1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright 2013 Martin Matuska <[email protected]>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <[email protected]>
29  * Copyright 2017 Joyent, Inc.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/trim_map.h>
54 #include <sys/vdev_initialize.h>
55 
56 SYSCTL_DECL(_vfs_zfs);
57 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
58 
59 /*
60  * Virtual device management.
61  */
62 
63 /*
64  * The limit for ZFS to automatically increase a top-level vdev's ashift
65  * from logical ashift to physical ashift.
66  *
67  * Example: one or more 512B emulation child vdevs
68  *          child->vdev_ashift = 9 (512 bytes)
69  *          child->vdev_physical_ashift = 12 (4096 bytes)
70  *          zfs_max_auto_ashift = 11 (2048 bytes)
71  *          zfs_min_auto_ashift = 9 (512 bytes)
72  *
73  * On pool creation or the addition of a new top-level vdev, ZFS will
74  * increase the ashift of the top-level vdev to 2048 as limited by
75  * zfs_max_auto_ashift.
76  *
77  * Example: one or more 512B emulation child vdevs
78  *          child->vdev_ashift = 9 (512 bytes)
79  *          child->vdev_physical_ashift = 12 (4096 bytes)
80  *          zfs_max_auto_ashift = 13 (8192 bytes)
81  *          zfs_min_auto_ashift = 9 (512 bytes)
82  *
83  * On pool creation or the addition of a new top-level vdev, ZFS will
84  * increase the ashift of the top-level vdev to 4096 to match the
85  * max vdev_physical_ashift.
86  *
87  * Example: one or more 512B emulation child vdevs
88  *          child->vdev_ashift = 9 (512 bytes)
89  *          child->vdev_physical_ashift = 9 (512 bytes)
90  *          zfs_max_auto_ashift = 13 (8192 bytes)
91  *          zfs_min_auto_ashift = 12 (4096 bytes)
92  *
93  * On pool creation or the addition of a new top-level vdev, ZFS will
94  * increase the ashift of the top-level vdev to 4096 to match the
95  * zfs_min_auto_ashift.
96  */
97 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
98 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
99 
100 static int
sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)101 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
102 {
103 	uint64_t val;
104 	int err;
105 
106 	val = zfs_max_auto_ashift;
107 	err = sysctl_handle_64(oidp, &val, 0, req);
108 	if (err != 0 || req->newptr == NULL)
109 		return (err);
110 
111 	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
112 		return (EINVAL);
113 
114 	zfs_max_auto_ashift = val;
115 
116 	return (0);
117 }
118 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
119     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
120     sysctl_vfs_zfs_max_auto_ashift, "QU",
121     "Max ashift used when optimising for logical -> physical sectors size on "
122     "new top-level vdevs.");
123 
124 static int
sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)125 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
126 {
127 	uint64_t val;
128 	int err;
129 
130 	val = zfs_min_auto_ashift;
131 	err = sysctl_handle_64(oidp, &val, 0, req);
132 	if (err != 0 || req->newptr == NULL)
133 		return (err);
134 
135 	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
136 		return (EINVAL);
137 
138 	zfs_min_auto_ashift = val;
139 
140 	return (0);
141 }
142 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
143     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
144     sysctl_vfs_zfs_min_auto_ashift, "QU",
145     "Min ashift used when creating new top-level vdevs.");
146 
147 static vdev_ops_t *vdev_ops_table[] = {
148 	&vdev_root_ops,
149 	&vdev_raidz_ops,
150 	&vdev_mirror_ops,
151 	&vdev_replacing_ops,
152 	&vdev_spare_ops,
153 #ifdef _KERNEL
154 	&vdev_geom_ops,
155 #else
156 	&vdev_disk_ops,
157 #endif
158 	&vdev_file_ops,
159 	&vdev_missing_ops,
160 	&vdev_hole_ops,
161 	&vdev_indirect_ops,
162 	NULL
163 };
164 
165 
166 /* target number of metaslabs per top-level vdev */
167 int vdev_max_ms_count = 200;
168 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count, CTLFLAG_RWTUN,
169     &vdev_max_ms_count, 0,
170     "Target number of metaslabs per top-level vdev");
171 
172 /* minimum number of metaslabs per top-level vdev */
173 int vdev_min_ms_count = 16;
174 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_ms_count, CTLFLAG_RWTUN,
175     &vdev_min_ms_count, 0,
176     "Minimum number of metaslabs per top-level vdev");
177 
178 /* practical upper limit of total metaslabs per top-level vdev */
179 int vdev_ms_count_limit = 1ULL << 17;
180 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count_limit, CTLFLAG_RWTUN,
181     &vdev_ms_count_limit, 0,
182     "Maximum number of metaslabs per top-level vdev");
183 
184 /* lower limit for metaslab size (512M) */
185 int vdev_default_ms_shift = 29;
186 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_shift, CTLFLAG_RWTUN,
187     &vdev_default_ms_shift, 0,
188     "Default shift between vdev size and number of metaslabs");
189 
190 /* upper limit for metaslab size (256G) */
191 int vdev_max_ms_shift = 38;
192 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_shift, CTLFLAG_RWTUN,
193     &vdev_max_ms_shift, 0,
194     "Maximum shift between vdev size and number of metaslabs");
195 
196 boolean_t vdev_validate_skip = B_FALSE;
197 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, validate_skip, CTLFLAG_RWTUN,
198     &vdev_validate_skip, 0,
199     "Bypass vdev validation");
200 
201 /*
202  * Since the DTL space map of a vdev is not expected to have a lot of
203  * entries, we default its block size to 4K.
204  */
205 int vdev_dtl_sm_blksz = (1 << 12);
206 SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN,
207     &vdev_dtl_sm_blksz, 0,
208     "Block size for DTL space map.  Power of 2 and greater than 4096.");
209 
210 /*
211  * vdev-wide space maps that have lots of entries written to them at
212  * the end of each transaction can benefit from a higher I/O bandwidth
213  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
214  */
215 int vdev_standard_sm_blksz = (1 << 17);
216 SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN,
217     &vdev_standard_sm_blksz, 0,
218     "Block size for standard space map.  Power of 2 and greater than 4096.");
219 
220 /*
221  * Tunable parameter for debugging or performance analysis. Setting this
222  * will cause pool corruption on power loss if a volatile out-of-order
223  * write cache is enabled.
224  */
225 boolean_t zfs_nocacheflush = B_FALSE;
226 SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RWTUN,
227     &zfs_nocacheflush, 0, "Disable cache flush");
228 
229 /*PRINTFLIKE2*/
230 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)231 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
232 {
233 	va_list adx;
234 	char buf[256];
235 
236 	va_start(adx, fmt);
237 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
238 	va_end(adx);
239 
240 	if (vd->vdev_path != NULL) {
241 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
242 		    vd->vdev_path, buf);
243 	} else {
244 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
245 		    vd->vdev_ops->vdev_op_type,
246 		    (u_longlong_t)vd->vdev_id,
247 		    (u_longlong_t)vd->vdev_guid, buf);
248 	}
249 }
250 
251 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)252 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
253 {
254 	char state[20];
255 
256 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
257 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
258 		    vd->vdev_ops->vdev_op_type);
259 		return;
260 	}
261 
262 	switch (vd->vdev_state) {
263 	case VDEV_STATE_UNKNOWN:
264 		(void) snprintf(state, sizeof (state), "unknown");
265 		break;
266 	case VDEV_STATE_CLOSED:
267 		(void) snprintf(state, sizeof (state), "closed");
268 		break;
269 	case VDEV_STATE_OFFLINE:
270 		(void) snprintf(state, sizeof (state), "offline");
271 		break;
272 	case VDEV_STATE_REMOVED:
273 		(void) snprintf(state, sizeof (state), "removed");
274 		break;
275 	case VDEV_STATE_CANT_OPEN:
276 		(void) snprintf(state, sizeof (state), "can't open");
277 		break;
278 	case VDEV_STATE_FAULTED:
279 		(void) snprintf(state, sizeof (state), "faulted");
280 		break;
281 	case VDEV_STATE_DEGRADED:
282 		(void) snprintf(state, sizeof (state), "degraded");
283 		break;
284 	case VDEV_STATE_HEALTHY:
285 		(void) snprintf(state, sizeof (state), "healthy");
286 		break;
287 	default:
288 		(void) snprintf(state, sizeof (state), "<state %u>",
289 		    (uint_t)vd->vdev_state);
290 	}
291 
292 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
293 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
294 	    vd->vdev_islog ? " (log)" : "",
295 	    (u_longlong_t)vd->vdev_guid,
296 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
297 
298 	for (uint64_t i = 0; i < vd->vdev_children; i++)
299 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
300 }
301 
302 /*
303  * Given a vdev type, return the appropriate ops vector.
304  */
305 static vdev_ops_t *
vdev_getops(const char * type)306 vdev_getops(const char *type)
307 {
308 	vdev_ops_t *ops, **opspp;
309 
310 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
311 		if (strcmp(ops->vdev_op_type, type) == 0)
312 			break;
313 
314 	return (ops);
315 }
316 
317 /* ARGSUSED */
318 void
vdev_default_xlate(vdev_t * vd,const range_seg_t * in,range_seg_t * res)319 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
320 {
321 	res->rs_start = in->rs_start;
322 	res->rs_end = in->rs_end;
323 }
324 
325 /*
326  * Default asize function: return the MAX of psize with the asize of
327  * all children.  This is what's used by anything other than RAID-Z.
328  */
329 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)330 vdev_default_asize(vdev_t *vd, uint64_t psize)
331 {
332 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
333 	uint64_t csize;
334 
335 	for (int c = 0; c < vd->vdev_children; c++) {
336 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
337 		asize = MAX(asize, csize);
338 	}
339 
340 	return (asize);
341 }
342 
343 /*
344  * Get the minimum allocatable size. We define the allocatable size as
345  * the vdev's asize rounded to the nearest metaslab. This allows us to
346  * replace or attach devices which don't have the same physical size but
347  * can still satisfy the same number of allocations.
348  */
349 uint64_t
vdev_get_min_asize(vdev_t * vd)350 vdev_get_min_asize(vdev_t *vd)
351 {
352 	vdev_t *pvd = vd->vdev_parent;
353 
354 	/*
355 	 * If our parent is NULL (inactive spare or cache) or is the root,
356 	 * just return our own asize.
357 	 */
358 	if (pvd == NULL)
359 		return (vd->vdev_asize);
360 
361 	/*
362 	 * The top-level vdev just returns the allocatable size rounded
363 	 * to the nearest metaslab.
364 	 */
365 	if (vd == vd->vdev_top)
366 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
367 
368 	/*
369 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
370 	 * so each child must provide at least 1/Nth of its asize.
371 	 */
372 	if (pvd->vdev_ops == &vdev_raidz_ops)
373 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
374 		    pvd->vdev_children);
375 
376 	return (pvd->vdev_min_asize);
377 }
378 
379 void
vdev_set_min_asize(vdev_t * vd)380 vdev_set_min_asize(vdev_t *vd)
381 {
382 	vd->vdev_min_asize = vdev_get_min_asize(vd);
383 
384 	for (int c = 0; c < vd->vdev_children; c++)
385 		vdev_set_min_asize(vd->vdev_child[c]);
386 }
387 
388 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)389 vdev_lookup_top(spa_t *spa, uint64_t vdev)
390 {
391 	vdev_t *rvd = spa->spa_root_vdev;
392 
393 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
394 
395 	if (vdev < rvd->vdev_children) {
396 		ASSERT(rvd->vdev_child[vdev] != NULL);
397 		return (rvd->vdev_child[vdev]);
398 	}
399 
400 	return (NULL);
401 }
402 
403 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)404 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
405 {
406 	vdev_t *mvd;
407 
408 	if (vd->vdev_guid == guid)
409 		return (vd);
410 
411 	for (int c = 0; c < vd->vdev_children; c++)
412 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
413 		    NULL)
414 			return (mvd);
415 
416 	return (NULL);
417 }
418 
419 static int
vdev_count_leaves_impl(vdev_t * vd)420 vdev_count_leaves_impl(vdev_t *vd)
421 {
422 	int n = 0;
423 
424 	if (vd->vdev_ops->vdev_op_leaf)
425 		return (1);
426 
427 	for (int c = 0; c < vd->vdev_children; c++)
428 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
429 
430 	return (n);
431 }
432 
433 int
vdev_count_leaves(spa_t * spa)434 vdev_count_leaves(spa_t *spa)
435 {
436 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
437 }
438 
439 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)440 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
441 {
442 	size_t oldsize, newsize;
443 	uint64_t id = cvd->vdev_id;
444 	vdev_t **newchild;
445 	spa_t *spa = cvd->vdev_spa;
446 
447 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
448 	ASSERT(cvd->vdev_parent == NULL);
449 
450 	cvd->vdev_parent = pvd;
451 
452 	if (pvd == NULL)
453 		return;
454 
455 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
456 
457 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
458 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
459 	newsize = pvd->vdev_children * sizeof (vdev_t *);
460 
461 	newchild = kmem_zalloc(newsize, KM_SLEEP);
462 	if (pvd->vdev_child != NULL) {
463 		bcopy(pvd->vdev_child, newchild, oldsize);
464 		kmem_free(pvd->vdev_child, oldsize);
465 	}
466 
467 	pvd->vdev_child = newchild;
468 	pvd->vdev_child[id] = cvd;
469 
470 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
471 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
472 
473 	/*
474 	 * Walk up all ancestors to update guid sum.
475 	 */
476 	for (; pvd != NULL; pvd = pvd->vdev_parent)
477 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
478 }
479 
480 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)481 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
482 {
483 	int c;
484 	uint_t id = cvd->vdev_id;
485 
486 	ASSERT(cvd->vdev_parent == pvd);
487 
488 	if (pvd == NULL)
489 		return;
490 
491 	ASSERT(id < pvd->vdev_children);
492 	ASSERT(pvd->vdev_child[id] == cvd);
493 
494 	pvd->vdev_child[id] = NULL;
495 	cvd->vdev_parent = NULL;
496 
497 	for (c = 0; c < pvd->vdev_children; c++)
498 		if (pvd->vdev_child[c])
499 			break;
500 
501 	if (c == pvd->vdev_children) {
502 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
503 		pvd->vdev_child = NULL;
504 		pvd->vdev_children = 0;
505 	}
506 
507 	/*
508 	 * Walk up all ancestors to update guid sum.
509 	 */
510 	for (; pvd != NULL; pvd = pvd->vdev_parent)
511 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
512 }
513 
514 /*
515  * Remove any holes in the child array.
516  */
517 void
vdev_compact_children(vdev_t * pvd)518 vdev_compact_children(vdev_t *pvd)
519 {
520 	vdev_t **newchild, *cvd;
521 	int oldc = pvd->vdev_children;
522 	int newc;
523 
524 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
525 
526 	if (oldc == 0)
527 		return;
528 
529 	for (int c = newc = 0; c < oldc; c++)
530 		if (pvd->vdev_child[c])
531 			newc++;
532 
533 	if (newc > 0) {
534 		newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
535 
536 		for (int c = newc = 0; c < oldc; c++) {
537 			if ((cvd = pvd->vdev_child[c]) != NULL) {
538 				newchild[newc] = cvd;
539 				cvd->vdev_id = newc++;
540 			}
541 		}
542 	} else {
543 		newchild = NULL;
544 	}
545 
546 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
547 	pvd->vdev_child = newchild;
548 	pvd->vdev_children = newc;
549 }
550 
551 /*
552  * Allocate and minimally initialize a vdev_t.
553  */
554 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)555 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
556 {
557 	vdev_t *vd;
558 	vdev_indirect_config_t *vic;
559 
560 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
561 	vic = &vd->vdev_indirect_config;
562 
563 	if (spa->spa_root_vdev == NULL) {
564 		ASSERT(ops == &vdev_root_ops);
565 		spa->spa_root_vdev = vd;
566 		spa->spa_load_guid = spa_generate_guid(NULL);
567 	}
568 
569 	if (guid == 0 && ops != &vdev_hole_ops) {
570 		if (spa->spa_root_vdev == vd) {
571 			/*
572 			 * The root vdev's guid will also be the pool guid,
573 			 * which must be unique among all pools.
574 			 */
575 			guid = spa_generate_guid(NULL);
576 		} else {
577 			/*
578 			 * Any other vdev's guid must be unique within the pool.
579 			 */
580 			guid = spa_generate_guid(spa);
581 		}
582 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
583 	}
584 
585 	vd->vdev_spa = spa;
586 	vd->vdev_id = id;
587 	vd->vdev_guid = guid;
588 	vd->vdev_guid_sum = guid;
589 	vd->vdev_ops = ops;
590 	vd->vdev_state = VDEV_STATE_CLOSED;
591 	vd->vdev_ishole = (ops == &vdev_hole_ops);
592 	vic->vic_prev_indirect_vdev = UINT64_MAX;
593 
594 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
595 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
596 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
597 
598 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
599 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
605 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
606 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
607 
608 	for (int t = 0; t < DTL_TYPES; t++) {
609 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
610 	}
611 	txg_list_create(&vd->vdev_ms_list, spa,
612 	    offsetof(struct metaslab, ms_txg_node));
613 	txg_list_create(&vd->vdev_dtl_list, spa,
614 	    offsetof(struct vdev, vdev_dtl_node));
615 	vd->vdev_stat.vs_timestamp = gethrtime();
616 	vdev_queue_init(vd);
617 	vdev_cache_init(vd);
618 
619 	return (vd);
620 }
621 
622 /*
623  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
624  * creating a new vdev or loading an existing one - the behavior is slightly
625  * different for each case.
