1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/types.h>
27 #include <sys/zio.h>
28 #include <sys/debug.h>
29 #include <sys/zfs_debug.h>
30 #include <sys/vdev_raidz.h>
31 #include <sys/vdev_raidz_impl.h>
32 #include <sys/simd.h>
33
34 /* Opaque implementation with NULL methods to represent original methods */
35 static const raidz_impl_ops_t vdev_raidz_original_impl = {
36 .name = "original",
37 .is_supported = raidz_will_scalar_work,
38 };
39
40 /* RAIDZ parity op that contain the fastest methods */
41 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
42 .name = "fastest"
43 };
44
45 /* All compiled in implementations */
46 const raidz_impl_ops_t *raidz_all_maths[] = {
47 &vdev_raidz_original_impl,
48 &vdev_raidz_scalar_impl,
49 #if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
50 &vdev_raidz_sse2_impl,
51 #endif
52 #if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */
53 &vdev_raidz_ssse3_impl,
54 #endif
55 #if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */
56 &vdev_raidz_avx2_impl,
57 #endif
58 #if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */
59 &vdev_raidz_avx512f_impl,
60 #endif
61 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
62 &vdev_raidz_avx512bw_impl,
63 #endif
64 #if defined(__aarch64__) && !defined(__FreeBSD__)
65 &vdev_raidz_aarch64_neon_impl,
66 &vdev_raidz_aarch64_neonx2_impl,
67 #endif
68 #if defined(__powerpc__) && defined(__altivec__)
69 &vdev_raidz_powerpc_altivec_impl,
70 #endif
71 };
72
73 /* Indicate that benchmark has been completed */
74 static boolean_t raidz_math_initialized = B_FALSE;
75
76 /* Select raidz implementation */
77 #define IMPL_FASTEST (UINT32_MAX)
78 #define IMPL_CYCLE (UINT32_MAX - 1)
79 #define IMPL_ORIGINAL (0)
80 #define IMPL_SCALAR (1)
81
82 #define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i))
83
84 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
85 static uint32_t user_sel_impl = IMPL_FASTEST;
86
87 /* Hold all supported implementations */
88 static size_t raidz_supp_impl_cnt = 0;
89 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
90
91 #if defined(_KERNEL)
92 /*
93 * kstats values for supported implementations
94 * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
95 */
96 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
97
98 /* kstat for benchmarked implementations */
99 static kstat_t *raidz_math_kstat = NULL;
100 #endif
101
102 /*
103 * Returns the RAIDZ operations for raidz_map() parity calculations. When
104 * a SIMD implementation is not allowed in the current context, then fallback
105 * to the fastest generic implementation.
106 */
107 const raidz_impl_ops_t *
vdev_raidz_math_get_ops(void)108 vdev_raidz_math_get_ops(void)
109 {
110 if (!kfpu_allowed())
111 return (&vdev_raidz_scalar_impl);
112
113 raidz_impl_ops_t *ops = NULL;
114 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
115
116 switch (impl) {
117 case IMPL_FASTEST:
118 ASSERT(raidz_math_initialized);
119 ops = &vdev_raidz_fastest_impl;
120 break;
121 case IMPL_CYCLE:
122 /* Cycle through all supported implementations */
123 ASSERT(raidz_math_initialized);
124 ASSERT3U(raidz_supp_impl_cnt, >, 0);
125 static size_t cycle_impl_idx = 0;
126 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
127 ops = raidz_supp_impl[idx];
128 break;
129 case IMPL_ORIGINAL:
130 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
131 break;
132 case IMPL_SCALAR:
133 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
134 break;
135 default:
136 ASSERT3U(impl, <, raidz_supp_impl_cnt);
137 ASSERT3U(raidz_supp_impl_cnt, >, 0);
138 if (impl < ARRAY_SIZE(raidz_all_maths))
139 ops = raidz_supp_impl[impl];
140 break;
141 }
142
143 ASSERT3P(ops, !=, NULL);
144
145 return (ops);
146 }
147
148 /*
149 * Select parity generation method for raidz_map
