  IS_TMPFILE	- new object is of O_TMPFILE
659  *			  IS_XATTR	- new object is an attribute
660  *		acl_ids	- ACL related attributes
661  *
662  *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
663  *
664  */
665 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)666 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
667     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
668 {
669 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
670 	uint64_t	mode, size, links, parent, pflags;
671 	uint64_t	projid = ZFS_DEFAULT_PROJID;
672 	uint64_t	rdev = 0;
673 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
674 	dmu_buf_t	*db;
675 	inode_timespec_t now;
676 	uint64_t	gen, obj;
677 	int		bonuslen;
678 	int		dnodesize;
679 	sa_handle_t	*sa_hdl;
680 	dmu_object_type_t obj_type;
681 	sa_bulk_attr_t	*sa_attrs;
682 	int		cnt = 0;
683 	zfs_acl_locator_cb_t locate = { 0 };
684 	znode_hold_t	*zh;
685 
686 	if (zfsvfs->z_replay) {
687 		obj = vap->va_nodeid;
688 		now = vap->va_ctime;		/* see zfs_replay_create() */
689 		gen = vap->va_nblocks;		/* ditto */
690 		dnodesize = vap->va_fsid;	/* ditto */
691 	} else {
692 		obj = 0;
693 		gethrestime(&now);
694 		gen = dmu_tx_get_txg(tx);
695 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
696 	}
697 
698 	if (dnodesize == 0)
699 		dnodesize = DNODE_MIN_SIZE;
700 
701 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
702 
703 	bonuslen = (obj_type == DMU_OT_SA) ?
704 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
705 
706 	/*
707 	 * Create a new DMU object.
708 	 */
709 	/*
710 	 * There's currently no mechanism for pre-reading the blocks that will
711 	 * be needed to allocate a new object, so we accept the small chance
712 	 * that there will be an i/o error and we will fail one of the
713 	 * assertions below.
714 	 */
715 	if (S_ISDIR(vap->va_mode)) {
716 		if (zfsvfs->z_replay) {
717 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
718 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
719 			    obj_type, bonuslen, dnodesize, tx));
720 		} else {
721 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
722 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
723 			    obj_type, bonuslen, dnodesize, tx);
724 		}
725 	} else {
726 		if (zfsvfs->z_replay) {
727 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
728 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
729 			    obj_type, bonuslen, dnodesize, tx));
730 		} else {
731 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
732 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
733 			    obj_type, bonuslen, dnodesize, tx);
734 		}
735 	}
736 
737 	zh = zfs_znode_hold_enter(zfsvfs, obj);
738 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
739 
740 	/*
741 	 * If this is the root, fix up the half-initialized parent pointer
742 	 * to reference the just-allocated physical data area.
743 	 */
744 	if (flag & IS_ROOT_NODE) {
745 		dzp->z_id = obj;
746 	}
747 
748 	/*
749 	 * If parent is an xattr, so am I.
750 	 */
751 	if (dzp->z_pflags & ZFS_XATTR) {
752 		flag |= IS_XATTR;
753 	}
754 
755 	if (zfsvfs->z_use_fuids)
756 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
757 	else
758 		pflags = 0;
759 
760 	if (S_ISDIR(vap->va_mode)) {
761 		size = 2;		/* contents ("." and "..") */
762 		links = 2;
763 	} else {
764 		size = 0;
765 		links = (flag & IS_TMPFILE) ? 0 : 1;
766 	}
767 
768 	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
769 		rdev = vap->va_rdev;
770 
771 	parent = dzp->z_id;
772 	mode = acl_ids->z_mode;
773 	if (flag & IS_XATTR)
774 		pflags |= ZFS_XATTR;
775 
776 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
777 		/*
778 		 * With ZFS_PROJID flag, we can easily know whether there is
779 		 * project ID stored on disk or not. See zfs_space_delta_cb().
780 		 */
781 		if (obj_type != DMU_OT_ZNODE &&
782 		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
783 			pflags |= ZFS_PROJID;
784 
785 		/*
786 		 * Inherit project ID from parent if required.
787 		 */
788 		projid = zfs_inherit_projid(dzp);
789 		if (dzp->z_pflags & ZFS_PROJINHERIT)
790 			pflags |= ZFS_PROJINHERIT;
791 	}
792 
793 	/*
794 	 * No execs denied will be determined when zfs_mode_compute() is called.
795 	 */
796 	pflags |= acl_ids->z_aclp->z_hints &
797 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
798 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
799 
800 	ZFS_TIME_ENCODE(&now, crtime);
801 	ZFS_TIME_ENCODE(&now, ctime);
802 
803 	if (vap->va_mask & ATTR_ATIME) {
804 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
805 	} else {
806 		ZFS_TIME_ENCODE(&now, atime);
807 	}
808 
809 	if (vap->va_mask & ATTR_MTIME) {
810 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
811 	} else {
812 		ZFS_TIME_ENCODE(&now, mtime);
813 	}
814 
815 	/* Now add in all of the "SA" attributes */
816 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
817 	    &sa_hdl));
818 
819 	/*
820 	 * Setup the array of attributes to be replaced/set on the new file
821 	 *
822 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
823 	 * in the old znode_phys_t format.  Don't change this ordering
824 	 */
825 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
826 
827 	if (obj_type == DMU_OT_ZNODE) {
828 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
829 		    NULL, &atime, 16);
830 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
831 		    NULL, &mtime, 16);
832 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
833 		    NULL, &ctime, 16);
834 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
835 		    NULL, &crtime, 16);
836 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
837 		    NULL, &gen, 8);
838 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
839 		    NULL, &mode, 8);
840 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
841 		    NULL, &size, 8);
842 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
843 		    NULL, &parent, 8);
844 	} else {
845 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
846 		    NULL, &mode, 8);
847 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
848 		    NULL, &size, 8);
849 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
850 		    NULL, &gen, 8);
851 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
852 		    NULL, &acl_ids->z_fuid, 8);
853 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
854 		    NULL, &acl_ids->z_fgid, 8);
855 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
856 		    NULL, &parent, 8);
857 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
858 		    NULL, &pflags, 8);
859 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
860 		    NULL, &atime, 16);
861 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
862 		    NULL, &mtime, 16);
863 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
864 		    NULL, &ctime, 16);
865 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
866 		    NULL, &crtime, 16);
867 	}
868 
869 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
870 
871 	if (obj_type == DMU_OT_ZNODE) {
872 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
873 		    &empty_xattr, 8);
874 	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
875 	    pflags & ZFS_PROJID) {
876 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
877 		    NULL, &projid, 8);
878 	}
879 	if (obj_type == DMU_OT_ZNODE ||
880 	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
881 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
882 		    NULL, &rdev, 8);
883 	}
884 	if (obj_type == DMU_OT_ZNODE) {
885 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
886 		    NULL, &pflags, 8);
887 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
888 		    &acl_ids->z_fuid, 8);
889 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
890 		    &acl_ids->z_fgid, 8);
891 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
892 		    sizeof (uint64_t) * 4);
893 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
894 		    &acl_phys, sizeof (zfs_acl_phys_t));
895 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
896 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
897 		    &acl_ids->z_aclp->z_acl_count, 8);
898 		locate.cb_aclp = acl_ids->z_aclp;
899 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
900 		    zfs_acl_data_locator, &locate,
901 		    acl_ids->z_aclp->z_acl_bytes);
902 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
903 		    acl_ids->z_fuid, acl_ids->z_fgid);
904 	}
905 
906 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
907 
908 	if (!(flag & IS_ROOT_NODE)) {
909 		/*
910 		 * The call to zfs_znode_alloc() may fail if memory is low
911 		 * via the call path: alloc_inode() -> inode_init_always() ->
912 		 * security_inode_alloc() -> inode_alloc_security().  Since
913 		 * the existing code is written such that zfs_mknode() can
914 		 * not fail retry until sufficient memory has been reclaimed.
