1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/kstat.h>
40 #include <sys/abd.h>
41
42 /*
43 * ZFS I/O Scheduler
44 * ---------------
45 *
46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
47 * I/O scheduler determines when and in what order those operations are
48 * issued. The I/O scheduler divides operations into five I/O classes
49 * prioritized in the following order: sync read, sync write, async read,
50 * async write, and scrub/resilver. Each queue defines the minimum and
51 * maximum number of concurrent operations that may be issued to the device.
52 * In addition, the device has an aggregate maximum. Note that the sum of the
53 * per-queue minimums must not exceed the aggregate maximum. If the
54 * sum of the per-queue maximums exceeds the aggregate maximum, then the
55 * number of active i/os may reach zfs_vdev_max_active, in which case no
56 * further i/os will be issued regardless of whether all per-queue
57 * minimums have been met.
58 *
59 * For many physical devices, throughput increases with the number of
60 * concurrent operations, but latency typically suffers. Further, physical
61 * devices typically have a limit at which more concurrent operations have no
62 * effect on throughput or can actually cause it to decrease.
63 *
64 * The scheduler selects the next operation to issue by first looking for an
65 * I/O class whose minimum has not been satisfied. Once all are satisfied and
66 * the aggregate maximum has not been hit, the scheduler looks for classes
67 * whose maximum has not been satisfied. Iteration through the I/O classes is
68 * done in the order specified above. No further operations are issued if the
69 * aggregate maximum number of concurrent operations has been hit or if there
70 * are no operations queued for an I/O class that has not hit its maximum.
71 * Every time an i/o is queued or an operation completes, the I/O scheduler
72 * looks for new operations to issue.
73 *
74 * All I/O classes have a fixed maximum number of outstanding operations
75 * except for the async write class. Asynchronous writes represent the data
76 * that is committed to stable storage during the syncing stage for
77 * transaction groups (see txg.c). Transaction groups enter the syncing state
78 * periodically so the number of queued async writes will quickly burst up and
79 * then bleed down to zero. Rather than servicing them as quickly as possible,
80 * the I/O scheduler changes the maximum number of active async write i/os
81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
82 * both throughput and latency typically increase with the number of
83 * concurrent operations issued to physical devices, reducing the burstiness
84 * in the number of concurrent operations also stabilizes the response time of
85 * operations from other -- and in particular synchronous -- queues. In broad
86 * strokes, the I/O scheduler will issue more concurrent operations from the
87 * async write queue as there's more dirty data in the pool.
88 *
89 * Async Writes
90 *
91 * The number of concurrent operations issued for the async write I/O class
92 * follows a piece-wise linear function defined by a few adjustable points.
93 *
94 * | o---------| <-- zfs_vdev_async_write_max_active
95 * ^ | /^ |
96 * | | / | |
97 * active | / | |
98 * I/O | / | |
99 * count | / | |
100 * | / | |
101 * |------------o | | <-- zfs_vdev_async_write_min_active
102 * 0|____________^______|_________|
103 * 0% | | 100% of zfs_dirty_data_max
104 * | |
105 * | `-- zfs_vdev_async_write_active_max_dirty_percent
106 * `--------- zfs_vdev_async_write_active_min_dirty_percent
107 *
108 * Until the amount of dirty data exceeds a minimum percentage of the dirty
109 * data allowed in the pool, the I/O scheduler will limit the number of
110 * concurrent operations to the minimum. As that threshold is crossed, the
111 * number of concurrent operations issued increases linearly to the maximum at
112 * the specified maximum percentage of the dirty data allowed in the pool.
113 *
114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
117 * maximum percentage, this indicates that the rate of incoming data is
118 * greater than the rate that the backend storage can handle. In this case, we
119 * must further throttle incoming writes (see dmu_tx_delay() for details).
120 */
121
122 /*
123 * The maximum number of i/os active to each device. Ideally, this will be >=
124 * the sum of each queue's max_active.
125 */
126 uint32_t zfs_vdev_max_active = 1000;
127
128 /*
129 * Per-queue limits on the number of i/os active to each device. If the
130 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
131 * into play. We will send min_active from each queue round-robin, and then
132 * send from queues in the order defined by zio_priority_t up to max_active.
133 * Some queues have additional mechanisms to limit number of active I/Os in
134 * addition to min_active and max_active, see below.
135 *
136 * In general, smaller max_active's will lead to lower latency of synchronous
137 * operations. Larger max_active's may lead to higher overall throughput,
138 * depending on underlying storage.
139 *
140 * The ratio of the queues' max_actives determines the balance of performance
141 * between reads, writes, and scrubs. E.g., increasing
142 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
143 * more quickly, but reads and writes to have higher latency and lower
144 * throughput.