150 */
151 int
vdev_raidz_math_generate(raidz_map_t * rm,raidz_row_t * rr)152 vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr)
153 {
154 raidz_gen_f gen_parity = NULL;
155
156 switch (raidz_parity(rm)) {
157 case 1:
158 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
159 break;
160 case 2:
161 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
162 break;
163 case 3:
164 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
165 break;
166 default:
167 gen_parity = NULL;
168 cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
169 raidz_parity(rm));
170 break;
171 }
172
173 /* if method is NULL execute the original implementation */
174 if (gen_parity == NULL)
175 return (RAIDZ_ORIGINAL_IMPL);
176
177 gen_parity(rr);
178
179 return (0);
180 }
181
182 static raidz_rec_f
reconstruct_fun_p_sel(raidz_map_t * rm,const int * parity_valid,const int nbaddata)183 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
184 const int nbaddata)
185 {
186 if (nbaddata == 1 && parity_valid[CODE_P]) {
187 return (rm->rm_ops->rec[RAIDZ_REC_P]);
188 }
189 return ((raidz_rec_f) NULL);
190 }
191
192 static raidz_rec_f
reconstruct_fun_pq_sel(raidz_map_t * rm,const int * parity_valid,const int nbaddata)193 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
194 const int nbaddata)
195 {
196 if (nbaddata == 1) {
197 if (parity_valid[CODE_P]) {
198 return (rm->rm_ops->rec[RAIDZ_REC_P]);
199 } else if (parity_valid[CODE_Q]) {
200 return (rm->rm_ops->rec[RAIDZ_REC_Q]);
201 }
202 } else if (nbaddata == 2 &&
203 parity_valid[CODE_P] && parity_valid[CODE_Q]) {
204 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
205 }
206 return ((raidz_rec_f) NULL);
207 }
208
209 static raidz_rec_f
reconstruct_fun_pqr_sel(raidz_map_t * rm,const int * parity_valid,const int nbaddata)210 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
211 const int nbaddata)
212 {
213 if (nbaddata == 1) {
214 if (parity_valid[CODE_P]) {
215 return (rm->rm_ops->rec[RAIDZ_REC_P]);
216 } else if (parity_valid[CODE_Q]) {
217 return (rm->rm_ops->rec[RAIDZ_REC_Q]);
218 } else if (parity_valid[CODE_R]) {
219 return (rm->rm_ops->rec[RAIDZ_REC_R]);
220 }
221 } else if (nbaddata == 2) {
222 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
223 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
224 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
225 return (rm->rm_ops->rec[RAIDZ_REC_PR]);
226 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
227 return (rm->rm_ops->rec[RAIDZ_REC_QR]);
228 }
229 } else if (nbaddata == 3 &&
230 parity_valid[CODE_P] && parity_valid[CODE_Q] &&
231 parity_valid[CODE_R]) {
232 return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
233 }
234 return ((raidz_rec_f) NULL);
235 }
236
237 /*
238 * Select data reconstruction method for raidz_map
239 * @parity_valid - Parity validity flag
240 * @dt - Failed data index array
241 * @nbaddata - Number of failed data columns
242 */
243 int
vdev_raidz_math_reconstruct(raidz_map_t * rm,raidz_row_t * rr,const int * parity_valid,const int * dt,const int nbaddata)244 vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr,
245 const int *parity_valid, const int *dt, const int nbaddata)
246 {
247 raidz_rec_f rec_fn = NULL;
248
249 switch (raidz_parity(rm)) {
250 case PARITY_P:
251 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
252 break;
253 case PARITY_PQ:
254 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
255 break;
256 case PARITY_PQR:
257 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
258 break;
259 default:
260 cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
261 raidz_parity(rm));
262 break;
263 }
264
265 if (rec_fn == NULL)
266 return (RAIDZ_ORIGINAL_IMPL);
267 else
268 return (rec_fn(rr, dt));
269 }
270
271 const char *raidz_gen_name[] = {