915 		 */
916 		do {
917 			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
918 		} while (*zpp == NULL);
919 
920 		VERIFY(*zpp != NULL);
921 		VERIFY(dzp != NULL);
922 	} else {
923 		/*
924 		 * If we are creating the root node, the "parent" we
925 		 * passed in is the znode for the root.
926 		 */
927 		*zpp = dzp;
928 
929 		(*zpp)->z_sa_hdl = sa_hdl;
930 	}
931 
932 	(*zpp)->z_pflags = pflags;
933 	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
934 	(*zpp)->z_dnodesize = dnodesize;
935 	(*zpp)->z_projid = projid;
936 
937 	if (obj_type == DMU_OT_ZNODE ||
938 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
939 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
940 	}
941 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
942 	zfs_znode_hold_exit(zfsvfs, zh);
943 }
944 
945 /*
946  * Update in-core attributes.  It is assumed the caller will be doing an
947  * sa_bulk_update to push the changes out.
948  */
949 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)950 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
951 {
952 	xoptattr_t *xoap;
953 	boolean_t update_inode = B_FALSE;
954 
955 	xoap = xva_getxoptattr(xvap);
956 	ASSERT(xoap);
957 
958 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
959 		uint64_t times[2];
960 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
961 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
962 		    &times, sizeof (times), tx);
963 		XVA_SET_RTN(xvap, XAT_CREATETIME);
964 	}
965 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
966 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
967 		    zp->z_pflags, tx);
968 		XVA_SET_RTN(xvap, XAT_READONLY);
969 	}
970 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
971 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
972 		    zp->z_pflags, tx);
973 		XVA_SET_RTN(xvap, XAT_HIDDEN);
974 	}
975 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
976 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
977 		    zp->z_pflags, tx);
978 		XVA_SET_RTN(xvap, XAT_SYSTEM);
979 	}
980 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
981 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
982 		    zp->z_pflags, tx);
983 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
984 	}
985 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
986 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
987 		    zp->z_pflags, tx);
988 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
989 
990 		update_inode = B_TRUE;
991 	}
992 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
993 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
994 		    zp->z_pflags, tx);
995 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
996 	}
997 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
998 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
999 		    zp->z_pflags, tx);
1000 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1001 
1002 		update_inode = B_TRUE;
1003 	}
1004 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1005 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1006 		    zp->z_pflags, tx);
1007 		XVA_SET_RTN(xvap, XAT_NODUMP);
1008 	}
1009 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1010 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1011 		    zp->z_pflags, tx);
1012 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1013 	}
1014 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1015 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1016 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1017 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1018 	}
1019 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1020 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1021 		    zp->z_pflags, tx);
1022 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1023 	}
1024 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1025 		zfs_sa_set_scanstamp(zp, xvap, tx);
1026 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1027 	}
1028 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1029 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1030 		    zp->z_pflags, tx);
1031 		XVA_SET_RTN(xvap, XAT_REPARSE);
1032 	}
1033 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1034 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1035 		    zp->z_pflags, tx);
1036 		XVA_SET_RTN(xvap, XAT_OFFLINE);
1037 	}
1038 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1039 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1040 		    zp->z_pflags, tx);
1041 		XVA_SET_RTN(xvap, XAT_SPARSE);
1042 	}
1043 	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1044 		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1045 		    zp->z_pflags, tx);
1046 		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1047 	}
1048 
1049 	if (update_inode)
1050 		zfs_set_inode_flags(zp, ZTOI(zp));
1051 }
1052 
1053 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)1054 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1055 {
1056 	dmu_object_info_t doi;
1057 	dmu_buf_t	*db;
1058 	znode_t		*zp;
1059 	znode_hold_t	*zh;
1060 	int err;
1061 	sa_handle_t	*hdl;
1062 
1063 	*zpp = NULL;
1064 
1065 again:
1066 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1067 
1068 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1069 	if (err) {
1070 		zfs_znode_hold_exit(zfsvfs, zh);
1071 		return (err);
1072 	}
1073 
1074 	dmu_object_info_from_db(db, &doi);
1075 	if (doi.doi_bonus_type != DMU_OT_SA &&
1076 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1077 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1078 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1079 		sa_buf_rele(db, NULL);
1080 		zfs_znode_hold_exit(zfsvfs, zh);
1081 		return (SET_ERROR(EINVAL));
1082 	}
1083 
1084 	hdl = dmu_buf_get_user(db);
1085 	if (hdl != NULL) {
1086 		zp = sa_get_userdata(hdl);
1087 
1088 
1089 		/*
1090 		 * Since "SA" does immediate eviction we
1091 		 * should never find a sa handle that doesn't
1092 		 * know about the znode.
