1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 /*
29 * Virtual Device Labels
30 * ---------------------
31 *
32 * The vdev label serves several distinct purposes:
33 *
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
36 *
37 * 2. Verify that all the devices given in a configuration are present
38 * within the pool.
39 *
40 * 3. Determine the uberblock for the pool.
41 *
42 * 4. In case of an import operation, determine the configuration of the
43 * toplevel vdev of which it is a part.
44 *
45 * 5. If an import operation cannot find all the devices in the pool,
46 * provide enough information to the administrator to determine which
47 * devices are missing.
48 *
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
53 *
54 *
55 * Label Organization
56 * ------------------
57 *
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
60 *
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
66 *
67 * L1 UB L2
68 * +------+ +------+ +------+
69 * | | | | | |
70 * | t10 | | t10 | | t10 |
71 * | | | | | |
72 * +------+ +------+ +------+
73 *
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
77 *
78 * In order to identify which labels are valid, the labels are written in the
79 * following manner:
80 *
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
84 *
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
91 *
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
96 * on another vdev.
97 *
98 *
99 * On-disk Format
100 * --------------
101 *
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
105 *
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
109 *
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
114 *
115 *
116 * Configuration Information
117 * -------------------------
118 *
119 * The nvlist describing the pool and vdev contains the following elements:
120 *
121 * version ZFS on-disk version
122 * name Pool name
123 * state Pool state
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
127 * features_for_read
128 * An nvlist of the features necessary for reading the MOS.
129 *
130 * Each leaf device label also contains the following:
131 *
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
134 *
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
136 */
137
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_draid.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
155
156 /*
157 * Basic routines to read and write from a vdev label.
158 * Used throughout the rest of this file.
159 */
160 uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162 {
163 ASSERT(offset < sizeof (vdev_label_t));
164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165
166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168 }
169
170 /*
171 * Returns back the vdev label associated with the passed in offset.
172 */
173 int
vdev_label_number(uint64_t psize,uint64_t offset)174 vdev_label_number(uint64_t psize, uint64_t offset)
175 {
176 int l;
177
178 if (offset >= psize - VDEV_LABEL_END_SIZE) {
179 offset -= psize - VDEV_LABEL_END_SIZE;
180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181 }
182 l = offset / sizeof (vdev_label_t);
183 return (l < VDEV_LABELS ? l : -1);
184 }
185
186 static void
vdev_label_read(zio_t * zio,vdev_t * vd,int l,abd_t * buf,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,int flags)187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188 uint64_t size, zio_done_func_t *done, void *private, int flags)
189 {
190 ASSERT(
191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
194
195 zio_nowait(zio_read_phys(zio, vd,
196 vdev_label_offset(vd->vdev_psize, l, offset),
197 size, buf, ZIO_CHECKSUM_LABEL, done, private,
198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199 }
200
201 void
vdev_label_write(zio_t * zio,vdev_t * vd,int l,abd_t * buf,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,int flags)202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203 uint64_t size, zio_done_func_t *done, void *private, int flags)
204 {
205 ASSERT(
206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209
210 zio_nowait(zio_write_phys(zio, vd,
211 vdev_label_offset(vd->vdev_psize, l, offset),
212 size, buf, ZIO_CHECKSUM_LABEL, done, private,
213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214 }
215
216 /*
217 * Generate the nvlist representing this vdev's stats
218 */
219 void
vdev_config_generate_stats(vdev_t * vd,nvlist_t * nv)220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
221 {
222 nvlist_t *nvx;
223 vdev_stat_t *vs;
224 vdev_stat_ex_t *vsx;
225
226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
228
229 vdev_get_stats_ex(vd, vs, vsx);
230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
232
233 /*
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
237 */
238 nvx = fnvlist_alloc();
239
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255
256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
258
259 /* ZIOs pending */
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
268
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
271
272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
273 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
274
275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
276 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
277
278 /* Histograms */
279 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
280 vsx->vsx_total_histo[ZIO_TYPE_READ],
281 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
282
283 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
284 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
285 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
286
287 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
288 vsx->vsx_disk_histo[ZIO_TYPE_READ],
289 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
290
291 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
292 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
293 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
294
295 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
296 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
297 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
298
299 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
300 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
301 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
302
303 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
304 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
305 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
306
307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
308 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
309 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
310
311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
312 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
313 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
314
315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
316 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
317 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
318
319 /* Request sizes */
320 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
321 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
322 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
323
324 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
325 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
326 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
327
328 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
329 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
330 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
331
332 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
333 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
334 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
335
336 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
337 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
338 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
339
340 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
341 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
342 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
343
344 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
345 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
346 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
347
348 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
349 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
350 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
351
352 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
353 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
354 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
355
356 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
357 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
358 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
359
360 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
361 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
362 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
363
364 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
365 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
366 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
367
368 /* IO delays */
369 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
370
371 /* Add extended stats nvlist to main nvlist */
372 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
373
374 fnvlist_free(nvx);
375 kmem_free(vs, sizeof (*vs));
376 kmem_free(vsx, sizeof (*vsx));
377 }
378
379 static void
root_vdev_actions_getprogress(vdev_t * vd,nvlist_t * nvl)380 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
381 {
382 spa_t *spa = vd->vdev_spa;
383
384 if (vd != spa->spa_root_vdev)
385 return;
386
387 /* provide either current or previous scan information */
388 pool_scan_stat_t ps;
389 if (spa_scan_get_stats(spa, &ps) == 0) {
390 fnvlist_add_uint64_array(nvl,
391 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
392 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
393 }
394
395 pool_removal_stat_t prs;
396 if (spa_removal_get_stats(spa, &prs) == 0) {
397 fnvlist_add_uint64_array(nvl,
398 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
399 sizeof (prs) / sizeof (uint64_t));
400 }
401
402 pool_checkpoint_stat_t pcs;
403 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
404 fnvlist_add_uint64_array(nvl,
405 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
406 sizeof (pcs) / sizeof (uint64_t));
407 }
408 }
409
410 static void
top_vdev_actions_getprogress(vdev_t * vd,nvlist_t * nvl)411 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
412 {
413 if (vd == vd->vdev_top) {
414 vdev_rebuild_stat_t vrs;
415 if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
416 fnvlist_add_uint64_array(nvl,
417 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
418 sizeof (vrs) / sizeof (uint64_t));
419 }
420 }
421 }
422
423 /*
424 * Generate the nvlist representing this vdev's config.