272 "gen_p", "gen_pq", "gen_pqr"
273 };
274 const char *raidz_rec_name[] = {
275 "rec_p", "rec_q", "rec_r",
276 "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
277 };
278
279 #if defined(_KERNEL)
280
281 #define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1)
282
283 static int
raidz_math_kstat_headers(char * buf,size_t size)284 raidz_math_kstat_headers(char *buf, size_t size)
285 {
286 int i;
287 ssize_t off;
288
289 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
290
291 off = snprintf(buf, size, "%-17s", "implementation");
292
293 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
294 off += snprintf(buf + off, size - off, "%-16s",
295 raidz_gen_name[i]);
296
297 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
298 off += snprintf(buf + off, size - off, "%-16s",
299 raidz_rec_name[i]);
300
301 (void) snprintf(buf + off, size - off, "\n");
302
303 return (0);
304 }
305
306 static int
raidz_math_kstat_data(char * buf,size_t size,void * data)307 raidz_math_kstat_data(char *buf, size_t size, void *data)
308 {
309 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
310 raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
311 ssize_t off = 0;
312 int i;
313
314 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
315
316 if (cstat == fstat) {
317 off += snprintf(buf + off, size - off, "%-17s", "fastest");
318
319 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
320 int id = fstat->gen[i];
321 off += snprintf(buf + off, size - off, "%-16s",
322 raidz_supp_impl[id]->name);
323 }
324 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
325 int id = fstat->rec[i];
326 off += snprintf(buf + off, size - off, "%-16s",
327 raidz_supp_impl[id]->name);
328 }
329 } else {
330 ptrdiff_t id = cstat - raidz_impl_kstats;
331
332 off += snprintf(buf + off, size - off, "%-17s",
333 raidz_supp_impl[id]->name);
334
335 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
336 off += snprintf(buf + off, size - off, "%-16llu",
337 (u_longlong_t)cstat->gen[i]);
338
339 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
340 off += snprintf(buf + off, size - off, "%-16llu",
341 (u_longlong_t)cstat->rec[i]);
342 }
343
344 (void) snprintf(buf + off, size - off, "\n");
345
346 return (0);
347 }
348
349 static void *
raidz_math_kstat_addr(kstat_t * ksp,loff_t n)350 raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
351 {
352 if (n <= raidz_supp_impl_cnt)
353 ksp->ks_private = (void *) (raidz_impl_kstats + n);
354 else
355 ksp->ks_private = NULL;
356
357 return (ksp->ks_private);
358 }
359
360 #define BENCH_D_COLS (8ULL)
361 #define BENCH_COLS (BENCH_D_COLS + PARITY_PQR)
362 #define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
363 #define BENCH_NS MSEC2NSEC(1) /* 1ms */
364
365 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
366
367 static void
benchmark_gen_impl(raidz_map_t * rm,const int fn)368 benchmark_gen_impl(raidz_map_t *rm, const int fn)
369 {
370 (void) fn;
371 vdev_raidz_generate_parity(rm);
372 }
373
374 static void
benchmark_rec_impl(raidz_map_t * rm,const int fn)375 benchmark_rec_impl(raidz_map_t *rm, const int fn)
376 {
377 static const int rec_tgt[7][3] = {
378 {1, 2, 3}, /* rec_p: bad QR & D[0] */
379 {0, 2, 3}, /* rec_q: bad PR & D[0] */
380 {0, 1, 3}, /* rec_r: bad PQ & D[0] */
381 {2, 3, 4}, /* rec_pq: bad R & D[0][1] */
382 {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
383 {0, 3, 4}, /* rec_qr: bad P & D[0][1] */
384 {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
385 };
386
387 vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
388 }
389
390 /*
391 * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
392 * is performed by setting the rm_ops pointer and calling the top level
393 * generate/reconstruct methods of bench_rm.
