xref: /xnu-11215/osfmk/vm/vm_object.c (revision 4f1223e8)
1 /*
2  * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3  *
4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. The rights granted to you under the License
10  * may not be used to create, or enable the creation or redistribution of,
11  * unlawful or unlicensed copies of an Apple operating system, or to
12  * circumvent, violate, or enable the circumvention or violation of, any
13  * terms of an Apple operating system software license agreement.
14  *
15  * Please obtain a copy of the License at
16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
17  *
18  * The Original Code and all software distributed under the License are
19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23  * Please see the License for the specific language governing rights and
24  * limitations under the License.
25  *
26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27  */
28 /*
29  * @OSF_COPYRIGHT@
30  */
31 /*
32  * Mach Operating System
33  * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34  * All Rights Reserved.
35  *
36  * Permission to use, copy, modify and distribute this software and its
37  * documentation is hereby granted, provided that both the copyright
38  * notice and this permission notice appear in all copies of the
39  * software, derivative works or modified versions, and any portions
40  * thereof, and that both notices appear in supporting documentation.
41  *
42  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45  *
46  * Carnegie Mellon requests users of this software to return to
47  *
48  *  Software Distribution Coordinator  or  [email protected]
49  *  School of Computer Science
50  *  Carnegie Mellon University
51  *  Pittsburgh PA 15213-3890
52  *
53  * any improvements or extensions that they make and grant Carnegie Mellon
54  * the rights to redistribute these changes.
55  */
56 /*
57  */
58 /*
59  *	File:	vm/vm_object.c
60  *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
61  *
62  *	Virtual memory object module.
63  */
64 
65 #include <debug.h>
66 
67 #include <mach/mach_types.h>
68 #include <mach/memory_object.h>
69 #include <mach/vm_param.h>
70 
71 #include <mach/sdt.h>
72 
73 #include <ipc/ipc_types.h>
74 #include <ipc/ipc_port.h>
75 
76 #include <kern/kern_types.h>
77 #include <kern/assert.h>
78 #include <kern/queue.h>
79 #include <kern/kalloc.h>
80 #include <kern/zalloc.h>
81 #include <kern/host.h>
82 #include <kern/host_statistics.h>
83 #include <kern/processor.h>
84 #include <kern/misc_protos.h>
85 #include <kern/policy_internal.h>
86 
87 #include <sys/kdebug.h>
88 #include <sys/kdebug_triage.h>
89 
90 #include <vm/memory_object_internal.h>
91 #include <vm/vm_compressor_pager_internal.h>
92 #include <vm/vm_fault_internal.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object_internal.h>
95 #include <vm/vm_page_internal.h>
96 #include <vm/vm_pageout_internal.h>
97 #include <vm/vm_protos_internal.h>
98 #include <vm/vm_purgeable_internal.h>
99 #include <vm/vm_ubc.h>
100 
101 #include <vm/vm_compressor_xnu.h>
102 #include <os/hash.h>
103 
104 #if CONFIG_PHANTOM_CACHE
105 #include <vm/vm_phantom_cache_internal.h>
106 #endif
107 
108 #if VM_OBJECT_ACCESS_TRACKING
109 uint64_t vm_object_access_tracking_reads = 0;
110 uint64_t vm_object_access_tracking_writes = 0;
111 #endif /* VM_OBJECT_ACCESS_TRACKING */
112 
113 boolean_t vm_object_collapse_compressor_allowed = TRUE;
114 
115 struct vm_counters vm_counters;
116 
117 os_refgrp_decl(, vm_object_refgrp, "vm_object", NULL);
118 
119 #if DEVELOPMENT || DEBUG
120 extern struct memory_object_pager_ops shared_region_pager_ops;
121 extern unsigned int shared_region_pagers_resident_count;
122 extern unsigned int shared_region_pagers_resident_peak;
123 #endif /* DEVELOPMENT || DEBUG */
124 
125 #if VM_OBJECT_TRACKING
126 btlog_t vm_object_tracking_btlog;
127 
128 void
vm_object_tracking_init(void)129 vm_object_tracking_init(void)
130 {
131 	int vm_object_tracking;
132 
133 	vm_object_tracking = 1;
134 	PE_parse_boot_argn("vm_object_tracking", &vm_object_tracking,
135 	    sizeof(vm_object_tracking));
136 
137 	if (vm_object_tracking) {
138 		vm_object_tracking_btlog = btlog_create(BTLOG_HASH,
139 		    VM_OBJECT_TRACKING_NUM_RECORDS);
140 		assert(vm_object_tracking_btlog);
141 	}
142 }
143 #endif /* VM_OBJECT_TRACKING */
144 
145 /*
146  *	Virtual memory objects maintain the actual data
147  *	associated with allocated virtual memory.  A given
148  *	page of memory exists within exactly one object.
149  *
150  *	An object is only deallocated when all "references"
151  *	are given up.
152  *
153  *	Associated with each object is a list of all resident
154  *	memory pages belonging to that object; this list is
155  *	maintained by the "vm_page" module, but locked by the object's
156  *	lock.
157  *
158  *	Each object also records the memory object reference
159  *	that is used by the kernel to request and write
160  *	back data (the memory object, field "pager"), etc...
161  *
162  *	Virtual memory objects are allocated to provide
163  *	zero-filled memory (vm_allocate) or map a user-defined
164  *	memory object into a virtual address space (vm_map).
165  *
166  *	Virtual memory objects that refer to a user-defined
167  *	memory object are called "permanent", because all changes
168  *	made in virtual memory are reflected back to the
169  *	memory manager, which may then store it permanently.
170  *	Other virtual memory objects are called "temporary",
171  *	meaning that changes need be written back only when
172  *	necessary to reclaim pages, and that storage associated
173  *	with the object can be discarded once it is no longer
174  *	mapped.
175  *
176  *	A permanent memory object may be mapped into more
177  *	than one virtual address space.  Moreover, two threads
178  *	may attempt to make the first mapping of a memory
179  *	object concurrently.  Only one thread is allowed to
180  *	complete this mapping; all others wait for the
181  *	"pager_initialized" field is asserted, indicating
182  *	that the first thread has initialized all of the
183  *	necessary fields in the virtual memory object structure.
184  *
185  *	The kernel relies on a *default memory manager* to
186  *	provide backing storage for the zero-filled virtual
187  *	memory objects.  The pager memory objects associated
188  *	with these temporary virtual memory objects are only
189  *	requested from the default memory manager when it
190  *	becomes necessary.  Virtual memory objects
191  *	that depend on the default memory manager are called
192  *	"internal".  The "pager_created" field is provided to
193  *	indicate whether these ports have ever been allocated.
194  *
195  *	The kernel may also create virtual memory objects to
196  *	hold changed pages after a copy-on-write operation.
197  *	In this case, the virtual memory object (and its
198  *	backing storage -- its memory object) only contain
199  *	those pages that have been changed.  The "shadow"
200  *	field refers to the virtual memory object that contains
201  *	the remainder of the contents.  The "shadow_offset"
202  *	field indicates where in the "shadow" these contents begin.
203  *	The "copy" field refers to a virtual memory object
204  *	to which changed pages must be copied before changing
205  *	this object, in order to implement another form
206  *	of copy-on-write optimization.
207  *
208  *	The virtual memory object structure also records
209  *	the attributes associated with its memory object.
210  *	The "pager_ready", "can_persist" and "copy_strategy"
211  *	fields represent those attributes.  The "cached_list"
212  *	field is used in the implementation of the persistence
213  *	attribute.
214  *
215  * ZZZ Continue this comment.
216  */
217 
218 /* Forward declarations for internal functions. */
219 static kern_return_t    vm_object_terminate(
220 	vm_object_t     object);
221 
222 static void             vm_object_do_collapse(
223 	vm_object_t     object,
224 	vm_object_t     backing_object);
225 
226 static void             vm_object_do_bypass(
227 	vm_object_t     object,
228 	vm_object_t     backing_object);
229 
230 static void             vm_object_release_pager(
231 	memory_object_t pager);
232 
233 SECURITY_READ_ONLY_LATE(zone_t) vm_object_zone; /* vm backing store zone */
234 
235 /*
236  * Wired-down kernel memory belongs to this memory object (kernel_object)
237  * by default to avoid wasting data structures.
238  */
239 static struct vm_object                 kernel_object_store VM_PAGE_PACKED_ALIGNED;
240 const vm_object_t                       kernel_object_default = &kernel_object_store;
241 
242 static struct vm_object                 compressor_object_store VM_PAGE_PACKED_ALIGNED;
243 const vm_object_t                       compressor_object = &compressor_object_store;
244 
245 /*
246  * This object holds all pages that have been retired due to errors like ECC.
247  * The system should never use the page or look at its contents. The offset
248  * in this object is the same as the page's physical address.
249  */
250 static struct vm_object                 retired_pages_object_store VM_PAGE_PACKED_ALIGNED;
251 const vm_object_t                       retired_pages_object = &retired_pages_object_store;
252 
253 
254 static struct vm_object                 exclaves_object_store VM_PAGE_PACKED_ALIGNED;
255 const vm_object_t                       exclaves_object = &exclaves_object_store;
256 
257 
258 /*
259  *	Virtual memory objects are initialized from
260  *	a template (see vm_object_allocate).
261  *
262  *	When adding a new field to the virtual memory
263  *	object structure, be sure to add initialization
264  *	(see _vm_object_allocate()).
265  */
266 static const struct vm_object vm_object_template = {
267 	.memq.prev = 0,
268 	.memq.next = 0,
269 	/*
270 	 * The lock will be initialized for each allocated object in
271 	 * _vm_object_allocate(), so we don't need to initialize it in
272 	 * the vm_object_template.
273 	 */
274 	.vo_size = 0,
275 	.memq_hint = VM_PAGE_NULL,
276 	/*
277 	 * The ref count will be initialized for each allocated object in
278 	 * _vm_object_allocate(), so we don't need to initialize it in the
279 	 * vm_object_template.
280 	 */
281 	.resident_page_count = 0,
282 	.wired_page_count = 0,
283 	.reusable_page_count = 0,
284 	.vo_copy = VM_OBJECT_NULL,
285 	.vo_copy_version = 0,
286 	.vo_inherit_copy_none = false,
287 	.shadow = VM_OBJECT_NULL,
288 	.vo_shadow_offset = (vm_object_offset_t) 0,
289 	.pager = MEMORY_OBJECT_NULL,
290 	.paging_offset = 0,
291 	.pager_control = MEMORY_OBJECT_CONTROL_NULL,
292 	.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC,
293 	.paging_in_progress = 0,
294 	.vo_size_delta = 0,
295 	.activity_in_progress = 0,
296 
297 	/* Begin bitfields */
298 	.all_wanted = 0, /* all bits FALSE */
299 	.pager_created = FALSE,
300 	.pager_initialized = FALSE,
301 	.pager_ready = FALSE,
302 	.pager_trusted = FALSE,
303 	.can_persist = FALSE,
304 	.internal = TRUE,
305 	.private = FALSE,
306 	.pageout = FALSE,
307 	.alive = TRUE,
308 	.purgable = VM_PURGABLE_DENY,
309 	.purgeable_when_ripe = FALSE,
310 	.purgeable_only_by_kernel = FALSE,
311 	.shadowed = FALSE,
312 	.true_share = FALSE,
313 	.terminating = FALSE,
314 	.named = FALSE,
315 	.shadow_severed = FALSE,
316 	.phys_contiguous = FALSE,
317 	.nophyscache = FALSE,
318 	/* End bitfields */
319 
320 	.cached_list.prev = NULL,
321 	.cached_list.next = NULL,
322 
323 	.last_alloc = (vm_object_offset_t) 0,
324 	.sequential = (vm_object_offset_t) 0,
325 	.pages_created = 0,
326 	.pages_used = 0,
327 	.scan_collisions = 0,
328 #if CONFIG_PHANTOM_CACHE
329 	.phantom_object_id = 0,
330 #endif
331 	.cow_hint = ~(vm_offset_t)0,
332 
333 	/* cache bitfields */
334 	.wimg_bits = VM_WIMG_USE_DEFAULT,
335 	.set_cache_attr = FALSE,
336 	.object_is_shared_cache = FALSE,
337 	.code_signed = FALSE,
338 	.transposed = FALSE,
339 	.mapping_in_progress = FALSE,
340 	.phantom_isssd = FALSE,
341 	.volatile_empty = FALSE,
342 	.volatile_fault = FALSE,
343 	.all_reusable = FALSE,
344 	.blocked_access = FALSE,
345 	.vo_ledger_tag = VM_LEDGER_TAG_NONE,
346 	.vo_no_footprint = FALSE,
347 #if CONFIG_IOSCHED || UPL_DEBUG
348 	.uplq.prev = NULL,
349 	.uplq.next = NULL,
350 #endif /* UPL_DEBUG */
351 #ifdef VM_PIP_DEBUG
352 	.pip_holders = {0},
353 #endif /* VM_PIP_DEBUG */
354 
355 	.objq.next = NULL,
356 	.objq.prev = NULL,
357 	.task_objq.next = NULL,
358 	.task_objq.prev = NULL,
359 
360 	.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX,
361 	.purgeable_queue_group = 0,
362 
363 	.wire_tag = VM_KERN_MEMORY_NONE,
364 #if !VM_TAG_ACTIVE_UPDATE
365 	.wired_objq.next = NULL,
366 	.wired_objq.prev = NULL,
367 #endif /* ! VM_TAG_ACTIVE_UPDATE */
368 
369 	.io_tracking = FALSE,
370 
371 #if CONFIG_SECLUDED_MEMORY
372 	.eligible_for_secluded = FALSE,
373 	.can_grab_secluded = FALSE,
374 #else /* CONFIG_SECLUDED_MEMORY */
375 	.__object3_unused_bits = 0,
376 #endif /* CONFIG_SECLUDED_MEMORY */
377 
378 	.for_realtime = false,
379 	.no_pager_reason = VM_OBJECT_DESTROY_UNKNOWN_REASON,
380 
381 #if VM_OBJECT_ACCESS_TRACKING
382 	.access_tracking = FALSE,
383 	.access_tracking_reads = 0,
384 	.access_tracking_writes = 0,
385 #endif /* VM_OBJECT_ACCESS_TRACKING */
386 
387 #if DEBUG
388 	.purgeable_owner_bt = {0},
389 	.vo_purgeable_volatilizer = NULL,
390 	.purgeable_volatilizer_bt = {0},
391 #endif /* DEBUG */
392 };
393 
394 LCK_GRP_DECLARE(vm_object_lck_grp, "vm_object");
395 LCK_GRP_DECLARE(vm_object_cache_lck_grp, "vm_object_cache");
396 LCK_ATTR_DECLARE(vm_object_lck_attr, 0, 0);
397 LCK_ATTR_DECLARE(kernel_object_lck_attr, 0, LCK_ATTR_DEBUG);
398 LCK_ATTR_DECLARE(compressor_object_lck_attr, 0, LCK_ATTR_DEBUG);
399 
400 unsigned int vm_page_purged_wired = 0;
401 unsigned int vm_page_purged_busy = 0;
402 unsigned int vm_page_purged_others = 0;
403 
404 static queue_head_t     vm_object_cached_list;
405 static uint32_t         vm_object_cache_pages_freed = 0;
406 static uint32_t         vm_object_cache_pages_moved = 0;
407 static uint32_t         vm_object_cache_pages_skipped = 0;
408 static uint32_t         vm_object_cache_adds = 0;
409 static uint32_t         vm_object_cached_count = 0;
410 static LCK_MTX_DECLARE_ATTR(vm_object_cached_lock_data,
411     &vm_object_cache_lck_grp, &vm_object_lck_attr);
412 
413 static uint32_t         vm_object_page_grab_failed = 0;
414 static uint32_t         vm_object_page_grab_skipped = 0;
415 static uint32_t         vm_object_page_grab_returned = 0;
416 static uint32_t         vm_object_page_grab_pmapped = 0;
417 static uint32_t         vm_object_page_grab_reactivations = 0;
418 
419 #define vm_object_cache_lock_spin()             \
420 	        lck_mtx_lock_spin(&vm_object_cached_lock_data)
421 #define vm_object_cache_unlock()        \
422 	        lck_mtx_unlock(&vm_object_cached_lock_data)
423 
424 static void     vm_object_cache_remove_locked(vm_object_t);
425 
426 
427 static void vm_object_reap(vm_object_t object);
428 static void vm_object_reap_async(vm_object_t object);
429 static void vm_object_reaper_thread(void);
430 
431 static LCK_MTX_DECLARE_ATTR(vm_object_reaper_lock_data,
432     &vm_object_lck_grp, &vm_object_lck_attr);
433 
434 static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */
435 unsigned int vm_object_reap_count = 0;
436 unsigned int vm_object_reap_count_async = 0;
437 
438 #define vm_object_reaper_lock()         \
439 	        lck_mtx_lock(&vm_object_reaper_lock_data)
440 #define vm_object_reaper_lock_spin()            \
441 	        lck_mtx_lock_spin(&vm_object_reaper_lock_data)
442 #define vm_object_reaper_unlock()       \
443 	        lck_mtx_unlock(&vm_object_reaper_lock_data)
444 
445 #if CONFIG_IOSCHED
446 /* I/O Re-prioritization request list */
447 struct mpsc_daemon_queue io_reprioritize_q;
448 
449 ZONE_DEFINE_TYPE(io_reprioritize_req_zone, "io_reprioritize_req",
450     struct io_reprioritize_req, ZC_NONE);
451 
452 /* I/O re-prioritization MPSC callback */
453 static void io_reprioritize(mpsc_queue_chain_t elm, mpsc_daemon_queue_t dq);
454 
455 void vm_page_request_reprioritize(vm_object_t, uint64_t, uint32_t, int);
456 void vm_page_handle_prio_inversion(vm_object_t, vm_page_t);
457 void vm_decmp_upl_reprioritize(upl_t, int);
458 #endif
459 
460 void
vm_object_set_size(vm_object_t object,vm_object_size_t outer_size,vm_object_size_t inner_size)461 vm_object_set_size(
462 	vm_object_t             object,
463 	vm_object_size_t        outer_size,
464 	vm_object_size_t        inner_size)
465 {
466 	object->vo_size = vm_object_round_page(outer_size);
467 #if KASAN
468 	assert(object->vo_size - inner_size <= USHRT_MAX);
469 	object->vo_size_delta = (unsigned short)(object->vo_size - inner_size);
470 #else
471 	(void)inner_size;
472 #endif
473 }
474 
475 
476 /*
477  *	vm_object_allocate:
478  *
479  *	Returns a new object with the given size.
480  */
481 
482 __private_extern__ void
_vm_object_allocate(vm_object_size_t size,vm_object_t object)483 _vm_object_allocate(
484 	vm_object_size_t        size,
485 	vm_object_t             object)
486 {
487 	*object = vm_object_template;
488 	vm_page_queue_init(&object->memq);
489 #if UPL_DEBUG || CONFIG_IOSCHED
490 	queue_init(&object->uplq);
491 #endif
492 	vm_object_lock_init(object);
493 	vm_object_set_size(object, size, size);
494 
495 	os_ref_init_raw(&object->ref_count, &vm_object_refgrp);
496 
497 #if VM_OBJECT_TRACKING_OP_CREATED
498 	if (vm_object_tracking_btlog) {
499 		btlog_record(vm_object_tracking_btlog, object,
500 		    VM_OBJECT_TRACKING_OP_CREATED,
501 		    btref_get(__builtin_frame_address(0), 0));
502 	}
503 #endif /* VM_OBJECT_TRACKING_OP_CREATED */
504 }
505 
506 __private_extern__ vm_object_t
vm_object_allocate(vm_object_size_t size)507 vm_object_allocate(
508 	vm_object_size_t        size)
509 {
510 	vm_object_t object;
511 
512 	object = zalloc_flags(vm_object_zone, Z_WAITOK | Z_NOFAIL);
513 	_vm_object_allocate(size, object);
514 
515 	return object;
516 }
517 
518 TUNABLE(bool, workaround_41447923, "workaround_41447923", false);
519 
520 /*
521  *	vm_object_bootstrap:
522  *
523  *	Initialize the VM objects module.
524  */
525 __startup_func
526 void
vm_object_bootstrap(void)527 vm_object_bootstrap(void)
528 {
529 	vm_size_t       vm_object_size;
530 
531 	assert(sizeof(mo_ipc_object_bits_t) == sizeof(ipc_object_bits_t));
532 
533 	vm_object_size = (sizeof(struct vm_object) + (VM_PAGE_PACKED_PTR_ALIGNMENT - 1)) &
534 	    ~(VM_PAGE_PACKED_PTR_ALIGNMENT - 1);
535 
536 	vm_object_zone = zone_create("vm objects", vm_object_size,
537 	    ZC_NOENCRYPT | ZC_ALIGNMENT_REQUIRED | ZC_VM | ZC_NO_TBI_TAG);
538 
539 	queue_init(&vm_object_cached_list);
540 
541 	queue_init(&vm_object_reaper_queue);
542 
543 	/*
544 	 *	Initialize the "kernel object"
545 	 */
546 
547 	/*
548 	 * Note that in the following size specifications, we need to add 1 because
549 	 * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
550 	 */
551 	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, kernel_object_default);
552 	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, compressor_object);
553 	kernel_object_default->copy_strategy = MEMORY_OBJECT_COPY_NONE;
554 	compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
555 	kernel_object_default->no_tag_update = TRUE;
556 
557 	/*
558 	 * The object to hold retired VM pages.
559 	 */
560 	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, retired_pages_object);
561 	retired_pages_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
562 
563 	/**
564 	 * The object to hold pages owned by exclaves.
565 	 */
566 	_vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, exclaves_object);
567 	exclaves_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
568 }
569 
570 #if CONFIG_IOSCHED
571 void
vm_io_reprioritize_init(void)572 vm_io_reprioritize_init(void)
573 {
574 	kern_return_t   result;
575 
576 	result = mpsc_daemon_queue_init_with_thread(&io_reprioritize_q, io_reprioritize, BASEPRI_KERNEL,
577 	    "VM_io_reprioritize_thread", MPSC_DAEMON_INIT_NONE);
578 	if (result != KERN_SUCCESS) {
579 		panic("Unable to start I/O reprioritization thread (%d)", result);
580 	}
581 }
582 #endif
583 
584 void
vm_object_reaper_init(void)585 vm_object_reaper_init(void)
586 {
587 	kern_return_t   kr;
588 	thread_t        thread;
589 
590 	kr = kernel_thread_start_priority(
591 		(thread_continue_t) vm_object_reaper_thread,
592 		NULL,
593 		BASEPRI_VM,
594 		&thread);
595 	if (kr != KERN_SUCCESS) {
596 		panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
597 	}
598 	thread_set_thread_name(thread, "VM_object_reaper_thread");
599 	thread_deallocate(thread);
600 }
601 
602 
603 /*
604  *	vm_object_deallocate:
605  *
606  *	Release a reference to the specified object,
607  *	gained either through a vm_object_allocate
608  *	or a vm_object_reference call.  When all references
609  *	are gone, storage associated with this object
610  *	may be relinquished.
611  *
612  *	No object may be locked.
613  */
614 unsigned long vm_object_deallocate_shared_successes = 0;
615 unsigned long vm_object_deallocate_shared_failures = 0;
616 unsigned long vm_object_deallocate_shared_swap_failures = 0;
617 
618 __private_extern__ void
vm_object_deallocate(vm_object_t object)619 vm_object_deallocate(
620 	vm_object_t     object)
621 {
622 	vm_object_t     shadow = VM_OBJECT_NULL;
623 
624 //	if(object)dbgLog(object, object->ref_count, object->can_persist, 3);	/* (TEST/DEBUG) */
625 //	else dbgLog(object, 0, 0, 3);	/* (TEST/DEBUG) */
626 
627 	if (object == VM_OBJECT_NULL) {
628 		return;
629 	}
630 
631 	if (is_kernel_object(object) || object == compressor_object || object == retired_pages_object) {
632 		vm_object_lock_shared(object);
633 
634 		if (os_ref_get_count_raw(&object->ref_count) == 1) {
635 			if (is_kernel_object(object)) {
636 				panic("vm_object_deallocate: losing a kernel_object");
637 			} else if (object == retired_pages_object) {
638 				panic("vm_object_deallocate: losing retired_pages_object");
639 			} else {
640 				panic("vm_object_deallocate: losing compressor_object");
641 			}
642 		}
643 
644 		os_ref_release_live_raw(&object->ref_count, &vm_object_refgrp);
645 
646 		vm_object_unlock(object);
647 		return;
648 	}
649 
650 	if (os_ref_get_count_raw(&object->ref_count) == 2 &&
651 	    object->named) {
652 		/*
653 		 * This "named" object's reference count is about to
654 		 * drop from 2 to 1:
655 		 * we'll need to call memory_object_last_unmap().
656 		 */
657 	} else if (os_ref_get_count_raw(&object->ref_count) == 2 &&
658 	    object->internal &&
659 	    object->shadow != VM_OBJECT_NULL) {
660 		/*
661 		 * This internal object's reference count is about to
662 		 * drop from 2 to 1 and it has a shadow object:
663 		 * we'll want to try and collapse this object with its
664 		 * shadow.
665 		 */
666 	} else if (os_ref_get_count_raw(&object->ref_count) >= 2) {
667 		UInt32          original_ref_count;
668 		volatile UInt32 *ref_count_p;
669 		Boolean         atomic_swap;
670 
671 		/*
672 		 * The object currently looks like it is not being
673 		 * kept alive solely by the reference we're about to release.
674 		 * Let's try and release our reference without taking
675 		 * all the locks we would need if we had to terminate the
676 		 * object (cache lock + exclusive object lock).
677 		 * Lock the object "shared" to make sure we don't race with
678 		 * anyone holding it "exclusive".
679 		 */
680 		vm_object_lock_shared(object);
681 		ref_count_p = (volatile UInt32 *) &object->ref_count;
682 		original_ref_count = os_ref_get_count_raw(&object->ref_count);
683 		/*
684 		 * Test again as "ref_count" could have changed.
685 		 * "named" shouldn't change.
686 		 */
687 		if (original_ref_count == 2 &&
688 		    object->named) {
689 			/* need to take slow path for m_o_last_unmap() */
690 			atomic_swap = FALSE;
691 		} else if (original_ref_count == 2 &&
692 		    object->internal &&
693 		    object->shadow != VM_OBJECT_NULL) {
694 			/* need to take slow path for vm_object_collapse() */
695 			atomic_swap = FALSE;
696 		} else if (original_ref_count < 2) {
697 			/* need to take slow path for vm_object_terminate() */
698 			atomic_swap = FALSE;
699 		} else {
700 			/* try an atomic update with the shared lock */
701 			atomic_swap = OSCompareAndSwap(
702 				original_ref_count,
703 				original_ref_count - 1,
704 				(UInt32 *) &object->ref_count);
705 			if (atomic_swap == FALSE) {
706 				vm_object_deallocate_shared_swap_failures++;
707 				/* fall back to the slow path... */
708 			}
709 		}
710 
711 		vm_object_unlock(object);
712 
713 		if (atomic_swap) {
714 			/*
715 			 * ref_count was updated atomically !
716 			 */
717 			vm_object_deallocate_shared_successes++;
718 			return;
719 		}
720 
721 		/*
722 		 * Someone else updated the ref_count at the same
723 		 * time and we lost the race.  Fall back to the usual
724 		 * slow but safe path...
725 		 */
726 		vm_object_deallocate_shared_failures++;
727 	}
728 
729 	while (object != VM_OBJECT_NULL) {
730 		vm_object_lock(object);
731 
732 		assert(os_ref_get_count_raw(&object->ref_count) > 0);
733 
734 		/*
735 		 *	If the object has a named reference, and only
736 		 *	that reference would remain, inform the pager
737 		 *	about the last "mapping" reference going away.
738 		 */
739 		if ((os_ref_get_count_raw(&object->ref_count) == 2) && (object->named)) {
740 			memory_object_t pager = object->pager;
741 
742 			/* Notify the Pager that there are no */
743 			/* more mappers for this object */
744 
745 			if (pager != MEMORY_OBJECT_NULL) {
746 				vm_object_mapping_wait(object, THREAD_UNINT);
747 				/* object might have lost its pager while waiting */
748 				pager = object->pager;
749 				if (object->ref_count == 2 &&
750 				    object->named &&
751 				    pager != MEMORY_OBJECT_NULL) {
752 					vm_object_mapping_begin(object);
753 					vm_object_unlock(object);
754 
755 					memory_object_last_unmap(pager);
756 
757 					vm_object_lock(object);
758 					vm_object_mapping_end(object);
759 				}
760 			}
761 			assert(os_ref_get_count_raw(&object->ref_count) > 0);
762 		}
763 
764 		/*
765 		 *	Lose the reference. If other references
766 		 *	remain, then we are done, unless we need
767 		 *	to retry a cache trim.
768 		 *	If it is the last reference, then keep it
769 		 *	until any pending initialization is completed.
770 		 */
771 
772 		/* if the object is terminating, it cannot go into */
773 		/* the cache and we obviously should not call      */
774 		/* terminate again.  */
775 
776 		if ((os_ref_get_count_raw(&object->ref_count) > 1) ||
777 		    object->terminating) {
778 			vm_object_lock_assert_exclusive(object);
779 			os_ref_release_live_locked_raw(&object->ref_count,
780 			    &vm_object_refgrp);
781 
782 			if (os_ref_get_count_raw(&object->ref_count) == 1 &&
783 			    object->shadow != VM_OBJECT_NULL) {
784 				/*
785 				 * There's only one reference left on this
786 				 * VM object.  We can't tell if it's a valid
787 				 * one (from a mapping for example) or if this
788 				 * object is just part of a possibly stale and
789 				 * useless shadow chain.
790 				 * We would like to try and collapse it into
791 				 * its parent, but we don't have any pointers
792 				 * back to this parent object.
793 				 * But we can try and collapse this object with
794 				 * its own shadows, in case these are useless
795 				 * too...
796 				 * We can't bypass this object though, since we
797 				 * don't know if this last reference on it is
798 				 * meaningful or not.
799 				 */
800 				vm_object_collapse(object, 0, FALSE);
801 			}
802 			vm_object_unlock(object);
803 			return;
804 		}
805 
806 		/*
807 		 *	We have to wait for initialization
808 		 *	before destroying or caching the object.
809 		 */
810 
811 		if (object->pager_created && !object->pager_initialized) {
812 			assert(!object->can_persist);
813 			vm_object_sleep(object,
814 			    VM_OBJECT_EVENT_PAGER_INIT,
815 			    THREAD_UNINT,
816 			    LCK_SLEEP_UNLOCK);
817 			continue;
818 		}
819 
820 		/*
821 		 *	Terminate this object. If it had a shadow,
822 		 *	then deallocate it; otherwise, if we need
823 		 *	to retry a cache trim, do so now; otherwise,
824 		 *	we are done. "pageout" objects have a shadow,
825 		 *	but maintain a "paging reference" rather than
826 		 *	a normal reference.
827 		 */
828 		shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
829 
830 		if (vm_object_terminate(object) != KERN_SUCCESS) {
831 			return;
832 		}
833 		if (shadow != VM_OBJECT_NULL) {
834 			object = shadow;
835 			continue;
836 		}
837 		return;
838 	}
839 }
840 
841 
842 
843 vm_page_t
vm_object_page_grab(vm_object_t object)844 vm_object_page_grab(
845 	vm_object_t     object)
846 {
847 	vm_page_t       p, next_p;
848 	int             p_limit = 0;
849 	int             p_skipped = 0;
850 
851 	vm_object_lock_assert_exclusive(object);
852 
853 	next_p = (vm_page_t)vm_page_queue_first(&object->memq);
854 	p_limit = MIN(50, object->resident_page_count);
855 
856 	while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && --p_limit > 0) {
857 		p = next_p;
858 		next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq);
859 
860 		if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry || p->vmp_fictitious) {
861 			goto move_page_in_obj;
862 		}
863 
864 		if (p->vmp_pmapped || p->vmp_dirty || p->vmp_precious) {
865 			vm_page_lockspin_queues();
866 
867 			if (p->vmp_pmapped) {
868 				int refmod_state;
869 
870 				vm_object_page_grab_pmapped++;
871 
872 				if (p->vmp_reference == FALSE || p->vmp_dirty == FALSE) {
873 					refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(p));
874 
875 					if (refmod_state & VM_MEM_REFERENCED) {
876 						p->vmp_reference = TRUE;
877 					}
878 					if (refmod_state & VM_MEM_MODIFIED) {
879 						SET_PAGE_DIRTY(p, FALSE);
880 					}
881 				}
882 				if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) {
883 					vm_page_lockconvert_queues();
884 					refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
885 
886 					if (refmod_state & VM_MEM_REFERENCED) {
887 						p->vmp_reference = TRUE;
888 					}
889 					if (refmod_state & VM_MEM_MODIFIED) {
890 						SET_PAGE_DIRTY(p, FALSE);
891 					}
892 
893 					if (p->vmp_dirty == FALSE) {
894 						goto take_page;
895 					}
896 				}
897 			}
898 			if ((p->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) && p->vmp_reference == TRUE) {
899 				vm_page_activate(p);
900 
901 				counter_inc(&vm_statistics_reactivations);
902 				vm_object_page_grab_reactivations++;
903 			}
904 			vm_page_unlock_queues();
905 move_page_in_obj:
906 			vm_page_queue_remove(&object->memq, p, vmp_listq);
907 			vm_page_queue_enter(&object->memq, p, vmp_listq);
908 
909 			p_skipped++;
910 			continue;
911 		}
912 		vm_page_lockspin_queues();
913 take_page:
914 		vm_page_free_prepare_queues(p);
915 		vm_object_page_grab_returned++;
916 		vm_object_page_grab_skipped += p_skipped;
917 
918 		vm_page_unlock_queues();
919 
920 		vm_page_free_prepare_object(p, TRUE);
921 
922 		return p;
923 	}
924 	vm_object_page_grab_skipped += p_skipped;
925 	vm_object_page_grab_failed++;
926 
927 	return NULL;
928 }
929 
930 
931 
932 #define EVICT_PREPARE_LIMIT     64
933 #define EVICT_AGE               10
934 
935 static  clock_sec_t     vm_object_cache_aging_ts = 0;
936 
937 static void
vm_object_cache_remove_locked(vm_object_t object)938 vm_object_cache_remove_locked(
939 	vm_object_t     object)
940 {
941 	assert(object->purgable == VM_PURGABLE_DENY);
942 
943 	queue_remove(&vm_object_cached_list, object, vm_object_t, cached_list);
944 	object->cached_list.next = NULL;
945 	object->cached_list.prev = NULL;
946 
947 	vm_object_cached_count--;
948 }
949 
950 void
vm_object_cache_remove(vm_object_t object)951 vm_object_cache_remove(
952 	vm_object_t     object)
953 {
954 	vm_object_cache_lock_spin();
955 
956 	if (object->cached_list.next &&
957 	    object->cached_list.prev) {
958 		vm_object_cache_remove_locked(object);
959 	}
960 
961 	vm_object_cache_unlock();
962 }
963 
964 void
vm_object_cache_add(vm_object_t object)965 vm_object_cache_add(
966 	vm_object_t     object)
967 {
968 	clock_sec_t sec;
969 	clock_nsec_t nsec;
970 
971 	assert(object->purgable == VM_PURGABLE_DENY);
972 
973 	if (object->resident_page_count == 0) {
974 		return;
975 	}
976 	if (object->vo_ledger_tag) {
977 		/*
978 		 * We can't add an "owned" object to the cache because
979 		 * the "vo_owner" and "vo_cache_ts" fields are part of the
980 		 * same "union" and can't be used at the same time.
981 		 */
982 		return;
983 	}
984 	clock_get_system_nanotime(&sec, &nsec);
985 
986 	vm_object_cache_lock_spin();
987 
988 	if (object->cached_list.next == NULL &&
989 	    object->cached_list.prev == NULL) {
990 		queue_enter(&vm_object_cached_list, object, vm_object_t, cached_list);
991 		object->vo_cache_ts = sec + EVICT_AGE;
992 		object->vo_cache_pages_to_scan = object->resident_page_count;
993 
994 		vm_object_cached_count++;
995 		vm_object_cache_adds++;
996 	}
997 	vm_object_cache_unlock();
998 }
999 
1000 int
vm_object_cache_evict(int num_to_evict,int max_objects_to_examine)1001 vm_object_cache_evict(
1002 	int     num_to_evict,
1003 	int     max_objects_to_examine)
1004 {
1005 	vm_object_t     object = VM_OBJECT_NULL;
1006 	vm_object_t     next_obj = VM_OBJECT_NULL;
1007 	vm_page_t       local_free_q = VM_PAGE_NULL;
1008 	vm_page_t       p;
1009 	vm_page_t       next_p;
1010 	int             object_cnt = 0;
1011 	vm_page_t       ep_array[EVICT_PREPARE_LIMIT];
1012 	int             ep_count;
1013 	int             ep_limit;
1014 	int             ep_index;
1015 	int             ep_freed = 0;
1016 	int             ep_moved = 0;
1017 	uint32_t        ep_skipped = 0;
1018 	clock_sec_t     sec;
1019 	clock_nsec_t    nsec;
1020 
1021 	KDBG_DEBUG(0x13001ec | DBG_FUNC_START);
1022 	/*
1023 	 * do a couple of quick checks to see if it's
1024 	 * worthwhile grabbing the lock
1025 	 */
1026 	if (queue_empty(&vm_object_cached_list)) {
1027 		KDBG_DEBUG(0x13001ec | DBG_FUNC_END);
1028 		return 0;
1029 	}
1030 	clock_get_system_nanotime(&sec, &nsec);
1031 
1032 	/*
1033 	 * the object on the head of the queue has not
1034 	 * yet sufficiently aged
1035 	 */
1036 	if (sec < vm_object_cache_aging_ts) {
1037 		KDBG_DEBUG(0x13001ec | DBG_FUNC_END);
1038 		return 0;
1039 	}
1040 	/*
1041 	 * don't need the queue lock to find
1042 	 * and lock an object on the cached list
1043 	 */
1044 	vm_page_unlock_queues();
1045 
1046 	vm_object_cache_lock_spin();
1047 
1048 	for (;;) {  /* loop for as long as we have objects to process */
1049 		next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
1050 
1051 		/* loop to find the next target in the cache_list */
1052 		while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
1053 			object = next_obj;
1054 			next_obj = (vm_object_t)queue_next(&next_obj->cached_list);
1055 
1056 			assert(object->purgable == VM_PURGABLE_DENY);
1057 
1058 			if (sec < object->vo_cache_ts) { // reached the point in the queue beyond the time we started
1059 				KDBG_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec);
1060 
1061 				vm_object_cache_aging_ts = object->vo_cache_ts;
1062 				object = VM_OBJECT_NULL; /* this will cause to break away from the outer loop */
1063 				break;
1064 			}
1065 			if (!vm_object_lock_try_scan(object)) {
1066 				/*
1067 				 * just skip over this guy for now... if we find
1068 				 * an object to steal pages from, we'll revist in a bit...
1069 				 * hopefully, the lock will have cleared
1070 				 */
1071 				KDBG_DEBUG(0x13001f8, object, object->resident_page_count);
1072 
1073 				object = VM_OBJECT_NULL;
1074 				continue;
1075 			}
1076 			if (vm_page_queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
1077 				/*
1078 				 * this case really shouldn't happen, but it's not fatal
1079 				 * so deal with it... if we don't remove the object from
1080 				 * the list, we'll never move past it.
1081 				 */
1082 				KDBG_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved);
1083 
1084 				vm_object_cache_remove_locked(object);
1085 				vm_object_unlock(object);
1086 				object = VM_OBJECT_NULL;
1087 				continue;
1088 			}
1089 			/*
1090 			 * we have a locked object with pages...
1091 			 * time to start harvesting
1092 			 */
1093 			break;
1094 		}
1095 		vm_object_cache_unlock();
1096 
1097 		if (object == VM_OBJECT_NULL) {
1098 			break;
1099 		}
1100 
1101 		/*
1102 		 * object is locked at this point and
1103 		 * has resident pages
1104 		 */
1105 		next_p = (vm_page_t)vm_page_queue_first(&object->memq);
1106 
1107 		/*
1108 		 * break the page scan into 2 pieces to minimize the time spent
1109 		 * behind the page queue lock...
1110 		 * the list of pages on these unused objects is likely to be cold
1111 		 * w/r to the cpu cache which increases the time to scan the list
1112 		 * tenfold...  and we may have a 'run' of pages we can't utilize that
1113 		 * needs to be skipped over...
1114 		 */
1115 		if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) {
1116 			ep_limit = EVICT_PREPARE_LIMIT;
1117 		}
1118 		ep_count = 0;
1119 
1120 		while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
1121 			p = next_p;
1122 			next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq);
1123 
1124 			object->vo_cache_pages_to_scan--;
1125 
1126 			if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry) {
1127 				vm_page_queue_remove(&object->memq, p, vmp_listq);
1128 				vm_page_queue_enter(&object->memq, p, vmp_listq);
1129 
1130 				ep_skipped++;
1131 				continue;
1132 			}
1133 			if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) {
1134 				vm_page_queue_remove(&object->memq, p, vmp_listq);
1135 				vm_page_queue_enter(&object->memq, p, vmp_listq);
1136 
1137 				pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(p));
1138 			}
1139 			ep_array[ep_count++] = p;
1140 		}
1141 		KDBG_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved);
1142 
1143 		vm_page_lockspin_queues();
1144 
1145 		for (ep_index = 0; ep_index < ep_count; ep_index++) {
1146 			p = ep_array[ep_index];
1147 
1148 			if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) {
1149 				p->vmp_reference = FALSE;
1150 				p->vmp_no_cache = FALSE;
1151 
1152 				/*
1153 				 * we've already filtered out pages that are in the laundry
1154 				 * so if we get here, this page can't be on the pageout queue
1155 				 */
1156 				vm_page_queues_remove(p, FALSE);
1157 				vm_page_enqueue_inactive(p, TRUE);
1158 
1159 				ep_moved++;
1160 			} else {
1161 #if CONFIG_PHANTOM_CACHE
1162 				vm_phantom_cache_add_ghost(p);
1163 #endif
1164 				vm_page_free_prepare_queues(p);
1165 
1166 				assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0);
1167 				/*
1168 				 * Add this page to our list of reclaimed pages,
1169 				 * to be freed later.
1170 				 */
1171 				p->vmp_snext = local_free_q;
1172 				local_free_q = p;
1173 
1174 				ep_freed++;
1175 			}
1176 		}
1177 		vm_page_unlock_queues();
1178 
1179 		KDBG_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved);
1180 
1181 		if (local_free_q) {
1182 			vm_page_free_list(local_free_q, TRUE);
1183 			local_free_q = VM_PAGE_NULL;
1184 		}
1185 		if (object->vo_cache_pages_to_scan == 0) {
1186 			KDBG_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved);
1187 
1188 			vm_object_cache_remove(object);
1189 
1190 			KDBG_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved);
1191 		}
1192 		/*
1193 		 * done with this object
1194 		 */
1195 		vm_object_unlock(object);
1196 		object = VM_OBJECT_NULL;
1197 
1198 		/*
1199 		 * at this point, we are not holding any locks
1200 		 */
1201 		if ((ep_freed + ep_moved) >= num_to_evict) {
1202 			/*
1203 			 * we've reached our target for the
1204 			 * number of pages to evict
1205 			 */
1206 			break;
1207 		}
1208 		vm_object_cache_lock_spin();
1209 	}
1210 	/*
1211 	 * put the page queues lock back to the caller's
1212 	 * idea of it
1213 	 */
1214 	vm_page_lock_queues();
1215 
1216 	vm_object_cache_pages_freed += ep_freed;
1217 	vm_object_cache_pages_moved += ep_moved;
1218 	vm_object_cache_pages_skipped += ep_skipped;
1219 
1220 	KDBG_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed);
1221 	return ep_freed;
1222 }
1223 
1224 /*
1225  *	Routine:	vm_object_terminate
1226  *	Purpose:
1227  *		Free all resources associated with a vm_object.
1228  *	In/out conditions:
1229  *		Upon entry, the object must be locked,
1230  *		and the object must have exactly one reference.
1231  *
1232  *		The shadow object reference is left alone.