145 */
146 uint32_t zfs_vdev_sync_read_min_active = 10;
147 uint32_t zfs_vdev_sync_read_max_active = 10;
148 uint32_t zfs_vdev_sync_write_min_active = 10;
149 uint32_t zfs_vdev_sync_write_max_active = 10;
150 uint32_t zfs_vdev_async_read_min_active = 1;
151 uint32_t zfs_vdev_async_read_max_active = 3;
152 uint32_t zfs_vdev_async_write_min_active = 2;
153 uint32_t zfs_vdev_async_write_max_active = 10;
154 uint32_t zfs_vdev_scrub_min_active = 1;
155 uint32_t zfs_vdev_scrub_max_active = 3;
156 uint32_t zfs_vdev_removal_min_active = 1;
157 uint32_t zfs_vdev_removal_max_active = 2;
158 uint32_t zfs_vdev_initializing_min_active = 1;
159 uint32_t zfs_vdev_initializing_max_active = 1;
160 uint32_t zfs_vdev_trim_min_active = 1;
161 uint32_t zfs_vdev_trim_max_active = 2;
162 uint32_t zfs_vdev_rebuild_min_active = 1;
163 uint32_t zfs_vdev_rebuild_max_active = 3;
164
165 /*
166 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
167 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
168 * zfs_vdev_async_write_active_max_dirty_percent, use
169 * zfs_vdev_async_write_max_active. The value is linearly interpolated
170 * between min and max.
171 */
172 int zfs_vdev_async_write_active_min_dirty_percent = 30;
173 int zfs_vdev_async_write_active_max_dirty_percent = 60;
174
175 /*
176 * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
177 * the number of concurrently-active I/O's is limited to *_min_active, unless
178 * the vdev is "idle". When there are no interactive I/Os active (sync or
179 * async), and zfs_vdev_nia_delay I/Os have completed since the last
180 * interactive I/O, then the vdev is considered to be "idle", and the number
181 * of concurrently-active non-interactive I/O's is increased to *_max_active.
182 */
183 uint_t zfs_vdev_nia_delay = 5;
184
185 /*
186 * Some HDDs tend to prioritize sequential I/O so high that concurrent
187 * random I/O latency reaches several seconds. On some HDDs it happens
188 * even if sequential I/Os are submitted one at a time, and so setting
189 * *_max_active to 1 does not help. To prevent non-interactive I/Os, like
190 * scrub, from monopolizing the device no more than zfs_vdev_nia_credit
191 * I/Os can be sent while there are outstanding incomplete interactive
192 * I/Os. This enforced wait ensures the HDD services the interactive I/O
193 * within a reasonable amount of time.
194 */
195 uint_t zfs_vdev_nia_credit = 5;
196
197 /*
198 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
199 * For read I/Os, we also aggregate across small adjacency gaps; for writes
200 * we include spans of optional I/Os to aid aggregation at the disk even when
201 * they aren't able to help us aggregate at this level.
202 */
203 int zfs_vdev_aggregation_limit = 1 << 20;
204 int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
205 int zfs_vdev_read_gap_limit = 32 << 10;
206 int zfs_vdev_write_gap_limit = 4 << 10;
207
208 /*
209 * Define the queue depth percentage for each top-level. This percentage is
210 * used in conjunction with zfs_vdev_async_max_active to determine how many
211 * allocations a specific top-level vdev should handle. Once the queue depth
212 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
213 * then allocator will stop allocating blocks on that top-level device.
214 * The default kernel setting is 1000% which will yield 100 allocations per
215 * device. For userland testing, the default setting is 300% which equates
216 * to 30 allocations per device.
217 */
218 #ifdef _KERNEL
219 int zfs_vdev_queue_depth_pct = 1000;
220 #else
221 int zfs_vdev_queue_depth_pct = 300;
222 #endif
223
224 /*
225 * When performing allocations for a given metaslab, we want to make sure that
226 * there are enough IOs to aggregate together to improve throughput. We want to
227 * ensure that there are at least 128k worth of IOs that can be aggregated, and
228 * we assume that the average allocation size is 4k, so we need the queue depth
229 * to be 32 per allocator to get good aggregation of sequential writes.
230 */
231 int zfs_vdev_def_queue_depth = 32;
232
233 /*
234 * Allow TRIM I/Os to be aggregated. This should normally not be needed since
235 * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted
236 * by the TRIM code in zfs_trim.c.