394 */
395 static void
benchmark_raidz_impl(raidz_map_t * bench_rm,const int fn,benchmark_fn bench_fn)396 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
397 {
398 uint64_t run_cnt, speed, best_speed = 0;
399 hrtime_t t_start, t_diff;
400 raidz_impl_ops_t *curr_impl;
401 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
402 int impl, i;
403
404 for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
405 /* set an implementation to benchmark */
406 curr_impl = raidz_supp_impl[impl];
407 bench_rm->rm_ops = curr_impl;
408
409 run_cnt = 0;
410 t_start = gethrtime();
411
412 do {
413 for (i = 0; i < 5; i++, run_cnt++)
414 bench_fn(bench_rm, fn);
415
416 t_diff = gethrtime() - t_start;
417 } while (t_diff < BENCH_NS);
418
419 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
420 speed /= (t_diff * BENCH_COLS);
421
422 if (bench_fn == benchmark_gen_impl)
423 raidz_impl_kstats[impl].gen[fn] = speed;
424 else
425 raidz_impl_kstats[impl].rec[fn] = speed;
426
427 /* Update fastest implementation method */
428 if (speed > best_speed) {
429 best_speed = speed;
430
431 if (bench_fn == benchmark_gen_impl) {
432 fstat->gen[fn] = impl;
433 vdev_raidz_fastest_impl.gen[fn] =
434 curr_impl->gen[fn];
435 } else {
436 fstat->rec[fn] = impl;
437 vdev_raidz_fastest_impl.rec[fn] =
438 curr_impl->rec[fn];
439 }
440 }
441 }
442 }
443 #endif
444
445 /*
446 * Initialize and benchmark all supported implementations.
447 */
448 static void
benchmark_raidz(void)449 benchmark_raidz(void)
450 {
451 raidz_impl_ops_t *curr_impl;
452 int i, c;
453
454 /* Move supported impl into raidz_supp_impl */
455 for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
456 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
457
458 if (curr_impl->init)
459 curr_impl->init();
460
461 if (curr_impl->is_supported())
462 raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
463 }
464 membar_producer(); /* complete raidz_supp_impl[] init */
465 raidz_supp_impl_cnt = c; /* number of supported impl */
466
467 #if defined(_KERNEL)
468 zio_t *bench_zio = NULL;
469 raidz_map_t *bench_rm = NULL;
470 uint64_t bench_parity;
471
472 /* Fake a zio and run the benchmark on a warmed up buffer */
473 bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
474 bench_zio->io_offset = 0;
475 bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
476 bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
477 memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
478
479 /* Benchmark parity generation methods */
480 for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
481 bench_parity = fn + 1;
482 /* New raidz_map is needed for each generate_p/q/r */
483 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
484 BENCH_D_COLS + bench_parity, bench_parity);
485
486 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
487
488 vdev_raidz_map_free(bench_rm);
489 }
490
491 /* Benchmark data reconstruction methods */
492 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
493 BENCH_COLS, PARITY_PQR);
494
495 for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
496 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
497
498 vdev_raidz_map_free(bench_rm);
499
500 /* cleanup the bench zio */
501 abd_free(bench_zio->io_abd);
502 kmem_free(bench_zio, sizeof (zio_t));
503 #else
504 /*
505 * Skip the benchmark in user space to avoid impacting libzpool
506 * consumers (zdb, zhack, zinject, ztest). The last implementation
507 * is assumed to be the fastest and used by default.