425 */
426 nvlist_t *
vdev_config_generate(spa_t * spa,vdev_t * vd,boolean_t getstats,vdev_config_flag_t flags)427 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428 vdev_config_flag_t flags)
429 {
430 nvlist_t *nv = NULL;
431 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
432
433 nv = fnvlist_alloc();
434
435 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
436 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
437 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
438 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
439
440 if (vd->vdev_path != NULL)
441 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
442
443 if (vd->vdev_devid != NULL)
444 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
445
446 if (vd->vdev_physpath != NULL)
447 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448 vd->vdev_physpath);
449
450 if (vd->vdev_enc_sysfs_path != NULL)
451 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
452 vd->vdev_enc_sysfs_path);
453
454 if (vd->vdev_fru != NULL)
455 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
456
457 if (vd->vdev_ops->vdev_op_config_generate != NULL)
458 vd->vdev_ops->vdev_op_config_generate(vd, nv);
459
460 if (vd->vdev_wholedisk != -1ULL) {
461 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 vd->vdev_wholedisk);
463 }
464
465 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
466 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
467
468 if (vd->vdev_isspare)
469 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
470
471 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
472 vd == vd->vdev_top) {
473 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
474 vd->vdev_ms_array);
475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
476 vd->vdev_ms_shift);
477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
478 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
479 vd->vdev_asize);
480 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
481 if (vd->vdev_removing) {
482 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
483 vd->vdev_removing);
484 }
485
486 /* zpool command expects alloc class data */
487 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
488 const char *bias = NULL;
489
490 switch (vd->vdev_alloc_bias) {
491 case VDEV_BIAS_LOG:
492 bias = VDEV_ALLOC_BIAS_LOG;
493 break;
494 case VDEV_BIAS_SPECIAL:
495 bias = VDEV_ALLOC_BIAS_SPECIAL;
496 break;
497 case VDEV_BIAS_DEDUP:
498 bias = VDEV_ALLOC_BIAS_DEDUP;
499 break;
500 default:
501 ASSERT3U(vd->vdev_alloc_bias, ==,
502 VDEV_BIAS_NONE);
503 }
504 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
505 bias);
506 }
507 }
508
509 if (vd->vdev_dtl_sm != NULL) {
510 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
511 space_map_object(vd->vdev_dtl_sm));
512 }
513
514 if (vic->vic_mapping_object != 0) {
515 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
516 vic->vic_mapping_object);
517 }
518
519 if (vic->vic_births_object != 0) {
520 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
521 vic->vic_births_object);
522 }
523
524 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
525 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
526 vic->vic_prev_indirect_vdev);
527 }
528
529 if (vd->vdev_crtxg)
530 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
531
532 if (vd->vdev_expansion_time)
533 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
534 vd->vdev_expansion_time);
535
536 if (flags & VDEV_CONFIG_MOS) {
537 if (vd->vdev_leaf_zap != 0) {
538 ASSERT(vd->vdev_ops->vdev_op_leaf);
539 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
540 vd->vdev_leaf_zap);
541 }
542
543 if (vd->vdev_top_zap != 0) {
544 ASSERT(vd == vd->vdev_top);
545 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
546 vd->vdev_top_zap);
547 }
548
549 if (vd->vdev_resilver_deferred) {
550 ASSERT(vd->vdev_ops->vdev_op_leaf);
551 ASSERT(spa->spa_resilver_deferred);
552 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
553 }
554 }
555
556 if (getstats) {
557 vdev_config_generate_stats(vd, nv);
558
559 root_vdev_actions_getprogress(vd, nv);
560 top_vdev_actions_getprogress(vd, nv);
561
562 /*
563 * Note: this can be called from open context
564 * (spa_get_stats()), so we need the rwlock to prevent
565 * the mapping from being changed by condensing.
566 */
567 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
568 if (vd->vdev_indirect_mapping != NULL) {
569 ASSERT(vd->vdev_indirect_births != NULL);
570 vdev_indirect_mapping_t *vim =
571 vd->vdev_indirect_mapping;
572 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
573 vdev_indirect_mapping_size(vim));
574 }
575 rw_exit(&vd->vdev_indirect_rwlock);
576 if (vd->vdev_mg != NULL &&
577 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
578 /*
579 * Compute approximately how much memory would be used
580 * for the indirect mapping if this device were to
581 * be removed.
582 *
583 * Note: If the frag metric is invalid, then not
584 * enough metaslabs have been converted to have
585 * histograms.
586 */
587 uint64_t seg_count = 0;
588 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
589
590 /*
591 * There are the same number of allocated segments
592 * as free segments, so we will have at least one
593 * entry per free segment. However, small free
594 * segments (smaller than vdev_removal_max_span)
595 * will be combined with adjacent allocated segments
596 * as a single mapping.
597 */
598 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
599 if (i + 1 < highbit64(vdev_removal_max_span)
600 - 1) {
601 to_alloc +=
602 vd->vdev_mg->mg_histogram[i] <<
603 (i + 1);
604 } else {
605 seg_count +=
606 vd->vdev_mg->mg_histogram[i];
607 }
608 }
609
610 /*
611 * The maximum length of a mapping is
612 * zfs_remove_max_segment, so we need at least one entry
613 * per zfs_remove_max_segment of allocated data.
614 */
615 seg_count += to_alloc / spa_remove_max_segment(spa);
616
617 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
618 seg_count *
619 sizeof (vdev_indirect_mapping_entry_phys_t));
620 }
621 }
622
623 if (!vd->vdev_ops->vdev_op_leaf) {
624 nvlist_t **child;
625 int c, idx;
626
627 ASSERT(!vd->vdev_ishole);
628
629 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
630 KM_SLEEP);
631
632 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
633 vdev_t *cvd = vd->vdev_child[c];
634
635 /*
636 * If we're generating an nvlist of removing
637 * vdevs then skip over any device which is
638 * not being removed.
639 */
640 if ((flags & VDEV_CONFIG_REMOVING) &&
641 !cvd->vdev_removing)
642 continue;
643
644 child[idx++] = vdev_config_generate(spa, cvd,
645 getstats, flags);
646 }
647
648 if (idx) {
649 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
650 child, idx);
651 }
652
653 for (c = 0; c < idx; c++)
654 nvlist_free(child[c]);
655
656 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
657
658 } else {
659 const char *aux = NULL;
660
661 if (vd->vdev_offline && !vd->vdev_tmpoffline)
662 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
663 if (vd->vdev_resilver_txg != 0)
664 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
665 vd->vdev_resilver_txg);
666 if (vd->vdev_rebuild_txg != 0)
667 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
668 vd->vdev_rebuild_txg);
669 if (vd->vdev_faulted)
670 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
671 if (vd->vdev_degraded)
672 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
673 if (vd->vdev_removed)
674 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
675 if (vd->vdev_unspare)
676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
677 if (vd->vdev_ishole)
678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
679
680 /* Set the reason why we're FAULTED/DEGRADED. */
681 switch (vd->vdev_stat.vs_aux) {
682 case VDEV_AUX_ERR_EXCEEDED:
683 aux = "err_exceeded";
684 break;
685
686 case VDEV_AUX_EXTERNAL:
687 aux = "external";
688 break;
689 }
690
691 if (aux != NULL && !vd->vdev_tmpoffline) {
692 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
693 } else {
694 /*
695 * We're healthy - clear any previous AUX_STATE values.
