1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <[email protected]>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright [2021] Hewlett Packard Enterprise Development LP
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa.h>
37 #include <sys/spa_impl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_rebuild.h>
44 #include <sys/vdev_draid.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/space_map.h>
49 #include <sys/space_reftree.h>
50 #include <sys/zio.h>
51 #include <sys/zap.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/arc.h>
54 #include <sys/zil.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/vdev_raidz.h>
57 #include <sys/abd.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/vdev_trim.h>
60 #include <sys/zvol.h>
61 #include <sys/zfs_ratelimit.h>
62 
63 /*
64  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
65  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
66  * part of the spa_embedded_log_class.  The metaslab with the most free space
67  * in each vdev is selected for this purpose when the pool is opened (or a
68  * vdev is added).  See vdev_metaslab_init().
69  *
70  * Log blocks can be allocated from the following locations.  Each one is tried
71  * in order until the allocation succeeds:
72  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
73  * 2. embedded slog metaslabs (spa_embedded_log_class)
74  * 3. other metaslabs in normal vdevs (spa_normal_class)
75  *
76  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
77  * than this number of metaslabs in the vdev.  This ensures that we don't set
78  * aside an unreasonable amount of space for the ZIL.  If set to less than
79  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
80  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
81  */
82 int zfs_embedded_slog_min_ms = 64;
83 
84 /* default target for number of metaslabs per top-level vdev */
85 int zfs_vdev_default_ms_count = 200;
86 
87 /* minimum number of metaslabs per top-level vdev */
88 int zfs_vdev_min_ms_count = 16;
89 
90 /* practical upper limit of total metaslabs per top-level vdev */
91 int zfs_vdev_ms_count_limit = 1ULL << 17;
92 
93 /* lower limit for metaslab size (512M) */
94 int zfs_vdev_default_ms_shift = 29;
95 
96 /* upper limit for metaslab size (16G) */
97 int zfs_vdev_max_ms_shift = 34;
98 
99 int vdev_validate_skip = B_FALSE;
100 
101 /*
102  * Since the DTL space map of a vdev is not expected to have a lot of
103  * entries, we default its block size to 4K.
104  */
105 int zfs_vdev_dtl_sm_blksz = (1 << 12);
106 
107 /*
108  * Rate limit slow IO (delay) events to this many per second.
109  */
110 unsigned int zfs_slow_io_events_per_second = 20;
111 
112 /*
113  * Rate limit checksum events after this many checksum errors per second.
114  */
115 unsigned int zfs_checksum_events_per_second = 20;
116 
117 /*
118  * Ignore errors during scrub/resilver.  Allows to work around resilver
119  * upon import when there are pool errors.
120  */
121 int zfs_scan_ignore_errors = 0;
122 
123 /*
124  * vdev-wide space maps that have lots of entries written to them at
125  * the end of each transaction can benefit from a higher I/O bandwidth
126  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
127  */
128 int zfs_vdev_standard_sm_blksz = (1 << 17);
129 
130 /*
131  * Tunable parameter for debugging or performance analysis. Setting this
132  * will cause pool corruption on power loss if a volatile out-of-order
133  * write cache is enabled.
134  */
135 int zfs_nocacheflush = 0;
136 
137 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
138 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
139 
140 /*PRINTFLIKE2*/
141 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)142 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
143 {
144 	va_list adx;
145 	char buf[256];
146 
147 	va_start(adx, fmt);
148 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
149 	va_end(adx);
150 
151 	if (vd->vdev_path != NULL) {
152 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
153 		    vd->vdev_path, buf);
154 	} else {
155 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
156 		    vd->vdev_ops->vdev_op_type,
157 		    (u_longlong_t)vd->vdev_id,
158 		    (u_longlong_t)vd->vdev_guid, buf);
159 	}
160 }
161 
162 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)163 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
164 {
165 	char state[20];
166 
167 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
168 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
169 		    (u_longlong_t)vd->vdev_id,
170 		    vd->vdev_ops->vdev_op_type);
171 		return;
172 	}
173 
174 	switch (vd->vdev_state) {
175 	case VDEV_STATE_UNKNOWN:
176 		(void) snprintf(state, sizeof (state), "unknown");
177 		break;
178 	case VDEV_STATE_CLOSED:
179 		(void) snprintf(state, sizeof (state), "closed");
180 		break;
181 	case VDEV_STATE_OFFLINE:
182 		(void) snprintf(state, sizeof (state), "offline");
183 		break;
184 	case VDEV_STATE_REMOVED:
185 		(void) snprintf(state, sizeof (state), "removed");
186 		break;
187 	case VDEV_STATE_CANT_OPEN:
188 		(void) snprintf(state, sizeof (state), "can't open");
189 		break;
190 	case VDEV_STATE_FAULTED:
191 		(void) snprintf(state, sizeof (state), "faulted");
192 		break;
193 	case VDEV_STATE_DEGRADED:
194 		(void) snprintf(state, sizeof (state), "degraded");
195 		break;
196 	case VDEV_STATE_HEALTHY:
197 		(void) snprintf(state, sizeof (state), "healthy");
198 		break;
199 	default:
200 		(void) snprintf(state, sizeof (state), "<state %u>",
201 		    (uint_t)vd->vdev_state);
202 	}
203 
204 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
205 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
206 	    vd->vdev_islog ? " (log)" : "",
207 	    (u_longlong_t)vd->vdev_guid,
208 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
209 
210 	for (uint64_t i = 0; i < vd->vdev_children; i++)
211 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
212 }
213 
214 /*
215  * Virtual device management.
216  */
217 
218 static vdev_ops_t *vdev_ops_table[] = {
219 	&vdev_root_ops,
220 	&vdev_raidz_ops,
221 	&vdev_draid_ops,
222 	&vdev_draid_spare_ops,
223 	&vdev_mirror_ops,
224 	&vdev_replacing_ops,
225 	&vdev_spare_ops,
226 	&vdev_disk_ops,
227 	&vdev_file_ops,
228 	&vdev_missing_ops,
229 	&vdev_hole_ops,
230 	&vdev_indirect_ops,
231 	NULL
232 };
233 
234 /*
235  * Given a vdev type, return the appropriate ops vector.
236  */
237 static vdev_ops_t *
vdev_getops(const char * type)238 vdev_getops(const char *type)
239 {
240 	vdev_ops_t *ops, **opspp;
241 
242 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
243 		if (strcmp(ops->vdev_op_type, type) == 0)
244 			break;
245 
246 	return (ops);
247 }
248 
249 /*
250  * Given a vdev and a metaslab class, find which metaslab group we're
251  * interested in. All vdevs may belong to two different metaslab classes.
252  * Dedicated slog devices use only the primary metaslab group, rather than a
253  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
254  */
255 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)256 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
257 {
258 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
259 	    vd->vdev_log_mg != NULL)
260 		return (vd->vdev_log_mg);
261 	else
262 		return (vd->vdev_mg);
263 }
264 
265 void
vdev_default_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)266 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
267     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
268 {
269 	(void) vd, (void) remain_rs;
270 
271 	physical_rs->rs_start = logical_rs->rs_start;
272 	physical_rs->rs_end = logical_rs->rs_end;
273 }
274 
275 /*
276  * Derive the enumerated allocation bias from string input.
277  * String origin is either the per-vdev zap or zpool(8).
278  */
279 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)280 vdev_derive_alloc_bias(const char *bias)
281 {
282 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
283 
284 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
285 		alloc_bias = VDEV_BIAS_LOG;
286 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
287 		alloc_bias = VDEV_BIAS_SPECIAL;
288 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
289 		alloc_bias = VDEV_BIAS_DEDUP;
290 
291 	return (alloc_bias);
292 }
293 
294 /*
295  * Default asize function: return the MAX of psize with the asize of
296  * all children.  This is what's used by anything other than RAID-Z.
297  */
298 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)299 vdev_default_asize(vdev_t *vd, uint64_t psize)
300 {
301 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
302 	uint64_t csize;
303 
304 	for (int c = 0; c < vd->vdev_children; c++) {
305 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
306 		asize = MAX(asize, csize);
307 	}
308 
309 	return (asize);
310 }
311 
312 uint64_t
vdev_default_min_asize(vdev_t * vd)313 vdev_default_min_asize(vdev_t *vd)
314 {
315 	return (vd->vdev_min_asize);
316 }
317 
318 /*
319  * Get the minimum allocatable size. We define the allocatable size as
320  * the vdev's asize rounded to the nearest metaslab. This allows us to
321  * replace or attach devices which don't have the same physical size but
322  * can still satisfy the same number of allocations.
323  */
324 uint64_t
vdev_get_min_asize(vdev_t * vd)325 vdev_get_min_asize(vdev_t *vd)
326 {
327 	vdev_t *pvd = vd->vdev_parent;
328 
329 	/*
330 	 * If our parent is NULL (inactive spare or cache) or is the root,
331 	 * just return our own asize.
332 	 */
333 	if (pvd == NULL)
334 		return (vd->vdev_asize);
335 
336 	/*
337 	 * The top-level vdev just returns the allocatable size rounded
338 	 * to the nearest metaslab.
339 	 */
340 	if (vd == vd->vdev_top)
341 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
342 
343 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
344 }
345 
346 void
vdev_set_min_asize(vdev_t * vd)347 vdev_set_min_asize(vdev_t *vd)
348 {
349 	vd->vdev_min_asize = vdev_get_min_asize(vd);
350 
351 	for (int c = 0; c < vd->vdev_children; c++)
352 		vdev_set_min_asize(vd->vdev_child[c]);
353 }
354 
355 /*
356  * Get the minimal allocation size for the top-level vdev.
357  */
358 uint64_t
vdev_get_min_alloc(vdev_t * vd)359 vdev_get_min_alloc(vdev_t *vd)
360 {
361 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
362 
363 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
364 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
365 
366 	return (min_alloc);
367 }
368 
369 /*
370  * Get the parity level for a top-level vdev.
371  */
372 uint64_t
vdev_get_nparity(vdev_t * vd)373 vdev_get_nparity(vdev_t *vd)
374 {
375 	uint64_t nparity = 0;
376 
377 	if (vd->vdev_ops->vdev_op_nparity != NULL)
378 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
379 
380 	return (nparity);
381 }
382 
383 /*
384  * Get the number of data disks for a top-level vdev.
385  */
386 uint64_t
vdev_get_ndisks(vdev_t * vd)387 vdev_get_ndisks(vdev_t *vd)
388 {
389 	uint64_t ndisks = 1;
390 
391 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
392 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
393 
394 	return (ndisks);
395 }
396 
397 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)398 vdev_lookup_top(spa_t *spa, uint64_t vdev)
399 {
400 	vdev_t *rvd = spa->spa_root_vdev;
401 
402 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
403 
404 	if (vdev < rvd->vdev_children) {
405 		ASSERT(rvd->vdev_child[vdev] != NULL);
406 		return (rvd->vdev_child[vdev]);
407 	}
408 
409 	return (NULL);
410 }
411 
412 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)413 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
414 {
415 	vdev_t *mvd;
416 
417 	if (vd->vdev_guid == guid)
418 		return (vd);
419 
420 	for (int c = 0; c < vd->vdev_children; c++)
421 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
422 		    NULL)
423 			return (mvd);
424 
425 	return (NULL);
426 }
427 
428 static int
vdev_count_leaves_impl(vdev_t * vd)429 vdev_count_leaves_impl(vdev_t *vd)
430 {
431 	int n = 0;
432 
433 	if (vd->vdev_ops->vdev_op_leaf)
434 		return (1);
435 
436 	for (int c = 0; c < vd->vdev_children; c++)
437 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
438 
439 	return (n);
440 }
441 
442 int
vdev_count_leaves(spa_t * spa)443 vdev_count_leaves(spa_t *spa)
444 {
445 	int rc;
446 
447 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
448 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
449 	spa_config_exit(spa, SCL_VDEV, FTAG);
450 
451 	return (rc);
452 }
453 
454 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)455 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
456 {
457 	size_t oldsize, newsize;
458 	uint64_t id = cvd->vdev_id;
459 	vdev_t **newchild;
460 
461 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
462 	ASSERT(cvd->vdev_parent == NULL);
463 
464 	cvd->vdev_parent = pvd;
465 
466 	if (pvd == NULL)
467 		return;
468 
469 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
470 
471 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
472 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
473 	newsize = pvd->vdev_children * sizeof (vdev_t *);
474 
475 	newchild = kmem_alloc(newsize, KM_SLEEP);
476 	if (pvd->vdev_child != NULL) {
477 		bcopy(pvd->vdev_child, newchild, oldsize);
478 		kmem_free(pvd->vdev_child, oldsize);
479 	}
480 
481 	pvd->vdev_child = newchild;
482 	pvd->vdev_child[id] = cvd;
483 
484 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
485 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
486 
487 	/*
488 	 * Walk up all ancestors to update guid sum.
489 	 */
490 	for (; pvd != NULL; pvd = pvd->vdev_parent)
491 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
492 
493 	if (cvd->vdev_ops->vdev_op_leaf) {
494 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
495 		cvd->vdev_spa->spa_leaf_list_gen++;
496 	}
497 }
498 
499 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)500 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
501 {
502 	int c;
503 	uint_t id = cvd->vdev_id;
504 
505 	ASSERT(cvd->vdev_parent == pvd);
506 
507 	if (pvd == NULL)
508 		return;
509 
510 	ASSERT(id < pvd->vdev_children);
511 	ASSERT(pvd->vdev_child[id] == cvd);
512 
513 	pvd->vdev_child[id] = NULL;
514 	cvd->vdev_parent = NULL;
515 
516 	for (c = 0; c < pvd->vdev_children; c++)
517 		if (pvd->vdev_child[c])
518 			break;
519 
520 	if (c == pvd->vdev_children) {
521 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
522 		pvd->vdev_child = NULL;
523 		pvd->vdev_children = 0;
524 	}
525 
526 	if (cvd->vdev_ops->vdev_op_leaf) {
527 		spa_t *spa = cvd->vdev_spa;
528 		list_remove(&spa->spa_leaf_list, cvd);
529 		spa->spa_leaf_list_gen++;
530 	}
531 
532 	/*
533 	 * Walk up all ancestors to update guid sum.
534 	 */
535 	for (; pvd != NULL; pvd = pvd->vdev_parent)
536 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
537 }
538 
539 /*
540  * Remove any holes in the child array.
541  */
542 void
vdev_compact_children(vdev_t * pvd)543 vdev_compact_children(vdev_t *pvd)
544 {
545 	vdev_t **newchild, *cvd;
546 	int oldc = pvd->vdev_children;
547 	int newc;
548 
549 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
550 
551 	if (oldc == 0)
552 		return;
553 
554 	for (int c = newc = 0; c < oldc; c++)
555 		if (pvd->vdev_child[c])
556 			newc++;
557 
558 	if (newc > 0) {
559 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
560 
561 		for (int c = newc = 0; c < oldc; c++) {
562 			if ((cvd = pvd->vdev_child[c]) != NULL) {
563 				newchild[newc] = cvd;
564 				cvd->vdev_id = newc++;
565 			}
566 		}
567 	} else {
568 		newchild = NULL;
569 	}
570 
571 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
572 	pvd->vdev_child = newchild;
573 	pvd->vdev_children = newc;
574 }
575 
576 /*
577  * Allocate and minimally initialize a vdev_t.
578  */
579 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)580 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
581 {
582 	vdev_t *vd;
583 	vdev_indirect_config_t *vic;
584 
585 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
586 	vic = &vd->vdev_indirect_config;
587 
588 	if (spa->spa_root_vdev == NULL) {
589 		ASSERT(ops == &vdev_root_ops);
590 		spa->spa_root_vdev = vd;
591 		spa->spa_load_guid = spa_generate_guid(NULL);
592 	}
593 
594 	if (guid == 0 && ops != &vdev_hole_ops) {
595 		if (spa->spa_root_vdev == vd) {
596 			/*
597 			 * The root vdev's guid will also be the pool guid,
598 			 * which must be unique among all pools.
599 			 */
600 			guid = spa_generate_guid(NULL);
601 		} else {
602 			/*
603 			 * Any other vdev's guid must be unique within the pool.
604 			 */
605 			guid = spa_generate_guid(spa);
606 		}
607 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
608 	}
609 
610 	vd->vdev_spa = spa;
611 	vd->vdev_id = id;
612 	vd->vdev_guid = guid;
613 	vd->vdev_guid_sum = guid;
614 	vd->vdev_ops = ops;
615 	vd->vdev_state = VDEV_STATE_CLOSED;
616 	vd->vdev_ishole = (ops == &vdev_hole_ops);
617 	vic->vic_prev_indirect_vdev = UINT64_MAX;
618 
619 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
620 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
621 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
622 	    0, 0);
623 
624 	/*
625 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
626 	 * and checksum events so that we don't overwhelm ZED with thousands
627 	 * of events when a disk is acting up.
628 	 */
629 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
630 	    1);
631 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
632 	    1);
633 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
634 	    &zfs_checksum_events_per_second, 1);
635 
636 	list_link_init(&vd->vdev_config_dirty_node);
637 	list_link_init(&vd->vdev_state_dirty_node);
638 	list_link_init(&vd->vdev_initialize_node);
639 	list_link_init(&vd->vdev_leaf_node);
640 	list_link_init(&vd->vdev_trim_node);
641 
642 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
643 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
646 
647 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
649 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
650 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
651 
652 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
653 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
655 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
656 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
657 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
658 
659 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
660 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
661 
662 	for (int t = 0; t < DTL_TYPES; t++) {
663 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
664 		    0);
665 	}
666 
667 	txg_list_create(&vd->vdev_ms_list, spa,
668 	    offsetof(struct metaslab, ms_txg_node));
669 	txg_list_create(&vd->vdev_dtl_list, spa,
670 	    offsetof(struct vdev, vdev_dtl_node));
671 	vd->vdev_stat.vs_timestamp = gethrtime();
672 	vdev_queue_init(vd);
673 	vdev_cache_init(vd);
674 
675 	return (vd);
676 }
677 
678 /*
679  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
680  * creating a new vdev or loading an existing one - the behavior is slightly
681  * different for each case.
682  */
683 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)684 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
685     int alloctype)
686 {
687 	vdev_ops_t *ops;
688 	char *type;
689 	uint64_t guid = 0, islog;
690 	vdev_t *vd;
691 	vdev_indirect_config_t *vic;
692 	char *tmp = NULL;
693 	int rc;
694 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
695 	boolean_t top_level = (parent && !parent->vdev_parent);
696 
697 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
698 
699 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
700 		return (SET_ERROR(EINVAL));
701 
702 	if ((ops = vdev_getops(type)) == NULL)
703 		return (SET_ERROR(EINVAL));
704 
705 	/*
706 	 * If this is a load, get the vdev guid from the nvlist.
707 	 * Otherwise, vdev_alloc_common() will generate one for us.
708 	 */
709 	if (alloctype == VDEV_ALLOC_LOAD) {
710 		uint64_t label_id;
711 
712 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
713 		    label_id != id)
714 			return (SET_ERROR(EINVAL));
715 
716 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
717 			return (SET_ERROR(EINVAL));
718 	} else if (alloctype == VDEV_ALLOC_SPARE) {
719 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
720 			return (SET_ERROR(EINVAL));
721 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
722 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
723 			return (SET_ERROR(EINVAL));
724 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
725 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
726 			return (SET_ERROR(EINVAL));
727 	}
728 
729 	/*
730 	 * The first allocated vdev must be of type 'root'.
731 	 */
732 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
733 		return (SET_ERROR(EINVAL));
734 
735 	/*
736 	 * Determine whether we're a log vdev.
737 	 */
738 	islog = 0;
739 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
740 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
741 		return (SET_ERROR(ENOTSUP));
742 
743 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
744 		return (SET_ERROR(ENOTSUP));
745 
746 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
747 		char *bias;
748 
749 		/*
750 		 * If creating a top-level vdev, check for allocation
751 		 * classes input.
752 		 */
753 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
754 		    &bias) == 0) {
755 			alloc_bias = vdev_derive_alloc_bias(bias);
756 
757 			/* spa_vdev_add() expects feature to be enabled */
758 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
759 			    !spa_feature_is_enabled(spa,
760 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
761 				return (SET_ERROR(ENOTSUP));
762 			}
763 		}
764 
765 		/* spa_vdev_add() expects feature to be enabled */
766 		if (ops == &vdev_draid_ops &&
767 		    spa->spa_load_state != SPA_LOAD_CREATE &&
768 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
769 			return (SET_ERROR(ENOTSUP));
770 		}
771 	}
772 
773 	/*
774 	 * Initialize the vdev specific data.  This is done before calling
775 	 * vdev_alloc_common() since it may fail and this simplifies the
776 	 * error reporting and cleanup code paths.