1093 		 */
1094 
1095 		ASSERT3P(zp, !=, NULL);
1096 
1097 		mutex_enter(&zp->z_lock);
1098 		ASSERT3U(zp->z_id, ==, obj_num);
1099 		/*
1100 		 * If zp->z_unlinked is set, the znode is already marked
1101 		 * for deletion and should not be discovered. Check this
1102 		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1103 		 *
1104 		 * If igrab() returns NULL the VFS has independently
1105 		 * determined the inode should be evicted and has
1106 		 * called iput_final() to start the eviction process.
1107 		 * The SA handle is still valid but because the VFS
1108 		 * requires that the eviction succeed we must drop
1109 		 * our locks and references to allow the eviction to
1110 		 * complete.  The zfs_zget() may then be retried.
1111 		 *
1112 		 * This unlikely case could be optimized by registering
1113 		 * a sops->drop_inode() callback.  The callback would
1114 		 * need to detect the active SA hold thereby informing
1115 		 * the VFS that this inode should not be evicted.
1116 		 */
1117 		if (igrab(ZTOI(zp)) == NULL) {
1118 			if (zp->z_unlinked)
1119 				err = SET_ERROR(ENOENT);
1120 			else
1121 				err = SET_ERROR(EAGAIN);
1122 		} else {
1123 			*zpp = zp;
1124 			err = 0;
1125 		}
1126 
1127 		mutex_exit(&zp->z_lock);
1128 		sa_buf_rele(db, NULL);
1129 		zfs_znode_hold_exit(zfsvfs, zh);
1130 
1131 		if (err == EAGAIN) {
1132 			/* inode might need this to finish evict */
1133 			cond_resched();
1134 			goto again;
1135 		}
1136 		return (err);
1137 	}
1138 
1139 	/*
1140 	 * Not found create new znode/vnode but only if file exists.
1141 	 *
1142 	 * There is a small window where zfs_vget() could
1143 	 * find this object while a file create is still in
1144 	 * progress.  This is checked for in zfs_znode_alloc()
1145 	 *
1146 	 * if zfs_znode_alloc() fails it will drop the hold on the
1147 	 * bonus buffer.
1148 	 */
1149 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1150 	    doi.doi_bonus_type, NULL);
1151 	if (zp == NULL) {
1152 		err = SET_ERROR(ENOENT);
1153 	} else {
1154 		*zpp = zp;
1155 	}
1156 	zfs_znode_hold_exit(zfsvfs, zh);
1157 	return (err);
1158 }
1159 
1160 int
zfs_rezget(znode_t * zp)1161 zfs_rezget(znode_t *zp)
1162 {
1163 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1164 	dmu_object_info_t doi;
1165 	dmu_buf_t *db;
1166 	uint64_t obj_num = zp->z_id;
1167 	uint64_t mode;
1168 	uint64_t links;
1169 	sa_bulk_attr_t bulk[10];
1170 	int err;
1171 	int count = 0;
1172 	uint64_t gen;
1173 	uint64_t z_uid, z_gid;
1174 	uint64_t atime[2], mtime[2], ctime[2];
1175 	uint64_t projid = ZFS_DEFAULT_PROJID;
1176 	znode_hold_t *zh;
1177 
1178 	/*
1179 	 * skip ctldir, otherwise they will always get invalidated. This will
1180 	 * cause funny behaviour for the mounted snapdirs. Especially for
1181 	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1182 	 * anyone automount it again as long as someone is still using the
1183 	 * detached mount.
1184 	 */
1185 	if (zp->z_is_ctldir)
1186 		return (0);
1187 
1188 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1189 
1190 	mutex_enter(&zp->z_acl_lock);
1191 	if (zp->z_acl_cached) {
1192 		zfs_acl_free(zp->z_acl_cached);
1193 		zp->z_acl_cached = NULL;
1194 	}
1195 	mutex_exit(&zp->z_acl_lock);
1196 
1197 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1198 	if (zp->z_xattr_cached) {
1199 		nvlist_free(zp->z_xattr_cached);
1200 		zp->z_xattr_cached = NULL;
1201 	}
1202 	rw_exit(&zp->z_xattr_lock);
1203 
1204 	ASSERT(zp->z_sa_hdl == NULL);
1205 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1206 	if (err) {
1207 		zfs_znode_hold_exit(zfsvfs, zh);
1208 		return (err);
1209 	}
1210 
1211 	dmu_object_info_from_db(db, &doi);
1212 	if (doi.doi_bonus_type != DMU_OT_SA &&
1213 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1214 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1215 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1216 		sa_buf_rele(db, NULL);
1217 		zfs_znode_hold_exit(zfsvfs, zh);
1218 		return (SET_ERROR(EINVAL));
1219 	}
1220 
1221 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1222 
1223 	/* reload cached values */
1224 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1225 	    &gen, sizeof (gen));
1226 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1227 	    &zp->z_size, sizeof (zp->z_size));
1228 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1229 	    &links, sizeof (links));
1230 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1231 	    &zp->z_pflags, sizeof (zp->z_pflags));
1232 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1233 	    &z_uid, sizeof (z_uid));
1234 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1235 	    &z_gid, sizeof (z_gid));
1236 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1237 	    &mode, sizeof (mode));
1238 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1239 	    &atime, 16);
1240 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1241 	    &mtime, 16);
1242 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1243 	    &ctime, 16);
1244 
1245 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1246 		zfs_znode_dmu_fini(zp);
1247 		zfs_znode_hold_exit(zfsvfs, zh);
1248 		return (SET_ERROR(EIO));
1249 	}
1250 
1251 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1252 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1253 		    &projid, 8);
1254 		if (err != 0 && err != ENOENT) {
1255 			zfs_znode_dmu_fini(zp);
1256 			zfs_znode_hold_exit(zfsvfs, zh);
1257 			return (SET_ERROR(err));
1258 		}
1259 	}
1260 
1261 	zp->z_projid = projid;
1262 	zp->z_mode = ZTOI(zp)->i_mode = mode;
1263 	zfs_uid_write(ZTOI(zp), z_uid);
1264 	zfs_gid_write(ZTOI(zp), z_gid);
1265 
1266 	ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime);
1267 	ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime);
1268 	ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime);
1269 
1270 	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1271 		zfs_znode_dmu_fini(zp);
1272 		zfs_znode_hold_exit(zfsvfs, zh);
1273 		return (SET_ERROR(EIO));
1274 	}
1275 
1276 	set_nlink(ZTOI(zp), (uint32_t)links);
1277 	zfs_set_inode_flags(zp, ZTOI(zp));
1278 
1279 	zp->z_blksz = doi.doi_data_block_size;
1280 	zp->z_atime_dirty = B_FALSE;
1281 	zfs_inode_update(zp);
1282 
1283 	/*
1284 	 * If the file has zero links, then it has been unlinked on the send
1285 	 * side and it must be in the received unlinked set.