696 */
697 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
698 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
699 }
700
701 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
702 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
703 vd->vdev_orig_guid);
704 }
705 }
706
707 return (nv);
708 }
709
710 /*
711 * Generate a view of the top-level vdevs. If we currently have holes
712 * in the namespace, then generate an array which contains a list of holey
713 * vdevs. Additionally, add the number of top-level children that currently
714 * exist.
715 */
716 void
vdev_top_config_generate(spa_t * spa,nvlist_t * config)717 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
718 {
719 vdev_t *rvd = spa->spa_root_vdev;
720 uint64_t *array;
721 uint_t c, idx;
722
723 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
724
725 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
726 vdev_t *tvd = rvd->vdev_child[c];
727
728 if (tvd->vdev_ishole) {
729 array[idx++] = c;
730 }
731 }
732
733 if (idx) {
734 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
735 array, idx) == 0);
736 }
737
738 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
739 rvd->vdev_children) == 0);
740
741 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
742 }
743
744 /*
745 * Returns the configuration from the label of the given vdev. For vdevs
746 * which don't have a txg value stored on their label (i.e. spares/cache)
747 * or have not been completely initialized (txg = 0) just return
748 * the configuration from the first valid label we find. Otherwise,
749 * find the most up-to-date label that does not exceed the specified
750 * 'txg' value.
751 */
752 nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)753 vdev_label_read_config(vdev_t *vd, uint64_t txg)
754 {
755 spa_t *spa = vd->vdev_spa;
756 nvlist_t *config = NULL;
757 vdev_phys_t *vp;
758 abd_t *vp_abd;
759 zio_t *zio;
760 uint64_t best_txg = 0;
761 uint64_t label_txg = 0;
762 int error = 0;
763 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
764 ZIO_FLAG_SPECULATIVE;
765
766 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
767
768 if (!vdev_readable(vd))
769 return (NULL);
770
771 /*
772 * The label for a dRAID distributed spare is not stored on disk.
773 * Instead it is generated when needed which allows us to bypass
774 * the pipeline when reading the config from the label.
775 */
776 if (vd->vdev_ops == &vdev_draid_spare_ops)
777 return (vdev_draid_read_config_spare(vd));
778
779 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
780 vp = abd_to_buf(vp_abd);
781
782 retry:
783 for (int l = 0; l < VDEV_LABELS; l++) {
784 nvlist_t *label = NULL;
785
786 zio = zio_root(spa, NULL, NULL, flags);
787
788 vdev_label_read(zio, vd, l, vp_abd,
789 offsetof(vdev_label_t, vl_vdev_phys),
790 sizeof (vdev_phys_t), NULL, NULL, flags);
791
792 if (zio_wait(zio) == 0 &&
793 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
794 &label, 0) == 0) {
795 /*
796 * Auxiliary vdevs won't have txg values in their
797 * labels and newly added vdevs may not have been
798 * completely initialized so just return the
799 * configuration from the first valid label we
800 * encounter.
801 */
802 error = nvlist_lookup_uint64(label,
803 ZPOOL_CONFIG_POOL_TXG, &label_txg);
804 if ((error || label_txg == 0) && !config) {
805 config = label;
806 break;
807 } else if (label_txg <= txg && label_txg > best_txg) {
808 best_txg = label_txg;
809 nvlist_free(config);
810 config = fnvlist_dup(label);
811 }
812 }
813
814 if (label != NULL) {
815 nvlist_free(label);
816 label = NULL;
817 }
818 }
819
820 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
821 flags |= ZIO_FLAG_TRYHARD;
822 goto retry;
823 }
824
825 /*
826 * We found a valid label but it didn't pass txg restrictions.
827 */
828 if (config == NULL && label_txg != 0) {
829 vdev_dbgmsg(vd, "label discarded as txg is too large "
830 "(%llu > %llu)", (u_longlong_t)label_txg,
831 (u_longlong_t)txg);
832 }
833
834 abd_free(vp_abd);
835
836 return (config);
837 }
838
839 /*
840 * Determine if a device is in use. The 'spare_guid' parameter will be filled
841 * in with the device guid if this spare is active elsewhere on the system.
842 */
843 static boolean_t
vdev_inuse(vdev_t * vd,uint64_t crtxg,vdev_labeltype_t reason,uint64_t * spare_guid,uint64_t * l2cache_guid)844 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
845 uint64_t *spare_guid, uint64_t *l2cache_guid)
846 {
847 spa_t *spa = vd->vdev_spa;
848 uint64_t state, pool_guid, device_guid, txg, spare_pool;
849 uint64_t vdtxg = 0;
850 nvlist_t *label;
851
852 if (spare_guid)
853 *spare_guid = 0ULL;
854 if (l2cache_guid)
855 *l2cache_guid = 0ULL;
856
857 /*
858 * Read the label, if any, and perform some basic sanity checks.
859 */
860 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
861 return (B_FALSE);
862
863 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
864 &vdtxg);
865
866 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
867 &state) != 0 ||
868 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
869 &device_guid) != 0) {
870 nvlist_free(label);
871 return (B_FALSE);
872 }
873
874 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
875 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
876 &pool_guid) != 0 ||
877 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
878 &txg) != 0)) {
879 nvlist_free(label);
880 return (B_FALSE);
881 }
882
883 nvlist_free(label);
884
885 /*
886 * Check to see if this device indeed belongs to the pool it claims to
887 * be a part of. The only way this is allowed is if the device is a hot
888 * spare (which we check for later on).
889 */
890 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
891 !spa_guid_exists(pool_guid, device_guid) &&
892 !spa_spare_exists(device_guid, NULL, NULL) &&
893 !spa_l2cache_exists(device_guid, NULL))
894 return (B_FALSE);
895
896 /*
897 * If the transaction group is zero, then this an initialized (but
898 * unused) label. This is only an error if the create transaction
899 * on-disk is the same as the one we're using now, in which case the
900 * user has attempted to add the same vdev multiple times in the same
901 * transaction.
902 */
903 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
904 txg == 0 && vdtxg == crtxg)
905 return (B_TRUE);
906
907 /*
908 * Check to see if this is a spare device. We do an explicit check for
909 * spa_has_spare() here because it may be on our pending list of spares
910 * to add. We also check if it is an l2cache device.