777 	 */
778 	void *tsd = NULL;
779 	if (ops->vdev_op_init != NULL) {
780 		rc = ops->vdev_op_init(spa, nv, &tsd);
781 		if (rc != 0) {
782 			return (rc);
783 		}
784 	}
785 
786 	vd = vdev_alloc_common(spa, id, guid, ops);
787 	vd->vdev_tsd = tsd;
788 	vd->vdev_islog = islog;
789 
790 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
791 		vd->vdev_alloc_bias = alloc_bias;
792 
793 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
794 		vd->vdev_path = spa_strdup(vd->vdev_path);
795 
796 	/*
797 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
798 	 * fault on a vdev and want it to persist across imports (like with
799 	 * zpool offline -f).
800 	 */
801 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
802 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
803 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
804 		vd->vdev_faulted = 1;
805 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
806 	}
807 
808 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
809 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
810 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
811 	    &vd->vdev_physpath) == 0)
812 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
813 
814 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
815 	    &vd->vdev_enc_sysfs_path) == 0)
816 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
817 
818 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
819 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
820 
821 	/*
822 	 * Set the whole_disk property.  If it's not specified, leave the value
823 	 * as -1.
824 	 */
825 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
826 	    &vd->vdev_wholedisk) != 0)
827 		vd->vdev_wholedisk = -1ULL;
828 
829 	vic = &vd->vdev_indirect_config;
830 
831 	ASSERT0(vic->vic_mapping_object);
832 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
833 	    &vic->vic_mapping_object);
834 	ASSERT0(vic->vic_births_object);
835 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
836 	    &vic->vic_births_object);
837 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
838 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
839 	    &vic->vic_prev_indirect_vdev);
840 
841 	/*
842 	 * Look for the 'not present' flag.  This will only be set if the device
843 	 * was not present at the time of import.
844 	 */
845 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
846 	    &vd->vdev_not_present);
847 
848 	/*
849 	 * Get the alignment requirement.
850 	 */
851 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
852 
853 	/*
854 	 * Retrieve the vdev creation time.
855 	 */
856 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
857 	    &vd->vdev_crtxg);
858 
859 	/*
860 	 * If we're a top-level vdev, try to load the allocation parameters.
861 	 */
862 	if (top_level &&
863 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
864 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
865 		    &vd->vdev_ms_array);
866 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
867 		    &vd->vdev_ms_shift);
868 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
869 		    &vd->vdev_asize);
870 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
871 		    &vd->vdev_removing);
872 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
873 		    &vd->vdev_top_zap);
874 	} else {
875 		ASSERT0(vd->vdev_top_zap);
876 	}
877 
878 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
879 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
880 		    alloctype == VDEV_ALLOC_ADD ||
881 		    alloctype == VDEV_ALLOC_SPLIT ||
882 		    alloctype == VDEV_ALLOC_ROOTPOOL);
883 		/* Note: metaslab_group_create() is now deferred */
884 	}
885 
886 	if (vd->vdev_ops->vdev_op_leaf &&
887 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
888 		(void) nvlist_lookup_uint64(nv,
889 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
890 	} else {
891 		ASSERT0(vd->vdev_leaf_zap);
892 	}
893 
894 	/*
895 	 * If we're a leaf vdev, try to load the DTL object and other state.
896 	 */
897 
898 	if (vd->vdev_ops->vdev_op_leaf &&
899 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
900 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
901 		if (alloctype == VDEV_ALLOC_LOAD) {
902 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
903 			    &vd->vdev_dtl_object);
904 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
905 			    &vd->vdev_unspare);
906 		}
907 
908 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
909 			uint64_t spare = 0;
910 
911 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
912 			    &spare) == 0 && spare)
913 				spa_spare_add(vd);
914 		}
915 
916 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
917 		    &vd->vdev_offline);
918 
919 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
920 		    &vd->vdev_resilver_txg);
921 
922 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
923 		    &vd->vdev_rebuild_txg);
924 
925 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
926 			vdev_defer_resilver(vd);
927 
928 		/*
929 		 * In general, when importing a pool we want to ignore the
930 		 * persistent fault state, as the diagnosis made on another
931 		 * system may not be valid in the current context.  The only
932 		 * exception is if we forced a vdev to a persistently faulted
933 		 * state with 'zpool offline -f'.  The persistent fault will
934 		 * remain across imports until cleared.
935 		 *
936 		 * Local vdevs will remain in the faulted state.
937 		 */
938 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
939 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
940 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
941 			    &vd->vdev_faulted);
942 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
943 			    &vd->vdev_degraded);
944 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
945 			    &vd->vdev_removed);
946 
947 			if (vd->vdev_faulted || vd->vdev_degraded) {
948 				char *aux;
949 
950 				vd->vdev_label_aux =
951 				    VDEV_AUX_ERR_EXCEEDED;
952 				if (nvlist_lookup_string(nv,
953 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
954 				    strcmp(aux, "external") == 0)
955 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
956 				else
957 					vd->vdev_faulted = 0ULL;
958 			}
959 		}
960 	}
961 
962 	/*
963 	 * Add ourselves to the parent's list of children.
964 	 */
965 	vdev_add_child(parent, vd);
966 
967 	*vdp = vd;
968 
969 	return (0);
970 }
971 
972 void
vdev_free(vdev_t * vd)973 vdev_free(vdev_t *vd)
974 {
975 	spa_t *spa = vd->vdev_spa;
976 
977 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
978 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
979 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
980 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
981 
982 	/*
983 	 * Scan queues are normally destroyed at the end of a scan. If the
984 	 * queue exists here, that implies the vdev is being removed while
985 	 * the scan is still running.
986 	 */
987 	if (vd->vdev_scan_io_queue != NULL) {
988 		mutex_enter(&vd->vdev_scan_io_queue_lock);
989 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
990 		vd->vdev_scan_io_queue = NULL;
991 		mutex_exit(&vd->vdev_scan_io_queue_lock);
992 	}
993 
994 	/*
995 	 * vdev_free() implies closing the vdev first.  This is simpler than
996 	 * trying to ensure complicated semantics for all callers.
997 	 */
998 	vdev_close(vd);
999 
1000 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1001 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1002 
1003 	/*
1004 	 * Free all children.
1005 	 */
1006 	for (int c = 0; c < vd->vdev_children; c++)
1007 		vdev_free(vd->vdev_child[c]);
1008 
1009 	ASSERT(vd->vdev_child == NULL);
1010 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1011 
1012 	if (vd->vdev_ops->vdev_op_fini != NULL)
1013 		vd->vdev_ops->vdev_op_fini(vd);
1014 
1015 	/*
1016 	 * Discard allocation state.
1017 	 */
1018 	if (vd->vdev_mg != NULL) {
1019 		vdev_metaslab_fini(vd);
1020 		metaslab_group_destroy(vd->vdev_mg);
1021 		vd->vdev_mg = NULL;
1022 	}
1023 	if (vd->vdev_log_mg != NULL) {
1024 		ASSERT0(vd->vdev_ms_count);
1025 		metaslab_group_destroy(vd->vdev_log_mg);
1026 		vd->vdev_log_mg = NULL;
1027 	}
1028 
1029 	ASSERT0(vd->vdev_stat.vs_space);
1030 	ASSERT0(vd->vdev_stat.vs_dspace);
1031 	ASSERT0(vd->vdev_stat.vs_alloc);
1032 
1033 	/*
1034 	 * Remove this vdev from its parent's child list.
1035 	 */
1036 	vdev_remove_child(vd->vdev_parent, vd);
1037 
1038 	ASSERT(vd->vdev_parent == NULL);
1039 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1040 
1041 	/*
1042 	 * Clean up vdev structure.
1043 	 */
1044 	vdev_queue_fini(vd);
1045 	vdev_cache_fini(vd);
1046 
1047 	if (vd->vdev_path)
1048 		spa_strfree(vd->vdev_path);
1049 	if (vd->vdev_devid)
1050 		spa_strfree(vd->vdev_devid);
1051 	if (vd->vdev_physpath)
1052 		spa_strfree(vd->vdev_physpath);
1053 
1054 	if (vd->vdev_enc_sysfs_path)
1055 		spa_strfree(vd->vdev_enc_sysfs_path);
1056 
1057 	if (vd->vdev_fru)
1058 		spa_strfree(vd->vdev_fru);
1059 
1060 	if (vd->vdev_isspare)
1061 		spa_spare_remove(vd);
1062 	if (vd->vdev_isl2cache)
1063 		spa_l2cache_remove(vd);
1064 
1065 	txg_list_destroy(&vd->vdev_ms_list);
1066 	txg_list_destroy(&vd->vdev_dtl_list);
1067 
1068 	mutex_enter(&vd->vdev_dtl_lock);
1069 	space_map_close(vd->vdev_dtl_sm);
1070 	for (int t = 0; t < DTL_TYPES; t++) {
1071 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1072 		range_tree_destroy(vd->vdev_dtl[t]);
1073 	}
1074 	mutex_exit(&vd->vdev_dtl_lock);
1075 
1076 	EQUIV(vd->vdev_indirect_births != NULL,
1077 	    vd->vdev_indirect_mapping != NULL);
1078 	if (vd->vdev_indirect_births != NULL) {
1079 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1080 		vdev_indirect_births_close(vd->vdev_indirect_births);
1081 	}
1082 
1083 	if (vd->vdev_obsolete_sm != NULL) {
1084 		ASSERT(vd->vdev_removing ||
1085 		    vd->vdev_ops == &vdev_indirect_ops);
1086 		space_map_close(vd->vdev_obsolete_sm);
1087 		vd->vdev_obsolete_sm = NULL;
1088 	}
1089 	range_tree_destroy(vd->vdev_obsolete_segments);
1090 	rw_destroy(&vd->vdev_indirect_rwlock);
1091 	mutex_destroy(&vd->vdev_obsolete_lock);
1092 
1093 	mutex_destroy(&vd->vdev_dtl_lock);
1094 	mutex_destroy(&vd->vdev_stat_lock);
1095 	mutex_destroy(&vd->vdev_probe_lock);
1096 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1097 
1098 	mutex_destroy(&vd->vdev_initialize_lock);
1099 	mutex_destroy(&vd->vdev_initialize_io_lock);
1100 	cv_destroy(&vd->vdev_initialize_io_cv);
1101 	cv_destroy(&vd->vdev_initialize_cv);
1102 
1103 	mutex_destroy(&vd->vdev_trim_lock);
1104 	mutex_destroy(&vd->vdev_autotrim_lock);
1105 	mutex_destroy(&vd->vdev_trim_io_lock);
1106 	cv_destroy(&vd->vdev_trim_cv);
1107 	cv_destroy(&vd->vdev_autotrim_cv);
1108 	cv_destroy(&vd->vdev_trim_io_cv);
1109 
1110 	mutex_destroy(&vd->vdev_rebuild_lock);
1111 	cv_destroy(&vd->vdev_rebuild_cv);
1112 
1113 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1114 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1115 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1116 
1117 	if (vd == spa->spa_root_vdev)
1118 		spa->spa_root_vdev = NULL;
1119 
1120 	kmem_free(vd, sizeof (vdev_t));
1121 }
1122 
1123 /*
1124  * Transfer top-level vdev state from svd to tvd.
1125  */
1126 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1127 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1128 {
1129 	spa_t *spa = svd->vdev_spa;
1130 	metaslab_t *msp;
1131 	vdev_t *vd;
1132 	int t;
1133 
1134 	ASSERT(tvd == tvd->vdev_top);
1135 
1136 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1137 	tvd->vdev_ms_array = svd->vdev_ms_array;
1138 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1139 	tvd->vdev_ms_count = svd->vdev_ms_count;
1140 	tvd->vdev_top_zap = svd->vdev_top_zap;
1141 
1142 	svd->vdev_ms_array = 0;
1143 	svd->vdev_ms_shift = 0;
1144 	svd->vdev_ms_count = 0;
1145 	svd->vdev_top_zap = 0;
1146 
1147 	if (tvd->vdev_mg)
1148 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1149 	if (tvd->vdev_log_mg)
1150 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1151 	tvd->vdev_mg = svd->vdev_mg;
1152 	tvd->vdev_log_mg = svd->vdev_log_mg;
1153 	tvd->vdev_ms = svd->vdev_ms;
1154 
1155 	svd->vdev_mg = NULL;
1156 	svd->vdev_log_mg = NULL;
1157 	svd->vdev_ms = NULL;
1158 
1159 	if (tvd->vdev_mg != NULL)
1160 		tvd->vdev_mg->mg_vd = tvd;
1161 	if (tvd->vdev_log_mg != NULL)
1162 		tvd->vdev_log_mg->mg_vd = tvd;
1163 
1164 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1165 	svd->vdev_checkpoint_sm = NULL;
1166 
1167 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1168 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1169 
1170 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1171 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1172 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1173 
1174 	svd->vdev_stat.vs_alloc = 0;
1175 	svd->vdev_stat.vs_space = 0;
1176 	svd->vdev_stat.vs_dspace = 0;
1177 
1178 	/*
1179 	 * State which may be set on a top-level vdev that's in the
1180 	 * process of being removed.
1181 	 */
1182 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1183 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1184 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1185 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1186 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1187 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1188 	ASSERT0(tvd->vdev_removing);
1189 	ASSERT0(tvd->vdev_rebuilding);
1190 	tvd->vdev_removing = svd->vdev_removing;
1191 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1192 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1193 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1194 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1195 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1196 	range_tree_swap(&svd->vdev_obsolete_segments,
1197 	    &tvd->vdev_obsolete_segments);
1198 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1199 	svd->vdev_indirect_config.vic_mapping_object = 0;
1200 	svd->vdev_indirect_config.vic_births_object = 0;
1201 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1202 	svd->vdev_indirect_mapping = NULL;
1203 	svd->vdev_indirect_births = NULL;
1204 	svd->vdev_obsolete_sm = NULL;
1205 	svd->vdev_removing = 0;
1206 	svd->vdev_rebuilding = 0;
1207 
1208 	for (t = 0; t < TXG_SIZE; t++) {
1209 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1210 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1211 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1212 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1213 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1214 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1215 	}
1216 
1217 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1218 		vdev_config_clean(svd);
1219 		vdev_config_dirty(tvd);
1220 	}
1221 
1222 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1223 		vdev_state_clean(svd);
1224 		vdev_state_dirty(tvd);
1225 	}
1226 
1227 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1228 	svd->vdev_deflate_ratio = 0;
1229 
1230 	tvd->vdev_islog = svd->vdev_islog;
1231 	svd->vdev_islog = 0;
1232 
1233 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1234 }
1235 
1236 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1237 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1238 {
1239 	if (vd == NULL)
1240 		return;
1241 
1242 	vd->vdev_top = tvd;
1243 
1244 	for (int c = 0; c < vd->vdev_children; c++)
1245 		vdev_top_update(tvd, vd->vdev_child[c]);
1246 }
1247 
1248 /*
1249  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1250  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1251  */
1252 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1253 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1254 {
1255 	spa_t *spa = cvd->vdev_spa;
1256 	vdev_t *pvd = cvd->vdev_parent;
1257 	vdev_t *mvd;
1258 
1259 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1260 
1261 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1262 
1263 	mvd->vdev_asize = cvd->vdev_asize;
1264 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1265 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1266 	mvd->vdev_psize = cvd->vdev_psize;
1267 	mvd->vdev_ashift = cvd->vdev_ashift;
1268 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1269 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1270 	mvd->vdev_state = cvd->vdev_state;
1271 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1272 
1273 	vdev_remove_child(pvd, cvd);
1274 	vdev_add_child(pvd, mvd);
1275 	cvd->vdev_id = mvd->vdev_children;
1276 	vdev_add_child(mvd, cvd);
1277 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1278 
1279 	if (mvd == mvd->vdev_top)
1280 		vdev_top_transfer(cvd, mvd);
1281 
1282 	return (mvd);
1283 }
1284 
1285 /*
1286  * Remove a 1-way mirror/replacing vdev from the tree.
1287  */
1288 void
vdev_remove_parent(vdev_t * cvd)1289 vdev_remove_parent(vdev_t *cvd)
1290 {
1291 	vdev_t *mvd = cvd->vdev_parent;
1292 	vdev_t *pvd = mvd->vdev_parent;
1293 
1294 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1295 
1296 	ASSERT(mvd->vdev_children == 1);
1297 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1298 	    mvd->vdev_ops == &vdev_replacing_ops ||
1299 	    mvd->vdev_ops == &vdev_spare_ops);
1300 	cvd->vdev_ashift = mvd->vdev_ashift;
1301 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1302 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1303 	vdev_remove_child(mvd, cvd);
1304 	vdev_remove_child(pvd, mvd);
1305 
1306 	/*
1307 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1308 	 * Otherwise, we could have detached an offline device, and when we
1309 	 * go to import the pool we'll think we have two top-level vdevs,
1310 	 * instead of a different version of the same top-level vdev.
1311 	 */
1312 	if (mvd->vdev_top == mvd) {
1313 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1314 		cvd->vdev_orig_guid = cvd->vdev_guid;
1315 		cvd->vdev_guid += guid_delta;
1316 		cvd->vdev_guid_sum += guid_delta;
1317 
1318 		/*
1319 		 * If pool not set for autoexpand, we need to also preserve
1320 		 * mvd's asize to prevent automatic expansion of cvd.
1321 		 * Otherwise if we are adjusting the mirror by attaching and
1322 		 * detaching children of non-uniform sizes, the mirror could
1323 		 * autoexpand, unexpectedly requiring larger devices to
1324 		 * re-establish the mirror.
1325 		 */
1326 		if (!cvd->vdev_spa->spa_autoexpand)
1327 			cvd->vdev_asize = mvd->vdev_asize;
1328 	}
1329 	cvd->vdev_id = mvd->vdev_id;
1330 	vdev_add_child(pvd, cvd);
1331 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1332 
1333 	if (cvd == cvd->vdev_top)
1334 		vdev_top_transfer(mvd, cvd);
1335 
1336 	ASSERT(mvd->vdev_children == 0);
1337 	vdev_free(mvd);
1338 }
1339 
1340 void
vdev_metaslab_group_create(vdev_t * vd)1341 vdev_metaslab_group_create(vdev_t *vd)
1342 {
1343 	spa_t *spa = vd->vdev_spa;
1344 
1345 	/*
1346 	 * metaslab_group_create was delayed until allocation bias was available
1347 	 */
1348 	if (vd->vdev_mg == NULL) {
1349 		metaslab_class_t *mc;
1350 
1351 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1352 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1353 
1354 		ASSERT3U(vd->vdev_islog, ==,
1355 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1356 
1357 		switch (vd->vdev_alloc_bias) {
1358 		case VDEV_BIAS_LOG:
1359 			mc = spa_log_class(spa);
1360 			break;
1361 		case VDEV_BIAS_SPECIAL:
1362 			mc = spa_special_class(spa);
1363 			break;
1364 		case VDEV_BIAS_DEDUP:
1365 			mc = spa_dedup_class(spa);
1366 			break;
1367 		default:
1368 			mc = spa_normal_class(spa);
1369 		}
1370 
1371 		vd->vdev_mg = metaslab_group_create(mc, vd,
1372 		    spa->spa_alloc_count);
1373 
1374 		if (!vd->vdev_islog) {
1375 			vd->vdev_log_mg = metaslab_group_create(
1376 			    spa_embedded_log_class(spa), vd, 1);
1377 		}
1378 
1379 		/*
1380 		 * The spa ashift min/max only apply for the normal metaslab
1381 		 * class. Class destination is late binding so ashift boundary
1382 		 * setting had to wait until now.
1383 		 */
1384 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1385 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1386 			if (vd->vdev_ashift > spa->spa_max_ashift)
1387 				spa->spa_max_ashift = vd->vdev_ashift;
1388 			if (vd->vdev_ashift < spa->spa_min_ashift)
1389 				spa->spa_min_ashift = vd->vdev_ashift;
1390 
1391 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1392 			if (min_alloc < spa->spa_min_alloc)
1393 				spa->spa_min_alloc = min_alloc;
1394 		}
1395 	}
1396 }
1397 
1398 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1399 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1400 {
1401 	spa_t *spa = vd->vdev_spa;
1402 	uint64_t oldc = vd->vdev_ms_count;
1403 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1404 	metaslab_t **mspp;
1405 	int error;
1406 	boolean_t expanding = (oldc != 0);
1407 
1408 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1409 
1410 	/*
1411 	 * This vdev is not being allocated from yet or is a hole.
1412 	 */
1413 	if (vd->vdev_ms_shift == 0)
1414 		return (0);
1415 
1416 	ASSERT(!vd->vdev_ishole);
1417 
1418 	ASSERT(oldc <= newc);
1419 
1420 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1421 
1422 	if (expanding) {
1423 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1424 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1425 	}
1426 
1427 	vd->vdev_ms = mspp;
1428 	vd->vdev_ms_count = newc;
1429 
1430 	for (uint64_t m = oldc; m < newc; m++) {
1431 		uint64_t object = 0;
1432 		/*
1433 		 * vdev_ms_array may be 0 if we are creating the "fake"
1434 		 * metaslabs for an indirect vdev for zdb's leak detection.