237 */
238 int zfs_vdev_aggregate_trim = 0;
239
240 static int
vdev_queue_offset_compare(const void * x1,const void * x2)241 vdev_queue_offset_compare(const void *x1, const void *x2)
242 {
243 const zio_t *z1 = (const zio_t *)x1;
244 const zio_t *z2 = (const zio_t *)x2;
245
246 int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
247
248 if (likely(cmp))
249 return (cmp);
250
251 return (TREE_PCMP(z1, z2));
252 }
253
254 static inline avl_tree_t *
vdev_queue_class_tree(vdev_queue_t * vq,zio_priority_t p)255 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
256 {
257 return (&vq->vq_class[p].vqc_queued_tree);
258 }
259
260 static inline avl_tree_t *
vdev_queue_type_tree(vdev_queue_t * vq,zio_type_t t)261 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
262 {
263 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM);
264 if (t == ZIO_TYPE_READ)
265 return (&vq->vq_read_offset_tree);
266 else if (t == ZIO_TYPE_WRITE)
267 return (&vq->vq_write_offset_tree);
268 else
269 return (&vq->vq_trim_offset_tree);
270 }
271
272 static int
vdev_queue_timestamp_compare(const void * x1,const void * x2)273 vdev_queue_timestamp_compare(const void *x1, const void *x2)
274 {
275 const zio_t *z1 = (const zio_t *)x1;
276 const zio_t *z2 = (const zio_t *)x2;
277
278 int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp);
279
280 if (likely(cmp))
281 return (cmp);
282
283 return (TREE_PCMP(z1, z2));
284 }
285
286 static int
vdev_queue_class_min_active(vdev_queue_t * vq,zio_priority_t p)287 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
288 {
289 switch (p) {
290 case ZIO_PRIORITY_SYNC_READ:
291 return (zfs_vdev_sync_read_min_active);
292 case ZIO_PRIORITY_SYNC_WRITE:
293 return (zfs_vdev_sync_write_min_active);
294 case ZIO_PRIORITY_ASYNC_READ:
295 return (zfs_vdev_async_read_min_active);
296 case ZIO_PRIORITY_ASYNC_WRITE:
297 return (zfs_vdev_async_write_min_active);
298 case ZIO_PRIORITY_SCRUB:
299 return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
300 MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
301 case ZIO_PRIORITY_REMOVAL:
302 return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
303 MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
304 case ZIO_PRIORITY_INITIALIZING:
305 return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
306 MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
307 case ZIO_PRIORITY_TRIM:
308 return (zfs_vdev_trim_min_active);
309 case ZIO_PRIORITY_REBUILD:
310 return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
311 MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
312 default:
313 panic("invalid priority %u", p);
314 return (0);
315 }
316 }
317
318 static int
vdev_queue_max_async_writes(spa_t * spa)319 vdev_queue_max_async_writes(spa_t *spa)
320 {
321 int writes;
322 uint64_t dirty = 0;
323 dsl_pool_t *dp = spa_get_dsl(spa);
324 uint64_t min_bytes = zfs_dirty_data_max *
325 zfs_vdev_async_write_active_min_dirty_percent / 100;
326 uint64_t max_bytes = zfs_dirty_data_max *
327 zfs_vdev_async_write_active_max_dirty_percent / 100;
328
329 /*
330 * Async writes may occur before the assignment of the spa's
331 * dsl_pool_t if a self-healing zio is issued prior to the
332 * completion of dmu_objset_open_impl().
333 */
334 if (dp == NULL)
335 return (zfs_vdev_async_write_max_active);
336
337 /*
338 * Sync tasks correspond to interactive user actions. To reduce the
339 * execution time of those actions we push data out as fast as possible.
340 */
341 dirty = dp->dp_dirty_total;
342 if (dirty > max_bytes || spa_has_pending_synctask(spa))
343 return (zfs_vdev_async_write_max_active);
344
345 if (dirty < min_bytes)
346 return (zfs_vdev_async_write_min_active);
347
348 /*
349 * linear interpolation:
350 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
351 * move right by min_bytes
352 * move up by min_writes
353 */
354 writes = (dirty - min_bytes) *
355 (zfs_vdev_async_write_max_active -
356 zfs_vdev_async_write_min_active) /
357 (max_bytes - min_bytes) +
358 zfs_vdev_async_write_min_active;
359 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
360 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
361 return (writes);
362 }
363
364 static int
vdev_queue_class_max_active(spa_t * spa,vdev_queue_t * vq,zio_priority_t p)365 vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p)
366 {
367 switch (p) {
368 case ZIO_PRIORITY_SYNC_READ:
369 return (zfs_vdev_sync_read_max_active);
370 case ZIO_PRIORITY_SYNC_WRITE:
371 return (zfs_vdev_sync_write_max_active);
372 case ZIO_PRIORITY_ASYNC_READ:
373 return (zfs_vdev_async_read_max_active);
374 case ZIO_PRIORITY_ASYNC_WRITE:
375 return (vdev_queue_max_async_writes(spa));
376 case ZIO_PRIORITY_SCRUB:
377 if (vq->vq_ia_active > 0) {
378 return (MIN(vq->vq_nia_credit,
379 zfs_vdev_scrub_min_active));
380 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
381 return (MAX(1, zfs_vdev_scrub_min_active));
382 return (zfs_vdev_scrub_max_active);
383 case ZIO_PRIORITY_REMOVAL:
384 if (vq->vq_ia_active > 0) {
385 return (MIN(vq->vq_nia_credit,
386 zfs_vdev_removal_min_active));
387 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
388 return (MAX(1, zfs_vdev_removal_min_active));
389 return (zfs_vdev_removal_max_active);
390 case ZIO_PRIORITY_INITIALIZING:
391 if (vq->vq_ia_active > 0) {
392 return (MIN(vq->vq_nia_credit,
393 zfs_vdev_initializing_min_active));
394 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
395 return (MAX(1, zfs_vdev_initializing_min_active));
396 return (zfs_vdev_initializing_max_active);
397 case ZIO_PRIORITY_TRIM:
398 return (zfs_vdev_trim_max_active);
399 case ZIO_PRIORITY_REBUILD:
400 if (vq->vq_ia_active > 0) {
401 return (MIN(vq->vq_nia_credit,
402 zfs_vdev_rebuild_min_active));
403 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
404 return (MAX(1, zfs_vdev_rebuild_min_active));
405 return (zfs_vdev_rebuild_max_active);
406 default:
407 panic("invalid priority %u", p);
408 return (0);
409 }
410 }
411
412 /*
413 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
414 * there is no eligible class.