508 */
509 memcpy(&vdev_raidz_fastest_impl,
510 raidz_supp_impl[raidz_supp_impl_cnt - 1],
511 sizeof (vdev_raidz_fastest_impl));
512 strcpy(vdev_raidz_fastest_impl.name, "fastest");
513 #endif /* _KERNEL */
514 }
515
516 void
vdev_raidz_math_init(void)517 vdev_raidz_math_init(void)
518 {
519 /* Determine the fastest available implementation. */
520 benchmark_raidz();
521
522 #if defined(_KERNEL)
523 /* Install kstats for all implementations */
524 raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
525 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
526 if (raidz_math_kstat != NULL) {
527 raidz_math_kstat->ks_data = NULL;
528 raidz_math_kstat->ks_ndata = UINT32_MAX;
529 kstat_set_raw_ops(raidz_math_kstat,
530 raidz_math_kstat_headers,
531 raidz_math_kstat_data,
532 raidz_math_kstat_addr);
533 kstat_install(raidz_math_kstat);
534 }
535 #endif
536
537 /* Finish initialization */
538 atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
539 raidz_math_initialized = B_TRUE;
540 }
541
542 void
vdev_raidz_math_fini(void)543 vdev_raidz_math_fini(void)
544 {
545 raidz_impl_ops_t const *curr_impl;
546
547 #if defined(_KERNEL)
548 if (raidz_math_kstat != NULL) {
549 kstat_delete(raidz_math_kstat);
550 raidz_math_kstat = NULL;
551 }
552 #endif
553
554 for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
555 curr_impl = raidz_all_maths[i];
556 if (curr_impl->fini)
557 curr_impl->fini();
558 }
559 }
560
561 static const struct {
562 char *name;
563 uint32_t sel;
564 } math_impl_opts[] = {
565 { "cycle", IMPL_CYCLE },
566 { "fastest", IMPL_FASTEST },
567 { "original", IMPL_ORIGINAL },
568 { "scalar", IMPL_SCALAR }
569 };
570
571 /*
572 * Function sets desired raidz implementation.
573 *
574 * If we are called before init(), user preference will be saved in
575 * user_sel_impl, and applied in later init() call. This occurs when module
576 * parameter is specified on module load. Otherwise, directly update
577 * zfs_vdev_raidz_impl.
578 *
579 * @val Name of raidz implementation to use
580 * @param Unused.
581 */
582 int
vdev_raidz_impl_set(const char * val)583 vdev_raidz_impl_set(const char *val)
584 {
585 int err = -EINVAL;
586 char req_name[RAIDZ_IMPL_NAME_MAX];
587 uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
588 size_t i;
589
590 /* sanitize input */
591 i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
592 if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
593 return (err);
594
595 strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
596 while (i > 0 && !!isspace(req_name[i-1]))
597 i--;
598 req_name[i] = '\0';
599
600 /* Check mandatory options */
601 for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
602 if (strcmp(req_name, math_impl_opts[i].name) == 0) {
603 impl = math_impl_opts[i].sel;
604 err = 0;
605 break;
606 }
607 }
608
609 /* check all supported impl if init() was already called */
610 if (err != 0 && raidz_math_initialized) {
611 /* check all supported implementations */
612 for (i = 0; i < raidz_supp_impl_cnt; i++) {
613 if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
614 impl = i;
615 err = 0;
616 break;
617 }
618 }
619 }
620
621 if (err == 0) {
622 if (raidz_math_initialized)
623 atomic_swap_32(&zfs_vdev_raidz_impl, impl);
624 else
625 atomic_swap_32(&user_sel_impl, impl);
626 }
627
628 return (err);
629 }
630
631 #if defined(_KERNEL) && defined(__linux__)
632
633 static int
zfs_vdev_raidz_impl_set(const char * val,zfs_kernel_param_t * kp)634 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
635 {
636 return (vdev_raidz_impl_set(val));
637 }
638
639 static int
zfs_vdev_raidz_impl_get(char * buffer,zfs_kernel_param_t * kp)640 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
641 {
642 int i, cnt = 0;
643 char *fmt;
644 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
645
646 ASSERT(raidz_math_initialized);
647
648 /* list mandatory options */
649 for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
650 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
651 cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
652 }
653
654 /* list all supported implementations */
655 for (i = 0; i < raidz_supp_impl_cnt; i++) {
656 fmt = (i == impl) ? "[%s] " : "%s ";
657 cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
658 }
659
660 return (cnt);
661 }
662
663 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
664 zfs_vdev_raidz_impl_get, NULL, 0644);
665 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
666 #endif
667