1435 		 * See zdb_leak_init().
1436 		 */
1437 		if (txg == 0 && vd->vdev_ms_array != 0) {
1438 			error = dmu_read(spa->spa_meta_objset,
1439 			    vd->vdev_ms_array,
1440 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1441 			    DMU_READ_PREFETCH);
1442 			if (error != 0) {
1443 				vdev_dbgmsg(vd, "unable to read the metaslab "
1444 				    "array [error=%d]", error);
1445 				return (error);
1446 			}
1447 		}
1448 
1449 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1450 		    &(vd->vdev_ms[m]));
1451 		if (error != 0) {
1452 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1453 			    error);
1454 			return (error);
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * Find the emptiest metaslab on the vdev and mark it for use for
1460 	 * embedded slog by moving it from the regular to the log metaslab
1461 	 * group.
1462 	 */
1463 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1464 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1465 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1466 		uint64_t slog_msid = 0;
1467 		uint64_t smallest = UINT64_MAX;
1468 
1469 		/*
1470 		 * Note, we only search the new metaslabs, because the old
1471 		 * (pre-existing) ones may be active (e.g. have non-empty
1472 		 * range_tree's), and we don't move them to the new
1473 		 * metaslab_t.
1474 		 */
1475 		for (uint64_t m = oldc; m < newc; m++) {
1476 			uint64_t alloc =
1477 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1478 			if (alloc < smallest) {
1479 				slog_msid = m;
1480 				smallest = alloc;
1481 			}
1482 		}
1483 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1484 		/*
1485 		 * The metaslab was marked as dirty at the end of
1486 		 * metaslab_init(). Remove it from the dirty list so that we
1487 		 * can uninitialize and reinitialize it to the new class.
1488 		 */
1489 		if (txg != 0) {
1490 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1491 			    slog_ms, txg);
1492 		}
1493 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1494 		metaslab_fini(slog_ms);
1495 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1496 		    &vd->vdev_ms[slog_msid]));
1497 	}
1498 
1499 	if (txg == 0)
1500 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1501 
1502 	/*
1503 	 * If the vdev is being removed we don't activate
1504 	 * the metaslabs since we want to ensure that no new
1505 	 * allocations are performed on this device.
1506 	 */
1507 	if (!expanding && !vd->vdev_removing) {
1508 		metaslab_group_activate(vd->vdev_mg);
1509 		if (vd->vdev_log_mg != NULL)
1510 			metaslab_group_activate(vd->vdev_log_mg);
1511 	}
1512 
1513 	if (txg == 0)
1514 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1515 
1516 	/*
1517 	 * Regardless whether this vdev was just added or it is being
1518 	 * expanded, the metaslab count has changed. Recalculate the
1519 	 * block limit.
1520 	 */
1521 	spa_log_sm_set_blocklimit(spa);
1522 
1523 	return (0);
1524 }
1525 
1526 void
vdev_metaslab_fini(vdev_t * vd)1527 vdev_metaslab_fini(vdev_t *vd)
1528 {
1529 	if (vd->vdev_checkpoint_sm != NULL) {
1530 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1531 		    SPA_FEATURE_POOL_CHECKPOINT));
1532 		space_map_close(vd->vdev_checkpoint_sm);
1533 		/*
1534 		 * Even though we close the space map, we need to set its
1535 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1536 		 * may be called multiple times for certain operations
1537 		 * (i.e. when destroying a pool) so we need to ensure that
1538 		 * this clause never executes twice. This logic is similar
1539 		 * to the one used for the vdev_ms clause below.
1540 		 */
1541 		vd->vdev_checkpoint_sm = NULL;
1542 	}
1543 
1544 	if (vd->vdev_ms != NULL) {
1545 		metaslab_group_t *mg = vd->vdev_mg;
1546 
1547 		metaslab_group_passivate(mg);
1548 		if (vd->vdev_log_mg != NULL) {
1549 			ASSERT(!vd->vdev_islog);
1550 			metaslab_group_passivate(vd->vdev_log_mg);
1551 		}
1552 
1553 		uint64_t count = vd->vdev_ms_count;
1554 		for (uint64_t m = 0; m < count; m++) {
1555 			metaslab_t *msp = vd->vdev_ms[m];
1556 			if (msp != NULL)
1557 				metaslab_fini(msp);
1558 		}
1559 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1560 		vd->vdev_ms = NULL;
1561 		vd->vdev_ms_count = 0;
1562 
1563 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1564 			ASSERT0(mg->mg_histogram[i]);
1565 			if (vd->vdev_log_mg != NULL)
1566 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1567 		}
1568 	}
1569 	ASSERT0(vd->vdev_ms_count);
1570 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1571 }
1572 
1573 typedef struct vdev_probe_stats {
1574 	boolean_t	vps_readable;
1575 	boolean_t	vps_writeable;
1576 	int		vps_flags;
1577 } vdev_probe_stats_t;
1578 
1579 static void
vdev_probe_done(zio_t * zio)1580 vdev_probe_done(zio_t *zio)
1581 {
1582 	spa_t *spa = zio->io_spa;
1583 	vdev_t *vd = zio->io_vd;
1584 	vdev_probe_stats_t *vps = zio->io_private;
1585 
1586 	ASSERT(vd->vdev_probe_zio != NULL);
1587 
1588 	if (zio->io_type == ZIO_TYPE_READ) {
1589 		if (zio->io_error == 0)
1590 			vps->vps_readable = 1;
1591 		if (zio->io_error == 0 && spa_writeable(spa)) {
1592 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1593 			    zio->io_offset, zio->io_size, zio->io_abd,
1594 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1595 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1596 		} else {
1597 			abd_free(zio->io_abd);
1598 		}
1599 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1600 		if (zio->io_error == 0)
1601 			vps->vps_writeable = 1;
1602 		abd_free(zio->io_abd);
1603 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1604 		zio_t *pio;
1605 		zio_link_t *zl;
1606 
1607 		vd->vdev_cant_read |= !vps->vps_readable;
1608 		vd->vdev_cant_write |= !vps->vps_writeable;
1609 
1610 		if (vdev_readable(vd) &&
1611 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1612 			zio->io_error = 0;
1613 		} else {
1614 			ASSERT(zio->io_error != 0);
1615 			vdev_dbgmsg(vd, "failed probe");
1616 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1617 			    spa, vd, NULL, NULL, 0);
1618 			zio->io_error = SET_ERROR(ENXIO);
1619 		}
1620 
1621 		mutex_enter(&vd->vdev_probe_lock);
1622 		ASSERT(vd->vdev_probe_zio == zio);
1623 		vd->vdev_probe_zio = NULL;
1624 		mutex_exit(&vd->vdev_probe_lock);
1625 
1626 		zl = NULL;
1627 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1628 			if (!vdev_accessible(vd, pio))
1629 				pio->io_error = SET_ERROR(ENXIO);
1630 
1631 		kmem_free(vps, sizeof (*vps));
1632 	}
1633 }
1634 
1635 /*
1636  * Determine whether this device is accessible.
1637  *
1638  * Read and write to several known locations: the pad regions of each
1639  * vdev label but the first, which we leave alone in case it contains
1640  * a VTOC.
1641  */
1642 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1643 vdev_probe(vdev_t *vd, zio_t *zio)
1644 {
1645 	spa_t *spa = vd->vdev_spa;
1646 	vdev_probe_stats_t *vps = NULL;
1647 	zio_t *pio;
1648 
1649 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1650 
1651 	/*
1652 	 * Don't probe the probe.
1653 	 */
1654 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1655 		return (NULL);
1656 
1657 	/*
1658 	 * To prevent 'probe storms' when a device fails, we create
1659 	 * just one probe i/o at a time.  All zios that want to probe
1660 	 * this vdev will become parents of the probe io.
1661 	 */
1662 	mutex_enter(&vd->vdev_probe_lock);
1663 
1664 	if ((pio = vd->vdev_probe_zio) == NULL) {
1665 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1666 
1667 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1668 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1669 		    ZIO_FLAG_TRYHARD;
1670 
1671 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1672 			/*
1673 			 * vdev_cant_read and vdev_cant_write can only
1674 			 * transition from TRUE to FALSE when we have the
1675 			 * SCL_ZIO lock as writer; otherwise they can only
1676 			 * transition from FALSE to TRUE.  This ensures that
1677 			 * any zio looking at these values can assume that
1678 			 * failures persist for the life of the I/O.  That's
1679 			 * important because when a device has intermittent
1680 			 * connectivity problems, we want to ensure that
1681 			 * they're ascribed to the device (ENXIO) and not
1682 			 * the zio (EIO).
1683 			 *
1684 			 * Since we hold SCL_ZIO as writer here, clear both
1685 			 * values so the probe can reevaluate from first
1686 			 * principles.
1687 			 */
1688 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1689 			vd->vdev_cant_read = B_FALSE;
1690 			vd->vdev_cant_write = B_FALSE;
1691 		}
1692 
1693 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1694 		    vdev_probe_done, vps,
1695 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1696 
1697 		/*
1698 		 * We can't change the vdev state in this context, so we
1699 		 * kick off an async task to do it on our behalf.
1700 		 */
1701 		if (zio != NULL) {
1702 			vd->vdev_probe_wanted = B_TRUE;
1703 			spa_async_request(spa, SPA_ASYNC_PROBE);
1704 		}
1705 	}
1706 
1707 	if (zio != NULL)
1708 		zio_add_child(zio, pio);
1709 
1710 	mutex_exit(&vd->vdev_probe_lock);
1711 
1712 	if (vps == NULL) {
1713 		ASSERT(zio != NULL);
1714 		return (NULL);
1715 	}
1716 
1717 	for (int l = 1; l < VDEV_LABELS; l++) {
1718 		zio_nowait(zio_read_phys(pio, vd,
1719 		    vdev_label_offset(vd->vdev_psize, l,
1720 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1721 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1722 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1723 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1724 	}
1725 
1726 	if (zio == NULL)
1727 		return (pio);
1728 
1729 	zio_nowait(pio);
1730 	return (NULL);
1731 }
1732 
1733 static void
vdev_load_child(void * arg)1734 vdev_load_child(void *arg)
1735 {
1736 	vdev_t *vd = arg;
1737 
1738 	vd->vdev_load_error = vdev_load(vd);
1739 }
1740 
1741 static void
vdev_open_child(void * arg)1742 vdev_open_child(void *arg)
1743 {
1744 	vdev_t *vd = arg;
1745 
1746 	vd->vdev_open_thread = curthread;
1747 	vd->vdev_open_error = vdev_open(vd);
1748 	vd->vdev_open_thread = NULL;
1749 }
1750 
1751 static boolean_t
vdev_uses_zvols(vdev_t * vd)1752 vdev_uses_zvols(vdev_t *vd)
1753 {
1754 #ifdef _KERNEL
1755 	if (zvol_is_zvol(vd->vdev_path))
1756 		return (B_TRUE);
1757 #endif
1758 
1759 	for (int c = 0; c < vd->vdev_children; c++)
1760 		if (vdev_uses_zvols(vd->vdev_child[c]))
1761 			return (B_TRUE);
1762 
1763 	return (B_FALSE);
1764 }
1765 
1766 /*
1767  * Returns B_TRUE if the passed child should be opened.
1768  */
1769 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1770 vdev_default_open_children_func(vdev_t *vd)
1771 {
1772 	(void) vd;
1773 	return (B_TRUE);
1774 }
1775 
1776 /*
1777  * Open the requested child vdevs.  If any of the leaf vdevs are using
1778  * a ZFS volume then do the opens in a single thread.  This avoids a
1779  * deadlock when the current thread is holding the spa_namespace_lock.
1780  */
1781 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1782 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1783 {
1784 	int children = vd->vdev_children;
1785 
1786 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1787 	    children, children, TASKQ_PREPOPULATE);
1788 	vd->vdev_nonrot = B_TRUE;
1789 
1790 	for (int c = 0; c < children; c++) {
1791 		vdev_t *cvd = vd->vdev_child[c];
1792 
1793 		if (open_func(cvd) == B_FALSE)
1794 			continue;
1795 
1796 		if (tq == NULL || vdev_uses_zvols(vd)) {
1797 			cvd->vdev_open_error = vdev_open(cvd);
1798 		} else {
1799 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1800 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1801 		}
1802 
1803 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1804 	}
1805 
1806 	if (tq != NULL) {
1807 		taskq_wait(tq);
1808 		taskq_destroy(tq);
1809 	}
1810 }
1811 
1812 /*
1813  * Open all child vdevs.
1814  */
1815 void
vdev_open_children(vdev_t * vd)1816 vdev_open_children(vdev_t *vd)
1817 {
1818 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1819 }
1820 
1821 /*
1822  * Conditionally open a subset of child vdevs.
1823  */
1824 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)1825 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1826 {
1827 	vdev_open_children_impl(vd, open_func);
1828 }
1829 
1830 /*
1831  * Compute the raidz-deflation ratio.  Note, we hard-code
1832  * in 128k (1 << 17) because it is the "typical" blocksize.
1833  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1834  * otherwise it would inconsistently account for existing bp's.
1835  */
1836 static void
vdev_set_deflate_ratio(vdev_t * vd)1837 vdev_set_deflate_ratio(vdev_t *vd)
1838 {
1839 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1840 		vd->vdev_deflate_ratio = (1 << 17) /
1841 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1842 	}
1843 }
1844 
1845 /*
1846  * Maximize performance by inflating the configured ashift for top level
1847  * vdevs to be as close to the physical ashift as possible while maintaining
1848  * administrator defined limits and ensuring it doesn't go below the
1849  * logical ashift.
1850  */
1851 static void
vdev_ashift_optimize(vdev_t * vd)1852 vdev_ashift_optimize(vdev_t *vd)
1853 {
1854 	ASSERT(vd == vd->vdev_top);
1855 
1856 	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1857 		vd->vdev_ashift = MIN(
1858 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1859 		    MAX(zfs_vdev_min_auto_ashift,
1860 		    vd->vdev_physical_ashift));
1861 	} else {
1862 		/*
1863 		 * If the logical and physical ashifts are the same, then
1864 		 * we ensure that the top-level vdev's ashift is not smaller
1865 		 * than our minimum ashift value. For the unusual case
1866 		 * where logical ashift > physical ashift, we can't cap
1867 		 * the calculated ashift based on max ashift as that
1868 		 * would cause failures.
1869 		 * We still check if we need to increase it to match
1870 		 * the min ashift.
1871 		 */
1872 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1873 		    vd->vdev_ashift);
1874 	}
1875 }
1876 
1877 /*
1878  * Prepare a virtual device for access.
1879  */
1880 int
vdev_open(vdev_t * vd)1881 vdev_open(vdev_t *vd)
1882 {
1883 	spa_t *spa = vd->vdev_spa;
1884 	int error;
1885 	uint64_t osize = 0;
1886 	uint64_t max_osize = 0;
1887 	uint64_t asize, max_asize, psize;
1888 	uint64_t logical_ashift = 0;
1889 	uint64_t physical_ashift = 0;
1890 
1891 	ASSERT(vd->vdev_open_thread == curthread ||
1892 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1893 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1894 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1895 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1896 
1897 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1898 	vd->vdev_cant_read = B_FALSE;
1899 	vd->vdev_cant_write = B_FALSE;
1900 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1901 
1902 	/*
1903 	 * If this vdev is not removed, check its fault status.  If it's
1904 	 * faulted, bail out of the open.
1905 	 */
1906 	if (!vd->vdev_removed && vd->vdev_faulted) {
1907 		ASSERT(vd->vdev_children == 0);
1908 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1909 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1910 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1911 		    vd->vdev_label_aux);
1912 		return (SET_ERROR(ENXIO));
1913 	} else if (vd->vdev_offline) {
1914 		ASSERT(vd->vdev_children == 0);
1915 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1916 		return (SET_ERROR(ENXIO));
1917 	}
1918 
1919 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1920 	    &logical_ashift, &physical_ashift);
1921 	/*
1922 	 * Physical volume size should never be larger than its max size, unless
1923 	 * the disk has shrunk while we were reading it or the device is buggy
1924 	 * or damaged: either way it's not safe for use, bail out of the open.
1925 	 */
1926 	if (osize > max_osize) {
1927 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1928 		    VDEV_AUX_OPEN_FAILED);
1929 		return (SET_ERROR(ENXIO));
1930 	}
1931 
1932 	/*
1933 	 * Reset the vdev_reopening flag so that we actually close
1934 	 * the vdev on error.
1935 	 */
1936 	vd->vdev_reopening = B_FALSE;
1937 	if (zio_injection_enabled && error == 0)
1938 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1939 
1940 	if (error) {
1941 		if (vd->vdev_removed &&
1942 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1943 			vd->vdev_removed = B_FALSE;
1944 
1945 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1946 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1947 			    vd->vdev_stat.vs_aux);
1948 		} else {
1949 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1950 			    vd->vdev_stat.vs_aux);
1951 		}
1952 		return (error);
1953 	}
1954 
1955 	vd->vdev_removed = B_FALSE;
1956 
1957 	/*
1958 	 * Recheck the faulted flag now that we have confirmed that
1959 	 * the vdev is accessible.  If we're faulted, bail.
1960 	 */
1961 	if (vd->vdev_faulted) {
1962 		ASSERT(vd->vdev_children == 0);
1963 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1964 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1965 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1966 		    vd->vdev_label_aux);
1967 		return (SET_ERROR(ENXIO));
1968 	}
1969 
1970 	if (vd->vdev_degraded) {
1971 		ASSERT(vd->vdev_children == 0);
1972 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1973 		    VDEV_AUX_ERR_EXCEEDED);
1974 	} else {
1975 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1976 	}
1977 
1978 	/*
1979 	 * For hole or missing vdevs we just return success.
1980 	 */
1981 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1982 		return (0);
1983 
1984 	for (int c = 0; c < vd->vdev_children; c++) {
1985 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1986 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1987 			    VDEV_AUX_NONE);
1988 			break;
1989 		}
1990 	}
1991 
1992 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1993 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1994 
1995 	if (vd->vdev_children == 0) {
1996 		if (osize < SPA_MINDEVSIZE) {
1997 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1998 			    VDEV_AUX_TOO_SMALL);
1999 			return (SET_ERROR(EOVERFLOW));
2000 		}
2001 		psize = osize;
2002 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2003 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2004 		    VDEV_LABEL_END_SIZE);
2005 	} else {
2006 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2007 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2008 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2009 			    VDEV_AUX_TOO_SMALL);
2010 			return (SET_ERROR(EOVERFLOW));
2011 		}
2012 		psize = 0;
2013 		asize = osize;
2014 		max_asize = max_osize;
2015 	}
2016 
2017 	/*
2018 	 * If the vdev was expanded, record this so that we can re-create the
2019 	 * uberblock rings in labels {2,3}, during the next sync.
2020 	 */
2021 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2022 		vd->vdev_copy_uberblocks = B_TRUE;
2023 
2024 	vd->vdev_psize = psize;
2025 
2026 	/*
2027 	 * Make sure the allocatable size hasn't shrunk too much.
2028 	 */
2029 	if (asize < vd->vdev_min_asize) {
2030 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2031 		    VDEV_AUX_BAD_LABEL);
2032 		return (SET_ERROR(EINVAL));
2033 	}
2034 
2035 	/*
2036 	 * We can always set the logical/physical ashift members since
2037 	 * their values are only used to calculate the vdev_ashift when
2038 	 * the device is first added to the config. These values should
2039 	 * not be used for anything else since they may change whenever
2040 	 * the device is reopened and we don't store them in the label.
2041 	 */
2042 	vd->vdev_physical_ashift =
2043 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2044 	vd->vdev_logical_ashift = MAX(logical_ashift,
2045 	    vd->vdev_logical_ashift);
2046 
2047 	if (vd->vdev_asize == 0) {
2048 		/*
2049 		 * This is the first-ever open, so use the computed values.
2050 		 * For compatibility, a different ashift can be requested.
2051 		 */
2052 		vd->vdev_asize = asize;
2053 		vd->vdev_max_asize = max_asize;
2054 
2055 		/*
2056 		 * If the vdev_ashift was not overridden at creation time,
2057 		 * then set it the logical ashift and optimize the ashift.
2058 		 */
2059 		if (vd->vdev_ashift == 0) {
2060 			vd->vdev_ashift = vd->vdev_logical_ashift;
2061 
2062 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2063 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2064 				    VDEV_AUX_ASHIFT_TOO_BIG);
2065 				return (SET_ERROR(EDOM));
2066 			}
2067 
2068 			if (vd->vdev_top == vd) {
2069 				vdev_ashift_optimize(vd);
2070 			}
2071 		}
2072 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2073 		    vd->vdev_ashift > ASHIFT_MAX)) {
2074 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2075 			    VDEV_AUX_BAD_ASHIFT);
2076 			return (SET_ERROR(EDOM));
2077 		}
2078 	} else {
2079 		/*
2080 		 * Make sure the alignment required hasn't increased.