1233  *
1234  *		The object must be unlocked if its found that pages
1235  *		must be flushed to a backing object.  If someone
1236  *		manages to map the object while it is being flushed
1237  *		the object is returned unlocked and unchanged.  Otherwise,
1238  *		upon exit, the cache will be unlocked, and the
1239  *		object will cease to exist.
1240  */
1241 static kern_return_t
vm_object_terminate(vm_object_t object)1242 vm_object_terminate(
1243 	vm_object_t     object)
1244 {
1245 	vm_object_t     shadow_object;
1246 
1247 	vm_object_lock_assert_exclusive(object);
1248 
1249 	if (!object->pageout && (!object->internal && object->can_persist) &&
1250 	    (object->pager != NULL || object->shadow_severed)) {
1251 		/*
1252 		 * Clear pager_trusted bit so that the pages get yanked
1253 		 * out of the object instead of cleaned in place.  This
1254 		 * prevents a deadlock in XMM and makes more sense anyway.
1255 		 */
1256 		VM_OBJECT_SET_PAGER_TRUSTED(object, FALSE);
1257 
1258 		vm_object_reap_pages(object, REAP_TERMINATE);
1259 	}
1260 	/*
1261 	 *	Make sure the object isn't already being terminated
1262 	 */
1263 	if (object->terminating) {
1264 		vm_object_lock_assert_exclusive(object);
1265 		os_ref_release_live_locked_raw(&object->ref_count, &vm_object_refgrp);
1266 		vm_object_unlock(object);
1267 		return KERN_FAILURE;
1268 	}
1269 
1270 	/*
1271 	 * Did somebody get a reference to the object while we were
1272 	 * cleaning it?
1273 	 */
1274 	if (os_ref_get_count_raw(&object->ref_count) != 1) {
1275 		vm_object_lock_assert_exclusive(object);
1276 		os_ref_release_live_locked_raw(&object->ref_count, &vm_object_refgrp);
1277 		vm_object_unlock(object);
1278 		return KERN_FAILURE;
1279 	}
1280 
1281 	/*
1282 	 *	Make sure no one can look us up now.
1283 	 */
1284 
1285 	VM_OBJECT_SET_TERMINATING(object, TRUE);
1286 	VM_OBJECT_SET_ALIVE(object, FALSE);
1287 
1288 	if (!object->internal &&
1289 	    object->cached_list.next &&
1290 	    object->cached_list.prev) {
1291 		vm_object_cache_remove(object);
1292 	}
1293 
1294 	/*
1295 	 *	Detach the object from its shadow if we are the shadow's
1296 	 *	copy. The reference we hold on the shadow must be dropped
1297 	 *	by our caller.
1298 	 */
1299 	if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
1300 	    !(object->pageout)) {
1301 		vm_object_lock(shadow_object);
1302 		if (shadow_object->vo_copy == object) {
1303 			VM_OBJECT_COPY_SET(shadow_object, VM_OBJECT_NULL);
1304 		}
1305 		vm_object_unlock(shadow_object);
1306 	}
1307 
1308 	if (object->paging_in_progress != 0 ||
1309 	    object->activity_in_progress != 0) {
1310 		/*
1311 		 * There are still some paging_in_progress references
1312 		 * on this object, meaning that there are some paging
1313 		 * or other I/O operations in progress for this VM object.
1314 		 * Such operations take some paging_in_progress references
1315 		 * up front to ensure that the object doesn't go away, but
1316 		 * they may also need to acquire a reference on the VM object,
1317 		 * to map it in kernel space, for example.  That means that
1318 		 * they may end up releasing the last reference on the VM
1319 		 * object, triggering its termination, while still holding
1320 		 * paging_in_progress references.  Waiting for these
1321 		 * pending paging_in_progress references to go away here would
1322 		 * deadlock.
1323 		 *
1324 		 * To avoid deadlocking, we'll let the vm_object_reaper_thread
1325 		 * complete the VM object termination if it still holds
1326 		 * paging_in_progress references at this point.
1327 		 *
1328 		 * No new paging_in_progress should appear now that the
1329 		 * VM object is "terminating" and not "alive".
1330 		 */
1331 		vm_object_reap_async(object);
1332 		vm_object_unlock(object);
1333 		/*
1334 		 * Return KERN_FAILURE to let the caller know that we
1335 		 * haven't completed the termination and it can't drop this
1336 		 * object's reference on its shadow object yet.
1337 		 * The reaper thread will take care of that once it has
1338 		 * completed this object's termination.
1339 		 */
1340 		return KERN_FAILURE;
1341 	}
1342 	/*
1343 	 * complete the VM object termination
1344 	 */
1345 	vm_object_reap(object);
1346 	object = VM_OBJECT_NULL;
1347 
1348 	/*
1349 	 * the object lock was released by vm_object_reap()
1350 	 *
1351 	 * KERN_SUCCESS means that this object has been terminated
1352 	 * and no longer needs its shadow object but still holds a
1353 	 * reference on it.
1354 	 * The caller is responsible for dropping that reference.
1355 	 * We can't call vm_object_deallocate() here because that
1356 	 * would create a recursion.
1357 	 */
1358 	return KERN_SUCCESS;
1359 }
1360 
1361 
1362 /*
1363  * vm_object_reap():
1364  *
1365  * Complete the termination of a VM object after it's been marked
1366  * as "terminating" and "!alive" by vm_object_terminate().
1367  *
1368  * The VM object must be locked by caller.
1369  * The lock will be released on return and the VM object is no longer valid.
1370  */
1371 
1372 void
vm_object_reap(vm_object_t object)1373 vm_object_reap(
1374 	vm_object_t object)
1375 {
1376 	memory_object_t         pager;
1377 	os_ref_count_t          ref_count;
1378 
1379 	vm_object_lock_assert_exclusive(object);
1380 	assert(object->paging_in_progress == 0);
1381 	assert(object->activity_in_progress == 0);
1382 
1383 	vm_object_reap_count++;
1384 
1385 	/*
1386 	 * Disown this purgeable object to cleanup its owner's purgeable
1387 	 * ledgers.  We need to do this before disconnecting the object
1388 	 * from its pager, to properly account for compressed pages.
1389 	 */
1390 	if (/* object->internal && */
1391 		(object->purgable != VM_PURGABLE_DENY ||
1392 		object->vo_ledger_tag)) {
1393 		int ledger_flags;
1394 		kern_return_t kr;
1395 
1396 		ledger_flags = 0;
1397 		assert(!object->alive);
1398 		assert(object->terminating);
1399 		kr = vm_object_ownership_change(object,
1400 		    VM_LEDGER_TAG_NONE,
1401 		    NULL,                    /* no owner */
1402 		    ledger_flags,
1403 		    FALSE);                  /* task_objq not locked */
1404 		assert(kr == KERN_SUCCESS);
1405 		assert(object->vo_owner == NULL);
1406 	}
1407 
1408 #if DEVELOPMENT || DEBUG
1409 	if (object->object_is_shared_cache &&
1410 	    object->pager != NULL &&
1411 	    object->pager->mo_pager_ops == &shared_region_pager_ops) {
1412 		OSAddAtomic(-object->resident_page_count, &shared_region_pagers_resident_count);
1413 	}
1414 #endif /* DEVELOPMENT || DEBUG */
1415 
1416 	pager = object->pager;
1417 	object->pager = MEMORY_OBJECT_NULL;
1418 
1419 	if (pager != MEMORY_OBJECT_NULL) {
1420 		memory_object_control_disable(&object->pager_control);
1421 	}
1422 
1423 	ref_count = os_ref_release_locked_raw(&object->ref_count,
1424 	    &vm_object_refgrp);
1425 	if (__improbable(ref_count != 0)) {
1426 		panic("Attempting to deallocate vm_object with outstanding refs: %u",
1427 		    ref_count);
1428 	}
1429 
1430 	/*
1431 	 * remove from purgeable queue if it's on
1432 	 */
1433 	if (object->internal) {
1434 		assert(VM_OBJECT_OWNER(object) == TASK_NULL);
1435 
1436 		VM_OBJECT_UNWIRED(object);
1437 
1438 		if (object->purgable == VM_PURGABLE_DENY) {
1439 			/* not purgeable: nothing to do */
1440 		} else if (object->purgable == VM_PURGABLE_VOLATILE) {
1441 			purgeable_q_t queue;
1442 
1443 			queue = vm_purgeable_object_remove(object);
1444 			assert(queue);
1445 
1446 			if (object->purgeable_when_ripe) {
1447 				/*
1448 				 * Must take page lock for this -
1449 				 * using it to protect token queue
1450 				 */
1451 				vm_page_lock_queues();
1452 				vm_purgeable_token_delete_first(queue);
1453 
1454 				assert(queue->debug_count_objects >= 0);
1455 				vm_page_unlock_queues();
1456 			}
1457 
1458 			/*
1459 			 * Update "vm_page_purgeable_count" in bulk and mark
1460 			 * object as VM_PURGABLE_EMPTY to avoid updating
1461 			 * "vm_page_purgeable_count" again in vm_page_remove()
1462 			 * when reaping the pages.
1463 			 */
1464 			unsigned int delta;
1465 			assert(object->resident_page_count >=
1466 			    object->wired_page_count);
1467 			delta = (object->resident_page_count -
1468 			    object->wired_page_count);
1469 			if (delta != 0) {
1470 				assert(vm_page_purgeable_count >= delta);
1471 				OSAddAtomic(-delta,
1472 				    (SInt32 *)&vm_page_purgeable_count);
1473 			}
1474 			if (object->wired_page_count != 0) {
1475 				assert(vm_page_purgeable_wired_count >=
1476 				    object->wired_page_count);
1477 				OSAddAtomic(-object->wired_page_count,
1478 				    (SInt32 *)&vm_page_purgeable_wired_count);
1479 			}
1480 			VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY);
1481 		} else if (object->purgable == VM_PURGABLE_NONVOLATILE ||
1482 		    object->purgable == VM_PURGABLE_EMPTY) {
1483 			/* remove from nonvolatile queue */
1484 			vm_purgeable_nonvolatile_dequeue(object);
1485 		} else {
1486 			panic("object %p in unexpected purgeable state 0x%x",
1487 			    object, object->purgable);
1488 		}
1489 		if (object->transposed &&
1490 		    object->cached_list.next != NULL &&
1491 		    object->cached_list.prev == NULL) {
1492 			/*
1493 			 * object->cached_list.next "points" to the
1494 			 * object that was transposed with this object.
1495 			 */
1496 		} else {
1497 			assert(object->cached_list.next == NULL);
1498 		}
1499 		assert(object->cached_list.prev == NULL);
1500 	}
1501 
1502 	if (object->pageout) {
1503 		/*
1504 		 * free all remaining pages tabled on
1505 		 * this object
1506 		 * clean up it's shadow
1507 		 */
1508 		assert(object->shadow != VM_OBJECT_NULL);
1509 
1510 		vm_pageout_object_terminate(object);
1511 	} else if (object->resident_page_count) {
1512 		/*
1513 		 * free all remaining pages tabled on
1514 		 * this object
1515 		 */
1516 		vm_object_reap_pages(object, REAP_REAP);
1517 	}
1518 	assert(vm_page_queue_empty(&object->memq));
1519 	assert(object->paging_in_progress == 0);
1520 	assert(object->activity_in_progress == 0);
1521 	assert(os_ref_get_count_raw(&object->ref_count) == 0);
1522 
1523 	/*
1524 	 * If the pager has not already been released by
1525 	 * vm_object_destroy, we need to terminate it and
1526 	 * release our reference to it here.
1527 	 */
1528 	if (pager != MEMORY_OBJECT_NULL) {
1529 		vm_object_unlock(object);
1530 		vm_object_release_pager(pager);
1531 		vm_object_lock(object);
1532 	}
1533 
1534 	/* kick off anyone waiting on terminating */
1535 	VM_OBJECT_SET_TERMINATING(object, FALSE);
1536 	vm_object_paging_begin(object);
1537 	vm_object_paging_end(object);
1538 	vm_object_unlock(object);
1539 
1540 	object->shadow = VM_OBJECT_NULL;
1541 
1542 #if VM_OBJECT_TRACKING
1543 	if (vm_object_tracking_btlog) {
1544 		btlog_erase(vm_object_tracking_btlog, object);
1545 	}
1546 #endif /* VM_OBJECT_TRACKING */
1547 
1548 	vm_object_lock_destroy(object);
1549 	/*
1550 	 *	Free the space for the object.
1551 	 */
1552 	zfree(vm_object_zone, object);
1553 	object = VM_OBJECT_NULL;
1554 }
1555 
1556 
1557 unsigned int vm_max_batch = 256;
1558 
1559 #define V_O_R_MAX_BATCH 128
1560 
1561 #define BATCH_LIMIT(max)        (vm_max_batch >= max ? max : vm_max_batch)
1562 
1563 static inline vm_page_t
vm_object_reap_freelist(vm_page_t local_free_q,bool do_disconnect,bool set_cache_attr)1564 vm_object_reap_freelist(vm_page_t local_free_q, bool do_disconnect, bool set_cache_attr)
1565 {
1566 	if (local_free_q) {
1567 		if (do_disconnect) {
1568 			vm_page_t m;
1569 			for (m = local_free_q;
1570 			    m != VM_PAGE_NULL;
1571 			    m = m->vmp_snext) {
1572 				if (m->vmp_pmapped) {
1573 					pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
1574 				}
1575 			}
1576 		}
1577 		if (set_cache_attr) {
1578 			const unified_page_list_t pmap_batch_list = {
1579 				.page_slist = local_free_q,
1580 				.type = UNIFIED_PAGE_LIST_TYPE_VM_PAGE_LIST,
1581 			};
1582 			pmap_batch_set_cache_attributes(&pmap_batch_list, 0);
1583 		}
1584 		vm_page_free_list(local_free_q, TRUE);
1585 	}
1586 	return VM_PAGE_NULL;
1587 }
1588 
1589 void
vm_object_reap_pages(vm_object_t object,int reap_type)1590 vm_object_reap_pages(
1591 	vm_object_t     object,
1592 	int             reap_type)
1593 {
1594 	vm_page_t       p;
1595 	vm_page_t       next;
1596 	vm_page_t       local_free_q = VM_PAGE_NULL;
1597 	int             loop_count;
1598 	bool            disconnect_on_release;
1599 	bool            set_cache_attr_needed;
1600 	pmap_flush_context      pmap_flush_context_storage;
1601 
1602 	if (reap_type == REAP_DATA_FLUSH) {
1603 		/*
1604 		 * We need to disconnect pages from all pmaps before
1605 		 * releasing them to the free list
1606 		 */
1607 		disconnect_on_release = true;
1608 	} else {
1609 		/*
1610 		 * Either the caller has already disconnected the pages
1611 		 * from all pmaps, or we disconnect them here as we add
1612 		 * them to out local list of pages to be released.
1613 		 * No need to re-disconnect them when we release the pages
1614 		 * to the free list.
1615 		 */
1616 		disconnect_on_release = false;
1617 	}
1618 
1619 restart_after_sleep:
1620 	set_cache_attr_needed = false;
1621 	if (object->set_cache_attr) {
1622 		/**
1623 		 * If the cache attributes need to be reset for the pages to
1624 		 * be freed, we clear object->set_cache_attr here so that
1625 		 * our call to vm_page_free_list (which will ultimately call
1626 		 * vm_page_remove() on each page) won't try to reset the
1627 		 * cache attributes on each page individually.  Depending on
1628 		 * the architecture, it may be much faster for us to call
1629 		 * pmap_batch_set_cache_attributes() instead.  Note that
1630 		 * this function must restore object->set_cache_attr in any
1631 		 * case where it is required to drop the object lock, e.g.
1632 		 * to wait for a busy page.
1633 		 */
1634 		object->set_cache_attr = FALSE;
1635 		set_cache_attr_needed = true;
1636 	}
1637 
1638 	if (vm_page_queue_empty(&object->memq)) {
1639 		return;
1640 	}
1641 	loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1642 
1643 	if (reap_type == REAP_PURGEABLE) {
1644 		pmap_flush_context_init(&pmap_flush_context_storage);
1645 	}
1646 
1647 	vm_page_lock_queues();
1648 
1649 	next = (vm_page_t)vm_page_queue_first(&object->memq);
1650 
1651 	while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) {
1652 		p = next;
1653 		next = (vm_page_t)vm_page_queue_next(&next->vmp_listq);
1654 
1655 		if (--loop_count == 0) {
1656 			vm_page_unlock_queues();
1657 
1658 			if (local_free_q) {
1659 				if (reap_type == REAP_PURGEABLE) {
1660 					pmap_flush(&pmap_flush_context_storage);
1661 					pmap_flush_context_init(&pmap_flush_context_storage);
1662 				}
1663 				/*
1664 				 * Free the pages we reclaimed so far
1665 				 * and take a little break to avoid
1666 				 * hogging the page queue lock too long
1667 				 */
1668 				local_free_q = vm_object_reap_freelist(local_free_q,
1669 				    disconnect_on_release, set_cache_attr_needed);
1670 			} else {
1671 				mutex_pause(0);
1672 			}
1673 
1674 			loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1675 
1676 			vm_page_lock_queues();
1677 		}
1678 		if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) {
1679 			if (p->vmp_busy || p->vmp_cleaning) {
1680 				vm_page_unlock_queues();
1681 				/*
1682 				 * free the pages reclaimed so far
1683 				 */
1684 				local_free_q = vm_object_reap_freelist(local_free_q,
1685 				    disconnect_on_release, set_cache_attr_needed);
1686 
1687 				if (set_cache_attr_needed) {
1688 					object->set_cache_attr = TRUE;
1689 				}
1690 				vm_page_sleep(object, p, THREAD_UNINT, LCK_SLEEP_DEFAULT);
1691 
1692 				goto restart_after_sleep;
1693 			}
1694 			if (p->vmp_laundry) {
1695 				vm_pageout_steal_laundry(p, TRUE);
1696 			}
1697 		}
1698 		switch (reap_type) {
1699 		case REAP_DATA_FLUSH:
1700 			if (VM_PAGE_WIRED(p)) {
1701 				/*
1702 				 * this is an odd case... perhaps we should
1703 				 * zero-fill this page since we're conceptually
1704 				 * tossing its data at this point, but leaving
1705 				 * it on the object to honor the 'wire' contract
1706 				 */
1707 				continue;
1708 			}
1709 			break;
1710 
1711 		case REAP_PURGEABLE:
1712 			if (VM_PAGE_WIRED(p)) {
1713 				/*
1714 				 * can't purge a wired page
1715 				 */
1716 				vm_page_purged_wired++;
1717 				continue;
1718 			}
1719 			if (p->vmp_laundry && !p->vmp_busy && !p->vmp_cleaning) {
1720 				vm_pageout_steal_laundry(p, TRUE);
1721 			}
1722 
1723 			if (p->vmp_cleaning || p->vmp_laundry || p->vmp_absent) {
1724 				/*
1725 				 * page is being acted upon,
1726 				 * so don't mess with it
1727 				 */
1728 				vm_page_purged_others++;
1729 				continue;
1730 			}
1731 			if (p->vmp_busy) {
1732 				/*
1733 				 * We can't reclaim a busy page but we can
1734 				 * make it more likely to be paged (it's not wired) to make
1735 				 * sure that it gets considered by
1736 				 * vm_pageout_scan() later.
1737 				 */
1738 				if (VM_PAGE_PAGEABLE(p)) {
1739 					vm_page_deactivate(p);
1740 				}
1741 				vm_page_purged_busy++;
1742 				continue;
1743 			}
1744 
1745 			assert(!is_kernel_object(VM_PAGE_OBJECT(p)));
1746 
1747 			/*
1748 			 * we can discard this page...
1749 			 */
1750 			if (p->vmp_pmapped == TRUE) {
1751 				/*
1752 				 * unmap the page
1753 				 */
1754 				pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage);
1755 			}
1756 			vm_page_purged_count++;
1757 
1758 			break;
1759 
1760 		case REAP_TERMINATE:
1761 			if (p->vmp_absent || p->vmp_private) {
1762 				/*
1763 				 *	For private pages, VM_PAGE_FREE just
1764 				 *	leaves the page structure around for
1765 				 *	its owner to clean up.  For absent
1766 				 *	pages, the structure is returned to
1767 				 *	the appropriate pool.
1768 				 */
1769 				break;
1770 			}
1771 			if (p->vmp_fictitious) {
1772 				assert(VM_PAGE_GET_PHYS_PAGE(p) == vm_page_guard_addr);
1773 				break;
1774 			}
1775 			if (!p->vmp_dirty && p->vmp_wpmapped) {
1776 				p->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p));
1777 			}
1778 
1779 			if ((p->vmp_dirty || p->vmp_precious) && !VMP_ERROR_GET(p) && object->alive) {
1780 				assert(!object->internal);
1781 
1782 				p->vmp_free_when_done = TRUE;
1783 
1784 				if (!p->vmp_laundry) {
1785 					vm_page_queues_remove(p, TRUE);
1786 					/*
1787 					 * flush page... page will be freed
1788 					 * upon completion of I/O
1789 					 */
1790 					vm_pageout_cluster(p);
1791 				}
1792 				vm_page_unlock_queues();
1793 				/*
1794 				 * free the pages reclaimed so far
1795 				 */
1796 				local_free_q = vm_object_reap_freelist(local_free_q,
1797 				    disconnect_on_release, set_cache_attr_needed);
1798 
1799 				if (set_cache_attr_needed) {
1800 					object->set_cache_attr = TRUE;
1801 				}
1802 				vm_object_paging_wait(object, THREAD_UNINT);
1803 
1804 				goto restart_after_sleep;
1805 			}
1806 			break;
1807 
1808 		case REAP_REAP:
1809 			break;
1810 		}
1811 		vm_page_free_prepare_queues(p);
1812 		assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0);
1813 		/*
1814 		 * Add this page to our list of reclaimed pages,
1815 		 * to be freed later.
1816 		 */
1817 		p->vmp_snext = local_free_q;
1818 		local_free_q = p;
1819 	}
1820 	vm_page_unlock_queues();
1821 
1822 	/*
1823 	 * Free the remaining reclaimed pages
1824 	 */
1825 	if (reap_type == REAP_PURGEABLE) {
1826 		pmap_flush(&pmap_flush_context_storage);
1827 	}
1828 
1829 	vm_object_reap_freelist(local_free_q,
1830 	    disconnect_on_release, set_cache_attr_needed);
1831 	if (set_cache_attr_needed) {
1832 		object->set_cache_attr = TRUE;
1833 	}
1834 }
1835 
1836 
1837 void
vm_object_reap_async(vm_object_t object)1838 vm_object_reap_async(
1839 	vm_object_t     object)
1840 {
1841 	vm_object_lock_assert_exclusive(object);
1842 
1843 	vm_object_reaper_lock_spin();
1844 
1845 	vm_object_reap_count_async++;
1846 
1847 	/* enqueue the VM object... */
1848 	queue_enter(&vm_object_reaper_queue, object,
1849 	    vm_object_t, cached_list);
1850 
1851 	vm_object_reaper_unlock();
1852 
1853 	/* ... and wake up the reaper thread */
1854 	thread_wakeup((event_t) &vm_object_reaper_queue);
1855 }
1856 
1857 
1858 void
vm_object_reaper_thread(void)1859 vm_object_reaper_thread(void)
1860 {
1861 	vm_object_t     object, shadow_object;
1862 
1863 	vm_object_reaper_lock_spin();
1864 
1865 	while (!queue_empty(&vm_object_reaper_queue)) {
1866 		queue_remove_first(&vm_object_reaper_queue,
1867 		    object,
1868 		    vm_object_t,
1869 		    cached_list);
1870 
1871 		vm_object_reaper_unlock();
1872 		vm_object_lock(object);
1873 
1874 		assert(object->terminating);
1875 		assert(!object->alive);
1876 
1877 		/*
1878 		 * The pageout daemon might be playing with our pages.
1879 		 * Now that the object is dead, it won't touch any more
1880 		 * pages, but some pages might already be on their way out.
1881 		 * Hence, we wait until the active paging activities have
1882 		 * ceased before we break the association with the pager
1883 		 * itself.
1884 		 */
1885 		vm_object_paging_wait(object, THREAD_UNINT);
1886 
1887 		shadow_object =
1888 		    object->pageout ? VM_OBJECT_NULL : object->shadow;
1889 
1890 		vm_object_reap(object);
1891 		/* cache is unlocked and object is no longer valid */
1892 		object = VM_OBJECT_NULL;
1893 
1894 		if (shadow_object != VM_OBJECT_NULL) {
1895 			/*
1896 			 * Drop the reference "object" was holding on
1897 			 * its shadow object.
1898 			 */
1899 			vm_object_deallocate(shadow_object);
1900 			shadow_object = VM_OBJECT_NULL;
1901 		}
1902 		vm_object_reaper_lock_spin();
1903 	}
1904 
1905 	/* wait for more work... */
1906 	assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
1907 
1908 	vm_object_reaper_unlock();
1909 
1910 	thread_block((thread_continue_t) vm_object_reaper_thread);
1911 	/*NOTREACHED*/
1912 }
1913 
1914 /*
1915  *	Routine:	vm_object_release_pager
1916  *	Purpose:	Terminate the pager and, upon completion,
1917  *			release our last reference to it.
1918  */
1919 static void
vm_object_release_pager(memory_object_t pager)1920 vm_object_release_pager(
1921 	memory_object_t pager)
1922 {
1923 	/*
1924 	 *	Terminate the pager.
1925 	 */
1926 
1927 	(void) memory_object_terminate(pager);
1928 
1929 	/*
1930 	 *	Release reference to pager.
1931 	 */
1932 	memory_object_deallocate(pager);
1933 }
1934 
1935 /*
1936  *	Routine:	vm_object_destroy
1937  *	Purpose:
1938  *		Shut down a VM object, despite the
1939  *		presence of address map (or other) references
1940  *		to the vm_object.
1941  */
1942 #if FBDP_DEBUG_OBJECT_NO_PAGER
1943 extern uint32_t system_inshutdown;
1944 int fbdp_no_panic = 1;
1945 #endif /* FBDP_DEBUG_OBJECT_NO_PAGER */
1946 kern_return_t
vm_object_destroy(vm_object_t object,vm_object_destroy_reason_t reason)1947 vm_object_destroy(
1948 	vm_object_t                                     object,
1949 	vm_object_destroy_reason_t   reason)
1950 {
1951 	memory_object_t         old_pager;
1952 
1953 	if (object == VM_OBJECT_NULL) {
1954 		return KERN_SUCCESS;
1955 	}
1956 
1957 	/*
1958 	 *	Remove the pager association immediately.
1959 	 *
1960 	 *	This will prevent the memory manager from further
1961 	 *	meddling.  [If it wanted to flush data or make
1962 	 *	other changes, it should have done so before performing
1963 	 *	the destroy call.]
1964 	 */
1965 
1966 	vm_object_lock(object);
1967 
1968 #if FBDP_DEBUG_OBJECT_NO_PAGER
1969 	static bool fbdp_no_panic_retrieved = false;
1970 	if (!fbdp_no_panic_retrieved) {
1971 		PE_parse_boot_argn("fbdp_no_panic4", &fbdp_no_panic, sizeof(fbdp_no_panic));
1972 		fbdp_no_panic_retrieved = true;
1973 	}
1974 
1975 	bool forced_unmount = false;
1976 	if (object->named &&
1977 	    os_ref_get_count_raw(&object->ref_count) > 2 &&
1978 	    object->pager != NULL &&
1979 	    vnode_pager_get_forced_unmount(object->pager, &forced_unmount) == KERN_SUCCESS &&
1980 	    forced_unmount == false) {
1981 		if (!fbdp_no_panic) {
1982 			panic("FBDP rdar://99829401 object %p refs %d pager %p (no forced unmount)\n", object, os_ref_get_count_raw(&object->ref_count), object->pager);
1983 		}
1984 		DTRACE_VM3(vm_object_destroy_no_forced_unmount,
1985 		    vm_object_t, object,
1986 		    int, os_ref_get_count_raw(&object->ref_count),
1987 		    memory_object_t, object->pager);
1988 	}
1989 
1990 	if (object->fbdp_tracked) {
1991 		if (os_ref_get_count_raw(&object->ref_count) > 2 && !system_inshutdown) {
1992 			if (!fbdp_no_panic) {
1993 				panic("FBDP/4 rdar://99829401 object %p refs %d pager %p (tracked)\n", object, os_ref_get_count_raw(&object->ref_count), object->pager);
1994 			}
1995 		}
1996 		VM_OBJECT_SET_FBDP_TRACKED(object, false);
1997 	}
1998 #endif /* FBDP_DEBUG_OBJECT_NO_PAGER */
1999 
2000 	VM_OBJECT_SET_NO_PAGER_REASON(object, reason);
2001 
2002 	VM_OBJECT_SET_CAN_PERSIST(object, FALSE);
2003 	VM_OBJECT_SET_NAMED(object, FALSE);
2004 #if 00
2005 	VM_OBJECT_SET_ALIVE(object, FALSE);
2006 #endif /* 00 */
2007 
2008 #if DEVELOPMENT || DEBUG
2009 	if (object->object_is_shared_cache &&
2010 	    object->pager != NULL &&
2011 	    object->pager->mo_pager_ops == &shared_region_pager_ops) {
2012 		OSAddAtomic(-object->resident_page_count, &shared_region_pagers_resident_count);
2013 	}
2014 #endif /* DEVELOPMENT || DEBUG */
2015 
2016 	old_pager = object->pager;
2017 	object->pager = MEMORY_OBJECT_NULL;
2018 	if (old_pager != MEMORY_OBJECT_NULL) {
2019 		memory_object_control_disable(&object->pager_control);
2020 	}
2021 
2022 	/*
2023 	 * Wait for the existing paging activity (that got
2024 	 * through before we nulled out the pager) to subside.
2025 	 */
2026 
2027 	vm_object_paging_wait(object, THREAD_UNINT);
2028 	vm_object_unlock(object);
2029 
2030 	/*
2031 	 *	Terminate the object now.
2032 	 */
2033 	if (old_pager != MEMORY_OBJECT_NULL) {
2034 		vm_object_release_pager(old_pager);
2035 
2036 		/*
2037 		 * JMM - Release the caller's reference.  This assumes the
2038 		 * caller had a reference to release, which is a big (but
2039 		 * currently valid) assumption if this is driven from the
2040 		 * vnode pager (it is holding a named reference when making
2041 		 * this call)..
2042 		 */
2043 		vm_object_deallocate(object);
2044 	}
2045 	return KERN_SUCCESS;
2046 }
2047 
2048 /*
2049  * The "chunk" macros are used by routines below when looking for pages to deactivate.  These
2050  * exist because of the need to handle shadow chains.  When deactivating pages, we only
2051  * want to deactive the ones at the top most level in the object chain.  In order to do
2052  * this efficiently, the specified address range is divided up into "chunks" and we use
2053  * a bit map to keep track of which pages have already been processed as we descend down
2054  * the shadow chain.  These chunk macros hide the details of the bit map implementation
2055  * as much as we can.
2056  *
2057  * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is
2058  * set to 64 pages.  The bit map is indexed from the low-order end, so that the lowest
2059  * order bit represents page 0 in the current range and highest order bit represents
2060  * page 63.
2061  *
2062  * For further convenience, we also use negative logic for the page state in the bit map.
2063  * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has
2064  * been processed.  This way we can simply test the 64-bit long word to see if it's zero
2065  * to easily tell if the whole range has been processed.  Therefore, the bit map starts
2066  * out with all the bits set.  The macros below hide all these details from the caller.
2067  */
2068 
2069 #define PAGES_IN_A_CHUNK        64      /* The number of pages in the chunk must */
2070                                         /* be the same as the number of bits in  */
2071                                         /* the chunk_state_t type. We use 64     */
2072                                         /* just for convenience.		 */
2073 
2074 #define CHUNK_SIZE      (PAGES_IN_A_CHUNK * PAGE_SIZE_64)       /* Size of a chunk in bytes */
2075 
2076 typedef uint64_t        chunk_state_t;
2077 
2078 /*
2079  * The bit map uses negative logic, so we start out with all 64 bits set to indicate
2080  * that no pages have been processed yet.  Also, if len is less than the full CHUNK_SIZE,
2081  * then we mark pages beyond the len as having been "processed" so that we don't waste time
2082  * looking at pages in that range.  This can save us from unnecessarily chasing down the
2083  * shadow chain.
2084  */
2085 
2086 #define CHUNK_INIT(c, len)                                              \
2087 	MACRO_BEGIN                                                     \
2088 	uint64_t p;                                                     \
2089                                                                         \
2090 	(c) = 0xffffffffffffffffLL;                                     \
2091                                                                         \
2092 	for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++)       \
2093 	        MARK_PAGE_HANDLED(c, p);                                \
2094 	MACRO_END
2095 
2096 
2097 /*
2098  * Return true if all pages in the chunk have not yet been processed.
2099  */
2100 
2101 #define CHUNK_NOT_COMPLETE(c)   ((c) != 0)
2102 
2103 /*
2104  * Return true if the page at offset 'p' in the bit map has already been handled
2105  * while processing a higher level object in the shadow chain.
2106  */
2107 
2108 #define PAGE_ALREADY_HANDLED(c, p)      (((c) & (1ULL << (p))) == 0)
2109 
2110 /*
2111  * Mark the page at offset 'p' in the bit map as having been processed.
2112  */
2113 
2114 #define MARK_PAGE_HANDLED(c, p) \
2115 MACRO_BEGIN \
2116 	(c) = (c) & ~(1ULL << (p)); \
2117 MACRO_END
2118 
2119 
2120 /*
2121  * Return true if the page at the given offset has been paged out.  Object is
2122  * locked upon entry and returned locked.
2123  *
2124  * NB: It is the callers responsibility to ensure that the offset in question
2125  * is not in the process of being paged in/out (i.e. not busy or no backing
2126  * page)
2127  */
2128 static bool
page_is_paged_out(vm_object_t object,vm_object_offset_t offset)2129 page_is_paged_out(
2130 	vm_object_t             object,
2131 	vm_object_offset_t      offset)
2132 {
2133 	if (object->internal &&
2134 	    object->alive &&
2135 	    !object->terminating &&
2136 	    object->pager_ready) {
2137 		if (vm_object_compressor_pager_state_get(object, offset)
2138 		    == VM_EXTERNAL_STATE_EXISTS) {
2139 			return true;
2140 		}
2141 	}
2142 	return false;
2143 }
2144 
2145 
2146 
2147 /*
2148  * madvise_free_debug
2149  *
2150  * To help debug madvise(MADV_FREE*) mis-usage, this triggers a
2151  * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to
2152  * simulate the loss of the page's contents as if the page had been
2153  * reclaimed and then re-faulted.
2154  */
2155 #if DEVELOPMENT || DEBUG
2156 int madvise_free_debug = 0;
2157 int madvise_free_debug_sometimes = 1;
2158 #else /* DEBUG */
2159 int madvise_free_debug = 0;
2160 int madvise_free_debug_sometimes = 0;
2161 #endif /* DEBUG */
2162 int madvise_free_counter = 0;
2163 
2164 __options_decl(deactivate_flags_t, uint32_t, {
2165 	DEACTIVATE_KILL         = 0x1,
2166 	DEACTIVATE_REUSABLE     = 0x2,
2167 	DEACTIVATE_ALL_REUSABLE = 0x4,
2168 	DEACTIVATE_CLEAR_REFMOD = 0x8,
2169 	DEACTIVATE_REUSABLE_NO_WRITE = 0x10
2170 });
2171 
2172 /*
2173  * Deactivate the pages in the specified object and range.  If kill_page is set, also discard any
2174  * page modified state from the pmap.  Update the chunk_state as we go along.  The caller must specify
2175  * a size that is less than or equal to the CHUNK_SIZE.
2176  */
2177 
2178 static void
deactivate_pages_in_object(vm_object_t object,vm_object_offset_t offset,vm_object_size_t size,deactivate_flags_t flags,chunk_state_t * chunk_state,pmap_flush_context * pfc,struct pmap * pmap,vm_map_offset_t pmap_offset)2179 deactivate_pages_in_object(
2180 	vm_object_t             object,
2181 	vm_object_offset_t      offset,
2182 	vm_object_size_t        size,
2183 	deactivate_flags_t      flags,
2184 	chunk_state_t           *chunk_state,
2185 	pmap_flush_context      *pfc,
2186 	struct pmap             *pmap,
2187 	vm_map_offset_t         pmap_offset)
2188 {
2189 	vm_page_t       m;
2190 	int             p;
2191 	struct  vm_page_delayed_work    dw_array;
2192 	struct  vm_page_delayed_work    *dwp, *dwp_start;
2193 	bool            dwp_finish_ctx = TRUE;
2194 	int             dw_count;
2195 	int             dw_limit;
2196 	unsigned int    reusable = 0;
2197 
2198 	/*
2199 	 * Examine each page in the chunk.  The variable 'p' is the page number relative to the start of the
2200 	 * chunk.  Since this routine is called once for each level in the shadow chain, the chunk_state may
2201 	 * have pages marked as having been processed already.  We stop the loop early if we find we've handled
2202 	 * all the pages in the chunk.
2203 	 */
2204 
2205 	dwp_start = dwp = NULL;
2206 	dw_count = 0;
2207 	dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
2208 	dwp_start = vm_page_delayed_work_get_ctx();
2209 	if (dwp_start == NULL) {
2210 		dwp_start = &dw_array;
2211 		dw_limit = 1;
2212 		dwp_finish_ctx = FALSE;
2213 	}
2214 
2215 	dwp = dwp_start;
2216 
2217 	for (p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64, pmap_offset += PAGE_SIZE_64) {
2218 		/*
2219 		 * If this offset has already been found and handled in a higher level object, then don't
2220 		 * do anything with it in the current shadow object.
2221 		 */
2222 
2223 		if (PAGE_ALREADY_HANDLED(*chunk_state, p)) {
2224 			continue;
2225 		}
2226 
2227 		/*
2228 		 * See if the page at this offset is around.  First check to see if the page is resident,
2229 		 * then if not, check the existence map or with the pager.
2230 		 */
2231 
2232 		if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
2233 			/*
2234 			 * We found a page we were looking for.  Mark it as "handled" now in the chunk_state
2235 			 * so that we won't bother looking for a page at this offset again if there are more
2236 			 * shadow objects.  Then deactivate the page.
2237 			 */
2238 
2239 			MARK_PAGE_HANDLED(*chunk_state, p);
2240 
2241 			if ((!VM_PAGE_WIRED(m)) && (!m->vmp_private) && (!m->vmp_gobbled) && (!m->vmp_busy) &&
2242 			    (!m->vmp_laundry) && (!m->vmp_cleaning) && !(m->vmp_free_when_done)) {
2243 				int     clear_refmod_mask;
2244 				int     pmap_options;
2245 				dwp->dw_mask = 0;
2246 
2247 				pmap_options = 0;
2248 				clear_refmod_mask = VM_MEM_REFERENCED;
2249 				dwp->dw_mask |= DW_clear_reference;
2250 
2251 				if ((flags & DEACTIVATE_KILL) && (object->internal)) {
2252 					if (!(flags & DEACTIVATE_REUSABLE_NO_WRITE) &&
2253 					    (madvise_free_debug ||
2254 					    (madvise_free_debug_sometimes &&
2255 					    madvise_free_counter++ & 0x1))) {
2256 						/*
2257 						 * zero-fill the page (or every
2258 						 * other page) now to simulate
2259 						 * it being reclaimed and
2260 						 * re-faulted.
2261 						 */
2262 #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES
2263 						if (!m->vmp_unmodified_ro) {
2264 #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */
2265 						if (true) {
2266 #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */
2267 							pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m));
2268 						}
2269 					}
2270 					m->vmp_precious = FALSE;
2271 					m->vmp_dirty = FALSE;
2272 
2273 					clear_refmod_mask |= VM_MEM_MODIFIED;
2274 					if (m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) {
2275 						/*
2276 						 * This page is now clean and
2277 						 * reclaimable.  Move it out
2278 						 * of the throttled queue, so
2279 						 * that vm_pageout_scan() can
2280 						 * find it.
2281 						 */
2282 						dwp->dw_mask |= DW_move_page;
2283 					}
2284 
2285 #if 0
2286 #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES
2287 					/*
2288 					 * COMMENT BLOCK ON WHY THIS SHOULDN'T BE DONE.
2289 					 *
2290 					 * Since we are about to do a vm_object_compressor_pager_state_clr
2291 					 * below for this page, which drops any existing compressor
2292 					 * storage of this page (eg side-effect of a CoW operation or
2293 					 * a collapse operation), it is tempting to think that we should
2294 					 * treat this page as if it was just decompressed (during which
2295 					 * we also drop existing compressor storage) and so start its life
2296 					 * out with vmp_unmodified_ro set to FALSE.
2297 					 *
2298 					 * However, we can't do that here because we could swing around
2299 					 * and re-access this page in a read-only fault.
2300 					 * Clearing this bit means we'll try to zero it up above
2301 					 * and fail.
2302 					 *
2303 					 * Note that clearing the bit is unnecessary regardless because
2304 					 * dirty state has been cleared. During the next soft fault, the
2305 					 * right state will be restored and things will progress just fine.
2306 					 */
2307 					if (m->vmp_unmodified_ro == true) {
2308 						/* Need object and pageq locks for bit manipulation*/
2309 						m->vmp_unmodified_ro = false;
2310 						os_atomic_dec(&compressor_ro_uncompressed);
2311 					}
2312 #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */
2313 #endif /* 0 */
2314 					vm_object_compressor_pager_state_clr(object, offset);
2315 
2316 					if ((flags & DEACTIVATE_REUSABLE) && !m->vmp_reusable) {
2317 						assert(!(flags & DEACTIVATE_ALL_REUSABLE));
2318 						assert(!object->all_reusable);
2319 						m->vmp_reusable = TRUE;
2320 						object->reusable_page_count++;
2321 						assert(object->resident_page_count >= object->reusable_page_count);
2322 						reusable++;
2323 						/*
2324 						 * Tell pmap this page is now
2325 						 * "reusable" (to update pmap
2326 						 * stats for all mappings).
2327 						 */
2328 						pmap_options |= PMAP_OPTIONS_SET_REUSABLE;
2329 					}
2330 				}
2331 				if (flags & DEACTIVATE_CLEAR_REFMOD) {
2332 					/*
2333 					 * The caller didn't clear the refmod bits in advance.
2334 					 * Clear them for this page now.
2335 					 */
2336 					pmap_options |= PMAP_OPTIONS_NOFLUSH;
2337 					pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m),
2338 					    clear_refmod_mask,
2339 					    pmap_options,
2340 					    (void *)pfc);
2341 				}
2342 
2343 				if ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) &&
2344 				    !(flags & (DEACTIVATE_REUSABLE | DEACTIVATE_ALL_REUSABLE))) {
2345 					dwp->dw_mask |= DW_move_page;
2346 				}
2347 
2348 				if (dwp->dw_mask) {
2349 					VM_PAGE_ADD_DELAYED_WORK(dwp, m,
2350 					    dw_count);
2351 				}
2352 
2353 				if (dw_count >= dw_limit) {
2354 					if (reusable) {
2355 						OSAddAtomic(reusable,
2356 						    &vm_page_stats_reusable.reusable_count);
2357 						vm_page_stats_reusable.reusable += reusable;
2358 						reusable = 0;
2359 					}
2360 					vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
2361 
2362 					dwp = dwp_start;
2363 					dw_count = 0;
2364 				}
2365 			}
2366 		} else {
2367 			/*
2368 			 * The page at this offset isn't memory resident, check to see if it's
2369 			 * been paged out.  If so, mark it as handled so we don't bother looking
2370 			 * for it in the shadow chain.
2371 			 */
2372 
2373 			if (page_is_paged_out(object, offset)) {
2374 				MARK_PAGE_HANDLED(*chunk_state, p);
2375 
2376 				/*
2377 				 * If we're killing a non-resident page, then clear the page in the existence
2378 				 * map so we don't bother paging it back in if it's touched again in the future.
2379 				 */
2380 
2381 				if ((flags & DEACTIVATE_KILL) && (object->internal)) {
2382 					vm_object_compressor_pager_state_clr(object, offset);
2383 
2384 					if (pmap != PMAP_NULL) {
2385 						/*
2386 						 * Tell pmap that this page
2387 						 * is no longer mapped, to
2388 						 * adjust the footprint ledger
2389 						 * because this page is no
2390 						 * longer compressed.