415 */
416 static zio_priority_t
vdev_queue_class_to_issue(vdev_queue_t * vq)417 vdev_queue_class_to_issue(vdev_queue_t *vq)
418 {
419 spa_t *spa = vq->vq_vdev->vdev_spa;
420 zio_priority_t p, n;
421
422 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
423 return (ZIO_PRIORITY_NUM_QUEUEABLE);
424
425 /*
426 * Find a queue that has not reached its minimum # outstanding i/os.
427 * Do round-robin to reduce starvation due to zfs_vdev_max_active
428 * and vq_nia_credit limits.
429 */
430 for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) {
431 p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE;
432 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
433 vq->vq_class[p].vqc_active <
434 vdev_queue_class_min_active(vq, p)) {
435 vq->vq_last_prio = p;
436 return (p);
437 }
438 }
439
440 /*
441 * If we haven't found a queue, look for one that hasn't reached its
442 * maximum # outstanding i/os.
443 */
444 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
445 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
446 vq->vq_class[p].vqc_active <
447 vdev_queue_class_max_active(spa, vq, p)) {
448 vq->vq_last_prio = p;
449 return (p);
450 }
451 }
452
453 /* No eligible queued i/os */
454 return (ZIO_PRIORITY_NUM_QUEUEABLE);
455 }
456
457 void
vdev_queue_init(vdev_t * vd)458 vdev_queue_init(vdev_t *vd)
459 {
460 vdev_queue_t *vq = &vd->vdev_queue;
461 zio_priority_t p;
462
463 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
464 vq->vq_vdev = vd;
465 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
466
467 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
468 sizeof (zio_t), offsetof(struct zio, io_queue_node));
469 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
470 vdev_queue_offset_compare, sizeof (zio_t),
471 offsetof(struct zio, io_offset_node));
472 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
473 vdev_queue_offset_compare, sizeof (zio_t),
474 offsetof(struct zio, io_offset_node));
475 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM),
476 vdev_queue_offset_compare, sizeof (zio_t),
477 offsetof(struct zio, io_offset_node));
478
479 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
480 int (*compfn) (const void *, const void *);
481
482 /*
483 * The synchronous/trim i/o queues are dispatched in FIFO rather
484 * than LBA order. This provides more consistent latency for
485 * these i/os.
486 */
487 if (p == ZIO_PRIORITY_SYNC_READ ||
488 p == ZIO_PRIORITY_SYNC_WRITE ||
489 p == ZIO_PRIORITY_TRIM) {
490 compfn = vdev_queue_timestamp_compare;
491 } else {
492 compfn = vdev_queue_offset_compare;
493 }
494 avl_create(vdev_queue_class_tree(vq, p), compfn,
495 sizeof (zio_t), offsetof(struct zio, io_queue_node));
496 }
497
498 vq->vq_last_offset = 0;
499 }
500
501 void
vdev_queue_fini(vdev_t * vd)502 vdev_queue_fini(vdev_t *vd)
503 {
504 vdev_queue_t *vq = &vd->vdev_queue;
505
506 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
507 avl_destroy(vdev_queue_class_tree(vq, p));
508 avl_destroy(&vq->vq_active_tree);
509 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
510 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
511 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM));
512
513 mutex_destroy(&vq->vq_lock);
514 }
515
516 static void
vdev_queue_io_add(vdev_queue_t * vq,zio_t * zio)517 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
518 {
519 spa_t *spa = zio->io_spa;
520 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
521
522 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
523 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
524 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
525
526 if (shk->kstat != NULL) {
527 mutex_enter(&shk->lock);
528 kstat_waitq_enter(shk->kstat->ks_data);
529 mutex_exit(&shk->lock);
530 }
531 }
532
533 static void
vdev_queue_io_remove(vdev_queue_t * vq,zio_t * zio)534 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
535 {
536 spa_t *spa = zio->io_spa;
537 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
538
539 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
540 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
541 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
542
543 if (shk->kstat != NULL) {
544 mutex_enter(&shk->lock);
545 kstat_waitq_exit(shk->kstat->ks_data);
546 mutex_exit(&shk->lock);