2081 		 */
2082 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2083 		    vd->vdev_ops->vdev_op_leaf) {
2084 			(void) zfs_ereport_post(
2085 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2086 			    spa, vd, NULL, NULL, 0);
2087 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2088 			    VDEV_AUX_BAD_LABEL);
2089 			return (SET_ERROR(EDOM));
2090 		}
2091 		vd->vdev_max_asize = max_asize;
2092 	}
2093 
2094 	/*
2095 	 * If all children are healthy we update asize if either:
2096 	 * The asize has increased, due to a device expansion caused by dynamic
2097 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2098 	 * making the additional space available.
2099 	 *
2100 	 * The asize has decreased, due to a device shrink usually caused by a
2101 	 * vdev replace with a smaller device. This ensures that calculations
2102 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2103 	 * to do this as we've already validated that asize is greater than
2104 	 * vdev_min_asize.
2105 	 */
2106 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2107 	    ((asize > vd->vdev_asize &&
2108 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2109 	    (asize < vd->vdev_asize)))
2110 		vd->vdev_asize = asize;
2111 
2112 	vdev_set_min_asize(vd);
2113 
2114 	/*
2115 	 * Ensure we can issue some IO before declaring the
2116 	 * vdev open for business.
2117 	 */
2118 	if (vd->vdev_ops->vdev_op_leaf &&
2119 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2120 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2121 		    VDEV_AUX_ERR_EXCEEDED);
2122 		return (error);
2123 	}
2124 
2125 	/*
2126 	 * Track the minimum allocation size.
2127 	 */
2128 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2129 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2130 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2131 		if (min_alloc < spa->spa_min_alloc)
2132 			spa->spa_min_alloc = min_alloc;
2133 	}
2134 
2135 	/*
2136 	 * If this is a leaf vdev, assess whether a resilver is needed.
2137 	 * But don't do this if we are doing a reopen for a scrub, since
2138 	 * this would just restart the scrub we are already doing.
2139 	 */
2140 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2141 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2142 
2143 	return (0);
2144 }
2145 
2146 static void
vdev_validate_child(void * arg)2147 vdev_validate_child(void *arg)
2148 {
2149 	vdev_t *vd = arg;
2150 
2151 	vd->vdev_validate_thread = curthread;
2152 	vd->vdev_validate_error = vdev_validate(vd);
2153 	vd->vdev_validate_thread = NULL;
2154 }
2155 
2156 /*
2157  * Called once the vdevs are all opened, this routine validates the label
2158  * contents. This needs to be done before vdev_load() so that we don't
2159  * inadvertently do repair I/Os to the wrong device.
2160  *
2161  * This function will only return failure if one of the vdevs indicates that it
2162  * has since been destroyed or exported.  This is only possible if
2163  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2164  * will be updated but the function will return 0.
2165  */
2166 int
vdev_validate(vdev_t * vd)2167 vdev_validate(vdev_t *vd)
2168 {
2169 	spa_t *spa = vd->vdev_spa;
2170 	taskq_t *tq = NULL;
2171 	nvlist_t *label;
2172 	uint64_t guid = 0, aux_guid = 0, top_guid;
2173 	uint64_t state;
2174 	nvlist_t *nvl;
2175 	uint64_t txg;
2176 	int children = vd->vdev_children;
2177 
2178 	if (vdev_validate_skip)
2179 		return (0);
2180 
2181 	if (children > 0) {
2182 		tq = taskq_create("vdev_validate", children, minclsyspri,
2183 		    children, children, TASKQ_PREPOPULATE);
2184 	}
2185 
2186 	for (uint64_t c = 0; c < children; c++) {
2187 		vdev_t *cvd = vd->vdev_child[c];
2188 
2189 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2190 			vdev_validate_child(cvd);
2191 		} else {
2192 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2193 			    TQ_SLEEP) != TASKQID_INVALID);
2194 		}
2195 	}
2196 	if (tq != NULL) {
2197 		taskq_wait(tq);
2198 		taskq_destroy(tq);
2199 	}
2200 	for (int c = 0; c < children; c++) {
2201 		int error = vd->vdev_child[c]->vdev_validate_error;
2202 
2203 		if (error != 0)
2204 			return (SET_ERROR(EBADF));
2205 	}
2206 
2207 
2208 	/*
2209 	 * If the device has already failed, or was marked offline, don't do
2210 	 * any further validation.  Otherwise, label I/O will fail and we will
2211 	 * overwrite the previous state.
2212 	 */
2213 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2214 		return (0);
2215 
2216 	/*
2217 	 * If we are performing an extreme rewind, we allow for a label that
2218 	 * was modified at a point after the current txg.
2219 	 * If config lock is not held do not check for the txg. spa_sync could
2220 	 * be updating the vdev's label before updating spa_last_synced_txg.
2221 	 */
2222 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2223 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2224 		txg = UINT64_MAX;
2225 	else
2226 		txg = spa_last_synced_txg(spa);
2227 
2228 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2229 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2230 		    VDEV_AUX_BAD_LABEL);
2231 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2232 		    "txg %llu", (u_longlong_t)txg);
2233 		return (0);
2234 	}
2235 
2236 	/*
2237 	 * Determine if this vdev has been split off into another
2238 	 * pool.  If so, then refuse to open it.
2239 	 */
2240 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2241 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2242 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2243 		    VDEV_AUX_SPLIT_POOL);
2244 		nvlist_free(label);
2245 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2246 		return (0);
2247 	}
2248 
2249 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2250 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2251 		    VDEV_AUX_CORRUPT_DATA);
2252 		nvlist_free(label);
2253 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2254 		    ZPOOL_CONFIG_POOL_GUID);
2255 		return (0);
2256 	}
2257 
2258 	/*
2259 	 * If config is not trusted then ignore the spa guid check. This is
2260 	 * necessary because if the machine crashed during a re-guid the new
2261 	 * guid might have been written to all of the vdev labels, but not the
2262 	 * cached config. The check will be performed again once we have the
2263 	 * trusted config from the MOS.
2264 	 */
2265 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2266 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2267 		    VDEV_AUX_CORRUPT_DATA);
2268 		nvlist_free(label);
2269 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2270 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2271 		    (u_longlong_t)spa_guid(spa));
2272 		return (0);
2273 	}
2274 
2275 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2276 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2277 	    &aux_guid) != 0)
2278 		aux_guid = 0;
2279 
2280 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2281 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2282 		    VDEV_AUX_CORRUPT_DATA);
2283 		nvlist_free(label);
2284 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2285 		    ZPOOL_CONFIG_GUID);
2286 		return (0);
2287 	}
2288 
2289 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2290 	    != 0) {
2291 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2292 		    VDEV_AUX_CORRUPT_DATA);
2293 		nvlist_free(label);
2294 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2295 		    ZPOOL_CONFIG_TOP_GUID);
2296 		return (0);
2297 	}
2298 
2299 	/*
2300 	 * If this vdev just became a top-level vdev because its sibling was
2301 	 * detached, it will have adopted the parent's vdev guid -- but the
2302 	 * label may or may not be on disk yet. Fortunately, either version
2303 	 * of the label will have the same top guid, so if we're a top-level
2304 	 * vdev, we can safely compare to that instead.
2305 	 * However, if the config comes from a cachefile that failed to update
2306 	 * after the detach, a top-level vdev will appear as a non top-level
2307 	 * vdev in the config. Also relax the constraints if we perform an
2308 	 * extreme rewind.
2309 	 *
2310 	 * If we split this vdev off instead, then we also check the
2311 	 * original pool's guid. We don't want to consider the vdev
2312 	 * corrupt if it is partway through a split operation.
2313 	 */
2314 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2315 		boolean_t mismatch = B_FALSE;
2316 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2317 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2318 				mismatch = B_TRUE;
2319 		} else {
2320 			if (vd->vdev_guid != top_guid &&
2321 			    vd->vdev_top->vdev_guid != guid)
2322 				mismatch = B_TRUE;
2323 		}
2324 
2325 		if (mismatch) {
2326 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2327 			    VDEV_AUX_CORRUPT_DATA);
2328 			nvlist_free(label);
2329 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2330 			    "doesn't match label guid");
2331 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2332 			    (u_longlong_t)vd->vdev_guid,
2333 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2334 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2335 			    "aux_guid %llu", (u_longlong_t)guid,
2336 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2337 			return (0);
2338 		}
2339 	}
2340 
2341 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2342 	    &state) != 0) {
2343 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2344 		    VDEV_AUX_CORRUPT_DATA);
2345 		nvlist_free(label);
2346 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2347 		    ZPOOL_CONFIG_POOL_STATE);
2348 		return (0);
2349 	}
2350 
2351 	nvlist_free(label);
2352 
2353 	/*
2354 	 * If this is a verbatim import, no need to check the
2355 	 * state of the pool.
2356 	 */
2357 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2358 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2359 	    state != POOL_STATE_ACTIVE) {
2360 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2361 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2362 		return (SET_ERROR(EBADF));
2363 	}
2364 
2365 	/*
2366 	 * If we were able to open and validate a vdev that was
2367 	 * previously marked permanently unavailable, clear that state
2368 	 * now.
2369 	 */
2370 	if (vd->vdev_not_present)
2371 		vd->vdev_not_present = 0;
2372 
2373 	return (0);
2374 }
2375 
2376 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2377 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2378 {
2379 	char *old, *new;
2380 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2381 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2382 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2383 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2384 			    dvd->vdev_path, svd->vdev_path);
2385 			spa_strfree(dvd->vdev_path);
2386 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2387 		}
2388 	} else if (svd->vdev_path != NULL) {
2389 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2390 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2391 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2392 	}
2393 
2394 	/*
2395 	 * Our enclosure sysfs path may have changed between imports
2396 	 */
2397 	old = dvd->vdev_enc_sysfs_path;
2398 	new = svd->vdev_enc_sysfs_path;
2399 	if ((old != NULL && new == NULL) ||
2400 	    (old == NULL && new != NULL) ||
2401 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2402 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2403 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2404 		    old, new);
2405 
2406 		if (dvd->vdev_enc_sysfs_path)
2407 			spa_strfree(dvd->vdev_enc_sysfs_path);
2408 
2409 		if (svd->vdev_enc_sysfs_path) {
2410 			dvd->vdev_enc_sysfs_path = spa_strdup(
2411 			    svd->vdev_enc_sysfs_path);
2412 		} else {
2413 			dvd->vdev_enc_sysfs_path = NULL;
2414 		}
2415 	}
2416 }
2417 
2418 /*
2419  * Recursively copy vdev paths from one vdev to another. Source and destination
2420  * vdev trees must have same geometry otherwise return error. Intended to copy
2421  * paths from userland config into MOS config.
2422  */
2423 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2424 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2425 {
2426 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2427 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2428 	    (dvd->vdev_ops == &vdev_indirect_ops))
2429 		return (0);
2430 
2431 	if (svd->vdev_ops != dvd->vdev_ops) {
2432 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2433 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2434 		return (SET_ERROR(EINVAL));
2435 	}
2436 
2437 	if (svd->vdev_guid != dvd->vdev_guid) {
2438 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2439 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2440 		    (u_longlong_t)dvd->vdev_guid);
2441 		return (SET_ERROR(EINVAL));
2442 	}
2443 
2444 	if (svd->vdev_children != dvd->vdev_children) {
2445 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2446 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2447 		    (u_longlong_t)dvd->vdev_children);
2448 		return (SET_ERROR(EINVAL));
2449 	}
2450 
2451 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2452 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2453 		    dvd->vdev_child[i]);
2454 		if (error != 0)
2455 			return (error);
2456 	}
2457 
2458 	if (svd->vdev_ops->vdev_op_leaf)
2459 		vdev_copy_path_impl(svd, dvd);
2460 
2461 	return (0);
2462 }
2463 
2464 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2465 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2466 {
2467 	ASSERT(stvd->vdev_top == stvd);
2468 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2469 
2470 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2471 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2472 	}
2473 
2474 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2475 		return;
2476 
2477 	/*
2478 	 * The idea here is that while a vdev can shift positions within
2479 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2480 	 * step outside of it.
2481 	 */
2482 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2483 
2484 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2485 		return;
2486 
2487 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2488 
2489 	vdev_copy_path_impl(vd, dvd);
2490 }
2491 
2492 /*
2493  * Recursively copy vdev paths from one root vdev to another. Source and
2494  * destination vdev trees may differ in geometry. For each destination leaf
2495  * vdev, search a vdev with the same guid and top vdev id in the source.
2496  * Intended to copy paths from userland config into MOS config.
2497  */
2498 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2499 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2500 {
2501 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2502 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2503 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2504 
2505 	for (uint64_t i = 0; i < children; i++) {
2506 		vdev_copy_path_search(srvd->vdev_child[i],
2507 		    drvd->vdev_child[i]);
2508 	}
2509 }
2510 
2511 /*
2512  * Close a virtual device.
2513  */
2514 void
vdev_close(vdev_t * vd)2515 vdev_close(vdev_t *vd)
2516 {
2517 	vdev_t *pvd = vd->vdev_parent;
2518 	spa_t *spa __maybe_unused = vd->vdev_spa;
2519 
2520 	ASSERT(vd != NULL);
2521 	ASSERT(vd->vdev_open_thread == curthread ||
2522 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2523 
2524 	/*
2525 	 * If our parent is reopening, then we are as well, unless we are
2526 	 * going offline.
2527 	 */
2528 	if (pvd != NULL && pvd->vdev_reopening)
2529 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2530 
2531 	vd->vdev_ops->vdev_op_close(vd);
2532 
2533 	vdev_cache_purge(vd);
2534 
2535 	/*
2536 	 * We record the previous state before we close it, so that if we are
2537 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2538 	 * it's still faulted.
2539 	 */
2540 	vd->vdev_prevstate = vd->vdev_state;
2541 
2542 	if (vd->vdev_offline)
2543 		vd->vdev_state = VDEV_STATE_OFFLINE;
2544 	else
2545 		vd->vdev_state = VDEV_STATE_CLOSED;
2546 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2547 }
2548 
2549 void
vdev_hold(vdev_t * vd)2550 vdev_hold(vdev_t *vd)
2551 {
2552 	spa_t *spa = vd->vdev_spa;
2553 
2554 	ASSERT(spa_is_root(spa));
2555 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2556 		return;
2557 
2558 	for (int c = 0; c < vd->vdev_children; c++)
2559 		vdev_hold(vd->vdev_child[c]);
2560 
2561 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2562 		vd->vdev_ops->vdev_op_hold(vd);
2563 }
2564 
2565 void
vdev_rele(vdev_t * vd)2566 vdev_rele(vdev_t *vd)
2567 {
2568 	ASSERT(spa_is_root(vd->vdev_spa));
2569 	for (int c = 0; c < vd->vdev_children; c++)
2570 		vdev_rele(vd->vdev_child[c]);
2571 
2572 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2573 		vd->vdev_ops->vdev_op_rele(vd);
2574 }
2575 
2576 /*
2577  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2578  * reopen leaf vdevs which had previously been opened as they might deadlock
2579  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2580  * If the leaf has never been opened then open it, as usual.
2581  */
2582 void
vdev_reopen(vdev_t * vd)2583 vdev_reopen(vdev_t *vd)
2584 {
2585 	spa_t *spa = vd->vdev_spa;
2586 
2587 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2588 
2589 	/* set the reopening flag unless we're taking the vdev offline */
2590 	vd->vdev_reopening = !vd->vdev_offline;
2591 	vdev_close(vd);
2592 	(void) vdev_open(vd);
2593 
2594 	/*
2595 	 * Call vdev_validate() here to make sure we have the same device.
2596 	 * Otherwise, a device with an invalid label could be successfully
2597 	 * opened in response to vdev_reopen().
2598 	 */
2599 	if (vd->vdev_aux) {
2600 		(void) vdev_validate_aux(vd);
2601 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2602 		    vd->vdev_aux == &spa->spa_l2cache) {
2603 			/*
2604 			 * In case the vdev is present we should evict all ARC
2605 			 * buffers and pointers to log blocks and reclaim their
2606 			 * space before restoring its contents to L2ARC.
2607 			 */
2608 			if (l2arc_vdev_present(vd)) {
2609 				l2arc_rebuild_vdev(vd, B_TRUE);
2610 			} else {
2611 				l2arc_add_vdev(spa, vd);
2612 			}
2613 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2614 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2615 		}
2616 	} else {
2617 		(void) vdev_validate(vd);
2618 	}
2619 
2620 	/*
2621 	 * Reassess parent vdev's health.
2622 	 */
2623 	vdev_propagate_state(vd);
2624 }
2625 
2626 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2627 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2628 {
2629 	int error;
2630 
2631 	/*
2632 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2633 	 * For a create, however, we want to fail the request if
2634 	 * there are any components we can't open.
2635 	 */
2636 	error = vdev_open(vd);
2637 
2638 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2639 		vdev_close(vd);
2640 		return (error ? error : SET_ERROR(ENXIO));
2641 	}
2642 
2643 	/*
2644 	 * Recursively load DTLs and initialize all labels.
2645 	 */
2646 	if ((error = vdev_dtl_load(vd)) != 0 ||
2647 	    (error = vdev_label_init(vd, txg, isreplacing ?
2648 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2649 		vdev_close(vd);
2650 		return (error);
2651 	}
2652 
2653 	return (0);
2654 }
2655 
2656 void
vdev_metaslab_set_size(vdev_t * vd)2657 vdev_metaslab_set_size(vdev_t *vd)
2658 {
2659 	uint64_t asize = vd->vdev_asize;
2660 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2661 	uint64_t ms_shift;
2662 
2663 	/*
2664 	 * There are two dimensions to the metaslab sizing calculation:
2665 	 * the size of the metaslab and the count of metaslabs per vdev.
2666 	 *
2667 	 * The default values used below are a good balance between memory
2668 	 * usage (larger metaslab size means more memory needed for loaded
2669 	 * metaslabs; more metaslabs means more memory needed for the
2670 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2671 	 * longer to load), and metaslab sync time (more metaslabs means
2672 	 * more time spent syncing all of them).
2673 	 *
2674 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2675 	 * The range of the dimensions are as follows:
2676 	 *
2677 	 *	2^29 <= ms_size  <= 2^34
2678 	 *	  16 <= ms_count <= 131,072
2679 	 *
2680 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2681 	 * at least 512MB (2^29) to minimize fragmentation effects when
2682 	 * testing with smaller devices.  However, the count constraint
2683 	 * of at least 16 metaslabs will override this minimum size goal.
2684 	 *
2685 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2686 	 * size of 16GB.  However, we will cap the total count to 2^17
2687 	 * metaslabs to keep our memory footprint in check and let the
2688 	 * metaslab size grow from there if that limit is hit.
2689 	 *
2690 	 * The net effect of applying above constrains is summarized below.
2691 	 *
2692 	 *   vdev size       metaslab count
2693 	 *  --------------|-----------------
2694 	 *      < 8GB        ~16
2695 	 *  8GB   - 100GB   one per 512MB
2696 	 *  100GB - 3TB     ~200
2697 	 *  3TB   - 2PB     one per 16GB
2698 	 *      > 2PB       ~131,072
2699 	 *  --------------------------------
2700 	 *
2701 	 *  Finally, note that all of the above calculate the initial
2702 	 *  number of metaslabs. Expanding a top-level vdev will result
2703 	 *  in additional metaslabs being allocated making it possible
2704 	 *  to exceed the zfs_vdev_ms_count_limit.
2705 	 */
2706 
2707 	if (ms_count < zfs_vdev_min_ms_count)
2708 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2709 	else if (ms_count > zfs_vdev_default_ms_count)
2710 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2711 	else
2712 		ms_shift = zfs_vdev_default_ms_shift;
2713 
2714 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2715 		ms_shift = SPA_MAXBLOCKSHIFT;
2716 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2717 		ms_shift = zfs_vdev_max_ms_shift;
2718 		/* cap the total count to constrain memory footprint */
2719 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2720 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2721 	}
2722 
2723 	vd->vdev_ms_shift = ms_shift;
2724 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2725 }
2726 
2727 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2728 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2729 {
2730 	ASSERT(vd == vd->vdev_top);
2731 	/* indirect vdevs don't have metaslabs or dtls */
2732 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2733 	ASSERT(ISP2(flags));
2734 	ASSERT(spa_writeable(vd->vdev_spa));
2735 
2736 	if (flags & VDD_METASLAB)
2737 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2738 
2739 	if (flags & VDD_DTL)
2740 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2741 
2742 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2743 }
2744 
2745 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2746 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2747 {
2748 	for (int c = 0; c < vd->vdev_children; c++)
2749 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2750 
2751 	if (vd->vdev_ops->vdev_op_leaf)
2752 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2753 }
2754 
2755 /*
2756  * DTLs.