1286 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1287 	 * stale data and to prevent automatic removal of the file in
1288 	 * zfs_zinactive().  The file will be removed either when it is removed
1289 	 * on the send side and the next incremental stream is received or
1290 	 * when the unlinked set gets processed.
1291 	 */
1292 	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1293 	if (zp->z_unlinked)
1294 		zfs_znode_dmu_fini(zp);
1295 
1296 	zfs_znode_hold_exit(zfsvfs, zh);
1297 
1298 	return (0);
1299 }
1300 
1301 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1302 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1303 {
1304 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1305 	objset_t *os = zfsvfs->z_os;
1306 	uint64_t obj = zp->z_id;
1307 	uint64_t acl_obj = zfs_external_acl(zp);
1308 	znode_hold_t *zh;
1309 
1310 	zh = zfs_znode_hold_enter(zfsvfs, obj);
1311 	if (acl_obj) {
1312 		VERIFY(!zp->z_is_sa);
1313 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1314 	}
1315 	VERIFY(0 == dmu_object_free(os, obj, tx));
1316 	zfs_znode_dmu_fini(zp);
1317 	zfs_znode_hold_exit(zfsvfs, zh);
1318 }
1319 
1320 void
zfs_zinactive(znode_t * zp)1321 zfs_zinactive(znode_t *zp)
1322 {
1323 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1324 	uint64_t z_id = zp->z_id;
1325 	znode_hold_t *zh;
1326 
1327 	ASSERT(zp->z_sa_hdl);
1328 
1329 	/*
1330 	 * Don't allow a zfs_zget() while were trying to release this znode.
1331 	 */
1332 	zh = zfs_znode_hold_enter(zfsvfs, z_id);
1333 
1334 	mutex_enter(&zp->z_lock);
1335 
1336 	/*
1337 	 * If this was the last reference to a file with no links, remove
1338 	 * the file from the file system unless the file system is mounted
1339 	 * read-only.  That can happen, for example, if the file system was
1340 	 * originally read-write, the file was opened, then unlinked and
1341 	 * the file system was made read-only before the file was finally
1342 	 * closed.  The file will remain in the unlinked set.
1343 	 */
1344 	if (zp->z_unlinked) {
1345 		ASSERT(!zfsvfs->z_issnap);
1346 		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1347 			mutex_exit(&zp->z_lock);
1348 			zfs_znode_hold_exit(zfsvfs, zh);
1349 			zfs_rmnode(zp);
1350 			return;
1351 		}
1352 	}
1353 
1354 	mutex_exit(&zp->z_lock);
1355 	zfs_znode_dmu_fini(zp);
1356 
1357 	zfs_znode_hold_exit(zfsvfs, zh);
1358 }
1359 
1360 #if defined(HAVE_INODE_TIMESPEC64_TIMES)
1361 #define	zfs_compare_timespec timespec64_compare
1362 #else
1363 #define	zfs_compare_timespec timespec_compare
1364 #endif
1365 
1366 /*
1367  * Determine whether the znode's atime must be updated.  The logic mostly
1368  * duplicates the Linux kernel's relatime_need_update() functionality.
1369  * This function is only called if the underlying filesystem actually has
1370  * atime updates enabled.
1371  */
1372 boolean_t
zfs_relatime_need_update(const struct inode * ip)1373 zfs_relatime_need_update(const struct inode *ip)
1374 {
1375 	inode_timespec_t now;
1376 
1377 	gethrestime(&now);
1378 	/*
1379 	 * In relatime mode, only update the atime if the previous atime
1380 	 * is earlier than either the ctime or mtime or if at least a day
1381 	 * has passed since the last update of atime.
1382 	 */
1383 	if (zfs_compare_timespec(&ip->i_mtime, &ip->i_atime) >= 0)
1384 		return (B_TRUE);
1385 
1386 	if (zfs_compare_timespec(&ip->i_ctime, &ip->i_atime) >= 0)
1387 		return (B_TRUE);
1388 
1389 	if ((hrtime_t)now.tv_sec - (hrtime_t)ip->i_atime.tv_sec >= 24*60*60)
1390 		return (B_TRUE);
1391 
1392 	return (B_FALSE);
1393 }
1394 
1395 /*
1396  * Prepare to update znode time stamps.
1397  *
1398  *	IN:	zp	- znode requiring timestamp update
1399  *		flag	- ATTR_MTIME, ATTR_CTIME flags
1400  *
1401  *	OUT:	zp	- z_seq
1402  *		mtime	- new mtime
1403  *		ctime	- new ctime
1404  *
1405  *	Note: We don't update atime here, because we rely on Linux VFS to do
1406  *	atime updating.
1407  */
1408 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1409 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1410     uint64_t ctime[2])
1411 {
1412 	inode_timespec_t now;
1413 
1414 	gethrestime(&now);
1415 
1416 	zp->z_seq++;
1417 
1418 	if (flag & ATTR_MTIME) {
1419 		ZFS_TIME_ENCODE(&now, mtime);
1420 		ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime);
1421 		if (ZTOZSB(zp)->z_use_fuids) {
1422 			zp->z_pflags |= (ZFS_ARCHIVE |
1423 			    ZFS_AV_MODIFIED);
1424 		}
1425 	}
1426 
1427 	if (flag & ATTR_CTIME) {
1428 		ZFS_TIME_ENCODE(&now, ctime);
1429 		ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime);
1430 		if (ZTOZSB(zp)->z_use_fuids)
1431 			zp->z_pflags |= ZFS_ARCHIVE;
1432 	}
1433 }
1434 
1435 /*
1436  * Grow the block size for a file.