626  */
627 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)628 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
629     int alloctype)
630 {
631 	vdev_ops_t *ops;
632 	char *type;
633 	uint64_t guid = 0, islog, nparity;
634 	vdev_t *vd;
635 	vdev_indirect_config_t *vic;
636 
637 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
638 
639 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
640 		return (SET_ERROR(EINVAL));
641 
642 	if ((ops = vdev_getops(type)) == NULL)
643 		return (SET_ERROR(EINVAL));
644 
645 	/*
646 	 * If this is a load, get the vdev guid from the nvlist.
647 	 * Otherwise, vdev_alloc_common() will generate one for us.
648 	 */
649 	if (alloctype == VDEV_ALLOC_LOAD) {
650 		uint64_t label_id;
651 
652 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
653 		    label_id != id)
654 			return (SET_ERROR(EINVAL));
655 
656 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
657 			return (SET_ERROR(EINVAL));
658 	} else if (alloctype == VDEV_ALLOC_SPARE) {
659 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
660 			return (SET_ERROR(EINVAL));
661 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
662 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
663 			return (SET_ERROR(EINVAL));
664 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
665 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
666 			return (SET_ERROR(EINVAL));
667 	}
668 
669 	/*
670 	 * The first allocated vdev must be of type 'root'.
671 	 */
672 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
673 		return (SET_ERROR(EINVAL));
674 
675 	/*
676 	 * Determine whether we're a log vdev.
677 	 */
678 	islog = 0;
679 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
680 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
681 		return (SET_ERROR(ENOTSUP));
682 
683 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
684 		return (SET_ERROR(ENOTSUP));
685 
686 	/*
687 	 * Set the nparity property for RAID-Z vdevs.
688 	 */
689 	nparity = -1ULL;
690 	if (ops == &vdev_raidz_ops) {
691 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
692 		    &nparity) == 0) {
693 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
694 				return (SET_ERROR(EINVAL));
695 			/*
696 			 * Previous versions could only support 1 or 2 parity
697 			 * device.
698 			 */
699 			if (nparity > 1 &&
700 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
701 				return (SET_ERROR(ENOTSUP));
702 			if (nparity > 2 &&
703 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
704 				return (SET_ERROR(ENOTSUP));
705 		} else {
706 			/*
707 			 * We require the parity to be specified for SPAs that
708 			 * support multiple parity levels.
709 			 */
710 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
711 				return (SET_ERROR(EINVAL));
712 			/*
713 			 * Otherwise, we default to 1 parity device for RAID-Z.
714 			 */
715 			nparity = 1;
716 		}
717 	} else {
718 		nparity = 0;
719 	}
720 	ASSERT(nparity != -1ULL);
721 
722 	vd = vdev_alloc_common(spa, id, guid, ops);
723 	vic = &vd->vdev_indirect_config;
724 
725 	vd->vdev_islog = islog;
726 	vd->vdev_nparity = nparity;
727 
728 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
729 		vd->vdev_path = spa_strdup(vd->vdev_path);
730 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
731 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
732 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
733 	    &vd->vdev_physpath) == 0)
734 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
735 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
736 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
737 
738 	/*
739 	 * Set the whole_disk property.  If it's not specified, leave the value
740 	 * as -1.
741 	 */
742 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
743 	    &vd->vdev_wholedisk) != 0)
744 		vd->vdev_wholedisk = -1ULL;
745 
746 	ASSERT0(vic->vic_mapping_object);
747 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
748 	    &vic->vic_mapping_object);
749 	ASSERT0(vic->vic_births_object);
750 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
751 	    &vic->vic_births_object);
752 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
753 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
754 	    &vic->vic_prev_indirect_vdev);
755 
756 	/*
757 	 * Look for the 'not present' flag.  This will only be set if the device
758 	 * was not present at the time of import.
759 	 */
760 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
761 	    &vd->vdev_not_present);
762 
763 	/*
764 	 * Get the alignment requirement.
765 	 */
766 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
767 
768 	/*
769 	 * Retrieve the vdev creation time.
770 	 */
771 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
772 	    &vd->vdev_crtxg);
773 
774 	/*
775 	 * If we're a top-level vdev, try to load the allocation parameters.
776 	 */
777 	if (parent && !parent->vdev_parent &&
778 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
779 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
780 		    &vd->vdev_ms_array);
781 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
782 		    &vd->vdev_ms_shift);
783 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
784 		    &vd->vdev_asize);
785 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
786 		    &vd->vdev_removing);
787 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
788 		    &vd->vdev_top_zap);
789 	} else {
790 		ASSERT0(vd->vdev_top_zap);
791 	}
792 
793 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
794 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
795 		    alloctype == VDEV_ALLOC_ADD ||
796 		    alloctype == VDEV_ALLOC_SPLIT ||
797 		    alloctype == VDEV_ALLOC_ROOTPOOL);
798 		vd->vdev_mg = metaslab_group_create(islog ?
799 		    spa_log_class(spa) : spa_normal_class(spa), vd,
800 		    spa->spa_alloc_count);
801 	}
802 
803 	if (vd->vdev_ops->vdev_op_leaf &&
804 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
805 		(void) nvlist_lookup_uint64(nv,
806 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
807 	} else {
808 		ASSERT0(vd->vdev_leaf_zap);
809 	}
810 
811 	/*
812 	 * If we're a leaf vdev, try to load the DTL object and other state.
813 	 */
814 
815 	if (vd->vdev_ops->vdev_op_leaf &&
816 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
817 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
818 		if (alloctype == VDEV_ALLOC_LOAD) {
819 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
820 			    &vd->vdev_dtl_object);
821 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
822 			    &vd->vdev_unspare);
823 		}
824 
825 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
826 			uint64_t spare = 0;
827 
828 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
829 			    &spare) == 0 && spare)
830 				spa_spare_add(vd);
831 		}
832 
833 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
834 		    &vd->vdev_offline);
835 
836 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
837 		    &vd->vdev_resilver_txg);
838 
839 		/*
840 		 * When importing a pool, we want to ignore the persistent fault
841 		 * state, as the diagnosis made on another system may not be
842 		 * valid in the current context.  Local vdevs will
843 		 * remain in the faulted state.
844 		 */
845 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
846 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
847 			    &vd->vdev_faulted);
848 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
849 			    &vd->vdev_degraded);
850 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
851 			    &vd->vdev_removed);
852 
853 			if (vd->vdev_faulted || vd->vdev_degraded) {
854 				char *aux;
855 
856 				vd->vdev_label_aux =
857 				    VDEV_AUX_ERR_EXCEEDED;
858 				if (nvlist_lookup_string(nv,
859 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
860 				    strcmp(aux, "external") == 0)
861 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
862 			}
863 		}
864 	}
865 
866 	/*
867 	 * Add ourselves to the parent's list of children.
868 	 */
869 	vdev_add_child(parent, vd);
870 
871 	*vdp = vd;
872 
873 	return (0);
874 }
875 
876 void
vdev_free(vdev_t * vd)877 vdev_free(vdev_t *vd)
878 {
879 	spa_t *spa = vd->vdev_spa;
880 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
881 
882 	/*
883 	 * Scan queues are normally destroyed at the end of a scan. If the
884 	 * queue exists here, that implies the vdev is being removed while
885 	 * the scan is still running.
886 	 */
887 	if (vd->vdev_scan_io_queue != NULL) {
888 		mutex_enter(&vd->vdev_scan_io_queue_lock);
889 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
890 		vd->vdev_scan_io_queue = NULL;
891 		mutex_exit(&vd->vdev_scan_io_queue_lock);
892 	}
893 
894 	/*
895 	 * vdev_free() implies closing the vdev first.  This is simpler than
896 	 * trying to ensure complicated semantics for all callers.
897 	 */
898 	vdev_close(vd);
899 
900 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
901 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
902 
903 	/*
904 	 * Free all children.
905 	 */
906 	for (int c = 0; c < vd->vdev_children; c++)
907 		vdev_free(vd->vdev_child[c]);
908 
909 	ASSERT(vd->vdev_child == NULL);
910 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
911 	ASSERT(vd->vdev_initialize_thread == NULL);
912 
913 	/*
914 	 * Discard allocation state.
915 	 */
916 	if (vd->vdev_mg != NULL) {
917 		vdev_metaslab_fini(vd);
918 		metaslab_group_destroy(vd->vdev_mg);
919 	}
920 
921 	ASSERT0(vd->vdev_stat.vs_space);
922 	ASSERT0(vd->vdev_stat.vs_dspace);
923 	ASSERT0(vd->vdev_stat.vs_alloc);
924 
925 	/*
926 	 * Remove this vdev from its parent's child list.
927 	 */
928 	vdev_remove_child(vd->vdev_parent, vd);
929 
930 	ASSERT(vd->vdev_parent == NULL);
931 
932 	/*
933 	 * Clean up vdev structure.
934 	 */
935 	vdev_queue_fini(vd);
936 	vdev_cache_fini(vd);
937 
938 	if (vd->vdev_path)
939 		spa_strfree(vd->vdev_path);
940 	if (vd->vdev_devid)
941 		spa_strfree(vd->vdev_devid);
942 	if (vd->vdev_physpath)
943 		spa_strfree(vd->vdev_physpath);
944 	if (vd->vdev_fru)
945 		spa_strfree(vd->vdev_fru);
946 
947 	if (vd->vdev_isspare)
948 		spa_spare_remove(vd);
949 	if (vd->vdev_isl2cache)
950 		spa_l2cache_remove(vd);
951 
952 	txg_list_destroy(&vd->vdev_ms_list);
953 	txg_list_destroy(&vd->vdev_dtl_list);
954 
955 	mutex_enter(&vd->vdev_dtl_lock);
956 	space_map_close(vd->vdev_dtl_sm);
957 	for (int t = 0; t < DTL_TYPES; t++) {
958 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
959 		range_tree_destroy(vd->vdev_dtl[t]);
960 	}
961 	mutex_exit(&vd->vdev_dtl_lock);
962 
963 	EQUIV(vd->vdev_indirect_births != NULL,
964 	    vd->vdev_indirect_mapping != NULL);
965 	if (vd->vdev_indirect_births != NULL) {
966 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
967 		vdev_indirect_births_close(vd->vdev_indirect_births);
968 	}
969 
970 	if (vd->vdev_obsolete_sm != NULL) {
971 		ASSERT(vd->vdev_removing ||
972 		    vd->vdev_ops == &vdev_indirect_ops);
973 		space_map_close(vd->vdev_obsolete_sm);
974 		vd->vdev_obsolete_sm = NULL;
975 	}
976 	range_tree_destroy(vd->vdev_obsolete_segments);
977 	rw_destroy(&vd->vdev_indirect_rwlock);
978 	mutex_destroy(&vd->vdev_obsolete_lock);
979 
980 	mutex_destroy(&vd->vdev_queue_lock);
981 	mutex_destroy(&vd->vdev_dtl_lock);
982 	mutex_destroy(&vd->vdev_stat_lock);
983 	mutex_destroy(&vd->vdev_probe_lock);
984 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
985 	mutex_destroy(&vd->vdev_initialize_lock);
986 	mutex_destroy(&vd->vdev_initialize_io_lock);
987 	cv_destroy(&vd->vdev_initialize_io_cv);
988 	cv_destroy(&vd->vdev_initialize_cv);
989 
990 	if (vd == spa->spa_root_vdev)
991 		spa->spa_root_vdev = NULL;
992 
993 	kmem_free(vd, sizeof (vdev_t));
994 }
995 
996 /*
997  * Transfer top-level vdev state from svd to tvd.
998  */
999 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1000 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1001 {
1002 	spa_t *spa = svd->vdev_spa;
1003 	metaslab_t *msp;
1004 	vdev_t *vd;
1005 	int t;
1006 
1007 	ASSERT(tvd == tvd->vdev_top);
1008 
1009 	tvd->vdev_ms_array = svd->vdev_ms_array;
1010 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1011 	tvd->vdev_ms_count = svd->vdev_ms_count;
1012 	tvd->vdev_top_zap = svd->vdev_top_zap;
1013 
1014 	svd->vdev_ms_array = 0;
1015 	svd->vdev_ms_shift = 0;
1016 	svd->vdev_ms_count = 0;
1017 	svd->vdev_top_zap = 0;
1018 
1019 	if (tvd->vdev_mg)
1020 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1021 	tvd->vdev_mg = svd->vdev_mg;
1022 	tvd->vdev_ms = svd->vdev_ms;
1023 
1024 	svd->vdev_mg = NULL;
1025 	svd->vdev_ms = NULL;
1026 
1027 	if (tvd->vdev_mg != NULL)
1028 		tvd->vdev_mg->mg_vd = tvd;
1029 
1030 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1031 	svd->vdev_checkpoint_sm = NULL;
1032 
1033 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1034 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1035 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1036 
1037 	svd->vdev_stat.vs_alloc = 0;
1038 	svd->vdev_stat.vs_space = 0;
1039 	svd->vdev_stat.vs_dspace = 0;
1040 
1041 	/*
1042 	 * State which may be set on a top-level vdev that's in the
1043 	 * process of being removed.
1044 	 */
1045 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1046 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1047 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1048 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1049 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1050 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1051 	ASSERT0(tvd->vdev_removing);
1052 	tvd->vdev_removing = svd->vdev_removing;
1053 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1054 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1055 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1056 	range_tree_swap(&svd->vdev_obsolete_segments,
1057 	    &tvd->vdev_obsolete_segments);
1058 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1059 	svd->vdev_indirect_config.vic_mapping_object = 0;
1060 	svd->vdev_indirect_config.vic_births_object = 0;
1061 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1062 	svd->vdev_indirect_mapping = NULL;
1063 	svd->vdev_indirect_births = NULL;
1064 	svd->vdev_obsolete_sm = NULL;
1065 	svd->vdev_removing = 0;
1066 
1067 	for (t = 0; t < TXG_SIZE; t++) {
1068 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1069 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1070 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1071 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1072 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1073 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1074 	}
1075 
1076 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1077 		vdev_config_clean(svd);
1078 		vdev_config_dirty(tvd);
1079 	}
1080 
1081 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1082 		vdev_state_clean(svd);
1083 		vdev_state_dirty(tvd);
1084 	}
1085 
1086 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1087 	svd->vdev_deflate_ratio = 0;
1088 
1089 	tvd->vdev_islog = svd->vdev_islog;
1090 	svd->vdev_islog = 0;
1091 
1092 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1093 }
1094 
1095 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1096 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1097 {
1098 	if (vd == NULL)
1099 		return;
1100 
1101 	vd->vdev_top = tvd;
1102 
1103 	for (int c = 0; c < vd->vdev_children; c++)
1104 		vdev_top_update(tvd, vd->vdev_child[c]);
1105 }
1106 
1107 /*
1108  * Add a mirror/replacing vdev above an existing vdev.
1109  */
1110 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1111 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1112 {
1113 	spa_t *spa = cvd->vdev_spa;
1114 	vdev_t *pvd = cvd->vdev_parent;
1115 	vdev_t *mvd;
1116 
1117 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1118 
1119 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1120 
1121 	mvd->vdev_asize = cvd->vdev_asize;
1122 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1123 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1124 	mvd->vdev_psize = cvd->vdev_psize;
1125 	mvd->vdev_ashift = cvd->vdev_ashift;
1126 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1127 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1128 	mvd->vdev_state = cvd->vdev_state;
1129 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1130 
1131 	vdev_remove_child(pvd, cvd);
1132 	vdev_add_child(pvd, mvd);
1133 	cvd->vdev_id = mvd->vdev_children;
1134 	vdev_add_child(mvd, cvd);
1135 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1136 
1137 	if (mvd == mvd->vdev_top)
1138 		vdev_top_transfer(cvd, mvd);
1139 
1140 	return (mvd);
1141 }
1142 
1143 /*
1144  * Remove a 1-way mirror/replacing vdev from the tree.
1145  */
1146 void
vdev_remove_parent(vdev_t * cvd)1147 vdev_remove_parent(vdev_t *cvd)
1148 {
1149 	vdev_t *mvd = cvd->vdev_parent;
1150 	vdev_t *pvd = mvd->vdev_parent;
1151 
1152 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1153 
1154 	ASSERT(mvd->vdev_children == 1);
1155 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1156 	    mvd->vdev_ops == &vdev_replacing_ops ||
1157 	    mvd->vdev_ops == &vdev_spare_ops);
1158 	cvd->vdev_ashift = mvd->vdev_ashift;
1159 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1160 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1161 
1162 	vdev_remove_child(mvd, cvd);
1163 	vdev_remove_child(pvd, mvd);
1164 
1165 	/*
1166 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1167 	 * Otherwise, we could have detached an offline device, and when we
1168 	 * go to import the pool we'll think we have two top-level vdevs,
1169 	 * instead of a different version of the same top-level vdev.