2757  *
2758  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2759  * the vdev has less than perfect replication.  There are four kinds of DTL:
2760  *
2761  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2762  *
2763  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2764  *
2765  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2766  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2767  *	txgs that was scrubbed.
2768  *
2769  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2770  *	persistent errors or just some device being offline.
2771  *	Unlike the other three, the DTL_OUTAGE map is not generally
2772  *	maintained; it's only computed when needed, typically to
2773  *	determine whether a device can be detached.
2774  *
2775  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2776  * either has the data or it doesn't.
2777  *
2778  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2779  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2780  * if any child is less than fully replicated, then so is its parent.
2781  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2782  * comprising only those txgs which appear in 'maxfaults' or more children;
2783  * those are the txgs we don't have enough replication to read.  For example,
2784  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2785  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2786  * two child DTL_MISSING maps.
2787  *
2788  * It should be clear from the above that to compute the DTLs and outage maps
2789  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2790  * Therefore, that is all we keep on disk.  When loading the pool, or after
2791  * a configuration change, we generate all other DTLs from first principles.
2792  */
2793 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2794 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2795 {
2796 	range_tree_t *rt = vd->vdev_dtl[t];
2797 
2798 	ASSERT(t < DTL_TYPES);
2799 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2800 	ASSERT(spa_writeable(vd->vdev_spa));
2801 
2802 	mutex_enter(&vd->vdev_dtl_lock);
2803 	if (!range_tree_contains(rt, txg, size))
2804 		range_tree_add(rt, txg, size);
2805 	mutex_exit(&vd->vdev_dtl_lock);
2806 }
2807 
2808 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2809 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2810 {
2811 	range_tree_t *rt = vd->vdev_dtl[t];
2812 	boolean_t dirty = B_FALSE;
2813 
2814 	ASSERT(t < DTL_TYPES);
2815 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2816 
2817 	/*
2818 	 * While we are loading the pool, the DTLs have not been loaded yet.
2819 	 * This isn't a problem but it can result in devices being tried
2820 	 * which are known to not have the data.  In which case, the import
2821 	 * is relying on the checksum to ensure that we get the right data.
2822 	 * Note that while importing we are only reading the MOS, which is
2823 	 * always checksummed.
2824 	 */
2825 	mutex_enter(&vd->vdev_dtl_lock);
2826 	if (!range_tree_is_empty(rt))
2827 		dirty = range_tree_contains(rt, txg, size);
2828 	mutex_exit(&vd->vdev_dtl_lock);
2829 
2830 	return (dirty);
2831 }
2832 
2833 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)2834 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2835 {
2836 	range_tree_t *rt = vd->vdev_dtl[t];
2837 	boolean_t empty;
2838 
2839 	mutex_enter(&vd->vdev_dtl_lock);
2840 	empty = range_tree_is_empty(rt);
2841 	mutex_exit(&vd->vdev_dtl_lock);
2842 
2843 	return (empty);
2844 }
2845 
2846 /*
2847  * Check if the txg falls within the range which must be
2848  * resilvered.  DVAs outside this range can always be skipped.
2849  */
2850 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)2851 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2852     uint64_t phys_birth)
2853 {
2854 	(void) dva, (void) psize;
2855 
2856 	/* Set by sequential resilver. */
2857 	if (phys_birth == TXG_UNKNOWN)
2858 		return (B_TRUE);
2859 
2860 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2861 }
2862 
2863 /*
2864  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2865  */
2866 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)2867 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2868     uint64_t phys_birth)
2869 {
2870 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2871 
2872 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2873 	    vd->vdev_ops->vdev_op_leaf)
2874 		return (B_TRUE);
2875 
2876 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2877 	    phys_birth));
2878 }
2879 
2880 /*
2881  * Returns the lowest txg in the DTL range.
2882  */
2883 static uint64_t
vdev_dtl_min(vdev_t * vd)2884 vdev_dtl_min(vdev_t *vd)
2885 {
2886 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2887 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2888 	ASSERT0(vd->vdev_children);
2889 
2890 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2891 }
2892 
2893 /*
2894  * Returns the highest txg in the DTL.
2895  */
2896 static uint64_t
vdev_dtl_max(vdev_t * vd)2897 vdev_dtl_max(vdev_t *vd)
2898 {
2899 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2900 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2901 	ASSERT0(vd->vdev_children);
2902 
2903 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2904 }
2905 
2906 /*
2907  * Determine if a resilvering vdev should remove any DTL entries from
2908  * its range. If the vdev was resilvering for the entire duration of the
2909  * scan then it should excise that range from its DTLs. Otherwise, this
2910  * vdev is considered partially resilvered and should leave its DTL
2911  * entries intact. The comment in vdev_dtl_reassess() describes how we
2912  * excise the DTLs.
2913  */
2914 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)2915 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2916 {
2917 	ASSERT0(vd->vdev_children);
2918 
2919 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2920 		return (B_FALSE);
2921 
2922 	if (vd->vdev_resilver_deferred)
2923 		return (B_FALSE);
2924 
2925 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2926 		return (B_TRUE);
2927 
2928 	if (rebuild_done) {
2929 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2930 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2931 
2932 		/* Rebuild not initiated by attach */
2933 		if (vd->vdev_rebuild_txg == 0)
2934 			return (B_TRUE);
2935 
2936 		/*
2937 		 * When a rebuild completes without error then all missing data
2938 		 * up to the rebuild max txg has been reconstructed and the DTL
2939 		 * is eligible for excision.
2940 		 */
2941 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2942 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2943 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2944 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2945 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2946 			return (B_TRUE);
2947 		}
2948 	} else {
2949 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2950 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2951 
2952 		/* Resilver not initiated by attach */
2953 		if (vd->vdev_resilver_txg == 0)
2954 			return (B_TRUE);
2955 
2956 		/*
2957 		 * When a resilver is initiated the scan will assign the
2958 		 * scn_max_txg value to the highest txg value that exists
2959 		 * in all DTLs. If this device's max DTL is not part of this
2960 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2961 		 * then it is not eligible for excision.
2962 		 */
2963 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2964 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2965 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2966 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2967 			return (B_TRUE);
2968 		}
2969 	}
2970 
2971 	return (B_FALSE);
2972 }
2973 
2974 /*
2975  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2976  * write operations will be issued to the pool.
2977  */
2978 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)2979 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2980     boolean_t scrub_done, boolean_t rebuild_done)
2981 {
2982 	spa_t *spa = vd->vdev_spa;
2983 	avl_tree_t reftree;
2984 	int minref;
2985 
2986 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2987 
2988 	for (int c = 0; c < vd->vdev_children; c++)
2989 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2990 		    scrub_txg, scrub_done, rebuild_done);
2991 
2992 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2993 		return;
2994 
2995 	if (vd->vdev_ops->vdev_op_leaf) {
2996 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2997 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2998 		boolean_t check_excise = B_FALSE;
2999 		boolean_t wasempty = B_TRUE;
3000 
3001 		mutex_enter(&vd->vdev_dtl_lock);
3002 
3003 		/*
3004 		 * If requested, pretend the scan or rebuild completed cleanly.
3005 		 */
3006 		if (zfs_scan_ignore_errors) {
3007 			if (scn != NULL)
3008 				scn->scn_phys.scn_errors = 0;
3009 			if (vr != NULL)
3010 				vr->vr_rebuild_phys.vrp_errors = 0;
3011 		}
3012 
3013 		if (scrub_txg != 0 &&
3014 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3015 			wasempty = B_FALSE;
3016 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3017 			    "dtl:%llu/%llu errors:%llu",
3018 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3019 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3020 			    (u_longlong_t)vdev_dtl_min(vd),
3021 			    (u_longlong_t)vdev_dtl_max(vd),
3022 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3023 		}
3024 
3025 		/*
3026 		 * If we've completed a scrub/resilver or a rebuild cleanly
3027 		 * then determine if this vdev should remove any DTLs. We
3028 		 * only want to excise regions on vdevs that were available
3029 		 * during the entire duration of this scan.
3030 		 */
3031 		if (rebuild_done &&
3032 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3033 			check_excise = B_TRUE;
3034 		} else {
3035 			if (spa->spa_scrub_started ||
3036 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3037 				check_excise = B_TRUE;
3038 			}
3039 		}
3040 
3041 		if (scrub_txg && check_excise &&
3042 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3043 			/*
3044 			 * We completed a scrub, resilver or rebuild up to
3045 			 * scrub_txg.  If we did it without rebooting, then
3046 			 * the scrub dtl will be valid, so excise the old
3047 			 * region and fold in the scrub dtl.  Otherwise,
3048 			 * leave the dtl as-is if there was an error.
3049 			 *
3050 			 * There's little trick here: to excise the beginning
3051 			 * of the DTL_MISSING map, we put it into a reference
3052 			 * tree and then add a segment with refcnt -1 that
3053 			 * covers the range [0, scrub_txg).  This means
3054 			 * that each txg in that range has refcnt -1 or 0.
3055 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3056 			 * entries in the range [0, scrub_txg) will have a
3057 			 * positive refcnt -- either 1 or 2.  We then convert
3058 			 * the reference tree into the new DTL_MISSING map.
3059 			 */
3060 			space_reftree_create(&reftree);
3061 			space_reftree_add_map(&reftree,
3062 			    vd->vdev_dtl[DTL_MISSING], 1);
3063 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3064 			space_reftree_add_map(&reftree,
3065 			    vd->vdev_dtl[DTL_SCRUB], 2);
3066 			space_reftree_generate_map(&reftree,
3067 			    vd->vdev_dtl[DTL_MISSING], 1);
3068 			space_reftree_destroy(&reftree);
3069 
3070 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3071 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3072 				    (u_longlong_t)vdev_dtl_min(vd),
3073 				    (u_longlong_t)vdev_dtl_max(vd));
3074 			} else if (!wasempty) {
3075 				zfs_dbgmsg("DTL_MISSING is now empty");
3076 			}
3077 		}
3078 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3079 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3080 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3081 		if (scrub_done)
3082 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3083 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3084 		if (!vdev_readable(vd))
3085 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3086 		else
3087 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3088 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3089 
3090 		/*
3091 		 * If the vdev was resilvering or rebuilding and no longer
3092 		 * has any DTLs then reset the appropriate flag and dirty
3093 		 * the top level so that we persist the change.
3094 		 */
3095 		if (txg != 0 &&
3096 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3097 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3098 			if (vd->vdev_rebuild_txg != 0) {
3099 				vd->vdev_rebuild_txg = 0;
3100 				vdev_config_dirty(vd->vdev_top);
3101 			} else if (vd->vdev_resilver_txg != 0) {
3102 				vd->vdev_resilver_txg = 0;
3103 				vdev_config_dirty(vd->vdev_top);
3104 			}
3105 		}
3106 
3107 		mutex_exit(&vd->vdev_dtl_lock);
3108 
3109 		if (txg != 0)
3110 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3111 		return;
3112 	}
3113 
3114 	mutex_enter(&vd->vdev_dtl_lock);
3115 	for (int t = 0; t < DTL_TYPES; t++) {
3116 		/* account for child's outage in parent's missing map */
3117 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3118 		if (t == DTL_SCRUB)
3119 			continue;			/* leaf vdevs only */
3120 		if (t == DTL_PARTIAL)
3121 			minref = 1;			/* i.e. non-zero */
3122 		else if (vdev_get_nparity(vd) != 0)
3123 			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3124 		else
3125 			minref = vd->vdev_children;	/* any kind of mirror */
3126 		space_reftree_create(&reftree);
3127 		for (int c = 0; c < vd->vdev_children; c++) {
3128 			vdev_t *cvd = vd->vdev_child[c];
3129 			mutex_enter(&cvd->vdev_dtl_lock);
3130 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3131 			mutex_exit(&cvd->vdev_dtl_lock);
3132 		}
3133 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3134 		space_reftree_destroy(&reftree);
3135 	}
3136 	mutex_exit(&vd->vdev_dtl_lock);
3137 }
3138 
3139 int
vdev_dtl_load(vdev_t * vd)3140 vdev_dtl_load(vdev_t *vd)
3141 {
3142 	spa_t *spa = vd->vdev_spa;
3143 	objset_t *mos = spa->spa_meta_objset;
3144 	range_tree_t *rt;
3145 	int error = 0;
3146 
3147 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3148 		ASSERT(vdev_is_concrete(vd));
3149 
3150 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3151 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3152 		if (error)
3153 			return (error);
3154 		ASSERT(vd->vdev_dtl_sm != NULL);
3155 
3156 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3157 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3158 		if (error == 0) {
3159 			mutex_enter(&vd->vdev_dtl_lock);
3160 			range_tree_walk(rt, range_tree_add,
3161 			    vd->vdev_dtl[DTL_MISSING]);
3162 			mutex_exit(&vd->vdev_dtl_lock);
3163 		}
3164 
3165 		range_tree_vacate(rt, NULL, NULL);
3166 		range_tree_destroy(rt);
3167 
3168 		return (error);
3169 	}
3170 
3171 	for (int c = 0; c < vd->vdev_children; c++) {
3172 		error = vdev_dtl_load(vd->vdev_child[c]);
3173 		if (error != 0)
3174 			break;
3175 	}
3176 
3177 	return (error);
3178 }
3179 
3180 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3181 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3182 {
3183 	spa_t *spa = vd->vdev_spa;
3184 	objset_t *mos = spa->spa_meta_objset;
3185 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3186 	const char *string;
3187 
3188 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3189 
3190 	string =
3191 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3192 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3193 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3194 
3195 	ASSERT(string != NULL);
3196 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3197 	    1, strlen(string) + 1, string, tx));
3198 
3199 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3200 		spa_activate_allocation_classes(spa, tx);
3201 	}
3202 }
3203 
3204 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3205 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3206 {
3207 	spa_t *spa = vd->vdev_spa;
3208 
3209 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3210 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3211 	    zapobj, tx));
3212 }
3213 
3214 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3215 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3216 {
3217 	spa_t *spa = vd->vdev_spa;
3218 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3219 	    DMU_OT_NONE, 0, tx);
3220 
3221 	ASSERT(zap != 0);
3222 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3223 	    zap, tx));
3224 
3225 	return (zap);
3226 }
3227 
3228 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3229 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3230 {
3231 	if (vd->vdev_ops != &vdev_hole_ops &&
3232 	    vd->vdev_ops != &vdev_missing_ops &&
3233 	    vd->vdev_ops != &vdev_root_ops &&
3234 	    !vd->vdev_top->vdev_removing) {
3235 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3236 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3237 		}
3238 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3239 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3240 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3241 				vdev_zap_allocation_data(vd, tx);
3242 		}
3243 	}
3244 
3245 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3246 		vdev_construct_zaps(vd->vdev_child[i], tx);
3247 	}
3248 }
3249 
3250 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3251 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3252 {
3253 	spa_t *spa = vd->vdev_spa;
3254 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3255 	objset_t *mos = spa->spa_meta_objset;
3256 	range_tree_t *rtsync;
3257 	dmu_tx_t *tx;
3258 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3259 
3260 	ASSERT(vdev_is_concrete(vd));
3261 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3262 
3263 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3264 
3265 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3266 		mutex_enter(&vd->vdev_dtl_lock);
3267 		space_map_free(vd->vdev_dtl_sm, tx);
3268 		space_map_close(vd->vdev_dtl_sm);
3269 		vd->vdev_dtl_sm = NULL;
3270 		mutex_exit(&vd->vdev_dtl_lock);
3271 
3272 		/*
3273 		 * We only destroy the leaf ZAP for detached leaves or for
3274 		 * removed log devices. Removed data devices handle leaf ZAP
3275 		 * cleanup later, once cancellation is no longer possible.
3276 		 */
3277 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3278 		    vd->vdev_top->vdev_islog)) {
3279 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3280 			vd->vdev_leaf_zap = 0;
3281 		}
3282 
3283 		dmu_tx_commit(tx);
3284 		return;
3285 	}
3286 
3287 	if (vd->vdev_dtl_sm == NULL) {
3288 		uint64_t new_object;
3289 
3290 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3291 		VERIFY3U(new_object, !=, 0);
3292 
3293 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3294 		    0, -1ULL, 0));
3295 		ASSERT(vd->vdev_dtl_sm != NULL);
3296 	}
3297 
3298 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3299 
3300 	mutex_enter(&vd->vdev_dtl_lock);
3301 	range_tree_walk(rt, range_tree_add, rtsync);
3302 	mutex_exit(&vd->vdev_dtl_lock);
3303 
3304 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3305 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3306 	range_tree_vacate(rtsync, NULL, NULL);
3307 
3308 	range_tree_destroy(rtsync);
3309 
3310 	/*
3311 	 * If the object for the space map has changed then dirty
3312 	 * the top level so that we update the config.
3313 	 */
3314 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3315 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3316 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3317 		    (u_longlong_t)object,
3318 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3319 		vdev_config_dirty(vd->vdev_top);
3320 	}
3321 
3322 	dmu_tx_commit(tx);
3323 }
3324 
3325 /*
3326  * Determine whether the specified vdev can be offlined/detached/removed
3327  * without losing data.
3328  */
3329 boolean_t
vdev_dtl_required(vdev_t * vd)3330 vdev_dtl_required(vdev_t *vd)
3331 {
3332 	spa_t *spa = vd->vdev_spa;
3333 	vdev_t *tvd = vd->vdev_top;
3334 	uint8_t cant_read = vd->vdev_cant_read;
3335 	boolean_t required;
3336 
3337 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3338 
3339 	if (vd == spa->spa_root_vdev || vd == tvd)
3340 		return (B_TRUE);
3341 
3342 	/*
3343 	 * Temporarily mark the device as unreadable, and then determine
3344 	 * whether this results in any DTL outages in the top-level vdev.
3345 	 * If not, we can safely offline/detach/remove the device.
3346 	 */
3347 	vd->vdev_cant_read = B_TRUE;
3348 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3349 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3350 	vd->vdev_cant_read = cant_read;
3351 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3352 
3353 	if (!required && zio_injection_enabled) {
3354 		required = !!zio_handle_device_injection(vd, NULL,
3355 		    SET_ERROR(ECHILD));
3356 	}
3357 
3358 	return (required);
3359 }
3360 
3361 /*
3362  * Determine if resilver is needed, and if so the txg range.
3363  */
3364 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3365 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3366 {
3367 	boolean_t needed = B_FALSE;
3368 	uint64_t thismin = UINT64_MAX;
3369 	uint64_t thismax = 0;
3370 
3371 	if (vd->vdev_children == 0) {
3372 		mutex_enter(&vd->vdev_dtl_lock);
3373 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3374 		    vdev_writeable(vd)) {
3375 
3376 			thismin = vdev_dtl_min(vd);
3377 			thismax = vdev_dtl_max(vd);
3378 			needed = B_TRUE;
3379 		}
3380 		mutex_exit(&vd->vdev_dtl_lock);
3381 	} else {
3382 		for (int c = 0; c < vd->vdev_children; c++) {
3383 			vdev_t *cvd = vd->vdev_child[c];
3384 			uint64_t cmin, cmax;
3385 
3386 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3387 				thismin = MIN(thismin, cmin);
3388 				thismax = MAX(thismax, cmax);
3389 				needed = B_TRUE;
3390 			}
3391 		}
3392 	}
3393 
3394 	if (needed && minp) {
3395 		*minp = thismin;
3396 		*maxp = thismax;
3397 	}
3398 	return (needed);
3399 }
3400 
3401 /*
3402  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3403  * will contain either the checkpoint spacemap object or zero if none exists.
3404  * All other errors are returned to the caller.
3405  */
3406 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3407 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3408 {
3409 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3410 
3411 	if (vd->vdev_top_zap == 0) {
3412 		*sm_obj = 0;
3413 		return (0);
3414 	}
3415 
3416 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3417 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3418 	if (error == ENOENT) {
3419 		*sm_obj = 0;
3420 		error = 0;
3421 	}
3422 
3423 	return (error);
3424 }
3425 
3426 int
vdev_load(vdev_t * vd)3427 vdev_load(vdev_t *vd)
3428 {
3429 	int children = vd->vdev_children;
3430 	int error = 0;
3431 	taskq_t *tq = NULL;
3432 
3433 	/*
3434 	 * It's only worthwhile to use the taskq for the root vdev, because the
3435 	 * slow part is metaslab_init, and that only happens for top-level
3436 	 * vdevs.
3437 	 */
3438 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3439 		tq = taskq_create("vdev_load", children, minclsyspri,
3440 		    children, children, TASKQ_PREPOPULATE);
3441 	}
3442 
3443 	/*
3444 	 * Recursively load all children.
