1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35
36 /*
37 * Value that is written to disk during initialization.
38 */
39 #ifdef _ILP32
40 unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
44
45 /* maximum number of I/Os outstanding per leaf vdev */
46 int zfs_initialize_limit = 1;
47
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 unsigned long zfs_initialize_chunk_size = 1024 * 1024;
50
51 static boolean_t
vdev_initialize_should_stop(vdev_t * vd)52 vdev_initialize_should_stop(vdev_t *vd)
53 {
54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55 vd->vdev_detached || vd->vdev_top->vdev_removing);
56 }
57
58 static void
vdev_initialize_zap_update_sync(void * arg,dmu_tx_t * tx)59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
60 {
61 /*
62 * We pass in the guid instead of the vdev_t since the vdev may
63 * have been freed prior to the sync task being processed. This
64 * happens when a vdev is detached as we call spa_config_vdev_exit(),
65 * stop the initializing thread, schedule the sync task, and free
66 * the vdev. Later when the scheduled sync task is invoked, it would
67 * find that the vdev has been freed.
68 */
69 uint64_t guid = *(uint64_t *)arg;
70 uint64_t txg = dmu_tx_get_txg(tx);
71 kmem_free(arg, sizeof (uint64_t));
72
73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75 return;
76
77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
79
80 VERIFY(vd->vdev_leaf_zap != 0);
81
82 objset_t *mos = vd->vdev_spa->spa_meta_objset;
83
84 if (last_offset > 0) {
85 vd->vdev_initialize_last_offset = last_offset;
86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88 sizeof (last_offset), 1, &last_offset, tx));
89 }
90 if (vd->vdev_initialize_action_time > 0) {
91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94 1, &val, tx));
95 }
96
97 uint64_t initialize_state = vd->vdev_initialize_state;
98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100 &initialize_state, tx));
101 }
102
103 static void
vdev_initialize_change_state(vdev_t * vd,vdev_initializing_state_t new_state)104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
105 {
106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107 spa_t *spa = vd->vdev_spa;
108
109 if (new_state == vd->vdev_initialize_state)
110 return;
111
112 /*
113 * Copy the vd's guid, this will be freed by the sync task.
114 */
115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116 *guid = vd->vdev_guid;
117
118 /*
119 * If we're suspending, then preserving the original start time.
120 */
121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122 vd->vdev_initialize_action_time = gethrestime_sec();
123 }
124
125 vdev_initializing_state_t old_state = vd->vdev_initialize_state;
126 vd->vdev_initialize_state = new_state;
127
128 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131 guid, tx);
132
133 switch (new_state) {
134 case VDEV_INITIALIZE_ACTIVE:
135 spa_history_log_internal(spa, "initialize", tx,
136 "vdev=%s activated", vd->vdev_path);
137 break;
138 case VDEV_INITIALIZE_SUSPENDED:
139 spa_history_log_internal(spa, "initialize", tx,
140 "vdev=%s suspended", vd->vdev_path);
141 break;
142 case VDEV_INITIALIZE_CANCELED:
143 if (old_state == VDEV_INITIALIZE_ACTIVE ||
144 old_state == VDEV_INITIALIZE_SUSPENDED)
145 spa_history_log_internal(spa, "initialize", tx,
146 "vdev=%s canceled", vd->vdev_path);
147 break;
148 case VDEV_INITIALIZE_COMPLETE:
149 spa_history_log_internal(spa, "initialize", tx,
150 "vdev=%s complete", vd->vdev_path);
151 break;
152 default:
153 panic("invalid state %llu", (unsigned long long)new_state);
154 }
155
156 dmu_tx_commit(tx);
157
158 if (new_state != VDEV_INITIALIZE_ACTIVE)
159 spa_notify_waiters(spa);
160 }
161
162 static void
vdev_initialize_cb(zio_t * zio)163 vdev_initialize_cb(zio_t *zio)
164 {
165 vdev_t *vd = zio->io_vd;
166 mutex_enter(&vd->vdev_initialize_io_lock);
167 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
168 /*
169 * The I/O failed because the vdev was unavailable; roll the
170 * last offset back. (This works because spa_sync waits on
171 * spa_txg_zio before it runs sync tasks.)