1170 	 */
1171 	if (mvd->vdev_top == mvd) {
1172 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1173 		cvd->vdev_orig_guid = cvd->vdev_guid;
1174 		cvd->vdev_guid += guid_delta;
1175 		cvd->vdev_guid_sum += guid_delta;
1176 	}
1177 	cvd->vdev_id = mvd->vdev_id;
1178 	vdev_add_child(pvd, cvd);
1179 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1180 
1181 	if (cvd == cvd->vdev_top)
1182 		vdev_top_transfer(mvd, cvd);
1183 
1184 	ASSERT(mvd->vdev_children == 0);
1185 	vdev_free(mvd);
1186 }
1187 
1188 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1189 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1190 {
1191 	spa_t *spa = vd->vdev_spa;
1192 	objset_t *mos = spa->spa_meta_objset;
1193 	uint64_t m;
1194 	uint64_t oldc = vd->vdev_ms_count;
1195 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1196 	metaslab_t **mspp;
1197 	int error;
1198 
1199 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1200 
1201 	/*
1202 	 * This vdev is not being allocated from yet or is a hole.
1203 	 */
1204 	if (vd->vdev_ms_shift == 0)
1205 		return (0);
1206 
1207 	ASSERT(!vd->vdev_ishole);
1208 
1209 	ASSERT(oldc <= newc);
1210 
1211 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1212 
1213 	if (oldc != 0) {
1214 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1215 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1216 	}
1217 
1218 	vd->vdev_ms = mspp;
1219 	vd->vdev_ms_count = newc;
1220 	for (m = oldc; m < newc; m++) {
1221 		uint64_t object = 0;
1222 
1223 		/*
1224 		 * vdev_ms_array may be 0 if we are creating the "fake"
1225 		 * metaslabs for an indirect vdev for zdb's leak detection.
1226 		 * See zdb_leak_init().
1227 		 */
1228 		if (txg == 0 && vd->vdev_ms_array != 0) {
1229 			error = dmu_read(mos, vd->vdev_ms_array,
1230 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1231 			    DMU_READ_PREFETCH);
1232 			if (error != 0) {
1233 				vdev_dbgmsg(vd, "unable to read the metaslab "
1234 				    "array [error=%d]", error);
1235 				return (error);
1236 			}
1237 		}
1238 
1239 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1240 		    &(vd->vdev_ms[m]));
1241 		if (error != 0) {
1242 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1243 			    error);
1244 			return (error);
1245 		}
1246 	}
1247 
1248 	if (txg == 0)
1249 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1250 
1251 	/*
1252 	 * If the vdev is being removed we don't activate
1253 	 * the metaslabs since we want to ensure that no new
1254 	 * allocations are performed on this device.
1255 	 */
1256 	if (oldc == 0 && !vd->vdev_removing)
1257 		metaslab_group_activate(vd->vdev_mg);
1258 
1259 	if (txg == 0)
1260 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1261 
1262 	return (0);
1263 }
1264 
1265 void
vdev_metaslab_fini(vdev_t * vd)1266 vdev_metaslab_fini(vdev_t *vd)
1267 {
1268 	if (vd->vdev_checkpoint_sm != NULL) {
1269 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1270 		    SPA_FEATURE_POOL_CHECKPOINT));
1271 		space_map_close(vd->vdev_checkpoint_sm);
1272 		/*
1273 		 * Even though we close the space map, we need to set its
1274 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1275 		 * may be called multiple times for certain operations
1276 		 * (i.e. when destroying a pool) so we need to ensure that
1277 		 * this clause never executes twice. This logic is similar
1278 		 * to the one used for the vdev_ms clause below.
1279 		 */
1280 		vd->vdev_checkpoint_sm = NULL;
1281 	}
1282 
1283 	if (vd->vdev_ms != NULL) {
1284 		uint64_t count = vd->vdev_ms_count;
1285 
1286 		metaslab_group_passivate(vd->vdev_mg);
1287 		for (uint64_t m = 0; m < count; m++) {
1288 			metaslab_t *msp = vd->vdev_ms[m];
1289 
1290 			if (msp != NULL)
1291 				metaslab_fini(msp);
1292 		}
1293 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1294 		vd->vdev_ms = NULL;
1295 
1296 		vd->vdev_ms_count = 0;
1297 	}
1298 	ASSERT0(vd->vdev_ms_count);
1299 }
1300 
1301 typedef struct vdev_probe_stats {
1302 	boolean_t	vps_readable;
1303 	boolean_t	vps_writeable;
1304 	int		vps_flags;
1305 } vdev_probe_stats_t;
1306 
1307 static void
vdev_probe_done(zio_t * zio)1308 vdev_probe_done(zio_t *zio)
1309 {
1310 	spa_t *spa = zio->io_spa;
1311 	vdev_t *vd = zio->io_vd;
1312 	vdev_probe_stats_t *vps = zio->io_private;
1313 
1314 	ASSERT(vd->vdev_probe_zio != NULL);
1315 
1316 	if (zio->io_type == ZIO_TYPE_READ) {
1317 		if (zio->io_error == 0)
1318 			vps->vps_readable = 1;
1319 		if (zio->io_error == 0 && spa_writeable(spa)) {
1320 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1321 			    zio->io_offset, zio->io_size, zio->io_abd,
1322 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1323 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1324 		} else {
1325 			abd_free(zio->io_abd);
1326 		}
1327 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1328 		if (zio->io_error == 0)
1329 			vps->vps_writeable = 1;
1330 		abd_free(zio->io_abd);
1331 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1332 		zio_t *pio;
1333 
1334 		vd->vdev_cant_read |= !vps->vps_readable;
1335 		vd->vdev_cant_write |= !vps->vps_writeable;
1336 
1337 		if (vdev_readable(vd) &&
1338 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1339 			zio->io_error = 0;
1340 		} else {
1341 			ASSERT(zio->io_error != 0);
1342 			vdev_dbgmsg(vd, "failed probe");
1343 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1344 			    spa, vd, NULL, 0, 0);
1345 			zio->io_error = SET_ERROR(ENXIO);
1346 		}
1347 
1348 		mutex_enter(&vd->vdev_probe_lock);
1349 		ASSERT(vd->vdev_probe_zio == zio);
1350 		vd->vdev_probe_zio = NULL;
1351 		mutex_exit(&vd->vdev_probe_lock);
1352 
1353 		zio_link_t *zl = NULL;
1354 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1355 			if (!vdev_accessible(vd, pio))
1356 				pio->io_error = SET_ERROR(ENXIO);
1357 
1358 		kmem_free(vps, sizeof (*vps));
1359 	}
1360 }
1361 
1362 /*
1363  * Determine whether this device is accessible.
1364  *
1365  * Read and write to several known locations: the pad regions of each
1366  * vdev label but the first, which we leave alone in case it contains
1367  * a VTOC.
1368  */
1369 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1370 vdev_probe(vdev_t *vd, zio_t *zio)
1371 {
1372 	spa_t *spa = vd->vdev_spa;
1373 	vdev_probe_stats_t *vps = NULL;
1374 	zio_t *pio;
1375 
1376 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1377 
1378 	/*
1379 	 * Don't probe the probe.
1380 	 */
1381 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1382 		return (NULL);
1383 
1384 	/*
1385 	 * To prevent 'probe storms' when a device fails, we create
1386 	 * just one probe i/o at a time.  All zios that want to probe
1387 	 * this vdev will become parents of the probe io.
1388 	 */
1389 	mutex_enter(&vd->vdev_probe_lock);
1390 
1391 	if ((pio = vd->vdev_probe_zio) == NULL) {
1392 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1393 
1394 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1395 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1396 		    ZIO_FLAG_TRYHARD;
1397 
1398 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1399 			/*
1400 			 * vdev_cant_read and vdev_cant_write can only
1401 			 * transition from TRUE to FALSE when we have the
1402 			 * SCL_ZIO lock as writer; otherwise they can only
1403 			 * transition from FALSE to TRUE.  This ensures that
1404 			 * any zio looking at these values can assume that
1405 			 * failures persist for the life of the I/O.  That's
1406 			 * important because when a device has intermittent
1407 			 * connectivity problems, we want to ensure that
1408 			 * they're ascribed to the device (ENXIO) and not
1409 			 * the zio (EIO).
1410 			 *
1411 			 * Since we hold SCL_ZIO as writer here, clear both
1412 			 * values so the probe can reevaluate from first
1413 			 * principles.
1414 			 */
1415 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1416 			vd->vdev_cant_read = B_FALSE;
1417 			vd->vdev_cant_write = B_FALSE;
1418 		}
1419 
1420 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1421 		    vdev_probe_done, vps,
1422 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1423 
1424 		/*
1425 		 * We can't change the vdev state in this context, so we
1426 		 * kick off an async task to do it on our behalf.
1427 		 */
1428 		if (zio != NULL) {
1429 			vd->vdev_probe_wanted = B_TRUE;
1430 			spa_async_request(spa, SPA_ASYNC_PROBE);
1431 		}
1432 	}
1433 
1434 	if (zio != NULL)
1435 		zio_add_child(zio, pio);
1436 
1437 	mutex_exit(&vd->vdev_probe_lock);
1438 
1439 	if (vps == NULL) {
1440 		ASSERT(zio != NULL);
1441 		return (NULL);
1442 	}
1443 
1444 	for (int l = 1; l < VDEV_LABELS; l++) {
1445 		zio_nowait(zio_read_phys(pio, vd,
1446 		    vdev_label_offset(vd->vdev_psize, l,
1447 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1448 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1449 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1450 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1451 	}
1452 
1453 	if (zio == NULL)
1454 		return (pio);
1455 
1456 	zio_nowait(pio);
1457 	return (NULL);
1458 }
1459 
1460 static void
vdev_open_child(void * arg)1461 vdev_open_child(void *arg)
1462 {
1463 	vdev_t *vd = arg;
1464 
1465 	vd->vdev_open_thread = curthread;
1466 	vd->vdev_open_error = vdev_open(vd);
1467 	vd->vdev_open_thread = NULL;
1468 }
1469 
1470 boolean_t
vdev_uses_zvols(vdev_t * vd)1471 vdev_uses_zvols(vdev_t *vd)
1472 {
1473 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1474 	    strlen(ZVOL_DIR)) == 0)
1475 		return (B_TRUE);
1476 	for (int c = 0; c < vd->vdev_children; c++)
1477 		if (vdev_uses_zvols(vd->vdev_child[c]))
1478 			return (B_TRUE);
1479 	return (B_FALSE);
1480 }
1481 
1482 void
vdev_open_children(vdev_t * vd)1483 vdev_open_children(vdev_t *vd)
1484 {
1485 	taskq_t *tq;
1486 	int children = vd->vdev_children;
1487 
1488 	vd->vdev_nonrot = B_TRUE;
1489 
1490 	/*
1491 	 * in order to handle pools on top of zvols, do the opens
1492 	 * in a single thread so that the same thread holds the
1493 	 * spa_namespace_lock
1494 	 */
1495 	if (B_TRUE || vdev_uses_zvols(vd)) {
1496 		for (int c = 0; c < children; c++) {
1497 			vd->vdev_child[c]->vdev_open_error =
1498 			    vdev_open(vd->vdev_child[c]);
1499 			vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1500 		}
1501 		return;
1502 	}
1503 	tq = taskq_create("vdev_open", children, minclsyspri,
1504 	    children, children, TASKQ_PREPOPULATE);
1505 
1506 	for (int c = 0; c < children; c++)
1507 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1508 		    TQ_SLEEP) != 0);
1509 
1510 	taskq_destroy(tq);
1511 
1512 	for (int c = 0; c < children; c++)
1513 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1514 }
1515 
1516 /*
1517  * Compute the raidz-deflation ratio.  Note, we hard-code
1518  * in 128k (1 << 17) because it is the "typical" blocksize.
1519  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1520  * otherwise it would inconsistently account for existing bp's.
1521  */
1522 static void
vdev_set_deflate_ratio(vdev_t * vd)1523 vdev_set_deflate_ratio(vdev_t *vd)
1524 {
1525 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1526 		vd->vdev_deflate_ratio = (1 << 17) /
1527 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1528 	}
1529 }
1530 
1531 /*
1532  * Prepare a virtual device for access.
1533  */
1534 int
vdev_open(vdev_t * vd)1535 vdev_open(vdev_t *vd)
1536 {
1537 	spa_t *spa = vd->vdev_spa;
1538 	int error;
1539 	uint64_t osize = 0;
1540 	uint64_t max_osize = 0;
1541 	uint64_t asize, max_asize, psize;
1542 	uint64_t logical_ashift = 0;
1543 	uint64_t physical_ashift = 0;
1544 
1545 	ASSERT(vd->vdev_open_thread == curthread ||
1546 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1547 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1548 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1549 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1550 
1551 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1552 	vd->vdev_cant_read = B_FALSE;
1553 	vd->vdev_cant_write = B_FALSE;
1554 	vd->vdev_notrim = B_FALSE;
1555 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1556 
1557 	/*
1558 	 * If this vdev is not removed, check its fault status.  If it's
1559 	 * faulted, bail out of the open.
1560 	 */
1561 	if (!vd->vdev_removed && vd->vdev_faulted) {
1562 		ASSERT(vd->vdev_children == 0);
1563 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1564 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1565 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1566 		    vd->vdev_label_aux);
1567 		return (SET_ERROR(ENXIO));
1568 	} else if (vd->vdev_offline) {
1569 		ASSERT(vd->vdev_children == 0);
1570 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1571 		return (SET_ERROR(ENXIO));
1572 	}
1573 
1574 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1575 	    &logical_ashift, &physical_ashift);
1576 
1577 	/*
1578 	 * Reset the vdev_reopening flag so that we actually close
1579 	 * the vdev on error.
1580 	 */
1581 	vd->vdev_reopening = B_FALSE;
1582 	if (zio_injection_enabled && error == 0)
1583 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1584 
1585 	if (error) {
1586 		if (vd->vdev_removed &&
1587 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1588 			vd->vdev_removed = B_FALSE;
1589 
1590 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1591 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1592 			    vd->vdev_stat.vs_aux);
1593 		} else {
1594 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1595 			    vd->vdev_stat.vs_aux);
1596 		}
1597 		return (error);
1598 	}
1599 
1600 	vd->vdev_removed = B_FALSE;
1601 
1602 	/*
1603 	 * Recheck the faulted flag now that we have confirmed that
1604 	 * the vdev is accessible.  If we're faulted, bail.
1605 	 */
1606 	if (vd->vdev_faulted) {
1607 		ASSERT(vd->vdev_children == 0);
1608 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1609 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1610 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1611 		    vd->vdev_label_aux);
1612 		return (SET_ERROR(ENXIO));
1613 	}
1614 
1615 	if (vd->vdev_degraded) {
1616 		ASSERT(vd->vdev_children == 0);
1617 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1618 		    VDEV_AUX_ERR_EXCEEDED);
1619 	} else {
1620 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1621 	}
1622 
1623 	/*
1624 	 * For hole or missing vdevs we just return success.
1625 	 */
1626 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1627 		return (0);
1628 
1629 	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1630 		trim_map_create(vd);
1631 
1632 	for (int c = 0; c < vd->vdev_children; c++) {
1633 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1634 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1635 			    VDEV_AUX_NONE);
1636 			break;
1637 		}
1638 	}
1639 
1640 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1641 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1642 
1643 	if (vd->vdev_children == 0) {
1644 		if (osize < SPA_MINDEVSIZE) {
1645 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1646 			    VDEV_AUX_TOO_SMALL);
1647 			return (SET_ERROR(EOVERFLOW));
1648 		}
1649 		psize = osize;
1650 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1651 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1652 		    VDEV_LABEL_END_SIZE);
1653 	} else {
1654 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1655 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1656 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1657 			    VDEV_AUX_TOO_SMALL);
1658 			return (SET_ERROR(EOVERFLOW));
1659 		}
1660 		psize = 0;
1661 		asize = osize;
1662 		max_asize = max_osize;
1663 	}
1664 
1665 	vd->vdev_psize = psize;
1666 
1667 	/*
1668 	 * Make sure the allocatable size hasn't shrunk too much.
1669 	 */
1670 	if (asize < vd->vdev_min_asize) {
1671 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1672 		    VDEV_AUX_BAD_LABEL);
1673 		return (SET_ERROR(EINVAL));
1674 	}
1675 
1676 	vd->vdev_physical_ashift =
1677 	    MAX(physical_ashift, vd->vdev_physical_ashift);
1678 	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1679 	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1680 
1681 	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1682 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1683 		    VDEV_AUX_ASHIFT_TOO_BIG);
1684 		return (EINVAL);
1685 	}
1686 
1687 	if (vd->vdev_asize == 0) {
1688 		/*
1689 		 * This is the first-ever open, so use the computed values.