911 */
912 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
913 spa_has_spare(spa, device_guid)) {
914 if (spare_guid)
915 *spare_guid = device_guid;
916
917 switch (reason) {
918 case VDEV_LABEL_CREATE:
919 case VDEV_LABEL_L2CACHE:
920 return (B_TRUE);
921
922 case VDEV_LABEL_REPLACE:
923 return (!spa_has_spare(spa, device_guid) ||
924 spare_pool != 0ULL);
925
926 case VDEV_LABEL_SPARE:
927 return (spa_has_spare(spa, device_guid));
928 default:
929 break;
930 }
931 }
932
933 /*
934 * Check to see if this is an l2cache device.
935 */
936 if (spa_l2cache_exists(device_guid, NULL))
937 return (B_TRUE);
938
939 /*
940 * We can't rely on a pool's state if it's been imported
941 * read-only. Instead we look to see if the pools is marked
942 * read-only in the namespace and set the state to active.
943 */
944 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
945 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
946 spa_mode(spa) == SPA_MODE_READ)
947 state = POOL_STATE_ACTIVE;
948
949 /*
950 * If the device is marked ACTIVE, then this device is in use by another
951 * pool on the system.
952 */
953 return (state == POOL_STATE_ACTIVE);
954 }
955
956 /*
957 * Initialize a vdev label. We check to make sure each leaf device is not in
958 * use, and writable. We put down an initial label which we will later
959 * overwrite with a complete label. Note that it's important to do this
960 * sequentially, not in parallel, so that we catch cases of multiple use of the
961 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
962 * itself.
963 */
964 int
vdev_label_init(vdev_t * vd,uint64_t crtxg,vdev_labeltype_t reason)965 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
966 {
967 spa_t *spa = vd->vdev_spa;
968 nvlist_t *label;
969 vdev_phys_t *vp;
970 abd_t *vp_abd;
971 abd_t *bootenv;
972 uberblock_t *ub;
973 abd_t *ub_abd;
974 zio_t *zio;
975 char *buf;
976 size_t buflen;
977 int error;
978 uint64_t spare_guid = 0, l2cache_guid = 0;
979 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
980
981 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
982
983 for (int c = 0; c < vd->vdev_children; c++)
984 if ((error = vdev_label_init(vd->vdev_child[c],
985 crtxg, reason)) != 0)
986 return (error);
987
988 /* Track the creation time for this vdev */
989 vd->vdev_crtxg = crtxg;
990
991 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
992 return (0);
993
994 /*
995 * Dead vdevs cannot be initialized.
996 */
997 if (vdev_is_dead(vd))
998 return (SET_ERROR(EIO));
999
1000 /*
1001 * Determine if the vdev is in use.
1002 */
1003 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1004 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1005 return (SET_ERROR(EBUSY));
1006
1007 /*
1008 * If this is a request to add or replace a spare or l2cache device
1009 * that is in use elsewhere on the system, then we must update the
1010 * guid (which was initialized to a random value) to reflect the
1011 * actual GUID (which is shared between multiple pools).
1012 */
1013 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1014 spare_guid != 0ULL) {
1015 uint64_t guid_delta = spare_guid - vd->vdev_guid;
1016
1017 vd->vdev_guid += guid_delta;
1018
1019 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1020 pvd->vdev_guid_sum += guid_delta;
1021
1022 /*
1023 * If this is a replacement, then we want to fallthrough to the
1024 * rest of the code. If we're adding a spare, then it's already
1025 * labeled appropriately and we can just return.
1026 */
1027 if (reason == VDEV_LABEL_SPARE)
1028 return (0);
1029 ASSERT(reason == VDEV_LABEL_REPLACE ||
1030 reason == VDEV_LABEL_SPLIT);
1031 }
1032
1033 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1034 l2cache_guid != 0ULL) {
1035 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1036
1037 vd->vdev_guid += guid_delta;
1038
1039 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1040 pvd->vdev_guid_sum += guid_delta;
1041
1042 /*
1043 * If this is a replacement, then we want to fallthrough to the
1044 * rest of the code. If we're adding an l2cache, then it's
1045 * already labeled appropriately and we can just return.
1046 */
1047 if (reason == VDEV_LABEL_L2CACHE)
1048 return (0);
1049 ASSERT(reason == VDEV_LABEL_REPLACE);
1050 }
1051
1052 /*
1053 * Initialize its label.
1054 */
1055 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1056 abd_zero(vp_abd, sizeof (vdev_phys_t));
1057 vp = abd_to_buf(vp_abd);
1058
1059 /*
1060 * Generate a label describing the pool and our top-level vdev.
1061 * We mark it as being from txg 0 to indicate that it's not
1062 * really part of an active pool just yet. The labels will
1063 * be written again with a meaningful txg by spa_sync().
1064 */
1065 if (reason == VDEV_LABEL_SPARE ||
1066 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1067 /*
1068 * For inactive hot spares, we generate a special label that
1069 * identifies as a mutually shared hot spare. We write the
1070 * label if we are adding a hot spare, or if we are removing an
1071 * active hot spare (in which case we want to revert the
1072 * labels).
1073 */
1074 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1075
1076 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1077 spa_version(spa)) == 0);
1078 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1079 POOL_STATE_SPARE) == 0);
1080 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1081 vd->vdev_guid) == 0);
1082 } else if (reason == VDEV_LABEL_L2CACHE ||
1083 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1084 /*
1085 * For level 2 ARC devices, add a special label.
1086 */
1087 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1088
1089 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1090 spa_version(spa)) == 0);
1091 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1092 POOL_STATE_L2CACHE) == 0);
1093 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1094 vd->vdev_guid) == 0);
1095 } else {
1096 uint64_t txg = 0ULL;
1097
1098 if (reason == VDEV_LABEL_SPLIT)
1099 txg = spa->spa_uberblock.ub_txg;
1100 label = spa_config_generate(spa, vd, txg, B_FALSE);
1101
1102 /*
1103 * Add our creation time. This allows us to detect multiple
1104 * vdev uses as described above, and automatically expires if we
1105 * fail.
1106 */
1107 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1108 crtxg) == 0);
1109 }
1110
1111 buf = vp->vp_nvlist;
1112 buflen = sizeof (vp->vp_nvlist);
1113
1114 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1115 if (error != 0) {
1116 nvlist_free(label);
1117 abd_free(vp_abd);
1118 /* EFAULT means nvlist_pack ran out of room */
1119 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1120 }
1121
1122 /*
1123 * Initialize uberblock template.
1124 */
1125 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1126 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1127 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1128 ub = abd_to_buf(ub_abd);
1129 ub->ub_txg = 0;
1130
1131 /* Initialize the 2nd padding area. */
1132 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1133 abd_zero(bootenv, VDEV_PAD_SIZE);
1134
1135 /*
1136 * Write everything in parallel.