3445 	 */
3446 	for (int c = 0; c < vd->vdev_children; c++) {
3447 		vdev_t *cvd = vd->vdev_child[c];
3448 
3449 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3450 			cvd->vdev_load_error = vdev_load(cvd);
3451 		} else {
3452 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3453 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3454 		}
3455 	}
3456 
3457 	if (tq != NULL) {
3458 		taskq_wait(tq);
3459 		taskq_destroy(tq);
3460 	}
3461 
3462 	for (int c = 0; c < vd->vdev_children; c++) {
3463 		int error = vd->vdev_child[c]->vdev_load_error;
3464 
3465 		if (error != 0)
3466 			return (error);
3467 	}
3468 
3469 	vdev_set_deflate_ratio(vd);
3470 
3471 	/*
3472 	 * On spa_load path, grab the allocation bias from our zap
3473 	 */
3474 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3475 		spa_t *spa = vd->vdev_spa;
3476 		char bias_str[64];
3477 
3478 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3479 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3480 		    bias_str);
3481 		if (error == 0) {
3482 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3483 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3484 		} else if (error != ENOENT) {
3485 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3486 			    VDEV_AUX_CORRUPT_DATA);
3487 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3488 			    "failed [error=%d]", vd->vdev_top_zap, error);
3489 			return (error);
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * Load any rebuild state from the top-level vdev zap.
3495 	 */
3496 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3497 		error = vdev_rebuild_load(vd);
3498 		if (error && error != ENOTSUP) {
3499 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3500 			    VDEV_AUX_CORRUPT_DATA);
3501 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3502 			    "failed [error=%d]", error);
3503 			return (error);
3504 		}
3505 	}
3506 
3507 	/*
3508 	 * If this is a top-level vdev, initialize its metaslabs.
3509 	 */
3510 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3511 		vdev_metaslab_group_create(vd);
3512 
3513 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3514 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3515 			    VDEV_AUX_CORRUPT_DATA);
3516 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3517 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3518 			    (u_longlong_t)vd->vdev_asize);
3519 			return (SET_ERROR(ENXIO));
3520 		}
3521 
3522 		error = vdev_metaslab_init(vd, 0);
3523 		if (error != 0) {
3524 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3525 			    "[error=%d]", error);
3526 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3527 			    VDEV_AUX_CORRUPT_DATA);
3528 			return (error);
3529 		}
3530 
3531 		uint64_t checkpoint_sm_obj;
3532 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3533 		if (error == 0 && checkpoint_sm_obj != 0) {
3534 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3535 			ASSERT(vd->vdev_asize != 0);
3536 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3537 
3538 			error = space_map_open(&vd->vdev_checkpoint_sm,
3539 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3540 			    vd->vdev_ashift);
3541 			if (error != 0) {
3542 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3543 				    "failed for checkpoint spacemap (obj %llu) "
3544 				    "[error=%d]",
3545 				    (u_longlong_t)checkpoint_sm_obj, error);
3546 				return (error);
3547 			}
3548 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3549 
3550 			/*
3551 			 * Since the checkpoint_sm contains free entries
3552 			 * exclusively we can use space_map_allocated() to
3553 			 * indicate the cumulative checkpointed space that
3554 			 * has been freed.
3555 			 */
3556 			vd->vdev_stat.vs_checkpoint_space =
3557 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3558 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3559 			    vd->vdev_stat.vs_checkpoint_space;
3560 		} else if (error != 0) {
3561 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3562 			    "checkpoint space map object from vdev ZAP "
3563 			    "[error=%d]", error);
3564 			return (error);
3565 		}
3566 	}
3567 
3568 	/*
3569 	 * If this is a leaf vdev, load its DTL.
3570 	 */
3571 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3572 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3573 		    VDEV_AUX_CORRUPT_DATA);
3574 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3575 		    "[error=%d]", error);
3576 		return (error);
3577 	}
3578 
3579 	uint64_t obsolete_sm_object;
3580 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3581 	if (error == 0 && obsolete_sm_object != 0) {
3582 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3583 		ASSERT(vd->vdev_asize != 0);
3584 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3585 
3586 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3587 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3588 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3589 			    VDEV_AUX_CORRUPT_DATA);
3590 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3591 			    "obsolete spacemap (obj %llu) [error=%d]",
3592 			    (u_longlong_t)obsolete_sm_object, error);
3593 			return (error);
3594 		}
3595 	} else if (error != 0) {
3596 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3597 		    "space map object from vdev ZAP [error=%d]", error);
3598 		return (error);
3599 	}
3600 
3601 	return (0);
3602 }
3603 
3604 /*
3605  * The special vdev case is used for hot spares and l2cache devices.  Its
3606  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3607  * we make sure that we can open the underlying device, then try to read the
3608  * label, and make sure that the label is sane and that it hasn't been
3609  * repurposed to another pool.
3610  */
3611 int
vdev_validate_aux(vdev_t * vd)3612 vdev_validate_aux(vdev_t *vd)
3613 {
3614 	nvlist_t *label;
3615 	uint64_t guid, version;
3616 	uint64_t state;
3617 
3618 	if (!vdev_readable(vd))
3619 		return (0);
3620 
3621 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3622 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3623 		    VDEV_AUX_CORRUPT_DATA);
3624 		return (-1);
3625 	}
3626 
3627 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3628 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3629 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3630 	    guid != vd->vdev_guid ||
3631 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3632 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3633 		    VDEV_AUX_CORRUPT_DATA);
3634 		nvlist_free(label);
3635 		return (-1);
3636 	}
3637 
3638 	/*
3639 	 * We don't actually check the pool state here.  If it's in fact in
3640 	 * use by another pool, we update this fact on the fly when requested.
3641 	 */
3642 	nvlist_free(label);
3643 	return (0);
3644 }
3645 
3646 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)3647 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3648 {
3649 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3650 
3651 	if (vd->vdev_top_zap == 0)
3652 		return;
3653 
3654 	uint64_t object = 0;
3655 	int err = zap_lookup(mos, vd->vdev_top_zap,
3656 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3657 	if (err == ENOENT)
3658 		return;
3659 	VERIFY0(err);
3660 
3661 	VERIFY0(dmu_object_free(mos, object, tx));
3662 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3663 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3664 }
3665 
3666 /*
3667  * Free the objects used to store this vdev's spacemaps, and the array
3668  * that points to them.
3669  */
3670 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3671 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3672 {
3673 	if (vd->vdev_ms_array == 0)
3674 		return;
3675 
3676 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3677 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3678 	size_t array_bytes = array_count * sizeof (uint64_t);
3679 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3680 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3681 	    array_bytes, smobj_array, 0));
3682 
3683 	for (uint64_t i = 0; i < array_count; i++) {
3684 		uint64_t smobj = smobj_array[i];
3685 		if (smobj == 0)
3686 			continue;
3687 
3688 		space_map_free_obj(mos, smobj, tx);
3689 	}
3690 
3691 	kmem_free(smobj_array, array_bytes);
3692 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3693 	vdev_destroy_ms_flush_data(vd, tx);
3694 	vd->vdev_ms_array = 0;
3695 }
3696 
3697 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)3698 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3699 {
3700 	spa_t *spa = vd->vdev_spa;
3701 
3702 	ASSERT(vd->vdev_islog);
3703 	ASSERT(vd == vd->vdev_top);
3704 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3705 
3706 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3707 
3708 	vdev_destroy_spacemaps(vd, tx);
3709 	if (vd->vdev_top_zap != 0) {
3710 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3711 		vd->vdev_top_zap = 0;
3712 	}
3713 
3714 	dmu_tx_commit(tx);
3715 }
3716 
3717 void
vdev_sync_done(vdev_t * vd,uint64_t txg)3718 vdev_sync_done(vdev_t *vd, uint64_t txg)
3719 {
3720 	metaslab_t *msp;
3721 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3722 
3723 	ASSERT(vdev_is_concrete(vd));
3724 
3725 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3726 	    != NULL)
3727 		metaslab_sync_done(msp, txg);
3728 
3729 	if (reassess) {
3730 		metaslab_sync_reassess(vd->vdev_mg);
3731 		if (vd->vdev_log_mg != NULL)
3732 			metaslab_sync_reassess(vd->vdev_log_mg);
3733 	}
3734 }
3735 
3736 void
vdev_sync(vdev_t * vd,uint64_t txg)3737 vdev_sync(vdev_t *vd, uint64_t txg)
3738 {
3739 	spa_t *spa = vd->vdev_spa;
3740 	vdev_t *lvd;
3741 	metaslab_t *msp;
3742 
3743 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3744 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3745 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3746 		ASSERT(vd->vdev_removing ||
3747 		    vd->vdev_ops == &vdev_indirect_ops);
3748 
3749 		vdev_indirect_sync_obsolete(vd, tx);
3750 
3751 		/*
3752 		 * If the vdev is indirect, it can't have dirty
3753 		 * metaslabs or DTLs.
3754 		 */
3755 		if (vd->vdev_ops == &vdev_indirect_ops) {
3756 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3757 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3758 			dmu_tx_commit(tx);
3759 			return;
3760 		}
3761 	}
3762 
3763 	ASSERT(vdev_is_concrete(vd));
3764 
3765 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3766 	    !vd->vdev_removing) {
3767 		ASSERT(vd == vd->vdev_top);
3768 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3769 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3770 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3771 		ASSERT(vd->vdev_ms_array != 0);
3772 		vdev_config_dirty(vd);
3773 	}
3774 
3775 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3776 		metaslab_sync(msp, txg);
3777 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3778 	}
3779 
3780 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3781 		vdev_dtl_sync(lvd, txg);
3782 
3783 	/*
3784 	 * If this is an empty log device being removed, destroy the
3785 	 * metadata associated with it.
3786 	 */
3787 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3788 		vdev_remove_empty_log(vd, txg);
3789 
3790 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3791 	dmu_tx_commit(tx);
3792 }
3793 
3794 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)3795 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3796 {
3797 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3798 }
3799 
3800 /*
3801  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3802  * not be opened, and no I/O is attempted.
3803  */
3804 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)3805 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3806 {
3807 	vdev_t *vd, *tvd;
3808 
3809 	spa_vdev_state_enter(spa, SCL_NONE);
3810 
3811 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3812 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3813 
3814 	if (!vd->vdev_ops->vdev_op_leaf)
3815 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3816 
3817 	tvd = vd->vdev_top;
3818 
3819 	/*
3820 	 * If user did a 'zpool offline -f' then make the fault persist across
3821 	 * reboots.
3822 	 */
3823 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3824 		/*
3825 		 * There are two kinds of forced faults: temporary and
3826 		 * persistent.  Temporary faults go away at pool import, while
3827 		 * persistent faults stay set.  Both types of faults can be
3828 		 * cleared with a zpool clear.
3829 		 *
3830 		 * We tell if a vdev is persistently faulted by looking at the
3831 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3832 		 * import then it's a persistent fault.  Otherwise, it's
3833 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3834 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3835 		 * tells vdev_config_generate() (which gets run later) to set
3836 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3837 		 */
3838 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3839 		vd->vdev_tmpoffline = B_FALSE;
3840 		aux = VDEV_AUX_EXTERNAL;
3841 	} else {
3842 		vd->vdev_tmpoffline = B_TRUE;
3843 	}
3844 
3845 	/*
3846 	 * We don't directly use the aux state here, but if we do a
3847 	 * vdev_reopen(), we need this value to be present to remember why we
3848 	 * were faulted.
3849 	 */
3850 	vd->vdev_label_aux = aux;
3851 
3852 	/*
3853 	 * Faulted state takes precedence over degraded.
3854 	 */
3855 	vd->vdev_delayed_close = B_FALSE;
3856 	vd->vdev_faulted = 1ULL;
3857 	vd->vdev_degraded = 0ULL;
3858 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3859 
3860 	/*
3861 	 * If this device has the only valid copy of the data, then
3862 	 * back off and simply mark the vdev as degraded instead.
3863 	 */
3864 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3865 		vd->vdev_degraded = 1ULL;
3866 		vd->vdev_faulted = 0ULL;
3867 
3868 		/*
3869 		 * If we reopen the device and it's not dead, only then do we
3870 		 * mark it degraded.
3871 		 */
3872 		vdev_reopen(tvd);
3873 
3874 		if (vdev_readable(vd))
3875 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3876 	}
3877 
3878 	return (spa_vdev_state_exit(spa, vd, 0));
3879 }
3880 
3881 /*
3882  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3883  * user that something is wrong.  The vdev continues to operate as normal as far
3884  * as I/O is concerned.
3885  */
3886 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)3887 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3888 {
3889 	vdev_t *vd;
3890 
3891 	spa_vdev_state_enter(spa, SCL_NONE);
3892 
3893 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3894 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3895 
3896 	if (!vd->vdev_ops->vdev_op_leaf)
3897 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3898 
3899 	/*
3900 	 * If the vdev is already faulted, then don't do anything.
3901 	 */
3902 	if (vd->vdev_faulted || vd->vdev_degraded)
3903 		return (spa_vdev_state_exit(spa, NULL, 0));
3904 
3905 	vd->vdev_degraded = 1ULL;
3906 	if (!vdev_is_dead(vd))
3907 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3908 		    aux);
3909 
3910 	return (spa_vdev_state_exit(spa, vd, 0));
3911 }
3912 
3913 /*
3914  * Online the given vdev.
3915  *
3916  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3917  * spare device should be detached when the device finishes resilvering.
3918  * Second, the online should be treated like a 'test' online case, so no FMA
3919  * events are generated if the device fails to open.
3920  */
3921 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)3922 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3923 {
3924 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3925 	boolean_t wasoffline;
3926 	vdev_state_t oldstate;
3927 
3928 	spa_vdev_state_enter(spa, SCL_NONE);
3929 
3930 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3931 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3932 
3933 	if (!vd->vdev_ops->vdev_op_leaf)
3934 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3935 
3936 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3937 	oldstate = vd->vdev_state;
3938 
3939 	tvd = vd->vdev_top;
3940 	vd->vdev_offline = B_FALSE;
3941 	vd->vdev_tmpoffline = B_FALSE;
3942 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3943 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3944 
3945 	/* XXX - L2ARC 1.0 does not support expansion */
3946 	if (!vd->vdev_aux) {
3947 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3948 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3949 			    spa->spa_autoexpand);
3950 		vd->vdev_expansion_time = gethrestime_sec();
3951 	}
3952 
3953 	vdev_reopen(tvd);
3954 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3955 
3956 	if (!vd->vdev_aux) {
3957 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3958 			pvd->vdev_expanding = B_FALSE;
3959 	}
3960 
3961 	if (newstate)
3962 		*newstate = vd->vdev_state;
3963 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3964 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3965 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3966 	    vd->vdev_parent->vdev_child[0] == vd)
3967 		vd->vdev_unspare = B_TRUE;
3968 
3969 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3970 
3971 		/* XXX - L2ARC 1.0 does not support expansion */
3972 		if (vd->vdev_aux)
3973 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3974 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3975 	}
3976 
3977 	/* Restart initializing if necessary */
3978 	mutex_enter(&vd->vdev_initialize_lock);
3979 	if (vdev_writeable(vd) &&
3980 	    vd->vdev_initialize_thread == NULL &&
3981 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3982 		(void) vdev_initialize(vd);
3983 	}
3984 	mutex_exit(&vd->vdev_initialize_lock);
3985 
3986 	/*
3987 	 * Restart trimming if necessary. We do not restart trimming for cache
3988 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3989 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3990 	 * space for upcoming writes.
3991 	 */
3992 	mutex_enter(&vd->vdev_trim_lock);
3993 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3994 	    vd->vdev_trim_thread == NULL &&
3995 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3996 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3997 		    vd->vdev_trim_secure);
3998 	}
3999 	mutex_exit(&vd->vdev_trim_lock);
4000 
4001 	if (wasoffline ||
4002 	    (oldstate < VDEV_STATE_DEGRADED &&
4003 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
4004 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4005 
4006 	return (spa_vdev_state_exit(spa, vd, 0));
4007 }
4008 
4009 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4010 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4011 {
4012 	vdev_t *vd, *tvd;
4013 	int error = 0;
4014 	uint64_t generation;
4015 	metaslab_group_t *mg;
4016 
4017 top:
4018 	spa_vdev_state_enter(spa, SCL_ALLOC);
4019 
4020 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4021 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4022 
4023 	if (!vd->vdev_ops->vdev_op_leaf)
4024 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4025 
4026 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4027 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4028 
4029 	tvd = vd->vdev_top;
4030 	mg = tvd->vdev_mg;
4031 	generation = spa->spa_config_generation + 1;
4032 
4033 	/*
4034 	 * If the device isn't already offline, try to offline it.
4035 	 */
4036 	if (!vd->vdev_offline) {
4037 		/*
4038 		 * If this device has the only valid copy of some data,
4039 		 * don't allow it to be offlined. Log devices are always
4040 		 * expendable.
4041 		 */
4042 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4043 		    vdev_dtl_required(vd))
4044 			return (spa_vdev_state_exit(spa, NULL,
4045 			    SET_ERROR(EBUSY)));
4046 
4047 		/*
4048 		 * If the top-level is a slog and it has had allocations
4049 		 * then proceed.  We check that the vdev's metaslab group
4050 		 * is not NULL since it's possible that we may have just
4051 		 * added this vdev but not yet initialized its metaslabs.
4052 		 */
4053 		if (tvd->vdev_islog && mg != NULL) {
4054 			/*
4055 			 * Prevent any future allocations.
4056 			 */
4057 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4058 			metaslab_group_passivate(mg);
4059 			(void) spa_vdev_state_exit(spa, vd, 0);
4060 
4061 			error = spa_reset_logs(spa);
4062 
4063 			/*
4064 			 * If the log device was successfully reset but has
4065 			 * checkpointed data, do not offline it.
4066 			 */
4067 			if (error == 0 &&
4068 			    tvd->vdev_checkpoint_sm != NULL) {
4069 				ASSERT3U(space_map_allocated(
4070 				    tvd->vdev_checkpoint_sm), !=, 0);
4071 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4072 			}
4073 
4074 			spa_vdev_state_enter(spa, SCL_ALLOC);
4075 
4076 			/*
4077 			 * Check to see if the config has changed.
4078 			 */
4079 			if (error || generation != spa->spa_config_generation) {
4080 				metaslab_group_activate(mg);
4081 				if (error)
4082 					return (spa_vdev_state_exit(spa,
4083 					    vd, error));
4084 				(void) spa_vdev_state_exit(spa, vd, 0);
4085 				goto top;
4086 			}
4087 			ASSERT0(tvd->vdev_stat.vs_alloc);
4088 		}
4089 
4090 		/*
4091 		 * Offline this device and reopen its top-level vdev.
4092 		 * If the top-level vdev is a log device then just offline
4093 		 * it. Otherwise, if this action results in the top-level
4094 		 * vdev becoming unusable, undo it and fail the request.
4095 		 */
4096 		vd->vdev_offline = B_TRUE;
4097 		vdev_reopen(tvd);
4098 
4099 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4100 		    vdev_is_dead(tvd)) {
4101 			vd->vdev_offline = B_FALSE;
4102 			vdev_reopen(tvd);
4103 			return (spa_vdev_state_exit(spa, NULL,
4104 			    SET_ERROR(EBUSY)));
4105 		}
4106 
4107 		/*
4108 		 * Add the device back into the metaslab rotor so that
4109 		 * once we online the device it's open for business.
4110 		 */
4111 		if (tvd->vdev_islog && mg != NULL)
4112 			metaslab_group_activate(mg);
4113 	}
4114 
4115 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4116 
4117 	return (spa_vdev_state_exit(spa, vd, 0));
4118 }
4119 
4120 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4121 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4122 {
4123 	int error;
4124 
4125 	mutex_enter(&spa->spa_vdev_top_lock);
4126 	error = vdev_offline_locked(spa, guid, flags);
4127 	mutex_exit(&spa->spa_vdev_top_lock);
4128 
4129 	return (error);
4130 }
4131 
4132 /*
4133  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4134  * vdev_offline(), we assume the spa config is locked.  We also clear all
4135  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4136  */
4137 void
vdev_clear(spa_t * spa,vdev_t * vd)4138 vdev_clear(spa_t *spa, vdev_t *vd)
4139 {
4140 	vdev_t *rvd = spa->spa_root_vdev;
4141 
4142 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4143 
4144 	if (vd == NULL)
4145 		vd = rvd;
4146 
4147 	vd->vdev_stat.vs_read_errors = 0;
4148 	vd->vdev_stat.vs_write_errors = 0;
4149 	vd->vdev_stat.vs_checksum_errors = 0;
4150 	vd->vdev_stat.vs_slow_ios = 0;
4151 
4152 	for (int c = 0; c < vd->vdev_children; c++)
4153 		vdev_clear(spa, vd->vdev_child[c]);
4154 
4155 	/*
4156 	 * It makes no sense to "clear" an indirect vdev.
4157 	 */
4158 	if (!vdev_is_concrete(vd))
4159 		return;
4160 
4161 	/*
4162 	 * If we're in the FAULTED state or have experienced failed I/O, then
4163 	 * clear the persistent state and attempt to reopen the device.  We
4164 	 * also mark the vdev config dirty, so that the new faulted state is
4165 	 * written out to disk.