547 }
548 }
549
550 static boolean_t
vdev_queue_is_interactive(zio_priority_t p)551 vdev_queue_is_interactive(zio_priority_t p)
552 {
553 switch (p) {
554 case ZIO_PRIORITY_SCRUB:
555 case ZIO_PRIORITY_REMOVAL:
556 case ZIO_PRIORITY_INITIALIZING:
557 case ZIO_PRIORITY_REBUILD:
558 return (B_FALSE);
559 default:
560 return (B_TRUE);
561 }
562 }
563
564 static void
vdev_queue_pending_add(vdev_queue_t * vq,zio_t * zio)565 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
566 {
567 spa_t *spa = zio->io_spa;
568 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
569
570 ASSERT(MUTEX_HELD(&vq->vq_lock));
571 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
572 vq->vq_class[zio->io_priority].vqc_active++;
573 if (vdev_queue_is_interactive(zio->io_priority)) {
574 if (++vq->vq_ia_active == 1)
575 vq->vq_nia_credit = 1;
576 } else if (vq->vq_ia_active > 0) {
577 vq->vq_nia_credit--;
578 }
579 avl_add(&vq->vq_active_tree, zio);
580
581 if (shk->kstat != NULL) {
582 mutex_enter(&shk->lock);
583 kstat_runq_enter(shk->kstat->ks_data);
584 mutex_exit(&shk->lock);
585 }
586 }
587
588 static void
vdev_queue_pending_remove(vdev_queue_t * vq,zio_t * zio)589 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
590 {
591 spa_t *spa = zio->io_spa;
592 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
593
594 ASSERT(MUTEX_HELD(&vq->vq_lock));
595 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
596 vq->vq_class[zio->io_priority].vqc_active--;
597 if (vdev_queue_is_interactive(zio->io_priority)) {
598 if (--vq->vq_ia_active == 0)
599 vq->vq_nia_credit = 0;
600 else
601 vq->vq_nia_credit = zfs_vdev_nia_credit;
602 } else if (vq->vq_ia_active == 0)
603 vq->vq_nia_credit++;
604 avl_remove(&vq->vq_active_tree, zio);
605
606 if (shk->kstat != NULL) {
607 kstat_io_t *ksio = shk->kstat->ks_data;
608
609 mutex_enter(&shk->lock);
610 kstat_runq_exit(ksio);
611 if (zio->io_type == ZIO_TYPE_READ) {
612 ksio->reads++;
613 ksio->nread += zio->io_size;
614 } else if (zio->io_type == ZIO_TYPE_WRITE) {
615 ksio->writes++;
616 ksio->nwritten += zio->io_size;
617 }
618 mutex_exit(&shk->lock);
619 }
620 }
621
622 static void
vdev_queue_agg_io_done(zio_t * aio)623 vdev_queue_agg_io_done(zio_t *aio)
624 {
625 abd_free(aio->io_abd);
626 }
627
628 /*
629 * Compute the range spanned by two i/os, which is the endpoint of the last
630 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
631 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
632 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
633 */
634 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
635 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
636
637 /*
638 * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
639 * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
640 * a gang ABD we avoid doing memory copies to and from the parent,
641 * child ZIOs. The gang ABD also accounts for gaps between adjacent
642 * io_offsets by simply getting the zero ABD for writes or allocating
643 * a new ABD for reads and placing them in the gang ABD as well.
644 */
645 static zio_t *
vdev_queue_aggregate(vdev_queue_t * vq,zio_t * zio)646 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
647 {
648 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
649 zio_link_t *zl = NULL;
650 uint64_t maxgap = 0;
651 uint64_t size;
652 uint64_t limit;
653 int maxblocksize;
654 boolean_t stretch = B_FALSE;
655 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
656 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
657 uint64_t next_offset;
658 abd_t *abd;
659
660 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
661 if (vq->vq_vdev->vdev_nonrot)
662 limit = zfs_vdev_aggregation_limit_non_rotating;
663 else
664 limit = zfs_vdev_aggregation_limit;
665 limit = MAX(MIN(limit, maxblocksize), 0);
666
667 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
668 return (NULL);
669
670 /*
671 * While TRIM commands could be aggregated based on offset this
672 * behavior is disabled until it's determined to be beneficial.
673 */
674 if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
675 return (NULL);
676
677 /*
678 * I/Os to distributed spares are directly dispatched to the dRAID
679 * leaf vdevs for aggregation. See the comment at the end of the
680 * zio_vdev_io_start() function.