1690 		 * For testing purposes, a higher ashift can be requested.
1691 		 */
1692 		vd->vdev_asize = asize;
1693 		vd->vdev_max_asize = max_asize;
1694 	} else {
1695 		/*
1696 		 * Make sure the alignment requirement hasn't increased.
1697 		 */
1698 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1699 		    vd->vdev_ops->vdev_op_leaf) {
1700 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1701 			    VDEV_AUX_BAD_LABEL);
1702 			return (EINVAL);
1703 		}
1704 		vd->vdev_max_asize = max_asize;
1705 	}
1706 
1707 	/*
1708 	 * If all children are healthy we update asize if either:
1709 	 * The asize has increased, due to a device expansion caused by dynamic
1710 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1711 	 * making the additional space available.
1712 	 *
1713 	 * The asize has decreased, due to a device shrink usually caused by a
1714 	 * vdev replace with a smaller device. This ensures that calculations
1715 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1716 	 * to do this as we've already validated that asize is greater than
1717 	 * vdev_min_asize.
1718 	 */
1719 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1720 	    ((asize > vd->vdev_asize &&
1721 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1722 	    (asize < vd->vdev_asize)))
1723 		vd->vdev_asize = asize;
1724 
1725 	vdev_set_min_asize(vd);
1726 
1727 	/*
1728 	 * Ensure we can issue some IO before declaring the
1729 	 * vdev open for business.
1730 	 */
1731 	if (vd->vdev_ops->vdev_op_leaf &&
1732 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1733 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1734 		    VDEV_AUX_ERR_EXCEEDED);
1735 		return (error);
1736 	}
1737 
1738 	/*
1739 	 * Track the min and max ashift values for normal data devices.
1740 	 */
1741 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1742 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1743 		if (vd->vdev_ashift > spa->spa_max_ashift)
1744 			spa->spa_max_ashift = vd->vdev_ashift;
1745 		if (vd->vdev_ashift < spa->spa_min_ashift)
1746 			spa->spa_min_ashift = vd->vdev_ashift;
1747 	}
1748 
1749 	/*
1750 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1751 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1752 	 * since this would just restart the scrub we are already doing.
1753 	 */
1754 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1755 	    vdev_resilver_needed(vd, NULL, NULL))
1756 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1757 
1758 	return (0);
1759 }
1760 
1761 /*
1762  * Called once the vdevs are all opened, this routine validates the label
1763  * contents. This needs to be done before vdev_load() so that we don't
1764  * inadvertently do repair I/Os to the wrong device.
1765  *
1766  * This function will only return failure if one of the vdevs indicates that it
1767  * has since been destroyed or exported.  This is only possible if
1768  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1769  * will be updated but the function will return 0.
1770  */
1771 int
vdev_validate(vdev_t * vd)1772 vdev_validate(vdev_t *vd)
1773 {
1774 	spa_t *spa = vd->vdev_spa;
1775 	nvlist_t *label;
1776 	uint64_t guid = 0, aux_guid = 0, top_guid;
1777 	uint64_t state;
1778 	nvlist_t *nvl;
1779 	uint64_t txg;
1780 
1781 	if (vdev_validate_skip)
1782 		return (0);
1783 
1784 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1785 		if (vdev_validate(vd->vdev_child[c]) != 0)
1786 			return (SET_ERROR(EBADF));
1787 
1788 	/*
1789 	 * If the device has already failed, or was marked offline, don't do
1790 	 * any further validation.  Otherwise, label I/O will fail and we will
1791 	 * overwrite the previous state.
1792 	 */
1793 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1794 		return (0);
1795 
1796 	/*
1797 	 * If we are performing an extreme rewind, we allow for a label that
1798 	 * was modified at a point after the current txg.
1799 	 * If config lock is not held do not check for the txg. spa_sync could
1800 	 * be updating the vdev's label before updating spa_last_synced_txg.
1801 	 */
1802 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1803 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1804 		txg = UINT64_MAX;
1805 	else
1806 		txg = spa_last_synced_txg(spa);
1807 
1808 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1809 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1810 		    VDEV_AUX_BAD_LABEL);
1811 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1812 		    "txg %llu", (u_longlong_t)txg);
1813 		return (0);
1814 	}
1815 
1816 	/*
1817 	 * Determine if this vdev has been split off into another
1818 	 * pool.  If so, then refuse to open it.
1819 	 */
1820 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1821 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1822 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1823 		    VDEV_AUX_SPLIT_POOL);
1824 		nvlist_free(label);
1825 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1826 		return (0);
1827 	}
1828 
1829 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1830 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1831 		    VDEV_AUX_CORRUPT_DATA);
1832 		nvlist_free(label);
1833 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1834 		    ZPOOL_CONFIG_POOL_GUID);
1835 		return (0);
1836 	}
1837 
1838 	/*
1839 	 * If config is not trusted then ignore the spa guid check. This is
1840 	 * necessary because if the machine crashed during a re-guid the new
1841 	 * guid might have been written to all of the vdev labels, but not the
1842 	 * cached config. The check will be performed again once we have the
1843 	 * trusted config from the MOS.
1844 	 */
1845 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1846 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1847 		    VDEV_AUX_CORRUPT_DATA);
1848 		nvlist_free(label);
1849 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1850 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1851 		    (u_longlong_t)spa_guid(spa));
1852 		return (0);
1853 	}
1854 
1855 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1856 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1857 	    &aux_guid) != 0)
1858 		aux_guid = 0;
1859 
1860 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1861 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1862 		    VDEV_AUX_CORRUPT_DATA);
1863 		nvlist_free(label);
1864 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1865 		    ZPOOL_CONFIG_GUID);
1866 		return (0);
1867 	}
1868 
1869 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1870 	    != 0) {
1871 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1872 		    VDEV_AUX_CORRUPT_DATA);
1873 		nvlist_free(label);
1874 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1875 		    ZPOOL_CONFIG_TOP_GUID);
1876 		return (0);
1877 	}
1878 
1879 	/*
1880 	 * If this vdev just became a top-level vdev because its sibling was
1881 	 * detached, it will have adopted the parent's vdev guid -- but the
1882 	 * label may or may not be on disk yet. Fortunately, either version
1883 	 * of the label will have the same top guid, so if we're a top-level
1884 	 * vdev, we can safely compare to that instead.
1885 	 * However, if the config comes from a cachefile that failed to update
1886 	 * after the detach, a top-level vdev will appear as a non top-level
1887 	 * vdev in the config. Also relax the constraints if we perform an
1888 	 * extreme rewind.
1889 	 *
1890 	 * If we split this vdev off instead, then we also check the
1891 	 * original pool's guid. We don't want to consider the vdev
1892 	 * corrupt if it is partway through a split operation.
1893 	 */
1894 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1895 		boolean_t mismatch = B_FALSE;
1896 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1897 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1898 				mismatch = B_TRUE;
1899 		} else {
1900 			if (vd->vdev_guid != top_guid &&
1901 			    vd->vdev_top->vdev_guid != guid)
1902 				mismatch = B_TRUE;
1903 		}
1904 
1905 		if (mismatch) {
1906 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1907 			    VDEV_AUX_CORRUPT_DATA);
1908 			nvlist_free(label);
1909 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1910 			    "doesn't match label guid");
1911 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1912 			    (u_longlong_t)vd->vdev_guid,
1913 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1914 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1915 			    "aux_guid %llu", (u_longlong_t)guid,
1916 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1917 			return (0);
1918 		}
1919 	}
1920 
1921 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1922 	    &state) != 0) {
1923 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1924 		    VDEV_AUX_CORRUPT_DATA);
1925 		nvlist_free(label);
1926 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1927 		    ZPOOL_CONFIG_POOL_STATE);
1928 		return (0);
1929 	}
1930 
1931 	nvlist_free(label);
1932 
1933 	/*
1934 	 * If this is a verbatim import, no need to check the
1935 	 * state of the pool.
1936 	 */
1937 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1938 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1939 	    state != POOL_STATE_ACTIVE) {
1940 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1941 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1942 		return (SET_ERROR(EBADF));
1943 	}
1944 
1945 	/*
1946 	 * If we were able to open and validate a vdev that was
1947 	 * previously marked permanently unavailable, clear that state
1948 	 * now.
1949 	 */
1950 	if (vd->vdev_not_present)
1951 		vd->vdev_not_present = 0;
1952 
1953 	return (0);
1954 }
1955 
1956 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)1957 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1958 {
1959 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1960 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1961 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1962 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1963 			    dvd->vdev_path, svd->vdev_path);
1964 			spa_strfree(dvd->vdev_path);
1965 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1966 		}
1967 	} else if (svd->vdev_path != NULL) {
1968 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1969 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1970 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1971 	}
1972 }
1973 
1974 /*
1975  * Recursively copy vdev paths from one vdev to another. Source and destination
1976  * vdev trees must have same geometry otherwise return error. Intended to copy
1977  * paths from userland config into MOS config.
1978  */
1979 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)1980 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1981 {
1982 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1983 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1984 	    (dvd->vdev_ops == &vdev_indirect_ops))
1985 		return (0);
1986 
1987 	if (svd->vdev_ops != dvd->vdev_ops) {
1988 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1989 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1990 		return (SET_ERROR(EINVAL));
1991 	}
1992 
1993 	if (svd->vdev_guid != dvd->vdev_guid) {
1994 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1995 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1996 		    (u_longlong_t)dvd->vdev_guid);
1997 		return (SET_ERROR(EINVAL));
1998 	}
1999 
2000 	if (svd->vdev_children != dvd->vdev_children) {
2001 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2002 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2003 		    (u_longlong_t)dvd->vdev_children);
2004 		return (SET_ERROR(EINVAL));
2005 	}
2006 
2007 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2008 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2009 		    dvd->vdev_child[i]);
2010 		if (error != 0)
2011 			return (error);
2012 	}
2013 
2014 	if (svd->vdev_ops->vdev_op_leaf)
2015 		vdev_copy_path_impl(svd, dvd);
2016 
2017 	return (0);
2018 }
2019 
2020 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2021 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2022 {
2023 	ASSERT(stvd->vdev_top == stvd);
2024 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2025 
2026 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2027 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2028 	}
2029 
2030 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2031 		return;
2032 
2033 	/*
2034 	 * The idea here is that while a vdev can shift positions within
2035 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2036 	 * step outside of it.
2037 	 */
2038 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2039 
2040 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2041 		return;
2042 
2043 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2044 
2045 	vdev_copy_path_impl(vd, dvd);
2046 }
2047 
2048 /*
2049  * Recursively copy vdev paths from one root vdev to another. Source and
2050  * destination vdev trees may differ in geometry. For each destination leaf
2051  * vdev, search a vdev with the same guid and top vdev id in the source.
2052  * Intended to copy paths from userland config into MOS config.
2053  */
2054 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2055 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2056 {
2057 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2058 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2059 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2060 
2061 	for (uint64_t i = 0; i < children; i++) {
2062 		vdev_copy_path_search(srvd->vdev_child[i],
2063 		    drvd->vdev_child[i]);
2064 	}
2065 }
2066 
2067 /*
2068  * Close a virtual device.
2069  */
2070 void
vdev_close(vdev_t * vd)2071 vdev_close(vdev_t *vd)
2072 {
2073 	spa_t *spa = vd->vdev_spa;
2074 	vdev_t *pvd = vd->vdev_parent;
2075 
2076 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2077 
2078 	/*
2079 	 * If our parent is reopening, then we are as well, unless we are
2080 	 * going offline.
2081 	 */
2082 	if (pvd != NULL && pvd->vdev_reopening)
2083 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2084 
2085 	vd->vdev_ops->vdev_op_close(vd);
2086 
2087 	vdev_cache_purge(vd);
2088 
2089 	if (vd->vdev_ops->vdev_op_leaf)
2090 		trim_map_destroy(vd);
2091 
2092 	/*
2093 	 * We record the previous state before we close it, so that if we are
2094 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2095 	 * it's still faulted.
2096 	 */
2097 	vd->vdev_prevstate = vd->vdev_state;
2098 
2099 	if (vd->vdev_offline)
2100 		vd->vdev_state = VDEV_STATE_OFFLINE;
2101 	else
2102 		vd->vdev_state = VDEV_STATE_CLOSED;
2103 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2104 }
2105 
2106 void
vdev_hold(vdev_t * vd)2107 vdev_hold(vdev_t *vd)
2108 {
2109 	spa_t *spa = vd->vdev_spa;
2110 
2111 	ASSERT(spa_is_root(spa));
2112 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2113 		return;
2114 
2115 	for (int c = 0; c < vd->vdev_children; c++)
2116 		vdev_hold(vd->vdev_child[c]);
2117 
2118 	if (vd->vdev_ops->vdev_op_leaf)
2119 		vd->vdev_ops->vdev_op_hold(vd);
2120 }
2121 
2122 void
vdev_rele(vdev_t * vd)2123 vdev_rele(vdev_t *vd)
2124 {
2125 	spa_t *spa = vd->vdev_spa;
2126 
2127 	ASSERT(spa_is_root(spa));
2128 	for (int c = 0; c < vd->vdev_children; c++)
2129 		vdev_rele(vd->vdev_child[c]);
2130 
2131 	if (vd->vdev_ops->vdev_op_leaf)
2132 		vd->vdev_ops->vdev_op_rele(vd);
2133 }
2134 
2135 /*
2136  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2137  * reopen leaf vdevs which had previously been opened as they might deadlock
2138  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2139  * If the leaf has never been opened then open it, as usual.
2140  */
2141 void
vdev_reopen(vdev_t * vd)2142 vdev_reopen(vdev_t *vd)
2143 {
2144 	spa_t *spa = vd->vdev_spa;
2145 
2146 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2147 
2148 	/* set the reopening flag unless we're taking the vdev offline */
2149 	vd->vdev_reopening = !vd->vdev_offline;
2150 	vdev_close(vd);
2151 	(void) vdev_open(vd);
2152 
2153 	/*
2154 	 * Call vdev_validate() here to make sure we have the same device.
2155 	 * Otherwise, a device with an invalid label could be successfully
2156 	 * opened in response to vdev_reopen().
2157 	 */
2158 	if (vd->vdev_aux) {
2159 		(void) vdev_validate_aux(vd);
2160 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2161 		    vd->vdev_aux == &spa->spa_l2cache &&
2162 		    !l2arc_vdev_present(vd))
2163 			l2arc_add_vdev(spa, vd);
2164 	} else {
2165 		(void) vdev_validate(vd);
2166 	}
2167 
2168 	/*
2169 	 * Reassess parent vdev's health.
2170 	 */
2171 	vdev_propagate_state(vd);
2172 }
2173 
2174 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2175 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2176 {
2177 	int error;
2178 
2179 	/*
2180 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2181 	 * For a create, however, we want to fail the request if
2182 	 * there are any components we can't open.
2183 	 */
2184 	error = vdev_open(vd);
2185 
2186 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2187 		vdev_close(vd);
2188 		return (error ? error : ENXIO);
2189 	}
2190 
2191 	/*
2192 	 * Recursively load DTLs and initialize all labels.
2193 	 */
2194 	if ((error = vdev_dtl_load(vd)) != 0 ||
2195 	    (error = vdev_label_init(vd, txg, isreplacing ?
2196 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2197 		vdev_close(vd);
2198 		return (error);
2199 	}
2200 
2201 	return (0);
2202 }
2203 
2204 void
vdev_metaslab_set_size(vdev_t * vd)2205 vdev_metaslab_set_size(vdev_t *vd)
2206 {
2207 	uint64_t asize = vd->vdev_asize;
2208 	uint64_t ms_count = asize >> vdev_default_ms_shift;
2209 	uint64_t ms_shift;
2210 
2211 	/*
2212 	 * There are two dimensions to the metaslab sizing calculation:
2213 	 * the size of the metaslab and the count of metaslabs per vdev.
2214 	 * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2215 	 * range of the dimensions are as follows:
2216 	 *
2217 	 *	2^29 <= ms_size  <= 2^38
2218 	 *	  16 <= ms_count <= 131,072
2219 	 *
2220 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2221 	 * at least 512MB (2^29) to minimize fragmentation effects when
2222 	 * testing with smaller devices.  However, the count constraint
2223 	 * of at least 16 metaslabs will override this minimum size goal.
2224 	 *
2225 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2226 	 * size of 256GB.  However, we will cap the total count to 2^17
2227 	 * metaslabs to keep our memory footprint in check.
2228 	 *
2229 	 * The net effect of applying above constrains is summarized below.