4166 	 */
4167 	if (vd->vdev_faulted || vd->vdev_degraded ||
4168 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4169 		/*
4170 		 * When reopening in response to a clear event, it may be due to
4171 		 * a fmadm repair request.  In this case, if the device is
4172 		 * still broken, we want to still post the ereport again.
4173 		 */
4174 		vd->vdev_forcefault = B_TRUE;
4175 
4176 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4177 		vd->vdev_cant_read = B_FALSE;
4178 		vd->vdev_cant_write = B_FALSE;
4179 		vd->vdev_stat.vs_aux = 0;
4180 
4181 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4182 
4183 		vd->vdev_forcefault = B_FALSE;
4184 
4185 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4186 			vdev_state_dirty(vd->vdev_top);
4187 
4188 		/* If a resilver isn't required, check if vdevs can be culled */
4189 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4190 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4191 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4192 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4193 
4194 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4195 	}
4196 
4197 	/*
4198 	 * When clearing a FMA-diagnosed fault, we always want to
4199 	 * unspare the device, as we assume that the original spare was
4200 	 * done in response to the FMA fault.
4201 	 */
4202 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4203 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4204 	    vd->vdev_parent->vdev_child[0] == vd)
4205 		vd->vdev_unspare = B_TRUE;
4206 
4207 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4208 	zfs_ereport_clear(spa, vd);
4209 }
4210 
4211 boolean_t
vdev_is_dead(vdev_t * vd)4212 vdev_is_dead(vdev_t *vd)
4213 {
4214 	/*
4215 	 * Holes and missing devices are always considered "dead".
4216 	 * This simplifies the code since we don't have to check for
4217 	 * these types of devices in the various code paths.
4218 	 * Instead we rely on the fact that we skip over dead devices
4219 	 * before issuing I/O to them.
4220 	 */
4221 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4222 	    vd->vdev_ops == &vdev_hole_ops ||
4223 	    vd->vdev_ops == &vdev_missing_ops);
4224 }
4225 
4226 boolean_t
vdev_readable(vdev_t * vd)4227 vdev_readable(vdev_t *vd)
4228 {
4229 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4230 }
4231 
4232 boolean_t
vdev_writeable(vdev_t * vd)4233 vdev_writeable(vdev_t *vd)
4234 {
4235 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4236 	    vdev_is_concrete(vd));
4237 }
4238 
4239 boolean_t
vdev_allocatable(vdev_t * vd)4240 vdev_allocatable(vdev_t *vd)
4241 {
4242 	uint64_t state = vd->vdev_state;
4243 
4244 	/*
4245 	 * We currently allow allocations from vdevs which may be in the
4246 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4247 	 * fails to reopen then we'll catch it later when we're holding
4248 	 * the proper locks.  Note that we have to get the vdev state
4249 	 * in a local variable because although it changes atomically,
4250 	 * we're asking two separate questions about it.
4251 	 */
4252 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4253 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4254 	    vd->vdev_mg->mg_initialized);
4255 }
4256 
4257 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4258 vdev_accessible(vdev_t *vd, zio_t *zio)
4259 {
4260 	ASSERT(zio->io_vd == vd);
4261 
4262 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4263 		return (B_FALSE);
4264 
4265 	if (zio->io_type == ZIO_TYPE_READ)
4266 		return (!vd->vdev_cant_read);
4267 
4268 	if (zio->io_type == ZIO_TYPE_WRITE)
4269 		return (!vd->vdev_cant_write);
4270 
4271 	return (B_TRUE);
4272 }
4273 
4274 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4275 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4276 {
4277 	/*
4278 	 * Exclude the dRAID spare when aggregating to avoid double counting
4279 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4280 	 */
4281 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4282 		return;
4283 
4284 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4285 		vs->vs_ops[t] += cvs->vs_ops[t];
4286 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4287 	}
4288 
4289 	cvs->vs_scan_removing = cvd->vdev_removing;
4290 }
4291 
4292 /*
4293  * Get extended stats
4294  */
4295 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4296 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4297 {
4298 	(void) cvd;
4299 
4300 	int t, b;
4301 	for (t = 0; t < ZIO_TYPES; t++) {
4302 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4303 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4304 
4305 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4306 			vsx->vsx_total_histo[t][b] +=
4307 			    cvsx->vsx_total_histo[t][b];
4308 		}
4309 	}
4310 
4311 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4312 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4313 			vsx->vsx_queue_histo[t][b] +=
4314 			    cvsx->vsx_queue_histo[t][b];
4315 		}
4316 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4317 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4318 
4319 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4320 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4321 
4322 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4323 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4324 	}
4325 
4326 }
4327 
4328 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4329 vdev_is_spacemap_addressable(vdev_t *vd)
4330 {
4331 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4332 		return (B_TRUE);
4333 
4334 	/*
4335 	 * If double-word space map entries are not enabled we assume
4336 	 * 47 bits of the space map entry are dedicated to the entry's
4337 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4338 	 * to calculate the maximum address that can be described by a
4339 	 * space map entry for the given device.
4340 	 */
4341 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4342 
4343 	if (shift >= 63) /* detect potential overflow */
4344 		return (B_TRUE);
4345 
4346 	return (vd->vdev_asize < (1ULL << shift));
4347 }
4348 
4349 /*
4350  * Get statistics for the given vdev.
4351  */
4352 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4353 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4354 {
4355 	int t;
4356 	/*
4357 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4358 	 * over all top-level vdevs (i.e. the direct children of the root).
4359 	 */
4360 	if (!vd->vdev_ops->vdev_op_leaf) {
4361 		if (vs) {
4362 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4363 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4364 		}
4365 		if (vsx)
4366 			memset(vsx, 0, sizeof (*vsx));
4367 
4368 		for (int c = 0; c < vd->vdev_children; c++) {
4369 			vdev_t *cvd = vd->vdev_child[c];
4370 			vdev_stat_t *cvs = &cvd->vdev_stat;
4371 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4372 
4373 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4374 			if (vs)
4375 				vdev_get_child_stat(cvd, vs, cvs);
4376 			if (vsx)
4377 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4378 		}
4379 	} else {
4380 		/*
4381 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4382 		 * other leaf stats are updated in vdev_stat_update().
4383 		 */
4384 		if (!vsx)
4385 			return;
4386 
4387 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4388 
4389 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4390 			vsx->vsx_active_queue[t] =
4391 			    vd->vdev_queue.vq_class[t].vqc_active;
4392 			vsx->vsx_pend_queue[t] = avl_numnodes(
4393 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4394 		}
4395 	}
4396 }
4397 
4398 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4399 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4400 {
4401 	vdev_t *tvd = vd->vdev_top;
4402 	mutex_enter(&vd->vdev_stat_lock);
4403 	if (vs) {
4404 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4405 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4406 		vs->vs_state = vd->vdev_state;
4407 		vs->vs_rsize = vdev_get_min_asize(vd);
4408 
4409 		if (vd->vdev_ops->vdev_op_leaf) {
4410 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4411 			    VDEV_LABEL_END_SIZE;
4412 			/*
4413 			 * Report initializing progress. Since we don't
4414 			 * have the initializing locks held, this is only
4415 			 * an estimate (although a fairly accurate one).
4416 			 */
4417 			vs->vs_initialize_bytes_done =
4418 			    vd->vdev_initialize_bytes_done;
4419 			vs->vs_initialize_bytes_est =
4420 			    vd->vdev_initialize_bytes_est;
4421 			vs->vs_initialize_state = vd->vdev_initialize_state;
4422 			vs->vs_initialize_action_time =
4423 			    vd->vdev_initialize_action_time;
4424 
4425 			/*
4426 			 * Report manual TRIM progress. Since we don't have
4427 			 * the manual TRIM locks held, this is only an
4428 			 * estimate (although fairly accurate one).
4429 			 */
4430 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4431 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4432 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4433 			vs->vs_trim_state = vd->vdev_trim_state;
4434 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4435 
4436 			/* Set when there is a deferred resilver. */
4437 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4438 		}
4439 
4440 		/*
4441 		 * Report expandable space on top-level, non-auxiliary devices
4442 		 * only. The expandable space is reported in terms of metaslab
4443 		 * sized units since that determines how much space the pool
4444 		 * can expand.
4445 		 */
4446 		if (vd->vdev_aux == NULL && tvd != NULL) {
4447 			vs->vs_esize = P2ALIGN(
4448 			    vd->vdev_max_asize - vd->vdev_asize,
4449 			    1ULL << tvd->vdev_ms_shift);
4450 		}
4451 
4452 		vs->vs_configured_ashift = vd->vdev_top != NULL
4453 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4454 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4455 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4456 
4457 		/*
4458 		 * Report fragmentation and rebuild progress for top-level,
4459 		 * non-auxiliary, concrete devices.
4460 		 */
4461 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4462 		    vdev_is_concrete(vd)) {
4463 			/*
4464 			 * The vdev fragmentation rating doesn't take into
4465 			 * account the embedded slog metaslab (vdev_log_mg).
4466 			 * Since it's only one metaslab, it would have a tiny
4467 			 * impact on the overall fragmentation.
4468 			 */
4469 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4470 			    vd->vdev_mg->mg_fragmentation : 0;
4471 		}
4472 	}
4473 
4474 	vdev_get_stats_ex_impl(vd, vs, vsx);
4475 	mutex_exit(&vd->vdev_stat_lock);
4476 }
4477 
4478 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4479 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4480 {
4481 	return (vdev_get_stats_ex(vd, vs, NULL));
4482 }
4483 
4484 void
vdev_clear_stats(vdev_t * vd)4485 vdev_clear_stats(vdev_t *vd)
4486 {
4487 	mutex_enter(&vd->vdev_stat_lock);
4488 	vd->vdev_stat.vs_space = 0;
4489 	vd->vdev_stat.vs_dspace = 0;
4490 	vd->vdev_stat.vs_alloc = 0;
4491 	mutex_exit(&vd->vdev_stat_lock);
4492 }
4493 
4494 void
vdev_scan_stat_init(vdev_t * vd)4495 vdev_scan_stat_init(vdev_t *vd)
4496 {
4497 	vdev_stat_t *vs = &vd->vdev_stat;
4498 
4499 	for (int c = 0; c < vd->vdev_children; c++)
4500 		vdev_scan_stat_init(vd->vdev_child[c]);
4501 
4502 	mutex_enter(&vd->vdev_stat_lock);
4503 	vs->vs_scan_processed = 0;
4504 	mutex_exit(&vd->vdev_stat_lock);
4505 }
4506 
4507 void
vdev_stat_update(zio_t * zio,uint64_t psize)4508 vdev_stat_update(zio_t *zio, uint64_t psize)
4509 {
4510 	spa_t *spa = zio->io_spa;
4511 	vdev_t *rvd = spa->spa_root_vdev;
4512 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4513 	vdev_t *pvd;
4514 	uint64_t txg = zio->io_txg;
4515 	vdev_stat_t *vs = &vd->vdev_stat;
4516 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4517 	zio_type_t type = zio->io_type;
4518 	int flags = zio->io_flags;
4519 
4520 	/*
4521 	 * If this i/o is a gang leader, it didn't do any actual work.
4522 	 */
4523 	if (zio->io_gang_tree)
4524 		return;
4525 
4526 	if (zio->io_error == 0) {
4527 		/*
4528 		 * If this is a root i/o, don't count it -- we've already
4529 		 * counted the top-level vdevs, and vdev_get_stats() will
4530 		 * aggregate them when asked.  This reduces contention on
4531 		 * the root vdev_stat_lock and implicitly handles blocks
4532 		 * that compress away to holes, for which there is no i/o.
4533 		 * (Holes never create vdev children, so all the counters
4534 		 * remain zero, which is what we want.)
4535 		 *
4536 		 * Note: this only applies to successful i/o (io_error == 0)
4537 		 * because unlike i/o counts, errors are not additive.
4538 		 * When reading a ditto block, for example, failure of
4539 		 * one top-level vdev does not imply a root-level error.
4540 		 */
4541 		if (vd == rvd)
4542 			return;
4543 
4544 		ASSERT(vd == zio->io_vd);
4545 
4546 		if (flags & ZIO_FLAG_IO_BYPASS)
4547 			return;
4548 
4549 		mutex_enter(&vd->vdev_stat_lock);
4550 
4551 		if (flags & ZIO_FLAG_IO_REPAIR) {
4552 			/*
4553 			 * Repair is the result of a resilver issued by the
4554 			 * scan thread (spa_sync).
4555 			 */
4556 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4557 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4558 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4559 				uint64_t *processed = &scn_phys->scn_processed;
4560 
4561 				if (vd->vdev_ops->vdev_op_leaf)
4562 					atomic_add_64(processed, psize);
4563 				vs->vs_scan_processed += psize;
4564 			}
4565 
4566 			/*
4567 			 * Repair is the result of a rebuild issued by the
4568 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4569 			 * double counting repaired bytes the virtual dRAID
4570 			 * spare vdev is excluded from the processed bytes.
4571 			 */
4572 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4573 				vdev_t *tvd = vd->vdev_top;
4574 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4575 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4576 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4577 
4578 				if (vd->vdev_ops->vdev_op_leaf &&
4579 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4580 					atomic_add_64(rebuilt, psize);
4581 				}
4582 				vs->vs_rebuild_processed += psize;
4583 			}
4584 
4585 			if (flags & ZIO_FLAG_SELF_HEAL)
4586 				vs->vs_self_healed += psize;
4587 		}
4588 
4589 		/*
4590 		 * The bytes/ops/histograms are recorded at the leaf level and
4591 		 * aggregated into the higher level vdevs in vdev_get_stats().
4592 		 */
4593 		if (vd->vdev_ops->vdev_op_leaf &&
4594 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4595 			zio_type_t vs_type = type;
4596 			zio_priority_t priority = zio->io_priority;
4597 
4598 			/*
4599 			 * TRIM ops and bytes are reported to user space as
4600 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4601 			 * vdev_stat_t structure layout for user space.
4602 			 */
4603 			if (type == ZIO_TYPE_TRIM)
4604 				vs_type = ZIO_TYPE_IOCTL;
4605 
4606 			/*
4607 			 * Solely for the purposes of 'zpool iostat -lqrw'
4608 			 * reporting use the priority to categorize the IO.
4609 			 * Only the following are reported to user space:
4610 			 *
4611 			 *   ZIO_PRIORITY_SYNC_READ,
4612 			 *   ZIO_PRIORITY_SYNC_WRITE,
4613 			 *   ZIO_PRIORITY_ASYNC_READ,
4614 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4615 			 *   ZIO_PRIORITY_SCRUB,
4616 			 *   ZIO_PRIORITY_TRIM.
4617 			 */
4618 			if (priority == ZIO_PRIORITY_REBUILD) {
4619 				priority = ((type == ZIO_TYPE_WRITE) ?
4620 				    ZIO_PRIORITY_ASYNC_WRITE :
4621 				    ZIO_PRIORITY_SCRUB);
4622 			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4623 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4624 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4625 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4626 				priority = ((type == ZIO_TYPE_WRITE) ?
4627 				    ZIO_PRIORITY_ASYNC_WRITE :
4628 				    ZIO_PRIORITY_ASYNC_READ);
4629 			}
4630 
4631 			vs->vs_ops[vs_type]++;
4632 			vs->vs_bytes[vs_type] += psize;
4633 
4634 			if (flags & ZIO_FLAG_DELEGATED) {
4635 				vsx->vsx_agg_histo[priority]
4636 				    [RQ_HISTO(zio->io_size)]++;
4637 			} else {
4638 				vsx->vsx_ind_histo[priority]
4639 				    [RQ_HISTO(zio->io_size)]++;
4640 			}
4641 
4642 			if (zio->io_delta && zio->io_delay) {
4643 				vsx->vsx_queue_histo[priority]
4644 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4645 				vsx->vsx_disk_histo[type]
4646 				    [L_HISTO(zio->io_delay)]++;
4647 				vsx->vsx_total_histo[type]
4648 				    [L_HISTO(zio->io_delta)]++;
4649 			}
4650 		}
4651 
4652 		mutex_exit(&vd->vdev_stat_lock);
4653 		return;
4654 	}
4655 
4656 	if (flags & ZIO_FLAG_SPECULATIVE)
4657 		return;
4658 
4659 	/*
4660 	 * If this is an I/O error that is going to be retried, then ignore the
4661 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4662 	 * hard errors, when in reality they can happen for any number of
4663 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4664 	 */
4665 	if (zio->io_error == EIO &&
4666 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4667 		return;
4668 
4669 	/*
4670 	 * Intent logs writes won't propagate their error to the root
4671 	 * I/O so don't mark these types of failures as pool-level
4672 	 * errors.
4673 	 */
4674 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4675 		return;
4676 
4677 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4678 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4679 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4680 	    spa->spa_claiming)) {
4681 		/*
4682 		 * This is either a normal write (not a repair), or it's
4683 		 * a repair induced by the scrub thread, or it's a repair
4684 		 * made by zil_claim() during spa_load() in the first txg.
4685 		 * In the normal case, we commit the DTL change in the same
4686 		 * txg as the block was born.  In the scrub-induced repair
4687 		 * case, we know that scrubs run in first-pass syncing context,
4688 		 * so we commit the DTL change in spa_syncing_txg(spa).
4689 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4690 		 *
4691 		 * We currently do not make DTL entries for failed spontaneous
4692 		 * self-healing writes triggered by normal (non-scrubbing)
4693 		 * reads, because we have no transactional context in which to
4694 		 * do so -- and it's not clear that it'd be desirable anyway.
4695 		 */
4696 		if (vd->vdev_ops->vdev_op_leaf) {
4697 			uint64_t commit_txg = txg;
4698 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4699 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4700 				ASSERT(spa_sync_pass(spa) == 1);
4701 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4702 				commit_txg = spa_syncing_txg(spa);
4703 			} else if (spa->spa_claiming) {
4704 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4705 				commit_txg = spa_first_txg(spa);
4706 			}
4707 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4708 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4709 				return;
4710 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4711 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4712 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4713 		}
4714 		if (vd != rvd)
4715 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4716 	}
4717 }
4718 
4719 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)4720 vdev_deflated_space(vdev_t *vd, int64_t space)
4721 {
4722 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4723 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4724 
4725 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4726 }
4727 
4728 /*
4729  * Update the in-core space usage stats for this vdev, its metaslab class,
4730  * and the root vdev.
4731  */
4732 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)4733 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4734     int64_t space_delta)
4735 {
4736 	(void) defer_delta;
4737 	int64_t dspace_delta;
4738 	spa_t *spa = vd->vdev_spa;
4739 	vdev_t *rvd = spa->spa_root_vdev;
4740 
4741 	ASSERT(vd == vd->vdev_top);
4742 
4743 	/*
4744 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4745 	 * factor.  We must calculate this here and not at the root vdev
4746 	 * because the root vdev's psize-to-asize is simply the max of its
4747 	 * children's, thus not accurate enough for us.
4748 	 */
4749 	dspace_delta = vdev_deflated_space(vd, space_delta);
4750 
4751 	mutex_enter(&vd->vdev_stat_lock);
4752 	/* ensure we won't underflow */
4753 	if (alloc_delta < 0) {
4754 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4755 	}
4756 
4757 	vd->vdev_stat.vs_alloc += alloc_delta;
4758 	vd->vdev_stat.vs_space += space_delta;
4759 	vd->vdev_stat.vs_dspace += dspace_delta;
4760 	mutex_exit(&vd->vdev_stat_lock);
4761 
4762 	/* every class but log contributes to root space stats */
4763 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4764 		ASSERT(!vd->vdev_isl2cache);
4765 		mutex_enter(&rvd->vdev_stat_lock);
4766 		rvd->vdev_stat.vs_alloc += alloc_delta;
4767 		rvd->vdev_stat.vs_space += space_delta;
4768 		rvd->vdev_stat.vs_dspace += dspace_delta;
4769 		mutex_exit(&rvd->vdev_stat_lock);
4770 	}
4771 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4772 }
4773 
4774 /*
4775  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4776  * so that it will be written out next time the vdev configuration is synced.
4777  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4778  */
4779 void
vdev_config_dirty(vdev_t * vd)4780 vdev_config_dirty(vdev_t *vd)
4781 {
4782 	spa_t *spa = vd->vdev_spa;
4783 	vdev_t *rvd = spa->spa_root_vdev;
4784 	int c;
4785 
4786 	ASSERT(spa_writeable(spa));
4787 
4788 	/*
4789 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4790 	 * update the vdev config manually and set the sync flag.
4791 	 */
4792 	if (vd->vdev_aux != NULL) {
4793 		spa_aux_vdev_t *sav = vd->vdev_aux;
4794 		nvlist_t **aux;
4795 		uint_t naux;
4796 
4797 		for (c = 0; c < sav->sav_count; c++) {
4798 			if (sav->sav_vdevs[c] == vd)
4799 				break;
4800 		}
4801 
4802 		if (c == sav->sav_count) {
4803 			/*
4804 			 * We're being removed.  There's nothing more to do.