681 */
682 ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
683
684 first = last = zio;
685
686 if (zio->io_type == ZIO_TYPE_READ)
687 maxgap = zfs_vdev_read_gap_limit;
688
689 /*
690 * We can aggregate I/Os that are sufficiently adjacent and of
691 * the same flavor, as expressed by the AGG_INHERIT flags.
692 * The latter requirement is necessary so that certain
693 * attributes of the I/O, such as whether it's a normal I/O
694 * or a scrub/resilver, can be preserved in the aggregate.
695 * We can include optional I/Os, but don't allow them
696 * to begin a range as they add no benefit in that situation.
697 */
698
699 /*
700 * We keep track of the last non-optional I/O.
701 */
702 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
703
704 /*
705 * Walk backwards through sufficiently contiguous I/Os
706 * recording the last non-optional I/O.
707 */
708 while ((dio = AVL_PREV(t, first)) != NULL &&
709 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
710 IO_SPAN(dio, last) <= limit &&
711 IO_GAP(dio, first) <= maxgap &&
712 dio->io_type == zio->io_type) {
713 first = dio;
714 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
715 mandatory = first;
716 }
717
718 /*
719 * Skip any initial optional I/Os.
720 */
721 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
722 first = AVL_NEXT(t, first);
723 ASSERT(first != NULL);
724 }
725
726
727 /*
728 * Walk forward through sufficiently contiguous I/Os.
729 * The aggregation limit does not apply to optional i/os, so that
730 * we can issue contiguous writes even if they are larger than the
731 * aggregation limit.
732 */
733 while ((dio = AVL_NEXT(t, last)) != NULL &&
734 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
735 (IO_SPAN(first, dio) <= limit ||
736 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
737 IO_SPAN(first, dio) <= maxblocksize &&
738 IO_GAP(last, dio) <= maxgap &&
739 dio->io_type == zio->io_type) {
740 last = dio;
741 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
742 mandatory = last;
743 }
744
745 /*
746 * Now that we've established the range of the I/O aggregation
747 * we must decide what to do with trailing optional I/Os.
748 * For reads, there's nothing to do. While we are unable to
749 * aggregate further, it's possible that a trailing optional
750 * I/O would allow the underlying device to aggregate with
751 * subsequent I/Os. We must therefore determine if the next
752 * non-optional I/O is close enough to make aggregation
753 * worthwhile.
754 */
755 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
756 zio_t *nio = last;
757 while ((dio = AVL_NEXT(t, nio)) != NULL &&
758 IO_GAP(nio, dio) == 0 &&
759 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
760 nio = dio;
761 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
762 stretch = B_TRUE;
763 break;
764 }
765 }
766 }
767
768 if (stretch) {
769 /*
770 * We are going to include an optional io in our aggregated
771 * span, thus closing the write gap. Only mandatory i/os can
772 * start aggregated spans, so make sure that the next i/o
773 * after our span is mandatory.
774 */
775 dio = AVL_NEXT(t, last);
776 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
777 } else {
778 /* do not include the optional i/o */
779 while (last != mandatory && last != first) {
780 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
781 last = AVL_PREV(t, last);
782 ASSERT(last != NULL);
783 }
784 }
785
786 if (first == last)
787 return (NULL);
788
789 size = IO_SPAN(first, last);
790 ASSERT3U(size, <=, maxblocksize);
791
792 abd = abd_alloc_gang_abd();
793 if (abd == NULL)
794 return (NULL);
795
796 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
797 abd, size, first->io_type, zio->io_priority,
798 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
799 vdev_queue_agg_io_done, NULL);
800 aio->io_timestamp = first->io_timestamp;
801
802 nio = first;
803 next_offset = first->io_offset;
804 do {
805 dio = nio;
806 nio = AVL_NEXT(t, dio);
807 zio_add_child(dio, aio);
808 vdev_queue_io_remove(vq, dio);
809
810 if (dio->io_offset != next_offset) {
811 /* allocate a buffer for a read gap */
812 ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
813 ASSERT3U(dio->io_offset, >, next_offset);
814 abd = abd_alloc_for_io(
815 dio->io_offset - next_offset, B_TRUE);
816 abd_gang_add(aio->io_abd, abd, B_TRUE);
817 }
818 if (dio->io_abd &&
819 (dio->io_size != abd_get_size(dio->io_abd))) {
820 /* abd size not the same as IO size */
821 ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
822 abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
823 abd_gang_add(aio->io_abd, abd, B_TRUE);
824 } else {
825 if (dio->io_flags & ZIO_FLAG_NODATA) {
826 /* allocate a buffer for a write gap */
827 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
828 ASSERT3P(dio->io_abd, ==, NULL);
829 abd_gang_add(aio->io_abd,
830 abd_get_zeros(dio->io_size), B_TRUE);
831 } else {
832 /*
833 * We pass B_FALSE to abd_gang_add()
834 * because we did not allocate a new
835 * ABD, so it is assumed the caller
836 * will free this ABD.