1137 */
1138 retry:
1139 zio = zio_root(spa, NULL, NULL, flags);
1140
1141 for (int l = 0; l < VDEV_LABELS; l++) {
1142
1143 vdev_label_write(zio, vd, l, vp_abd,
1144 offsetof(vdev_label_t, vl_vdev_phys),
1145 sizeof (vdev_phys_t), NULL, NULL, flags);
1146
1147 /*
1148 * Skip the 1st padding area.
1149 * Zero out the 2nd padding area where it might have
1150 * left over data from previous filesystem format.
1151 */
1152 vdev_label_write(zio, vd, l, bootenv,
1153 offsetof(vdev_label_t, vl_be),
1154 VDEV_PAD_SIZE, NULL, NULL, flags);
1155
1156 vdev_label_write(zio, vd, l, ub_abd,
1157 offsetof(vdev_label_t, vl_uberblock),
1158 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1159 }
1160
1161 error = zio_wait(zio);
1162
1163 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1164 flags |= ZIO_FLAG_TRYHARD;
1165 goto retry;
1166 }
1167
1168 nvlist_free(label);
1169 abd_free(bootenv);
1170 abd_free(ub_abd);
1171 abd_free(vp_abd);
1172
1173 /*
1174 * If this vdev hasn't been previously identified as a spare, then we
1175 * mark it as such only if a) we are labeling it as a spare, or b) it
1176 * exists as a spare elsewhere in the system. Do the same for
1177 * level 2 ARC devices.
1178 */
1179 if (error == 0 && !vd->vdev_isspare &&
1180 (reason == VDEV_LABEL_SPARE ||
1181 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1182 spa_spare_add(vd);
1183
1184 if (error == 0 && !vd->vdev_isl2cache &&
1185 (reason == VDEV_LABEL_L2CACHE ||
1186 spa_l2cache_exists(vd->vdev_guid, NULL)))
1187 spa_l2cache_add(vd);
1188
1189 return (error);
1190 }
1191
1192 /*
1193 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1194 * callback to finish, store our abd in the callback pointer. Otherwise, we
1195 * just free our abd and return.
1196 */
1197 static void
vdev_label_read_bootenv_done(zio_t * zio)1198 vdev_label_read_bootenv_done(zio_t *zio)
1199 {
1200 zio_t *rio = zio->io_private;
1201 abd_t **cbp = rio->io_private;
1202
1203 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1204
1205 if (zio->io_error == 0) {
1206 mutex_enter(&rio->io_lock);
1207 if (*cbp == NULL) {
1208 /* Will free this buffer in vdev_label_read_bootenv. */
1209 *cbp = zio->io_abd;
1210 } else {
1211 abd_free(zio->io_abd);
1212 }
1213 mutex_exit(&rio->io_lock);
1214 } else {
1215 abd_free(zio->io_abd);
1216 }
1217 }
1218
1219 static void
vdev_label_read_bootenv_impl(zio_t * zio,vdev_t * vd,int flags)1220 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1221 {
1222 for (int c = 0; c < vd->vdev_children; c++)
1223 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1224
1225 /*
1226 * We just use the first label that has a correct checksum; the
1227 * bootloader should have rewritten them all to be the same on boot,
1228 * and any changes we made since boot have been the same across all
1229 * labels.
1230 */
1231 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1232 for (int l = 0; l < VDEV_LABELS; l++) {
1233 vdev_label_read(zio, vd, l,
1234 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1235 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1236 vdev_label_read_bootenv_done, zio, flags);
1237 }
1238 }
1239 }
1240
1241 int
vdev_label_read_bootenv(vdev_t * rvd,nvlist_t * bootenv)1242 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1243 {
1244 nvlist_t *config;
1245 spa_t *spa = rvd->vdev_spa;
1246 abd_t *abd = NULL;
1247 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1248 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1249
1250 ASSERT(bootenv);
1251 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1252
1253 zio_t *zio = zio_root(spa, NULL, &abd, flags);
1254 vdev_label_read_bootenv_impl(zio, rvd, flags);
1255 int err = zio_wait(zio);
1256
1257 if (abd != NULL) {
1258 char *buf;
1259 vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1260
1261 vbe->vbe_version = ntohll(vbe->vbe_version);
1262 switch (vbe->vbe_version) {
1263 case VB_RAW:
1264 /*
1265 * if we have textual data in vbe_bootenv, create nvlist
1266 * with key "envmap".
1267 */
1268 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1269 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1270 fnvlist_add_string(bootenv, GRUB_ENVMAP,
1271 vbe->vbe_bootenv);
1272 break;
1273
1274 case VB_NVLIST:
1275 err = nvlist_unpack(vbe->vbe_bootenv,
1276 sizeof (vbe->vbe_bootenv), &config, 0);
1277 if (err == 0) {
1278 fnvlist_merge(bootenv, config);
1279 nvlist_free(config);
1280 break;
1281 }
1282 /* FALLTHROUGH */
1283 default:
1284 /* Check for FreeBSD zfs bootonce command string */
1285 buf = abd_to_buf(abd);
1286 if (*buf == '\0') {
1287 fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1288 VB_NVLIST);
1289 break;
1290 }
1291 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1292 }
1293
1294 /*
1295 * abd was allocated in vdev_label_read_bootenv_impl()
1296 */
1297 abd_free(abd);
1298 /*
1299 * If we managed to read any successfully,
1300 * return success.
1301 */
1302 return (0);
1303 }
1304 return (err);
1305 }
1306
1307 int
vdev_label_write_bootenv(vdev_t * vd,nvlist_t * env)1308 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1309 {
1310 zio_t *zio;
1311 spa_t *spa = vd->vdev_spa;
1312 vdev_boot_envblock_t *bootenv;
1313 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1314 int error;
1315 size_t nvsize;
1316 char *nvbuf;
1317
1318 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1319 if (error != 0)
1320 return (SET_ERROR(error));
1321
1322 if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1323 return (SET_ERROR(E2BIG));
1324 }
1325
1326 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1327
1328 error = ENXIO;
1329 for (int c = 0; c < vd->vdev_children; c++) {
1330 int child_err;
1331
1332 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1333 /*
1334 * As long as any of the disks managed to write all of their
1335 * labels successfully, return success.