1437  *
1438  *	IN:	zp	- znode of file to free data in.
1439  *		size	- requested block size
1440  *		tx	- open transaction.
1441  *
1442  * NOTE: this function assumes that the znode is write locked.
1443  */
1444 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1445 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1446 {
1447 	int		error;
1448 	u_longlong_t	dummy;
1449 
1450 	if (size <= zp->z_blksz)
1451 		return;
1452 	/*
1453 	 * If the file size is already greater than the current blocksize,
1454 	 * we will not grow.  If there is more than one block in a file,
1455 	 * the blocksize cannot change.
1456 	 */
1457 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1458 		return;
1459 
1460 	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1461 	    size, 0, tx);
1462 
1463 	if (error == ENOTSUP)
1464 		return;
1465 	ASSERT0(error);
1466 
1467 	/* What blocksize did we actually get? */
1468 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1469 }
1470 
1471 /*
1472  * Increase the file length
1473  *
1474  *	IN:	zp	- znode of file to free data in.
1475  *		end	- new end-of-file
1476  *
1477  *	RETURN:	0 on success, error code on failure
1478  */
1479 static int
zfs_extend(znode_t * zp,uint64_t end)1480 zfs_extend(znode_t *zp, uint64_t end)
1481 {
1482 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1483 	dmu_tx_t *tx;
1484 	zfs_locked_range_t *lr;
1485 	uint64_t newblksz;
1486 	int error;
1487 
1488 	/*
1489 	 * We will change zp_size, lock the whole file.
1490 	 */
1491 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1492 
1493 	/*
1494 	 * Nothing to do if file already at desired length.
1495 	 */
1496 	if (end <= zp->z_size) {
1497 		zfs_rangelock_exit(lr);
1498 		return (0);
1499 	}
1500 	tx = dmu_tx_create(zfsvfs->z_os);
1501 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1502 	zfs_sa_upgrade_txholds(tx, zp);
1503 	if (end > zp->z_blksz &&
1504 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1505 		/*
1506 		 * We are growing the file past the current block size.
1507 		 */
1508 		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1509 			/*
1510 			 * File's blocksize is already larger than the
1511 			 * "recordsize" property.  Only let it grow to
1512 			 * the next power of 2.
1513 			 */
1514 			ASSERT(!ISP2(zp->z_blksz));
1515 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1516 		} else {
1517 			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1518 		}
1519 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1520 	} else {
1521 		newblksz = 0;
1522 	}
1523 
1524 	error = dmu_tx_assign(tx, TXG_WAIT);
1525 	if (error) {
1526 		dmu_tx_abort(tx);
1527 		zfs_rangelock_exit(lr);
1528 		return (error);
1529 	}
1530 
1531 	if (newblksz)
1532 		zfs_grow_blocksize(zp, newblksz, tx);
1533 
1534 	zp->z_size = end;
1535 
1536 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1537 	    &zp->z_size, sizeof (zp->z_size), tx));
1538 
1539 	zfs_rangelock_exit(lr);
1540 
1541 	dmu_tx_commit(tx);
1542 
1543 	return (0);
1544 }
1545 
1546 /*
1547  * zfs_zero_partial_page - Modeled after update_pages() but
1548  * with different arguments and semantics for use by zfs_freesp().
1549  *
1550  * Zeroes a piece of a single page cache entry for zp at offset
1551  * start and length len.
1552  *
1553  * Caller must acquire a range lock on the file for the region
1554  * being zeroed in order that the ARC and page cache stay in sync.
1555  */
1556 static void
zfs_zero_partial_page(znode_t * zp,uint64_t start,uint64_t len)1557 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1558 {
1559 	struct address_space *mp = ZTOI(zp)->i_mapping;
1560 	struct page *pp;
1561 	int64_t	off;
1562 	void *pb;
1563 
1564 	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1565 
1566 	off = start & (PAGE_SIZE - 1);
1567 	start &= PAGE_MASK;
1568 
1569 	pp = find_lock_page(mp, start >> PAGE_SHIFT);
1570 	if (pp) {
1571 		if (mapping_writably_mapped(mp))
1572 			flush_dcache_page(pp);
1573 
1574 		pb = kmap(pp);
1575 		bzero(pb + off, len);
1576 		kunmap(pp);
1577 
1578 		if (mapping_writably_mapped(mp))
1579 			flush_dcache_page(pp);
1580 
1581 		mark_page_accessed(pp);
1582 		SetPageUptodate(pp);
1583 		ClearPageError(pp);
1584 		unlock_page(pp);
1585 		put_page(pp);
1586 	}
1587 }
1588 
1589 /*
1590  * Free space in a file.
1591  *
1592  *	IN:	zp	- znode of file to free data in.
1593  *		off	- start of section to free.
1594  *		len	- length of section to free.
1595  *
1596  *	RETURN:	0 on success, error code on failure
1597  */
1598 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1599 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1600 {
1601 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1602 	zfs_locked_range_t *lr;
1603 	int error;
1604 
1605 	/*
1606 	 * Lock the range being freed.
1607 	 */
1608 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1609 
1610 	/*
1611 	 * Nothing to do if file already at desired length.
1612 	 */
1613 	if (off >= zp->z_size) {
1614 		zfs_rangelock_exit(lr);
1615 		return (0);
1616 	}
1617 
1618 	if (off + len > zp->z_size)
1619 		len = zp->z_size - off;
1620 
1621 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1622 
1623 	/*
1624 	 * Zero partial page cache entries.  This must be done under a
1625 	 * range lock in order to keep the ARC and page cache in sync.