2391 						 */
2392 						pmap_remove_options(
2393 							pmap,
2394 							pmap_offset,
2395 							(pmap_offset +
2396 							PAGE_SIZE),
2397 							PMAP_OPTIONS_REMOVE);
2398 					}
2399 				}
2400 			}
2401 		}
2402 	}
2403 
2404 	if (reusable) {
2405 		OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count);
2406 		vm_page_stats_reusable.reusable += reusable;
2407 		reusable = 0;
2408 	}
2409 
2410 	if (dw_count) {
2411 		vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
2412 		dwp = dwp_start;
2413 		dw_count = 0;
2414 	}
2415 
2416 	if (dwp_start && dwp_finish_ctx) {
2417 		vm_page_delayed_work_finish_ctx(dwp_start);
2418 		dwp_start = dwp = NULL;
2419 	}
2420 }
2421 
2422 
2423 /*
2424  * Deactive a "chunk" of the given range of the object starting at offset.  A "chunk"
2425  * will always be less than or equal to the given size.  The total range is divided up
2426  * into chunks for efficiency and performance related to the locks and handling the shadow
2427  * chain.  This routine returns how much of the given "size" it actually processed.  It's
2428  * up to the caler to loop and keep calling this routine until the entire range they want
2429  * to process has been done.
2430  * Iff clear_refmod is true, pmap_clear_refmod_options is called for each physical page in this range.
2431  */
2432 
2433 static vm_object_size_t
2434 deactivate_a_chunk(
2435 	vm_object_t             orig_object,
2436 	vm_object_offset_t      offset,
2437 	vm_object_size_t        size,
2438 	deactivate_flags_t      flags,
2439 	pmap_flush_context      *pfc,
2440 	struct pmap             *pmap,
2441 	vm_map_offset_t         pmap_offset)
2442 {
2443 	vm_object_t             object;
2444 	vm_object_t             tmp_object;
2445 	vm_object_size_t        length;
2446 	chunk_state_t           chunk_state;
2447 
2448 
2449 	/*
2450 	 * Get set to do a chunk.  We'll do up to CHUNK_SIZE, but no more than the
2451 	 * remaining size the caller asked for.
2452 	 */
2453 
2454 	length = MIN(size, CHUNK_SIZE);
2455 
2456 	/*
2457 	 * The chunk_state keeps track of which pages we've already processed if there's
2458 	 * a shadow chain on this object.  At this point, we haven't done anything with this
2459 	 * range of pages yet, so initialize the state to indicate no pages processed yet.
2460 	 */
2461 
2462 	CHUNK_INIT(chunk_state, length);
2463 	object = orig_object;
2464 
2465 	/*
2466 	 * Start at the top level object and iterate around the loop once for each object
2467 	 * in the shadow chain.  We stop processing early if we've already found all the pages
2468 	 * in the range.  Otherwise we stop when we run out of shadow objects.
2469 	 */
2470 
2471 	while (object && CHUNK_NOT_COMPLETE(chunk_state)) {
2472 		vm_object_paging_begin(object);
2473 
2474 		deactivate_pages_in_object(object, offset, length, flags, &chunk_state, pfc, pmap, pmap_offset);
2475 
2476 		vm_object_paging_end(object);
2477 
2478 		/*
2479 		 * We've finished with this object, see if there's a shadow object.  If
2480 		 * there is, update the offset and lock the new object.  We also turn off
2481 		 * kill_page at this point since we only kill pages in the top most object.
2482 		 */
2483 
2484 		tmp_object = object->shadow;
2485 
2486 		if (tmp_object) {
2487 			assert(!(flags & DEACTIVATE_KILL) || (flags & DEACTIVATE_CLEAR_REFMOD));
2488 			flags &= ~(DEACTIVATE_KILL | DEACTIVATE_REUSABLE | DEACTIVATE_ALL_REUSABLE);
2489 			offset += object->vo_shadow_offset;
2490 			vm_object_lock(tmp_object);
2491 		}
2492 
2493 		if (object != orig_object) {
2494 			vm_object_unlock(object);
2495 		}
2496 
2497 		object = tmp_object;
2498 	}
2499 
2500 	if (object && object != orig_object) {
2501 		vm_object_unlock(object);
2502 	}
2503 
2504 	return length;
2505 }
2506 
2507 
2508 
2509 /*
2510  * Move any resident pages in the specified range to the inactive queue.  If kill_page is set,
2511  * we also clear the modified status of the page and "forget" any changes that have been made
2512  * to the page.
2513  */
2514 
2515 __private_extern__ void
2516 vm_object_deactivate_pages(
2517 	vm_object_t             object,
2518 	vm_object_offset_t      offset,
2519 	vm_object_size_t        size,
2520 	boolean_t               kill_page,
2521 	boolean_t               reusable_page,
2522 	boolean_t               reusable_no_write,
2523 	struct pmap             *pmap,
2524 	vm_map_offset_t         pmap_offset)
2525 {
2526 	vm_object_size_t        length;
2527 	boolean_t               all_reusable;
2528 	pmap_flush_context      pmap_flush_context_storage;
2529 	unsigned int pmap_clear_refmod_mask = VM_MEM_REFERENCED;
2530 	unsigned int pmap_clear_refmod_options = 0;
2531 	deactivate_flags_t flags = DEACTIVATE_CLEAR_REFMOD;
2532 	bool refmod_cleared = false;
2533 	if (kill_page) {
2534 		flags |= DEACTIVATE_KILL;
2535 	}
2536 	if (reusable_page) {
2537 		flags |= DEACTIVATE_REUSABLE;
2538 	}
2539 	if (reusable_no_write) {
2540 		flags |= DEACTIVATE_REUSABLE_NO_WRITE;
2541 	}
2542 
2543 	/*
2544 	 * We break the range up into chunks and do one chunk at a time.  This is for
2545 	 * efficiency and performance while handling the shadow chains and the locks.
2546 	 * The deactivate_a_chunk() function returns how much of the range it processed.
2547 	 * We keep calling this routine until the given size is exhausted.
2548 	 */
2549 
2550 
2551 	all_reusable = FALSE;
2552 #if 11
2553 	/*
2554 	 * For the sake of accurate "reusable" pmap stats, we need
2555 	 * to tell pmap about each page that is no longer "reusable",
2556 	 * so we can't do the "all_reusable" optimization.
2557 	 *
2558 	 * If we do go with the all_reusable optimization, we can't
2559 	 * return if size is 0 since we could have "all_reusable == TRUE"
2560 	 * In this case, we save the overhead of doing the pmap_flush_context
2561 	 * work.
2562 	 */
2563 	if (size == 0) {
2564 		return;
2565 	}
2566 #else
2567 	if (reusable_page &&
2568 	    object->internal &&
2569 	    object->vo_size != 0 &&
2570 	    object->vo_size == size &&
2571 	    object->reusable_page_count == 0) {
2572 		all_reusable = TRUE;
2573 		reusable_page = FALSE;
2574 		flags |= DEACTIVATE_ALL_REUSABLE;
2575 	}
2576 #endif
2577 
2578 	if ((reusable_page || all_reusable) && object->all_reusable) {
2579 		/* This means MADV_FREE_REUSABLE has been called twice, which
2580 		 * is probably illegal. */
2581 		return;
2582 	}
2583 
2584 
2585 	pmap_flush_context_init(&pmap_flush_context_storage);
2586 
2587 	/*
2588 	 * If we're deactivating multiple pages, try to perform one bulk pmap operation.
2589 	 * We can't do this if we're killing pages and there's a shadow chain as
2590 	 * we don't yet know which pages are in the top object (pages in shadow copies aren't
2591 	 * safe to kill).
2592 	 * And we can only do this on hardware that supports it.
2593 	 */
2594 	if (size > PAGE_SIZE && (!kill_page || !object->shadow)) {
2595 		if (kill_page && object->internal) {
2596 			pmap_clear_refmod_mask |= VM_MEM_MODIFIED;
2597 		}
2598 		if (reusable_page) {
2599 			pmap_clear_refmod_options |= PMAP_OPTIONS_SET_REUSABLE;
2600 		}
2601 
2602 		refmod_cleared = pmap_clear_refmod_range_options(pmap, pmap_offset, pmap_offset + size, pmap_clear_refmod_mask, pmap_clear_refmod_options);
2603 		if (refmod_cleared) {
2604 			// We were able to clear all the refmod bits. So deactivate_a_chunk doesn't need to do it.
2605 			flags &= ~DEACTIVATE_CLEAR_REFMOD;
2606 		}
2607 	}
2608 
2609 	while (size) {
2610 		length = deactivate_a_chunk(object, offset, size, flags,
2611 		    &pmap_flush_context_storage, pmap, pmap_offset);
2612 
2613 		size -= length;
2614 		offset += length;
2615 		pmap_offset += length;
2616 	}
2617 	pmap_flush(&pmap_flush_context_storage);
2618 
2619 	if (all_reusable) {
2620 		if (!object->all_reusable) {
2621 			unsigned int reusable;
2622 
2623 			object->all_reusable = TRUE;
2624 			assert(object->reusable_page_count == 0);
2625 			/* update global stats */
2626 			reusable = object->resident_page_count;
2627 			OSAddAtomic(reusable,
2628 			    &vm_page_stats_reusable.reusable_count);
2629 			vm_page_stats_reusable.reusable += reusable;
2630 			vm_page_stats_reusable.all_reusable_calls++;
2631 		}
2632 	} else if (reusable_page) {
2633 		vm_page_stats_reusable.partial_reusable_calls++;
2634 	}
2635 }
2636 
2637 void
2638 vm_object_reuse_pages(
2639 	vm_object_t             object,
2640 	vm_object_offset_t      start_offset,
2641 	vm_object_offset_t      end_offset,
2642 	boolean_t               allow_partial_reuse)
2643 {
2644 	vm_object_offset_t      cur_offset;
2645 	vm_page_t               m;
2646 	unsigned int            reused, reusable;
2647 
2648 #define VM_OBJECT_REUSE_PAGE(object, m, reused)                         \
2649 	MACRO_BEGIN                                                     \
2650 	        if ((m) != VM_PAGE_NULL &&                              \
2651 	            (m)->vmp_reusable) {                                \
2652 	                assert((object)->reusable_page_count <=         \
2653 	                       (object)->resident_page_count);          \
2654 	                assert((object)->reusable_page_count > 0);      \
2655 	                (object)->reusable_page_count--;                \
2656 	                (m)->vmp_reusable = FALSE;                      \
2657 	                (reused)++;                                     \
2658 	/* \
2659 	 * Tell pmap that this page is no longer \
2660 	 * "reusable", to update the "reusable" stats \
2661 	 * for all the pmaps that have mapped this \
2662 	 * page. \
2663 	 */                                                             \
2664 	                pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE((m)), \
2665 	                                          0, /* refmod */       \
2666 	                                          (PMAP_OPTIONS_CLEAR_REUSABLE \
2667 	                                           | PMAP_OPTIONS_NOFLUSH), \
2668 	                                          NULL);                \
2669 	        }                                                       \
2670 	MACRO_END
2671 
2672 	reused = 0;
2673 	reusable = 0;
2674 
2675 	vm_object_lock_assert_exclusive(object);
2676 
2677 	if (object->all_reusable) {
2678 		panic("object %p all_reusable: can't update pmap stats",
2679 		    object);
2680 		assert(object->reusable_page_count == 0);
2681 		object->all_reusable = FALSE;
2682 		if (end_offset - start_offset == object->vo_size ||
2683 		    !allow_partial_reuse) {
2684 			vm_page_stats_reusable.all_reuse_calls++;
2685 			reused = object->resident_page_count;
2686 		} else {
2687 			vm_page_stats_reusable.partial_reuse_calls++;
2688 			vm_page_queue_iterate(&object->memq, m, vmp_listq) {
2689 				if (m->vmp_offset < start_offset ||
2690 				    m->vmp_offset >= end_offset) {
2691 					m->vmp_reusable = TRUE;
2692 					object->reusable_page_count++;
2693 					assert(object->resident_page_count >= object->reusable_page_count);
2694 					continue;
2695 				} else {
2696 					assert(!m->vmp_reusable);
2697 					reused++;
2698 				}
2699 			}
2700 		}
2701 	} else if (object->resident_page_count >
2702 	    ((end_offset - start_offset) >> PAGE_SHIFT)) {
2703 		vm_page_stats_reusable.partial_reuse_calls++;
2704 		for (cur_offset = start_offset;
2705 		    cur_offset < end_offset;
2706 		    cur_offset += PAGE_SIZE_64) {
2707 			if (object->reusable_page_count == 0) {
2708 				break;
2709 			}
2710 			m = vm_page_lookup(object, cur_offset);
2711 			VM_OBJECT_REUSE_PAGE(object, m, reused);
2712 		}
2713 	} else {
2714 		vm_page_stats_reusable.partial_reuse_calls++;
2715 		vm_page_queue_iterate(&object->memq, m, vmp_listq) {
2716 			if (object->reusable_page_count == 0) {
2717 				break;
2718 			}
2719 			if (m->vmp_offset < start_offset ||
2720 			    m->vmp_offset >= end_offset) {
2721 				continue;
2722 			}
2723 			VM_OBJECT_REUSE_PAGE(object, m, reused);
2724 		}
2725 	}
2726 
2727 	/* update global stats */
2728 	OSAddAtomic(reusable - reused, &vm_page_stats_reusable.reusable_count);
2729 	vm_page_stats_reusable.reused += reused;
2730 	vm_page_stats_reusable.reusable += reusable;
2731 }
2732 
2733 /*
2734  * This function determines if the zero operation can be run on the
2735  * object. The checks on the entry have already been performed by
2736  * vm_map_zero_entry_preflight.
2737  */
2738 static kern_return_t
2739 vm_object_zero_preflight(
2740 	vm_object_t                     object,
2741 	vm_object_offset_t              start,
2742 	vm_object_offset_t              end)
2743 {
2744 	/*
2745 	 * Zeroing is further restricted to anonymous memory.
2746 	 */
2747 	if (!object->internal) {
2748 		return KERN_PROTECTION_FAILURE;
2749 	}
2750 
2751 	/*
2752 	 * Zeroing for copy on write isn't yet supported
2753 	 */
2754 	if (object->shadow != NULL ||
2755 	    object->vo_copy != NULL) {
2756 		return KERN_NO_ACCESS;
2757 	}
2758 
2759 	/*
2760 	 * Ensure the that bounds makes sense wrt the object
2761 	 */
2762 	if (end - start > object->vo_size) {
2763 		return KERN_INVALID_ADDRESS;
2764 	}
2765 
2766 	if (object->terminating || !object->alive) {
2767 		return KERN_ABORTED;
2768 	}
2769 
2770 	return KERN_SUCCESS;
2771 }
2772 
2773 static void
2774 vm_object_zero_page(vm_page_t m)
2775 {
2776 	if (m != VM_PAGE_NULL) {
2777 		ppnum_t phy_page_num = VM_PAGE_GET_PHYS_PAGE(m);
2778 
2779 		/*
2780 		 * Skip fictitious guard pages
2781 		 */
2782 		if (m->vmp_fictitious) {
2783 			assert(phy_page_num == vm_page_guard_addr);
2784 			return;
2785 		}
2786 		pmap_zero_page(phy_page_num);
2787 	}
2788 }
2789 
2790 /*
2791  * This function iterates the range of pages specified in the object and
2792  * discards the ones that are compressed and zeroes the ones that are wired.
2793  * This function may drop the object lock while waiting for a page that is
2794  * busy and will restart the operation for the specific offset.
2795  */
2796 kern_return_t
2797 vm_object_zero(
2798 	vm_object_t                     object,
2799 	vm_object_offset_t              cur_offset,
2800 	vm_object_offset_t              end_offset)
2801 {
2802 	kern_return_t ret;
2803 
2804 	vm_object_lock_assert_exclusive(object);
2805 	ret = vm_object_zero_preflight(object, cur_offset, end_offset);
2806 	if (ret != KERN_SUCCESS) {
2807 		return ret;
2808 	}
2809 
2810 	while (cur_offset < end_offset) {
2811 		vm_page_t m = vm_page_lookup(object, cur_offset);
2812 
2813 		if (m != VM_PAGE_NULL && m->vmp_busy) {
2814 			vm_page_sleep(object, m, THREAD_UNINT, LCK_SLEEP_DEFAULT);
2815 			/* Object lock was dropped -- reverify validity */
2816 			ret = vm_object_zero_preflight(object, cur_offset, end_offset);
2817 			if (ret != KERN_SUCCESS) {
2818 				return ret;
2819 			}
2820 			continue;
2821 		}
2822 
2823 		/*
2824 		 * If the compressor has the page then just discard it instead
2825 		 * of faulting it in and zeroing it else zero the page if it exists. If
2826 		 * we dropped the object lock during the lookup retry the lookup for the
2827 		 * cur_offset.
2828 		 */
2829 		if (page_is_paged_out(object, cur_offset)) {
2830 			vm_object_compressor_pager_state_clr(object, cur_offset);
2831 		} else {
2832 			vm_object_zero_page(m);
2833 		}
2834 		cur_offset += PAGE_SIZE_64;
2835 		/*
2836 		 * TODO: May need a vm_object_lock_yield_shared in this loop if it takes
2837 		 * too long, as holding the object lock for too long can stall pageout
2838 		 * scan (or other users of the object)
2839 		 */
2840 	}
2841 
2842 	return KERN_SUCCESS;
2843 }
2844 
2845 /*
2846  *	Routine:	vm_object_pmap_protect
2847  *
2848  *	Purpose:
2849  *		Reduces the permission for all physical
2850  *		pages in the specified object range.
2851  *
2852  *		If removing write permission only, it is
2853  *		sufficient to protect only the pages in
2854  *		the top-level object; only those pages may
2855  *		have write permission.
2856  *
2857  *		If removing all access, we must follow the
2858  *		shadow chain from the top-level object to
2859  *		remove access to all pages in shadowed objects.
2860  *
2861  *		The object must *not* be locked.  The object must
2862  *		be internal.
2863  *
2864  *              If pmap is not NULL, this routine assumes that
2865  *              the only mappings for the pages are in that
2866  *              pmap.
2867  */
2868 
2869 __private_extern__ void
2870 vm_object_pmap_protect(
2871 	vm_object_t                     object,
2872 	vm_object_offset_t              offset,
2873 	vm_object_size_t                size,
2874 	pmap_t                          pmap,
2875 	vm_map_size_t                   pmap_page_size,
2876 	vm_map_offset_t                 pmap_start,
2877 	vm_prot_t                       prot)
2878 {
2879 	vm_object_pmap_protect_options(object, offset, size, pmap,
2880 	    pmap_page_size,
2881 	    pmap_start, prot, 0);
2882 }
2883 
2884 __private_extern__ void
2885 vm_object_pmap_protect_options(
2886 	vm_object_t                     object,
2887 	vm_object_offset_t              offset,
2888 	vm_object_size_t                size,
2889 	pmap_t                          pmap,
2890 	vm_map_size_t                   pmap_page_size,
2891 	vm_map_offset_t                 pmap_start,
2892 	vm_prot_t                       prot,
2893 	int                             options)
2894 {
2895 	pmap_flush_context      pmap_flush_context_storage;
2896 	boolean_t               delayed_pmap_flush = FALSE;
2897 	vm_object_offset_t      offset_in_object;
2898 	vm_object_size_t        size_in_object;
2899 
2900 	if (object == VM_OBJECT_NULL) {
2901 		return;
2902 	}
2903 	if (pmap_page_size > PAGE_SIZE) {
2904 		/* for 16K map on 4K device... */
2905 		pmap_page_size = PAGE_SIZE;
2906 	}
2907 	/*
2908 	 * If we decide to work on the object itself, extend the range to
2909 	 * cover a full number of native pages.
2910 	 */
2911 	size_in_object = vm_object_round_page(offset + size) - vm_object_trunc_page(offset);
2912 	offset_in_object = vm_object_trunc_page(offset);
2913 	/*
2914 	 * If we decide to work on the pmap, use the exact range specified,
2915 	 * so no rounding/truncating offset and size.  They should already
2916 	 * be aligned to pmap_page_size.
2917 	 */
2918 	assertf(!(offset & (pmap_page_size - 1)) && !(size & (pmap_page_size - 1)),
2919 	    "offset 0x%llx size 0x%llx pmap_page_size 0x%llx",
2920 	    offset, size, (uint64_t)pmap_page_size);
2921 
2922 	vm_object_lock(object);
2923 
2924 	if (object->phys_contiguous) {
2925 		if (pmap != NULL) {
2926 			vm_object_unlock(object);
2927 			pmap_protect_options(pmap,
2928 			    pmap_start,
2929 			    pmap_start + size,
2930 			    prot,
2931 			    options & ~PMAP_OPTIONS_NOFLUSH,
2932 			    NULL);
2933 		} else {
2934 			vm_object_offset_t phys_start, phys_end, phys_addr;
2935 
2936 			phys_start = object->vo_shadow_offset + offset_in_object;
2937 			phys_end = phys_start + size_in_object;
2938 			assert(phys_start <= phys_end);
2939 			assert(phys_end <= object->vo_shadow_offset + object->vo_size);
2940 			vm_object_unlock(object);
2941 
2942 			pmap_flush_context_init(&pmap_flush_context_storage);
2943 			delayed_pmap_flush = FALSE;
2944 
2945 			for (phys_addr = phys_start;
2946 			    phys_addr < phys_end;
2947 			    phys_addr += PAGE_SIZE_64) {
2948 				pmap_page_protect_options(
2949 					(ppnum_t) (phys_addr >> PAGE_SHIFT),
2950 					prot,
2951 					options | PMAP_OPTIONS_NOFLUSH,
2952 					(void *)&pmap_flush_context_storage);
2953 				delayed_pmap_flush = TRUE;
2954 			}
2955 			if (delayed_pmap_flush == TRUE) {
2956 				pmap_flush(&pmap_flush_context_storage);
2957 			}
2958 		}
2959 		return;
2960 	}
2961 
2962 	assert(object->internal);
2963 
2964 	while (TRUE) {
2965 		if (ptoa_64(object->resident_page_count) > size_in_object / 2 && pmap != PMAP_NULL) {
2966 			vm_object_unlock(object);
2967 			if (pmap_page_size < PAGE_SIZE) {
2968 				DEBUG4K_PMAP("pmap %p start 0x%llx end 0x%llx prot 0x%x: pmap_protect()\n", pmap, (uint64_t)pmap_start, pmap_start + size, prot);
2969 			}
2970 			pmap_protect_options(pmap, pmap_start, pmap_start + size, prot,
2971 			    options & ~PMAP_OPTIONS_NOFLUSH, NULL);
2972 			return;
2973 		}
2974 
2975 		if (pmap_page_size < PAGE_SIZE) {
2976 			DEBUG4K_PMAP("pmap %p start 0x%llx end 0x%llx prot 0x%x: offset 0x%llx size 0x%llx object %p offset 0x%llx size 0x%llx\n", pmap, (uint64_t)pmap_start, pmap_start + size, prot, offset, size, object, offset_in_object, size_in_object);
2977 		}
2978 
2979 		pmap_flush_context_init(&pmap_flush_context_storage);
2980 		delayed_pmap_flush = FALSE;
2981 
2982 		/*
2983 		 * if we are doing large ranges with respect to resident
2984 		 * page count then we should interate over pages otherwise
2985 		 * inverse page look-up will be faster
2986 		 */
2987 		if (ptoa_64(object->resident_page_count / 4) < size_in_object) {
2988 			vm_page_t               p;
2989 			vm_object_offset_t      end;
2990 
2991 			end = offset_in_object + size_in_object;
2992 
2993 			vm_page_queue_iterate(&object->memq, p, vmp_listq) {
2994 				if (!p->vmp_fictitious && (offset_in_object <= p->vmp_offset) && (p->vmp_offset < end)) {
2995 					vm_map_offset_t start;
2996 
2997 					/*
2998 					 * XXX FBDP 4K: intentionally using "offset" here instead
2999 					 * of "offset_in_object", since "start" is a pmap address.
3000 					 */
3001 					start = pmap_start + p->vmp_offset - offset;
3002 
3003 					if (pmap != PMAP_NULL) {
3004 						vm_map_offset_t curr;
3005 						for (curr = start;
3006 						    curr < start + PAGE_SIZE_64;
3007 						    curr += pmap_page_size) {
3008 							if (curr < pmap_start) {
3009 								continue;
3010 							}
3011 							if (curr >= pmap_start + size) {
3012 								break;
3013 							}
3014 							pmap_protect_options(
3015 								pmap,
3016 								curr,
3017 								curr + pmap_page_size,
3018 								prot,
3019 								options | PMAP_OPTIONS_NOFLUSH,
3020 								&pmap_flush_context_storage);
3021 						}
3022 					} else {
3023 						pmap_page_protect_options(
3024 							VM_PAGE_GET_PHYS_PAGE(p),
3025 							prot,
3026 							options | PMAP_OPTIONS_NOFLUSH,
3027 							&pmap_flush_context_storage);
3028 					}
3029 					delayed_pmap_flush = TRUE;
3030 				}
3031 			}
3032 		} else {
3033 			vm_page_t               p;
3034 			vm_object_offset_t      end;
3035 			vm_object_offset_t      target_off;
3036 
3037 			end = offset_in_object + size_in_object;
3038 
3039 			for (target_off = offset_in_object;
3040 			    target_off < end; target_off += PAGE_SIZE) {
3041 				p = vm_page_lookup(object, target_off);
3042 
3043 				if (p != VM_PAGE_NULL) {
3044 					vm_object_offset_t start;
3045 
3046 					/*
3047 					 * XXX FBDP 4K: intentionally using "offset" here instead
3048 					 * of "offset_in_object", since "start" is a pmap address.
3049 					 */
3050 					start = pmap_start + (p->vmp_offset - offset);
3051 
3052 					if (pmap != PMAP_NULL) {
3053 						vm_map_offset_t curr;
3054 						for (curr = start;
3055 						    curr < start + PAGE_SIZE;
3056 						    curr += pmap_page_size) {
3057 							if (curr < pmap_start) {
3058 								continue;
3059 							}
3060 							if (curr >= pmap_start + size) {
3061 								break;
3062 							}
3063 							pmap_protect_options(
3064 								pmap,
3065 								curr,
3066 								curr + pmap_page_size,
3067 								prot,
3068 								options | PMAP_OPTIONS_NOFLUSH,
3069 								&pmap_flush_context_storage);
3070 						}
3071 					} else {
3072 						pmap_page_protect_options(
3073 							VM_PAGE_GET_PHYS_PAGE(p),
3074 							prot,
3075 							options | PMAP_OPTIONS_NOFLUSH,
3076 							&pmap_flush_context_storage);
3077 					}
3078 					delayed_pmap_flush = TRUE;
3079 				}
3080 			}
3081 		}
3082 		if (delayed_pmap_flush == TRUE) {
3083 			pmap_flush(&pmap_flush_context_storage);
3084 		}
3085 
3086 		if (prot == VM_PROT_NONE) {
3087 			/*
3088 			 * Must follow shadow chain to remove access
3089 			 * to pages in shadowed objects.
3090 			 */
3091 			vm_object_t     next_object;
3092 
3093 			next_object = object->shadow;
3094 			if (next_object != VM_OBJECT_NULL) {
3095 				offset_in_object += object->vo_shadow_offset;
3096 				offset += object->vo_shadow_offset;
3097 				vm_object_lock(next_object);
3098 				vm_object_unlock(object);
3099 				object = next_object;
3100 			} else {
3101 				/*
3102 				 * End of chain - we are done.
3103 				 */
3104 				break;
3105 			}
3106 		} else {
3107 			/*
3108 			 * Pages in shadowed objects may never have
3109 			 * write permission - we may stop here.
3110 			 */
3111 			break;
3112 		}
3113 	}
3114 
3115 	vm_object_unlock(object);
3116 }
3117 
3118 uint32_t vm_page_busy_absent_skipped = 0;
3119 
3120 /*
3121  *	Routine:	vm_object_copy_slowly
3122  *
3123  *	Description:
3124  *		Copy the specified range of the source
3125  *		virtual memory object without using
3126  *		protection-based optimizations (such
3127  *		as copy-on-write).  The pages in the
3128  *		region are actually copied.
3129  *
3130  *	In/out conditions:
3131  *		The caller must hold a reference and a lock
3132  *		for the source virtual memory object.  The source
3133  *		object will be returned *unlocked*.
3134  *
3135  *	Results:
3136  *		If the copy is completed successfully, KERN_SUCCESS is
3137  *		returned.  If the caller asserted the interruptible
3138  *		argument, and an interruption occurred while waiting
3139  *		for a user-generated event, MACH_SEND_INTERRUPTED is
3140  *		returned.  Other values may be returned to indicate
3141  *		hard errors during the copy operation.
3142  *
3143  *		A new virtual memory object is returned in a
3144  *		parameter (_result_object).  The contents of this
3145  *		new object, starting at a zero offset, are a copy
3146  *		of the source memory region.  In the event of
3147  *		an error, this parameter will contain the value
3148  *		VM_OBJECT_NULL.
3149  */
3150 __private_extern__ kern_return_t
3151 vm_object_copy_slowly(
3152 	vm_object_t             src_object,
3153 	vm_object_offset_t      src_offset,
3154 	vm_object_size_t        size,
3155 	boolean_t               interruptible,
3156 	vm_object_t             *_result_object)        /* OUT */
3157 {
3158 	vm_object_t             new_object;
3159 	vm_object_offset_t      new_offset;
3160 
3161 	struct vm_object_fault_info fault_info = {};
3162 
3163 	if (size == 0) {
3164 		vm_object_unlock(src_object);
3165 		*_result_object = VM_OBJECT_NULL;
3166 		return KERN_INVALID_ARGUMENT;
3167 	}
3168 
3169 	/*
3170 	 *	Prevent destruction of the source object while we copy.
3171 	 */
3172 
3173 	vm_object_reference_locked(src_object);
3174 	vm_object_unlock(src_object);
3175 
3176 	/*
3177 	 *	Create a new object to hold the copied pages.
3178 	 *	A few notes:
3179 	 *		We fill the new object starting at offset 0,
3180 	 *		 regardless of the input offset.
3181 	 *		We don't bother to lock the new object within
3182 	 *		 this routine, since we have the only reference.
3183 	 */
3184 
3185 	size = vm_object_round_page(src_offset + size) - vm_object_trunc_page(src_offset);
3186 	src_offset = vm_object_trunc_page(src_offset);
3187 	new_object = vm_object_allocate(size);
3188 	new_offset = 0;
3189 	if (src_object->copy_strategy == MEMORY_OBJECT_COPY_NONE &&
3190 	    src_object->vo_inherit_copy_none) {
3191 		new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
3192 		new_object->vo_inherit_copy_none = true;
3193 	}
3194 
3195 	assert(size == trunc_page_64(size));    /* Will the loop terminate? */
3196 
3197 	fault_info.interruptible = interruptible;
3198 	fault_info.behavior  = VM_BEHAVIOR_SEQUENTIAL;
3199 	fault_info.lo_offset = src_offset;
3200 	fault_info.hi_offset = src_offset + size;
3201 	fault_info.stealth = TRUE;
3202 
3203 	for (;
3204 	    size != 0;
3205 	    src_offset += PAGE_SIZE_64,
3206 	    new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64
3207 	    ) {
3208 		vm_page_t       new_page;
3209 		vm_fault_return_t result;
3210 
3211 		vm_object_lock(new_object);
3212 
3213 		while ((new_page = vm_page_alloc(new_object, new_offset))
3214 		    == VM_PAGE_NULL) {
3215 			vm_object_unlock(new_object);
3216 
3217 			if (!vm_page_wait(interruptible)) {
3218 				vm_object_deallocate(new_object);
3219 				vm_object_deallocate(src_object);
3220 				*_result_object = VM_OBJECT_NULL;
3221 				return MACH_SEND_INTERRUPTED;
3222 			}
3223 			vm_object_lock(new_object);
3224 		}
3225 		vm_object_unlock(new_object);
3226 
3227 		do {
3228 			vm_prot_t       prot = VM_PROT_READ;
3229 			vm_page_t       _result_page;
3230 			vm_page_t       top_page;
3231 			vm_page_t       result_page;
3232 			kern_return_t   error_code;
3233 			vm_object_t     result_page_object;
3234 
3235 
3236 			vm_object_lock(src_object);
3237 
3238 			if (src_object->internal &&
3239 			    src_object->shadow == VM_OBJECT_NULL &&
3240 			    (src_object->pager == NULL ||
3241 			    (vm_object_compressor_pager_state_get(src_object,
3242 			    src_offset) ==
3243 			    VM_EXTERNAL_STATE_ABSENT))) {
3244 				boolean_t can_skip_page;
3245 
3246 				_result_page = vm_page_lookup(src_object,
3247 				    src_offset);
3248 				if (_result_page == VM_PAGE_NULL) {
3249 					/*
3250 					 * This page is neither resident nor
3251 					 * compressed and there's no shadow
3252 					 * object below "src_object", so this
3253 					 * page is really missing.
3254 					 * There's no need to zero-fill it just
3255 					 * to copy it:  let's leave it missing
3256 					 * in "new_object" and get zero-filled
3257 					 * on demand.
3258 					 */
3259 					can_skip_page = TRUE;
3260 				} else if (workaround_41447923 &&
3261 				    src_object->pager == NULL &&
3262 				    _result_page != VM_PAGE_NULL &&
3263 				    _result_page->vmp_busy &&
3264 				    _result_page->vmp_absent &&
3265 				    src_object->purgable == VM_PURGABLE_DENY &&
3266 				    !src_object->blocked_access) {
3267 					/*
3268 					 * This page is "busy" and "absent"
3269 					 * but not because we're waiting for
3270 					 * it to be decompressed.  It must
3271 					 * be because it's a "no zero fill"
3272 					 * page that is currently not
3273 					 * accessible until it gets overwritten
3274 					 * by a device driver.
3275 					 * Since its initial state would have
3276 					 * been "zero-filled", let's leave the
3277 					 * copy page missing and get zero-filled
3278 					 * on demand.
3279 					 */
3280 					assert(src_object->internal);
3281 					assert(src_object->shadow == NULL);
3282 					assert(src_object->pager == NULL);
3283 					can_skip_page = TRUE;
3284 					vm_page_busy_absent_skipped++;
3285 				} else {
3286 					can_skip_page = FALSE;
3287 				}
3288 				if (can_skip_page) {
3289 					vm_object_unlock(src_object);
3290 					/* free the unused "new_page"... */
3291 					vm_object_lock(new_object);
3292 					VM_PAGE_FREE(new_page);
3293 					new_page = VM_PAGE_NULL;
3294 					vm_object_unlock(new_object);
3295 					/* ...and go to next page in "src_object" */
3296 					result = VM_FAULT_SUCCESS;
3297 					break;
3298 				}
3299 			}
3300 
3301 			vm_object_paging_begin(src_object);
3302 
3303 			/* cap size at maximum UPL size */
3304 			upl_size_t cluster_size;
3305 			if (os_convert_overflow(size, &cluster_size)) {
3306 				cluster_size = 0 - (upl_size_t)PAGE_SIZE;
3307 			}
3308 			fault_info.cluster_size = cluster_size;
3309 
3310 			_result_page = VM_PAGE_NULL;
3311 			result = vm_fault_page(src_object, src_offset,
3312 			    VM_PROT_READ, FALSE,
3313 			    FALSE,     /* page not looked up */
3314 			    &prot, &_result_page, &top_page,
3315 			    (int *)0,
3316 			    &error_code, FALSE, &fault_info);
3317 
3318 			switch (result) {
3319 			case VM_FAULT_SUCCESS:
3320 				result_page = _result_page;
3321 				result_page_object = VM_PAGE_OBJECT(result_page);
3322 
3323 				/*
3324 				 *	Copy the page to the new object.
3325 				 *
3326 				 *	POLICY DECISION:
3327 				 *		If result_page is clean,
3328 				 *		we could steal it instead
3329 				 *		of copying.
3330 				 */
3331 
3332 				vm_page_copy(result_page, new_page);
3333 				vm_object_unlock(result_page_object);
3334 
3335 				/*
3336 				 *	Let go of both pages (make them
3337 				 *	not busy, perform wakeup, activate).
3338 				 */
3339 				vm_object_lock(new_object);
3340 				SET_PAGE_DIRTY(new_page, FALSE);
3341 				vm_page_wakeup_done(new_object, new_page);
3342 				vm_object_unlock(new_object);
3343 
3344 				vm_object_lock(result_page_object);
3345 				vm_page_wakeup_done(result_page_object, result_page);
3346 
3347 				vm_page_lockspin_queues();
3348 				if ((result_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ||
3349 				    (result_page->vmp_q_state == VM_PAGE_NOT_ON_Q)) {
3350 					vm_page_activate(result_page);
3351 				}
3352 				vm_page_activate(new_page);
3353 				vm_page_unlock_queues();
3354 
3355 				/*
3356 				 *	Release paging references and
3357 				 *	top-level placeholder page, if any.
3358 				 */
3359 
3360 				vm_fault_cleanup(result_page_object,
3361 				    top_page);
3362 
3363 				break;
3364 
3365 			case VM_FAULT_RETRY:
3366 				break;
3367 
3368 			case VM_FAULT_MEMORY_SHORTAGE:
3369 				if (vm_page_wait(interruptible)) {
3370 					break;
3371 				}
3372 				ktriage_record(thread_tid(current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_OBJCOPYSLOWLY_MEMORY_SHORTAGE), 0 /* arg */);
3373 				OS_FALLTHROUGH;
3374 
3375 			case VM_FAULT_INTERRUPTED:
3376 				vm_object_lock(new_object);
3377 				VM_PAGE_FREE(new_page);
3378 				vm_object_unlock(new_object);
3379 
3380 				vm_object_deallocate(new_object);
3381 				vm_object_deallocate(src_object);
3382 				*_result_object = VM_OBJECT_NULL;
3383 				return MACH_SEND_INTERRUPTED;
3384 
3385 			case VM_FAULT_SUCCESS_NO_VM_PAGE:
3386 				/* success but no VM page: fail */
3387 				vm_object_paging_end(src_object);
3388 				vm_object_unlock(src_object);
3389 				OS_FALLTHROUGH;
3390 			case VM_FAULT_MEMORY_ERROR:
3391 				/*
3392 				 * A policy choice:
3393 				 *	(a) ignore pages that we can't
3394 				 *	    copy
3395 				 *	(b) return the null object if
3396 				 *	    any page fails [chosen]
3397 				 */
3398 
3399 				vm_object_lock(new_object);
3400 				VM_PAGE_FREE(new_page);
3401 				vm_object_unlock(new_object);
3402 
3403 				vm_object_deallocate(new_object);
3404 				vm_object_deallocate(src_object);
3405 				*_result_object = VM_OBJECT_NULL;
3406 				return error_code ? error_code:
3407 				       KERN_MEMORY_ERROR;
3408 
3409 			default:
3410 				panic("vm_object_copy_slowly: unexpected error"
3411 				    " 0x%x from vm_fault_page()\n", result);
3412 			}
3413 		} while (result != VM_FAULT_SUCCESS);
3414 	}
3415 
3416 	/*
3417 	 *	Lose the extra reference, and return our object.
3418 	 */
3419 	vm_object_deallocate(src_object);
3420 	*_result_object = new_object;
3421 	return KERN_SUCCESS;
3422 }
3423 
3424 /*
3425  *	Routine:	vm_object_copy_quickly
3426  *
3427  *	Purpose:
3428  *		Copy the specified range of the source virtual
3429  *		memory object, if it can be done without waiting
3430  *		for user-generated events.
3431  *
3432  *	Results:
3433  *		If the copy is successful, the copy is returned in
3434  *		the arguments; otherwise, the arguments are not
3435  *		affected.
3436  *
3437  *	In/out conditions:
3438  *		The object should be unlocked on entry and exit.
3439  */
3440 
3441 /*ARGSUSED*/
3442 __private_extern__ boolean_t
3443 vm_object_copy_quickly(
3444 	vm_object_t             object,               /* IN */
3445 	__unused vm_object_offset_t     offset, /* IN */
3446 	__unused vm_object_size_t       size,   /* IN */
3447 	boolean_t               *_src_needs_copy,       /* OUT */
3448 	boolean_t               *_dst_needs_copy)       /* OUT */
3449 {
3450 	memory_object_copy_strategy_t copy_strategy;
3451 
3452 	if (object == VM_OBJECT_NULL) {
3453 		*_src_needs_copy = FALSE;
3454 		*_dst_needs_copy = FALSE;
3455 		return TRUE;
3456 	}
3457 
3458 	vm_object_lock(object);
3459 
3460 	copy_strategy = object->copy_strategy;
3461 
3462 	switch (copy_strategy) {
3463 	case MEMORY_OBJECT_COPY_SYMMETRIC:
3464 
3465 		/*
3466 		 *	Symmetric copy strategy.
3467 		 *	Make another reference to the object.
3468 		 *	Leave object/offset unchanged.
3469 		 */
3470 
3471 		vm_object_reference_locked(object);
3472 		VM_OBJECT_SET_SHADOWED(object, TRUE);
3473 		vm_object_unlock(object);
3474 
3475 		/*
3476 		 *	Both source and destination must make
3477 		 *	shadows, and the source must be made
3478 		 *	read-only if not already.
3479 		 */
3480 
3481 		*_src_needs_copy = TRUE;
3482 		*_dst_needs_copy = TRUE;
3483 
3484 		break;
3485 
3486 	case MEMORY_OBJECT_COPY_DELAY:
3487 		vm_object_unlock(object);
3488 		return FALSE;
3489 
3490 	default:
3491 		vm_object_unlock(object);
3492 		return FALSE;
3493 	}
3494 	return TRUE;
3495 }
3496 
3497 static uint32_t copy_delayed_lock_collisions;
3498 static uint32_t copy_delayed_max_collisions;
3499 static uint32_t copy_delayed_lock_contention;
3500 static uint32_t copy_delayed_protect_iterate;
3501 
3502 /*
3503  *	Routine:	vm_object_copy_delayed [internal]
3504  *
3505  *	Description:
3506  *		Copy the specified virtual memory object, using
3507  *		the asymmetric copy-on-write algorithm.
3508  *
3509  *	In/out conditions:
3510  *		The src_object must be locked on entry.  It will be unlocked
3511  *		on exit - so the caller must also hold a reference to it.
3512  *
3513  *		This routine will not block waiting for user-generated
3514  *		events.  It is not interruptible.
3515  */
3516 __private_extern__ vm_object_t
3517 vm_object_copy_delayed(
3518 	vm_object_t             src_object,
3519 	vm_object_offset_t      src_offset,
3520 	vm_object_size_t        size,
3521 	boolean_t               src_object_shared)
3522 {
3523 	vm_object_t             new_copy = VM_OBJECT_NULL;
3524 	vm_object_t             old_copy;
3525 	vm_page_t               p;
3526 	vm_object_size_t        copy_size = src_offset + size;
3527 	pmap_flush_context      pmap_flush_context_storage;
3528 	boolean_t               delayed_pmap_flush = FALSE;
3529 
3530 
3531 	uint32_t collisions = 0;
3532 	/*
3533 	 *	The user-level memory manager wants to see all of the changes
3534 	 *	to this object, but it has promised not to make any changes on
3535 	 *	its own.
3536 	 *
3537 	 *	Perform an asymmetric copy-on-write, as follows:
3538 	 *		Create a new object, called a "copy object" to hold
3539 	 *		 pages modified by the new mapping  (i.e., the copy,
3540 	 *		 not the original mapping).
3541 	 *		Record the original object as the backing object for
3542 	 *		 the copy object.  If the original mapping does not
3543 	 *		 change a page, it may be used read-only by the copy.
3544 	 *		Record the copy object in the original object.
3545 	 *		 When the original mapping causes a page to be modified,
3546 	 *		 it must be copied to a new page that is "pushed" to
3547 	 *		 the copy object.
3548 	 *		Mark the new mapping (the copy object) copy-on-write.
3549 	 *		 This makes the copy object itself read-only, allowing
3550 	 *		 it to be reused if the original mapping makes no
3551 	 *		 changes, and simplifying the synchronization required
3552 	 *		 in the "push" operation described above.
3553 	 *
3554 	 *	The copy-on-write is said to be assymetric because the original
3555 	 *	object is *not* marked copy-on-write. A copied page is pushed
3556 	 *	to the copy object, regardless which party attempted to modify
3557 	 *	the page.