172 */
173 uint64_t *off =
174 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
175 *off = MIN(*off, zio->io_offset);
176 } else {
177 /*
178 * Since initializing is best-effort, we ignore I/O errors and
179 * rely on vdev_probe to determine if the errors are more
180 * critical.
181 */
182 if (zio->io_error != 0)
183 vd->vdev_stat.vs_initialize_errors++;
184
185 vd->vdev_initialize_bytes_done += zio->io_orig_size;
186 }
187 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
188 vd->vdev_initialize_inflight--;
189 cv_broadcast(&vd->vdev_initialize_io_cv);
190 mutex_exit(&vd->vdev_initialize_io_lock);
191
192 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
193 }
194
195 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
196 static int
vdev_initialize_write(vdev_t * vd,uint64_t start,uint64_t size,abd_t * data)197 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
198 {
199 spa_t *spa = vd->vdev_spa;
200
201 /* Limit inflight initializing I/Os */
202 mutex_enter(&vd->vdev_initialize_io_lock);
203 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
204 cv_wait(&vd->vdev_initialize_io_cv,
205 &vd->vdev_initialize_io_lock);
206 }
207 vd->vdev_initialize_inflight++;
208 mutex_exit(&vd->vdev_initialize_io_lock);
209
210 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
211 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
212 uint64_t txg = dmu_tx_get_txg(tx);
213
214 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
215 mutex_enter(&vd->vdev_initialize_lock);
216
217 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
218 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
219 *guid = vd->vdev_guid;
220
221 /* This is the first write of this txg. */
222 dsl_sync_task_nowait(spa_get_dsl(spa),
223 vdev_initialize_zap_update_sync, guid, tx);
224 }
225
226 /*
227 * We know the vdev struct will still be around since all
228 * consumers of vdev_free must stop the initialization first.
229 */
230 if (vdev_initialize_should_stop(vd)) {
231 mutex_enter(&vd->vdev_initialize_io_lock);
232 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
233 vd->vdev_initialize_inflight--;
234 mutex_exit(&vd->vdev_initialize_io_lock);
235 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
236 mutex_exit(&vd->vdev_initialize_lock);
237 dmu_tx_commit(tx);
238 return (SET_ERROR(EINTR));
239 }
240 mutex_exit(&vd->vdev_initialize_lock);
241
242 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
243 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
244 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
245 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
246 /* vdev_initialize_cb releases SCL_STATE_ALL */
247
248 dmu_tx_commit(tx);
249
250 return (0);
251 }
252
253 /*
254 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
255 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
256 * allocation will guarantee these for us.
257 */
258 /* ARGSUSED */
259 static int
vdev_initialize_block_fill(void * buf,size_t len,void * unused)260 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
261 {
262 ASSERT0(len % sizeof (uint64_t));
263 #ifdef _ILP32
264 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
265 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
266 }
267 #else
268 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
269 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
270 }
271 #endif
272 return (0);
273 }
274
275 static abd_t *
vdev_initialize_block_alloc(void)276 vdev_initialize_block_alloc(void)
277 {
278 /* Allocate ABD for filler data */
279 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
280
281 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
282 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
283 vdev_initialize_block_fill, NULL);
284
285 return (data);
286 }
287
288 static void