1336 */
1337 if (child_err == 0)
1338 error = child_err;
1339 }
1340
1341 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1342 !vdev_writeable(vd)) {
1343 return (error);
1344 }
1345 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1346 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1347 abd_zero(abd, VDEV_PAD_SIZE);
1348
1349 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1350 nvbuf = bootenv->vbe_bootenv;
1351 nvsize = sizeof (bootenv->vbe_bootenv);
1352
1353 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1354 switch (bootenv->vbe_version) {
1355 case VB_RAW:
1356 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1357 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1358 }
1359 error = 0;
1360 break;
1361
1362 case VB_NVLIST:
1363 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1364 KM_SLEEP);
1365 break;
1366
1367 default:
1368 error = EINVAL;
1369 break;
1370 }
1371
1372 if (error == 0) {
1373 bootenv->vbe_version = htonll(bootenv->vbe_version);
1374 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1375 } else {
1376 abd_free(abd);
1377 return (SET_ERROR(error));
1378 }
1379
1380 retry:
1381 zio = zio_root(spa, NULL, NULL, flags);
1382 for (int l = 0; l < VDEV_LABELS; l++) {
1383 vdev_label_write(zio, vd, l, abd,
1384 offsetof(vdev_label_t, vl_be),
1385 VDEV_PAD_SIZE, NULL, NULL, flags);
1386 }
1387
1388 error = zio_wait(zio);
1389 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1390 flags |= ZIO_FLAG_TRYHARD;
1391 goto retry;
1392 }
1393
1394 abd_free(abd);
1395 return (error);
1396 }
1397
1398 /*
1399 * ==========================================================================
1400 * uberblock load/sync
1401 * ==========================================================================
1402 */
1403
1404 /*
1405 * Consider the following situation: txg is safely synced to disk. We've
1406 * written the first uberblock for txg + 1, and then we lose power. When we
1407 * come back up, we fail to see the uberblock for txg + 1 because, say,
1408 * it was on a mirrored device and the replica to which we wrote txg + 1
1409 * is now offline. If we then make some changes and sync txg + 1, and then
1410 * the missing replica comes back, then for a few seconds we'll have two
1411 * conflicting uberblocks on disk with the same txg. The solution is simple:
1412 * among uberblocks with equal txg, choose the one with the latest timestamp.
1413 */
1414 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1415 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1416 {
1417 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1418
1419 if (likely(cmp))
1420 return (cmp);
1421
1422 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1423 if (likely(cmp))
1424 return (cmp);
1425
1426 /*
1427 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1428 * ZFS, e.g. OpenZFS >= 0.7.
1429 *
1430 * If one ub has MMP and the other does not, they were written by
1431 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1432 * a 0 value.
1433 *
1434 * Since timestamp and txg are the same if we get this far, either is
1435 * acceptable for importing the pool.
1436 */
1437 unsigned int seq1 = 0;
1438 unsigned int seq2 = 0;
1439
1440 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1441 seq1 = MMP_SEQ(ub1);
1442
1443 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1444 seq2 = MMP_SEQ(ub2);
1445
1446 return (TREE_CMP(seq1, seq2));
1447 }
1448
1449 struct ubl_cbdata {
1450 uberblock_t *ubl_ubbest; /* Best uberblock */
1451 vdev_t *ubl_vd; /* vdev associated with the above */
1452 };
1453
1454 static void
vdev_uberblock_load_done(zio_t * zio)1455 vdev_uberblock_load_done(zio_t *zio)
1456 {
1457 vdev_t *vd = zio->io_vd;
1458 spa_t *spa = zio->io_spa;
1459 zio_t *rio = zio->io_private;
1460 uberblock_t *ub = abd_to_buf(zio->io_abd);
1461 struct ubl_cbdata *cbp = rio->io_private;
1462
1463 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1464
1465 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1466 mutex_enter(&rio->io_lock);
1467 if (ub->ub_txg <= spa->spa_load_max_txg &&
1468 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1469 /*
1470 * Keep track of the vdev in which this uberblock
1471 * was found. We will use this information later
1472 * to obtain the config nvlist associated with
1473 * this uberblock.
1474 */
1475 *cbp->ubl_ubbest = *ub;
1476 cbp->ubl_vd = vd;
1477 }
1478 mutex_exit(&rio->io_lock);
1479 }
1480
1481 abd_free(zio->io_abd);
1482 }
1483
1484 static void
vdev_uberblock_load_impl(zio_t * zio,vdev_t * vd,int flags,struct ubl_cbdata * cbp)1485 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1486 struct ubl_cbdata *cbp)
1487 {
1488 for (int c = 0; c < vd->vdev_children; c++)
1489 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1490
1491 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1492 vd->vdev_ops != &vdev_draid_spare_ops) {
1493 for (int l = 0; l < VDEV_LABELS; l++) {
1494 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1495 vdev_label_read(zio, vd, l,
1496 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1497 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1498 VDEV_UBERBLOCK_SIZE(vd),
1499 vdev_uberblock_load_done, zio, flags);
1500 }
1501 }
1502 }
1503 }
1504
1505 /*
1506 * Reads the 'best' uberblock from disk along with its associated
1507 * configuration. First, we read the uberblock array of each label of each
1508 * vdev, keeping track of the uberblock with the highest txg in each array.
1509 * Then, we read the configuration from the same vdev as the best uberblock.
1510 */
1511 void
vdev_uberblock_load(vdev_t * rvd,uberblock_t * ub,nvlist_t ** config)1512 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1513 {
1514 zio_t *zio;
1515 spa_t *spa = rvd->vdev_spa;
1516 struct ubl_cbdata cb;
1517 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1518 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1519
1520 ASSERT(ub);
1521 ASSERT(config);
1522
1523 bzero(ub, sizeof (uberblock_t));
1524 *config = NULL;
1525
1526 cb.ubl_ubbest = ub;
1527 cb.ubl_vd = NULL;
1528
1529 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1530 zio = zio_root(spa, NULL, &cb, flags);
1531 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1532 (void) zio_wait(zio);
1533
1534 /*
1535 * It's possible that the best uberblock was discovered on a label
1536 * that has a configuration which was written in a future txg.
1537 * Search all labels on this vdev to find the configuration that
1538 * matches the txg for our uberblock.
1539 */
1540 if (cb.ubl_vd != NULL) {
1541 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1542 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1543
1544 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1545 if (*config == NULL && spa->spa_extreme_rewind) {
1546 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1547 "Trying again without txg restrictions.");
1548 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1549 }
1550 if (*config == NULL) {
1551 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1552 }
1553 }
1554 spa_config_exit(spa, SCL_ALL, FTAG);
1555 }
1556
1557 /*
1558 * For use when a leaf vdev is expanded.
1559 * The location of labels 2 and 3 changed, and at the new location the
1560 * uberblock rings are either empty or contain garbage. The sync will write
1561 * new configs there because the vdev is dirty, but expansion also needs the
1562 * uberblock rings copied. Read them from label 0 which did not move.
1563 *
1564 * Since the point is to populate labels {2,3} with valid uberblocks,
1565 * we zero uberblocks we fail to read or which are not valid.