1626 	 */
1627 	if (zp->z_is_mapped) {
1628 		loff_t first_page, last_page, page_len;
1629 		loff_t first_page_offset, last_page_offset;
1630 
1631 		/* first possible full page in hole */
1632 		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1633 		/* last page of hole */
1634 		last_page = (off + len) >> PAGE_SHIFT;
1635 
1636 		/* offset of first_page */
1637 		first_page_offset = first_page << PAGE_SHIFT;
1638 		/* offset of last_page */
1639 		last_page_offset = last_page << PAGE_SHIFT;
1640 
1641 		/* truncate whole pages */
1642 		if (last_page_offset > first_page_offset) {
1643 			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1644 			    first_page_offset, last_page_offset - 1);
1645 		}
1646 
1647 		/* truncate sub-page ranges */
1648 		if (first_page > last_page) {
1649 			/* entire punched area within a single page */
1650 			zfs_zero_partial_page(zp, off, len);
1651 		} else {
1652 			/* beginning of punched area at the end of a page */
1653 			page_len  = first_page_offset - off;
1654 			if (page_len > 0)
1655 				zfs_zero_partial_page(zp, off, page_len);
1656 
1657 			/* end of punched area at the beginning of a page */
1658 			page_len = off + len - last_page_offset;
1659 			if (page_len > 0)
1660 				zfs_zero_partial_page(zp, last_page_offset,
1661 				    page_len);
1662 		}
1663 	}
1664 	zfs_rangelock_exit(lr);
1665 
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Truncate a file
1671  *
1672  *	IN:	zp	- znode of file to free data in.
1673  *		end	- new end-of-file.
1674  *
1675  *	RETURN:	0 on success, error code on failure
1676  */
1677 static int
zfs_trunc(znode_t * zp,uint64_t end)1678 zfs_trunc(znode_t *zp, uint64_t end)
1679 {
1680 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1681 	dmu_tx_t *tx;
1682 	zfs_locked_range_t *lr;
1683 	int error;
1684 	sa_bulk_attr_t bulk[2];
1685 	int count = 0;
1686 
1687 	/*
1688 	 * We will change zp_size, lock the whole file.
1689 	 */
1690 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1691 
1692 	/*
1693 	 * Nothing to do if file already at desired length.
1694 	 */
1695 	if (end >= zp->z_size) {
1696 		zfs_rangelock_exit(lr);
1697 		return (0);
1698 	}
1699 
1700 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1701 	    DMU_OBJECT_END);
1702 	if (error) {
1703 		zfs_rangelock_exit(lr);
1704 		return (error);
1705 	}
1706 	tx = dmu_tx_create(zfsvfs->z_os);
1707 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708 	zfs_sa_upgrade_txholds(tx, zp);
1709 	dmu_tx_mark_netfree(tx);
1710 	error = dmu_tx_assign(tx, TXG_WAIT);
1711 	if (error) {
1712 		dmu_tx_abort(tx);
1713 		zfs_rangelock_exit(lr);
1714 		return (error);
1715 	}
1716 
1717 	zp->z_size = end;
1718 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1719 	    NULL, &zp->z_size, sizeof (zp->z_size));
1720 
1721 	if (end == 0) {
1722 		zp->z_pflags &= ~ZFS_SPARSE;
1723 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1724 		    NULL, &zp->z_pflags, 8);
1725 	}
1726 	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1727 
1728 	dmu_tx_commit(tx);
1729 	zfs_rangelock_exit(lr);
1730 
1731 	return (0);
1732 }
1733 
1734 /*
1735  * Free space in a file
1736  *
1737  *	IN:	zp	- znode of file to free data in.
1738  *		off	- start of range
1739  *		len	- end of range (0 => EOF)
1740  *		flag	- current file open mode flags.
1741  *		log	- TRUE if this action should be logged
1742  *
1743  *	RETURN:	0 on success, error code on failure
1744  */
1745 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1746 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1747 {
1748 	dmu_tx_t *tx;
1749 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1750 	zilog_t *zilog = zfsvfs->z_log;
1751 	uint64_t mode;
1752 	uint64_t mtime[2], ctime[2];
1753 	sa_bulk_attr_t bulk[3];
1754 	int count = 0;
1755 	int error;
1756 
1757 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1758 	    sizeof (mode))) != 0)
1759 		return (error);
1760 
1761 	if (off > zp->z_size) {
1762 		error =  zfs_extend(zp, off+len);
1763 		if (error == 0 && log)
1764 			goto log;
1765 		goto out;
1766 	}
1767 
1768 	if (len == 0) {
1769 		error = zfs_trunc(zp, off);
1770 	} else {
1771 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1772 		    off + len > zp->z_size)
1773 			error = zfs_extend(zp, off+len);
1774 	}
1775 	if (error || !log)
1776 		goto out;
1777 log:
1778 	tx = dmu_tx_create(zfsvfs->z_os);
1779 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1780 	zfs_sa_upgrade_txholds(tx, zp);
1781 	error = dmu_tx_assign(tx, TXG_WAIT);
1782 	if (error) {
1783 		dmu_tx_abort(tx);
1784 		goto out;
1785 	}
1786 
1787 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1788 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1789 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1790 	    NULL, &zp->z_pflags, 8);
1791 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1792 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1793 	ASSERT(error == 0);
1794 
1795 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1796 
1797 	dmu_tx_commit(tx);
1798 
1799 	zfs_inode_update(zp);
1800 	error = 0;
1801 
1802 out:
1803 	/*
1804 	 * Truncate the page cache - for file truncate operations, use
1805 	 * the purpose-built API for truncations.  For punching operations,
1806 	 * the truncation is handled under a range lock in zfs_free_range.
1807 	 */
1808 	if (len == 0)
1809 		truncate_setsize(ZTOI(zp), off);
1810 	return (error);
1811 }
1812 
1813 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1814 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1815 {
1816 	struct super_block *sb;
1817 	zfsvfs_t	*zfsvfs;
1818 	uint64_t	moid, obj, sa_obj, version;
1819 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1820 	uint64_t	norm = 0;
1821 	nvpair_t	*elem;
1822 	int		size;
1823 	int		error;
1824 	int		i;
1825 	znode_t		*rootzp = NULL;
1826 	vattr_t		vattr;
1827 	znode_t		*zp;
1828 	zfs_acl_ids_t	acl_ids;
1829 
1830 	/*
1831 	 * First attempt to create master node.
1832 	 */
1833 	/*
1834 	 * In an empty objset, there are no blocks to read and thus
1835 	 * there can be no i/o errors (which we assert below).