vdev_initialize_block_free(abd_t * data)289 vdev_initialize_block_free(abd_t *data)
290 {
291 abd_free(data);
292 }
293
294 static int
vdev_initialize_ranges(vdev_t * vd,abd_t * data)295 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
296 {
297 range_tree_t *rt = vd->vdev_initialize_tree;
298 zfs_btree_t *bt = &rt->rt_root;
299 zfs_btree_index_t where;
300
301 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
302 rs = zfs_btree_next(bt, &where, &where)) {
303 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
304
305 /* Split range into legally-sized physical chunks */
306 uint64_t writes_required =
307 ((size - 1) / zfs_initialize_chunk_size) + 1;
308
309 for (uint64_t w = 0; w < writes_required; w++) {
310 int error;
311
312 error = vdev_initialize_write(vd,
313 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
314 (w * zfs_initialize_chunk_size),
315 MIN(size - (w * zfs_initialize_chunk_size),
316 zfs_initialize_chunk_size), data);
317 if (error != 0)
318 return (error);
319 }
320 }
321 return (0);
322 }
323
324 static void
vdev_initialize_xlate_last_rs_end(void * arg,range_seg64_t * physical_rs)325 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
326 {
327 uint64_t *last_rs_end = (uint64_t *)arg;
328
329 if (physical_rs->rs_end > *last_rs_end)
330 *last_rs_end = physical_rs->rs_end;
331 }
332
333 static void
vdev_initialize_xlate_progress(void * arg,range_seg64_t * physical_rs)334 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
335 {
336 vdev_t *vd = (vdev_t *)arg;
337
338 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
339 vd->vdev_initialize_bytes_est += size;
340
341 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
342 vd->vdev_initialize_bytes_done += size;
343 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
344 vd->vdev_initialize_last_offset < physical_rs->rs_end) {
345 vd->vdev_initialize_bytes_done +=
346 vd->vdev_initialize_last_offset - physical_rs->rs_start;
347 }
348 }
349
350 static void
vdev_initialize_calculate_progress(vdev_t * vd)351 vdev_initialize_calculate_progress(vdev_t *vd)
352 {
353 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
354 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
355 ASSERT(vd->vdev_leaf_zap != 0);
356
357 vd->vdev_initialize_bytes_est = 0;
358 vd->vdev_initialize_bytes_done = 0;
359
360 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
361 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
362 mutex_enter(&msp->ms_lock);
363
364 uint64_t ms_free = (msp->ms_size -
365 metaslab_allocated_space(msp)) /
366 vdev_get_ndisks(vd->vdev_top);
367
368 /*
369 * Convert the metaslab range to a physical range
370 * on our vdev. We use this to determine if we are
371 * in the middle of this metaslab range.
372 */
373 range_seg64_t logical_rs, physical_rs, remain_rs;
374 logical_rs.rs_start = msp->ms_start;
375 logical_rs.rs_end = msp->ms_start + msp->ms_size;
376
377 /* Metaslab space after this offset has not been initialized */
378 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
379 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
380 vd->vdev_initialize_bytes_est += ms_free;
381 mutex_exit(&msp->ms_lock);
382 continue;
383 }
384
385 /* Metaslab space before this offset has been initialized */
386 uint64_t last_rs_end = physical_rs.rs_end;
387 if (!vdev_xlate_is_empty(&remain_rs)) {
388 vdev_xlate_walk(vd, &remain_rs,
389 vdev_initialize_xlate_last_rs_end, &last_rs_end);
390 }
391
392 if (vd->vdev_initialize_last_offset > last_rs_end) {
393 vd->vdev_initialize_bytes_done += ms_free;
394 vd->vdev_initialize_bytes_est += ms_free;
395 mutex_exit(&msp->ms_lock);
396 continue;
397 }
398
399 /*
400 * If we get here, we're in the middle of initializing this
401 * metaslab. Load it and walk the free tree for more accurate
402 * progress estimation.