2230 	 *
2231 	 *	vdev size	metaslab count
2232 	 *	-------------|-----------------
2233 	 *	< 8GB		~16
2234 	 *	8GB - 100GB	one per 512MB
2235 	 *	100GB - 50TB	~200
2236 	 *	50TB - 32PB	one per 256GB
2237 	 *	> 32PB		~131,072
2238 	 *	-------------------------------
2239 	 */
2240 
2241 	if (ms_count < vdev_min_ms_count)
2242 		ms_shift = highbit64(asize / vdev_min_ms_count);
2243 	else if (ms_count > vdev_max_ms_count)
2244 		ms_shift = highbit64(asize / vdev_max_ms_count);
2245 	else
2246 		ms_shift = vdev_default_ms_shift;
2247 
2248 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2249 		ms_shift = SPA_MAXBLOCKSHIFT;
2250 	} else if (ms_shift > vdev_max_ms_shift) {
2251 		ms_shift = vdev_max_ms_shift;
2252 		/* cap the total count to constrain memory footprint */
2253 		if ((asize >> ms_shift) > vdev_ms_count_limit)
2254 			ms_shift = highbit64(asize / vdev_ms_count_limit);
2255 	}
2256 
2257 	vd->vdev_ms_shift = ms_shift;
2258 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2259 }
2260 
2261 /*
2262  * Maximize performance by inflating the configured ashift for top level
2263  * vdevs to be as close to the physical ashift as possible while maintaining
2264  * administrator defined limits and ensuring it doesn't go below the
2265  * logical ashift.
2266  */
2267 void
vdev_ashift_optimize(vdev_t * vd)2268 vdev_ashift_optimize(vdev_t *vd)
2269 {
2270 	if (vd == vd->vdev_top) {
2271 		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2272 			vd->vdev_ashift = MIN(
2273 			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
2274 			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
2275 		} else {
2276 			/*
2277 			 * Unusual case where logical ashift > physical ashift
2278 			 * so we can't cap the calculated ashift based on max
2279 			 * ashift as that would cause failures.
2280 			 * We still check if we need to increase it to match
2281 			 * the min ashift.
2282 			 */
2283 			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
2284 			    vd->vdev_ashift);
2285 		}
2286 	}
2287 }
2288 
2289 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2290 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2291 {
2292 	ASSERT(vd == vd->vdev_top);
2293 	/* indirect vdevs don't have metaslabs or dtls */
2294 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2295 	ASSERT(ISP2(flags));
2296 	ASSERT(spa_writeable(vd->vdev_spa));
2297 
2298 	if (flags & VDD_METASLAB)
2299 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2300 
2301 	if (flags & VDD_DTL)
2302 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2303 
2304 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2305 }
2306 
2307 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2308 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2309 {
2310 	for (int c = 0; c < vd->vdev_children; c++)
2311 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2312 
2313 	if (vd->vdev_ops->vdev_op_leaf)
2314 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2315 }
2316 
2317 /*
2318  * DTLs.
2319  *
2320  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2321  * the vdev has less than perfect replication.  There are four kinds of DTL:
2322  *
2323  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2324  *
2325  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2326  *
2327  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2328  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2329  *	txgs that was scrubbed.
2330  *
2331  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2332  *	persistent errors or just some device being offline.
2333  *	Unlike the other three, the DTL_OUTAGE map is not generally
2334  *	maintained; it's only computed when needed, typically to
2335  *	determine whether a device can be detached.
2336  *
2337  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2338  * either has the data or it doesn't.
2339  *
2340  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2341  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2342  * if any child is less than fully replicated, then so is its parent.
2343  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2344  * comprising only those txgs which appear in 'maxfaults' or more children;
2345  * those are the txgs we don't have enough replication to read.  For example,
2346  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2347  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2348  * two child DTL_MISSING maps.
2349  *
2350  * It should be clear from the above that to compute the DTLs and outage maps
2351  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2352  * Therefore, that is all we keep on disk.  When loading the pool, or after
2353  * a configuration change, we generate all other DTLs from first principles.
2354  */
2355 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2356 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2357 {
2358 	range_tree_t *rt = vd->vdev_dtl[t];
2359 
2360 	ASSERT(t < DTL_TYPES);
2361 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2362 	ASSERT(spa_writeable(vd->vdev_spa));
2363 
2364 	mutex_enter(&vd->vdev_dtl_lock);
2365 	if (!range_tree_contains(rt, txg, size))
2366 		range_tree_add(rt, txg, size);
2367 	mutex_exit(&vd->vdev_dtl_lock);
2368 }
2369 
2370 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2371 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2372 {
2373 	range_tree_t *rt = vd->vdev_dtl[t];
2374 	boolean_t dirty = B_FALSE;
2375 
2376 	ASSERT(t < DTL_TYPES);
2377 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2378 
2379 	/*
2380 	 * While we are loading the pool, the DTLs have not been loaded yet.
2381 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2382 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2383 	 * when loading the pool (relying on the checksum to ensure that
2384 	 * we get the right data -- note that we while loading, we are
2385 	 * only reading the MOS, which is always checksummed).
2386 	 */
2387 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2388 		return (B_FALSE);
2389 
2390 	mutex_enter(&vd->vdev_dtl_lock);
2391 	if (!range_tree_is_empty(rt))
2392 		dirty = range_tree_contains(rt, txg, size);
2393 	mutex_exit(&vd->vdev_dtl_lock);
2394 
2395 	return (dirty);
2396 }
2397 
2398 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)2399 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2400 {
2401 	range_tree_t *rt = vd->vdev_dtl[t];
2402 	boolean_t empty;
2403 
2404 	mutex_enter(&vd->vdev_dtl_lock);
2405 	empty = range_tree_is_empty(rt);
2406 	mutex_exit(&vd->vdev_dtl_lock);
2407 
2408 	return (empty);
2409 }
2410 
2411 /*
2412  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2413  */
2414 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,uint64_t offset,size_t psize)2415 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2416 {
2417         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2418 
2419         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2420             vd->vdev_ops->vdev_op_leaf)
2421                 return (B_TRUE);
2422 
2423         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2424 }
2425 
2426 /*
2427  * Returns the lowest txg in the DTL range.
2428  */
2429 static uint64_t
vdev_dtl_min(vdev_t * vd)2430 vdev_dtl_min(vdev_t *vd)
2431 {
2432 	range_seg_t *rs;
2433 
2434 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2435 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2436 	ASSERT0(vd->vdev_children);
2437 
2438 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2439 	return (rs->rs_start - 1);
2440 }
2441 
2442 /*
2443  * Returns the highest txg in the DTL.
2444  */
2445 static uint64_t
vdev_dtl_max(vdev_t * vd)2446 vdev_dtl_max(vdev_t *vd)
2447 {
2448 	range_seg_t *rs;
2449 
2450 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2451 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2452 	ASSERT0(vd->vdev_children);
2453 
2454 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2455 	return (rs->rs_end);
2456 }
2457 
2458 /*
2459  * Determine if a resilvering vdev should remove any DTL entries from
2460  * its range. If the vdev was resilvering for the entire duration of the
2461  * scan then it should excise that range from its DTLs. Otherwise, this
2462  * vdev is considered partially resilvered and should leave its DTL
2463  * entries intact. The comment in vdev_dtl_reassess() describes how we
2464  * excise the DTLs.
2465  */
2466 static boolean_t
vdev_dtl_should_excise(vdev_t * vd)2467 vdev_dtl_should_excise(vdev_t *vd)
2468 {
2469 	spa_t *spa = vd->vdev_spa;
2470 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2471 
2472 	ASSERT0(scn->scn_phys.scn_errors);
2473 	ASSERT0(vd->vdev_children);
2474 
2475 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2476 		return (B_FALSE);
2477 
2478 	if (vd->vdev_resilver_txg == 0 ||
2479 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2480 		return (B_TRUE);
2481 
2482 	/*
2483 	 * When a resilver is initiated the scan will assign the scn_max_txg
2484 	 * value to the highest txg value that exists in all DTLs. If this
2485 	 * device's max DTL is not part of this scan (i.e. it is not in
2486 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2487 	 * for excision.
2488 	 */
2489 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2490 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2491 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2492 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2493 		return (B_TRUE);
2494 	}
2495 	return (B_FALSE);
2496 }
2497 
2498 /*
2499  * Reassess DTLs after a config change or scrub completion.
2500  */
2501 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,int scrub_done)2502 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2503 {
2504 	spa_t *spa = vd->vdev_spa;
2505 	avl_tree_t reftree;
2506 	int minref;
2507 
2508 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2509 
2510 	for (int c = 0; c < vd->vdev_children; c++)
2511 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2512 		    scrub_txg, scrub_done);
2513 
2514 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2515 		return;
2516 
2517 	if (vd->vdev_ops->vdev_op_leaf) {
2518 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2519 
2520 		mutex_enter(&vd->vdev_dtl_lock);
2521 
2522 		/*
2523 		 * If we've completed a scan cleanly then determine
2524 		 * if this vdev should remove any DTLs. We only want to
2525 		 * excise regions on vdevs that were available during
2526 		 * the entire duration of this scan.
2527 		 */
2528 		if (scrub_txg != 0 &&
2529 		    (spa->spa_scrub_started ||
2530 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2531 		    vdev_dtl_should_excise(vd)) {
2532 			/*
2533 			 * We completed a scrub up to scrub_txg.  If we
2534 			 * did it without rebooting, then the scrub dtl
2535 			 * will be valid, so excise the old region and
2536 			 * fold in the scrub dtl.  Otherwise, leave the
2537 			 * dtl as-is if there was an error.
2538 			 *
2539 			 * There's little trick here: to excise the beginning
2540 			 * of the DTL_MISSING map, we put it into a reference
2541 			 * tree and then add a segment with refcnt -1 that
2542 			 * covers the range [0, scrub_txg).  This means
2543 			 * that each txg in that range has refcnt -1 or 0.
2544 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2545 			 * entries in the range [0, scrub_txg) will have a
2546 			 * positive refcnt -- either 1 or 2.  We then convert
2547 			 * the reference tree into the new DTL_MISSING map.
2548 			 */
2549 			space_reftree_create(&reftree);
2550 			space_reftree_add_map(&reftree,
2551 			    vd->vdev_dtl[DTL_MISSING], 1);
2552 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2553 			space_reftree_add_map(&reftree,
2554 			    vd->vdev_dtl[DTL_SCRUB], 2);
2555 			space_reftree_generate_map(&reftree,
2556 			    vd->vdev_dtl[DTL_MISSING], 1);
2557 			space_reftree_destroy(&reftree);
2558 		}
2559 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2560 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2561 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2562 		if (scrub_done)
2563 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2564 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2565 		if (!vdev_readable(vd))
2566 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2567 		else
2568 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2569 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2570 
2571 		/*
2572 		 * If the vdev was resilvering and no longer has any
2573 		 * DTLs then reset its resilvering flag and dirty
2574 		 * the top level so that we persist the change.
2575 		 */
2576 		if (vd->vdev_resilver_txg != 0 &&
2577 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2578 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2579 			vd->vdev_resilver_txg = 0;
2580 			vdev_config_dirty(vd->vdev_top);
2581 		}
2582 
2583 		mutex_exit(&vd->vdev_dtl_lock);
2584 
2585 		if (txg != 0)
2586 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2587 		return;
2588 	}
2589 
2590 	mutex_enter(&vd->vdev_dtl_lock);
2591 	for (int t = 0; t < DTL_TYPES; t++) {
2592 		/* account for child's outage in parent's missing map */
2593 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2594 		if (t == DTL_SCRUB)
2595 			continue;			/* leaf vdevs only */
2596 		if (t == DTL_PARTIAL)
2597 			minref = 1;			/* i.e. non-zero */
2598 		else if (vd->vdev_nparity != 0)
2599 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2600 		else
2601 			minref = vd->vdev_children;	/* any kind of mirror */
2602 		space_reftree_create(&reftree);
2603 		for (int c = 0; c < vd->vdev_children; c++) {
2604 			vdev_t *cvd = vd->vdev_child[c];
2605 			mutex_enter(&cvd->vdev_dtl_lock);
2606 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2607 			mutex_exit(&cvd->vdev_dtl_lock);
2608 		}
2609 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2610 		space_reftree_destroy(&reftree);
2611 	}
2612 	mutex_exit(&vd->vdev_dtl_lock);
2613 }
2614 
2615 int
vdev_dtl_load(vdev_t * vd)2616 vdev_dtl_load(vdev_t *vd)
2617 {
2618 	spa_t *spa = vd->vdev_spa;
2619 	objset_t *mos = spa->spa_meta_objset;
2620 	int error = 0;
2621 
2622 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2623 		ASSERT(vdev_is_concrete(vd));
2624 
2625 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2626 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2627 		if (error)
2628 			return (error);
2629 		ASSERT(vd->vdev_dtl_sm != NULL);
2630 
2631 		mutex_enter(&vd->vdev_dtl_lock);
2632 
2633 		/*
2634 		 * Now that we've opened the space_map we need to update
2635 		 * the in-core DTL.
2636 		 */
2637 		space_map_update(vd->vdev_dtl_sm);
2638 
2639 		error = space_map_load(vd->vdev_dtl_sm,
2640 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2641 		mutex_exit(&vd->vdev_dtl_lock);
2642 
2643 		return (error);
2644 	}
2645 
2646 	for (int c = 0; c < vd->vdev_children; c++) {
2647 		error = vdev_dtl_load(vd->vdev_child[c]);
2648 		if (error != 0)
2649 			break;
2650 	}
2651 
2652 	return (error);
2653 }
2654 
2655 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)2656 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2657 {
2658 	spa_t *spa = vd->vdev_spa;
2659 
2660 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2661 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2662 	    zapobj, tx));
2663 }
2664 
2665 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)2666 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2667 {
2668 	spa_t *spa = vd->vdev_spa;
2669 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2670 	    DMU_OT_NONE, 0, tx);
2671 
2672 	ASSERT(zap != 0);
2673 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2674 	    zap, tx));
2675 
2676 	return (zap);
2677 }
2678 
2679 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)2680 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2681 {
2682 	if (vd->vdev_ops != &vdev_hole_ops &&
2683 	    vd->vdev_ops != &vdev_missing_ops &&
2684 	    vd->vdev_ops != &vdev_root_ops &&
2685 	    !vd->vdev_top->vdev_removing) {
2686 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2687 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2688 		}
2689 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2690 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2691 		}
2692 	}
2693 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2694 		vdev_construct_zaps(vd->vdev_child[i], tx);
2695 	}
2696 }
2697 
2698 void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)2699 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2700 {
2701 	spa_t *spa = vd->vdev_spa;
2702 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2703 	objset_t *mos = spa->spa_meta_objset;
2704 	range_tree_t *rtsync;
2705 	dmu_tx_t *tx;
2706 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2707 
2708 	ASSERT(vdev_is_concrete(vd));
2709 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2710 
2711 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2712 
2713 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2714 		mutex_enter(&vd->vdev_dtl_lock);
2715 		space_map_free(vd->vdev_dtl_sm, tx);
2716 		space_map_close(vd->vdev_dtl_sm);
2717 		vd->vdev_dtl_sm = NULL;
2718 		mutex_exit(&vd->vdev_dtl_lock);
2719 
2720 		/*
2721 		 * We only destroy the leaf ZAP for detached leaves or for
2722 		 * removed log devices. Removed data devices handle leaf ZAP
2723 		 * cleanup later, once cancellation is no longer possible.
2724 		 */
2725 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2726 		    vd->vdev_top->vdev_islog)) {
2727 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2728 			vd->vdev_leaf_zap = 0;
2729 		}
2730 
2731 		dmu_tx_commit(tx);
2732 		return;
2733 	}
2734 
2735 	if (vd->vdev_dtl_sm == NULL) {
2736 		uint64_t new_object;
2737 
2738 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2739 		VERIFY3U(new_object, !=, 0);
2740 
2741 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2742 		    0, -1ULL, 0));
2743 		ASSERT(vd->vdev_dtl_sm != NULL);
2744 	}
2745 
2746 	rtsync = range_tree_create(NULL, NULL);
2747 
2748 	mutex_enter(&vd->vdev_dtl_lock);
2749 	range_tree_walk(rt, range_tree_add, rtsync);
2750 	mutex_exit(&vd->vdev_dtl_lock);
2751 
2752 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2753 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2754 	range_tree_vacate(rtsync, NULL, NULL);
2755 
2756 	range_tree_destroy(rtsync);
2757 
2758 	/*
2759 	 * If the object for the space map has changed then dirty
2760 	 * the top level so that we update the config.
2761 	 */
2762 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2763 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2764 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2765 		    (u_longlong_t)object,
2766 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2767 		vdev_config_dirty(vd->vdev_top);
2768 	}
2769 
2770 	dmu_tx_commit(tx);
2771 
2772 	mutex_enter(&vd->vdev_dtl_lock);
2773 	space_map_update(vd->vdev_dtl_sm);
2774 	mutex_exit(&vd->vdev_dtl_lock);
2775 }
2776 
2777 /*
2778  * Determine whether the specified vdev can be offlined/detached/removed
2779  * without losing data.