1836 	 */
1837 	moid = MASTER_NODE_OBJ;
1838 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1839 	    DMU_OT_NONE, 0, tx);
1840 	ASSERT(error == 0);
1841 
1842 	/*
1843 	 * Set starting attributes.
1844 	 */
1845 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1846 	elem = NULL;
1847 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1848 		/* For the moment we expect all zpl props to be uint64_ts */
1849 		uint64_t val;
1850 		char *name;
1851 
1852 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1853 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1854 		name = nvpair_name(elem);
1855 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1856 			if (val < version)
1857 				version = val;
1858 		} else {
1859 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1860 		}
1861 		ASSERT(error == 0);
1862 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1863 			norm = val;
1864 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1865 			sense = val;
1866 	}
1867 	ASSERT(version != 0);
1868 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1869 
1870 	/*
1871 	 * Create zap object used for SA attribute registration
1872 	 */
1873 
1874 	if (version >= ZPL_VERSION_SA) {
1875 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1876 		    DMU_OT_NONE, 0, tx);
1877 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1878 		ASSERT(error == 0);
1879 	} else {
1880 		sa_obj = 0;
1881 	}
1882 	/*
1883 	 * Create a delete queue.
1884 	 */
1885 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1886 
1887 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1888 	ASSERT(error == 0);
1889 
1890 	/*
1891 	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
1892 	 * to allow zfs_mknode to work.
1893 	 */
1894 	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1895 	vattr.va_mode = S_IFDIR|0755;
1896 	vattr.va_uid = crgetuid(cr);
1897 	vattr.va_gid = crgetgid(cr);
1898 
1899 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1900 	rootzp->z_unlinked = B_FALSE;
1901 	rootzp->z_atime_dirty = B_FALSE;
1902 	rootzp->z_is_sa = USE_SA(version, os);
1903 	rootzp->z_pflags = 0;
1904 
1905 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1906 	zfsvfs->z_os = os;
1907 	zfsvfs->z_parent = zfsvfs;
1908 	zfsvfs->z_version = version;
1909 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1910 	zfsvfs->z_use_sa = USE_SA(version, os);
1911 	zfsvfs->z_norm = norm;
1912 
1913 	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1914 	sb->s_fs_info = zfsvfs;
1915 
1916 	ZTOI(rootzp)->i_sb = sb;
1917 
1918 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1919 	    &zfsvfs->z_attr_table);
1920 
1921 	ASSERT(error == 0);
1922 
1923 	/*
1924 	 * Fold case on file systems that are always or sometimes case
1925 	 * insensitive.
1926 	 */
1927 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1928 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1929 
1930 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1931 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1932 	    offsetof(znode_t, z_link_node));
1933 
1934 	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1935 	zfsvfs->z_hold_size = size;
1936 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1937 	    KM_SLEEP);
1938 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1939 	for (i = 0; i != size; i++) {
1940 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1941 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1942 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1943 	}
1944 
1945 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1946 	    cr, NULL, &acl_ids));
1947 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1948 	ASSERT3P(zp, ==, rootzp);
1949 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1950 	ASSERT(error == 0);
1951 	zfs_acl_ids_free(&acl_ids);
1952 
1953 	atomic_set(&ZTOI(rootzp)->i_count, 0);
1954 	sa_handle_destroy(rootzp->z_sa_hdl);
1955 	kmem_cache_free(znode_cache, rootzp);
1956 
1957 	for (i = 0; i != size; i++) {
1958 		avl_destroy(&zfsvfs->z_hold_trees[i]);
1959 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1960 	}
1961 
1962 	mutex_destroy(&zfsvfs->z_znodes_lock);
1963 
1964 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1965 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1966 	kmem_free(sb, sizeof (struct super_block));
1967 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1968 }
1969 #endif /* _KERNEL */
1970 
1971 static int
zfs_sa_setup(objset_t * osp,sa_attr_type_t ** sa_table)1972 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1973 {
1974 	uint64_t sa_obj = 0;
1975 	int error;
1976 
1977 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1978 	if (error != 0 && error != ENOENT)
1979 		return (error);
1980 
1981 	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1982 	return (error);
1983 }
1984 
1985 static int
zfs_grab_sa_handle(objset_t * osp,uint64_t obj,sa_handle_t ** hdlp,dmu_buf_t ** db,void * tag)1986 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1987     dmu_buf_t **db, void *tag)
1988 {
1989 	dmu_object_info_t doi;
1990 	int error;
1991 
1992 	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1993 		return (error);
1994 
1995 	dmu_object_info_from_db(*db, &doi);
1996 	if ((doi.doi_bonus_type != DMU_OT_SA &&
1997 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
1998 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1999 	    doi.doi_bonus_size < sizeof (znode_phys_t))) {
2000 		sa_buf_rele(*db, tag);
2001 		return (SET_ERROR(ENOTSUP));
2002 	}
2003 
2004 	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
2005 	if (error != 0) {
2006 		sa_buf_rele(*db, tag);
2007 		return (error);
2008 	}
2009 
2010 	return (0);
2011 }
2012 
2013 static void
zfs_release_sa_handle(sa_handle_t * hdl,dmu_buf_t * db,void * tag)2014 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
2015 {
2016 	sa_handle_destroy(hdl);
2017 	sa_buf_rele(db, tag);
2018 }
2019 
2020 /*
2021  * Given an object number, return its parent object number and whether
2022  * or not the object is an extended attribute directory.
2023  */
2024 static int
zfs_obj_to_pobj(objset_t * osp,sa_handle_t * hdl,sa_attr_type_t * sa_table,uint64_t * pobjp,int * is_xattrdir)2025 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
2026     uint64_t *pobjp, int *is_xattrdir)
2027 {
2028 	uint64_t parent;
2029 	uint64_t pflags;
2030 	uint64_t mode;
2031 	uint64_t parent_mode;
2032 	sa_bulk_attr_t bulk[3];
2033 	sa_handle_t *sa_hdl;
2034 	dmu_buf_t *sa_db;
2035 	int count = 0;
2036 	int error;
2037 
2038 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
2039 	    &parent, sizeof (parent));
2040 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
2041 	    &pflags, sizeof (pflags));
2042 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2043 	    &mode, sizeof (mode));
2044 
2045 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
2046 		return (error);
2047 
2048 	/*
2049 	 * When a link is removed its parent pointer is not changed and will
2050 	 * be invalid.  There are two cases where a link is removed but the
2051 	 * file stays around, when it goes to the delete queue and when there
2052 	 * are additional links.