403 */
404 VERIFY0(metaslab_load(msp));
405
406 zfs_btree_index_t where;
407 range_tree_t *rt = msp->ms_allocatable;
408 for (range_seg_t *rs =
409 zfs_btree_first(&rt->rt_root, &where); rs;
410 rs = zfs_btree_next(&rt->rt_root, &where,
411 &where)) {
412 logical_rs.rs_start = rs_get_start(rs, rt);
413 logical_rs.rs_end = rs_get_end(rs, rt);
414
415 vdev_xlate_walk(vd, &logical_rs,
416 vdev_initialize_xlate_progress, vd);
417 }
418 mutex_exit(&msp->ms_lock);
419 }
420 }
421
422 static int
vdev_initialize_load(vdev_t * vd)423 vdev_initialize_load(vdev_t *vd)
424 {
425 int err = 0;
426 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
427 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
428 ASSERT(vd->vdev_leaf_zap != 0);
429
430 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
431 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
432 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
433 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
434 sizeof (vd->vdev_initialize_last_offset), 1,
435 &vd->vdev_initialize_last_offset);
436 if (err == ENOENT) {
437 vd->vdev_initialize_last_offset = 0;
438 err = 0;
439 }
440 }
441
442 vdev_initialize_calculate_progress(vd);
443 return (err);
444 }
445
446 static void
vdev_initialize_xlate_range_add(void * arg,range_seg64_t * physical_rs)447 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
448 {
449 vdev_t *vd = arg;
450
451 /* Only add segments that we have not visited yet */
452 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
453 return;
454
455 /* Pick up where we left off mid-range. */
456 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
457 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
458 "(%llu, %llu)", vd->vdev_path,
459 (u_longlong_t)physical_rs->rs_start,
460 (u_longlong_t)physical_rs->rs_end,
461 (u_longlong_t)vd->vdev_initialize_last_offset,
462 (u_longlong_t)physical_rs->rs_end);
463 ASSERT3U(physical_rs->rs_end, >,
464 vd->vdev_initialize_last_offset);
465 physical_rs->rs_start = vd->vdev_initialize_last_offset;
466 }
467
468 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
469
470 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
471 physical_rs->rs_end - physical_rs->rs_start);
472 }
473
474 /*
475 * Convert the logical range into a physical range and add it to our
476 * avl tree.
477 */
478 static void
vdev_initialize_range_add(void * arg,uint64_t start,uint64_t size)479 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
480 {
481 vdev_t *vd = arg;
482 range_seg64_t logical_rs;
483 logical_rs.rs_start = start;
484 logical_rs.rs_end = start + size;
485
486 ASSERT(vd->vdev_ops->vdev_op_leaf);
487 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
488 }
489
490 static void
vdev_initialize_thread(void * arg)491 vdev_initialize_thread(void *arg)
492 {
493 vdev_t *vd = arg;
494 spa_t *spa = vd->vdev_spa;
495 int error = 0;
496 uint64_t ms_count = 0;
497
498 ASSERT(vdev_is_concrete(vd));
499 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
500
501 vd->vdev_initialize_last_offset = 0;
502 VERIFY0(vdev_initialize_load(vd));
503
504 abd_t *deadbeef = vdev_initialize_block_alloc();
505
506 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
507 0, 0);
508
509 for (uint64_t i = 0; !vd->vdev_detached &&
510 i < vd->vdev_top->vdev_ms_count; i++) {
511 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
512 boolean_t unload_when_done = B_FALSE;
513
514 /*
515 * If we've expanded the top-level vdev or it's our
516 * first pass, calculate our progress.