3558 	 *
3559 	 *	Repeated asymmetric copy operations may be done. If the
3560 	 *	original object has not been changed since the last copy, its
3561 	 *	copy object can be reused. Otherwise, a new copy object can be
3562 	 *	inserted between the original object and its previous copy
3563 	 *	object.  Since any copy object is read-only, this cannot affect
3564 	 *	affect the contents of the previous copy object.
3565 	 *
3566 	 *	Note that a copy object is higher in the object tree than the
3567 	 *	original object; therefore, use of the copy object recorded in
3568 	 *	the original object must be done carefully, to avoid deadlock.
3569 	 */
3570 
3571 	copy_size = vm_object_round_page(copy_size);
3572 Retry:
3573 
3574 	/*
3575 	 * Wait for paging in progress.
3576 	 */
3577 	if (!src_object->true_share &&
3578 	    (src_object->paging_in_progress != 0 ||
3579 	    src_object->activity_in_progress != 0)) {
3580 		if (src_object_shared == TRUE) {
3581 			vm_object_unlock(src_object);
3582 			vm_object_lock(src_object);
3583 			src_object_shared = FALSE;
3584 			goto Retry;
3585 		}
3586 		vm_object_paging_wait(src_object, THREAD_UNINT);
3587 	}
3588 	/*
3589 	 *	See whether we can reuse the result of a previous
3590 	 *	copy operation.
3591 	 */
3592 
3593 	old_copy = src_object->vo_copy;
3594 	if (old_copy != VM_OBJECT_NULL) {
3595 		int lock_granted;
3596 
3597 		/*
3598 		 *	Try to get the locks (out of order)
3599 		 */
3600 		if (src_object_shared == TRUE) {
3601 			lock_granted = vm_object_lock_try_shared(old_copy);
3602 		} else {
3603 			lock_granted = vm_object_lock_try(old_copy);
3604 		}
3605 
3606 		if (!lock_granted) {
3607 			vm_object_unlock(src_object);
3608 
3609 			if (collisions++ == 0) {
3610 				copy_delayed_lock_contention++;
3611 			}
3612 			mutex_pause(collisions);
3613 
3614 			/* Heisenberg Rules */
3615 			copy_delayed_lock_collisions++;
3616 
3617 			if (collisions > copy_delayed_max_collisions) {
3618 				copy_delayed_max_collisions = collisions;
3619 			}
3620 
3621 			if (src_object_shared == TRUE) {
3622 				vm_object_lock_shared(src_object);
3623 			} else {
3624 				vm_object_lock(src_object);
3625 			}
3626 
3627 			goto Retry;
3628 		}
3629 
3630 		/*
3631 		 *	Determine whether the old copy object has
3632 		 *	been modified.
3633 		 */
3634 
3635 		if (old_copy->resident_page_count == 0 &&
3636 		    !old_copy->pager_created) {
3637 			/*
3638 			 *	It has not been modified.
3639 			 *
3640 			 *	Return another reference to
3641 			 *	the existing copy-object if
3642 			 *	we can safely grow it (if
3643 			 *	needed).
3644 			 */
3645 
3646 			if (old_copy->vo_size < copy_size) {
3647 				if (src_object_shared == TRUE) {
3648 					vm_object_unlock(old_copy);
3649 					vm_object_unlock(src_object);
3650 
3651 					vm_object_lock(src_object);
3652 					src_object_shared = FALSE;
3653 					goto Retry;
3654 				}
3655 				/*
3656 				 * We can't perform a delayed copy if any of the
3657 				 * pages in the extended range are wired (because
3658 				 * we can't safely take write permission away from
3659 				 * wired pages).  If the pages aren't wired, then
3660 				 * go ahead and protect them.
3661 				 */
3662 				copy_delayed_protect_iterate++;
3663 
3664 				pmap_flush_context_init(&pmap_flush_context_storage);
3665 				delayed_pmap_flush = FALSE;
3666 
3667 				vm_page_queue_iterate(&src_object->memq, p, vmp_listq) {
3668 					if (!p->vmp_fictitious &&
3669 					    p->vmp_offset >= old_copy->vo_size &&
3670 					    p->vmp_offset < copy_size) {
3671 						if (VM_PAGE_WIRED(p)) {
3672 							vm_object_unlock(old_copy);
3673 							vm_object_unlock(src_object);
3674 
3675 							if (new_copy != VM_OBJECT_NULL) {
3676 								vm_object_unlock(new_copy);
3677 								vm_object_deallocate(new_copy);
3678 							}
3679 							if (delayed_pmap_flush == TRUE) {
3680 								pmap_flush(&pmap_flush_context_storage);
3681 							}
3682 
3683 							return VM_OBJECT_NULL;
3684 						} else {
3685 							pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p),
3686 							    (p->vmp_xpmapped ? (VM_PROT_READ | VM_PROT_EXECUTE) : VM_PROT_READ),
3687 							    PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3688 							delayed_pmap_flush = TRUE;
3689 						}
3690 					}
3691 				}
3692 				if (delayed_pmap_flush == TRUE) {
3693 					pmap_flush(&pmap_flush_context_storage);
3694 				}
3695 
3696 				assertf(page_aligned(copy_size),
3697 				    "object %p size 0x%llx",
3698 				    old_copy, (uint64_t)copy_size);
3699 				old_copy->vo_size = copy_size;
3700 
3701 				/*
3702 				 * src_object's "vo_copy" object now covers
3703 				 * a larger portion of src_object.
3704 				 * Increment src_object's "vo_copy_version"
3705 				 * to make any racing vm_fault() on
3706 				 * "src_object" re-check if it needs to honor
3707 				 * any new copy-on-write obligation.
3708 				 */
3709 				src_object->vo_copy_version++;
3710 			}
3711 			if (src_object_shared == TRUE) {
3712 				vm_object_reference_shared(old_copy);
3713 			} else {
3714 				vm_object_reference_locked(old_copy);
3715 			}
3716 			vm_object_unlock(old_copy);
3717 			vm_object_unlock(src_object);
3718 
3719 			if (new_copy != VM_OBJECT_NULL) {
3720 				vm_object_unlock(new_copy);
3721 				vm_object_deallocate(new_copy);
3722 			}
3723 			return old_copy;
3724 		}
3725 
3726 
3727 
3728 		/*
3729 		 * Adjust the size argument so that the newly-created
3730 		 * copy object will be large enough to back either the
3731 		 * old copy object or the new mapping.
3732 		 */
3733 		if (old_copy->vo_size > copy_size) {
3734 			copy_size = old_copy->vo_size;
3735 		}
3736 
3737 		if (new_copy == VM_OBJECT_NULL) {
3738 			vm_object_unlock(old_copy);
3739 			vm_object_unlock(src_object);
3740 			new_copy = vm_object_allocate(copy_size);
3741 			vm_object_lock(src_object);
3742 			vm_object_lock(new_copy);
3743 
3744 			src_object_shared = FALSE;
3745 			goto Retry;
3746 		}
3747 		assertf(page_aligned(copy_size),
3748 		    "object %p size 0x%llx",
3749 		    new_copy, (uint64_t)copy_size);
3750 		new_copy->vo_size = copy_size;
3751 
3752 		/*
3753 		 *	The copy-object is always made large enough to
3754 		 *	completely shadow the original object, since
3755 		 *	it may have several users who want to shadow
3756 		 *	the original object at different points.
3757 		 */
3758 
3759 		assert((old_copy->shadow == src_object) &&
3760 		    (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
3761 	} else if (new_copy == VM_OBJECT_NULL) {
3762 		vm_object_unlock(src_object);
3763 		new_copy = vm_object_allocate(copy_size);
3764 		vm_object_lock(src_object);
3765 		vm_object_lock(new_copy);
3766 
3767 		src_object_shared = FALSE;
3768 		goto Retry;
3769 	}
3770 
3771 	/*
3772 	 * We now have the src object locked, and the new copy object
3773 	 * allocated and locked (and potentially the old copy locked).
3774 	 * Before we go any further, make sure we can still perform
3775 	 * a delayed copy, as the situation may have changed.
3776 	 *
3777 	 * Specifically, we can't perform a delayed copy if any of the
3778 	 * pages in the range are wired (because we can't safely take
3779 	 * write permission away from wired pages).  If the pages aren't
3780 	 * wired, then go ahead and protect them.
3781 	 */
3782 	copy_delayed_protect_iterate++;
3783 
3784 	pmap_flush_context_init(&pmap_flush_context_storage);
3785 	delayed_pmap_flush = FALSE;
3786 
3787 	vm_page_queue_iterate(&src_object->memq, p, vmp_listq) {
3788 		if (!p->vmp_fictitious && p->vmp_offset < copy_size) {
3789 			if (VM_PAGE_WIRED(p)) {
3790 				if (old_copy) {
3791 					vm_object_unlock(old_copy);
3792 				}
3793 				vm_object_unlock(src_object);
3794 				vm_object_unlock(new_copy);
3795 				vm_object_deallocate(new_copy);
3796 
3797 				if (delayed_pmap_flush == TRUE) {
3798 					pmap_flush(&pmap_flush_context_storage);
3799 				}
3800 
3801 				return VM_OBJECT_NULL;
3802 			} else {
3803 				pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p),
3804 				    (p->vmp_xpmapped ? (VM_PROT_READ | VM_PROT_EXECUTE) : VM_PROT_READ),
3805 				    PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3806 				delayed_pmap_flush = TRUE;
3807 			}
3808 		}
3809 	}
3810 	if (delayed_pmap_flush == TRUE) {
3811 		pmap_flush(&pmap_flush_context_storage);
3812 	}
3813 
3814 	if (old_copy != VM_OBJECT_NULL) {
3815 		/*
3816 		 *	Make the old copy-object shadow the new one.
3817 		 *	It will receive no more pages from the original
3818 		 *	object.
3819 		 */
3820 
3821 		/* remove ref. from old_copy */
3822 		vm_object_lock_assert_exclusive(src_object);
3823 		os_ref_release_live_locked_raw(&src_object->ref_count,
3824 		    &vm_object_refgrp);
3825 		vm_object_lock_assert_exclusive(old_copy);
3826 		old_copy->shadow = new_copy;
3827 		vm_object_lock_assert_exclusive(new_copy);
3828 		assert(os_ref_get_count_raw(&new_copy->ref_count) > 0);
3829 		/* for old_copy->shadow ref. */
3830 		os_ref_retain_locked_raw(&new_copy->ref_count, &vm_object_refgrp);
3831 
3832 		vm_object_unlock(old_copy);     /* done with old_copy */
3833 	}
3834 
3835 	/*
3836 	 *	Point the new copy at the existing object.
3837 	 */
3838 	vm_object_lock_assert_exclusive(new_copy);
3839 	new_copy->shadow = src_object;
3840 	new_copy->vo_shadow_offset = 0;
3841 	VM_OBJECT_SET_SHADOWED(new_copy, TRUE);      /* caller must set needs_copy */
3842 
3843 	vm_object_lock_assert_exclusive(src_object);
3844 	vm_object_reference_locked(src_object);
3845 	VM_OBJECT_COPY_SET(src_object, new_copy);
3846 	vm_object_unlock(src_object);
3847 	vm_object_unlock(new_copy);
3848 
3849 	return new_copy;
3850 }
3851 
3852 /*
3853  *	Routine:	vm_object_copy_strategically
3854  *
3855  *	Purpose:
3856  *		Perform a copy according to the source object's
3857  *		declared strategy.  This operation may block,
3858  *		and may be interrupted.
3859  */
3860 __private_extern__ kern_return_t
3861 vm_object_copy_strategically(
3862 	vm_object_t             src_object,
3863 	vm_object_offset_t      src_offset,
3864 	vm_object_size_t        size,
3865 	bool                    forking,
3866 	vm_object_t             *dst_object,    /* OUT */
3867 	vm_object_offset_t      *dst_offset,    /* OUT */
3868 	boolean_t               *dst_needs_copy) /* OUT */
3869 {
3870 	boolean_t       result;
3871 	boolean_t       interruptible = THREAD_ABORTSAFE; /* XXX */
3872 	boolean_t       object_lock_shared = FALSE;
3873 	memory_object_copy_strategy_t copy_strategy;
3874 
3875 	assert(src_object != VM_OBJECT_NULL);
3876 
3877 	copy_strategy = src_object->copy_strategy;
3878 
3879 	if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3880 		vm_object_lock_shared(src_object);
3881 		object_lock_shared = TRUE;
3882 	} else {
3883 		vm_object_lock(src_object);
3884 	}
3885 
3886 	/*
3887 	 *	The copy strategy is only valid if the memory manager
3888 	 *	is "ready". Internal objects are always ready.
3889 	 */
3890 
3891 	while (!src_object->internal && !src_object->pager_ready) {
3892 		wait_result_t wait_result;
3893 
3894 		if (object_lock_shared == TRUE) {
3895 			vm_object_unlock(src_object);
3896 			vm_object_lock(src_object);
3897 			object_lock_shared = FALSE;
3898 			continue;
3899 		}
3900 		wait_result = vm_object_sleep(  src_object,
3901 		    VM_OBJECT_EVENT_PAGER_READY,
3902 		    interruptible, LCK_SLEEP_EXCLUSIVE);
3903 		if (wait_result != THREAD_AWAKENED) {
3904 			vm_object_unlock(src_object);
3905 			*dst_object = VM_OBJECT_NULL;
3906 			*dst_offset = 0;
3907 			*dst_needs_copy = FALSE;
3908 			return MACH_SEND_INTERRUPTED;
3909 		}
3910 	}
3911 
3912 	/*
3913 	 *	Use the appropriate copy strategy.
3914 	 */
3915 
3916 	if (copy_strategy == MEMORY_OBJECT_COPY_DELAY_FORK) {
3917 		if (forking) {
3918 			copy_strategy = MEMORY_OBJECT_COPY_DELAY;
3919 		} else {
3920 			copy_strategy = MEMORY_OBJECT_COPY_NONE;
3921 			if (object_lock_shared) {
3922 				vm_object_unlock(src_object);
3923 				vm_object_lock(src_object);
3924 				object_lock_shared = FALSE;
3925 			}
3926 		}
3927 	}
3928 
3929 	switch (copy_strategy) {
3930 	case MEMORY_OBJECT_COPY_DELAY:
3931 		*dst_object = vm_object_copy_delayed(src_object,
3932 		    src_offset, size, object_lock_shared);
3933 		if (*dst_object != VM_OBJECT_NULL) {
3934 			*dst_offset = src_offset;
3935 			*dst_needs_copy = TRUE;
3936 			result = KERN_SUCCESS;
3937 			break;
3938 		}
3939 		vm_object_lock(src_object);
3940 		OS_FALLTHROUGH; /* fall thru when delayed copy not allowed */
3941 
3942 	case MEMORY_OBJECT_COPY_NONE:
3943 		result = vm_object_copy_slowly(src_object, src_offset, size,
3944 		    interruptible, dst_object);
3945 		if (result == KERN_SUCCESS) {
3946 			*dst_offset = src_offset - vm_object_trunc_page(src_offset);
3947 			*dst_needs_copy = FALSE;
3948 		}
3949 		break;
3950 
3951 	case MEMORY_OBJECT_COPY_SYMMETRIC:
3952 		vm_object_unlock(src_object);
3953 		result = KERN_MEMORY_RESTART_COPY;
3954 		break;
3955 
3956 	default:
3957 		panic("copy_strategically: bad strategy %d for object %p",
3958 		    copy_strategy, src_object);
3959 		result = KERN_INVALID_ARGUMENT;
3960 	}
3961 	return result;
3962 }
3963 
3964 /*
3965  *	vm_object_shadow:
3966  *
3967  *	Create a new object which is backed by the
3968  *	specified existing object range.  The source
3969  *	object reference is deallocated.
3970  *
3971  *	The new object and offset into that object
3972  *	are returned in the source parameters.
3973  */
3974 boolean_t vm_object_shadow_check = TRUE;
3975 uint64_t vm_object_shadow_forced = 0;
3976 uint64_t vm_object_shadow_skipped = 0;
3977 
3978 __private_extern__ boolean_t
3979 vm_object_shadow(
3980 	vm_object_t             *object,        /* IN/OUT */
3981 	vm_object_offset_t      *offset,        /* IN/OUT */
3982 	vm_object_size_t        length,
3983 	boolean_t               always_shadow)
3984 {
3985 	vm_object_t     source;
3986 	vm_object_t     result;
3987 
3988 	source = *object;
3989 	assert(source != VM_OBJECT_NULL);
3990 	if (source == VM_OBJECT_NULL) {
3991 		return FALSE;
3992 	}
3993 
3994 	assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
3995 
3996 	/*
3997 	 *	Determine if we really need a shadow.
3998 	 *
3999 	 *	If the source object is larger than what we are trying
4000 	 *	to create, then force the shadow creation even if the
4001 	 *	ref count is 1.  This will allow us to [potentially]
4002 	 *	collapse the underlying object away in the future
4003 	 *	(freeing up the extra data it might contain and that
4004 	 *	we don't need).
4005 	 */
4006 
4007 	assert(source->copy_strategy != MEMORY_OBJECT_COPY_NONE); /* Purgeable objects shouldn't have shadow objects. */
4008 
4009 	/*
4010 	 * The following optimization does not work in the context of submaps
4011 	 * (the shared region, in particular).
4012 	 * This object might have only 1 reference (in the submap) but that
4013 	 * submap can itself be mapped multiple times, so the object is
4014 	 * actually indirectly referenced more than once...
4015 	 * The caller can specify to "always_shadow" to bypass the optimization.
4016 	 */
4017 	if (vm_object_shadow_check &&
4018 	    source->vo_size == length &&
4019 	    os_ref_get_count_raw(&source->ref_count) == 1) {
4020 		if (always_shadow) {
4021 			vm_object_shadow_forced++;
4022 		} else {
4023 			/*
4024 			 * Lock the object and check again.
4025 			 * We also check to see if there's
4026 			 * a shadow or copy object involved.
4027 			 * We can't do that earlier because
4028 			 * without the object locked, there
4029 			 * could be a collapse and the chain
4030 			 * gets modified leaving us with an
4031 			 * invalid pointer.
4032 			 */
4033 			vm_object_lock(source);
4034 			if (source->vo_size == length &&
4035 			    os_ref_get_count_raw(&source->ref_count) == 1 &&
4036 			    (source->shadow == VM_OBJECT_NULL ||
4037 			    source->shadow->vo_copy == VM_OBJECT_NULL)) {
4038 				VM_OBJECT_SET_SHADOWED(source, FALSE);
4039 				vm_object_unlock(source);
4040 				vm_object_shadow_skipped++;
4041 				return FALSE;
4042 			}
4043 			/* things changed while we were locking "source"... */
4044 			vm_object_unlock(source);
4045 		}
4046 	}
4047 
4048 	/*
4049 	 * *offset is the map entry's offset into the VM object and
4050 	 * is aligned to the map's page size.
4051 	 * VM objects need to be aligned to the system's page size.
4052 	 * Record the necessary adjustment and re-align the offset so
4053 	 * that result->vo_shadow_offset is properly page-aligned.
4054 	 */
4055 	vm_object_offset_t offset_adjustment;
4056 	offset_adjustment = *offset - vm_object_trunc_page(*offset);
4057 	length = vm_object_round_page(length + offset_adjustment);
4058 	*offset = vm_object_trunc_page(*offset);
4059 
4060 	/*
4061 	 *	Allocate a new object with the given length
4062 	 */
4063 
4064 	if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) {
4065 		panic("vm_object_shadow: no object for shadowing");
4066 	}
4067 
4068 	/*
4069 	 *	The new object shadows the source object, adding
4070 	 *	a reference to it.  Our caller changes his reference
4071 	 *	to point to the new object, removing a reference to
4072 	 *	the source object.  Net result: no change of reference
4073 	 *	count.
4074 	 */
4075 	result->shadow = source;
4076 
4077 	/*
4078 	 *	Store the offset into the source object,
4079 	 *	and fix up the offset into the new object.
4080 	 */
4081 
4082 	result->vo_shadow_offset = *offset;
4083 	assertf(page_aligned(result->vo_shadow_offset),
4084 	    "result %p shadow offset 0x%llx",
4085 	    result, result->vo_shadow_offset);
4086 
4087 	/*
4088 	 *	Return the new things
4089 	 */
4090 
4091 	*offset = 0;
4092 	if (offset_adjustment) {
4093 		/*
4094 		 * Make the map entry point to the equivalent offset
4095 		 * in the new object.
4096 		 */
4097 		DEBUG4K_COPY("adjusting offset @ %p from 0x%llx to 0x%llx for object %p length: 0x%llx\n", offset, *offset, *offset + offset_adjustment, result, length);
4098 		*offset += offset_adjustment;
4099 	}
4100 	*object = result;
4101 	return TRUE;
4102 }
4103 
4104 /*
4105  *	The relationship between vm_object structures and
4106  *	the memory_object requires careful synchronization.
4107  *
4108  *	All associations are created by memory_object_create_named
4109  *  for external pagers and vm_object_compressor_pager_create for internal
4110  *  objects as follows:
4111  *
4112  *		pager:	the memory_object itself, supplied by
4113  *			the user requesting a mapping (or the kernel,
4114  *			when initializing internal objects); the
4115  *			kernel simulates holding send rights by keeping
4116  *			a port reference;
4117  *
4118  *		pager_request:
4119  *			the memory object control port,
4120  *			created by the kernel; the kernel holds
4121  *			receive (and ownership) rights to this
4122  *			port, but no other references.
4123  *
4124  *	When initialization is complete, the "initialized" field
4125  *	is asserted.  Other mappings using a particular memory object,
4126  *	and any references to the vm_object gained through the
4127  *	port association must wait for this initialization to occur.
4128  *
4129  *	In order to allow the memory manager to set attributes before
4130  *	requests (notably virtual copy operations, but also data or
4131  *	unlock requests) are made, a "ready" attribute is made available.
4132  *	Only the memory manager may affect the value of this attribute.
4133  *	Its value does not affect critical kernel functions, such as
4134  *	internal object initialization or destruction.  [Furthermore,
4135  *	memory objects created by the kernel are assumed to be ready
4136  *	immediately; the default memory manager need not explicitly
4137  *	set the "ready" attribute.]
4138  *
4139  *	[Both the "initialized" and "ready" attribute wait conditions
4140  *	use the "pager" field as the wait event.]
4141  *
4142  *	The port associations can be broken down by any of the
4143  *	following routines:
4144  *		vm_object_terminate:
4145  *			No references to the vm_object remain, and
4146  *			the object cannot (or will not) be cached.
4147  *			This is the normal case, and is done even
4148  *			though one of the other cases has already been
4149  *			done.
4150  *		memory_object_destroy:
4151  *			The memory manager has requested that the
4152  *			kernel relinquish references to the memory
4153  *			object. [The memory manager may not want to
4154  *			destroy the memory object, but may wish to
4155  *			refuse or tear down existing memory mappings.]
4156  *
4157  *	Each routine that breaks an association must break all of
4158  *	them at once.  At some later time, that routine must clear
4159  *	the pager field and release the memory object references.
4160  *	[Furthermore, each routine must cope with the simultaneous
4161  *	or previous operations of the others.]
4162  *
4163  *	Because the pager field may be cleared spontaneously, it
4164  *	cannot be used to determine whether a memory object has
4165  *	ever been associated with a particular vm_object.  [This
4166  *	knowledge is important to the shadow object mechanism.]
4167  *	For this reason, an additional "created" attribute is
4168  *	provided.
4169  *
4170  *	During various paging operations, the pager reference found in the
4171  *	vm_object must be valid.  To prevent this from being released,
4172  *	(other than being removed, i.e., made null), routines may use
4173  *	the vm_object_paging_begin/end routines [actually, macros].
4174  *	The implementation uses the "paging_in_progress" and "wanted" fields.
4175  *	[Operations that alter the validity of the pager values include the
4176  *	termination routines and vm_object_collapse.]
4177  */
4178 
4179 
4180 /*
4181  *	Routine:	vm_object_memory_object_associate
4182  *	Purpose:
4183  *		Associate a VM object to the given pager.
4184  *		If a VM object is not provided, create one.
4185  *		Initialize the pager.
4186  */
4187 vm_object_t
4188 vm_object_memory_object_associate(
4189 	memory_object_t         pager,
4190 	vm_object_t             object,
4191 	vm_object_size_t        size,
4192 	boolean_t               named)
4193 {
4194 	memory_object_control_t control;
4195 
4196 	assert(pager != MEMORY_OBJECT_NULL);
4197 
4198 	if (object != VM_OBJECT_NULL) {
4199 		vm_object_lock(object);
4200 		assert(object->internal);
4201 		assert(object->pager_created);
4202 		assert(!object->pager_initialized);
4203 		assert(!object->pager_ready);
4204 		assert(object->pager_trusted);
4205 	} else {
4206 		object = vm_object_allocate(size);
4207 		assert(object != VM_OBJECT_NULL);
4208 		vm_object_lock(object);
4209 		VM_OBJECT_SET_INTERNAL(object, FALSE);
4210 		VM_OBJECT_SET_PAGER_TRUSTED(object, FALSE);
4211 		/* copy strategy invalid until set by memory manager */
4212 		object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
4213 	}
4214 
4215 	/*
4216 	 *	Allocate request port.
4217 	 */
4218 
4219 	control = memory_object_control_allocate(object);
4220 	assert(control != MEMORY_OBJECT_CONTROL_NULL);
4221 
4222 	assert(!object->pager_ready);
4223 	assert(!object->pager_initialized);
4224 	assert(object->pager == NULL);
4225 	assert(object->pager_control == NULL);
4226 
4227 	/*
4228 	 *	Copy the reference we were given.
4229 	 */
4230 
4231 	memory_object_reference(pager);
4232 	VM_OBJECT_SET_PAGER_CREATED(object, TRUE);
4233 	object->pager = pager;
4234 	object->pager_control = control;
4235 	VM_OBJECT_SET_PAGER_READY(object, FALSE);
4236 
4237 	vm_object_unlock(object);
4238 
4239 	/*
4240 	 *	Let the pager know we're using it.
4241 	 */
4242 
4243 	(void) memory_object_init(pager,
4244 	    object->pager_control,
4245 	    PAGE_SIZE);
4246 
4247 	vm_object_lock(object);
4248 	if (named) {
4249 		VM_OBJECT_SET_NAMED(object, TRUE);
4250 	}
4251 	if (object->internal) {
4252 		VM_OBJECT_SET_PAGER_READY(object, TRUE);
4253 		vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
4254 	}
4255 
4256 	VM_OBJECT_SET_PAGER_INITIALIZED(object, TRUE);
4257 	vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_INIT);
4258 
4259 	vm_object_unlock(object);
4260 
4261 	return object;
4262 }
4263 
4264 /*
4265  *	Routine:	vm_object_compressor_pager_create
4266  *	Purpose:
4267  *		Create a memory object for an internal object.
4268  *	In/out conditions:
4269  *		The object is locked on entry and exit;
4270  *		it may be unlocked within this call.
4271  *	Limitations:
4272  *		Only one thread may be performing a
4273  *		vm_object_compressor_pager_create on an object at
4274  *		a time.  Presumably, only the pageout
4275  *		daemon will be using this routine.
4276  */
4277 
4278 void
4279 vm_object_compressor_pager_create(
4280 	vm_object_t     object)
4281 {
4282 	memory_object_t         pager;
4283 	vm_object_t             pager_object = VM_OBJECT_NULL;
4284 
4285 	assert(!is_kernel_object(object));
4286 
4287 	/*
4288 	 *	Prevent collapse or termination by holding a paging reference
4289 	 */
4290 
4291 	vm_object_paging_begin(object);
4292 	if (object->pager_created) {
4293 		/*
4294 		 *	Someone else got to it first...
4295 		 *	wait for them to finish initializing the ports
4296 		 */
4297 		while (!object->pager_initialized) {
4298 			vm_object_sleep(object,
4299 			    VM_OBJECT_EVENT_PAGER_INIT,
4300 			    THREAD_UNINT, LCK_SLEEP_EXCLUSIVE);
4301 		}
4302 		vm_object_paging_end(object);
4303 		return;
4304 	}
4305 
4306 	if ((uint32_t) (object->vo_size / PAGE_SIZE) !=
4307 	    (object->vo_size / PAGE_SIZE)) {
4308 #if DEVELOPMENT || DEBUG
4309 		printf("vm_object_compressor_pager_create(%p): "
4310 		    "object size 0x%llx >= 0x%llx\n",
4311 		    object,
4312 		    (uint64_t) object->vo_size,
4313 		    0x0FFFFFFFFULL * PAGE_SIZE);
4314 #endif /* DEVELOPMENT || DEBUG */
4315 		vm_object_paging_end(object);
4316 		return;
4317 	}
4318 
4319 	/*
4320 	 *	Indicate that a memory object has been assigned
4321 	 *	before dropping the lock, to prevent a race.
4322 	 */
4323 
4324 	VM_OBJECT_SET_PAGER_CREATED(object, TRUE);
4325 	VM_OBJECT_SET_PAGER_TRUSTED(object, TRUE);
4326 	object->paging_offset = 0;
4327 
4328 	vm_object_unlock(object);
4329 
4330 	/*
4331 	 *	Create the [internal] pager, and associate it with this object.
4332 	 *
4333 	 *	We make the association here so that vm_object_enter()
4334 	 *      can look up the object to complete initializing it.  No
4335 	 *	user will ever map this object.
4336 	 */
4337 	{
4338 		/* create our new memory object */
4339 		assert((uint32_t) (object->vo_size / PAGE_SIZE) ==
4340 		    (object->vo_size / PAGE_SIZE));
4341 		(void) compressor_memory_object_create(
4342 			(memory_object_size_t) object->vo_size,
4343 			&pager);
4344 		if (pager == NULL) {
4345 			panic("vm_object_compressor_pager_create(): "
4346 			    "no pager for object %p size 0x%llx\n",
4347 			    object, (uint64_t) object->vo_size);
4348 		}
4349 	}
4350 
4351 	/*
4352 	 *	A reference was returned by
4353 	 *	memory_object_create(), and it is
4354 	 *	copied by vm_object_memory_object_associate().
4355 	 */
4356 
4357 	pager_object = vm_object_memory_object_associate(pager,
4358 	    object,
4359 	    object->vo_size,
4360 	    FALSE);
4361 	if (pager_object != object) {
4362 		panic("vm_object_compressor_pager_create: mismatch (pager: %p, pager_object: %p, orig_object: %p, orig_object size: 0x%llx)", pager, pager_object, object, (uint64_t) object->vo_size);
4363 	}
4364 
4365 	/*
4366 	 *	Drop the reference we were passed.
4367 	 */
4368 	memory_object_deallocate(pager);
4369 
4370 	vm_object_lock(object);
4371 
4372 	/*
4373 	 *	Release the paging reference
4374 	 */
4375 	vm_object_paging_end(object);
4376 }
4377 
4378 vm_external_state_t
4379 vm_object_compressor_pager_state_get(
4380 	vm_object_t        object,
4381 	vm_object_offset_t offset)
4382 {
4383 	if (__probable(not_in_kdp)) {
4384 		vm_object_lock_assert_held(object);
4385 	}
4386 	if (object->internal &&
4387 	    object->pager != NULL &&
4388 	    !object->terminating &&
4389 	    object->alive) {
4390 		return vm_compressor_pager_state_get(object->pager,
4391 		           offset + object->paging_offset);
4392 	} else {
4393 		return VM_EXTERNAL_STATE_UNKNOWN;
4394 	}
4395 }
4396 
4397 void
4398 vm_object_compressor_pager_state_clr(
4399 	vm_object_t        object,
4400 	vm_object_offset_t offset)
4401 {
4402 	unsigned int num_pages_cleared;
4403 	vm_object_lock_assert_exclusive(object);
4404 	if (object->internal &&
4405 	    object->pager != NULL &&
4406 	    !object->terminating &&
4407 	    object->alive) {
4408 		num_pages_cleared = vm_compressor_pager_state_clr(object->pager,
4409 		    offset + object->paging_offset);
4410 		if (num_pages_cleared) {
4411 			vm_compressor_pager_count(object->pager,
4412 			    -num_pages_cleared,
4413 			    FALSE, /* shared */
4414 			    object);
4415 		}
4416 		if (num_pages_cleared &&
4417 		    (object->purgable != VM_PURGABLE_DENY || object->vo_ledger_tag)) {
4418 			/* less compressed purgeable/tagged pages */
4419 			assert3u(num_pages_cleared, ==, 1);
4420 			vm_object_owner_compressed_update(object, -num_pages_cleared);
4421 		}
4422 	}
4423 }
4424 
4425 /*
4426  *	Global variables for vm_object_collapse():
4427  *
4428  *		Counts for normal collapses and bypasses.
4429  *		Debugging variables, to watch or disable collapse.
4430  */
4431 static long     object_collapses = 0;
4432 static long     object_bypasses  = 0;
4433 
4434 static boolean_t        vm_object_collapse_allowed = TRUE;
4435 static boolean_t        vm_object_bypass_allowed = TRUE;
4436 
4437 void vm_object_do_collapse_compressor(vm_object_t object,
4438     vm_object_t backing_object);
4439 void
4440 vm_object_do_collapse_compressor(
4441 	vm_object_t object,
4442 	vm_object_t backing_object)
4443 {
4444 	vm_object_offset_t new_offset, backing_offset;
4445 	vm_object_size_t size;
4446 
4447 	vm_counters.do_collapse_compressor++;
4448 
4449 	vm_object_lock_assert_exclusive(object);
4450 	vm_object_lock_assert_exclusive(backing_object);
4451 
4452 	size = object->vo_size;
4453 
4454 	/*
4455 	 *	Move all compressed pages from backing_object
4456 	 *	to the parent.
4457 	 */
4458 
4459 	for (backing_offset = object->vo_shadow_offset;
4460 	    backing_offset < object->vo_shadow_offset + object->vo_size;
4461 	    backing_offset += PAGE_SIZE) {
4462 		memory_object_offset_t backing_pager_offset;
4463 
4464 		/* find the next compressed page at or after this offset */
4465 		backing_pager_offset = (backing_offset +
4466 		    backing_object->paging_offset);
4467 		backing_pager_offset = vm_compressor_pager_next_compressed(
4468 			backing_object->pager,
4469 			backing_pager_offset);
4470 		if (backing_pager_offset == (memory_object_offset_t) -1) {
4471 			/* no more compressed pages */
4472 			break;
4473 		}
4474 		backing_offset = (backing_pager_offset -
4475 		    backing_object->paging_offset);
4476 
4477 		new_offset = backing_offset - object->vo_shadow_offset;
4478 
4479 		if (new_offset >= object->vo_size) {
4480 			/* we're out of the scope of "object": done */
4481 			break;
4482 		}
4483 
4484 		if ((vm_page_lookup(object, new_offset) != VM_PAGE_NULL) ||
4485 		    (vm_compressor_pager_state_get(object->pager,
4486 		    (new_offset +
4487 		    object->paging_offset)) ==
4488 		    VM_EXTERNAL_STATE_EXISTS)) {
4489 			/*
4490 			 * This page already exists in object, resident or
4491 			 * compressed.
4492 			 * We don't need this compressed page in backing_object
4493 			 * and it will be reclaimed when we release
4494 			 * backing_object.
4495 			 */
4496 			continue;
4497 		}
4498 
4499 		/*
4500 		 * backing_object has this page in the VM compressor and
4501 		 * we need to transfer it to object.
4502 		 */
4503 		vm_counters.do_collapse_compressor_pages++;
4504 		vm_compressor_pager_transfer(
4505 			/* destination: */
4506 			object->pager,
4507 			(new_offset + object->paging_offset),
4508 			/* source: */
4509 			backing_object->pager,
4510 			(backing_offset + backing_object->paging_offset));
4511 	}
4512 }
4513 
4514 /*
4515  *	Routine:	vm_object_do_collapse
4516  *	Purpose:
4517  *		Collapse an object with the object backing it.
4518  *		Pages in the backing object are moved into the
4519  *		parent, and the backing object is deallocated.
4520  *	Conditions:
4521  *		Both objects and the cache are locked; the page
4522  *		queues are unlocked.
4523  *
4524  */
4525 static void
4526 vm_object_do_collapse(
4527 	vm_object_t object,
4528 	vm_object_t backing_object)
4529 {
4530 	vm_page_t p, pp;
4531 	vm_object_offset_t new_offset, backing_offset;
4532 	vm_object_size_t size;
4533 
4534 	vm_object_lock_assert_exclusive(object);
4535 	vm_object_lock_assert_exclusive(backing_object);
4536 
4537 	assert(object->purgable == VM_PURGABLE_DENY);
4538 	assert(backing_object->purgable == VM_PURGABLE_DENY);
4539 
4540 	backing_offset = object->vo_shadow_offset;
4541 	size = object->vo_size;
4542 
4543 	/*
4544 	 *	Move all in-memory pages from backing_object
4545 	 *	to the parent.  Pages that have been paged out
4546 	 *	will be overwritten by any of the parent's
4547 	 *	pages that shadow them.
4548 	 */
4549 
4550 	while (!vm_page_queue_empty(&backing_object->memq)) {
4551 		p = (vm_page_t) vm_page_queue_first(&backing_object->memq);
4552 
4553 		new_offset = (p->vmp_offset - backing_offset);
4554 
4555 		assert(!p->vmp_busy || p->vmp_absent);
4556 
4557 		/*
4558 		 *	If the parent has a page here, or if
4559 		 *	this page falls outside the parent,
4560 		 *	dispose of it.
4561 		 *
4562 		 *	Otherwise, move it as planned.
4563 		 */
4564 
4565 		if (p->vmp_offset < backing_offset || new_offset >= size) {
4566 			VM_PAGE_FREE(p);
4567 		} else {
4568 			pp = vm_page_lookup(object, new_offset);
4569 			if (pp == VM_PAGE_NULL) {
4570 				if (vm_object_compressor_pager_state_get(object,
4571 				    new_offset)
4572 				    == VM_EXTERNAL_STATE_EXISTS) {
4573 					/*
4574 					 * Parent object has this page
4575 					 * in the VM compressor.
4576 					 * Throw away the backing
4577 					 * object's page.
4578 					 */
4579 					VM_PAGE_FREE(p);
4580 				} else {
4581 					/*
4582 					 *	Parent now has no page.
4583 					 *	Move the backing object's page
4584 					 *      up.
4585 					 */
4586 					vm_page_rename(p, object, new_offset);
4587 				}
4588 			} else {
4589 				assert(!pp->vmp_absent);
4590 
4591 				/*
4592 				 *	Parent object has a real page.
4593 				 *	Throw away the backing object's
4594 				 *	page.
4595 				 */
4596 				VM_PAGE_FREE(p);
4597 			}
4598 		}
4599 	}
4600 
4601 	if (vm_object_collapse_compressor_allowed &&
4602 	    object->pager != MEMORY_OBJECT_NULL &&
4603 	    backing_object->pager != MEMORY_OBJECT_NULL) {
4604 		/* move compressed pages from backing_object to object */
4605 		vm_object_do_collapse_compressor(object, backing_object);
4606 	} else if (backing_object->pager != MEMORY_OBJECT_NULL) {
4607 		assert((!object->pager_created &&
4608 		    (object->pager == MEMORY_OBJECT_NULL)) ||
4609 		    (!backing_object->pager_created &&
4610 		    (backing_object->pager == MEMORY_OBJECT_NULL)));
4611 		/*
4612 		 *	Move the pager from backing_object to object.
4613 		 *
4614 		 *	XXX We're only using part of the paging space
4615 		 *	for keeps now... we ought to discard the
4616 		 *	unused portion.
4617 		 */
4618 
4619 		assert(!object->paging_in_progress);
4620 		assert(!object->activity_in_progress);
4621 		assert(!object->pager_created);
4622 		assert(object->pager == NULL);
4623 		object->pager = backing_object->pager;
4624 
4625 		VM_OBJECT_SET_PAGER_CREATED(object, backing_object->pager_created);
4626 		object->pager_control = backing_object->pager_control;
4627 		VM_OBJECT_SET_PAGER_READY(object, backing_object->pager_ready);
4628 		VM_OBJECT_SET_PAGER_INITIALIZED(object, backing_object->pager_initialized);
4629 		object->paging_offset =
4630 		    backing_object->paging_offset + backing_offset;
4631 		if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
4632 			memory_object_control_collapse(&object->pager_control,
4633 			    object);
4634 		}
4635 		/* the backing_object has lost its pager: reset all fields */
4636 		VM_OBJECT_SET_PAGER_CREATED(backing_object, FALSE);
4637 		backing_object->pager_control = NULL;
4638 		VM_OBJECT_SET_PAGER_READY(backing_object, FALSE);
4639 		backing_object->paging_offset = 0;
4640 		backing_object->pager = NULL;
4641 	}
4642 	/*
4643 	 *	Object now shadows whatever backing_object did.
4644 	 *	Note that the reference to backing_object->shadow
4645 	 *	moves from within backing_object to within object.
4646 	 */
4647 
4648 	assert(!object->phys_contiguous);
4649 	assert(!backing_object->phys_contiguous);
4650 	object->shadow = backing_object->shadow;
4651 	if (object->shadow) {
4652 		assertf(page_aligned(object->vo_shadow_offset),
4653 		    "object %p shadow_offset 0x%llx",
4654 		    object, object->vo_shadow_offset);
4655 		assertf(page_aligned(backing_object->vo_shadow_offset),
4656 		    "backing_object %p shadow_offset 0x%llx",
4657 		    backing_object, backing_object->vo_shadow_offset);
4658 		object->vo_shadow_offset += backing_object->vo_shadow_offset;
4659 		/* "backing_object" gave its shadow to "object" */
4660 		backing_object->shadow = VM_OBJECT_NULL;
4661 		backing_object->vo_shadow_offset = 0;
4662 	} else {
4663 		/* no shadow, therefore no shadow offset... */
4664 		object->vo_shadow_offset = 0;
4665 	}
4666 	assert((object->shadow == VM_OBJECT_NULL) ||
4667 	    (object->shadow->vo_copy != backing_object));
4668 
4669 	/*
4670 	 *	Discard backing_object.
4671 	 *
4672 	 *	Since the backing object has no pages, no
4673 	 *	pager left, and no object references within it,
4674 	 *	all that is necessary is to dispose of it.
4675 	 */
4676 	object_collapses++;
4677 
4678 	assert(os_ref_get_count_raw(&backing_object->ref_count) == 1);
4679 	assert(backing_object->resident_page_count == 0);
4680 	assert(backing_object->paging_in_progress == 0);
4681 	assert(backing_object->activity_in_progress == 0);
4682 	assert(backing_object->shadow == VM_OBJECT_NULL);
4683 	assert(backing_object->vo_shadow_offset == 0);
4684 
4685 	if (backing_object->pager != MEMORY_OBJECT_NULL) {
4686 		/* ... unless it has a pager; need to terminate pager too */
4687 		vm_counters.do_collapse_terminate++;
4688 		if (vm_object_terminate(backing_object) != KERN_SUCCESS) {
4689 			vm_counters.do_collapse_terminate_failure++;
4690 		}
4691 		return;
4692 	}
4693 
4694 	assert(backing_object->pager == NULL);
4695 
4696 	VM_OBJECT_SET_ALIVE(backing_object, FALSE);
4697 	vm_object_unlock(backing_object);
4698 
4699 #if VM_OBJECT_TRACKING
4700 	if (vm_object_tracking_btlog) {
4701 		btlog_erase(vm_object_tracking_btlog, backing_object);
4702 	}
4703 #endif /* VM_OBJECT_TRACKING */
4704 
4705 	vm_object_lock_destroy(backing_object);
4706 
4707 	zfree(vm_object_zone, backing_object);
4708 }
4709 
4710 static void
4711 vm_object_do_bypass(
4712 	vm_object_t object,
4713 	vm_object_t backing_object)
4714 {
4715 	/*
4716 	 *	Make the parent shadow the next object
4717 	 *	in the chain.