2780  */
2781 boolean_t
vdev_dtl_required(vdev_t * vd)2782 vdev_dtl_required(vdev_t *vd)
2783 {
2784 	spa_t *spa = vd->vdev_spa;
2785 	vdev_t *tvd = vd->vdev_top;
2786 	uint8_t cant_read = vd->vdev_cant_read;
2787 	boolean_t required;
2788 
2789 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2790 
2791 	if (vd == spa->spa_root_vdev || vd == tvd)
2792 		return (B_TRUE);
2793 
2794 	/*
2795 	 * Temporarily mark the device as unreadable, and then determine
2796 	 * whether this results in any DTL outages in the top-level vdev.
2797 	 * If not, we can safely offline/detach/remove the device.
2798 	 */
2799 	vd->vdev_cant_read = B_TRUE;
2800 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2801 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2802 	vd->vdev_cant_read = cant_read;
2803 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2804 
2805 	if (!required && zio_injection_enabled)
2806 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2807 
2808 	return (required);
2809 }
2810 
2811 /*
2812  * Determine if resilver is needed, and if so the txg range.
2813  */
2814 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)2815 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2816 {
2817 	boolean_t needed = B_FALSE;
2818 	uint64_t thismin = UINT64_MAX;
2819 	uint64_t thismax = 0;
2820 
2821 	if (vd->vdev_children == 0) {
2822 		mutex_enter(&vd->vdev_dtl_lock);
2823 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2824 		    vdev_writeable(vd)) {
2825 
2826 			thismin = vdev_dtl_min(vd);
2827 			thismax = vdev_dtl_max(vd);
2828 			needed = B_TRUE;
2829 		}
2830 		mutex_exit(&vd->vdev_dtl_lock);
2831 	} else {
2832 		for (int c = 0; c < vd->vdev_children; c++) {
2833 			vdev_t *cvd = vd->vdev_child[c];
2834 			uint64_t cmin, cmax;
2835 
2836 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2837 				thismin = MIN(thismin, cmin);
2838 				thismax = MAX(thismax, cmax);
2839 				needed = B_TRUE;
2840 			}
2841 		}
2842 	}
2843 
2844 	if (needed && minp) {
2845 		*minp = thismin;
2846 		*maxp = thismax;
2847 	}
2848 	return (needed);
2849 }
2850 
2851 /*
2852  * Gets the checkpoint space map object from the vdev's ZAP.
2853  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2854  * or the ZAP doesn't exist yet.
2855  */
2856 int
vdev_checkpoint_sm_object(vdev_t * vd)2857 vdev_checkpoint_sm_object(vdev_t *vd)
2858 {
2859 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2860 	if (vd->vdev_top_zap == 0) {
2861 		return (0);
2862 	}
2863 
2864 	uint64_t sm_obj = 0;
2865 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2866 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2867 
2868 	ASSERT(err == 0 || err == ENOENT);
2869 
2870 	return (sm_obj);
2871 }
2872 
2873 int
vdev_load(vdev_t * vd)2874 vdev_load(vdev_t *vd)
2875 {
2876 	int error = 0;
2877 	/*
2878 	 * Recursively load all children.
2879 	 */
2880 	for (int c = 0; c < vd->vdev_children; c++) {
2881 		error = vdev_load(vd->vdev_child[c]);
2882 		if (error != 0) {
2883 			return (error);
2884 		}
2885 	}
2886 
2887 	vdev_set_deflate_ratio(vd);
2888 
2889 	/*
2890 	 * If this is a top-level vdev, initialize its metaslabs.
2891 	 */
2892 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2893 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2894 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2895 			    VDEV_AUX_CORRUPT_DATA);
2896 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2897 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2898 			    (u_longlong_t)vd->vdev_asize);
2899 			return (SET_ERROR(ENXIO));
2900 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2901 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2902 			    "[error=%d]", error);
2903 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2904 			    VDEV_AUX_CORRUPT_DATA);
2905 			return (error);
2906 		}
2907 
2908 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2909 		if (checkpoint_sm_obj != 0) {
2910 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2911 			ASSERT(vd->vdev_asize != 0);
2912 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2913 
2914 			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2915 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2916 			    vd->vdev_ashift))) {
2917 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2918 				    "failed for checkpoint spacemap (obj %llu) "
2919 				    "[error=%d]",
2920 				    (u_longlong_t)checkpoint_sm_obj, error);
2921 				return (error);
2922 			}
2923 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2924 			space_map_update(vd->vdev_checkpoint_sm);
2925 
2926 			/*
2927 			 * Since the checkpoint_sm contains free entries
2928 			 * exclusively we can use sm_alloc to indicate the
2929 			 * culmulative checkpointed space that has been freed.
2930 			 */
2931 			vd->vdev_stat.vs_checkpoint_space =
2932 			    -vd->vdev_checkpoint_sm->sm_alloc;
2933 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2934 			    vd->vdev_stat.vs_checkpoint_space;
2935 		}
2936 	}
2937 
2938 	/*
2939 	 * If this is a leaf vdev, load its DTL.
2940 	 */
2941 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2942 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2943 		    VDEV_AUX_CORRUPT_DATA);
2944 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2945 		    "[error=%d]", error);
2946 		return (error);
2947 	}
2948 
2949 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2950 	if (obsolete_sm_object != 0) {
2951 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2952 		ASSERT(vd->vdev_asize != 0);
2953 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2954 
2955 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2956 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2957 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2958 			    VDEV_AUX_CORRUPT_DATA);
2959 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2960 			    "obsolete spacemap (obj %llu) [error=%d]",
2961 			    (u_longlong_t)obsolete_sm_object, error);
2962 			return (error);
2963 		}
2964 		space_map_update(vd->vdev_obsolete_sm);
2965 	}
2966 
2967 	return (0);
2968 }
2969 
2970 /*
2971  * The special vdev case is used for hot spares and l2cache devices.  Its
2972  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2973  * we make sure that we can open the underlying device, then try to read the
2974  * label, and make sure that the label is sane and that it hasn't been
2975  * repurposed to another pool.
2976  */
2977 int
vdev_validate_aux(vdev_t * vd)2978 vdev_validate_aux(vdev_t *vd)
2979 {
2980 	nvlist_t *label;
2981 	uint64_t guid, version;
2982 	uint64_t state;
2983 
2984 	if (!vdev_readable(vd))
2985 		return (0);
2986 
2987 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2988 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2989 		    VDEV_AUX_CORRUPT_DATA);
2990 		return (-1);
2991 	}
2992 
2993 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2994 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2995 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2996 	    guid != vd->vdev_guid ||
2997 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2998 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2999 		    VDEV_AUX_CORRUPT_DATA);
3000 		nvlist_free(label);
3001 		return (-1);
3002 	}
3003 
3004 	/*
3005 	 * We don't actually check the pool state here.  If it's in fact in
3006 	 * use by another pool, we update this fact on the fly when requested.
3007 	 */
3008 	nvlist_free(label);
3009 	return (0);
3010 }
3011 
3012 /*
3013  * Free the objects used to store this vdev's spacemaps, and the array
3014  * that points to them.
3015  */
3016 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3017 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3018 {
3019 	if (vd->vdev_ms_array == 0)
3020 		return;
3021 
3022 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3023 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3024 	size_t array_bytes = array_count * sizeof (uint64_t);
3025 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3026 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3027 	    array_bytes, smobj_array, 0));
3028 
3029 	for (uint64_t i = 0; i < array_count; i++) {
3030 		uint64_t smobj = smobj_array[i];
3031 		if (smobj == 0)
3032 			continue;
3033 
3034 		space_map_free_obj(mos, smobj, tx);
3035 	}
3036 
3037 	kmem_free(smobj_array, array_bytes);
3038 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3039 	vd->vdev_ms_array = 0;
3040 }
3041 
3042 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)3043 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3044 {
3045 	spa_t *spa = vd->vdev_spa;
3046 
3047 	ASSERT(vd->vdev_islog);
3048 	ASSERT(vd == vd->vdev_top);
3049 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3050 
3051 	if (vd->vdev_ms != NULL) {
3052 		metaslab_group_t *mg = vd->vdev_mg;
3053 
3054 		metaslab_group_histogram_verify(mg);
3055 		metaslab_class_histogram_verify(mg->mg_class);
3056 
3057 		for (int m = 0; m < vd->vdev_ms_count; m++) {
3058 			metaslab_t *msp = vd->vdev_ms[m];
3059 
3060 			if (msp == NULL || msp->ms_sm == NULL)
3061 				continue;
3062 
3063 			mutex_enter(&msp->ms_lock);
3064 			/*
3065 			 * If the metaslab was not loaded when the vdev
3066 			 * was removed then the histogram accounting may
3067 			 * not be accurate. Update the histogram information
3068 			 * here so that we ensure that the metaslab group
3069 			 * and metaslab class are up-to-date.
3070 			 */
3071 			metaslab_group_histogram_remove(mg, msp);
3072 
3073 			VERIFY0(space_map_allocated(msp->ms_sm));
3074 			space_map_close(msp->ms_sm);
3075 			msp->ms_sm = NULL;
3076 			mutex_exit(&msp->ms_lock);
3077 		}
3078 
3079 		if (vd->vdev_checkpoint_sm != NULL) {
3080 			ASSERT(spa_has_checkpoint(spa));
3081 			space_map_close(vd->vdev_checkpoint_sm);
3082 			vd->vdev_checkpoint_sm = NULL;
3083 		}
3084 
3085 		metaslab_group_histogram_verify(mg);
3086 		metaslab_class_histogram_verify(mg->mg_class);
3087 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3088 			ASSERT0(mg->mg_histogram[i]);
3089 	}
3090 
3091 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3092 
3093 	vdev_destroy_spacemaps(vd, tx);
3094 	if (vd->vdev_top_zap != 0) {
3095 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3096 		vd->vdev_top_zap = 0;
3097 	}
3098 
3099 	dmu_tx_commit(tx);
3100 }
3101 
3102 void
vdev_sync_done(vdev_t * vd,uint64_t txg)3103 vdev_sync_done(vdev_t *vd, uint64_t txg)
3104 {
3105 	metaslab_t *msp;
3106 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3107 
3108 	ASSERT(vdev_is_concrete(vd));
3109 
3110 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3111 	    != NULL)
3112 		metaslab_sync_done(msp, txg);
3113 
3114 	if (reassess)
3115 		metaslab_sync_reassess(vd->vdev_mg);
3116 }
3117 
3118 void
vdev_sync(vdev_t * vd,uint64_t txg)3119 vdev_sync(vdev_t *vd, uint64_t txg)
3120 {
3121 	spa_t *spa = vd->vdev_spa;
3122 	vdev_t *lvd;
3123 	metaslab_t *msp;
3124 	dmu_tx_t *tx;
3125 
3126 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3127 		dmu_tx_t *tx;
3128 
3129 		ASSERT(vd->vdev_removing ||
3130 		    vd->vdev_ops == &vdev_indirect_ops);
3131 
3132 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3133 		vdev_indirect_sync_obsolete(vd, tx);
3134 		dmu_tx_commit(tx);
3135 
3136 		/*
3137 		 * If the vdev is indirect, it can't have dirty
3138 		 * metaslabs or DTLs.
3139 		 */
3140 		if (vd->vdev_ops == &vdev_indirect_ops) {
3141 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3142 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3143 			return;
3144 		}
3145 	}
3146 
3147 	ASSERT(vdev_is_concrete(vd));
3148 
3149 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3150 	    !vd->vdev_removing) {
3151 		ASSERT(vd == vd->vdev_top);
3152 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3153 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3154 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3155 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3156 		ASSERT(vd->vdev_ms_array != 0);
3157 		vdev_config_dirty(vd);
3158 		dmu_tx_commit(tx);
3159 	}
3160 
3161 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3162 		metaslab_sync(msp, txg);
3163 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3164 	}
3165 
3166 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3167 		vdev_dtl_sync(lvd, txg);
3168 
3169 	/*
3170 	 * If this is an empty log device being removed, destroy the
3171 	 * metadata associated with it.
3172 	 */
3173 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3174 		vdev_remove_empty_log(vd, txg);
3175 
3176 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3177 }
3178 
3179 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)3180 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3181 {
3182 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3183 }
3184 
3185 /*
3186  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3187  * not be opened, and no I/O is attempted.
3188  */
3189 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)3190 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3191 {
3192 	vdev_t *vd, *tvd;
3193 
3194 	spa_vdev_state_enter(spa, SCL_NONE);
3195 
3196 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3197 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3198 
3199 	if (!vd->vdev_ops->vdev_op_leaf)
3200 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3201 
3202 	tvd = vd->vdev_top;
3203 
3204 	/*
3205 	 * We don't directly use the aux state here, but if we do a
3206 	 * vdev_reopen(), we need this value to be present to remember why we
3207 	 * were faulted.
3208 	 */
3209 	vd->vdev_label_aux = aux;
3210 
3211 	/*
3212 	 * Faulted state takes precedence over degraded.
3213 	 */
3214 	vd->vdev_delayed_close = B_FALSE;
3215 	vd->vdev_faulted = 1ULL;
3216 	vd->vdev_degraded = 0ULL;
3217 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3218 
3219 	/*
3220 	 * If this device has the only valid copy of the data, then
3221 	 * back off and simply mark the vdev as degraded instead.
3222 	 */
3223 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3224 		vd->vdev_degraded = 1ULL;
3225 		vd->vdev_faulted = 0ULL;
3226 
3227 		/*
3228 		 * If we reopen the device and it's not dead, only then do we
3229 		 * mark it degraded.
3230 		 */
3231 		vdev_reopen(tvd);
3232 
3233 		if (vdev_readable(vd))
3234 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3235 	}
3236 
3237 	return (spa_vdev_state_exit(spa, vd, 0));
3238 }
3239 
3240 /*
3241  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3242  * user that something is wrong.  The vdev continues to operate as normal as far
3243  * as I/O is concerned.
3244  */
3245 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)3246 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3247 {
3248 	vdev_t *vd;
3249 
3250 	spa_vdev_state_enter(spa, SCL_NONE);
3251 
3252 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3253 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3254 
3255 	if (!vd->vdev_ops->vdev_op_leaf)
3256 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3257 
3258 	/*
3259 	 * If the vdev is already faulted, then don't do anything.
3260 	 */
3261 	if (vd->vdev_faulted || vd->vdev_degraded)
3262 		return (spa_vdev_state_exit(spa, NULL, 0));
3263 
3264 	vd->vdev_degraded = 1ULL;
3265 	if (!vdev_is_dead(vd))
3266 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3267 		    aux);
3268 
3269 	return (spa_vdev_state_exit(spa, vd, 0));
3270 }
3271 
3272 /*
3273  * Online the given vdev.
3274  *
3275  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3276  * spare device should be detached when the device finishes resilvering.
3277  * Second, the online should be treated like a 'test' online case, so no FMA
3278  * events are generated if the device fails to open.
3279  */
3280 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)3281 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3282 {
3283 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3284 	boolean_t wasoffline;
3285 	vdev_state_t oldstate;
3286 
3287 	spa_vdev_state_enter(spa, SCL_NONE);
3288 
3289 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3290 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3291 
3292 	if (!vd->vdev_ops->vdev_op_leaf)
3293 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3294 
3295 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3296 	oldstate = vd->vdev_state;
3297 
3298 	tvd = vd->vdev_top;
3299 	vd->vdev_offline = B_FALSE;
3300 	vd->vdev_tmpoffline = B_FALSE;
3301 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3302 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3303 
3304 	/* XXX - L2ARC 1.0 does not support expansion */
3305 	if (!vd->vdev_aux) {
3306 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3307 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3308 	}
3309 
3310 	vdev_reopen(tvd);
3311 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3312 
3313 	if (!vd->vdev_aux) {
3314 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3315 			pvd->vdev_expanding = B_FALSE;
3316 	}
3317 
3318 	if (newstate)
3319 		*newstate = vd->vdev_state;
3320 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3321 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3322 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3323 	    vd->vdev_parent->vdev_child[0] == vd)
3324 		vd->vdev_unspare = B_TRUE;
3325 
3326 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3327 
3328 		/* XXX - L2ARC 1.0 does not support expansion */
3329 		if (vd->vdev_aux)
3330 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3331 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3332 	}
3333 
3334 	/* Restart initializing if necessary */
3335 	mutex_enter(&vd->vdev_initialize_lock);
3336 	if (vdev_writeable(vd) &&
3337 	    vd->vdev_initialize_thread == NULL &&
3338 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3339 		(void) vdev_initialize(vd);
3340 	}
3341 	mutex_exit(&vd->vdev_initialize_lock);
3342 
3343 	if (wasoffline ||
3344 	    (oldstate < VDEV_STATE_DEGRADED &&
3345 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3346 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3347 
3348 	return (spa_vdev_state_exit(spa, vd, 0));
3349 }
3350 
3351 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)3352 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3353 {
3354 	vdev_t *vd, *tvd;
3355 	int error = 0;
3356 	uint64_t generation;
3357 	metaslab_group_t *mg;
3358 
3359 top:
3360 	spa_vdev_state_enter(spa, SCL_ALLOC);
3361 
3362 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3363 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3364 
3365 	if (!vd->vdev_ops->vdev_op_leaf)
3366 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3367 
3368 	tvd = vd->vdev_top;
3369 	mg = tvd->vdev_mg;
3370 	generation = spa->spa_config_generation + 1;
3371 
3372 	/*
3373 	 * If the device isn't already offline, try to offline it.