837 */
838 abd_gang_add(aio->io_abd, dio->io_abd,
839 B_FALSE);
840 }
841 }
842 next_offset = dio->io_offset + dio->io_size;
843 } while (dio != last);
844 ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
845
846 /*
847 * We need to drop the vdev queue's lock during zio_execute() to
848 * avoid a deadlock that we could encounter due to lock order
849 * reversal between vq_lock and io_lock in zio_change_priority().
850 */
851 mutex_exit(&vq->vq_lock);
852 while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
853 ASSERT3U(dio->io_type, ==, aio->io_type);
854
855 zio_vdev_io_bypass(dio);
856 zio_execute(dio);
857 }
858 mutex_enter(&vq->vq_lock);
859
860 return (aio);
861 }
862
863 static zio_t *
vdev_queue_io_to_issue(vdev_queue_t * vq)864 vdev_queue_io_to_issue(vdev_queue_t *vq)
865 {
866 zio_t *zio, *aio;
867 zio_priority_t p;
868 avl_index_t idx;
869 avl_tree_t *tree;
870
871 again:
872 ASSERT(MUTEX_HELD(&vq->vq_lock));
873
874 p = vdev_queue_class_to_issue(vq);
875
876 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
877 /* No eligible queued i/os */
878 return (NULL);
879 }
880
881 /*
882 * For LBA-ordered queues (async / scrub / initializing), issue the
883 * i/o which follows the most recently issued i/o in LBA (offset) order.
884 *
885 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp.
886 */
887 tree = vdev_queue_class_tree(vq, p);
888 vq->vq_io_search.io_timestamp = 0;
889 vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
890 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
891 zio = avl_nearest(tree, idx, AVL_AFTER);
892 if (zio == NULL)
893 zio = avl_first(tree);
894 ASSERT3U(zio->io_priority, ==, p);
895
896 aio = vdev_queue_aggregate(vq, zio);
897 if (aio != NULL)
898 zio = aio;
899 else
900 vdev_queue_io_remove(vq, zio);
901
902 /*
903 * If the I/O is or was optional and therefore has no data, we need to
904 * simply discard it. We need to drop the vdev queue's lock to avoid a
905 * deadlock that we could encounter since this I/O will complete
906 * immediately.
907 */
908 if (zio->io_flags & ZIO_FLAG_NODATA) {
909 mutex_exit(&vq->vq_lock);
910 zio_vdev_io_bypass(zio);
911 zio_execute(zio);
912 mutex_enter(&vq->vq_lock);
913 goto again;
914 }
915
916 vdev_queue_pending_add(vq, zio);
917 vq->vq_last_offset = zio->io_offset + zio->io_size;
918
919 return (zio);
920 }
921
922 zio_t *
vdev_queue_io(zio_t * zio)923 vdev_queue_io(zio_t *zio)
924 {
925 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
926 zio_t *nio;
927
928 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
929 return (zio);
930
931 /*
932 * Children i/os inherent their parent's priority, which might
933 * not match the child's i/o type. Fix it up here.
934 */
935 if (zio->io_type == ZIO_TYPE_READ) {
936 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
937
938 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
939 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
940 zio->io_priority != ZIO_PRIORITY_SCRUB &&
941 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
942 zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
943 zio->io_priority != ZIO_PRIORITY_REBUILD) {
944 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
945 }
946 } else if (zio->io_type == ZIO_TYPE_WRITE) {
947 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
948
949 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
950 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
951 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
952 zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
953 zio->io_priority != ZIO_PRIORITY_REBUILD) {
954 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
955 }
956 } else {
957 ASSERT(zio->io_type == ZIO_TYPE_TRIM);
958 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
959 }
960
961 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
962
963 mutex_enter(&vq->vq_lock);
964 zio->io_timestamp = gethrtime();
965 vdev_queue_io_add(vq, zio);
966 nio = vdev_queue_io_to_issue(vq);
967 mutex_exit(&vq->vq_lock);
968
969 if (nio == NULL)
970 return (NULL);
971
972 if (nio->io_done == vdev_queue_agg_io_done) {
973 zio_nowait(nio);
974 return (NULL);
975 }
976
977 return (nio);
978 }
979
980 void
vdev_queue_io_done(zio_t * zio)981 vdev_queue_io_done(zio_t *zio)
982 {
983 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
984 zio_t *nio;
985
986 mutex_enter(&vq->vq_lock);
987
988 vdev_queue_pending_remove(vq, zio);
989
990 zio->io_delta = gethrtime() - zio->io_timestamp;
991 vq->vq_io_complete_ts = gethrtime();
992 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
993
994 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
995 mutex_exit(&vq->vq_lock);
996 if (nio->io_done == vdev_queue_agg_io_done) {
997 zio_nowait(nio);
998 } else {
999 zio_vdev_io_reissue(nio);
1000 zio_execute(nio);
1001 }
1002 mutex_enter(&vq->vq_lock);
1003 }
1004
1005 mutex_exit(&vq->vq_lock);
1006 }
1007
1008 void
vdev_queue_change_io_priority(zio_t * zio,zio_priority_t priority)1009 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
1010 {
1011 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
1012 avl_tree_t *tree;
1013
1014 /*
1015 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
1016 * code to issue IOs without adding them to the vdev queue. In this
1017 * case, the zio is already going to be issued as quickly as possible
1018 * and so it doesn't need any reprioritization to help.