4718 	 */
4719 
4720 	vm_object_lock_assert_exclusive(object);
4721 	vm_object_lock_assert_exclusive(backing_object);
4722 
4723 	vm_object_reference(backing_object->shadow);
4724 
4725 	assert(!object->phys_contiguous);
4726 	assert(!backing_object->phys_contiguous);
4727 	object->shadow = backing_object->shadow;
4728 	if (object->shadow) {
4729 		assertf(page_aligned(object->vo_shadow_offset),
4730 		    "object %p shadow_offset 0x%llx",
4731 		    object, object->vo_shadow_offset);
4732 		assertf(page_aligned(backing_object->vo_shadow_offset),
4733 		    "backing_object %p shadow_offset 0x%llx",
4734 		    backing_object, backing_object->vo_shadow_offset);
4735 		object->vo_shadow_offset += backing_object->vo_shadow_offset;
4736 	} else {
4737 		/* no shadow, therefore no shadow offset... */
4738 		object->vo_shadow_offset = 0;
4739 	}
4740 
4741 	/*
4742 	 *	Backing object might have had a copy pointer
4743 	 *	to us.  If it did, clear it.
4744 	 */
4745 	if (backing_object->vo_copy == object) {
4746 		VM_OBJECT_COPY_SET(backing_object, VM_OBJECT_NULL);
4747 	}
4748 
4749 	/*
4750 	 *	Drop the reference count on backing_object.
4751 	 #if	TASK_SWAPPER
4752 	 *	Since its ref_count was at least 2, it
4753 	 *	will not vanish; so we don't need to call
4754 	 *	vm_object_deallocate.
4755 	 *	[with a caveat for "named" objects]
4756 	 *
4757 	 *	The res_count on the backing object is
4758 	 *	conditionally decremented.  It's possible
4759 	 *	(via vm_pageout_scan) to get here with
4760 	 *	a "swapped" object, which has a 0 res_count,
4761 	 *	in which case, the backing object res_count
4762 	 *	is already down by one.
4763 	 #else
4764 	 *	Don't call vm_object_deallocate unless
4765 	 *	ref_count drops to zero.
4766 	 *
4767 	 *	The ref_count can drop to zero here if the
4768 	 *	backing object could be bypassed but not
4769 	 *	collapsed, such as when the backing object
4770 	 *	is temporary and cachable.
4771 	 #endif
4772 	 */
4773 	if (os_ref_get_count_raw(&backing_object->ref_count) > 2 ||
4774 	    (!backing_object->named &&
4775 	    os_ref_get_count_raw(&backing_object->ref_count) > 1)) {
4776 		vm_object_lock_assert_exclusive(backing_object);
4777 		os_ref_release_live_locked_raw(&backing_object->ref_count,
4778 		    &vm_object_refgrp);
4779 		vm_object_unlock(backing_object);
4780 	} else {
4781 		/*
4782 		 *	Drop locks so that we can deallocate
4783 		 *	the backing object.
4784 		 */
4785 
4786 		/*
4787 		 * vm_object_collapse (the caller of this function) is
4788 		 * now called from contexts that may not guarantee that a
4789 		 * valid reference is held on the object... w/o a valid
4790 		 * reference, it is unsafe and unwise (you will definitely
4791 		 * regret it) to unlock the object and then retake the lock
4792 		 * since the object may be terminated and recycled in between.
4793 		 * The "activity_in_progress" reference will keep the object
4794 		 * 'stable'.
4795 		 */
4796 		vm_object_activity_begin(object);
4797 		vm_object_unlock(object);
4798 
4799 		vm_object_unlock(backing_object);
4800 		vm_object_deallocate(backing_object);
4801 
4802 		/*
4803 		 *	Relock object. We don't have to reverify
4804 		 *	its state since vm_object_collapse will
4805 		 *	do that for us as it starts at the
4806 		 *	top of its loop.
4807 		 */
4808 
4809 		vm_object_lock(object);
4810 		vm_object_activity_end(object);
4811 	}
4812 
4813 	object_bypasses++;
4814 }
4815 
4816 
4817 /*
4818  *	vm_object_collapse:
4819  *
4820  *	Perform an object collapse or an object bypass if appropriate.
4821  *	The real work of collapsing and bypassing is performed in
4822  *	the routines vm_object_do_collapse and vm_object_do_bypass.
4823  *
4824  *	Requires that the object be locked and the page queues be unlocked.
4825  *
4826  */
4827 static unsigned long vm_object_collapse_calls = 0;
4828 static unsigned long vm_object_collapse_objects = 0;
4829 static unsigned long vm_object_collapse_do_collapse = 0;
4830 static unsigned long vm_object_collapse_do_bypass = 0;
4831 
4832 __private_extern__ void
4833 vm_object_collapse(
4834 	vm_object_t                             object,
4835 	vm_object_offset_t                      hint_offset,
4836 	boolean_t                               can_bypass)
4837 {
4838 	vm_object_t                             backing_object;
4839 	vm_object_size_t                        object_vcount, object_rcount;
4840 	vm_object_t                             original_object;
4841 	int                                     object_lock_type;
4842 	int                                     backing_object_lock_type;
4843 
4844 	vm_object_collapse_calls++;
4845 
4846 	assertf(page_aligned(hint_offset), "hint_offset 0x%llx", hint_offset);
4847 
4848 	if (!vm_object_collapse_allowed &&
4849 	    !(can_bypass && vm_object_bypass_allowed)) {
4850 		return;
4851 	}
4852 
4853 	if (object == VM_OBJECT_NULL) {
4854 		return;
4855 	}
4856 
4857 	original_object = object;
4858 
4859 	/*
4860 	 * The top object was locked "exclusive" by the caller.
4861 	 * In the first pass, to determine if we can collapse the shadow chain,
4862 	 * take a "shared" lock on the shadow objects.  If we can collapse,
4863 	 * we'll have to go down the chain again with exclusive locks.
4864 	 */
4865 	object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4866 	backing_object_lock_type = OBJECT_LOCK_SHARED;
4867 
4868 retry:
4869 	object = original_object;
4870 	vm_object_lock_assert_exclusive(object);
4871 
4872 	while (TRUE) {
4873 		vm_object_collapse_objects++;
4874 		/*
4875 		 *	Verify that the conditions are right for either
4876 		 *	collapse or bypass:
4877 		 */
4878 
4879 		/*
4880 		 *	There is a backing object, and
4881 		 */
4882 
4883 		backing_object = object->shadow;
4884 		if (backing_object == VM_OBJECT_NULL) {
4885 			if (object != original_object) {
4886 				vm_object_unlock(object);
4887 			}
4888 			return;
4889 		}
4890 		if (backing_object_lock_type == OBJECT_LOCK_SHARED) {
4891 			vm_object_lock_shared(backing_object);
4892 		} else {
4893 			vm_object_lock(backing_object);
4894 		}
4895 
4896 		/*
4897 		 *	No pages in the object are currently
4898 		 *	being paged out, and
4899 		 */
4900 		if (object->paging_in_progress != 0 ||
4901 		    object->activity_in_progress != 0) {
4902 			/* try and collapse the rest of the shadow chain */
4903 			if (object != original_object) {
4904 				vm_object_unlock(object);
4905 			}
4906 			object = backing_object;
4907 			object_lock_type = backing_object_lock_type;
4908 			continue;
4909 		}
4910 
4911 		/*
4912 		 *	...
4913 		 *		The backing object is not read_only,
4914 		 *		and no pages in the backing object are
4915 		 *		currently being paged out.
4916 		 *		The backing object is internal.
4917 		 *
4918 		 */
4919 
4920 		if (!backing_object->internal ||
4921 		    backing_object->paging_in_progress != 0 ||
4922 		    backing_object->activity_in_progress != 0) {
4923 			/* try and collapse the rest of the shadow chain */
4924 			if (object != original_object) {
4925 				vm_object_unlock(object);
4926 			}
4927 			object = backing_object;
4928 			object_lock_type = backing_object_lock_type;
4929 			continue;
4930 		}
4931 
4932 		/*
4933 		 * Purgeable objects are not supposed to engage in
4934 		 * copy-on-write activities, so should not have
4935 		 * any shadow objects or be a shadow object to another
4936 		 * object.
4937 		 * Collapsing a purgeable object would require some
4938 		 * updates to the purgeable compressed ledgers.
4939 		 */
4940 		if (object->purgable != VM_PURGABLE_DENY ||
4941 		    backing_object->purgable != VM_PURGABLE_DENY) {
4942 			panic("vm_object_collapse() attempting to collapse "
4943 			    "purgeable object: %p(%d) %p(%d)\n",
4944 			    object, object->purgable,
4945 			    backing_object, backing_object->purgable);
4946 			/* try and collapse the rest of the shadow chain */
4947 			if (object != original_object) {
4948 				vm_object_unlock(object);
4949 			}
4950 			object = backing_object;
4951 			object_lock_type = backing_object_lock_type;
4952 			continue;
4953 		}
4954 
4955 		/*
4956 		 *	The backing object can't be a copy-object:
4957 		 *	the shadow_offset for the copy-object must stay
4958 		 *	as 0.  Furthermore (for the 'we have all the
4959 		 *	pages' case), if we bypass backing_object and
4960 		 *	just shadow the next object in the chain, old
4961 		 *	pages from that object would then have to be copied
4962 		 *	BOTH into the (former) backing_object and into the
4963 		 *	parent object.
4964 		 */
4965 		if (backing_object->shadow != VM_OBJECT_NULL &&
4966 		    backing_object->shadow->vo_copy == backing_object) {
4967 			/* try and collapse the rest of the shadow chain */
4968 			if (object != original_object) {
4969 				vm_object_unlock(object);
4970 			}
4971 			object = backing_object;
4972 			object_lock_type = backing_object_lock_type;
4973 			continue;
4974 		}
4975 
4976 		/*
4977 		 *	We can now try to either collapse the backing
4978 		 *	object (if the parent is the only reference to
4979 		 *	it) or (perhaps) remove the parent's reference
4980 		 *	to it.
4981 		 *
4982 		 *	If there is exactly one reference to the backing
4983 		 *	object, we may be able to collapse it into the
4984 		 *	parent.
4985 		 *
4986 		 *	As long as one of the objects is still not known
4987 		 *	to the pager, we can collapse them.
4988 		 */
4989 		if (os_ref_get_count_raw(&backing_object->ref_count) == 1 &&
4990 		    (vm_object_collapse_compressor_allowed ||
4991 		    !object->pager_created
4992 		    || (!backing_object->pager_created)
4993 		    ) && vm_object_collapse_allowed) {
4994 			/*
4995 			 * We need the exclusive lock on the VM objects.
4996 			 */
4997 			if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
4998 				/*
4999 				 * We have an object and its shadow locked
5000 				 * "shared".  We can't just upgrade the locks
5001 				 * to "exclusive", as some other thread might
5002 				 * also have these objects locked "shared" and
5003 				 * attempt to upgrade one or the other to
5004 				 * "exclusive".  The upgrades would block
5005 				 * forever waiting for the other "shared" locks
5006 				 * to get released.
5007 				 * So we have to release the locks and go
5008 				 * down the shadow chain again (since it could
5009 				 * have changed) with "exclusive" locking.
5010 				 */
5011 				vm_object_unlock(backing_object);
5012 				if (object != original_object) {
5013 					vm_object_unlock(object);
5014 				}
5015 				object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5016 				backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5017 				goto retry;
5018 			}
5019 
5020 			/*
5021 			 *	Collapse the object with its backing
5022 			 *	object, and try again with the object's
5023 			 *	new backing object.
5024 			 */
5025 
5026 			vm_object_do_collapse(object, backing_object);
5027 			vm_object_collapse_do_collapse++;
5028 			continue;
5029 		}
5030 
5031 		/*
5032 		 *	Collapsing the backing object was not possible
5033 		 *	or permitted, so let's try bypassing it.
5034 		 */
5035 
5036 		if (!(can_bypass && vm_object_bypass_allowed)) {
5037 			/* try and collapse the rest of the shadow chain */
5038 			if (object != original_object) {
5039 				vm_object_unlock(object);
5040 			}
5041 			object = backing_object;
5042 			object_lock_type = backing_object_lock_type;
5043 			continue;
5044 		}
5045 
5046 
5047 		/*
5048 		 *	If the object doesn't have all its pages present,
5049 		 *	we have to make sure no pages in the backing object
5050 		 *	"show through" before bypassing it.
5051 		 */
5052 		object_vcount = object->vo_size >> PAGE_SHIFT;
5053 		object_rcount = (vm_object_size_t)object->resident_page_count;
5054 
5055 		if (object_rcount != object_vcount) {
5056 			vm_object_offset_t      offset;
5057 			vm_object_offset_t      backing_offset;
5058 			vm_object_size_t        backing_rcount, backing_vcount;
5059 
5060 			/*
5061 			 *	If the backing object has a pager but no pagemap,
5062 			 *	then we cannot bypass it, because we don't know
5063 			 *	what pages it has.
5064 			 */
5065 			if (backing_object->pager_created) {
5066 				/* try and collapse the rest of the shadow chain */
5067 				if (object != original_object) {
5068 					vm_object_unlock(object);
5069 				}
5070 				object = backing_object;
5071 				object_lock_type = backing_object_lock_type;
5072 				continue;
5073 			}
5074 
5075 			/*
5076 			 *	If the object has a pager but no pagemap,
5077 			 *	then we cannot bypass it, because we don't know
5078 			 *	what pages it has.
5079 			 */
5080 			if (object->pager_created) {
5081 				/* try and collapse the rest of the shadow chain */
5082 				if (object != original_object) {
5083 					vm_object_unlock(object);
5084 				}
5085 				object = backing_object;
5086 				object_lock_type = backing_object_lock_type;
5087 				continue;
5088 			}
5089 
5090 			backing_offset = object->vo_shadow_offset;
5091 			backing_vcount = backing_object->vo_size >> PAGE_SHIFT;
5092 			backing_rcount = (vm_object_size_t)backing_object->resident_page_count;
5093 			assert(backing_vcount >= object_vcount);
5094 
5095 			if (backing_rcount > (backing_vcount - object_vcount) &&
5096 			    backing_rcount - (backing_vcount - object_vcount) > object_rcount) {
5097 				/*
5098 				 * we have enough pages in the backing object to guarantee that
5099 				 * at least 1 of them must be 'uncovered' by a resident page
5100 				 * in the object we're evaluating, so move on and
5101 				 * try to collapse the rest of the shadow chain
5102 				 */
5103 				if (object != original_object) {
5104 					vm_object_unlock(object);
5105 				}
5106 				object = backing_object;
5107 				object_lock_type = backing_object_lock_type;
5108 				continue;
5109 			}
5110 
5111 			/*
5112 			 *	If all of the pages in the backing object are
5113 			 *	shadowed by the parent object, the parent
5114 			 *	object no longer has to shadow the backing
5115 			 *	object; it can shadow the next one in the
5116 			 *	chain.
5117 			 *
5118 			 *	If the backing object has existence info,
5119 			 *	we must check examine its existence info
5120 			 *	as well.
5121 			 *
5122 			 */
5123 
5124 #define EXISTS_IN_OBJECT(obj, off, rc)                  \
5125 	((vm_object_compressor_pager_state_get((obj), (off))   \
5126 	  == VM_EXTERNAL_STATE_EXISTS) ||               \
5127 	 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5128 
5129 			/*
5130 			 * Check the hint location first
5131 			 * (since it is often the quickest way out of here).
5132 			 */
5133 			if (object->cow_hint != ~(vm_offset_t)0) {
5134 				hint_offset = (vm_object_offset_t)object->cow_hint;
5135 			} else {
5136 				hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
5137 				    (hint_offset - 8 * PAGE_SIZE_64) : 0;
5138 			}
5139 
5140 			if (EXISTS_IN_OBJECT(backing_object, hint_offset +
5141 			    backing_offset, backing_rcount) &&
5142 			    !EXISTS_IN_OBJECT(object, hint_offset, object_rcount)) {
5143 				/* dependency right at the hint */
5144 				object->cow_hint = (vm_offset_t) hint_offset; /* atomic */
5145 				/* try and collapse the rest of the shadow chain */
5146 				if (object != original_object) {
5147 					vm_object_unlock(object);
5148 				}
5149 				object = backing_object;
5150 				object_lock_type = backing_object_lock_type;
5151 				continue;
5152 			}
5153 
5154 			/*
5155 			 * If the object's window onto the backing_object
5156 			 * is large compared to the number of resident
5157 			 * pages in the backing object, it makes sense to
5158 			 * walk the backing_object's resident pages first.
5159 			 *
5160 			 * NOTE: Pages may be in both the existence map and/or
5161 			 * resident, so if we don't find a dependency while
5162 			 * walking the backing object's resident page list
5163 			 * directly, and there is an existence map, we'll have
5164 			 * to run the offset based 2nd pass.  Because we may
5165 			 * have to run both passes, we need to be careful
5166 			 * not to decrement 'rcount' in the 1st pass
5167 			 */
5168 			if (backing_rcount && backing_rcount < (object_vcount / 8)) {
5169 				vm_object_size_t rc = object_rcount;
5170 				vm_page_t p;
5171 
5172 				backing_rcount = backing_object->resident_page_count;
5173 				p = (vm_page_t)vm_page_queue_first(&backing_object->memq);
5174 				do {
5175 					offset = (p->vmp_offset - backing_offset);
5176 
5177 					if (offset < object->vo_size &&
5178 					    offset != hint_offset &&
5179 					    !EXISTS_IN_OBJECT(object, offset, rc)) {
5180 						/* found a dependency */
5181 						object->cow_hint = (vm_offset_t) offset; /* atomic */
5182 
5183 						break;
5184 					}
5185 					p = (vm_page_t) vm_page_queue_next(&p->vmp_listq);
5186 				} while (--backing_rcount);
5187 				if (backing_rcount != 0) {
5188 					/* try and collapse the rest of the shadow chain */
5189 					if (object != original_object) {
5190 						vm_object_unlock(object);
5191 					}
5192 					object = backing_object;
5193 					object_lock_type = backing_object_lock_type;
5194 					continue;
5195 				}
5196 			}
5197 
5198 			/*
5199 			 * Walk through the offsets looking for pages in the
5200 			 * backing object that show through to the object.
5201 			 */
5202 			if (backing_rcount) {
5203 				offset = hint_offset;
5204 
5205 				while ((offset =
5206 				    (offset + PAGE_SIZE_64 < object->vo_size) ?
5207 				    (offset + PAGE_SIZE_64) : 0) != hint_offset) {
5208 					if (EXISTS_IN_OBJECT(backing_object, offset +
5209 					    backing_offset, backing_rcount) &&
5210 					    !EXISTS_IN_OBJECT(object, offset, object_rcount)) {
5211 						/* found a dependency */
5212 						object->cow_hint = (vm_offset_t) offset; /* atomic */
5213 						break;
5214 					}
5215 				}
5216 				if (offset != hint_offset) {
5217 					/* try and collapse the rest of the shadow chain */
5218 					if (object != original_object) {
5219 						vm_object_unlock(object);
5220 					}
5221 					object = backing_object;
5222 					object_lock_type = backing_object_lock_type;
5223 					continue;
5224 				}
5225 			}
5226 		}
5227 
5228 		/*
5229 		 * We need "exclusive" locks on the 2 VM objects.
5230 		 */
5231 		if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5232 			vm_object_unlock(backing_object);
5233 			if (object != original_object) {
5234 				vm_object_unlock(object);
5235 			}
5236 			object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5237 			backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5238 			goto retry;
5239 		}
5240 
5241 		/* reset the offset hint for any objects deeper in the chain */
5242 		object->cow_hint = (vm_offset_t)0;
5243 
5244 		/*
5245 		 *	All interesting pages in the backing object
5246 		 *	already live in the parent or its pager.
5247 		 *	Thus we can bypass the backing object.
5248 		 */
5249 
5250 		vm_object_do_bypass(object, backing_object);
5251 		vm_object_collapse_do_bypass++;
5252 
5253 		/*
5254 		 *	Try again with this object's new backing object.
5255 		 */
5256 
5257 		continue;
5258 	}
5259 
5260 	/* NOT REACHED */
5261 	/*
5262 	 *  if (object != original_object) {
5263 	 *       vm_object_unlock(object);
5264 	 *  }
5265 	 */
5266 }
5267 
5268 /*
5269  *	Routine:	vm_object_page_remove: [internal]
5270  *	Purpose:
5271  *		Removes all physical pages in the specified
5272  *		object range from the object's list of pages.
5273  *
5274  *	In/out conditions:
5275  *		The object must be locked.
5276  *		The object must not have paging_in_progress, usually
5277  *		guaranteed by not having a pager.
5278  */
5279 unsigned int vm_object_page_remove_lookup = 0;
5280 unsigned int vm_object_page_remove_iterate = 0;
5281 
5282 __private_extern__ void
5283 vm_object_page_remove(
5284 	vm_object_t             object,
5285 	vm_object_offset_t      start,
5286 	vm_object_offset_t      end)
5287 {
5288 	vm_page_t       p, next;
5289 
5290 	/*
5291 	 *	One and two page removals are most popular.
5292 	 *	The factor of 16 here is somewhat arbitrary.
5293 	 *	It balances vm_object_lookup vs iteration.
5294 	 */
5295 
5296 	if (atop_64(end - start) < (unsigned)object->resident_page_count / 16) {
5297 		vm_object_page_remove_lookup++;
5298 
5299 		for (; start < end; start += PAGE_SIZE_64) {
5300 			p = vm_page_lookup(object, start);
5301 			if (p != VM_PAGE_NULL) {
5302 				assert(!p->vmp_cleaning && !p->vmp_laundry);
5303 				if (!p->vmp_fictitious && p->vmp_pmapped) {
5304 					pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5305 				}
5306 				VM_PAGE_FREE(p);
5307 			}
5308 		}
5309 	} else {
5310 		vm_object_page_remove_iterate++;
5311 
5312 		p = (vm_page_t) vm_page_queue_first(&object->memq);
5313 		while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) p)) {
5314 			next = (vm_page_t) vm_page_queue_next(&p->vmp_listq);
5315 			if ((start <= p->vmp_offset) && (p->vmp_offset < end)) {
5316 				assert(!p->vmp_cleaning && !p->vmp_laundry);
5317 				if (!p->vmp_fictitious && p->vmp_pmapped) {
5318 					pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5319 				}
5320 				VM_PAGE_FREE(p);
5321 			}
5322 			p = next;
5323 		}
5324 	}
5325 }
5326 
5327 
5328 /*
5329  *	Routine:	vm_object_coalesce
5330  *	Function:	Coalesces two objects backing up adjoining
5331  *			regions of memory into a single object.
5332  *
5333  *	returns TRUE if objects were combined.
5334  *
5335  *	NOTE:	Only works at the moment if the second object is NULL -
5336  *		if it's not, which object do we lock first?
5337  *
5338  *	Parameters:
5339  *		prev_object	First object to coalesce
5340  *		prev_offset	Offset into prev_object
5341  *		next_object	Second object into coalesce
5342  *		next_offset	Offset into next_object
5343  *
5344  *		prev_size	Size of reference to prev_object
5345  *		next_size	Size of reference to next_object
5346  *
5347  *	Conditions:
5348  *	The object(s) must *not* be locked. The map must be locked
5349  *	to preserve the reference to the object(s).
5350  */
5351 static int vm_object_coalesce_count = 0;
5352 
5353 __private_extern__ boolean_t
5354 vm_object_coalesce(
5355 	vm_object_t                     prev_object,
5356 	vm_object_t                     next_object,
5357 	vm_object_offset_t              prev_offset,
5358 	__unused vm_object_offset_t next_offset,
5359 	vm_object_size_t                prev_size,
5360 	vm_object_size_t                next_size)
5361 {
5362 	vm_object_size_t        newsize;
5363 
5364 #ifdef  lint
5365 	next_offset++;
5366 #endif  /* lint */
5367 
5368 	if (next_object != VM_OBJECT_NULL) {
5369 		return FALSE;
5370 	}
5371 
5372 	if (prev_object == VM_OBJECT_NULL) {
5373 		return TRUE;
5374 	}
5375 
5376 	vm_object_lock(prev_object);
5377 
5378 	/*
5379 	 *	Try to collapse the object first
5380 	 */
5381 	vm_object_collapse(prev_object, prev_offset, TRUE);
5382 
5383 	/*
5384 	 *	Can't coalesce if pages not mapped to
5385 	 *	prev_entry may be in use any way:
5386 	 *	. more than one reference
5387 	 *	. paged out
5388 	 *	. shadows another object
5389 	 *	. has a copy elsewhere
5390 	 *	. is purgeable
5391 	 *	. paging references (pages might be in page-list)
5392 	 */
5393 
5394 	if ((os_ref_get_count_raw(&prev_object->ref_count) > 1) ||
5395 	    prev_object->pager_created ||
5396 	    prev_object->phys_contiguous ||
5397 	    (prev_object->shadow != VM_OBJECT_NULL) ||
5398 	    (prev_object->vo_copy != VM_OBJECT_NULL) ||
5399 	    (prev_object->true_share != FALSE) ||
5400 	    (prev_object->purgable != VM_PURGABLE_DENY) ||
5401 	    (prev_object->paging_in_progress != 0) ||
5402 	    (prev_object->activity_in_progress != 0)) {
5403 		vm_object_unlock(prev_object);
5404 		return FALSE;
5405 	}
5406 	/* newsize = prev_offset + prev_size + next_size; */
5407 	if (__improbable(os_add3_overflow(prev_offset, prev_size, next_size,
5408 	    &newsize))) {
5409 		vm_object_unlock(prev_object);
5410 		return FALSE;
5411 	}
5412 
5413 	vm_object_coalesce_count++;
5414 
5415 	/*
5416 	 *	Remove any pages that may still be in the object from
5417 	 *	a previous deallocation.
5418 	 */
5419 	vm_object_page_remove(prev_object,
5420 	    prev_offset + prev_size,
5421 	    prev_offset + prev_size + next_size);
5422 
5423 	/*
5424 	 *	Extend the object if necessary.
5425 	 */
5426 	if (newsize > prev_object->vo_size) {
5427 		assertf(page_aligned(newsize),
5428 		    "object %p size 0x%llx",
5429 		    prev_object, (uint64_t)newsize);
5430 		prev_object->vo_size = newsize;
5431 	}
5432 
5433 	vm_object_unlock(prev_object);
5434 	return TRUE;
5435 }
5436 
5437 kern_return_t
5438 vm_object_populate_with_private(
5439 	vm_object_t             object,
5440 	vm_object_offset_t      offset,
5441 	ppnum_t                 phys_page,
5442 	vm_size_t               size)
5443 {
5444 	ppnum_t                 base_page;
5445 	vm_object_offset_t      base_offset;
5446 
5447 
5448 	if (!object->private) {
5449 		return KERN_FAILURE;
5450 	}
5451 
5452 	base_page = phys_page;
5453 
5454 	vm_object_lock(object);
5455 
5456 	if (!object->phys_contiguous) {
5457 		vm_page_t       m;
5458 
5459 		if ((base_offset = trunc_page_64(offset)) != offset) {
5460 			vm_object_unlock(object);
5461 			return KERN_FAILURE;
5462 		}
5463 		base_offset += object->paging_offset;
5464 
5465 		while (size) {
5466 			m = vm_page_lookup(object, base_offset);
5467 
5468 			if (m != VM_PAGE_NULL) {
5469 				if (m->vmp_fictitious) {
5470 					if (VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr) {
5471 						vm_page_lockspin_queues();
5472 						m->vmp_private = TRUE;
5473 						vm_page_unlock_queues();
5474 
5475 						m->vmp_fictitious = FALSE;
5476 						VM_PAGE_SET_PHYS_PAGE(m, base_page);
5477 					}
5478 				} else if (VM_PAGE_GET_PHYS_PAGE(m) != base_page) {
5479 					if (!m->vmp_private) {
5480 						/*
5481 						 * we'd leak a real page... that can't be right
5482 						 */
5483 						panic("vm_object_populate_with_private - %p not private", m);
5484 					}
5485 					if (m->vmp_pmapped) {
5486 						/*
5487 						 * pmap call to clear old mapping
5488 						 */
5489 						pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
5490 					}
5491 					VM_PAGE_SET_PHYS_PAGE(m, base_page);
5492 				}
5493 			} else {
5494 				m = vm_page_grab_fictitious(TRUE);
5495 
5496 				/*
5497 				 * private normally requires lock_queues but since we
5498 				 * are initializing the page, its not necessary here
5499 				 */
5500 				m->vmp_private = TRUE;
5501 				m->vmp_fictitious = FALSE;
5502 				VM_PAGE_SET_PHYS_PAGE(m, base_page);
5503 				m->vmp_unusual = TRUE;
5504 				m->vmp_busy = FALSE;
5505 
5506 				vm_page_insert(m, object, base_offset);
5507 			}
5508 			base_page++;                                                                    /* Go to the next physical page */
5509 			base_offset += PAGE_SIZE;
5510 			size -= PAGE_SIZE;
5511 		}
5512 	} else {
5513 		/* NOTE: we should check the original settings here */
5514 		/* if we have a size > zero a pmap call should be made */
5515 		/* to disable the range */
5516 
5517 		/* pmap_? */
5518 
5519 		/* shadows on contiguous memory are not allowed */
5520 		/* we therefore can use the offset field */
5521 		object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
5522 		assertf(page_aligned(size),
5523 		    "object %p size 0x%llx",
5524 		    object, (uint64_t)size);
5525 		object->vo_size = size;
5526 	}
5527 	vm_object_unlock(object);
5528 
5529 	return KERN_SUCCESS;
5530 }
5531 
5532 
5533 kern_return_t
5534 memory_object_create_named(
5535 	memory_object_t pager,
5536 	memory_object_offset_t  size,
5537 	memory_object_control_t         *control)
5538 {
5539 	vm_object_t             object;
5540 
5541 	*control = MEMORY_OBJECT_CONTROL_NULL;
5542 	if (pager == MEMORY_OBJECT_NULL) {
5543 		return KERN_INVALID_ARGUMENT;
5544 	}
5545 
5546 	object = vm_object_memory_object_associate(pager,
5547 	    VM_OBJECT_NULL,
5548 	    size,
5549 	    TRUE);
5550 	if (object == VM_OBJECT_NULL) {
5551 		return KERN_INVALID_OBJECT;
5552 	}
5553 
5554 	/* wait for object (if any) to be ready */
5555 	if (object != VM_OBJECT_NULL) {
5556 		vm_object_lock(object);
5557 		VM_OBJECT_SET_NAMED(object, TRUE);
5558 		while (!object->pager_ready) {
5559 			vm_object_sleep(object,
5560 			    VM_OBJECT_EVENT_PAGER_READY,
5561 			    THREAD_UNINT, LCK_SLEEP_EXCLUSIVE);
5562 		}
5563 		*control = object->pager_control;
5564 		vm_object_unlock(object);
5565 	}
5566 	return KERN_SUCCESS;
5567 }
5568 
5569 
5570 __private_extern__ kern_return_t
5571 vm_object_lock_request(
5572 	vm_object_t                     object,
5573 	vm_object_offset_t              offset,
5574 	vm_object_size_t                size,
5575 	memory_object_return_t          should_return,
5576 	int                             flags,
5577 	vm_prot_t                       prot)
5578 {
5579 	__unused boolean_t      should_flush;
5580 
5581 	should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
5582 
5583 	/*
5584 	 *	Check for bogus arguments.
5585 	 */
5586 	if (object == VM_OBJECT_NULL) {
5587 		return KERN_INVALID_ARGUMENT;
5588 	}
5589 
5590 	if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) {
5591 		return KERN_INVALID_ARGUMENT;
5592 	}
5593 
5594 	/*
5595 	 * XXX TODO4K
5596 	 * extend range for conservative operations (copy-on-write, sync, ...)
5597 	 * truncate range for destructive operations (purge, ...)
5598 	 */
5599 	size = vm_object_round_page(offset + size) - vm_object_trunc_page(offset);
5600 	offset = vm_object_trunc_page(offset);
5601 
5602 	/*
5603 	 *	Lock the object, and acquire a paging reference to
5604 	 *	prevent the memory_object reference from being released.
5605 	 */
5606 	vm_object_lock(object);
5607 	vm_object_paging_begin(object);
5608 
5609 	(void)vm_object_update(object,
5610 	    offset, size, NULL, NULL, should_return, flags, prot);
5611 
5612 	vm_object_paging_end(object);
5613 	vm_object_unlock(object);
5614 
5615 	return KERN_SUCCESS;
5616 }
5617 
5618 /*
5619  * Empty a purgeable object by grabbing the physical pages assigned to it and
5620  * putting them on the free queue without writing them to backing store, etc.
5621  * When the pages are next touched they will be demand zero-fill pages.  We
5622  * skip pages which are busy, being paged in/out, wired, etc.  We do _not_
5623  * skip referenced/dirty pages, pages on the active queue, etc.  We're more
5624  * than happy to grab these since this is a purgeable object.  We mark the
5625  * object as "empty" after reaping its pages.
5626  *
5627  * On entry the object must be locked and it must be
5628  * purgeable with no delayed copies pending.
5629  */
5630 uint64_t
5631 vm_object_purge(vm_object_t object, int flags)
5632 {
5633 	unsigned int    object_page_count = 0, pgcount = 0;
5634 	uint64_t        total_purged_pgcount = 0;
5635 	boolean_t       skipped_object = FALSE;
5636 
5637 	vm_object_lock_assert_exclusive(object);
5638 
5639 	if (object->purgable == VM_PURGABLE_DENY) {
5640 		return 0;
5641 	}
5642 
5643 	assert(object->vo_copy == VM_OBJECT_NULL);
5644 	assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
5645 
5646 	/*
5647 	 * We need to set the object's state to VM_PURGABLE_EMPTY *before*
5648 	 * reaping its pages.  We update vm_page_purgeable_count in bulk
5649 	 * and we don't want vm_page_remove() to update it again for each
5650 	 * page we reap later.
5651 	 *
5652 	 * For the purgeable ledgers, pages from VOLATILE and EMPTY objects
5653 	 * are all accounted for in the "volatile" ledgers, so this does not
5654 	 * make any difference.
5655 	 * If we transitioned directly from NONVOLATILE to EMPTY,
5656 	 * vm_page_purgeable_count must have been updated when the object
5657 	 * was dequeued from its volatile queue and the purgeable ledgers
5658 	 * must have also been updated accordingly at that time (in
5659 	 * vm_object_purgable_control()).
5660 	 */
5661 	if (object->purgable == VM_PURGABLE_VOLATILE) {
5662 		unsigned int delta;
5663 		assert(object->resident_page_count >=
5664 		    object->wired_page_count);
5665 		delta = (object->resident_page_count -
5666 		    object->wired_page_count);
5667 		if (delta != 0) {
5668 			assert(vm_page_purgeable_count >=
5669 			    delta);
5670 			OSAddAtomic(-delta,
5671 			    (SInt32 *)&vm_page_purgeable_count);
5672 		}
5673 		if (object->wired_page_count != 0) {
5674 			assert(vm_page_purgeable_wired_count >=
5675 			    object->wired_page_count);
5676 			OSAddAtomic(-object->wired_page_count,
5677 			    (SInt32 *)&vm_page_purgeable_wired_count);
5678 		}
5679 		VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY);
5680 	}
5681 	assert(object->purgable == VM_PURGABLE_EMPTY);
5682 
5683 	object_page_count = object->resident_page_count;
5684 
5685 	vm_object_reap_pages(object, REAP_PURGEABLE);
5686 
5687 	if (object->resident_page_count >= object_page_count) {
5688 		total_purged_pgcount = 0;
5689 	} else {
5690 		total_purged_pgcount = object_page_count - object->resident_page_count;
5691 	}
5692 
5693 	if (object->pager != NULL) {
5694 		assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
5695 
5696 		if (object->activity_in_progress == 0 &&
5697 		    object->paging_in_progress == 0) {
5698 			/*
5699 			 * Also reap any memory coming from this object
5700 			 * in the VM compressor.
5701 			 *
5702 			 * There are no operations in progress on the VM object
5703 			 * and no operation can start while we're holding the
5704 			 * VM object lock, so it's safe to reap the compressed
5705 			 * pages and update the page counts.
5706 			 */
5707 			pgcount = vm_compressor_pager_get_count(object->pager);
5708 			if (pgcount) {
5709 				pgcount = vm_compressor_pager_reap_pages(object->pager, flags);
5710 				vm_compressor_pager_count(object->pager,
5711 				    -pgcount,
5712 				    FALSE,                       /* shared */
5713 				    object);
5714 				vm_object_owner_compressed_update(object,
5715 				    -pgcount);
5716 			}
5717 			if (!(flags & C_DONT_BLOCK)) {
5718 				assert(vm_compressor_pager_get_count(object->pager)
5719 				    == 0);
5720 			}
5721 		} else {
5722 			/*
5723 			 * There's some kind of paging activity in progress
5724 			 * for this object, which could result in a page
5725 			 * being compressed or decompressed, possibly while
5726 			 * the VM object is not locked, so it could race
5727 			 * with us.
5728 			 *
5729 			 * We can't really synchronize this without possibly
5730 			 * causing a deadlock when the compressor needs to
5731 			 * allocate or free memory while compressing or
5732 			 * decompressing a page from a purgeable object
5733 			 * mapped in the kernel_map...
5734 			 *
5735 			 * So let's not attempt to purge the compressor
5736 			 * pager if there's any kind of operation in
5737 			 * progress on the VM object.
5738 			 */
5739 			skipped_object = TRUE;
5740 		}
5741 	}
5742 
5743 	vm_object_lock_assert_exclusive(object);
5744 
5745 	total_purged_pgcount += pgcount;
5746 
5747 	KDBG_RELEASE(VMDBG_CODE(DBG_VM_PURGEABLE_OBJECT_PURGE_ONE) | DBG_FUNC_NONE,
5748 	    VM_KERNEL_UNSLIDE_OR_PERM(object),                   /* purged object */
5749 	    object_page_count,
5750 	    total_purged_pgcount,
5751 	    skipped_object);
5752 
5753 	return total_purged_pgcount;
5754 }
5755 
5756 
5757 /*
5758  * vm_object_purgeable_control() allows the caller to control and investigate the
5759  * state of a purgeable object.  A purgeable object is created via a call to
5760  * vm_allocate() with VM_FLAGS_PURGABLE specified.  A purgeable object will
5761  * never be coalesced with any other object -- even other purgeable objects --
5762  * and will thus always remain a distinct object.  A purgeable object has
5763  * special semantics when its reference count is exactly 1.  If its reference
5764  * count is greater than 1, then a purgeable object will behave like a normal
5765  * object and attempts to use this interface will result in an error return
5766  * of KERN_INVALID_ARGUMENT.
5767  *
5768  * A purgeable object may be put into a "volatile" state which will make the
5769  * object's pages elligable for being reclaimed without paging to backing
5770  * store if the system runs low on memory.  If the pages in a volatile
5771  * purgeable object are reclaimed, the purgeable object is said to have been
5772  * "emptied."  When a purgeable object is emptied the system will reclaim as
5773  * many pages from the object as it can in a convenient manner (pages already
5774  * en route to backing store or busy for other reasons are left as is).  When
5775  * a purgeable object is made volatile, its pages will generally be reclaimed
5776  * before other pages in the application's working set.  This semantic is
5777  * generally used by applications which can recreate the data in the object
5778  * faster than it can be paged in.  One such example might be media assets
5779  * which can be reread from a much faster RAID volume.
5780  *
5781  * A purgeable object may be designated as "non-volatile" which means it will
5782  * behave like all other objects in the system with pages being written to and
5783  * read from backing store as needed to satisfy system memory needs.  If the
5784  * object was emptied before the object was made non-volatile, that fact will
5785  * be returned as the old state of the purgeable object (see
5786  * VM_PURGABLE_SET_STATE below).  In this case, any pages of the object which
5787  * were reclaimed as part of emptying the object will be refaulted in as
5788  * zero-fill on demand.  It is up to the application to note that an object
5789  * was emptied and recreate the objects contents if necessary.  When a
5790  * purgeable object is made non-volatile, its pages will generally not be paged
5791  * out to backing store in the immediate future.  A purgeable object may also
5792  * be manually emptied.
5793  *
5794  * Finally, the current state (non-volatile, volatile, volatile & empty) of a
5795  * volatile purgeable object may be queried at any time.  This information may
5796  * be used as a control input to let the application know when the system is
5797  * experiencing memory pressure and is reclaiming memory.
5798  *
5799  * The specified address may be any address within the purgeable object.  If
5800  * the specified address does not represent any object in the target task's
5801  * virtual address space, then KERN_INVALID_ADDRESS will be returned.  If the
5802  * object containing the specified address is not a purgeable object, then
5803  * KERN_INVALID_ARGUMENT will be returned.  Otherwise, KERN_SUCCESS will be
5804  * returned.
5805  *
5806  * The control parameter may be any one of VM_PURGABLE_SET_STATE or
5807  * VM_PURGABLE_GET_STATE.  For VM_PURGABLE_SET_STATE, the in/out parameter
5808  * state is used to set the new state of the purgeable object and return its
5809  * old state.  For VM_PURGABLE_GET_STATE, the current state of the purgeable
5810  * object is returned in the parameter state.
5811  *
5812  * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
5813  * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY.  These, respectively, represent
5814  * the non-volatile, volatile and volatile/empty states described above.
5815  * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
5816  * immediately reclaim as many pages in the object as can be conveniently
5817  * collected (some may have already been written to backing store or be
5818  * otherwise busy).
5819  *
5820  * The process of making a purgeable object non-volatile and determining its
5821  * previous state is atomic.  Thus, if a purgeable object is made
5822  * VM_PURGABLE_NONVOLATILE and the old state is returned as
5823  * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
5824  * completely intact and will remain so until the object is made volatile
5825  * again.  If the old state is returned as VM_PURGABLE_EMPTY then the object
5826  * was reclaimed while it was in a volatile state and its previous contents
5827  * have been lost.
5828  */
5829 /*
5830  * The object must be locked.
5831  */
5832 kern_return_t
5833 vm_object_purgable_control(
5834 	vm_object_t     object,
5835 	vm_purgable_t   control,
5836 	int             *state)
5837 {
5838 	int             old_state;
5839 	int             new_state;
5840 
5841 	if (object == VM_OBJECT_NULL) {
5842 		/*
5843 		 * Object must already be present or it can't be purgeable.
5844 		 */
5845 		return KERN_INVALID_ARGUMENT;
5846 	}
5847 
5848 	vm_object_lock_assert_exclusive(object);
5849 
5850 	/*
5851 	 * Get current state of the purgeable object.
5852 	 */
5853 	old_state = object->purgable;
5854 	if (old_state == VM_PURGABLE_DENY) {
5855 		return KERN_INVALID_ARGUMENT;
5856 	}
5857 
5858 	/* purgeable cant have delayed copies - now or in the future */
5859 	assert(object->vo_copy == VM_OBJECT_NULL);
5860 	assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
5861 
5862 	/*
5863 	 * Execute the desired operation.
5864 	 */
5865 	if (control == VM_PURGABLE_GET_STATE) {
5866 		*state = old_state;
5867 		return KERN_SUCCESS;
5868 	}
5869 
5870 	if (control == VM_PURGABLE_SET_STATE &&
5871 	    object->purgeable_only_by_kernel) {
5872 		return KERN_PROTECTION_FAILURE;
5873 	}
5874 
5875 	if (control != VM_PURGABLE_SET_STATE &&
5876 	    control != VM_PURGABLE_SET_STATE_FROM_KERNEL) {
5877 		return KERN_INVALID_ARGUMENT;
5878 	}
5879 
5880 	if ((*state) & VM_PURGABLE_DEBUG_EMPTY) {
5881 		object->volatile_empty = TRUE;
5882 	}
5883 	if ((*state) & VM_PURGABLE_DEBUG_FAULT) {
5884 		object->volatile_fault = TRUE;
5885 	}
5886 
5887 	new_state = *state & VM_PURGABLE_STATE_MASK;
5888 	if (new_state == VM_PURGABLE_VOLATILE) {
5889 		if (old_state == VM_PURGABLE_EMPTY) {
5890 			/* what's been emptied must stay empty */
5891 			new_state = VM_PURGABLE_EMPTY;
5892 		}
5893 		if (object->volatile_empty) {
5894 			/* debugging mode: go straight to empty */
5895 			new_state = VM_PURGABLE_EMPTY;
5896 		}
5897 	}
5898 
5899 	switch (new_state) {
5900 	case VM_PURGABLE_DENY:
5901 		/*
5902 		 * Attempting to convert purgeable memory to non-purgeable:
5903 		 * not allowed.