517 */
518 if (vd->vdev_top->vdev_ms_count != ms_count) {
519 vdev_initialize_calculate_progress(vd);
520 ms_count = vd->vdev_top->vdev_ms_count;
521 }
522
523 spa_config_exit(spa, SCL_CONFIG, FTAG);
524 metaslab_disable(msp);
525 mutex_enter(&msp->ms_lock);
526 if (!msp->ms_loaded && !msp->ms_loading)
527 unload_when_done = B_TRUE;
528 VERIFY0(metaslab_load(msp));
529
530 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
531 vd);
532 mutex_exit(&msp->ms_lock);
533
534 error = vdev_initialize_ranges(vd, deadbeef);
535 metaslab_enable(msp, B_TRUE, unload_when_done);
536 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
537
538 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
539 if (error != 0)
540 break;
541 }
542
543 spa_config_exit(spa, SCL_CONFIG, FTAG);
544 mutex_enter(&vd->vdev_initialize_io_lock);
545 while (vd->vdev_initialize_inflight > 0) {
546 cv_wait(&vd->vdev_initialize_io_cv,
547 &vd->vdev_initialize_io_lock);
548 }
549 mutex_exit(&vd->vdev_initialize_io_lock);
550
551 range_tree_destroy(vd->vdev_initialize_tree);
552 vdev_initialize_block_free(deadbeef);
553 vd->vdev_initialize_tree = NULL;
554
555 mutex_enter(&vd->vdev_initialize_lock);
556 if (!vd->vdev_initialize_exit_wanted) {
557 if (vdev_writeable(vd)) {
558 vdev_initialize_change_state(vd,
559 VDEV_INITIALIZE_COMPLETE);
560 } else if (vd->vdev_faulted) {
561 vdev_initialize_change_state(vd,
562 VDEV_INITIALIZE_CANCELED);
563 }
564 }
565 ASSERT(vd->vdev_initialize_thread != NULL ||
566 vd->vdev_initialize_inflight == 0);
567
568 /*
569 * Drop the vdev_initialize_lock while we sync out the
570 * txg since it's possible that a device might be trying to
571 * come online and must check to see if it needs to restart an
572 * initialization. That thread will be holding the spa_config_lock
573 * which would prevent the txg_wait_synced from completing.
574 */
575 mutex_exit(&vd->vdev_initialize_lock);
576 txg_wait_synced(spa_get_dsl(spa), 0);
577 mutex_enter(&vd->vdev_initialize_lock);
578
579 vd->vdev_initialize_thread = NULL;
580 cv_broadcast(&vd->vdev_initialize_cv);
581 mutex_exit(&vd->vdev_initialize_lock);
582
583 thread_exit();
584 }
585
586 /*
587 * Initiates a device. Caller must hold vdev_initialize_lock.
588 * Device must be a leaf and not already be initializing.
589 */
590 void
vdev_initialize(vdev_t * vd)591 vdev_initialize(vdev_t *vd)
592 {
593 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
594 ASSERT(vd->vdev_ops->vdev_op_leaf);
595 ASSERT(vdev_is_concrete(vd));
596 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
597 ASSERT(!vd->vdev_detached);
598 ASSERT(!vd->vdev_initialize_exit_wanted);
599 ASSERT(!vd->vdev_top->vdev_removing);
600
601 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
602 vd->vdev_initialize_thread = thread_create(NULL, 0,
603 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
604 }
605
606 /*
607 * Wait for the initialize thread to be terminated (cancelled or stopped).
608 */
609 static void
vdev_initialize_stop_wait_impl(vdev_t * vd)610 vdev_initialize_stop_wait_impl(vdev_t *vd)
611 {
612 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
613
614 while (vd->vdev_initialize_thread != NULL)
615 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
616
617 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
618 vd->vdev_initialize_exit_wanted = B_FALSE;
619 }
620
621 /*
622 * Wait for vdev initialize threads which were either to cleanly exit.
623 */
624 void
vdev_initialize_stop_wait(spa_t * spa,list_t * vd_list)625 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
626 {
627 vdev_t *vd;
628
629 ASSERT(MUTEX_HELD(&spa_namespace_lock));
630
631 while ((vd = list_remove_head(vd_list)) != NULL) {
632 mutex_enter(&vd->vdev_initialize_lock);
633 vdev_initialize_stop_wait_impl(vd);
634 mutex_exit(&vd->vdev_initialize_lock);
635 }
636 }
637
638 /*
639 * Stop initializing a device, with the resultant initializing state being
640 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
641 * a list_t is provided the stopping vdev is inserted in to the list. Callers
642 * are then required to call vdev_initialize_stop_wait() to block for all the
643 * initialization threads to exit. The caller must hold vdev_initialize_lock
644 * and must not be writing to the spa config, as the initializing thread may
645 * try to enter the config as a reader before exiting.
646 */
647 void
vdev_initialize_stop(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)648 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
649 list_t *vd_list)
650 {
651 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
652 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
653 ASSERT(vd->vdev_ops->vdev_op_leaf);
654 ASSERT(vdev_is_concrete(vd));
655
656 /*
657 * Allow cancel requests to proceed even if the initialize thread
658 * has stopped.