1566 */
1567
1568 static void
vdev_copy_uberblocks(vdev_t * vd)1569 vdev_copy_uberblocks(vdev_t *vd)
1570 {
1571 abd_t *ub_abd;
1572 zio_t *write_zio;
1573 int locks = (SCL_L2ARC | SCL_ZIO);
1574 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1575 ZIO_FLAG_SPECULATIVE;
1576
1577 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1578 SCL_STATE);
1579 ASSERT(vd->vdev_ops->vdev_op_leaf);
1580
1581 /*
1582 * No uberblocks are stored on distributed spares, they may be
1583 * safely skipped when expanding a leaf vdev.
1584 */
1585 if (vd->vdev_ops == &vdev_draid_spare_ops)
1586 return;
1587
1588 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1589
1590 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1591
1592 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1593 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1594 const int src_label = 0;
1595 zio_t *zio;
1596
1597 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1598 vdev_label_read(zio, vd, src_label, ub_abd,
1599 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1600 NULL, NULL, flags);
1601
1602 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1603 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1604
1605 for (int l = 2; l < VDEV_LABELS; l++)
1606 vdev_label_write(write_zio, vd, l, ub_abd,
1607 VDEV_UBERBLOCK_OFFSET(vd, n),
1608 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1609 flags | ZIO_FLAG_DONT_PROPAGATE);
1610 }
1611 (void) zio_wait(write_zio);
1612
1613 spa_config_exit(vd->vdev_spa, locks, FTAG);
1614
1615 abd_free(ub_abd);
1616 }
1617
1618 /*
1619 * On success, increment root zio's count of good writes.
1620 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1621 */
1622 static void
vdev_uberblock_sync_done(zio_t * zio)1623 vdev_uberblock_sync_done(zio_t *zio)
1624 {
1625 uint64_t *good_writes = zio->io_private;
1626
1627 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1628 atomic_inc_64(good_writes);
1629 }
1630
1631 /*
1632 * Write the uberblock to all labels of all leaves of the specified vdev.
1633 */
1634 static void
vdev_uberblock_sync(zio_t * zio,uint64_t * good_writes,uberblock_t * ub,vdev_t * vd,int flags)1635 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1636 uberblock_t *ub, vdev_t *vd, int flags)
1637 {
1638 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1639 vdev_uberblock_sync(zio, good_writes,
1640 ub, vd->vdev_child[c], flags);
1641 }
1642
1643 if (!vd->vdev_ops->vdev_op_leaf)
1644 return;
1645
1646 if (!vdev_writeable(vd))
1647 return;
1648
1649 /*
1650 * There's no need to write uberblocks to a distributed spare, they
1651 * are already stored on all the leaves of the parent dRAID. For
1652 * this same reason vdev_uberblock_load_impl() skips distributed
1653 * spares when reading uberblocks.
1654 */
1655 if (vd->vdev_ops == &vdev_draid_spare_ops)
1656 return;
1657
1658 /* If the vdev was expanded, need to copy uberblock rings. */
1659 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1660 vd->vdev_copy_uberblocks == B_TRUE) {
1661 vdev_copy_uberblocks(vd);
1662 vd->vdev_copy_uberblocks = B_FALSE;
1663 }
1664
1665 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1666 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1667
1668 /* Copy the uberblock_t into the ABD */
1669 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1670 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1671 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1672
1673 for (int l = 0; l < VDEV_LABELS; l++)
1674 vdev_label_write(zio, vd, l, ub_abd,
1675 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1676 vdev_uberblock_sync_done, good_writes,
1677 flags | ZIO_FLAG_DONT_PROPAGATE);
1678
1679 abd_free(ub_abd);
1680 }
1681
1682 /* Sync the uberblocks to all vdevs in svd[] */
1683 static int
vdev_uberblock_sync_list(vdev_t ** svd,int svdcount,uberblock_t * ub,int flags)1684 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1685 {
1686 spa_t *spa = svd[0]->vdev_spa;
1687 zio_t *zio;
1688 uint64_t good_writes = 0;
1689
1690 zio = zio_root(spa, NULL, NULL, flags);
1691
1692 for (int v = 0; v < svdcount; v++)
1693 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1694
1695 (void) zio_wait(zio);
1696
1697 /*
1698 * Flush the uberblocks to disk. This ensures that the odd labels
1699 * are no longer needed (because the new uberblocks and the even
1700 * labels are safely on disk), so it is safe to overwrite them.
1701 */
1702 zio = zio_root(spa, NULL, NULL, flags);
1703
1704 for (int v = 0; v < svdcount; v++) {
1705 if (vdev_writeable(svd[v])) {
1706 zio_flush(zio, svd[v]);
1707 }
1708 }
1709
1710 (void) zio_wait(zio);
1711
1712 return (good_writes >= 1 ? 0 : EIO);
1713 }
1714
1715 /*
1716 * On success, increment the count of good writes for our top-level vdev.
1717 */
1718 static void
vdev_label_sync_done(zio_t * zio)1719 vdev_label_sync_done(zio_t *zio)
1720 {
1721 uint64_t *good_writes = zio->io_private;
1722
1723 if (zio->io_error == 0)
1724 atomic_inc_64(good_writes);
1725 }
1726
1727 /*
1728 * If there weren't enough good writes, indicate failure to the parent.
1729 */
1730 static void
vdev_label_sync_top_done(zio_t * zio)1731 vdev_label_sync_top_done(zio_t *zio)
1732 {
1733 uint64_t *good_writes = zio->io_private;
1734
1735 if (*good_writes == 0)
1736 zio->io_error = SET_ERROR(EIO);
1737
1738 kmem_free(good_writes, sizeof (uint64_t));
1739 }
1740
1741 /*
1742 * We ignore errors for log and cache devices, simply free the private data.
1743 */
1744 static void
vdev_label_sync_ignore_done(zio_t * zio)1745 vdev_label_sync_ignore_done(zio_t *zio)
1746 {
1747 kmem_free(zio->io_private, sizeof (uint64_t));
1748 }
1749
1750 /*
1751 * Write all even or odd labels to all leaves of the specified vdev.
1752 */
1753 static void
vdev_label_sync(zio_t * zio,uint64_t * good_writes,vdev_t * vd,int l,uint64_t txg,int flags)1754 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1755 vdev_t *vd, int l, uint64_t txg, int flags)
1756 {
1757 nvlist_t *label;
1758 vdev_phys_t *vp;
1759 abd_t *vp_abd;
1760 char *buf;
1761 size_t buflen;
1762
1763 for (int c = 0; c < vd->vdev_children; c++) {
1764 vdev_label_sync(zio, good_writes,
1765 vd->vdev_child[c], l, txg, flags);
1766 }
1767
1768 if (!vd->vdev_ops->vdev_op_leaf)
1769 return;
1770
1771 if (!vdev_writeable(vd))
1772 return;
1773
1774 /*
1775 * The top-level config never needs to be written to a distributed
1776 * spare. When read vdev_dspare_label_read_config() will generate
1777 * the config for the vdev_label_read_config().