5904 		 */
5905 		return KERN_INVALID_ARGUMENT;
5906 	case VM_PURGABLE_NONVOLATILE:
5907 		VM_OBJECT_SET_PURGABLE(object, new_state);
5908 
5909 		if (old_state == VM_PURGABLE_VOLATILE) {
5910 			unsigned int delta;
5911 
5912 			assert(object->resident_page_count >=
5913 			    object->wired_page_count);
5914 			delta = (object->resident_page_count -
5915 			    object->wired_page_count);
5916 
5917 			assert(vm_page_purgeable_count >= delta);
5918 
5919 			if (delta != 0) {
5920 				OSAddAtomic(-delta,
5921 				    (SInt32 *)&vm_page_purgeable_count);
5922 			}
5923 			if (object->wired_page_count != 0) {
5924 				assert(vm_page_purgeable_wired_count >=
5925 				    object->wired_page_count);
5926 				OSAddAtomic(-object->wired_page_count,
5927 				    (SInt32 *)&vm_page_purgeable_wired_count);
5928 			}
5929 
5930 			vm_page_lock_queues();
5931 
5932 			/* object should be on a queue */
5933 			assert(object->objq.next != NULL &&
5934 			    object->objq.prev != NULL);
5935 			purgeable_q_t queue;
5936 
5937 			/*
5938 			 * Move object from its volatile queue to the
5939 			 * non-volatile queue...
5940 			 */
5941 			queue = vm_purgeable_object_remove(object);
5942 			assert(queue);
5943 
5944 			if (object->purgeable_when_ripe) {
5945 				vm_purgeable_token_delete_last(queue);
5946 			}
5947 			assert(queue->debug_count_objects >= 0);
5948 
5949 			vm_page_unlock_queues();
5950 		}
5951 		if (old_state == VM_PURGABLE_VOLATILE ||
5952 		    old_state == VM_PURGABLE_EMPTY) {
5953 			/*
5954 			 * Transfer the object's pages from the volatile to
5955 			 * non-volatile ledgers.
5956 			 */
5957 			vm_purgeable_accounting(object, VM_PURGABLE_VOLATILE);
5958 		}
5959 
5960 		break;
5961 
5962 	case VM_PURGABLE_VOLATILE:
5963 		if (object->volatile_fault) {
5964 			vm_page_t       p;
5965 			int             refmod;
5966 
5967 			vm_page_queue_iterate(&object->memq, p, vmp_listq) {
5968 				if (p->vmp_busy ||
5969 				    VM_PAGE_WIRED(p) ||
5970 				    p->vmp_fictitious) {
5971 					continue;
5972 				}
5973 				refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5974 				if ((refmod & VM_MEM_MODIFIED) &&
5975 				    !p->vmp_dirty) {
5976 					SET_PAGE_DIRTY(p, FALSE);
5977 				}
5978 			}
5979 		}
5980 
5981 		assert(old_state != VM_PURGABLE_EMPTY);
5982 
5983 		purgeable_q_t queue;
5984 
5985 		/* find the correct queue */
5986 		if ((*state & VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) {
5987 			queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
5988 		} else {
5989 			if ((*state & VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) {
5990 				queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
5991 			} else {
5992 				queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
5993 			}
5994 		}
5995 
5996 		if (old_state == VM_PURGABLE_NONVOLATILE ||
5997 		    old_state == VM_PURGABLE_EMPTY) {
5998 			unsigned int delta;
5999 
6000 			if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6001 			    VM_PURGABLE_NO_AGING) {
6002 				VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, FALSE);
6003 			} else {
6004 				VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, TRUE);
6005 			}
6006 
6007 			if (object->purgeable_when_ripe) {
6008 				kern_return_t result;
6009 
6010 				/* try to add token... this can fail */
6011 				vm_page_lock_queues();
6012 
6013 				result = vm_purgeable_token_add(queue);
6014 				if (result != KERN_SUCCESS) {
6015 					vm_page_unlock_queues();
6016 					return result;
6017 				}
6018 				vm_page_unlock_queues();
6019 			}
6020 
6021 			assert(object->resident_page_count >=
6022 			    object->wired_page_count);
6023 			delta = (object->resident_page_count -
6024 			    object->wired_page_count);
6025 
6026 			if (delta != 0) {
6027 				OSAddAtomic(delta,
6028 				    &vm_page_purgeable_count);
6029 			}
6030 			if (object->wired_page_count != 0) {
6031 				OSAddAtomic(object->wired_page_count,
6032 				    &vm_page_purgeable_wired_count);
6033 			}
6034 
6035 			VM_OBJECT_SET_PURGABLE(object, new_state);
6036 
6037 			/* object should be on "non-volatile" queue */
6038 			assert(object->objq.next != NULL);
6039 			assert(object->objq.prev != NULL);
6040 		} else if (old_state == VM_PURGABLE_VOLATILE) {
6041 			purgeable_q_t   old_queue;
6042 			boolean_t       purgeable_when_ripe;
6043 
6044 			/*
6045 			 * if reassigning priorities / purgeable groups, we don't change the
6046 			 * token queue. So moving priorities will not make pages stay around longer.
6047 			 * Reasoning is that the algorithm gives most priority to the most important
6048 			 * object. If a new token is added, the most important object' priority is boosted.
6049 			 * This biases the system already for purgeable queues that move a lot.
6050 			 * It doesn't seem more biasing is neccessary in this case, where no new object is added.
6051 			 */
6052 			assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6053 
6054 			old_queue = vm_purgeable_object_remove(object);
6055 			assert(old_queue);
6056 
6057 			if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6058 			    VM_PURGABLE_NO_AGING) {
6059 				purgeable_when_ripe = FALSE;
6060 			} else {
6061 				purgeable_when_ripe = TRUE;
6062 			}
6063 
6064 			if (old_queue != queue ||
6065 			    (purgeable_when_ripe !=
6066 			    object->purgeable_when_ripe)) {
6067 				kern_return_t result;
6068 
6069 				/* Changing queue. Have to move token. */
6070 				vm_page_lock_queues();
6071 				if (object->purgeable_when_ripe) {
6072 					vm_purgeable_token_delete_last(old_queue);
6073 				}
6074 				VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, purgeable_when_ripe);
6075 				if (object->purgeable_when_ripe) {
6076 					result = vm_purgeable_token_add(queue);
6077 					assert(result == KERN_SUCCESS);   /* this should never fail since we just freed a token */
6078 				}
6079 				vm_page_unlock_queues();
6080 			}
6081 		}
6082 		;
6083 		vm_purgeable_object_add(object, queue, (*state & VM_VOLATILE_GROUP_MASK) >> VM_VOLATILE_GROUP_SHIFT );
6084 		if (old_state == VM_PURGABLE_NONVOLATILE) {
6085 			vm_purgeable_accounting(object,
6086 			    VM_PURGABLE_NONVOLATILE);
6087 		}
6088 
6089 		assert(queue->debug_count_objects >= 0);
6090 
6091 		break;
6092 
6093 
6094 	case VM_PURGABLE_EMPTY:
6095 		if (object->volatile_fault) {
6096 			vm_page_t       p;
6097 			int             refmod;
6098 
6099 			vm_page_queue_iterate(&object->memq, p, vmp_listq) {
6100 				if (p->vmp_busy ||
6101 				    VM_PAGE_WIRED(p) ||
6102 				    p->vmp_fictitious) {
6103 					continue;
6104 				}
6105 				refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
6106 				if ((refmod & VM_MEM_MODIFIED) &&
6107 				    !p->vmp_dirty) {
6108 					SET_PAGE_DIRTY(p, FALSE);
6109 				}
6110 			}
6111 		}
6112 
6113 		if (old_state == VM_PURGABLE_VOLATILE) {
6114 			purgeable_q_t old_queue;
6115 
6116 			/* object should be on a queue */
6117 			assert(object->objq.next != NULL &&
6118 			    object->objq.prev != NULL);
6119 
6120 			old_queue = vm_purgeable_object_remove(object);
6121 			assert(old_queue);
6122 			if (object->purgeable_when_ripe) {
6123 				vm_page_lock_queues();
6124 				vm_purgeable_token_delete_first(old_queue);
6125 				vm_page_unlock_queues();
6126 			}
6127 		}
6128 
6129 		if (old_state == VM_PURGABLE_NONVOLATILE) {
6130 			/*
6131 			 * This object's pages were previously accounted as
6132 			 * "non-volatile" and now need to be accounted as
6133 			 * "volatile".
6134 			 */
6135 			vm_purgeable_accounting(object,
6136 			    VM_PURGABLE_NONVOLATILE);
6137 			/*
6138 			 * Set to VM_PURGABLE_EMPTY because the pages are no
6139 			 * longer accounted in the "non-volatile" ledger
6140 			 * and are also not accounted for in
6141 			 * "vm_page_purgeable_count".
6142 			 */
6143 			VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY);
6144 		}
6145 
6146 		(void) vm_object_purge(object, 0);
6147 		assert(object->purgable == VM_PURGABLE_EMPTY);
6148 
6149 		break;
6150 	}
6151 
6152 	*state = old_state;
6153 
6154 	vm_object_lock_assert_exclusive(object);
6155 
6156 	return KERN_SUCCESS;
6157 }
6158 
6159 kern_return_t
6160 vm_object_get_page_counts(
6161 	vm_object_t             object,
6162 	vm_object_offset_t      offset,
6163 	vm_object_size_t        size,
6164 	unsigned int            *resident_page_count,
6165 	unsigned int            *dirty_page_count)
6166 {
6167 	kern_return_t           kr = KERN_SUCCESS;
6168 	boolean_t               count_dirty_pages = FALSE;
6169 	vm_page_t               p = VM_PAGE_NULL;
6170 	unsigned int            local_resident_count = 0;
6171 	unsigned int            local_dirty_count = 0;
6172 	vm_object_offset_t      cur_offset = 0;
6173 	vm_object_offset_t      end_offset = 0;
6174 
6175 	if (object == VM_OBJECT_NULL) {
6176 		return KERN_INVALID_ARGUMENT;
6177 	}
6178 
6179 
6180 	cur_offset = offset;
6181 
6182 	end_offset = offset + size;
6183 
6184 	vm_object_lock_assert_exclusive(object);
6185 
6186 	if (dirty_page_count != NULL) {
6187 		count_dirty_pages = TRUE;
6188 	}
6189 
6190 	if (resident_page_count != NULL && count_dirty_pages == FALSE) {
6191 		/*
6192 		 * Fast path when:
6193 		 * - we only want the resident page count, and,
6194 		 * - the entire object is exactly covered by the request.
6195 		 */
6196 		if (offset == 0 && (object->vo_size == size)) {
6197 			*resident_page_count = object->resident_page_count;
6198 			goto out;
6199 		}
6200 	}
6201 
6202 	if (object->resident_page_count <= (size >> PAGE_SHIFT)) {
6203 		vm_page_queue_iterate(&object->memq, p, vmp_listq) {
6204 			if (p->vmp_offset >= cur_offset && p->vmp_offset < end_offset) {
6205 				local_resident_count++;
6206 
6207 				if (count_dirty_pages) {
6208 					if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) {
6209 						local_dirty_count++;
6210 					}
6211 				}
6212 			}
6213 		}
6214 	} else {
6215 		for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) {
6216 			p = vm_page_lookup(object, cur_offset);
6217 
6218 			if (p != VM_PAGE_NULL) {
6219 				local_resident_count++;
6220 
6221 				if (count_dirty_pages) {
6222 					if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) {
6223 						local_dirty_count++;
6224 					}
6225 				}
6226 			}
6227 		}
6228 	}
6229 
6230 	if (resident_page_count != NULL) {
6231 		*resident_page_count = local_resident_count;
6232 	}
6233 
6234 	if (dirty_page_count != NULL) {
6235 		*dirty_page_count = local_dirty_count;
6236 	}
6237 
6238 out:
6239 	return kr;
6240 }
6241 
6242 
6243 /*
6244  *	vm_object_reference:
6245  *
6246  *	Gets another reference to the given object.
6247  */
6248 #ifdef vm_object_reference
6249 #undef vm_object_reference
6250 #endif
6251 __private_extern__ void
6252 vm_object_reference(
6253 	vm_object_t     object)
6254 {
6255 	if (object == VM_OBJECT_NULL) {
6256 		return;
6257 	}
6258 
6259 	vm_object_lock(object);
6260 	vm_object_reference_locked(object);
6261 	vm_object_unlock(object);
6262 }
6263 
6264 /*
6265  * vm_object_transpose
6266  *
6267  * This routine takes two VM objects of the same size and exchanges
6268  * their backing store.
6269  * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
6270  * and UPL_BLOCK_ACCESS if they are referenced anywhere.
6271  *
6272  * The VM objects must not be locked by caller.
6273  */
6274 unsigned int vm_object_transpose_count = 0;
6275 kern_return_t
6276 vm_object_transpose(
6277 	vm_object_t             object1,
6278 	vm_object_t             object2,
6279 	vm_object_size_t        transpose_size)
6280 {
6281 	vm_object_t             tmp_object;
6282 	kern_return_t           retval;
6283 	boolean_t               object1_locked, object2_locked;
6284 	vm_page_t               page;
6285 	vm_object_offset_t      page_offset;
6286 
6287 	tmp_object = VM_OBJECT_NULL;
6288 	object1_locked = FALSE; object2_locked = FALSE;
6289 
6290 	if (object1 == object2 ||
6291 	    object1 == VM_OBJECT_NULL ||
6292 	    object2 == VM_OBJECT_NULL) {
6293 		/*
6294 		 * If the 2 VM objects are the same, there's
6295 		 * no point in exchanging their backing store.
6296 		 */
6297 		retval = KERN_INVALID_VALUE;
6298 		goto done;
6299 	}
6300 
6301 	/*
6302 	 * Since we need to lock both objects at the same time,
6303 	 * make sure we always lock them in the same order to
6304 	 * avoid deadlocks.
6305 	 */
6306 	if (object1 > object2) {
6307 		tmp_object = object1;
6308 		object1 = object2;
6309 		object2 = tmp_object;
6310 	}
6311 
6312 	/*
6313 	 * Allocate a temporary VM object to hold object1's contents
6314 	 * while we copy object2 to object1.
6315 	 */
6316 	tmp_object = vm_object_allocate(transpose_size);
6317 	vm_object_lock(tmp_object);
6318 	VM_OBJECT_SET_CAN_PERSIST(tmp_object, FALSE);
6319 
6320 
6321 	/*
6322 	 * Grab control of the 1st VM object.
6323 	 */
6324 	vm_object_lock(object1);
6325 	object1_locked = TRUE;
6326 	if (!object1->alive || object1->terminating ||
6327 	    object1->vo_copy || object1->shadow || object1->shadowed ||
6328 	    object1->purgable != VM_PURGABLE_DENY) {
6329 		/*
6330 		 * We don't deal with copy or shadow objects (yet).
6331 		 */
6332 		retval = KERN_INVALID_VALUE;
6333 		goto done;
6334 	}
6335 	/*
6336 	 * We're about to mess with the object's backing store and
6337 	 * taking a "paging_in_progress" reference wouldn't be enough
6338 	 * to prevent any paging activity on this object, so the caller should
6339 	 * have "quiesced" the objects beforehand, via a UPL operation with
6340 	 * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
6341 	 * and UPL_BLOCK_ACCESS (to mark the pages "busy").
6342 	 *
6343 	 * Wait for any paging operation to complete (but only paging, not
6344 	 * other kind of activities not linked to the pager).  After we're
6345 	 * statisfied that there's no more paging in progress, we keep the
6346 	 * object locked, to guarantee that no one tries to access its pager.
6347 	 */
6348 	vm_object_paging_only_wait(object1, THREAD_UNINT);
6349 
6350 	/*
6351 	 * Same as above for the 2nd object...
6352 	 */
6353 	vm_object_lock(object2);
6354 	object2_locked = TRUE;
6355 	if (!object2->alive || object2->terminating ||
6356 	    object2->vo_copy || object2->shadow || object2->shadowed ||
6357 	    object2->purgable != VM_PURGABLE_DENY) {
6358 		retval = KERN_INVALID_VALUE;
6359 		goto done;
6360 	}
6361 	vm_object_paging_only_wait(object2, THREAD_UNINT);
6362 
6363 
6364 	if (object1->vo_size != object2->vo_size ||
6365 	    object1->vo_size != transpose_size) {
6366 		/*
6367 		 * If the 2 objects don't have the same size, we can't
6368 		 * exchange their backing stores or one would overflow.
6369 		 * If their size doesn't match the caller's
6370 		 * "transpose_size", we can't do it either because the
6371 		 * transpose operation will affect the entire span of
6372 		 * the objects.
6373 		 */
6374 		retval = KERN_INVALID_VALUE;
6375 		goto done;
6376 	}
6377 
6378 
6379 	/*
6380 	 * Transpose the lists of resident pages.
6381 	 * This also updates the resident_page_count and the memq_hint.
6382 	 */
6383 	if (object1->phys_contiguous || vm_page_queue_empty(&object1->memq)) {
6384 		/*
6385 		 * No pages in object1, just transfer pages
6386 		 * from object2 to object1.  No need to go through
6387 		 * an intermediate object.
6388 		 */
6389 		while (!vm_page_queue_empty(&object2->memq)) {
6390 			page = (vm_page_t) vm_page_queue_first(&object2->memq);
6391 			vm_page_rename(page, object1, page->vmp_offset);
6392 		}
6393 		assert(vm_page_queue_empty(&object2->memq));
6394 	} else if (object2->phys_contiguous || vm_page_queue_empty(&object2->memq)) {
6395 		/*
6396 		 * No pages in object2, just transfer pages
6397 		 * from object1 to object2.  No need to go through
6398 		 * an intermediate object.
6399 		 */
6400 		while (!vm_page_queue_empty(&object1->memq)) {
6401 			page = (vm_page_t) vm_page_queue_first(&object1->memq);
6402 			vm_page_rename(page, object2, page->vmp_offset);
6403 		}
6404 		assert(vm_page_queue_empty(&object1->memq));
6405 	} else {
6406 		/* transfer object1's pages to tmp_object */
6407 		while (!vm_page_queue_empty(&object1->memq)) {
6408 			page = (vm_page_t) vm_page_queue_first(&object1->memq);
6409 			page_offset = page->vmp_offset;
6410 			vm_page_remove(page, TRUE);
6411 			page->vmp_offset = page_offset;
6412 			vm_page_queue_enter(&tmp_object->memq, page, vmp_listq);
6413 		}
6414 		assert(vm_page_queue_empty(&object1->memq));
6415 		/* transfer object2's pages to object1 */
6416 		while (!vm_page_queue_empty(&object2->memq)) {
6417 			page = (vm_page_t) vm_page_queue_first(&object2->memq);
6418 			vm_page_rename(page, object1, page->vmp_offset);
6419 		}
6420 		assert(vm_page_queue_empty(&object2->memq));
6421 		/* transfer tmp_object's pages to object2 */
6422 		while (!vm_page_queue_empty(&tmp_object->memq)) {
6423 			page = (vm_page_t) vm_page_queue_first(&tmp_object->memq);
6424 			vm_page_queue_remove(&tmp_object->memq, page, vmp_listq);
6425 			vm_page_insert(page, object2, page->vmp_offset);
6426 		}
6427 		assert(vm_page_queue_empty(&tmp_object->memq));
6428 	}
6429 
6430 #define __TRANSPOSE_FIELD(field)                                \
6431 MACRO_BEGIN                                                     \
6432 	tmp_object->field = object1->field;                     \
6433 	object1->field = object2->field;                        \
6434 	object2->field = tmp_object->field;                     \
6435 MACRO_END
6436 
6437 	/* "Lock" refers to the object not its contents */
6438 	/* "size" should be identical */
6439 	assert(object1->vo_size == object2->vo_size);
6440 	/* "memq_hint" was updated above when transposing pages */
6441 	/* "ref_count" refers to the object not its contents */
6442 	assert(os_ref_get_count_raw(&object1->ref_count) >= 1);
6443 	assert(os_ref_get_count_raw(&object2->ref_count) >= 1);
6444 	/* "resident_page_count" was updated above when transposing pages */
6445 	/* "wired_page_count" was updated above when transposing pages */
6446 #if !VM_TAG_ACTIVE_UPDATE
6447 	/* "wired_objq" was dealt with along with "wired_page_count" */
6448 #endif /* ! VM_TAG_ACTIVE_UPDATE */
6449 	/* "reusable_page_count" was updated above when transposing pages */
6450 	/* there should be no "copy" */
6451 	assert(!object1->vo_copy);
6452 	assert(!object2->vo_copy);
6453 	/* there should be no "shadow" */
6454 	assert(!object1->shadow);
6455 	assert(!object2->shadow);
6456 	__TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
6457 	__TRANSPOSE_FIELD(pager);
6458 	__TRANSPOSE_FIELD(paging_offset);
6459 	__TRANSPOSE_FIELD(pager_control);
6460 	/* update the memory_objects' pointers back to the VM objects */
6461 	if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6462 		memory_object_control_collapse(&object1->pager_control,
6463 		    object1);
6464 	}
6465 	if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6466 		memory_object_control_collapse(&object2->pager_control,
6467 		    object2);
6468 	}
6469 	__TRANSPOSE_FIELD(copy_strategy);
6470 	/* "paging_in_progress" refers to the object not its contents */
6471 	assert(!object1->paging_in_progress);
6472 	assert(!object2->paging_in_progress);
6473 	assert(object1->activity_in_progress);
6474 	assert(object2->activity_in_progress);
6475 	/* "all_wanted" refers to the object not its contents */
6476 	__TRANSPOSE_FIELD(pager_created);
6477 	__TRANSPOSE_FIELD(pager_initialized);
6478 	__TRANSPOSE_FIELD(pager_ready);
6479 	__TRANSPOSE_FIELD(pager_trusted);
6480 	__TRANSPOSE_FIELD(can_persist);
6481 	__TRANSPOSE_FIELD(internal);
6482 	__TRANSPOSE_FIELD(private);
6483 	__TRANSPOSE_FIELD(pageout);
6484 	/* "alive" should be set */
6485 	assert(object1->alive);
6486 	assert(object2->alive);
6487 	/* "purgeable" should be non-purgeable */
6488 	assert(object1->purgable == VM_PURGABLE_DENY);
6489 	assert(object2->purgable == VM_PURGABLE_DENY);
6490 	/* "shadowed" refers to the the object not its contents */
6491 	__TRANSPOSE_FIELD(purgeable_when_ripe);
6492 	__TRANSPOSE_FIELD(true_share);
6493 	/* "terminating" should not be set */
6494 	assert(!object1->terminating);
6495 	assert(!object2->terminating);
6496 	/* transfer "named" reference if needed */
6497 	if (object1->named && !object2->named) {
6498 		os_ref_release_live_locked_raw(&object1->ref_count, &vm_object_refgrp);
6499 		os_ref_retain_locked_raw(&object2->ref_count, &vm_object_refgrp);
6500 	} else if (!object1->named && object2->named) {
6501 		os_ref_retain_locked_raw(&object1->ref_count, &vm_object_refgrp);
6502 		os_ref_release_live_locked_raw(&object2->ref_count, &vm_object_refgrp);
6503 	}
6504 	__TRANSPOSE_FIELD(named);
6505 	/* "shadow_severed" refers to the object not its contents */
6506 	__TRANSPOSE_FIELD(phys_contiguous);
6507 	__TRANSPOSE_FIELD(nophyscache);
6508 	__TRANSPOSE_FIELD(no_pager_reason);
6509 	/* "cached_list.next" points to transposed object */
6510 	object1->cached_list.next = (queue_entry_t) object2;
6511 	object2->cached_list.next = (queue_entry_t) object1;
6512 	/* "cached_list.prev" should be NULL */
6513 	assert(object1->cached_list.prev == NULL);
6514 	assert(object2->cached_list.prev == NULL);
6515 	__TRANSPOSE_FIELD(last_alloc);
6516 	__TRANSPOSE_FIELD(sequential);
6517 	__TRANSPOSE_FIELD(pages_created);
6518 	__TRANSPOSE_FIELD(pages_used);
6519 	__TRANSPOSE_FIELD(scan_collisions);
6520 	__TRANSPOSE_FIELD(cow_hint);
6521 	__TRANSPOSE_FIELD(wimg_bits);
6522 	__TRANSPOSE_FIELD(set_cache_attr);
6523 	__TRANSPOSE_FIELD(code_signed);
6524 	object1->transposed = TRUE;
6525 	object2->transposed = TRUE;
6526 	__TRANSPOSE_FIELD(mapping_in_progress);
6527 	__TRANSPOSE_FIELD(volatile_empty);
6528 	__TRANSPOSE_FIELD(volatile_fault);
6529 	__TRANSPOSE_FIELD(all_reusable);
6530 	assert(object1->blocked_access);
6531 	assert(object2->blocked_access);
6532 	__TRANSPOSE_FIELD(set_cache_attr);
6533 	assert(!object1->object_is_shared_cache);
6534 	assert(!object2->object_is_shared_cache);
6535 	/* ignore purgeable_queue_type and purgeable_queue_group */
6536 	assert(!object1->io_tracking);
6537 	assert(!object2->io_tracking);
6538 #if VM_OBJECT_ACCESS_TRACKING
6539 	assert(!object1->access_tracking);
6540 	assert(!object2->access_tracking);
6541 #endif /* VM_OBJECT_ACCESS_TRACKING */
6542 	__TRANSPOSE_FIELD(no_tag_update);
6543 #if CONFIG_SECLUDED_MEMORY
6544 	assert(!object1->eligible_for_secluded);
6545 	assert(!object2->eligible_for_secluded);
6546 	assert(!object1->can_grab_secluded);
6547 	assert(!object2->can_grab_secluded);
6548 #else /* CONFIG_SECLUDED_MEMORY */
6549 	assert(object1->__object3_unused_bits == 0);
6550 	assert(object2->__object3_unused_bits == 0);
6551 #endif /* CONFIG_SECLUDED_MEMORY */
6552 #if UPL_DEBUG
6553 	/* "uplq" refers to the object not its contents (see upl_transpose()) */
6554 #endif
6555 	assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.next == NULL));
6556 	assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.prev == NULL));
6557 	assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.next == NULL));
6558 	assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.prev == NULL));
6559 
6560 #undef __TRANSPOSE_FIELD
6561 
6562 	retval = KERN_SUCCESS;
6563 
6564 done:
6565 	/*
6566 	 * Cleanup.
6567 	 */
6568 	if (tmp_object != VM_OBJECT_NULL) {
6569 		vm_object_unlock(tmp_object);
6570 		/*
6571 		 * Re-initialize the temporary object to avoid
6572 		 * deallocating a real pager.
6573 		 */
6574 		_vm_object_allocate(transpose_size, tmp_object);
6575 		vm_object_deallocate(tmp_object);
6576 		tmp_object = VM_OBJECT_NULL;
6577 	}
6578 
6579 	if (object1_locked) {
6580 		vm_object_unlock(object1);
6581 		object1_locked = FALSE;
6582 	}
6583 	if (object2_locked) {
6584 		vm_object_unlock(object2);
6585 		object2_locked = FALSE;
6586 	}
6587 
6588 	vm_object_transpose_count++;
6589 
6590 	return retval;
6591 }
6592 
6593 
6594 /*
6595  *      vm_object_cluster_size
6596  *
6597  *      Determine how big a cluster we should issue an I/O for...
6598  *
6599  *	Inputs:   *start == offset of page needed
6600  *		  *length == maximum cluster pager can handle
6601  *	Outputs:  *start == beginning offset of cluster
6602  *		  *length == length of cluster to try
6603  *
6604  *	The original *start will be encompassed by the cluster
6605  *
6606  */
6607 extern int speculative_reads_disabled;
6608 
6609 /*
6610  * Try to always keep these values an even multiple of PAGE_SIZE. We use these values
6611  * to derive min_ph_bytes and max_ph_bytes (IMP: bytes not # of pages) and expect those values to
6612  * always be page-aligned. The derivation could involve operations (e.g. division)
6613  * that could give us non-page-size aligned values if we start out with values that
6614  * are odd multiples of PAGE_SIZE.
6615  */
6616 #if !XNU_TARGET_OS_OSX
6617 unsigned int preheat_max_bytes = (1024 * 512);
6618 #else /* !XNU_TARGET_OS_OSX */
6619 unsigned int preheat_max_bytes = MAX_UPL_TRANSFER_BYTES;
6620 #endif /* !XNU_TARGET_OS_OSX */
6621 unsigned int preheat_min_bytes = (1024 * 32);
6622 
6623 
6624 __private_extern__ void
6625 vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
6626     vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming)
6627 {
6628 	vm_size_t               pre_heat_size;
6629 	vm_size_t               tail_size;
6630 	vm_size_t               head_size;
6631 	vm_size_t               max_length;
6632 	vm_size_t               cluster_size;
6633 	vm_object_offset_t      object_size;
6634 	vm_object_offset_t      orig_start;
6635 	vm_object_offset_t      target_start;
6636 	vm_object_offset_t      offset;
6637 	vm_behavior_t           behavior;
6638 	boolean_t               look_behind = TRUE;
6639 	boolean_t               look_ahead  = TRUE;
6640 	boolean_t               isSSD = FALSE;
6641 	uint32_t                throttle_limit;
6642 	int                     sequential_run;
6643 	int                     sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6644 	vm_size_t               max_ph_size;
6645 	vm_size_t               min_ph_size;
6646 
6647 	assert( !(*length & PAGE_MASK));
6648 	assert( !(*start & PAGE_MASK_64));
6649 
6650 	/*
6651 	 * remember maxiumum length of run requested
6652 	 */
6653 	max_length = *length;
6654 	/*
6655 	 * we'll always return a cluster size of at least
6656 	 * 1 page, since the original fault must always
6657 	 * be processed
6658 	 */
6659 	*length = PAGE_SIZE;
6660 	*io_streaming = 0;
6661 
6662 	if (speculative_reads_disabled || fault_info == NULL) {
6663 		/*
6664 		 * no cluster... just fault the page in
6665 		 */
6666 		return;
6667 	}
6668 	orig_start = *start;
6669 	target_start = orig_start;
6670 	cluster_size = round_page(fault_info->cluster_size);
6671 	behavior = fault_info->behavior;
6672 
6673 	vm_object_lock(object);
6674 
6675 	if (object->pager == MEMORY_OBJECT_NULL) {
6676 		goto out;       /* pager is gone for this object, nothing more to do */
6677 	}
6678 	vnode_pager_get_isSSD(object->pager, &isSSD);
6679 
6680 	min_ph_size = round_page(preheat_min_bytes);
6681 	max_ph_size = round_page(preheat_max_bytes);
6682 
6683 #if XNU_TARGET_OS_OSX
6684 	/*
6685 	 * If we're paging from an SSD, we cut the minimum cluster size in half
6686 	 * and reduce the maximum size by a factor of 8. We do this because the
6687 	 * latency to issue an I/O is a couple of orders of magnitude smaller than
6688 	 * on spinning media, so being overly aggressive on the cluster size (to
6689 	 * try and reduce cumulative seek penalties) isn't a good trade off over
6690 	 * the increased memory pressure caused by the larger speculative I/Os.
6691 	 * However, the latency isn't 0, so a small amount of clustering is still
6692 	 * a win.
6693 	 *
6694 	 * If an explicit cluster size has already been provided, then we're
6695 	 * receiving a strong hint that the entire range will be needed (e.g.
6696 	 * wiring, willneed). In these cases, we want to maximize the I/O size
6697 	 * to minimize the number of I/Os issued.
6698 	 */
6699 	if (isSSD && cluster_size <= PAGE_SIZE) {
6700 		min_ph_size /= 2;
6701 		max_ph_size /= 8;
6702 
6703 		if (min_ph_size & PAGE_MASK_64) {
6704 			min_ph_size = trunc_page(min_ph_size);
6705 		}
6706 
6707 		if (max_ph_size & PAGE_MASK_64) {
6708 			max_ph_size = trunc_page(max_ph_size);
6709 		}
6710 	}
6711 #endif /* XNU_TARGET_OS_OSX */
6712 
6713 	if (min_ph_size < PAGE_SIZE) {
6714 		min_ph_size = PAGE_SIZE;
6715 	}
6716 
6717 	if (max_ph_size < PAGE_SIZE) {
6718 		max_ph_size = PAGE_SIZE;
6719 	} else if (max_ph_size > MAX_UPL_TRANSFER_BYTES) {
6720 		max_ph_size = MAX_UPL_TRANSFER_BYTES;
6721 	}
6722 
6723 	if (max_length > max_ph_size) {
6724 		max_length = max_ph_size;
6725 	}
6726 
6727 	if (max_length <= PAGE_SIZE) {
6728 		goto out;
6729 	}
6730 
6731 	if (object->internal) {
6732 		object_size = object->vo_size;
6733 	} else {
6734 		vnode_pager_get_object_size(object->pager, &object_size);
6735 	}
6736 
6737 	object_size = round_page_64(object_size);
6738 
6739 	if (orig_start >= object_size) {
6740 		/*
6741 		 * fault occurred beyond the EOF...
6742 		 * we need to punt w/o changing the
6743 		 * starting offset
6744 		 */
6745 		goto out;
6746 	}
6747 	if (object->pages_used > object->pages_created) {
6748 		/*
6749 		 * must have wrapped our 32 bit counters
6750 		 * so reset
6751 		 */
6752 		object->pages_used = object->pages_created = 0;
6753 	}
6754 	if ((sequential_run = object->sequential)) {
6755 		if (sequential_run < 0) {
6756 			sequential_behavior = VM_BEHAVIOR_RSEQNTL;
6757 			sequential_run = 0 - sequential_run;
6758 		} else {
6759 			sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6760 		}
6761 	}
6762 	switch (behavior) {
6763 	default:
6764 		behavior = VM_BEHAVIOR_DEFAULT;
6765 		OS_FALLTHROUGH;
6766 
6767 	case VM_BEHAVIOR_DEFAULT:
6768 		if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) {
6769 			goto out;
6770 		}
6771 
6772 		if (sequential_run >= (3 * PAGE_SIZE)) {
6773 			pre_heat_size = sequential_run + PAGE_SIZE;
6774 
6775 			if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
6776 				look_behind = FALSE;
6777 			} else {
6778 				look_ahead = FALSE;
6779 			}
6780 
6781 			*io_streaming = 1;
6782 		} else {
6783 			if (object->pages_created < (20 * (min_ph_size >> PAGE_SHIFT))) {
6784 				/*
6785 				 * prime the pump
6786 				 */
6787 				pre_heat_size = min_ph_size;
6788 			} else {
6789 				/*
6790 				 * Linear growth in PH size: The maximum size is max_length...
6791 				 * this cacluation will result in a size that is neither a
6792 				 * power of 2 nor a multiple of PAGE_SIZE... so round
6793 				 * it up to the nearest PAGE_SIZE boundary
6794 				 */
6795 				pre_heat_size = (max_length * (uint64_t)object->pages_used) / object->pages_created;
6796 
6797 				if (pre_heat_size < min_ph_size) {
6798 					pre_heat_size = min_ph_size;
6799 				} else {
6800 					pre_heat_size = round_page(pre_heat_size);
6801 				}
6802 			}
6803 		}
6804 		break;
6805 
6806 	case VM_BEHAVIOR_RANDOM:
6807 		if ((pre_heat_size = cluster_size) <= PAGE_SIZE) {
6808 			goto out;
6809 		}
6810 		break;
6811 
6812 	case VM_BEHAVIOR_SEQUENTIAL:
6813 		if ((pre_heat_size = cluster_size) == 0) {
6814 			pre_heat_size = sequential_run + PAGE_SIZE;
6815 		}
6816 		look_behind = FALSE;
6817 		*io_streaming = 1;
6818 
6819 		break;
6820 
6821 	case VM_BEHAVIOR_RSEQNTL:
6822 		if ((pre_heat_size = cluster_size) == 0) {
6823 			pre_heat_size = sequential_run + PAGE_SIZE;
6824 		}
6825 		look_ahead = FALSE;
6826 		*io_streaming = 1;
6827 
6828 		break;
6829 	}
6830 	throttle_limit = (uint32_t) max_length;
6831 	assert(throttle_limit == max_length);
6832 
6833 	if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) {
6834 		if (max_length > throttle_limit) {
6835 			max_length = throttle_limit;
6836 		}
6837 	}
6838 	if (pre_heat_size > max_length) {
6839 		pre_heat_size = max_length;
6840 	}
6841 
6842 	if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size)) {
6843 		unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count;
6844 
6845 		if (consider_free < vm_page_throttle_limit) {
6846 			pre_heat_size = trunc_page(pre_heat_size / 16);
6847 		} else if (consider_free < vm_page_free_target) {
6848 			pre_heat_size = trunc_page(pre_heat_size / 4);
6849 		}
6850 
6851 		if (pre_heat_size < min_ph_size) {
6852 			pre_heat_size = min_ph_size;
6853 		}
6854 	}
6855 	if (look_ahead == TRUE) {
6856 		if (look_behind == TRUE) {
6857 			/*
6858 			 * if we get here its due to a random access...
6859 			 * so we want to center the original fault address
6860 			 * within the cluster we will issue... make sure
6861 			 * to calculate 'head_size' as a multiple of PAGE_SIZE...
6862 			 * 'pre_heat_size' is a multiple of PAGE_SIZE but not
6863 			 * necessarily an even number of pages so we need to truncate
6864 			 * the result to a PAGE_SIZE boundary
6865 			 */
6866 			head_size = trunc_page(pre_heat_size / 2);
6867 
6868 			if (target_start > head_size) {
6869 				target_start -= head_size;
6870 			} else {
6871 				target_start = 0;
6872 			}
6873 
6874 			/*
6875 			 * 'target_start' at this point represents the beginning offset
6876 			 * of the cluster we are considering... 'orig_start' will be in
6877 			 * the center of this cluster if we didn't have to clip the start
6878 			 * due to running into the start of the file
6879 			 */
6880 		}
6881 		if ((target_start + pre_heat_size) > object_size) {
6882 			pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start));
6883 		}
6884 		/*
6885 		 * at this point caclulate the number of pages beyond the original fault
6886 		 * address that we want to consider... this is guaranteed not to extend beyond
6887 		 * the current EOF...
6888 		 */
6889 		assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
6890 		tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
6891 	} else {
6892 		if (pre_heat_size > target_start) {
6893 			/*
6894 			 * since pre_heat_size is always smaller then 2^32,
6895 			 * if it is larger then target_start (a 64 bit value)
6896 			 * it is safe to clip target_start to 32 bits
6897 			 */
6898 			pre_heat_size = (vm_size_t) target_start;
6899 		}
6900 		tail_size = 0;
6901 	}
6902 	assert( !(target_start & PAGE_MASK_64));
6903 	assert( !(pre_heat_size & PAGE_MASK_64));
6904 
6905 	if (pre_heat_size <= PAGE_SIZE) {
6906 		goto out;
6907 	}
6908 
6909 	if (look_behind == TRUE) {
6910 		/*
6911 		 * take a look at the pages before the original
6912 		 * faulting offset... recalculate this in case
6913 		 * we had to clip 'pre_heat_size' above to keep
6914 		 * from running past the EOF.
6915 		 */
6916 		head_size = pre_heat_size - tail_size - PAGE_SIZE;
6917 
6918 		for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
6919 			/*
6920 			 * don't poke below the lowest offset
6921 			 */
6922 			if (offset < fault_info->lo_offset) {
6923 				break;
6924 			}
6925 			/*
6926 			 * for external objects or internal objects w/o a pager,
6927 			 * vm_object_compressor_pager_state_get will return VM_EXTERNAL_STATE_UNKNOWN
6928 			 */
6929 			if (vm_object_compressor_pager_state_get(object, offset) == VM_EXTERNAL_STATE_ABSENT) {
6930 				break;
6931 			}
6932 			if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
6933 				/*
6934 				 * don't bridge resident pages
6935 				 */
6936 				break;
6937 			}
6938 			*start = offset;
6939 			*length += PAGE_SIZE;
6940 		}
6941 	}
6942 	if (look_ahead == TRUE) {
6943 		for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
6944 			/*
6945 			 * don't poke above the highest offset
6946 			 */
6947 			if (offset >= fault_info->hi_offset) {
6948 				break;
6949 			}
6950 			assert(offset < object_size);
6951 
6952 			/*
6953 			 * for external objects or internal objects w/o a pager,
6954 			 * vm_object_compressor_pager_state_get will return VM_EXTERNAL_STATE_UNKNOWN
6955 			 */
6956 			if (vm_object_compressor_pager_state_get(object, offset) == VM_EXTERNAL_STATE_ABSENT) {
6957 				break;
6958 			}
6959 			if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
6960 				/*
6961 				 * don't bridge resident pages
6962 				 */
6963 				break;
6964 			}
6965 			*length += PAGE_SIZE;
6966 		}
6967 	}
6968 out:
6969 	if (*length > max_length) {
6970 		*length = max_length;
6971 	}
6972 
6973 	vm_object_unlock(object);
6974 
6975 	DTRACE_VM1(clustersize, vm_size_t, *length);
6976 }
6977 
6978 
6979 /*
6980  * Allow manipulation of individual page state.  This is actually part of
6981  * the UPL regimen but takes place on the VM object rather than on a UPL
6982  */
6983 
6984 kern_return_t
6985 vm_object_page_op(
6986 	vm_object_t             object,
6987 	vm_object_offset_t      offset,
6988 	int                     ops,
6989 	ppnum_t                 *phys_entry,
6990 	int                     *flags)
6991 {
6992 	vm_page_t               dst_page;
6993 
6994 	vm_object_lock(object);
6995 
6996 	if (ops & UPL_POP_PHYSICAL) {
6997 		if (object->phys_contiguous) {
6998 			if (phys_entry) {
6999 				*phys_entry = (ppnum_t)
7000 				    (object->vo_shadow_offset >> PAGE_SHIFT);
7001 			}
7002 			vm_object_unlock(object);
7003 			return KERN_SUCCESS;
7004 		} else {
7005 			vm_object_unlock(object);
7006 			return KERN_INVALID_OBJECT;
7007 		}
7008 	}
7009 	if (object->phys_contiguous) {
7010 		vm_object_unlock(object);
7011 		return KERN_INVALID_OBJECT;
7012 	}
7013 
7014 	while (TRUE) {
7015 		if ((dst_page = vm_page_lookup(object, offset)) == VM_PAGE_NULL) {
7016 			vm_object_unlock(object);
7017 			return KERN_FAILURE;
7018 		}
7019 
7020 		/* Sync up on getting the busy bit */
7021 		if ((dst_page->vmp_busy || dst_page->vmp_cleaning) &&
7022 		    (((ops & UPL_POP_SET) &&
7023 		    (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
7024 			/* someone else is playing with the page, we will */
7025 			/* have to wait */
7026 			vm_page_sleep(object, dst_page, THREAD_UNINT, LCK_SLEEP_DEFAULT);
7027 			continue;
7028 		}
7029 
7030 		if (ops & UPL_POP_DUMP) {
7031 			if (dst_page->vmp_pmapped == TRUE) {
7032 				pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
7033 			}
7034 
7035 			VM_PAGE_FREE(dst_page);
7036 			break;
7037 		}
7038 
7039 		if (flags) {
7040 			*flags = 0;
7041 
7042 			/* Get the condition of flags before requested ops */
7043 			/* are undertaken */
7044 
7045 			if (dst_page->vmp_dirty) {
7046 				*flags |= UPL_POP_DIRTY;
7047 			}
7048 			if (dst_page->vmp_free_when_done) {
7049 				*flags |= UPL_POP_PAGEOUT;
7050 			}
7051 			if (dst_page->vmp_precious) {
7052 				*flags |= UPL_POP_PRECIOUS;
7053 			}
7054 			if (dst_page->vmp_absent) {
7055 				*flags |= UPL_POP_ABSENT;
7056 			}
7057 			if (dst_page->vmp_busy) {
7058 				*flags |= UPL_POP_BUSY;
7059 			}
7060 		}
7061 
7062 		/* The caller should have made a call either contingent with */
7063 		/* or prior to this call to set UPL_POP_BUSY */
7064 		if (ops & UPL_POP_SET) {
7065 			/* The protection granted with this assert will */
7066 			/* not be complete.  If the caller violates the */
7067 			/* convention and attempts to change page state */
7068 			/* without first setting busy we may not see it */
7069 			/* because the page may already be busy.  However */
7070 			/* if such violations occur we will assert sooner */
7071 			/* or later. */
7072 			assert(dst_page->vmp_busy || (ops & UPL_POP_BUSY));
7073 			if (ops & UPL_POP_DIRTY) {
7074 				SET_PAGE_DIRTY(dst_page, FALSE);
7075 			}
7076 			if (ops & UPL_POP_PAGEOUT) {
7077 				dst_page->vmp_free_when_done = TRUE;
7078 			}
7079 			if (ops & UPL_POP_PRECIOUS) {
7080 				dst_page->vmp_precious = TRUE;
7081 			}
7082 			if (ops & UPL_POP_ABSENT) {
7083 				dst_page->vmp_absent = TRUE;
7084 			}
7085 			if (ops & UPL_POP_BUSY) {
7086 				dst_page->vmp_busy = TRUE;
7087 			}
7088 		}
7089 
7090 		if (ops & UPL_POP_CLR) {
7091 			assert(dst_page->vmp_busy);
7092 			if (ops & UPL_POP_DIRTY) {
7093 				dst_page->vmp_dirty = FALSE;
7094 			}
7095 			if (ops & UPL_POP_PAGEOUT) {
7096 				dst_page->vmp_free_when_done = FALSE;
7097 			}
7098 			if (ops & UPL_POP_PRECIOUS) {
7099 				dst_page->vmp_precious = FALSE;
7100 			}
7101 			if (ops & UPL_POP_ABSENT) {
7102 				dst_page->vmp_absent = FALSE;
7103 			}
7104 			if (ops & UPL_POP_BUSY) {
7105 				dst_page->vmp_busy = FALSE;
7106 				vm_page_wakeup(object, dst_page);
7107 			}
7108 		}
7109 		if (phys_entry) {
7110 			/*
7111 			 * The physical page number will remain valid
7112 			 * only if the page is kept busy.