659 */
660 if (vd->vdev_initialize_thread == NULL &&
661 tgt_state != VDEV_INITIALIZE_CANCELED) {
662 return;
663 }
664
665 vdev_initialize_change_state(vd, tgt_state);
666 vd->vdev_initialize_exit_wanted = B_TRUE;
667
668 if (vd_list == NULL) {
669 vdev_initialize_stop_wait_impl(vd);
670 } else {
671 ASSERT(MUTEX_HELD(&spa_namespace_lock));
672 list_insert_tail(vd_list, vd);
673 }
674 }
675
676 static void
vdev_initialize_stop_all_impl(vdev_t * vd,vdev_initializing_state_t tgt_state,list_t * vd_list)677 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
678 list_t *vd_list)
679 {
680 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
681 mutex_enter(&vd->vdev_initialize_lock);
682 vdev_initialize_stop(vd, tgt_state, vd_list);
683 mutex_exit(&vd->vdev_initialize_lock);
684 return;
685 }
686
687 for (uint64_t i = 0; i < vd->vdev_children; i++) {
688 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
689 vd_list);
690 }
691 }
692
693 /*
694 * Convenience function to stop initializing of a vdev tree and set all
695 * initialize thread pointers to NULL.
696 */
697 void
vdev_initialize_stop_all(vdev_t * vd,vdev_initializing_state_t tgt_state)698 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
699 {
700 spa_t *spa = vd->vdev_spa;
701 list_t vd_list;
702
703 ASSERT(MUTEX_HELD(&spa_namespace_lock));
704
705 list_create(&vd_list, sizeof (vdev_t),
706 offsetof(vdev_t, vdev_initialize_node));
707
708 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
709 vdev_initialize_stop_wait(spa, &vd_list);
710
711 if (vd->vdev_spa->spa_sync_on) {
712 /* Make sure that our state has been synced to disk */
713 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
714 }
715
716 list_destroy(&vd_list);
717 }
718
719 void
vdev_initialize_restart(vdev_t * vd)720 vdev_initialize_restart(vdev_t *vd)
721 {
722 ASSERT(MUTEX_HELD(&spa_namespace_lock));
723 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
724
725 if (vd->vdev_leaf_zap != 0) {
726 mutex_enter(&vd->vdev_initialize_lock);
727 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
728 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
729 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
730 sizeof (initialize_state), 1, &initialize_state);
731 ASSERT(err == 0 || err == ENOENT);
732 vd->vdev_initialize_state = initialize_state;
733
734 uint64_t timestamp = 0;
735 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
736 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
737 sizeof (timestamp), 1, ×tamp);
738 ASSERT(err == 0 || err == ENOENT);
739 vd->vdev_initialize_action_time = timestamp;
740
741 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
742 vd->vdev_offline) {
743 /* load progress for reporting, but don't resume */
744 VERIFY0(vdev_initialize_load(vd));
745 } else if (vd->vdev_initialize_state ==
746 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
747 !vd->vdev_top->vdev_removing &&
748 vd->vdev_initialize_thread == NULL) {
749 vdev_initialize(vd);
750 }
751
752 mutex_exit(&vd->vdev_initialize_lock);
753 }
754
755 for (uint64_t i = 0; i < vd->vdev_children; i++) {
756 vdev_initialize_restart(vd->vdev_child[i]);
757 }
758 }
759
760 EXPORT_SYMBOL(vdev_initialize);
761 EXPORT_SYMBOL(vdev_initialize_stop);
762 EXPORT_SYMBOL(vdev_initialize_stop_all);
763 EXPORT_SYMBOL(vdev_initialize_stop_wait);
764 EXPORT_SYMBOL(vdev_initialize_restart);
765
766 /* BEGIN CSTYLED */
767 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
768 "Value written during zpool initialize");
769
770 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
771 "Size in bytes of writes by zpool initialize");
772 /* END CSTYLED */
773