4805 			 */
4806 			ASSERT(sav->sav_sync == B_TRUE);
4807 			return;
4808 		}
4809 
4810 		sav->sav_sync = B_TRUE;
4811 
4812 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4813 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4814 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4815 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4816 		}
4817 
4818 		ASSERT(c < naux);
4819 
4820 		/*
4821 		 * Setting the nvlist in the middle if the array is a little
4822 		 * sketchy, but it will work.
4823 		 */
4824 		nvlist_free(aux[c]);
4825 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4826 
4827 		return;
4828 	}
4829 
4830 	/*
4831 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4832 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4833 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4834 	 * so this is sufficient to ensure mutual exclusion.
4835 	 */
4836 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4837 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4838 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4839 
4840 	if (vd == rvd) {
4841 		for (c = 0; c < rvd->vdev_children; c++)
4842 			vdev_config_dirty(rvd->vdev_child[c]);
4843 	} else {
4844 		ASSERT(vd == vd->vdev_top);
4845 
4846 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4847 		    vdev_is_concrete(vd)) {
4848 			list_insert_head(&spa->spa_config_dirty_list, vd);
4849 		}
4850 	}
4851 }
4852 
4853 void
vdev_config_clean(vdev_t * vd)4854 vdev_config_clean(vdev_t *vd)
4855 {
4856 	spa_t *spa = vd->vdev_spa;
4857 
4858 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4859 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4860 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4861 
4862 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4863 	list_remove(&spa->spa_config_dirty_list, vd);
4864 }
4865 
4866 /*
4867  * Mark a top-level vdev's state as dirty, so that the next pass of
4868  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4869  * the state changes from larger config changes because they require
4870  * much less locking, and are often needed for administrative actions.
4871  */
4872 void
vdev_state_dirty(vdev_t * vd)4873 vdev_state_dirty(vdev_t *vd)
4874 {
4875 	spa_t *spa = vd->vdev_spa;
4876 
4877 	ASSERT(spa_writeable(spa));
4878 	ASSERT(vd == vd->vdev_top);
4879 
4880 	/*
4881 	 * The state list is protected by the SCL_STATE lock.  The caller
4882 	 * must either hold SCL_STATE as writer, or must be the sync thread
4883 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4884 	 * so this is sufficient to ensure mutual exclusion.
4885 	 */
4886 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4887 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4888 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4889 
4890 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4891 	    vdev_is_concrete(vd))
4892 		list_insert_head(&spa->spa_state_dirty_list, vd);
4893 }
4894 
4895 void
vdev_state_clean(vdev_t * vd)4896 vdev_state_clean(vdev_t *vd)
4897 {
4898 	spa_t *spa = vd->vdev_spa;
4899 
4900 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4901 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4902 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4903 
4904 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4905 	list_remove(&spa->spa_state_dirty_list, vd);
4906 }
4907 
4908 /*
4909  * Propagate vdev state up from children to parent.
4910  */
4911 void
vdev_propagate_state(vdev_t * vd)4912 vdev_propagate_state(vdev_t *vd)
4913 {
4914 	spa_t *spa = vd->vdev_spa;
4915 	vdev_t *rvd = spa->spa_root_vdev;
4916 	int degraded = 0, faulted = 0;
4917 	int corrupted = 0;
4918 	vdev_t *child;
4919 
4920 	if (vd->vdev_children > 0) {
4921 		for (int c = 0; c < vd->vdev_children; c++) {
4922 			child = vd->vdev_child[c];
4923 
4924 			/*
4925 			 * Don't factor holes or indirect vdevs into the
4926 			 * decision.
4927 			 */
4928 			if (!vdev_is_concrete(child))
4929 				continue;
4930 
4931 			if (!vdev_readable(child) ||
4932 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4933 				/*
4934 				 * Root special: if there is a top-level log
4935 				 * device, treat the root vdev as if it were
4936 				 * degraded.
4937 				 */
4938 				if (child->vdev_islog && vd == rvd)
4939 					degraded++;
4940 				else
4941 					faulted++;
4942 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4943 				degraded++;
4944 			}
4945 
4946 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4947 				corrupted++;
4948 		}
4949 
4950 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4951 
4952 		/*
4953 		 * Root special: if there is a top-level vdev that cannot be
4954 		 * opened due to corrupted metadata, then propagate the root
4955 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4956 		 * replicas'.
4957 		 */
4958 		if (corrupted && vd == rvd &&
4959 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4960 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4961 			    VDEV_AUX_CORRUPT_DATA);
4962 	}
4963 
4964 	if (vd->vdev_parent)
4965 		vdev_propagate_state(vd->vdev_parent);
4966 }
4967 
4968 /*
4969  * Set a vdev's state.  If this is during an open, we don't update the parent
4970  * state, because we're in the process of opening children depth-first.
4971  * Otherwise, we propagate the change to the parent.
4972  *
4973  * If this routine places a device in a faulted state, an appropriate ereport is
4974  * generated.
4975  */
4976 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)4977 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4978 {
4979 	uint64_t save_state;
4980 	spa_t *spa = vd->vdev_spa;
4981 
4982 	if (state == vd->vdev_state) {
4983 		/*
4984 		 * Since vdev_offline() code path is already in an offline
4985 		 * state we can miss a statechange event to OFFLINE. Check
4986 		 * the previous state to catch this condition.
4987 		 */
4988 		if (vd->vdev_ops->vdev_op_leaf &&
4989 		    (state == VDEV_STATE_OFFLINE) &&
4990 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4991 			/* post an offline state change */
4992 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4993 		}
4994 		vd->vdev_stat.vs_aux = aux;
4995 		return;
4996 	}
4997 
4998 	save_state = vd->vdev_state;
4999 
5000 	vd->vdev_state = state;
5001 	vd->vdev_stat.vs_aux = aux;
5002 
5003 	/*
5004 	 * If we are setting the vdev state to anything but an open state, then
5005 	 * always close the underlying device unless the device has requested
5006 	 * a delayed close (i.e. we're about to remove or fault the device).
5007 	 * Otherwise, we keep accessible but invalid devices open forever.
5008 	 * We don't call vdev_close() itself, because that implies some extra
5009 	 * checks (offline, etc) that we don't want here.  This is limited to
5010 	 * leaf devices, because otherwise closing the device will affect other
5011 	 * children.
5012 	 */
5013 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5014 	    vd->vdev_ops->vdev_op_leaf)
5015 		vd->vdev_ops->vdev_op_close(vd);
5016 
5017 	if (vd->vdev_removed &&
5018 	    state == VDEV_STATE_CANT_OPEN &&
5019 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5020 		/*
5021 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5022 		 * device was previously marked removed and someone attempted to
5023 		 * reopen it.  If this failed due to a nonexistent device, then
5024 		 * keep the device in the REMOVED state.  We also let this be if
5025 		 * it is one of our special test online cases, which is only
5026 		 * attempting to online the device and shouldn't generate an FMA
5027 		 * fault.
5028 		 */
5029 		vd->vdev_state = VDEV_STATE_REMOVED;
5030 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5031 	} else if (state == VDEV_STATE_REMOVED) {
5032 		vd->vdev_removed = B_TRUE;
5033 	} else if (state == VDEV_STATE_CANT_OPEN) {
5034 		/*
5035 		 * If we fail to open a vdev during an import or recovery, we
5036 		 * mark it as "not available", which signifies that it was
5037 		 * never there to begin with.  Failure to open such a device
5038 		 * is not considered an error.
5039 		 */
5040 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5041 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5042 		    vd->vdev_ops->vdev_op_leaf)
5043 			vd->vdev_not_present = 1;
5044 
5045 		/*
5046 		 * Post the appropriate ereport.  If the 'prevstate' field is
5047 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5048 		 * that this is part of a vdev_reopen().  In this case, we don't
5049 		 * want to post the ereport if the device was already in the
5050 		 * CANT_OPEN state beforehand.
5051 		 *
5052 		 * If the 'checkremove' flag is set, then this is an attempt to
5053 		 * online the device in response to an insertion event.  If we
5054 		 * hit this case, then we have detected an insertion event for a
5055 		 * faulted or offline device that wasn't in the removed state.
5056 		 * In this scenario, we don't post an ereport because we are
5057 		 * about to replace the device, or attempt an online with
5058 		 * vdev_forcefault, which will generate the fault for us.
5059 		 */
5060 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5061 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5062 		    vd != spa->spa_root_vdev) {
5063 			const char *class;
5064 
5065 			switch (aux) {
5066 			case VDEV_AUX_OPEN_FAILED:
5067 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5068 				break;
5069 			case VDEV_AUX_CORRUPT_DATA:
5070 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5071 				break;
5072 			case VDEV_AUX_NO_REPLICAS:
5073 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5074 				break;
5075 			case VDEV_AUX_BAD_GUID_SUM:
5076 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5077 				break;
5078 			case VDEV_AUX_TOO_SMALL:
5079 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5080 				break;
5081 			case VDEV_AUX_BAD_LABEL:
5082 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5083 				break;
5084 			case VDEV_AUX_BAD_ASHIFT:
5085 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5086 				break;
5087 			default:
5088 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5089 			}
5090 
5091 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5092 			    save_state);
5093 		}
5094 
5095 		/* Erase any notion of persistent removed state */
5096 		vd->vdev_removed = B_FALSE;
5097 	} else {
5098 		vd->vdev_removed = B_FALSE;
5099 	}
5100 
5101 	/*
5102 	 * Notify ZED of any significant state-change on a leaf vdev.
5103 	 *
5104 	 */
5105 	if (vd->vdev_ops->vdev_op_leaf) {
5106 		/* preserve original state from a vdev_reopen() */
5107 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5108 		    (vd->vdev_prevstate != vd->vdev_state) &&
5109 		    (save_state <= VDEV_STATE_CLOSED))
5110 			save_state = vd->vdev_prevstate;
5111 
5112 		/* filter out state change due to initial vdev_open */
5113 		if (save_state > VDEV_STATE_CLOSED)
5114 			zfs_post_state_change(spa, vd, save_state);
5115 	}
5116 
5117 	if (!isopen && vd->vdev_parent)
5118 		vdev_propagate_state(vd->vdev_parent);
5119 }
5120 
5121 boolean_t
vdev_children_are_offline(vdev_t * vd)5122 vdev_children_are_offline(vdev_t *vd)
5123 {
5124 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5125 
5126 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5127 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5128 			return (B_FALSE);
5129 	}
5130 
5131 	return (B_TRUE);
5132 }
5133 
5134 /*
5135  * Check the vdev configuration to ensure that it's capable of supporting
5136  * a root pool. We do not support partial configuration.
5137  */
5138 boolean_t
vdev_is_bootable(vdev_t * vd)5139 vdev_is_bootable(vdev_t *vd)
5140 {
5141 	if (!vd->vdev_ops->vdev_op_leaf) {
5142 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5143 
5144 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5145 			return (B_FALSE);
5146 	}
5147 
5148 	for (int c = 0; c < vd->vdev_children; c++) {
5149 		if (!vdev_is_bootable(vd->vdev_child[c]))
5150 			return (B_FALSE);
5151 	}
5152 	return (B_TRUE);
5153 }
5154 
5155 boolean_t
vdev_is_concrete(vdev_t * vd)5156 vdev_is_concrete(vdev_t *vd)
5157 {
5158 	vdev_ops_t *ops = vd->vdev_ops;
5159 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5160 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5161 		return (B_FALSE);
5162 	} else {
5163 		return (B_TRUE);
5164 	}
5165 }
5166 
5167 /*
5168  * Determine if a log device has valid content.  If the vdev was
5169  * removed or faulted in the MOS config then we know that
5170  * the content on the log device has already been written to the pool.
5171  */
5172 boolean_t
vdev_log_state_valid(vdev_t * vd)5173 vdev_log_state_valid(vdev_t *vd)
5174 {
5175 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5176 	    !vd->vdev_removed)
5177 		return (B_TRUE);
5178 
5179 	for (int c = 0; c < vd->vdev_children; c++)
5180 		if (vdev_log_state_valid(vd->vdev_child[c]))
5181 			return (B_TRUE);
5182 
5183 	return (B_FALSE);
5184 }
5185 
5186 /*
5187  * Expand a vdev if possible.
5188  */
5189 void
vdev_expand(vdev_t * vd,uint64_t txg)5190 vdev_expand(vdev_t *vd, uint64_t txg)
5191 {
5192 	ASSERT(vd->vdev_top == vd);
5193 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5194 	ASSERT(vdev_is_concrete(vd));
5195 
5196 	vdev_set_deflate_ratio(vd);
5197 
5198 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5199 	    vdev_is_concrete(vd)) {
5200 		vdev_metaslab_group_create(vd);
5201 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5202 		vdev_config_dirty(vd);
5203 	}
5204 }
5205 
5206 /*
5207  * Split a vdev.
5208  */
5209 void
vdev_split(vdev_t * vd)5210 vdev_split(vdev_t *vd)
5211 {
5212 	vdev_t *cvd, *pvd = vd->vdev_parent;
5213 
5214 	vdev_remove_child(pvd, vd);
5215 	vdev_compact_children(pvd);
5216 
5217 	cvd = pvd->vdev_child[0];
5218 	if (pvd->vdev_children == 1) {
5219 		vdev_remove_parent(cvd);
5220 		cvd->vdev_splitting = B_TRUE;
5221 	}
5222 	vdev_propagate_state(cvd);
5223 }
5224 
5225 void
vdev_deadman(vdev_t * vd,char * tag)5226 vdev_deadman(vdev_t *vd, char *tag)
5227 {
5228 	for (int c = 0; c < vd->vdev_children; c++) {
5229 		vdev_t *cvd = vd->vdev_child[c];
5230 
5231 		vdev_deadman(cvd, tag);
5232 	}
5233 
5234 	if (vd->vdev_ops->vdev_op_leaf) {
5235 		vdev_queue_t *vq = &vd->vdev_queue;
5236 
5237 		mutex_enter(&vq->vq_lock);
5238 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5239 			spa_t *spa = vd->vdev_spa;
5240 			zio_t *fio;
5241 			uint64_t delta;
5242 
5243 			zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5244 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5245 
5246 			/*
5247 			 * Look at the head of all the pending queues,
5248 			 * if any I/O has been outstanding for longer than
5249 			 * the spa_deadman_synctime invoke the deadman logic.
5250 			 */
5251 			fio = avl_first(&vq->vq_active_tree);
5252 			delta = gethrtime() - fio->io_timestamp;
5253 			if (delta > spa_deadman_synctime(spa))
5254 				zio_deadman(fio, tag);
5255 		}
5256 		mutex_exit(&vq->vq_lock);
5257 	}
5258 }
5259 
5260 void
vdev_defer_resilver(vdev_t * vd)5261 vdev_defer_resilver(vdev_t *vd)
5262 {
5263 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5264 
5265 	vd->vdev_resilver_deferred = B_TRUE;
5266 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5267 }
5268 
5269 /*
5270  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5271  * B_TRUE if we have devices that need to be resilvered and are available to
5272  * accept resilver I/Os.
5273  */
5274 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5275 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5276 {
5277 	boolean_t resilver_needed = B_FALSE;
5278 	spa_t *spa = vd->vdev_spa;
5279 
5280 	for (int c = 0; c < vd->vdev_children; c++) {
5281 		vdev_t *cvd = vd->vdev_child[c];
5282 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5283 	}
5284 
5285 	if (vd == spa->spa_root_vdev &&
5286 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5287 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5288 		vdev_config_dirty(vd);
5289 		spa->spa_resilver_deferred = B_FALSE;
5290 		return (resilver_needed);
5291 	}
5292 
5293 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5294 	    !vd->vdev_ops->vdev_op_leaf)
5295 		return (resilver_needed);
5296 
5297 	vd->vdev_resilver_deferred = B_FALSE;
5298 
5299 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5300 	    vdev_resilver_needed(vd, NULL, NULL));
5301 }
5302 
5303 boolean_t
vdev_xlate_is_empty(range_seg64_t * rs)5304 vdev_xlate_is_empty(range_seg64_t *rs)
5305 {
5306 	return (rs->rs_start == rs->rs_end);
5307 }
5308 
5309 /*
5310  * Translate a logical range to the first contiguous physical range for the
5311  * specified vdev_t.  This function is initially called with a leaf vdev and
5312  * will walk each parent vdev until it reaches a top-level vdev. Once the
5313  * top-level is reached the physical range is initialized and the recursive
5314  * function begins to unwind. As it unwinds it calls the parent's vdev
5315  * specific translation function to do the real conversion.
5316  */
5317 void
vdev_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)5318 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5319     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5320 {
5321 	/*
5322 	 * Walk up the vdev tree
5323 	 */
5324 	if (vd != vd->vdev_top) {
5325 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5326 		    remain_rs);
5327 	} else {
5328 		/*
5329 		 * We've reached the top-level vdev, initialize the physical
5330 		 * range to the logical range and set an empty remaining
5331 		 * range then start to unwind.
5332 		 */
5333 		physical_rs->rs_start = logical_rs->rs_start;
5334 		physical_rs->rs_end = logical_rs->rs_end;
5335 
5336 		remain_rs->rs_start = logical_rs->rs_start;
5337 		remain_rs->rs_end = logical_rs->rs_start;
5338 
5339 		return;
5340 	}
5341 
5342 	vdev_t *pvd = vd->vdev_parent;
5343 	ASSERT3P(pvd, !=, NULL);
5344 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5345 
5346 	/*
5347 	 * As this recursive function unwinds, translate the logical
5348 	 * range into its physical and any remaining components by calling
5349 	 * the vdev specific translate function.
5350 	 */
5351 	range_seg64_t intermediate = { 0 };
5352 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5353 
5354 	physical_rs->rs_start = intermediate.rs_start;
5355 	physical_rs->rs_end = intermediate.rs_end;
5356 }
5357 
5358 void
vdev_xlate_walk(vdev_t * vd,const range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5359 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5360     vdev_xlate_func_t *func, void *arg)
5361 {
5362 	range_seg64_t iter_rs = *logical_rs;
5363 	range_seg64_t physical_rs;
5364 	range_seg64_t remain_rs;
5365 
5366 	while (!vdev_xlate_is_empty(&iter_rs)) {
5367 
5368 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5369 
5370 		/*
5371 		 * With raidz and dRAID, it's possible that the logical range
5372 		 * does not live on this leaf vdev. Only when there is a non-
5373 		 * zero physical size call the provided function.
5374 		 */
5375 		if (!vdev_xlate_is_empty(&physical_rs))
5376 			func(arg, &physical_rs);
5377 
5378 		iter_rs = remain_rs;
5379 	}
5380 }
5381 
5382 /*
5383  * Look at the vdev tree and determine whether any devices are currently being
5384  * replaced.
5385  */
5386 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5387 vdev_replace_in_progress(vdev_t *vdev)
5388 {
5389 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5390 
5391 	if (vdev->vdev_ops == &vdev_replacing_ops)
5392 		return (B_TRUE);
5393 
5394 	/*
5395 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5396 	 * it has exactly two children, and the second, the hot spare, has
5397 	 * finished being resilvered.
5398 	 */
5399 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5400 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5401 		return (B_TRUE);
5402 
5403 	for (int i = 0; i < vdev->vdev_children; i++) {
5404 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5405 			return (B_TRUE);
5406 	}
5407 
5408 	return (B_FALSE);
5409 }
5410 
5411 EXPORT_SYMBOL(vdev_fault);
5412 EXPORT_SYMBOL(vdev_degrade);
5413 EXPORT_SYMBOL(vdev_online);
5414 EXPORT_SYMBOL(vdev_offline);
5415 EXPORT_SYMBOL(vdev_clear);
5416 
5417 /* BEGIN CSTYLED */
5418 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5419 	"Target number of metaslabs per top-level vdev");
5420 
5421 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5422 	"Default limit for metaslab size");
5423 
5424 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5425 	"Minimum number of metaslabs per top-level vdev");
5426 
5427 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5428 	"Practical upper limit of total metaslabs per top-level vdev");
5429 
5430 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5431 	"Rate limit slow IO (delay) events to this many per second");
5432 
5433 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5434 	"Rate limit checksum events to this many checksum errors per second "
5435 	"(do not set below zed threshold).");
5436 
5437 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5438 	"Ignore errors during resilver/scrub");
5439 
5440 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5441 	"Bypass vdev_validate()");
5442 
5443 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5444 	"Disable cache flushes");
5445 
5446 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5447 	"Minimum number of metaslabs required to dedicate one for log blocks");
5448 
5449 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5450 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5451 	"Minimum ashift used when creating new top-level vdevs");
5452 
5453 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5454 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5455 	"Maximum ashift used when optimizing for logical -> physical sector "
5456 	"size on new top-level vdevs");
5457 /* END CSTYLED */
5458