7113 			 */
7114 			assert(dst_page->vmp_busy);
7115 			*phys_entry = VM_PAGE_GET_PHYS_PAGE(dst_page);
7116 		}
7117 
7118 		break;
7119 	}
7120 
7121 	vm_object_unlock(object);
7122 	return KERN_SUCCESS;
7123 }
7124 
7125 /*
7126  * vm_object_range_op offers performance enhancement over
7127  * vm_object_page_op for page_op functions which do not require page
7128  * level state to be returned from the call.  Page_op was created to provide
7129  * a low-cost alternative to page manipulation via UPLs when only a single
7130  * page was involved.  The range_op call establishes the ability in the _op
7131  * family of functions to work on multiple pages where the lack of page level
7132  * state handling allows the caller to avoid the overhead of the upl structures.
7133  */
7134 
7135 kern_return_t
7136 vm_object_range_op(
7137 	vm_object_t             object,
7138 	vm_object_offset_t      offset_beg,
7139 	vm_object_offset_t      offset_end,
7140 	int                     ops,
7141 	uint32_t                *range)
7142 {
7143 	vm_object_offset_t      offset;
7144 	vm_page_t               dst_page;
7145 
7146 	if (object->resident_page_count == 0) {
7147 		if (range) {
7148 			if (ops & UPL_ROP_PRESENT) {
7149 				*range = 0;
7150 			} else {
7151 				*range = (uint32_t) (offset_end - offset_beg);
7152 				assert(*range == (offset_end - offset_beg));
7153 			}
7154 		}
7155 		return KERN_SUCCESS;
7156 	}
7157 	vm_object_lock(object);
7158 
7159 	if (object->phys_contiguous) {
7160 		vm_object_unlock(object);
7161 		return KERN_INVALID_OBJECT;
7162 	}
7163 
7164 	offset = offset_beg & ~PAGE_MASK_64;
7165 
7166 	while (offset < offset_end) {
7167 		dst_page = vm_page_lookup(object, offset);
7168 		if (dst_page != VM_PAGE_NULL) {
7169 			if (ops & UPL_ROP_DUMP) {
7170 				if (dst_page->vmp_busy || dst_page->vmp_cleaning) {
7171 					/*
7172 					 * someone else is playing with the
7173 					 * page, we will have to wait
7174 					 */
7175 					vm_page_sleep(object, dst_page, THREAD_UNINT, LCK_SLEEP_DEFAULT);
7176 					/*
7177 					 * need to relook the page up since it's
7178 					 * state may have changed while we slept
7179 					 * it might even belong to a different object
7180 					 * at this point
7181 					 */
7182 					continue;
7183 				}
7184 				if (dst_page->vmp_laundry) {
7185 					vm_pageout_steal_laundry(dst_page, FALSE);
7186 				}
7187 
7188 				if (dst_page->vmp_pmapped == TRUE) {
7189 					pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
7190 				}
7191 
7192 				VM_PAGE_FREE(dst_page);
7193 			} else if ((ops & UPL_ROP_ABSENT)
7194 			    && (!dst_page->vmp_absent || dst_page->vmp_busy)) {
7195 				break;
7196 			}
7197 		} else if (ops & UPL_ROP_PRESENT) {
7198 			break;
7199 		}
7200 
7201 		offset += PAGE_SIZE;
7202 	}
7203 	vm_object_unlock(object);
7204 
7205 	if (range) {
7206 		if (offset > offset_end) {
7207 			offset = offset_end;
7208 		}
7209 		if (offset > offset_beg) {
7210 			*range = (uint32_t) (offset - offset_beg);
7211 			assert(*range == (offset - offset_beg));
7212 		} else {
7213 			*range = 0;
7214 		}
7215 	}
7216 	return KERN_SUCCESS;
7217 }
7218 
7219 /*
7220  * Used to point a pager directly to a range of memory (when the pager may be associated
7221  *   with a non-device vnode).  Takes a virtual address, an offset, and a size.  We currently
7222  *   expect that the virtual address will denote the start of a range that is physically contiguous.
7223  */
7224 kern_return_t
7225 pager_map_to_phys_contiguous(
7226 	memory_object_control_t object,
7227 	memory_object_offset_t  offset,
7228 	addr64_t                base_vaddr,
7229 	vm_size_t               size)
7230 {
7231 	ppnum_t page_num;
7232 	boolean_t clobbered_private;
7233 	kern_return_t retval;
7234 	vm_object_t pager_object;
7235 
7236 	page_num = pmap_find_phys(kernel_pmap, base_vaddr);
7237 
7238 	if (!page_num) {
7239 		retval = KERN_FAILURE;
7240 		goto out;
7241 	}
7242 
7243 	pager_object = memory_object_control_to_vm_object(object);
7244 
7245 	if (!pager_object) {
7246 		retval = KERN_FAILURE;
7247 		goto out;
7248 	}
7249 
7250 	clobbered_private = pager_object->private;
7251 	if (pager_object->private != TRUE) {
7252 		vm_object_lock(pager_object);
7253 		VM_OBJECT_SET_PRIVATE(pager_object, TRUE);
7254 		vm_object_unlock(pager_object);
7255 	}
7256 	retval = vm_object_populate_with_private(pager_object, offset, page_num, size);
7257 
7258 	if (retval != KERN_SUCCESS) {
7259 		if (pager_object->private != clobbered_private) {
7260 			vm_object_lock(pager_object);
7261 			VM_OBJECT_SET_PRIVATE(pager_object, clobbered_private);
7262 			vm_object_unlock(pager_object);
7263 		}
7264 	}
7265 
7266 out:
7267 	return retval;
7268 }
7269 
7270 uint32_t scan_object_collision = 0;
7271 
7272 void
7273 vm_object_lock(vm_object_t object)
7274 {
7275 	if (object == vm_pageout_scan_wants_object) {
7276 		scan_object_collision++;
7277 		mutex_pause(2);
7278 	}
7279 	DTRACE_VM(vm_object_lock_w);
7280 	lck_rw_lock_exclusive(&object->Lock);
7281 }
7282 
7283 boolean_t
7284 vm_object_lock_avoid(vm_object_t object)
7285 {
7286 	if (object == vm_pageout_scan_wants_object) {
7287 		scan_object_collision++;
7288 		return TRUE;
7289 	}
7290 	return FALSE;
7291 }
7292 
7293 boolean_t
7294 _vm_object_lock_try(vm_object_t object)
7295 {
7296 	boolean_t       retval;
7297 
7298 	retval = lck_rw_try_lock_exclusive(&object->Lock);
7299 #if DEVELOPMENT || DEBUG
7300 	if (retval == TRUE) {
7301 		DTRACE_VM(vm_object_lock_w);
7302 	}
7303 #endif
7304 	return retval;
7305 }
7306 
7307 boolean_t
7308 vm_object_lock_try(vm_object_t object)
7309 {
7310 	/*
7311 	 * Called from hibernate path so check before blocking.
7312 	 */
7313 	if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level() == 0) {
7314 		mutex_pause(2);
7315 	}
7316 	return _vm_object_lock_try(object);
7317 }
7318 
7319 /*
7320  * Lock the object exclusive.
7321  *
7322  * Returns true iff the thread had to spin or block before
7323  * acquiring the lock.
7324  */
7325 bool
7326 vm_object_lock_check_contended(vm_object_t object)
7327 {
7328 	if (object == vm_pageout_scan_wants_object) {
7329 		scan_object_collision++;
7330 		mutex_pause(2);
7331 	}
7332 	DTRACE_VM(vm_object_lock_w);
7333 	return lck_rw_lock_exclusive_check_contended(&object->Lock);
7334 }
7335 
7336 void
7337 vm_object_lock_shared(vm_object_t object)
7338 {
7339 	if (vm_object_lock_avoid(object)) {
7340 		mutex_pause(2);
7341 	}
7342 	DTRACE_VM(vm_object_lock_r);
7343 	lck_rw_lock_shared(&object->Lock);
7344 }
7345 
7346 boolean_t
7347 vm_object_lock_yield_shared(vm_object_t object)
7348 {
7349 	boolean_t retval = FALSE, force_yield = FALSE;
7350 
7351 	vm_object_lock_assert_shared(object);
7352 
7353 	force_yield = vm_object_lock_avoid(object);
7354 
7355 	retval = lck_rw_lock_yield_shared(&object->Lock, force_yield);
7356 	if (retval) {
7357 		DTRACE_VM(vm_object_lock_yield);
7358 	}
7359 
7360 	return retval;
7361 }
7362 
7363 boolean_t
7364 vm_object_lock_try_shared(vm_object_t object)
7365 {
7366 	boolean_t retval;
7367 
7368 	if (vm_object_lock_avoid(object)) {
7369 		mutex_pause(2);
7370 	}
7371 	retval = lck_rw_try_lock_shared(&object->Lock);
7372 	if (retval) {
7373 		DTRACE_VM(vm_object_lock_r);
7374 	}
7375 	return retval;
7376 }
7377 
7378 boolean_t
7379 vm_object_lock_upgrade(vm_object_t object)
7380 {
7381 	boolean_t       retval;
7382 
7383 	retval = lck_rw_lock_shared_to_exclusive(&object->Lock);
7384 #if DEVELOPMENT || DEBUG
7385 	if (retval == TRUE) {
7386 		DTRACE_VM(vm_object_lock_w);
7387 	}
7388 #endif
7389 	return retval;
7390 }
7391 
7392 void
7393 vm_object_unlock(vm_object_t object)
7394 {
7395 #if DEVELOPMENT || DEBUG
7396 	DTRACE_VM(vm_object_unlock);
7397 #endif
7398 	lck_rw_done(&object->Lock);
7399 }
7400 
7401 
7402 unsigned int vm_object_change_wimg_mode_count = 0;
7403 
7404 /*
7405  * The object must be locked
7406  */
7407 void
7408 vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
7409 {
7410 	vm_object_lock_assert_exclusive(object);
7411 
7412 	vm_object_paging_only_wait(object, THREAD_UNINT);
7413 
7414 	const unified_page_list_t pmap_batch_list = {
7415 		.pageq = &object->memq,
7416 		.type = UNIFIED_PAGE_LIST_TYPE_VM_PAGE_OBJ_Q,
7417 	};
7418 	pmap_batch_set_cache_attributes(&pmap_batch_list, wimg_mode);
7419 	if (wimg_mode == VM_WIMG_USE_DEFAULT) {
7420 		object->set_cache_attr = FALSE;
7421 	} else {
7422 		object->set_cache_attr = TRUE;
7423 	}
7424 
7425 	object->wimg_bits = wimg_mode;
7426 
7427 	vm_object_change_wimg_mode_count++;
7428 }
7429 
7430 #if CONFIG_FREEZE
7431 
7432 extern struct freezer_context   freezer_context_global;
7433 
7434 /*
7435  * This routine does the "relocation" of previously
7436  * compressed pages belonging to this object that are
7437  * residing in a number of compressed segments into
7438  * a set of compressed segments dedicated to hold
7439  * compressed pages belonging to this object.
7440  */
7441 
7442 extern AbsoluteTime c_freezer_last_yield_ts;
7443 
7444 #define MAX_FREE_BATCH  32
7445 #define FREEZER_DUTY_CYCLE_ON_MS        5
7446 #define FREEZER_DUTY_CYCLE_OFF_MS       5
7447 
7448 static int c_freezer_should_yield(void);
7449 
7450 
7451 static int
7452 c_freezer_should_yield()
7453 {
7454 	AbsoluteTime    cur_time;
7455 	uint64_t        nsecs;
7456 
7457 	assert(c_freezer_last_yield_ts);
7458 	clock_get_uptime(&cur_time);
7459 
7460 	SUB_ABSOLUTETIME(&cur_time, &c_freezer_last_yield_ts);
7461 	absolutetime_to_nanoseconds(cur_time, &nsecs);
7462 
7463 	if (nsecs > 1000 * 1000 * FREEZER_DUTY_CYCLE_ON_MS) {
7464 		return 1;
7465 	}
7466 	return 0;
7467 }
7468 
7469 
7470 void
7471 vm_object_compressed_freezer_done()
7472 {
7473 	vm_compressor_finished_filling( &(freezer_context_global.freezer_ctx_chead));
7474 }
7475 
7476 
7477 uint32_t
7478 vm_object_compressed_freezer_pageout(
7479 	vm_object_t object, uint32_t dirty_budget)
7480 {
7481 	vm_page_t                       p;
7482 	vm_page_t                       local_freeq = NULL;
7483 	int                             local_freed = 0;
7484 	kern_return_t                   retval = KERN_SUCCESS;
7485 	int                             obj_resident_page_count_snapshot = 0;
7486 	uint32_t                        paged_out_count = 0;
7487 
7488 	assert(object != VM_OBJECT_NULL);
7489 	assert(object->internal);
7490 
7491 	vm_object_lock(object);
7492 
7493 	if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7494 		if (!object->pager_initialized) {
7495 			vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
7496 
7497 			if (!object->pager_initialized) {
7498 				vm_object_compressor_pager_create(object);
7499 			}
7500 		}
7501 
7502 		if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7503 			vm_object_unlock(object);
7504 			return paged_out_count;
7505 		}
7506 	}
7507 
7508 	/*
7509 	 * We could be freezing a shared internal object that might
7510 	 * be part of some other thread's current VM operations.
7511 	 * We skip it if there's a paging-in-progress or activity-in-progress
7512 	 * because we could be here a long time with the map lock held.
7513 	 *
7514 	 * Note: We are holding the map locked while we wait.
7515 	 * This is fine in the freezer path because the task
7516 	 * is suspended and so this latency is acceptable.
7517 	 */
7518 	if (object->paging_in_progress || object->activity_in_progress) {
7519 		vm_object_unlock(object);
7520 		return paged_out_count;
7521 	}
7522 
7523 	if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
7524 		vm_object_offset_t      curr_offset = 0;
7525 
7526 		/*
7527 		 * Go through the object and make sure that any
7528 		 * previously compressed pages are relocated into
7529 		 * a compressed segment associated with our "freezer_chead".
7530 		 */
7531 		while (curr_offset < object->vo_size) {
7532 			curr_offset = vm_compressor_pager_next_compressed(object->pager, curr_offset);
7533 
7534 			if (curr_offset == (vm_object_offset_t) -1) {
7535 				break;
7536 			}
7537 
7538 			retval = vm_compressor_pager_relocate(object->pager, curr_offset, &(freezer_context_global.freezer_ctx_chead));
7539 
7540 			if (retval != KERN_SUCCESS) {
7541 				break;
7542 			}
7543 
7544 			curr_offset += PAGE_SIZE_64;
7545 		}
7546 	}
7547 
7548 	/*
7549 	 * We can't hold the object lock while heading down into the compressed pager
7550 	 * layer because we might need the kernel map lock down there to allocate new
7551 	 * compressor data structures. And if this same object is mapped in the kernel
7552 	 * and there's a fault on it, then that thread will want the object lock while
7553 	 * holding the kernel map lock.
7554 	 *
7555 	 * Since we are going to drop/grab the object lock repeatedly, we must make sure
7556 	 * we won't be stuck in an infinite loop if the same page(s) keep getting
7557 	 * decompressed. So we grab a snapshot of the number of pages in the object and
7558 	 * we won't process any more than that number of pages.
7559 	 */
7560 
7561 	obj_resident_page_count_snapshot = object->resident_page_count;
7562 
7563 	vm_object_activity_begin(object);
7564 
7565 	while ((obj_resident_page_count_snapshot--) && !vm_page_queue_empty(&object->memq) && paged_out_count < dirty_budget) {
7566 		p = (vm_page_t)vm_page_queue_first(&object->memq);
7567 
7568 		KDBG_DEBUG(0xe0430004 | DBG_FUNC_START, object, local_freed);
7569 
7570 		vm_page_lockspin_queues();
7571 
7572 		if (p->vmp_cleaning || p->vmp_fictitious || p->vmp_busy || p->vmp_absent || p->vmp_unusual || VMP_ERROR_GET(p) || VM_PAGE_WIRED(p)) {
7573 			vm_page_unlock_queues();
7574 
7575 			KDBG_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 1);
7576 
7577 			vm_page_queue_remove(&object->memq, p, vmp_listq);
7578 			vm_page_queue_enter(&object->memq, p, vmp_listq);
7579 
7580 			continue;
7581 		}
7582 
7583 		if (p->vmp_pmapped == TRUE) {
7584 			int refmod_state, pmap_flags;
7585 
7586 			if (p->vmp_dirty || p->vmp_precious) {
7587 				pmap_flags = PMAP_OPTIONS_COMPRESSOR;
7588 			} else {
7589 				pmap_flags = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
7590 			}
7591 
7592 			vm_page_lockconvert_queues();
7593 			refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), pmap_flags, NULL);
7594 			if (refmod_state & VM_MEM_MODIFIED) {
7595 				SET_PAGE_DIRTY(p, FALSE);
7596 			}
7597 		}
7598 
7599 		if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) {
7600 			/*
7601 			 * Clean and non-precious page.
7602 			 */
7603 			vm_page_unlock_queues();
7604 			VM_PAGE_FREE(p);
7605 
7606 			KDBG_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 2);
7607 			continue;
7608 		}
7609 
7610 		if (p->vmp_laundry) {
7611 			vm_pageout_steal_laundry(p, TRUE);
7612 		}
7613 
7614 		vm_page_queues_remove(p, TRUE);
7615 
7616 		vm_page_unlock_queues();
7617 
7618 
7619 		/*
7620 		 * In case the compressor fails to compress this page, we need it at
7621 		 * the back of the object memq so that we don't keep trying to process it.
7622 		 * Make the move here while we have the object lock held.
7623 		 */
7624 
7625 		vm_page_queue_remove(&object->memq, p, vmp_listq);
7626 		vm_page_queue_enter(&object->memq, p, vmp_listq);
7627 
7628 		/*
7629 		 * Grab an activity_in_progress here for vm_pageout_compress_page() to consume.
7630 		 *
7631 		 * Mark the page busy so no one messes with it while we have the object lock dropped.
7632 		 */
7633 		p->vmp_busy = TRUE;
7634 
7635 		vm_object_activity_begin(object);
7636 
7637 		vm_object_unlock(object);
7638 
7639 		if (vm_pageout_compress_page(&(freezer_context_global.freezer_ctx_chead),
7640 		    (freezer_context_global.freezer_ctx_compressor_scratch_buf),
7641 		    p) == KERN_SUCCESS) {
7642 			/*
7643 			 * page has already been un-tabled from the object via 'vm_page_remove'
7644 			 */
7645 			p->vmp_snext = local_freeq;
7646 			local_freeq = p;
7647 			local_freed++;
7648 			paged_out_count++;
7649 
7650 			if (local_freed >= MAX_FREE_BATCH) {
7651 				OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
7652 
7653 				vm_page_free_list(local_freeq, TRUE);
7654 
7655 				local_freeq = NULL;
7656 				local_freed = 0;
7657 			}
7658 			freezer_context_global.freezer_ctx_uncompressed_pages++;
7659 		}
7660 		KDBG_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed);
7661 
7662 		if (local_freed == 0 && c_freezer_should_yield()) {
7663 			thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS);
7664 			clock_get_uptime(&c_freezer_last_yield_ts);
7665 		}
7666 
7667 		vm_object_lock(object);
7668 	}
7669 
7670 	if (local_freeq) {
7671 		OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
7672 
7673 		vm_page_free_list(local_freeq, TRUE);
7674 
7675 		local_freeq = NULL;
7676 		local_freed = 0;
7677 	}
7678 
7679 	vm_object_activity_end(object);
7680 
7681 	vm_object_unlock(object);
7682 
7683 	if (c_freezer_should_yield()) {
7684 		thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS);
7685 		clock_get_uptime(&c_freezer_last_yield_ts);
7686 	}
7687 	return paged_out_count;
7688 }
7689 
7690 #endif /* CONFIG_FREEZE */
7691 
7692 
7693 void
7694 vm_object_pageout(
7695 	vm_object_t object)
7696 {
7697 	vm_page_t                       p, next;
7698 	struct  vm_pageout_queue        *iq;
7699 
7700 	if (!VM_CONFIG_COMPRESSOR_IS_PRESENT) {
7701 		return;
7702 	}
7703 
7704 	iq = &vm_pageout_queue_internal;
7705 
7706 	assert(object != VM_OBJECT_NULL );
7707 
7708 	vm_object_lock(object);
7709 
7710 	if (!object->internal ||
7711 	    object->terminating ||
7712 	    !object->alive) {
7713 		vm_object_unlock(object);
7714 		return;
7715 	}
7716 
7717 	if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7718 		if (!object->pager_initialized) {
7719 			vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
7720 
7721 			if (!object->pager_initialized) {
7722 				vm_object_compressor_pager_create(object);
7723 			}
7724 		}
7725 
7726 		if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7727 			vm_object_unlock(object);
7728 			return;
7729 		}
7730 	}
7731 
7732 ReScan:
7733 	next = (vm_page_t)vm_page_queue_first(&object->memq);
7734 
7735 	while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) {
7736 		p = next;
7737 		next = (vm_page_t)vm_page_queue_next(&next->vmp_listq);
7738 
7739 		assert(p->vmp_q_state != VM_PAGE_ON_FREE_Q);
7740 
7741 		if ((p->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) ||
7742 		    p->vmp_cleaning ||
7743 		    p->vmp_laundry ||
7744 		    p->vmp_busy ||
7745 		    p->vmp_absent ||
7746 		    VMP_ERROR_GET(p) ||
7747 		    p->vmp_fictitious ||
7748 		    VM_PAGE_WIRED(p)) {
7749 			/*
7750 			 * Page is already being cleaned or can't be cleaned.
7751 			 */
7752 			continue;
7753 		}
7754 		if (vm_compressor_low_on_space()) {
7755 			break;
7756 		}
7757 
7758 		/* Throw to the pageout queue */
7759 
7760 		vm_page_lockspin_queues();
7761 
7762 		if (VM_PAGE_Q_THROTTLED(iq)) {
7763 			iq->pgo_draining = TRUE;
7764 
7765 			assert_wait((event_t) (&iq->pgo_laundry + 1),
7766 			    THREAD_INTERRUPTIBLE);
7767 			vm_page_unlock_queues();
7768 			vm_object_unlock(object);
7769 
7770 			thread_block(THREAD_CONTINUE_NULL);
7771 
7772 			vm_object_lock(object);
7773 			goto ReScan;
7774 		}
7775 
7776 		assert(!p->vmp_fictitious);
7777 		assert(!p->vmp_busy);
7778 		assert(!p->vmp_absent);
7779 		assert(!p->vmp_unusual);
7780 		assert(!VMP_ERROR_GET(p));      /* XXX there's a window here where we could have an ECC error! */
7781 		assert(!VM_PAGE_WIRED(p));
7782 		assert(!p->vmp_cleaning);
7783 
7784 		if (p->vmp_pmapped == TRUE) {
7785 			int refmod_state;
7786 			int pmap_options;
7787 
7788 			/*
7789 			 * Tell pmap the page should be accounted
7790 			 * for as "compressed" if it's been modified.
7791 			 */
7792 			pmap_options =
7793 			    PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
7794 			if (p->vmp_dirty || p->vmp_precious) {
7795 				/*
7796 				 * We already know it's been modified,
7797 				 * so tell pmap to account for it
7798 				 * as "compressed".
7799 				 */
7800 				pmap_options = PMAP_OPTIONS_COMPRESSOR;
7801 			}
7802 			vm_page_lockconvert_queues();
7803 			refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p),
7804 			    pmap_options,
7805 			    NULL);
7806 			if (refmod_state & VM_MEM_MODIFIED) {
7807 				SET_PAGE_DIRTY(p, FALSE);
7808 			}
7809 		}
7810 
7811 		if (!p->vmp_dirty && !p->vmp_precious) {
7812 			vm_page_unlock_queues();
7813 			VM_PAGE_FREE(p);
7814 			continue;
7815 		}
7816 		vm_page_queues_remove(p, TRUE);
7817 
7818 		vm_pageout_cluster(p);
7819 
7820 		vm_page_unlock_queues();
7821 	}
7822 	vm_object_unlock(object);
7823 }
7824 
7825 
7826 #if CONFIG_IOSCHED
7827 
7828 void
7829 vm_page_request_reprioritize(vm_object_t o, uint64_t blkno, uint32_t len, int prio)
7830 {
7831 	io_reprioritize_req_t   req;
7832 	struct vnode            *devvp = NULL;
7833 
7834 	if (vnode_pager_get_object_devvp(o->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) {
7835 		return;
7836 	}
7837 
7838 	/*
7839 	 * Create the request for I/O reprioritization.
7840 	 * We use the noblock variant of zalloc because we're holding the object
7841 	 * lock here and we could cause a deadlock in low memory conditions.
7842 	 */
7843 	req = (io_reprioritize_req_t)zalloc_noblock(io_reprioritize_req_zone);
7844 	if (req == NULL) {
7845 		return;
7846 	}
7847 	req->blkno = blkno;
7848 	req->len = len;
7849 	req->priority = prio;
7850 	req->devvp = devvp;
7851 
7852 	/* Insert request into the reprioritization list */
7853 	mpsc_daemon_enqueue(&io_reprioritize_q, &req->iorr_elm, MPSC_QUEUE_DISABLE_PREEMPTION);
7854 
7855 	return;
7856 }
7857 
7858 void
7859 vm_decmp_upl_reprioritize(upl_t upl, int prio)
7860 {
7861 	int offset;
7862 	vm_object_t object;
7863 	io_reprioritize_req_t   req;
7864 	struct vnode            *devvp = NULL;
7865 	uint64_t                blkno;
7866 	uint32_t                len;
7867 	upl_t                   io_upl;
7868 	uint64_t                *io_upl_reprio_info;
7869 	int                     io_upl_size;
7870 
7871 	if ((upl->flags & UPL_TRACKED_BY_OBJECT) == 0 || (upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) {
7872 		return;
7873 	}
7874 
7875 	/*
7876 	 * We dont want to perform any allocations with the upl lock held since that might
7877 	 * result in a deadlock. If the system is low on memory, the pageout thread would
7878 	 * try to pageout stuff and might wait on this lock. If we are waiting for the memory to
7879 	 * be freed up by the pageout thread, it would be a deadlock.
7880 	 */
7881 
7882 
7883 	/* First step is just to get the size of the upl to find out how big the reprio info is */
7884 	if (!upl_try_lock(upl)) {
7885 		return;
7886 	}
7887 
7888 	if (upl->decmp_io_upl == NULL) {
7889 		/* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
7890 		upl_unlock(upl);
7891 		return;
7892 	}
7893 
7894 	io_upl = upl->decmp_io_upl;
7895 	assert((io_upl->flags & UPL_DECMP_REAL_IO) != 0);
7896 	assertf(page_aligned(io_upl->u_offset) && page_aligned(io_upl->u_size),
7897 	    "upl %p offset 0x%llx size 0x%x\n",
7898 	    io_upl, io_upl->u_offset, io_upl->u_size);
7899 	io_upl_size = io_upl->u_size;
7900 	upl_unlock(upl);
7901 
7902 	/* Now perform the allocation */
7903 	io_upl_reprio_info = kalloc_data(sizeof(uint64_t) * atop(io_upl_size), Z_WAITOK);
7904 	if (io_upl_reprio_info == NULL) {
7905 		return;
7906 	}
7907 
7908 	/* Now again take the lock, recheck the state and grab out the required info */
7909 	if (!upl_try_lock(upl)) {
7910 		goto out;
7911 	}
7912 
7913 	if (upl->decmp_io_upl == NULL || upl->decmp_io_upl != io_upl) {
7914 		/* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
7915 		upl_unlock(upl);
7916 		goto out;
7917 	}
7918 	memcpy(io_upl_reprio_info, io_upl->upl_reprio_info,
7919 	    sizeof(uint64_t) * atop(io_upl_size));
7920 
7921 	/* Get the VM object for this UPL */
7922 	if (io_upl->flags & UPL_SHADOWED) {
7923 		object = io_upl->map_object->shadow;
7924 	} else {
7925 		object = io_upl->map_object;
7926 	}
7927 
7928 	/* Get the dev vnode ptr for this object */
7929 	if (!object || !object->pager ||
7930 	    vnode_pager_get_object_devvp(object->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) {
7931 		upl_unlock(upl);
7932 		goto out;
7933 	}
7934 
7935 	upl_unlock(upl);
7936 
7937 	/* Now we have all the information needed to do the expedite */
7938 
7939 	offset = 0;
7940 	while (offset < io_upl_size) {
7941 		blkno   = io_upl_reprio_info[atop(offset)] & UPL_REPRIO_INFO_MASK;
7942 		len     = (io_upl_reprio_info[atop(offset)] >> UPL_REPRIO_INFO_SHIFT) & UPL_REPRIO_INFO_MASK;
7943 
7944 		/*
7945 		 * This implementation may cause some spurious expedites due to the
7946 		 * fact that we dont cleanup the blkno & len from the upl_reprio_info
7947 		 * even after the I/O is complete.
7948 		 */
7949 
7950 		if (blkno != 0 && len != 0) {
7951 			/* Create the request for I/O reprioritization */
7952 			req = zalloc_flags(io_reprioritize_req_zone,
7953 			    Z_WAITOK | Z_NOFAIL);
7954 			req->blkno = blkno;
7955 			req->len = len;
7956 			req->priority = prio;
7957 			req->devvp = devvp;
7958 
7959 			/* Insert request into the reprioritization list */
7960 			mpsc_daemon_enqueue(&io_reprioritize_q, &req->iorr_elm, MPSC_QUEUE_DISABLE_PREEMPTION);
7961 
7962 			offset += len;
7963 		} else {
7964 			offset += PAGE_SIZE;
7965 		}
7966 	}
7967 
7968 out:
7969 	kfree_data(io_upl_reprio_info, sizeof(uint64_t) * atop(io_upl_size));
7970 }
7971 
7972 void
7973 vm_page_handle_prio_inversion(vm_object_t o, vm_page_t m)
7974 {
7975 	upl_t upl;
7976 	upl_page_info_t *pl;
7977 	unsigned int i, num_pages;
7978 	int cur_tier;
7979 
7980 	cur_tier = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
7981 
7982 	/*
7983 	 *  Scan through all UPLs associated with the object to find the
7984 	 *  UPL containing the contended page.
7985 	 */
7986 	queue_iterate(&o->uplq, upl, upl_t, uplq) {
7987 		if (((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) || upl->upl_priority <= cur_tier) {
7988 			continue;
7989 		}
7990 		pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
7991 		assertf(page_aligned(upl->u_offset) && page_aligned(upl->u_size),
7992 		    "upl %p offset 0x%llx size 0x%x\n",
7993 		    upl, upl->u_offset, upl->u_size);
7994 		num_pages = (upl->u_size / PAGE_SIZE);
7995 
7996 		/*
7997 		 *  For each page in the UPL page list, see if it matches the contended
7998 		 *  page and was issued as a low prio I/O.
7999 		 */
8000 		for (i = 0; i < num_pages; i++) {
8001 			if (UPL_PAGE_PRESENT(pl, i) && VM_PAGE_GET_PHYS_PAGE(m) == pl[i].phys_addr) {
8002 				if ((upl->flags & UPL_DECMP_REQ) && upl->decmp_io_upl) {
8003 					KDBG((VMDBG_CODE(DBG_VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m),
8004 					    VM_KERNEL_UNSLIDE_OR_PERM(upl), upl->upl_priority);
8005 					vm_decmp_upl_reprioritize(upl, cur_tier);
8006 					break;
8007 				}
8008 				KDBG((VMDBG_CODE(DBG_VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m),
8009 				    upl->upl_reprio_info[i], upl->upl_priority);
8010 				if (UPL_REPRIO_INFO_BLKNO(upl, i) != 0 && UPL_REPRIO_INFO_LEN(upl, i) != 0) {
8011 					vm_page_request_reprioritize(o, UPL_REPRIO_INFO_BLKNO(upl, i), UPL_REPRIO_INFO_LEN(upl, i), cur_tier);
8012 				}
8013 				break;
8014 			}
8015 		}
8016 		/* Check if we found any hits */
8017 		if (i != num_pages) {
8018 			break;
8019 		}
8020 	}
8021 
8022 	return;
8023 }
8024 
8025 void
8026 kdp_vm_object_sleep_find_owner(
8027 	event64_t          wait_event,
8028 	block_hint_t       wait_type,
8029 	thread_waitinfo_t *waitinfo)
8030 {
8031 	assert(wait_type >= kThreadWaitPagerInit && wait_type <= kThreadWaitPageInThrottle);
8032 	vm_object_wait_reason_t wait_reason = wait_type - kThreadWaitPagerInit;
8033 	vm_object_t object = (vm_object_t)((uintptr_t)wait_event - wait_reason);
8034 	waitinfo->context = VM_KERNEL_ADDRPERM(object);
8035 	/*
8036 	 * There is currently no non-trivial way to ascertain the thread(s)
8037 	 * currently operating on this object.
8038 	 */
8039 	waitinfo->owner = 0;
8040 }
8041 
8042 
8043 wait_result_t
8044 vm_object_sleep(
8045 	vm_object_t             object,
8046 	vm_object_wait_reason_t reason,
8047 	wait_interrupt_t        interruptible,
8048 	lck_sleep_action_t      action)
8049 {
8050 	wait_result_t wr;
8051 	block_hint_t block_hint;
8052 	event_t wait_event;
8053 
8054 	vm_object_lock_assert_exclusive(object);
8055 	assert(reason >= 0 && reason <= VM_OBJECT_EVENT_MAX);
8056 	switch (reason) {
8057 	case VM_OBJECT_EVENT_PAGER_INIT:
8058 		block_hint = kThreadWaitPagerInit;
8059 		break;
8060 	case VM_OBJECT_EVENT_PAGER_READY:
8061 		block_hint = kThreadWaitPagerReady;
8062 		break;
8063 	case VM_OBJECT_EVENT_PAGING_IN_PROGRESS:
8064 		block_hint = kThreadWaitPagingActivity;
8065 		break;
8066 	case VM_OBJECT_EVENT_MAPPING_IN_PROGRESS:
8067 		block_hint = kThreadWaitMappingInProgress;
8068 		break;
8069 	case VM_OBJECT_EVENT_UNBLOCKED:
8070 		block_hint = kThreadWaitMemoryBlocked;
8071 		break;
8072 	case VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS:
8073 		block_hint = kThreadWaitPagingInProgress;
8074 		break;
8075 	case VM_OBJECT_EVENT_PAGEIN_THROTTLE:
8076 		block_hint = kThreadWaitPageInThrottle;
8077 		break;
8078 	default:
8079 		panic("Unexpected wait reason %u", reason);
8080 	}
8081 	thread_set_pending_block_hint(current_thread(), block_hint);
8082 
8083 	KDBG_FILTERED(VMDBG_CODE(DBG_VM_OBJECT_SLEEP) | DBG_FUNC_START, VM_KERNEL_ADDRHIDE(object), reason);
8084 
8085 	vm_object_set_wanted(object, reason);
8086 	wait_event = (event_t)((uintptr_t)object + (uintptr_t)reason);
8087 	wr = lck_rw_sleep(&object->Lock, LCK_SLEEP_PROMOTED_PRI | action, wait_event, interruptible);
8088 
8089 	KDBG_FILTERED(VMDBG_CODE(DBG_VM_OBJECT_SLEEP) | DBG_FUNC_END, VM_KERNEL_ADDRHIDE(object), reason, wr);
8090 	return wr;
8091 }
8092 
8093 
8094 wait_result_t
8095 vm_object_paging_wait(vm_object_t object, wait_interrupt_t interruptible)
8096 {
8097 	wait_result_t wr = THREAD_NOT_WAITING;
8098 	vm_object_lock_assert_exclusive(object);
8099 	while (object->paging_in_progress != 0 ||
8100 	    object->activity_in_progress != 0) {
8101 		wr = vm_object_sleep((object),
8102 		    VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
8103 		    interruptible,
8104 		    LCK_SLEEP_EXCLUSIVE);
8105 		if (wr != THREAD_AWAKENED) {
8106 			break;
8107 		}
8108 	}
8109 	return wr;
8110 }
8111 
8112 wait_result_t
8113 vm_object_paging_only_wait(vm_object_t object, wait_interrupt_t interruptible)
8114 {
8115 	wait_result_t wr = THREAD_NOT_WAITING;
8116 	vm_object_lock_assert_exclusive(object);
8117 	while (object->paging_in_progress != 0) {
8118 		wr = vm_object_sleep(object,
8119 		    VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS,
8120 		    interruptible,
8121 		    LCK_SLEEP_EXCLUSIVE);
8122 		if (wr != THREAD_AWAKENED) {
8123 			break;
8124 		}
8125 	}
8126 	return wr;
8127 }
8128 
8129 wait_result_t
8130 vm_object_paging_throttle_wait(vm_object_t object, wait_interrupt_t interruptible)
8131 {
8132 	wait_result_t wr = THREAD_NOT_WAITING;
8133 	vm_object_lock_assert_exclusive(object);
8134 	/*
8135 	 * TODO: consider raising the throttle limit specifically for
8136 	 * shared-cache objects, which are expected to be highly contended.
8137 	 * (rdar://127899888)
8138 	 */
8139 	while (object->paging_in_progress >= vm_object_pagein_throttle) {
8140 		wr = vm_object_sleep(object,
8141 		    VM_OBJECT_EVENT_PAGEIN_THROTTLE,
8142 		    interruptible,
8143 		    LCK_SLEEP_EXCLUSIVE);
8144 		if (wr != THREAD_AWAKENED) {
8145 			break;
8146 		}
8147 	}
8148 	return wr;
8149 }
8150 
8151 wait_result_t
8152 vm_object_mapping_wait(vm_object_t object, wait_interrupt_t interruptible)
8153 {
8154 	wait_result_t wr = THREAD_NOT_WAITING;
8155 	vm_object_lock_assert_exclusive(object);
8156 	while (object->mapping_in_progress) {
8157 		wr = vm_object_sleep(object,
8158 		    VM_OBJECT_EVENT_MAPPING_IN_PROGRESS,
8159 		    interruptible,
8160 		    LCK_SLEEP_EXCLUSIVE);
8161 		if (wr != THREAD_AWAKENED) {
8162 			break;
8163 		}
8164 	}
8165 	return wr;
8166 }
8167 
8168 void
8169 vm_object_wakeup(
8170 	vm_object_t             object,
8171 	vm_object_wait_reason_t reason)
8172 {
8173 	vm_object_lock_assert_exclusive(object);
8174 	assert(reason >= 0 && reason <= VM_OBJECT_EVENT_MAX);
8175 
8176 	if (vm_object_wanted(object, reason)) {
8177 		thread_wakeup((event_t)((uintptr_t)object + (uintptr_t)reason));
8178 	}
8179 	object->all_wanted &= ~(1 << reason);
8180 }
8181 
8182 
8183 void
8184 kdp_vm_page_sleep_find_owner(event64_t wait_event, thread_waitinfo_t *waitinfo)
8185 {
8186 	vm_page_t m = (vm_page_t)wait_event;
8187 	waitinfo->context = VM_KERNEL_ADDRPERM(m);
8188 	/*
8189 	 * There is not currently a non-trivial way to identify the thread
8190 	 * holding a page busy.
8191 	 */
8192 	waitinfo->owner = 0;
8193 }
8194 
8195 #if PAGE_SLEEP_WITH_INHERITOR
8196 static wait_result_t vm_page_sleep_with_inheritor(lck_rw_t *lck, lck_sleep_action_t lck_sleep_action, event_t event, wait_interrupt_t interruptible);
8197 #endif /* PAGE_SLEEP_WITH_INHERITOR */
8198 
8199 wait_result_t
8200 vm_page_sleep(vm_object_t object, vm_page_t m, wait_interrupt_t interruptible, lck_sleep_action_t action)
8201 {
8202 	wait_result_t ret;
8203 
8204 	KDBG_FILTERED((VMDBG_CODE(DBG_VM_PAGE_SLEEP)) | DBG_FUNC_START, VM_KERNEL_ADDRHIDE(object), m->vmp_offset, VM_KERNEL_ADDRHIDE(m));
8205 #if CONFIG_IOSCHED
8206 	if (object->io_tracking && ((m->vmp_busy == TRUE) || (m->vmp_cleaning == TRUE) || VM_PAGE_WIRED(m))) {
8207 		/*
8208 		 *  Indicates page is busy due to an I/O. Issue a reprioritize request if necessary.