2053 	 */
2054 	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
2055 	if (error != 0)
2056 		return (error);
2057 
2058 	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
2059 	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2060 	if (error != 0)
2061 		return (error);
2062 
2063 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
2064 
2065 	/*
2066 	 * Extended attributes can be applied to files, directories, etc.
2067 	 * Otherwise the parent must be a directory.
2068 	 */
2069 	if (!*is_xattrdir && !S_ISDIR(parent_mode))
2070 		return (SET_ERROR(EINVAL));
2071 
2072 	*pobjp = parent;
2073 
2074 	return (0);
2075 }
2076 
2077 /*
2078  * Given an object number, return some zpl level statistics
2079  */
2080 static int
zfs_obj_to_stats_impl(sa_handle_t * hdl,sa_attr_type_t * sa_table,zfs_stat_t * sb)2081 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2082     zfs_stat_t *sb)
2083 {
2084 	sa_bulk_attr_t bulk[4];
2085 	int count = 0;
2086 
2087 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2088 	    &sb->zs_mode, sizeof (sb->zs_mode));
2089 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2090 	    &sb->zs_gen, sizeof (sb->zs_gen));
2091 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2092 	    &sb->zs_links, sizeof (sb->zs_links));
2093 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2094 	    &sb->zs_ctime, sizeof (sb->zs_ctime));
2095 
2096 	return (sa_bulk_lookup(hdl, bulk, count));
2097 }
2098 
2099 static int
zfs_obj_to_path_impl(objset_t * osp,uint64_t obj,sa_handle_t * hdl,sa_attr_type_t * sa_table,char * buf,int len)2100 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2101     sa_attr_type_t *sa_table, char *buf, int len)
2102 {
2103 	sa_handle_t *sa_hdl;
2104 	sa_handle_t *prevhdl = NULL;
2105 	dmu_buf_t *prevdb = NULL;
2106 	dmu_buf_t *sa_db = NULL;
2107 	char *path = buf + len - 1;
2108 	int error;
2109 
2110 	*path = '\0';
2111 	sa_hdl = hdl;
2112 
2113 	uint64_t deleteq_obj;
2114 	VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
2115 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
2116 	error = zap_lookup_int(osp, deleteq_obj, obj);
2117 	if (error == 0) {
2118 		return (ESTALE);
2119 	} else if (error != ENOENT) {
2120 		return (error);
2121 	}
2122 	error = 0;
2123 
2124 	for (;;) {
2125 		uint64_t pobj = 0;
2126 		char component[MAXNAMELEN + 2];
2127 		size_t complen;
2128 		int is_xattrdir = 0;
2129 
2130 		if (prevdb)
2131 			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2132 
2133 		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2134 		    &is_xattrdir)) != 0)
2135 			break;
2136 
2137 		if (pobj == obj) {
2138 			if (path[0] != '/')
2139 				*--path = '/';
2140 			break;
2141 		}
2142 
2143 		component[0] = '/';
2144 		if (is_xattrdir) {
2145 			(void) sprintf(component + 1, "<xattrdir>");
2146 		} else {
2147 			error = zap_value_search(osp, pobj, obj,
2148 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
2149 			if (error != 0)
2150 				break;
2151 		}
2152 
2153 		complen = strlen(component);
2154 		path -= complen;
2155 		ASSERT(path >= buf);
2156 		bcopy(component, path, complen);
2157 		obj = pobj;
2158 
2159 		if (sa_hdl != hdl) {
2160 			prevhdl = sa_hdl;
2161 			prevdb = sa_db;
2162 		}
2163 		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2164 		if (error != 0) {
2165 			sa_hdl = prevhdl;
2166 			sa_db = prevdb;
2167 			break;
2168 		}
2169 	}
2170 
2171 	if (sa_hdl != NULL && sa_hdl != hdl) {
2172 		ASSERT(sa_db != NULL);
2173 		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2174 	}
2175 
2176 	if (error == 0)
2177 		(void) memmove(buf, path, buf + len - path);
2178 
2179 	return (error);
2180 }
2181 
2182 int
zfs_obj_to_path(objset_t * osp,uint64_t obj,char * buf,int len)2183 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2184 {
2185 	sa_attr_type_t *sa_table;
2186 	sa_handle_t *hdl;
2187 	dmu_buf_t *db;
2188 	int error;
2189 
2190 	error = zfs_sa_setup(osp, &sa_table);
2191 	if (error != 0)
2192 		return (error);
2193 
2194 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2195 	if (error != 0)
2196 		return (error);
2197 
2198 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2199 
2200 	zfs_release_sa_handle(hdl, db, FTAG);
2201 	return (error);
2202 }
2203 
2204 int
zfs_obj_to_stats(objset_t * osp,uint64_t obj,zfs_stat_t * sb,char * buf,int len)2205 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2206     char *buf, int len)
2207 {
2208 	char *path = buf + len - 1;
2209 	sa_attr_type_t *sa_table;
2210 	sa_handle_t *hdl;
2211 	dmu_buf_t *db;
2212 	int error;
2213 
2214 	*path = '\0';
2215 
2216 	error = zfs_sa_setup(osp, &sa_table);
2217 	if (error != 0)
2218 		return (error);
2219 
2220 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2221 	if (error != 0)
2222 		return (error);
2223 
2224 	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2225 	if (error != 0) {
2226 		zfs_release_sa_handle(hdl, db, FTAG);
2227 		return (error);
2228 	}
2229 
2230 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2231 
2232 	zfs_release_sa_handle(hdl, db, FTAG);
2233 	return (error);
2234 }
2235 
2236 #if defined(_KERNEL)
2237 EXPORT_SYMBOL(zfs_create_fs);
2238 EXPORT_SYMBOL(zfs_obj_to_path);
2239 
2240 /* CSTYLED */
2241 module_param(zfs_object_mutex_size, uint, 0644);
2242 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
2243 module_param(zfs_unlink_suspend_progress, int, 0644);
2244 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
2245 "(debug - leaks space into the unlinked set)");
2246 #endif
2247