3374 	 */
3375 	if (!vd->vdev_offline) {
3376 		/*
3377 		 * If this device has the only valid copy of some data,
3378 		 * don't allow it to be offlined. Log devices are always
3379 		 * expendable.
3380 		 */
3381 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3382 		    vdev_dtl_required(vd))
3383 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3384 
3385 		/*
3386 		 * If the top-level is a slog and it has had allocations
3387 		 * then proceed.  We check that the vdev's metaslab group
3388 		 * is not NULL since it's possible that we may have just
3389 		 * added this vdev but not yet initialized its metaslabs.
3390 		 */
3391 		if (tvd->vdev_islog && mg != NULL) {
3392 			/*
3393 			 * Prevent any future allocations.
3394 			 */
3395 			metaslab_group_passivate(mg);
3396 			(void) spa_vdev_state_exit(spa, vd, 0);
3397 
3398 			error = spa_reset_logs(spa);
3399 
3400 			/*
3401 			 * If the log device was successfully reset but has
3402 			 * checkpointed data, do not offline it.
3403 			 */
3404 			if (error == 0 &&
3405 			    tvd->vdev_checkpoint_sm != NULL) {
3406 				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3407 				    !=, 0);
3408 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3409 			}
3410 
3411 			spa_vdev_state_enter(spa, SCL_ALLOC);
3412 
3413 			/*
3414 			 * Check to see if the config has changed.
3415 			 */
3416 			if (error || generation != spa->spa_config_generation) {
3417 				metaslab_group_activate(mg);
3418 				if (error)
3419 					return (spa_vdev_state_exit(spa,
3420 					    vd, error));
3421 				(void) spa_vdev_state_exit(spa, vd, 0);
3422 				goto top;
3423 			}
3424 			ASSERT0(tvd->vdev_stat.vs_alloc);
3425 		}
3426 
3427 		/*
3428 		 * Offline this device and reopen its top-level vdev.
3429 		 * If the top-level vdev is a log device then just offline
3430 		 * it. Otherwise, if this action results in the top-level
3431 		 * vdev becoming unusable, undo it and fail the request.
3432 		 */
3433 		vd->vdev_offline = B_TRUE;
3434 		vdev_reopen(tvd);
3435 
3436 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3437 		    vdev_is_dead(tvd)) {
3438 			vd->vdev_offline = B_FALSE;
3439 			vdev_reopen(tvd);
3440 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3441 		}
3442 
3443 		/*
3444 		 * Add the device back into the metaslab rotor so that
3445 		 * once we online the device it's open for business.
3446 		 */
3447 		if (tvd->vdev_islog && mg != NULL)
3448 			metaslab_group_activate(mg);
3449 	}
3450 
3451 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3452 
3453 	return (spa_vdev_state_exit(spa, vd, 0));
3454 }
3455 
3456 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)3457 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3458 {
3459 	int error;
3460 
3461 	mutex_enter(&spa->spa_vdev_top_lock);
3462 	error = vdev_offline_locked(spa, guid, flags);
3463 	mutex_exit(&spa->spa_vdev_top_lock);
3464 
3465 	return (error);
3466 }
3467 
3468 /*
3469  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3470  * vdev_offline(), we assume the spa config is locked.  We also clear all
3471  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3472  */
3473 void
vdev_clear(spa_t * spa,vdev_t * vd)3474 vdev_clear(spa_t *spa, vdev_t *vd)
3475 {
3476 	vdev_t *rvd = spa->spa_root_vdev;
3477 
3478 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3479 
3480 	if (vd == NULL)
3481 		vd = rvd;
3482 
3483 	vd->vdev_stat.vs_read_errors = 0;
3484 	vd->vdev_stat.vs_write_errors = 0;
3485 	vd->vdev_stat.vs_checksum_errors = 0;
3486 
3487 	for (int c = 0; c < vd->vdev_children; c++)
3488 		vdev_clear(spa, vd->vdev_child[c]);
3489 
3490 	if (vd == rvd) {
3491 		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
3492 			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
3493 
3494 		for (int c = 0; c < spa->spa_spares.sav_count; c++)
3495 			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
3496 	}
3497 
3498 	/*
3499 	 * It makes no sense to "clear" an indirect vdev.
3500 	 */
3501 	if (!vdev_is_concrete(vd))
3502 		return;
3503 
3504 	/*
3505 	 * If we're in the FAULTED state or have experienced failed I/O, then
3506 	 * clear the persistent state and attempt to reopen the device.  We
3507 	 * also mark the vdev config dirty, so that the new faulted state is
3508 	 * written out to disk.
3509 	 */
3510 	if (vd->vdev_faulted || vd->vdev_degraded ||
3511 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3512 
3513 		/*
3514 		 * When reopening in reponse to a clear event, it may be due to
3515 		 * a fmadm repair request.  In this case, if the device is
3516 		 * still broken, we want to still post the ereport again.
3517 		 */
3518 		vd->vdev_forcefault = B_TRUE;
3519 
3520 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3521 		vd->vdev_cant_read = B_FALSE;
3522 		vd->vdev_cant_write = B_FALSE;
3523 
3524 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3525 
3526 		vd->vdev_forcefault = B_FALSE;
3527 
3528 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3529 			vdev_state_dirty(vd->vdev_top);
3530 
3531 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3532 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3533 
3534 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3535 	}
3536 
3537 	/*
3538 	 * When clearing a FMA-diagnosed fault, we always want to
3539 	 * unspare the device, as we assume that the original spare was
3540 	 * done in response to the FMA fault.
3541 	 */
3542 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3543 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3544 	    vd->vdev_parent->vdev_child[0] == vd)
3545 		vd->vdev_unspare = B_TRUE;
3546 }
3547 
3548 boolean_t
vdev_is_dead(vdev_t * vd)3549 vdev_is_dead(vdev_t *vd)
3550 {
3551 	/*
3552 	 * Holes and missing devices are always considered "dead".
3553 	 * This simplifies the code since we don't have to check for
3554 	 * these types of devices in the various code paths.
3555 	 * Instead we rely on the fact that we skip over dead devices
3556 	 * before issuing I/O to them.
3557 	 */
3558 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3559 	    vd->vdev_ops == &vdev_hole_ops ||
3560 	    vd->vdev_ops == &vdev_missing_ops);
3561 }
3562 
3563 boolean_t
vdev_readable(vdev_t * vd)3564 vdev_readable(vdev_t *vd)
3565 {
3566 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3567 }
3568 
3569 boolean_t
vdev_writeable(vdev_t * vd)3570 vdev_writeable(vdev_t *vd)
3571 {
3572 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3573 	    vdev_is_concrete(vd));
3574 }
3575 
3576 boolean_t
vdev_allocatable(vdev_t * vd)3577 vdev_allocatable(vdev_t *vd)
3578 {
3579 	uint64_t state = vd->vdev_state;
3580 
3581 	/*
3582 	 * We currently allow allocations from vdevs which may be in the
3583 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3584 	 * fails to reopen then we'll catch it later when we're holding
3585 	 * the proper locks.  Note that we have to get the vdev state
3586 	 * in a local variable because although it changes atomically,
3587 	 * we're asking two separate questions about it.
3588 	 */
3589 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3590 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3591 	    vd->vdev_mg->mg_initialized);
3592 }
3593 
3594 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)3595 vdev_accessible(vdev_t *vd, zio_t *zio)
3596 {
3597 	ASSERT(zio->io_vd == vd);
3598 
3599 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3600 		return (B_FALSE);
3601 
3602 	if (zio->io_type == ZIO_TYPE_READ)
3603 		return (!vd->vdev_cant_read);
3604 
3605 	if (zio->io_type == ZIO_TYPE_WRITE)
3606 		return (!vd->vdev_cant_write);
3607 
3608 	return (B_TRUE);
3609 }
3610 
3611 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)3612 vdev_is_spacemap_addressable(vdev_t *vd)
3613 {
3614 	/*
3615 	 * Assuming 47 bits of the space map entry dedicated for the entry's
3616 	 * offset (see description in space_map.h), we calculate the maximum
3617 	 * address that can be described by a space map entry for the given
3618 	 * device.
3619 	 */
3620 	uint64_t shift = vd->vdev_ashift + 47;
3621 
3622 	if (shift >= 63) /* detect potential overflow */
3623 		return (B_TRUE);
3624 
3625 	return (vd->vdev_asize < (1ULL << shift));
3626 }
3627 
3628 /*
3629  * Get statistics for the given vdev.
3630  */
3631 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)3632 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3633 {
3634 	spa_t *spa = vd->vdev_spa;
3635 	vdev_t *rvd = spa->spa_root_vdev;
3636 	vdev_t *tvd = vd->vdev_top;
3637 
3638 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3639 
3640 	mutex_enter(&vd->vdev_stat_lock);
3641 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3642 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3643 	vs->vs_state = vd->vdev_state;
3644 	vs->vs_rsize = vdev_get_min_asize(vd);
3645 	if (vd->vdev_ops->vdev_op_leaf) {
3646 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3647 		/*
3648 		 * Report intializing progress. Since we don't have the
3649 		 * initializing locks held, this is only an estimate (although a
3650 		 * fairly accurate one).
3651 		 */
3652 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3653 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3654 		vs->vs_initialize_state = vd->vdev_initialize_state;
3655 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3656 	}
3657 	/*
3658 	 * Report expandable space on top-level, non-auxillary devices only.
3659 	 * The expandable space is reported in terms of metaslab sized units
3660 	 * since that determines how much space the pool can expand.
3661 	 */
3662 	if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3663 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3664 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3665 	}
3666 	vs->vs_configured_ashift = vd->vdev_top != NULL
3667 	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3668 	vs->vs_logical_ashift = vd->vdev_logical_ashift;
3669 	vs->vs_physical_ashift = vd->vdev_physical_ashift;
3670 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3671 	    vdev_is_concrete(vd)) {
3672 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3673 	}
3674 
3675 	/*
3676 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3677 	 * over all top-level vdevs (i.e. the direct children of the root).
3678 	 */
3679 	if (vd == rvd) {
3680 		for (int c = 0; c < rvd->vdev_children; c++) {
3681 			vdev_t *cvd = rvd->vdev_child[c];
3682 			vdev_stat_t *cvs = &cvd->vdev_stat;
3683 
3684 			for (int t = 0; t < ZIO_TYPES; t++) {
3685 				vs->vs_ops[t] += cvs->vs_ops[t];
3686 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3687 			}
3688 			cvs->vs_scan_removing = cvd->vdev_removing;
3689 		}
3690 	}
3691 	mutex_exit(&vd->vdev_stat_lock);
3692 }
3693 
3694 void
vdev_clear_stats(vdev_t * vd)3695 vdev_clear_stats(vdev_t *vd)
3696 {
3697 	mutex_enter(&vd->vdev_stat_lock);
3698 	vd->vdev_stat.vs_space = 0;
3699 	vd->vdev_stat.vs_dspace = 0;
3700 	vd->vdev_stat.vs_alloc = 0;
3701 	mutex_exit(&vd->vdev_stat_lock);
3702 }
3703 
3704 void
vdev_scan_stat_init(vdev_t * vd)3705 vdev_scan_stat_init(vdev_t *vd)
3706 {
3707 	vdev_stat_t *vs = &vd->vdev_stat;
3708 
3709 	for (int c = 0; c < vd->vdev_children; c++)
3710 		vdev_scan_stat_init(vd->vdev_child[c]);
3711 
3712 	mutex_enter(&vd->vdev_stat_lock);
3713 	vs->vs_scan_processed = 0;
3714 	mutex_exit(&vd->vdev_stat_lock);
3715 }
3716 
3717 void
vdev_stat_update(zio_t * zio,uint64_t psize)3718 vdev_stat_update(zio_t *zio, uint64_t psize)
3719 {
3720 	spa_t *spa = zio->io_spa;
3721 	vdev_t *rvd = spa->spa_root_vdev;
3722 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3723 	vdev_t *pvd;
3724 	uint64_t txg = zio->io_txg;
3725 	vdev_stat_t *vs = &vd->vdev_stat;
3726 	zio_type_t type = zio->io_type;
3727 	int flags = zio->io_flags;
3728 
3729 	/*
3730 	 * If this i/o is a gang leader, it didn't do any actual work.
3731 	 */
3732 	if (zio->io_gang_tree)
3733 		return;
3734 
3735 	if (zio->io_error == 0) {
3736 		/*
3737 		 * If this is a root i/o, don't count it -- we've already
3738 		 * counted the top-level vdevs, and vdev_get_stats() will
3739 		 * aggregate them when asked.  This reduces contention on
3740 		 * the root vdev_stat_lock and implicitly handles blocks
3741 		 * that compress away to holes, for which there is no i/o.
3742 		 * (Holes never create vdev children, so all the counters
3743 		 * remain zero, which is what we want.)
3744 		 *
3745 		 * Note: this only applies to successful i/o (io_error == 0)
3746 		 * because unlike i/o counts, errors are not additive.
3747 		 * When reading a ditto block, for example, failure of
3748 		 * one top-level vdev does not imply a root-level error.
3749 		 */
3750 		if (vd == rvd)
3751 			return;
3752 
3753 		ASSERT(vd == zio->io_vd);
3754 
3755 		if (flags & ZIO_FLAG_IO_BYPASS)
3756 			return;
3757 
3758 		mutex_enter(&vd->vdev_stat_lock);
3759 
3760 		if (flags & ZIO_FLAG_IO_REPAIR) {
3761 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3762 				dsl_scan_phys_t *scn_phys =
3763 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3764 				uint64_t *processed = &scn_phys->scn_processed;
3765 
3766 				/* XXX cleanup? */
3767 				if (vd->vdev_ops->vdev_op_leaf)
3768 					atomic_add_64(processed, psize);
3769 				vs->vs_scan_processed += psize;
3770 			}
3771 
3772 			if (flags & ZIO_FLAG_SELF_HEAL)
3773 				vs->vs_self_healed += psize;
3774 		}
3775 
3776 		vs->vs_ops[type]++;
3777 		vs->vs_bytes[type] += psize;
3778 
3779 		mutex_exit(&vd->vdev_stat_lock);
3780 		return;
3781 	}
3782 
3783 	if (flags & ZIO_FLAG_SPECULATIVE)
3784 		return;
3785 
3786 	/*
3787 	 * If this is an I/O error that is going to be retried, then ignore the
3788 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3789 	 * hard errors, when in reality they can happen for any number of
3790 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3791 	 */
3792 	if (zio->io_error == EIO &&
3793 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3794 		return;
3795 
3796 	/*
3797 	 * Intent logs writes won't propagate their error to the root
3798 	 * I/O so don't mark these types of failures as pool-level
3799 	 * errors.
3800 	 */
3801 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3802 		return;
3803 
3804 	mutex_enter(&vd->vdev_stat_lock);
3805 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3806 		if (zio->io_error == ECKSUM)
3807 			vs->vs_checksum_errors++;
3808 		else
3809 			vs->vs_read_errors++;
3810 	}
3811 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3812 		vs->vs_write_errors++;
3813 	mutex_exit(&vd->vdev_stat_lock);
3814 
3815 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3816 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3817 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3818 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3819 	    spa->spa_claiming)) {
3820 		/*
3821 		 * This is either a normal write (not a repair), or it's
3822 		 * a repair induced by the scrub thread, or it's a repair
3823 		 * made by zil_claim() during spa_load() in the first txg.
3824 		 * In the normal case, we commit the DTL change in the same
3825 		 * txg as the block was born.  In the scrub-induced repair
3826 		 * case, we know that scrubs run in first-pass syncing context,
3827 		 * so we commit the DTL change in spa_syncing_txg(spa).
3828 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3829 		 *
3830 		 * We currently do not make DTL entries for failed spontaneous
3831 		 * self-healing writes triggered by normal (non-scrubbing)
3832 		 * reads, because we have no transactional context in which to
3833 		 * do so -- and it's not clear that it'd be desirable anyway.
3834 		 */
3835 		if (vd->vdev_ops->vdev_op_leaf) {
3836 			uint64_t commit_txg = txg;
3837 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3838 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3839 				ASSERT(spa_sync_pass(spa) == 1);
3840 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3841 				commit_txg = spa_syncing_txg(spa);
3842 			} else if (spa->spa_claiming) {
3843 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3844 				commit_txg = spa_first_txg(spa);
3845 			}
3846 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3847 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3848 				return;
3849 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3850 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3851 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3852 		}
3853 		if (vd != rvd)
3854 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3855 	}
3856 }
3857 
3858 /*
3859  * Update the in-core space usage stats for this vdev, its metaslab class,
3860  * and the root vdev.