1778 */
1779 if (vd->vdev_ops == &vdev_draid_spare_ops)
1780 return;
1781
1782 /*
1783 * Generate a label describing the top-level config to which we belong.
1784 */
1785 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1786
1787 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1788 abd_zero(vp_abd, sizeof (vdev_phys_t));
1789 vp = abd_to_buf(vp_abd);
1790
1791 buf = vp->vp_nvlist;
1792 buflen = sizeof (vp->vp_nvlist);
1793
1794 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1795 for (; l < VDEV_LABELS; l += 2) {
1796 vdev_label_write(zio, vd, l, vp_abd,
1797 offsetof(vdev_label_t, vl_vdev_phys),
1798 sizeof (vdev_phys_t),
1799 vdev_label_sync_done, good_writes,
1800 flags | ZIO_FLAG_DONT_PROPAGATE);
1801 }
1802 }
1803
1804 abd_free(vp_abd);
1805 nvlist_free(label);
1806 }
1807
1808 static int
vdev_label_sync_list(spa_t * spa,int l,uint64_t txg,int flags)1809 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1810 {
1811 list_t *dl = &spa->spa_config_dirty_list;
1812 vdev_t *vd;
1813 zio_t *zio;
1814 int error;
1815
1816 /*
1817 * Write the new labels to disk.
1818 */
1819 zio = zio_root(spa, NULL, NULL, flags);
1820
1821 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1822 uint64_t *good_writes;
1823
1824 ASSERT(!vd->vdev_ishole);
1825
1826 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1827 zio_t *vio = zio_null(zio, spa, NULL,
1828 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1829 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1830 good_writes, flags);
1831 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1832 zio_nowait(vio);
1833 }
1834
1835 error = zio_wait(zio);
1836
1837 /*
1838 * Flush the new labels to disk.
1839 */
1840 zio = zio_root(spa, NULL, NULL, flags);
1841
1842 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1843 zio_flush(zio, vd);
1844
1845 (void) zio_wait(zio);
1846
1847 return (error);
1848 }
1849
1850 /*
1851 * Sync the uberblock and any changes to the vdev configuration.
1852 *
1853 * The order of operations is carefully crafted to ensure that
1854 * if the system panics or loses power at any time, the state on disk
1855 * is still transactionally consistent. The in-line comments below
1856 * describe the failure semantics at each stage.
1857 *
1858 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1859 * at any time, you can just call it again, and it will resume its work.
1860 */
1861 int
vdev_config_sync(vdev_t ** svd,int svdcount,uint64_t txg)1862 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1863 {
1864 spa_t *spa = svd[0]->vdev_spa;
1865 uberblock_t *ub = &spa->spa_uberblock;
1866 int error = 0;
1867 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1868
1869 ASSERT(svdcount != 0);
1870 retry:
1871 /*
1872 * Normally, we don't want to try too hard to write every label and
1873 * uberblock. If there is a flaky disk, we don't want the rest of the
1874 * sync process to block while we retry. But if we can't write a
1875 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1876 * bailing out and declaring the pool faulted.
1877 */
1878 if (error != 0) {
1879 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1880 return (error);
1881 flags |= ZIO_FLAG_TRYHARD;
1882 }
1883
1884 ASSERT(ub->ub_txg <= txg);
1885
1886 /*
1887 * If this isn't a resync due to I/O errors,
1888 * and nothing changed in this transaction group,
1889 * and the vdev configuration hasn't changed,
1890 * then there's nothing to do.
1891 */
1892 if (ub->ub_txg < txg) {
1893 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1894 txg, spa->spa_mmp.mmp_delay);
1895
1896 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1897 return (0);
1898 }
1899
1900 if (txg > spa_freeze_txg(spa))
1901 return (0);
1902
1903 ASSERT(txg <= spa->spa_final_txg);
1904
1905 /*
1906 * Flush the write cache of every disk that's been written to
1907 * in this transaction group. This ensures that all blocks
1908 * written in this txg will be committed to stable storage
1909 * before any uberblock that references them.
1910 */
1911 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1912
1913 for (vdev_t *vd =
1914 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1915 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1916 zio_flush(zio, vd);
1917
1918 (void) zio_wait(zio);
1919
1920 /*
1921 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1922 * system dies in the middle of this process, that's OK: all of the
1923 * even labels that made it to disk will be newer than any uberblock,
1924 * and will therefore be considered invalid. The odd labels (L1, L3),
1925 * which have not yet been touched, will still be valid. We flush
1926 * the new labels to disk to ensure that all even-label updates
1927 * are committed to stable storage before the uberblock update.
1928 */
1929 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1930 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1931 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1932 "for pool '%s' when syncing out the even labels "
1933 "of dirty vdevs", error, spa_name(spa));
1934 }
1935 goto retry;
1936 }
1937
1938 /*
1939 * Sync the uberblocks to all vdevs in svd[].
1940 * If the system dies in the middle of this step, there are two cases
1941 * to consider, and the on-disk state is consistent either way:
1942 *
1943 * (1) If none of the new uberblocks made it to disk, then the
1944 * previous uberblock will be the newest, and the odd labels
1945 * (which had not yet been touched) will be valid with respect
1946 * to that uberblock.
1947 *
1948 * (2) If one or more new uberblocks made it to disk, then they
1949 * will be the newest, and the even labels (which had all
1950 * been successfully committed) will be valid with respect
1951 * to the new uberblocks.
1952 */
1953 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1954 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1955 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1956 "%d for pool '%s'", error, spa_name(spa));
1957 }
1958 goto retry;
1959 }
1960
1961 if (spa_multihost(spa))
1962 mmp_update_uberblock(spa, ub);
1963
1964 /*
1965 * Sync out odd labels for every dirty vdev. If the system dies
1966 * in the middle of this process, the even labels and the new
1967 * uberblocks will suffice to open the pool. The next time
1968 * the pool is opened, the first thing we'll do -- before any
1969 * user data is modified -- is mark every vdev dirty so that
1970 * all labels will be brought up to date. We flush the new labels
1971 * to disk to ensure that all odd-label updates are committed to
1972 * stable storage before the next transaction group begins.
1973 */
1974 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1975 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1976 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1977 "for pool '%s' when syncing out the odd labels of "
1978 "dirty vdevs", error, spa_name(spa));
1979 }
1980 goto retry;
1981 }
1982
1983 return (0);
1984 }
1985