8209 		 */
8210 		vm_page_handle_prio_inversion(object, m);
8211 	}
8212 #endif /* CONFIG_IOSCHED */
8213 	m->vmp_wanted = TRUE;
8214 	thread_set_pending_block_hint(current_thread(), kThreadWaitPageBusy);
8215 #if PAGE_SLEEP_WITH_INHERITOR
8216 	ret = vm_page_sleep_with_inheritor(&object->Lock, action, (event_t)m, interruptible);
8217 #else
8218 	ret = lck_rw_sleep(&object->Lock, LCK_SLEEP_PROMOTED_PRI | action, (event_t)m, interruptible);
8219 #endif
8220 	KDBG_FILTERED((VMDBG_CODE(DBG_VM_PAGE_SLEEP)) | DBG_FUNC_END, VM_KERNEL_ADDRHIDE(object), m->vmp_offset, VM_KERNEL_ADDRHIDE(m));
8221 	return ret;
8222 }
8223 
8224 void
8225 vm_page_wakeup(vm_object_t object, vm_page_t m)
8226 {
8227 	assert(m);
8228 	/*
8229 	 * The page may have been freed from its object before this wakeup is issued
8230 	 */
8231 	if (object != VM_OBJECT_NULL) {
8232 		vm_object_lock_assert_exclusive(object);
8233 	}
8234 
8235 	if (m->vmp_wanted) {
8236 		KDBG(VMDBG_CODE(DBG_VM_PAGE_WAKEUP) | DBG_FUNC_NONE,
8237 		    VM_KERNEL_ADDRHIDE(object), m->vmp_offset,
8238 		    VM_KERNEL_ADDRHIDE(m));
8239 		m->vmp_wanted = false;
8240 		thread_wakeup((event_t)m);
8241 	}
8242 }
8243 
8244 void
8245 vm_page_wakeup_done(__assert_only vm_object_t object, vm_page_t m)
8246 {
8247 	assert(object);
8248 	assert(m->vmp_busy);
8249 	vm_object_lock_assert_exclusive(object);
8250 
8251 	KDBG(VMDBG_CODE(DBG_VM_PAGE_WAKEUP_DONE) | DBG_FUNC_NONE,
8252 	    VM_KERNEL_ADDRHIDE(object), m->vmp_offset,
8253 	    VM_KERNEL_ADDRHIDE(m), m->vmp_wanted);
8254 	m->vmp_busy = false;
8255 	vm_page_wakeup(object, m);
8256 }
8257 
8258 #if PAGE_SLEEP_WITH_INHERITOR
8259 static bool page_worker_unregister_worker(event_t event, thread_t expect_th, page_worker_token_t *token);
8260 #endif /* PAGE_SLEEP_WITH_INHERITOR */
8261 
8262 /* This function duplicates all of what vm_page_wakeup_done() does and adds the option
8263  * that we're being called from vm_fault_page() in a page that is possibly boosted due to being an inheritor*/
8264 void
8265 vm_page_wakeup_done_with_inheritor(vm_object_t object __unused, vm_page_t m, page_worker_token_t *token __unused)
8266 {
8267 #if PAGE_SLEEP_WITH_INHERITOR
8268 	assert(object);
8269 	assert(m->vmp_busy);
8270 	vm_object_lock_assert_exclusive(object);
8271 
8272 	bool had_inheritor = page_worker_unregister_worker((event_t)m, current_thread(), token);
8273 
8274 	KDBG(VMDBG_CODE(DBG_VM_PAGE_WAKEUP_DONE) | DBG_FUNC_NONE,
8275 	    VM_KERNEL_ADDRHIDE(object), VM_KERNEL_ADDRHIDE(m),
8276 	    m->vmp_wanted, had_inheritor);
8277 	m->vmp_busy = FALSE;
8278 
8279 	if (m->vmp_wanted) {
8280 		m->vmp_wanted = FALSE;
8281 		if (had_inheritor) {
8282 			wakeup_all_with_inheritor((event_t)m, THREAD_AWAKENED);
8283 		} else {
8284 			thread_wakeup((event_t)m);
8285 		}
8286 	}
8287 #else /* PAGE_SLEEP_WITH_INHERITOR */
8288 	vm_page_wakeup_done(object, m);
8289 #endif /* PAGE_SLEEP_WITH_INHERITOR */
8290 }
8291 
8292 #if PAGE_SLEEP_WITH_INHERITOR
8293 
8294 /*
8295  * vm_page_sleep_with_inheritor:
8296  * The goal of this functionality is to prevent priority inversion that can occur when a low-priority
8297  * thread is stuck in the compressor and a higher priority thread waits for the same page.
8298  * Just before vm_fault_page() calls into the compressor it calls page_worker_register_worker()
8299  * this registers the calling thread as the "page worker" of this page.
8300  * When another thread then tries to vm_page_sleep() on that page, (wait for it to un-busy) the worker is found and
8301  * instead of a plain thread_block() (in lck_rw_sleep()) we do lck_rw_sleep_with_inheritor() and give the registered
8302  * worker thread as the inheritor of the priority boost.
8303  * The worker thread might have started its work on a low priority, and when a waiter was added, it got boost.
8304  * When the worker is done getting the page it calls vm_page_wakeup_done_with_inheritor() instead of
8305  * vm_page_wakeup_done() this unregisters the thread, clears the page busy bit (so that now other threads can
8306  * use this page), and wakes up any waiters waiting for that page with wakeup_all_with_inheritor(), which
8307  * removes the priority boost.
8308  *
8309  * The worker registration is done in a simple single entry per bucket hash table. A hash collision may occur
8310  * if two faulting pages end up in the same entry. In this case, the registration of the second one is going to
8311  * fail and the only repercussions of this is that it would not get the possible boost if anyone is going to wait
8312  * on it. This implementation was selected over a full hash-table to keep it simple and fast.
8313  */
8314 
8315 struct page_worker {
8316 	lck_ticket_t pw_entry_lock;
8317 	event_t pw_owner_event;
8318 	thread_t pw_current_worker;
8319 };
8320 
8321 SECURITY_READ_ONLY_LATE(uint32_t) page_worker_table_size = 0;
8322 SECURITY_READ_ONLY_LATE(static struct page_worker *)page_worker_table = NULL;
8323 SCALABLE_COUNTER_DEFINE(page_worker_hash_collisions);
8324 SCALABLE_COUNTER_DEFINE(page_worker_inheritor_sleeps);
8325 
8326 LCK_GRP_DECLARE(page_worker_table_lock_grp, "page_worker_table_locks");
8327 
8328 #define page_worker_entry_unlock(entry) \
8329 	lck_ticket_unlock(&entry->pw_entry_lock);
8330 
8331 #define PAGE_WORKER_TABLE_BUCKETS (256)
8332 
8333 void
8334 page_worker_init(void)
8335 {
8336 	page_worker_table_size = PAGE_WORKER_TABLE_BUCKETS;
8337 #if DEVELOPMENT || DEBUG
8338 	PE_parse_boot_argn("page_worker_table_size", &page_worker_table_size, sizeof(page_worker_table_size));
8339 #endif /* DEVELOPMENT || DEBUG */
8340 	/* This checks that the size is a positive power of 2, needed for the hash function */
8341 	assert(page_worker_table_size > 0 && !(page_worker_table_size & (page_worker_table_size - 1)));
8342 
8343 	page_worker_table = zalloc_permanent(page_worker_table_size * sizeof(struct page_worker), ZALIGN_PTR);
8344 	if (page_worker_table == NULL) {
8345 		panic("Page events hash table memory allocation failed!");
8346 	}
8347 	for (uint32_t i = 0; i < page_worker_table_size; ++i) {
8348 		struct page_worker* we = &(page_worker_table[i]);
8349 		lck_ticket_init(&we->pw_entry_lock, &page_worker_table_lock_grp);
8350 	}
8351 }
8352 
8353 static struct page_worker *
8354 page_worker_lock_table_entry(event_t event)
8355 {
8356 	if (page_worker_table == NULL) {
8357 		return NULL;
8358 	}
8359 	uint32_t hash = os_hash_kernel_pointer((void *)event);
8360 	uint32_t index = hash & (page_worker_table_size - 1);
8361 
8362 	struct page_worker *entry = &page_worker_table[index];
8363 
8364 	lck_ticket_lock(&entry->pw_entry_lock, &page_worker_table_lock_grp);
8365 	return entry;
8366 }
8367 
8368 /* returns a locked entry if found or added, otherwise returns NULL */
8369 static struct page_worker *
8370 page_worker_lookup(event_t event, bool try_add_missing)
8371 {
8372 	assert(event != NULL);
8373 	struct page_worker *entry = page_worker_lock_table_entry(event);
8374 	if (entry == NULL) {
8375 		/* table not initialized */
8376 		return NULL;
8377 	}
8378 	if (entry->pw_owner_event == event) {
8379 		/* found existing entry and it belongs to this event */
8380 		return entry;
8381 	}
8382 
8383 	if (try_add_missing) {
8384 		if (entry->pw_owner_event == NULL) {
8385 			/* found empty entry, take over it */
8386 			entry->pw_owner_event = event;
8387 			return entry;
8388 		}
8389 		/* didn't find the event, need to add it, but can't because it's occupied */
8390 		counter_inc(&page_worker_hash_collisions);
8391 	}
8392 	page_worker_entry_unlock(entry);
8393 	return NULL;
8394 }
8395 
8396 /* returns true if current_thread() was successfully registered as worker */
8397 void
8398 page_worker_register_worker(event_t event __unused, page_worker_token_t *out_token)
8399 {
8400 	out_token->pwt_did_register_inheritor = false;
8401 	out_token->pwt_floor_token.thread = THREAD_NULL;
8402 
8403 	struct page_worker* entry = page_worker_lookup(event, TRUE);
8404 	if (entry == NULL) {
8405 		/* failed registration due to a hash collision */
8406 		out_token->pwt_floor_token = thread_priority_floor_start();
8407 		return;
8408 	}
8409 	entry->pw_current_worker = current_thread();
8410 	/* no need to take the thread reference because this is going to get cleared in the same call of vm_page_fault() */
8411 	page_worker_entry_unlock(entry);
8412 	out_token->pwt_did_register_inheritor = true;
8413 }
8414 
8415 static bool
8416 page_worker_unregister_worker(event_t event, thread_t expect_th __unused, page_worker_token_t *token)
8417 {
8418 	struct page_worker *entry = page_worker_lookup(event, FALSE);
8419 	if (entry == NULL) {
8420 		assert(!token->pwt_did_register_inheritor);
8421 		/* did we do thread_priority_floor_start() ? */
8422 		if (token->pwt_floor_token.thread != THREAD_NULL) {
8423 			thread_priority_floor_end(&token->pwt_floor_token);
8424 		}
8425 		return false;
8426 	}
8427 	assert(token->pwt_did_register_inheritor);
8428 	assert(token->pwt_floor_token.thread == THREAD_NULL); /* we shouldn't have done thread_priority_floor_start() */
8429 	assert(entry->pw_owner_event != 0);
8430 	assert(entry->pw_current_worker == expect_th);
8431 	entry->pw_owner_event = 0;
8432 	entry->pw_current_worker = THREAD_NULL;
8433 	page_worker_entry_unlock(entry); /* was locked in page_worker_lookup() */
8434 	return true;
8435 }
8436 
8437 static wait_result_t
8438 vm_page_sleep_with_inheritor(lck_rw_t *lck, lck_sleep_action_t action, event_t event, wait_interrupt_t interruptible)
8439 {
8440 	struct page_worker *entry = page_worker_lookup(event, FALSE);
8441 	thread_t inheritor = THREAD_NULL;
8442 	if (entry != NULL) {
8443 		inheritor = entry->pw_current_worker;
8444 		page_worker_entry_unlock(entry);
8445 	}
8446 
8447 	wait_result_t ret;
8448 	if (inheritor == THREAD_NULL) {
8449 		/* no worker was found */
8450 		ret = lck_rw_sleep(lck, LCK_SLEEP_PROMOTED_PRI | action, event, interruptible);
8451 	} else {
8452 		counter_inc(&page_worker_inheritor_sleeps);
8453 		ret = lck_rw_sleep_with_inheritor(lck, action, event, inheritor, interruptible, TIMEOUT_WAIT_FOREVER);
8454 	}
8455 
8456 	return ret;
8457 }
8458 #endif  /* PAGE_SLEEP_WITH_INHERITOR */
8459 
8460 static void
8461 io_reprioritize(mpsc_queue_chain_t elm, __assert_only mpsc_daemon_queue_t dq)
8462 {
8463 	assert3p(dq, ==, &io_reprioritize_q);
8464 	io_reprioritize_req_t req = mpsc_queue_element(elm, struct io_reprioritize_req, iorr_elm);
8465 	vnode_pager_issue_reprioritize_io(req->devvp, req->blkno, req->len, req->priority);
8466 	zfree(io_reprioritize_req_zone, req);
8467 }
8468 
8469 #endif /* CONFIG_IOSCHED */
8470 
8471 #if VM_OBJECT_ACCESS_TRACKING
8472 void
8473 vm_object_access_tracking(
8474 	vm_object_t     object,
8475 	int             *access_tracking_p,
8476 	uint32_t        *access_tracking_reads_p,
8477 	uint32_t        *access_tracking_writes_p)
8478 {
8479 	int     access_tracking;
8480 
8481 	access_tracking = !!*access_tracking_p;
8482 
8483 	vm_object_lock(object);
8484 	*access_tracking_p = object->access_tracking;
8485 	if (access_tracking_reads_p) {
8486 		*access_tracking_reads_p = object->access_tracking_reads;
8487 	}
8488 	if (access_tracking_writes_p) {
8489 		*access_tracking_writes_p = object->access_tracking_writes;
8490 	}
8491 	object->access_tracking = access_tracking;
8492 	object->access_tracking_reads = 0;
8493 	object->access_tracking_writes = 0;
8494 	vm_object_unlock(object);
8495 
8496 	if (access_tracking) {
8497 		vm_object_pmap_protect_options(object,
8498 		    0,
8499 		    object->vo_size,
8500 		    PMAP_NULL,
8501 		    PAGE_SIZE,
8502 		    0,
8503 		    VM_PROT_NONE,
8504 		    0);
8505 	}
8506 }
8507 #endif /* VM_OBJECT_ACCESS_TRACKING */
8508 
8509 void
8510 vm_object_ledger_tag_ledgers(
8511 	vm_object_t     object,
8512 	int             *ledger_idx_volatile,
8513 	int             *ledger_idx_nonvolatile,
8514 	int             *ledger_idx_volatile_compressed,
8515 	int             *ledger_idx_nonvolatile_compressed,
8516 	int             *ledger_idx_composite,
8517 	int             *ledger_idx_external_wired,
8518 	boolean_t       *do_footprint)
8519 {
8520 	assert(object->shadow == VM_OBJECT_NULL);
8521 
8522 	*ledger_idx_volatile = -1;
8523 	*ledger_idx_nonvolatile = -1;
8524 	*ledger_idx_volatile_compressed = -1;
8525 	*ledger_idx_nonvolatile_compressed = -1;
8526 	*ledger_idx_composite = -1;
8527 	*ledger_idx_external_wired = -1;
8528 	*do_footprint = !object->vo_no_footprint;
8529 
8530 	if (!object->internal) {
8531 		switch (object->vo_ledger_tag) {
8532 		case VM_LEDGER_TAG_DEFAULT:
8533 			if (*do_footprint) {
8534 				*ledger_idx_external_wired = task_ledgers.tagged_footprint;
8535 			} else {
8536 				*ledger_idx_external_wired = task_ledgers.tagged_nofootprint;
8537 			}
8538 			break;
8539 		case VM_LEDGER_TAG_NETWORK:
8540 			*do_footprint = FALSE;
8541 			*ledger_idx_external_wired = task_ledgers.network_nonvolatile;
8542 			break;
8543 		case VM_LEDGER_TAG_MEDIA:
8544 			if (*do_footprint) {
8545 				*ledger_idx_external_wired = task_ledgers.media_footprint;
8546 			} else {
8547 				*ledger_idx_external_wired = task_ledgers.media_nofootprint;
8548 			}
8549 			break;
8550 		case VM_LEDGER_TAG_GRAPHICS:
8551 			if (*do_footprint) {
8552 				*ledger_idx_external_wired = task_ledgers.graphics_footprint;
8553 			} else {
8554 				*ledger_idx_external_wired = task_ledgers.graphics_nofootprint;
8555 			}
8556 			break;
8557 		case VM_LEDGER_TAG_NEURAL:
8558 			*ledger_idx_composite = task_ledgers.neural_nofootprint_total;
8559 			if (*do_footprint) {
8560 				*ledger_idx_external_wired = task_ledgers.neural_footprint;
8561 			} else {
8562 				*ledger_idx_external_wired = task_ledgers.neural_nofootprint;
8563 			}
8564 			break;
8565 		case VM_LEDGER_TAG_NONE:
8566 		default:
8567 			panic("%s: external object %p has unsupported ledger_tag %d",
8568 			    __FUNCTION__, object, object->vo_ledger_tag);
8569 		}
8570 		return;
8571 	}
8572 
8573 	assert(object->internal);
8574 	switch (object->vo_ledger_tag) {
8575 	case VM_LEDGER_TAG_NONE:
8576 		/*
8577 		 * Regular purgeable memory:
8578 		 * counts in footprint only when nonvolatile.
8579 		 */
8580 		*do_footprint = TRUE;
8581 		assert(object->purgable != VM_PURGABLE_DENY);
8582 		*ledger_idx_volatile = task_ledgers.purgeable_volatile;
8583 		*ledger_idx_nonvolatile = task_ledgers.purgeable_nonvolatile;
8584 		*ledger_idx_volatile_compressed = task_ledgers.purgeable_volatile_compressed;
8585 		*ledger_idx_nonvolatile_compressed = task_ledgers.purgeable_nonvolatile_compressed;
8586 		break;
8587 	case VM_LEDGER_TAG_DEFAULT:
8588 		/*
8589 		 * "default" tagged memory:
8590 		 * counts in footprint only when nonvolatile and not marked
8591 		 * as "no_footprint".
8592 		 */
8593 		*ledger_idx_volatile = task_ledgers.tagged_nofootprint;
8594 		*ledger_idx_volatile_compressed = task_ledgers.tagged_nofootprint_compressed;
8595 		if (*do_footprint) {
8596 			*ledger_idx_nonvolatile = task_ledgers.tagged_footprint;
8597 			*ledger_idx_nonvolatile_compressed = task_ledgers.tagged_footprint_compressed;
8598 		} else {
8599 			*ledger_idx_nonvolatile = task_ledgers.tagged_nofootprint;
8600 			*ledger_idx_nonvolatile_compressed = task_ledgers.tagged_nofootprint_compressed;
8601 		}
8602 		break;
8603 	case VM_LEDGER_TAG_NETWORK:
8604 		/*
8605 		 * "network" tagged memory:
8606 		 * never counts in footprint.
8607 		 */
8608 		*do_footprint = FALSE;
8609 		*ledger_idx_volatile = task_ledgers.network_volatile;
8610 		*ledger_idx_volatile_compressed = task_ledgers.network_volatile_compressed;
8611 		*ledger_idx_nonvolatile = task_ledgers.network_nonvolatile;
8612 		*ledger_idx_nonvolatile_compressed = task_ledgers.network_nonvolatile_compressed;
8613 		break;
8614 	case VM_LEDGER_TAG_MEDIA:
8615 		/*
8616 		 * "media" tagged memory:
8617 		 * counts in footprint only when nonvolatile and not marked
8618 		 * as "no footprint".
8619 		 */
8620 		*ledger_idx_volatile = task_ledgers.media_nofootprint;
8621 		*ledger_idx_volatile_compressed = task_ledgers.media_nofootprint_compressed;
8622 		if (*do_footprint) {
8623 			*ledger_idx_nonvolatile = task_ledgers.media_footprint;
8624 			*ledger_idx_nonvolatile_compressed = task_ledgers.media_footprint_compressed;
8625 		} else {
8626 			*ledger_idx_nonvolatile = task_ledgers.media_nofootprint;
8627 			*ledger_idx_nonvolatile_compressed = task_ledgers.media_nofootprint_compressed;
8628 		}
8629 		break;
8630 	case VM_LEDGER_TAG_GRAPHICS:
8631 		/*
8632 		 * "graphics" tagged memory:
8633 		 * counts in footprint only when nonvolatile and not marked
8634 		 * as "no footprint".
8635 		 */
8636 		*ledger_idx_volatile = task_ledgers.graphics_nofootprint;
8637 		*ledger_idx_volatile_compressed = task_ledgers.graphics_nofootprint_compressed;
8638 		if (*do_footprint) {
8639 			*ledger_idx_nonvolatile = task_ledgers.graphics_footprint;
8640 			*ledger_idx_nonvolatile_compressed = task_ledgers.graphics_footprint_compressed;
8641 		} else {
8642 			*ledger_idx_nonvolatile = task_ledgers.graphics_nofootprint;
8643 			*ledger_idx_nonvolatile_compressed = task_ledgers.graphics_nofootprint_compressed;
8644 		}
8645 		break;
8646 	case VM_LEDGER_TAG_NEURAL:
8647 		/*
8648 		 * "neural" tagged memory:
8649 		 * counts in footprint only when nonvolatile and not marked
8650 		 * as "no footprint".
8651 		 */
8652 		*ledger_idx_composite = task_ledgers.neural_nofootprint_total;
8653 		*ledger_idx_volatile = task_ledgers.neural_nofootprint;
8654 		*ledger_idx_volatile_compressed = task_ledgers.neural_nofootprint_compressed;
8655 		if (*do_footprint) {
8656 			*ledger_idx_nonvolatile = task_ledgers.neural_footprint;
8657 			*ledger_idx_nonvolatile_compressed = task_ledgers.neural_footprint_compressed;
8658 		} else {
8659 			*ledger_idx_nonvolatile = task_ledgers.neural_nofootprint;
8660 			*ledger_idx_nonvolatile_compressed = task_ledgers.neural_nofootprint_compressed;
8661 		}
8662 		break;
8663 	default:
8664 		panic("%s: object %p has unsupported ledger_tag %d",
8665 		    __FUNCTION__, object, object->vo_ledger_tag);
8666 	}
8667 }
8668 
8669 kern_return_t
8670 vm_object_ownership_change(
8671 	vm_object_t     object,
8672 	int             new_ledger_tag,
8673 	task_t          new_owner,
8674 	int             new_ledger_flags,
8675 	boolean_t       old_task_objq_locked)
8676 {
8677 	int             old_ledger_tag;
8678 	task_t          old_owner;
8679 	int             resident_count, wired_count;
8680 	unsigned int    compressed_count;
8681 	int             ledger_idx_volatile;
8682 	int             ledger_idx_nonvolatile;
8683 	int             ledger_idx_volatile_compressed;
8684 	int             ledger_idx_nonvolatile_compressed;
8685 	int             ledger_idx;
8686 	int             ledger_idx_compressed;
8687 	int             ledger_idx_composite;
8688 	int             ledger_idx_external_wired;
8689 	boolean_t       do_footprint, old_no_footprint, new_no_footprint;
8690 	boolean_t       new_task_objq_locked;
8691 
8692 	vm_object_lock_assert_exclusive(object);
8693 
8694 	if (new_owner != VM_OBJECT_OWNER_DISOWNED &&
8695 	    new_owner != TASK_NULL) {
8696 		if (new_ledger_tag == VM_LEDGER_TAG_NONE &&
8697 		    object->purgable == VM_PURGABLE_DENY) {
8698 			/* non-purgeable memory must have a valid non-zero ledger tag */
8699 			return KERN_INVALID_ARGUMENT;
8700 		}
8701 		if (!object->internal
8702 		    && !memory_object_is_vnode_pager(object->pager)) {
8703 			/* non-file-backed "external" objects can't be owned */
8704 			return KERN_INVALID_ARGUMENT;
8705 		}
8706 	}
8707 	if (new_owner == VM_OBJECT_OWNER_UNCHANGED) {
8708 		/* leave owner unchanged */
8709 		new_owner = VM_OBJECT_OWNER(object);
8710 	}
8711 	if (new_ledger_tag == VM_LEDGER_TAG_UNCHANGED) {
8712 		/* leave ledger_tag unchanged */
8713 		new_ledger_tag = object->vo_ledger_tag;
8714 	}
8715 	if (new_ledger_tag < 0 ||
8716 	    new_ledger_tag > VM_LEDGER_TAG_MAX) {
8717 		return KERN_INVALID_ARGUMENT;
8718 	}
8719 	if (new_ledger_flags & ~VM_LEDGER_FLAGS_ALL) {
8720 		return KERN_INVALID_ARGUMENT;
8721 	}
8722 	if (object->internal &&
8723 	    object->vo_ledger_tag == VM_LEDGER_TAG_NONE &&
8724 	    object->purgable == VM_PURGABLE_DENY) {
8725 		/*
8726 		 * This VM object is neither ledger-tagged nor purgeable.
8727 		 * We can convert it to "ledger tag" ownership iff it
8728 		 * has not been used at all yet (no resident pages and
8729 		 * no pager) and it's going to be assigned to a valid task.
8730 		 */
8731 		if (object->resident_page_count != 0 ||
8732 		    object->pager != NULL ||
8733 		    object->pager_created ||
8734 		    os_ref_get_count_raw(&object->ref_count) != 1 ||
8735 		    object->vo_owner != TASK_NULL ||
8736 		    object->copy_strategy != MEMORY_OBJECT_COPY_NONE ||
8737 		    new_owner == TASK_NULL) {
8738 			return KERN_FAILURE;
8739 		}
8740 	}
8741 
8742 	if (new_ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT) {
8743 		new_no_footprint = TRUE;
8744 	} else {
8745 		new_no_footprint = FALSE;
8746 	}
8747 #if __arm64__
8748 	if (!new_no_footprint &&
8749 	    object->purgable != VM_PURGABLE_DENY &&
8750 	    new_owner != TASK_NULL &&
8751 	    new_owner != VM_OBJECT_OWNER_DISOWNED &&
8752 	    new_owner->task_legacy_footprint) {
8753 		/*
8754 		 * This task has been granted "legacy footprint" and should
8755 		 * not be charged for its IOKit purgeable memory.  Since we
8756 		 * might now change the accounting of such memory to the
8757 		 * "graphics" ledger, for example, give it the "no footprint"
8758 		 * option.
8759 		 */
8760 		new_no_footprint = TRUE;
8761 	}
8762 #endif /* __arm64__ */
8763 	assert(object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC);
8764 	assert(object->shadow == VM_OBJECT_NULL);
8765 	if (object->internal) {
8766 		assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
8767 		assert(object->vo_copy == VM_OBJECT_NULL);
8768 	}
8769 
8770 	old_ledger_tag = object->vo_ledger_tag;
8771 	old_no_footprint = object->vo_no_footprint;
8772 	old_owner = VM_OBJECT_OWNER(object);
8773 
8774 	if (__improbable(vm_debug_events)) {
8775 		DTRACE_VM8(object_ownership_change,
8776 		    vm_object_t, object,
8777 		    task_t, old_owner,
8778 		    int, old_ledger_tag,
8779 		    int, old_no_footprint,
8780 		    task_t, new_owner,
8781 		    int, new_ledger_tag,
8782 		    int, new_no_footprint,
8783 		    int, VM_OBJECT_ID(object));
8784 	}
8785 
8786 	resident_count = object->resident_page_count - object->wired_page_count;
8787 	wired_count = object->wired_page_count;
8788 	if (object->internal) {
8789 		compressed_count = vm_compressor_pager_get_count(object->pager);
8790 	} else {
8791 		compressed_count = 0;
8792 	}
8793 
8794 	/*
8795 	 * Deal with the old owner and/or ledger tag, if needed.
8796 	 */
8797 	if (old_owner != TASK_NULL &&
8798 	    ((old_owner != new_owner)           /* new owner ... */
8799 	    ||                                  /* ... or ... */
8800 	    (old_no_footprint != new_no_footprint) /* new "no_footprint" */
8801 	    ||                                  /* ... or ... */
8802 	    old_ledger_tag != new_ledger_tag)) { /* ... new ledger */
8803 		/*
8804 		 * Take this object off of the old owner's ledgers.
8805 		 */
8806 		vm_object_ledger_tag_ledgers(object,
8807 		    &ledger_idx_volatile,
8808 		    &ledger_idx_nonvolatile,
8809 		    &ledger_idx_volatile_compressed,
8810 		    &ledger_idx_nonvolatile_compressed,
8811 		    &ledger_idx_composite,
8812 		    &ledger_idx_external_wired,
8813 		    &do_footprint);
8814 		if (object->internal) {
8815 			if (object->purgable == VM_PURGABLE_VOLATILE ||
8816 			    object->purgable == VM_PURGABLE_EMPTY) {
8817 				ledger_idx = ledger_idx_volatile;
8818 				ledger_idx_compressed = ledger_idx_volatile_compressed;
8819 			} else {
8820 				ledger_idx = ledger_idx_nonvolatile;
8821 				ledger_idx_compressed = ledger_idx_nonvolatile_compressed;
8822 			}
8823 			if (resident_count) {
8824 				/*
8825 				 * Adjust the appropriate old owners's ledgers by the
8826 				 * number of resident pages.
8827 				 */
8828 				ledger_debit(old_owner->ledger,
8829 				    ledger_idx,
8830 				    ptoa_64(resident_count));
8831 				/* adjust old owner's footprint */
8832 				if (object->purgable != VM_PURGABLE_VOLATILE &&
8833 				    object->purgable != VM_PURGABLE_EMPTY) {
8834 					if (do_footprint) {
8835 						ledger_debit(old_owner->ledger,
8836 						    task_ledgers.phys_footprint,
8837 						    ptoa_64(resident_count));
8838 					} else if (ledger_idx_composite != -1) {
8839 						ledger_debit(old_owner->ledger,
8840 						    ledger_idx_composite,
8841 						    ptoa_64(resident_count));
8842 					}
8843 				}
8844 			}
8845 			if (wired_count) {
8846 				/* wired pages are always nonvolatile */
8847 				ledger_debit(old_owner->ledger,
8848 				    ledger_idx_nonvolatile,
8849 				    ptoa_64(wired_count));
8850 				if (do_footprint) {
8851 					ledger_debit(old_owner->ledger,
8852 					    task_ledgers.phys_footprint,
8853 					    ptoa_64(wired_count));
8854 				} else if (ledger_idx_composite != -1) {
8855 					ledger_debit(old_owner->ledger,
8856 					    ledger_idx_composite,
8857 					    ptoa_64(wired_count));
8858 				}
8859 			}
8860 			if (compressed_count) {
8861 				/*
8862 				 * Adjust the appropriate old owner's ledgers
8863 				 * by the number of compressed pages.
8864 				 */
8865 				ledger_debit(old_owner->ledger,
8866 				    ledger_idx_compressed,
8867 				    ptoa_64(compressed_count));
8868 				if (object->purgable != VM_PURGABLE_VOLATILE &&
8869 				    object->purgable != VM_PURGABLE_EMPTY) {
8870 					if (do_footprint) {
8871 						ledger_debit(old_owner->ledger,
8872 						    task_ledgers.phys_footprint,
8873 						    ptoa_64(compressed_count));
8874 					} else if (ledger_idx_composite != -1) {
8875 						ledger_debit(old_owner->ledger,
8876 						    ledger_idx_composite,
8877 						    ptoa_64(compressed_count));
8878 					}
8879 				}
8880 			}
8881 		} else {
8882 			/* external but owned object: count wired pages */
8883 			if (wired_count) {
8884 				ledger_debit(old_owner->ledger,
8885 				    ledger_idx_external_wired,
8886 				    ptoa_64(wired_count));
8887 				if (do_footprint) {
8888 					ledger_debit(old_owner->ledger,
8889 					    task_ledgers.phys_footprint,
8890 					    ptoa_64(wired_count));
8891 				} else if (ledger_idx_composite != -1) {
8892 					ledger_debit(old_owner->ledger,
8893 					    ledger_idx_composite,
8894 					    ptoa_64(wired_count));
8895 				}
8896 			}
8897 		}
8898 		if (old_owner != new_owner) {
8899 			/* remove object from old_owner's list of owned objects */
8900 			DTRACE_VM2(object_owner_remove,
8901 			    vm_object_t, object,
8902 			    task_t, old_owner);
8903 			if (!old_task_objq_locked) {
8904 				task_objq_lock(old_owner);
8905 			}
8906 			old_owner->task_owned_objects--;
8907 			queue_remove(&old_owner->task_objq, object,
8908 			    vm_object_t, task_objq);
8909 			switch (object->purgable) {
8910 			case VM_PURGABLE_NONVOLATILE:
8911 			case VM_PURGABLE_EMPTY:
8912 				vm_purgeable_nonvolatile_owner_update(old_owner,
8913 				    -1);
8914 				break;
8915 			case VM_PURGABLE_VOLATILE:
8916 				vm_purgeable_volatile_owner_update(old_owner,
8917 				    -1);
8918 				break;
8919 			default:
8920 				break;
8921 			}
8922 			if (!old_task_objq_locked) {
8923 				task_objq_unlock(old_owner);
8924 			}
8925 		}
8926 	}
8927 
8928 	/*
8929 	 * Switch to new ledger tag and/or owner.
8930 	 */
8931 
8932 	new_task_objq_locked = FALSE;
8933 	if (new_owner != old_owner &&
8934 	    new_owner != TASK_NULL &&
8935 	    new_owner != VM_OBJECT_OWNER_DISOWNED) {
8936 		/*
8937 		 * If the new owner is not accepting new objects ("disowning"),
8938 		 * the object becomes "disowned" and will be added to
8939 		 * the kernel's task_objq.
8940 		 *
8941 		 * Check first without locking, to avoid blocking while the
8942 		 * task is disowning its objects.
8943 		 */
8944 		if (new_owner->task_objects_disowning) {
8945 			new_owner = VM_OBJECT_OWNER_DISOWNED;
8946 		} else {
8947 			task_objq_lock(new_owner);
8948 			/* check again now that we have the lock */
8949 			if (new_owner->task_objects_disowning) {
8950 				new_owner = VM_OBJECT_OWNER_DISOWNED;
8951 				task_objq_unlock(new_owner);
8952 			} else {
8953 				new_task_objq_locked = TRUE;
8954 			}
8955 		}
8956 	}
8957 
8958 	object->vo_ledger_tag = new_ledger_tag;
8959 	object->vo_owner = new_owner;
8960 	object->vo_no_footprint = new_no_footprint;
8961 
8962 	if (new_owner == VM_OBJECT_OWNER_DISOWNED) {
8963 		/*
8964 		 * Disowned objects are added to the kernel's task_objq but
8965 		 * are marked as owned by "VM_OBJECT_OWNER_DISOWNED" to
8966 		 * differentiate them from objects intentionally owned by
8967 		 * the kernel.
8968 		 */
8969 		assert(old_owner != kernel_task);
8970 		new_owner = kernel_task;
8971 		assert(!new_task_objq_locked);
8972 		task_objq_lock(new_owner);
8973 		new_task_objq_locked = TRUE;
8974 	}
8975 
8976 	/*
8977 	 * Deal with the new owner and/or ledger tag, if needed.
8978 	 */
8979 	if (new_owner != TASK_NULL &&
8980 	    ((new_owner != old_owner)           /* new owner ... */
8981 	    ||                                  /* ... or ... */
8982 	    (new_no_footprint != old_no_footprint) /* ... new "no_footprint" */
8983 	    ||                                  /* ... or ... */
8984 	    new_ledger_tag != old_ledger_tag)) { /* ... new ledger */
8985 		/*
8986 		 * Add this object to the new owner's ledgers.
8987 		 */
8988 		vm_object_ledger_tag_ledgers(object,
8989 		    &ledger_idx_volatile,
8990 		    &ledger_idx_nonvolatile,
8991 		    &ledger_idx_volatile_compressed,
8992 		    &ledger_idx_nonvolatile_compressed,
8993 		    &ledger_idx_composite,
8994 		    &ledger_idx_external_wired,
8995 		    &do_footprint);
8996 		if (object->internal) {
8997 			if (object->purgable == VM_PURGABLE_VOLATILE ||
8998 			    object->purgable == VM_PURGABLE_EMPTY) {
8999 				ledger_idx = ledger_idx_volatile;
9000 				ledger_idx_compressed = ledger_idx_volatile_compressed;
9001 			} else {
9002 				ledger_idx = ledger_idx_nonvolatile;
9003 				ledger_idx_compressed = ledger_idx_nonvolatile_compressed;
9004 			}
9005 			if (resident_count) {
9006 				/*
9007 				 * Adjust the appropriate new owners's ledgers by the
9008 				 * number of resident pages.
9009 				 */
9010 				ledger_credit(new_owner->ledger,
9011 				    ledger_idx,
9012 				    ptoa_64(resident_count));
9013 				/* adjust new owner's footprint */
9014 				if (object->purgable != VM_PURGABLE_VOLATILE &&
9015 				    object->purgable != VM_PURGABLE_EMPTY) {
9016 					if (do_footprint) {
9017 						ledger_credit(new_owner->ledger,
9018 						    task_ledgers.phys_footprint,
9019 						    ptoa_64(resident_count));
9020 					} else if (ledger_idx_composite != -1) {
9021 						ledger_credit(new_owner->ledger,
9022 						    ledger_idx_composite,
9023 						    ptoa_64(resident_count));
9024 					}
9025 				}
9026 			}
9027 			if (wired_count) {
9028 				/* wired pages are always nonvolatile */
9029 				ledger_credit(new_owner->ledger,
9030 				    ledger_idx_nonvolatile,
9031 				    ptoa_64(wired_count));
9032 				if (do_footprint) {
9033 					ledger_credit(new_owner->ledger,
9034 					    task_ledgers.phys_footprint,
9035 					    ptoa_64(wired_count));
9036 				} else if (ledger_idx_composite != -1) {
9037 					ledger_credit(new_owner->ledger,
9038 					    ledger_idx_composite,
9039 					    ptoa_64(wired_count));
9040 				}
9041 			}
9042 			if (compressed_count) {
9043 				/*
9044 				 * Adjust the new owner's ledgers by the number of
9045 				 * compressed pages.
9046 				 */
9047 				ledger_credit(new_owner->ledger,
9048 				    ledger_idx_compressed,
9049 				    ptoa_64(compressed_count));
9050 				if (object->purgable != VM_PURGABLE_VOLATILE &&
9051 				    object->purgable != VM_PURGABLE_EMPTY) {
9052 					if (do_footprint) {
9053 						ledger_credit(new_owner->ledger,
9054 						    task_ledgers.phys_footprint,
9055 						    ptoa_64(compressed_count));
9056 					} else if (ledger_idx_composite != -1) {
9057 						ledger_credit(new_owner->ledger,
9058 						    ledger_idx_composite,
9059 						    ptoa_64(compressed_count));
9060 					}
9061 				}
9062 			}
9063 		} else {
9064 			/* external but owned object: count wired pages */
9065 			if (wired_count) {
9066 				ledger_credit(new_owner->ledger,
9067 				    ledger_idx_external_wired,
9068 				    ptoa_64(wired_count));
9069 				if (do_footprint) {
9070 					ledger_credit(new_owner->ledger,
9071 					    task_ledgers.phys_footprint,
9072 					    ptoa_64(wired_count));
9073 				} else if (ledger_idx_composite != -1) {
9074 					ledger_credit(new_owner->ledger,
9075 					    ledger_idx_composite,
9076 					    ptoa_64(wired_count));
9077 				}
9078 			}
9079 		}
9080 		if (new_owner != old_owner) {
9081 			/* add object to new_owner's list of owned objects */
9082 			DTRACE_VM2(object_owner_add,
9083 			    vm_object_t, object,
9084 			    task_t, new_owner);
9085 			assert(new_task_objq_locked);
9086 			new_owner->task_owned_objects++;
9087 			queue_enter(&new_owner->task_objq, object,
9088 			    vm_object_t, task_objq);
9089 			switch (object->purgable) {
9090 			case VM_PURGABLE_NONVOLATILE:
9091 			case VM_PURGABLE_EMPTY:
9092 				vm_purgeable_nonvolatile_owner_update(new_owner,
9093 				    +1);
9094 				break;
9095 			case VM_PURGABLE_VOLATILE:
9096 				vm_purgeable_volatile_owner_update(new_owner,
9097 				    +1);
9098 				break;
9099 			default:
9100 				break;
9101 			}
9102 		}
9103 	}
9104 
9105 	if (new_task_objq_locked) {
9106 		task_objq_unlock(new_owner);
9107 	}
9108 
9109 	return KERN_SUCCESS;
9110 }
9111 
9112 void
9113 vm_owned_objects_disown(
9114 	task_t  task)
9115 {
9116 	vm_object_t     next_object;
9117 	vm_object_t     object;
9118 	int             collisions;
9119 	kern_return_t   kr;
9120 
9121 	if (task == NULL) {
9122 		return;
9123 	}
9124 
9125 	collisions = 0;
9126 
9127 again:
9128 	if (task->task_objects_disowned) {
9129 		/* task has already disowned its owned objects */
9130 		assert(task->task_volatile_objects == 0);
9131 		assert(task->task_nonvolatile_objects == 0);
9132 		assert(task->task_owned_objects == 0);
9133 		return;
9134 	}
9135 
9136 	task_objq_lock(task);
9137 
9138 	task->task_objects_disowning = TRUE;
9139 
9140 	for (object = (vm_object_t) queue_first(&task->task_objq);
9141 	    !queue_end(&task->task_objq, (queue_entry_t) object);
9142 	    object = next_object) {
9143 		if (task->task_nonvolatile_objects == 0 &&
9144 		    task->task_volatile_objects == 0 &&
9145 		    task->task_owned_objects == 0) {
9146 			/* no more objects owned by "task" */
9147 			break;
9148 		}
9149 
9150 		next_object = (vm_object_t) queue_next(&object->task_objq);
9151 
9152 #if DEBUG
9153 		assert(object->vo_purgeable_volatilizer == NULL);
9154 #endif /* DEBUG */
9155 		assert(object->vo_owner == task);
9156 		if (!vm_object_lock_try(object)) {
9157 			task_objq_unlock(task);
9158 			mutex_pause(collisions++);
9159 			goto again;
9160 		}
9161 		/* transfer ownership to the kernel */
9162 		assert(VM_OBJECT_OWNER(object) != kernel_task);
9163 		kr = vm_object_ownership_change(
9164 			object,
9165 			object->vo_ledger_tag, /* unchanged */
9166 			VM_OBJECT_OWNER_DISOWNED, /* new owner */
9167 			0, /* new_ledger_flags */
9168 			TRUE);  /* old_owner->task_objq locked */
9169 		assert(kr == KERN_SUCCESS);
9170 		assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED);
9171 		vm_object_unlock(object);
9172 	}
9173 
9174 	if (__improbable(task->task_owned_objects != 0)) {
9175 		panic("%s(%p): volatile=%d nonvolatile=%d owned=%d q=%p q_first=%p q_last=%p",
9176 		    __FUNCTION__,
9177 		    task,
9178 		    task->task_volatile_objects,
9179 		    task->task_nonvolatile_objects,
9180 		    task->task_owned_objects,
9181 		    &task->task_objq,
9182 		    queue_first(&task->task_objq),
9183 		    queue_last(&task->task_objq));
9184 	}
9185 
9186 	/* there shouldn't be any objects owned by task now */
9187 	assert(task->task_volatile_objects == 0);
9188 	assert(task->task_nonvolatile_objects == 0);
9189 	assert(task->task_owned_objects == 0);
9190 	assert(task->task_objects_disowning);
9191 
9192 	/* and we don't need to try and disown again */
9193 	task->task_objects_disowned = TRUE;
9194 
9195 	task_objq_unlock(task);
9196 }
9197 
9198 void
9199 vm_object_wired_page_update_ledgers(
9200 	vm_object_t object,
9201 	int64_t wired_delta)
9202 {
9203 	task_t owner;
9204 
9205 	vm_object_lock_assert_exclusive(object);
9206 	if (wired_delta == 0) {
9207 		/* no change in number of wired pages */
9208 		return;
9209 	}
9210 	if (object->internal) {
9211 		/* no extra accounting needed for internal objects */
9212 		return;
9213 	}
9214 	if (!object->vo_ledger_tag) {
9215 		/* external object but not owned: no extra accounting */
9216 		return;
9217 	}
9218 
9219 	/*
9220 	 * For an explicitly-owned external VM object, account for
9221 	 * wired pages in one of the owner's ledgers.
9222 	 */
9223 	owner = VM_OBJECT_OWNER(object);
9224 	if (owner) {
9225 		int ledger_idx_volatile;
9226 		int ledger_idx_nonvolatile;
9227 		int ledger_idx_volatile_compressed;
9228 		int ledger_idx_nonvolatile_compressed;
9229 		int ledger_idx_composite;
9230 		int ledger_idx_external_wired;
9231 		boolean_t do_footprint;
9232 
9233 		/* ask which ledgers need an update */
9234 		vm_object_ledger_tag_ledgers(object,
9235 		    &ledger_idx_volatile,
9236 		    &ledger_idx_nonvolatile,
9237 		    &ledger_idx_volatile_compressed,
9238 		    &ledger_idx_nonvolatile_compressed,
9239 		    &ledger_idx_composite,
9240 		    &ledger_idx_external_wired,
9241 		    &do_footprint);
9242 		if (wired_delta > 0) {
9243 			/* more external wired bytes */
9244 			ledger_credit(owner->ledger,
9245 			    ledger_idx_external_wired,
9246 			    ptoa(wired_delta));
9247 			if (do_footprint) {
9248 				/* more footprint */
9249 				ledger_credit(owner->ledger,
9250 				    task_ledgers.phys_footprint,
9251 				    ptoa(wired_delta));
9252 			} else if (ledger_idx_composite != -1) {
9253 				ledger_credit(owner->ledger,
9254 				    ledger_idx_composite,
9255 				    ptoa(wired_delta));
9256 			}
9257 		} else {
9258 			/* less external wired bytes */
9259 			ledger_debit(owner->ledger,
9260 			    ledger_idx_external_wired,
9261 			    ptoa(-wired_delta));
9262 			if (do_footprint) {
9263 				/* more footprint */
9264 				ledger_debit(owner->ledger,
9265 				    task_ledgers.phys_footprint,
9266 				    ptoa(-wired_delta));
9267 			} else if (ledger_idx_composite != -1) {
9268 				ledger_debit(owner->ledger,
9269 				    ledger_idx_composite,
9270 				    ptoa(-wired_delta));
9271 			}
9272 		}
9273 	}
9274 }
9275