3861  */
3862 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)3863 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3864     int64_t space_delta)
3865 {
3866 	int64_t dspace_delta = space_delta;
3867 	spa_t *spa = vd->vdev_spa;
3868 	vdev_t *rvd = spa->spa_root_vdev;
3869 	metaslab_group_t *mg = vd->vdev_mg;
3870 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3871 
3872 	ASSERT(vd == vd->vdev_top);
3873 
3874 	/*
3875 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3876 	 * factor.  We must calculate this here and not at the root vdev
3877 	 * because the root vdev's psize-to-asize is simply the max of its
3878 	 * childrens', thus not accurate enough for us.
3879 	 */
3880 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3881 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3882 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3883 	    vd->vdev_deflate_ratio;
3884 
3885 	mutex_enter(&vd->vdev_stat_lock);
3886 	vd->vdev_stat.vs_alloc += alloc_delta;
3887 	vd->vdev_stat.vs_space += space_delta;
3888 	vd->vdev_stat.vs_dspace += dspace_delta;
3889 	mutex_exit(&vd->vdev_stat_lock);
3890 
3891 	if (mc == spa_normal_class(spa)) {
3892 		mutex_enter(&rvd->vdev_stat_lock);
3893 		rvd->vdev_stat.vs_alloc += alloc_delta;
3894 		rvd->vdev_stat.vs_space += space_delta;
3895 		rvd->vdev_stat.vs_dspace += dspace_delta;
3896 		mutex_exit(&rvd->vdev_stat_lock);
3897 	}
3898 
3899 	if (mc != NULL) {
3900 		ASSERT(rvd == vd->vdev_parent);
3901 		ASSERT(vd->vdev_ms_count != 0);
3902 
3903 		metaslab_class_space_update(mc,
3904 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3905 	}
3906 }
3907 
3908 /*
3909  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3910  * so that it will be written out next time the vdev configuration is synced.
3911  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3912  */
3913 void
vdev_config_dirty(vdev_t * vd)3914 vdev_config_dirty(vdev_t *vd)
3915 {
3916 	spa_t *spa = vd->vdev_spa;
3917 	vdev_t *rvd = spa->spa_root_vdev;
3918 	int c;
3919 
3920 	ASSERT(spa_writeable(spa));
3921 
3922 	/*
3923 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3924 	 * update the vdev config manually and set the sync flag.
3925 	 */
3926 	if (vd->vdev_aux != NULL) {
3927 		spa_aux_vdev_t *sav = vd->vdev_aux;
3928 		nvlist_t **aux;
3929 		uint_t naux;
3930 
3931 		for (c = 0; c < sav->sav_count; c++) {
3932 			if (sav->sav_vdevs[c] == vd)
3933 				break;
3934 		}
3935 
3936 		if (c == sav->sav_count) {
3937 			/*
3938 			 * We're being removed.  There's nothing more to do.
3939 			 */
3940 			ASSERT(sav->sav_sync == B_TRUE);
3941 			return;
3942 		}
3943 
3944 		sav->sav_sync = B_TRUE;
3945 
3946 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3947 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3948 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3949 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3950 		}
3951 
3952 		ASSERT(c < naux);
3953 
3954 		/*
3955 		 * Setting the nvlist in the middle if the array is a little
3956 		 * sketchy, but it will work.
3957 		 */
3958 		nvlist_free(aux[c]);
3959 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3960 
3961 		return;
3962 	}
3963 
3964 	/*
3965 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3966 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3967 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3968 	 * so this is sufficient to ensure mutual exclusion.
3969 	 */
3970 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3971 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3972 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3973 
3974 	if (vd == rvd) {
3975 		for (c = 0; c < rvd->vdev_children; c++)
3976 			vdev_config_dirty(rvd->vdev_child[c]);
3977 	} else {
3978 		ASSERT(vd == vd->vdev_top);
3979 
3980 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3981 		    vdev_is_concrete(vd)) {
3982 			list_insert_head(&spa->spa_config_dirty_list, vd);
3983 		}
3984 	}
3985 }
3986 
3987 void
vdev_config_clean(vdev_t * vd)3988 vdev_config_clean(vdev_t *vd)
3989 {
3990 	spa_t *spa = vd->vdev_spa;
3991 
3992 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3993 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3994 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3995 
3996 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3997 	list_remove(&spa->spa_config_dirty_list, vd);
3998 }
3999 
4000 /*
4001  * Mark a top-level vdev's state as dirty, so that the next pass of
4002  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4003  * the state changes from larger config changes because they require
4004  * much less locking, and are often needed for administrative actions.
4005  */
4006 void
vdev_state_dirty(vdev_t * vd)4007 vdev_state_dirty(vdev_t *vd)
4008 {
4009 	spa_t *spa = vd->vdev_spa;
4010 
4011 	ASSERT(spa_writeable(spa));
4012 	ASSERT(vd == vd->vdev_top);
4013 
4014 	/*
4015 	 * The state list is protected by the SCL_STATE lock.  The caller
4016 	 * must either hold SCL_STATE as writer, or must be the sync thread
4017 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4018 	 * so this is sufficient to ensure mutual exclusion.
4019 	 */
4020 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4021 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4022 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4023 
4024 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4025 	    vdev_is_concrete(vd))
4026 		list_insert_head(&spa->spa_state_dirty_list, vd);
4027 }
4028 
4029 void
vdev_state_clean(vdev_t * vd)4030 vdev_state_clean(vdev_t *vd)
4031 {
4032 	spa_t *spa = vd->vdev_spa;
4033 
4034 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4035 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4036 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4037 
4038 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4039 	list_remove(&spa->spa_state_dirty_list, vd);
4040 }
4041 
4042 /*
4043  * Propagate vdev state up from children to parent.
4044  */
4045 void
vdev_propagate_state(vdev_t * vd)4046 vdev_propagate_state(vdev_t *vd)
4047 {
4048 	spa_t *spa = vd->vdev_spa;
4049 	vdev_t *rvd = spa->spa_root_vdev;
4050 	int degraded = 0, faulted = 0;
4051 	int corrupted = 0;
4052 	vdev_t *child;
4053 
4054 	if (vd->vdev_children > 0) {
4055 		for (int c = 0; c < vd->vdev_children; c++) {
4056 			child = vd->vdev_child[c];
4057 
4058 			/*
4059 			 * Don't factor holes or indirect vdevs into the
4060 			 * decision.
4061 			 */
4062 			if (!vdev_is_concrete(child))
4063 				continue;
4064 
4065 			if (!vdev_readable(child) ||
4066 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4067 				/*
4068 				 * Root special: if there is a top-level log
4069 				 * device, treat the root vdev as if it were
4070 				 * degraded.
4071 				 */
4072 				if (child->vdev_islog && vd == rvd)
4073 					degraded++;
4074 				else
4075 					faulted++;
4076 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4077 				degraded++;
4078 			}
4079 
4080 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4081 				corrupted++;
4082 		}
4083 
4084 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4085 
4086 		/*
4087 		 * Root special: if there is a top-level vdev that cannot be
4088 		 * opened due to corrupted metadata, then propagate the root
4089 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4090 		 * replicas'.
4091 		 */
4092 		if (corrupted && vd == rvd &&
4093 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4094 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4095 			    VDEV_AUX_CORRUPT_DATA);
4096 	}
4097 
4098 	if (vd->vdev_parent)
4099 		vdev_propagate_state(vd->vdev_parent);
4100 }
4101 
4102 /*
4103  * Set a vdev's state.  If this is during an open, we don't update the parent
4104  * state, because we're in the process of opening children depth-first.
4105  * Otherwise, we propagate the change to the parent.
4106  *
4107  * If this routine places a device in a faulted state, an appropriate ereport is
4108  * generated.
4109  */
4110 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)4111 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4112 {
4113 	uint64_t save_state;
4114 	spa_t *spa = vd->vdev_spa;
4115 
4116 	if (state == vd->vdev_state) {
4117 		vd->vdev_stat.vs_aux = aux;
4118 		return;
4119 	}
4120 
4121 	save_state = vd->vdev_state;
4122 
4123 	vd->vdev_state = state;
4124 	vd->vdev_stat.vs_aux = aux;
4125 
4126 	/*
4127 	 * If we are setting the vdev state to anything but an open state, then
4128 	 * always close the underlying device unless the device has requested
4129 	 * a delayed close (i.e. we're about to remove or fault the device).
4130 	 * Otherwise, we keep accessible but invalid devices open forever.
4131 	 * We don't call vdev_close() itself, because that implies some extra
4132 	 * checks (offline, etc) that we don't want here.  This is limited to
4133 	 * leaf devices, because otherwise closing the device will affect other
4134 	 * children.
4135 	 */
4136 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4137 	    vd->vdev_ops->vdev_op_leaf)
4138 		vd->vdev_ops->vdev_op_close(vd);
4139 
4140 	if (vd->vdev_removed &&
4141 	    state == VDEV_STATE_CANT_OPEN &&
4142 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4143 		/*
4144 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4145 		 * device was previously marked removed and someone attempted to
4146 		 * reopen it.  If this failed due to a nonexistent device, then
4147 		 * keep the device in the REMOVED state.  We also let this be if
4148 		 * it is one of our special test online cases, which is only
4149 		 * attempting to online the device and shouldn't generate an FMA
4150 		 * fault.
4151 		 */
4152 		vd->vdev_state = VDEV_STATE_REMOVED;
4153 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4154 	} else if (state == VDEV_STATE_REMOVED) {
4155 		vd->vdev_removed = B_TRUE;
4156 	} else if (state == VDEV_STATE_CANT_OPEN) {
4157 		/*
4158 		 * If we fail to open a vdev during an import or recovery, we
4159 		 * mark it as "not available", which signifies that it was
4160 		 * never there to begin with.  Failure to open such a device
4161 		 * is not considered an error.
4162 		 */
4163 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4164 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4165 		    vd->vdev_ops->vdev_op_leaf)
4166 			vd->vdev_not_present = 1;
4167 
4168 		/*
4169 		 * Post the appropriate ereport.  If the 'prevstate' field is
4170 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4171 		 * that this is part of a vdev_reopen().  In this case, we don't
4172 		 * want to post the ereport if the device was already in the
4173 		 * CANT_OPEN state beforehand.
4174 		 *
4175 		 * If the 'checkremove' flag is set, then this is an attempt to
4176 		 * online the device in response to an insertion event.  If we
4177 		 * hit this case, then we have detected an insertion event for a
4178 		 * faulted or offline device that wasn't in the removed state.
4179 		 * In this scenario, we don't post an ereport because we are
4180 		 * about to replace the device, or attempt an online with
4181 		 * vdev_forcefault, which will generate the fault for us.
4182 		 */
4183 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4184 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4185 		    vd != spa->spa_root_vdev) {
4186 			const char *class;
4187 
4188 			switch (aux) {
4189 			case VDEV_AUX_OPEN_FAILED:
4190 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4191 				break;
4192 			case VDEV_AUX_CORRUPT_DATA:
4193 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4194 				break;
4195 			case VDEV_AUX_NO_REPLICAS:
4196 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4197 				break;
4198 			case VDEV_AUX_BAD_GUID_SUM:
4199 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4200 				break;
4201 			case VDEV_AUX_TOO_SMALL:
4202 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4203 				break;
4204 			case VDEV_AUX_BAD_LABEL:
4205 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4206 				break;
4207 			default:
4208 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4209 			}
4210 
4211 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4212 		}
4213 
4214 		/* Erase any notion of persistent removed state */
4215 		vd->vdev_removed = B_FALSE;
4216 	} else {
4217 		vd->vdev_removed = B_FALSE;
4218 	}
4219 
4220 	/*
4221 	* Notify the fmd of the state change.  Be verbose and post
4222 	* notifications even for stuff that's not important; the fmd agent can
4223 	* sort it out.  Don't emit state change events for non-leaf vdevs since
4224 	* they can't change state on their own.  The FMD can check their state
4225 	* if it wants to when it sees that a leaf vdev had a state change.
4226 	*/
4227 	if (vd->vdev_ops->vdev_op_leaf)
4228 		zfs_post_state_change(spa, vd);
4229 
4230 	if (!isopen && vd->vdev_parent)
4231 		vdev_propagate_state(vd->vdev_parent);
4232 }
4233 
4234 boolean_t
vdev_children_are_offline(vdev_t * vd)4235 vdev_children_are_offline(vdev_t *vd)
4236 {
4237 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4238 
4239 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4240 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4241 			return (B_FALSE);
4242 	}
4243 
4244 	return (B_TRUE);
4245 }
4246 
4247 /*
4248  * Check the vdev configuration to ensure that it's capable of supporting
4249  * a root pool. We do not support partial configuration.
4250  * In addition, only a single top-level vdev is allowed.
4251  *
4252  * FreeBSD does not have above limitations.
4253  */
4254 boolean_t
vdev_is_bootable(vdev_t * vd)4255 vdev_is_bootable(vdev_t *vd)
4256 {
4257 #ifdef illumos
4258 	if (!vd->vdev_ops->vdev_op_leaf) {
4259 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4260 
4261 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4262 		    vd->vdev_children > 1) {
4263 			return (B_FALSE);
4264 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4265 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4266 			return (B_FALSE);
4267 		}
4268 	}
4269 
4270 	for (int c = 0; c < vd->vdev_children; c++) {
4271 		if (!vdev_is_bootable(vd->vdev_child[c]))
4272 			return (B_FALSE);
4273 	}
4274 #endif	/* illumos */
4275 	return (B_TRUE);
4276 }
4277 
4278 boolean_t
vdev_is_concrete(vdev_t * vd)4279 vdev_is_concrete(vdev_t *vd)
4280 {
4281 	vdev_ops_t *ops = vd->vdev_ops;
4282 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4283 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4284 		return (B_FALSE);
4285 	} else {
4286 		return (B_TRUE);
4287 	}
4288 }
4289 
4290 /*
4291  * Determine if a log device has valid content.  If the vdev was
4292  * removed or faulted in the MOS config then we know that
4293  * the content on the log device has already been written to the pool.
4294  */
4295 boolean_t
vdev_log_state_valid(vdev_t * vd)4296 vdev_log_state_valid(vdev_t *vd)
4297 {
4298 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4299 	    !vd->vdev_removed)
4300 		return (B_TRUE);
4301 
4302 	for (int c = 0; c < vd->vdev_children; c++)
4303 		if (vdev_log_state_valid(vd->vdev_child[c]))
4304 			return (B_TRUE);
4305 
4306 	return (B_FALSE);
4307 }
4308 
4309 /*
4310  * Expand a vdev if possible.
4311  */
4312 void
vdev_expand(vdev_t * vd,uint64_t txg)4313 vdev_expand(vdev_t *vd, uint64_t txg)
4314 {
4315 	ASSERT(vd->vdev_top == vd);
4316 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4317 	ASSERT(vdev_is_concrete(vd));
4318 
4319 	vdev_set_deflate_ratio(vd);
4320 
4321 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
4322 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4323 		vdev_config_dirty(vd);
4324 	}
4325 }
4326 
4327 /*
4328  * Split a vdev.
4329  */
4330 void
vdev_split(vdev_t * vd)4331 vdev_split(vdev_t *vd)
4332 {
4333 	vdev_t *cvd, *pvd = vd->vdev_parent;
4334 
4335 	vdev_remove_child(pvd, vd);
4336 	vdev_compact_children(pvd);
4337 
4338 	cvd = pvd->vdev_child[0];
4339 	if (pvd->vdev_children == 1) {
4340 		vdev_remove_parent(cvd);
4341 		cvd->vdev_splitting = B_TRUE;
4342 	}
4343 	vdev_propagate_state(cvd);
4344 }
4345 
4346 void
vdev_deadman(vdev_t * vd)4347 vdev_deadman(vdev_t *vd)
4348 {
4349 	for (int c = 0; c < vd->vdev_children; c++) {
4350 		vdev_t *cvd = vd->vdev_child[c];
4351 
4352 		vdev_deadman(cvd);
4353 	}
4354 
4355 	if (vd->vdev_ops->vdev_op_leaf) {
4356 		vdev_queue_t *vq = &vd->vdev_queue;
4357 
4358 		mutex_enter(&vq->vq_lock);
4359 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4360 			spa_t *spa = vd->vdev_spa;
4361 			zio_t *fio;
4362 			uint64_t delta;
4363 
4364 			/*
4365 			 * Look at the head of all the pending queues,
4366 			 * if any I/O has been outstanding for longer than
4367 			 * the spa_deadman_synctime we panic the system.
4368 			 */
4369 			fio = avl_first(&vq->vq_active_tree);
4370 			delta = gethrtime() - fio->io_timestamp;
4371 			if (delta > spa_deadman_synctime(spa)) {
4372 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4373 				    "%lluns, delta %lluns, last io %lluns",
4374 				    fio->io_timestamp, (u_longlong_t)delta,
4375 				    vq->vq_io_complete_ts);
4376 				fm_panic("I/O to pool '%s' appears to be "
4377 				    "hung on vdev guid %llu at '%s'.",
4378 				    spa_name(spa),
4379 				    (long long unsigned int) vd->vdev_guid,
4380 				    vd->vdev_path);
4381 			}
4382 		}
4383 		mutex_exit(&vq->vq_lock);
4384 	}
4385 }
4386