1019 */
1020 if (zio->io_priority == ZIO_PRIORITY_NOW)
1021 return;
1022
1023 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
1024 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
1025
1026 if (zio->io_type == ZIO_TYPE_READ) {
1027 if (priority != ZIO_PRIORITY_SYNC_READ &&
1028 priority != ZIO_PRIORITY_ASYNC_READ &&
1029 priority != ZIO_PRIORITY_SCRUB)
1030 priority = ZIO_PRIORITY_ASYNC_READ;
1031 } else {
1032 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1033 if (priority != ZIO_PRIORITY_SYNC_WRITE &&
1034 priority != ZIO_PRIORITY_ASYNC_WRITE)
1035 priority = ZIO_PRIORITY_ASYNC_WRITE;
1036 }
1037
1038 mutex_enter(&vq->vq_lock);
1039
1040 /*
1041 * If the zio is in none of the queues we can simply change
1042 * the priority. If the zio is waiting to be submitted we must
1043 * remove it from the queue and re-insert it with the new priority.
1044 * Otherwise, the zio is currently active and we cannot change its
1045 * priority.
1046 */
1047 tree = vdev_queue_class_tree(vq, zio->io_priority);
1048 if (avl_find(tree, zio, NULL) == zio) {
1049 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
1050 zio->io_priority = priority;
1051 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
1052 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
1053 zio->io_priority = priority;
1054 }
1055
1056 mutex_exit(&vq->vq_lock);
1057 }
1058
1059 /*
1060 * As these two methods are only used for load calculations we're not
1061 * concerned if we get an incorrect value on 32bit platforms due to lack of
1062 * vq_lock mutex use here, instead we prefer to keep it lock free for
1063 * performance.
1064 */
1065 int
vdev_queue_length(vdev_t * vd)1066 vdev_queue_length(vdev_t *vd)
1067 {
1068 return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
1069 }
1070
1071 uint64_t
vdev_queue_last_offset(vdev_t * vd)1072 vdev_queue_last_offset(vdev_t *vd)
1073 {
1074 return (vd->vdev_queue.vq_last_offset);
1075 }
1076
1077 /* BEGIN CSTYLED */
1078 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW,
1079 "Max vdev I/O aggregation size");
1080
1081 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW,
1082 "Max vdev I/O aggregation size for non-rotating media");
1083
1084 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW,
1085 "Allow TRIM I/O to be aggregated");
1086
1087 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW,
1088 "Aggregate read I/O over gap");
1089
1090 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW,
1091 "Aggregate write I/O over gap");
1092
1093 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW,
1094 "Maximum number of active I/Os per vdev");
1095
1096 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW,
1097 "Async write concurrency max threshold");
1098
1099 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW,
1100 "Async write concurrency min threshold");
1101
1102 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW,
1103 "Max active async read I/Os per vdev");
1104
1105 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW,
1106 "Min active async read I/Os per vdev");
1107
1108 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW,
1109 "Max active async write I/Os per vdev");
1110
1111 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW,
1112 "Min active async write I/Os per vdev");
1113
1114 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW,
1115 "Max active initializing I/Os per vdev");
1116
1117 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW,
1118 "Min active initializing I/Os per vdev");
1119
1120 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW,
1121 "Max active removal I/Os per vdev");
1122
1123 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW,
1124 "Min active removal I/Os per vdev");
1125
1126 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW,
1127 "Max active scrub I/Os per vdev");
1128
1129 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW,
1130 "Min active scrub I/Os per vdev");
1131
1132 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW,
1133 "Max active sync read I/Os per vdev");
1134
1135 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW,
1136 "Min active sync read I/Os per vdev");
1137
1138 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW,
1139 "Max active sync write I/Os per vdev");
1140
1141 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW,
1142 "Min active sync write I/Os per vdev");
1143
1144 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW,
1145 "Max active trim/discard I/Os per vdev");
1146
1147 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW,
1148 "Min active trim/discard I/Os per vdev");
1149
1150 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW,
1151 "Max active rebuild I/Os per vdev");
1152
1153 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW,
1154 "Min active rebuild I/Os per vdev");
1155
1156 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW,
1157 "Number of non-interactive I/Os to allow in sequence");
1158
1159 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW,
1160 "Number of non-interactive I/Os before _max_active");
1161
1162 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW,
1163 "Queue depth percentage for each top-level vdev");
1164 /* END CSTYLED */
1165