xref: /f-stack/freebsd/arm/arm/machdep.c (revision 22ce4aff)
1 /*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 2004 Olivier Houchard
7  * Copyright (c) 1994-1998 Mark Brinicombe.
8  * Copyright (c) 1994 Brini.
9  * All rights reserved.
10  *
11  * This code is derived from software written for Brini by Mark Brinicombe
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Mark Brinicombe
24  *	for the NetBSD Project.
25  * 4. The name of the company nor the name of the author may be used to
26  *    endorse or promote products derived from this software without specific
27  *    prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
30  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
31  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
32  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
33  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
34  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
35  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  * Machine dependent functions for kernel setup
42  *
43  * Created      : 17/09/94
44  * Updated	: 18/04/01 updated for new wscons
45  */
46 
47 #include "opt_ddb.h"
48 #include "opt_kstack_pages.h"
49 #include "opt_platform.h"
50 #include "opt_sched.h"
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include <sys/param.h>
56 #include <sys/buf.h>
57 #include <sys/bus.h>
58 #include <sys/cons.h>
59 #include <sys/cpu.h>
60 #include <sys/devmap.h>
61 #include <sys/efi.h>
62 #include <sys/imgact.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/ktr.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/physmem.h>
69 #include <sys/reboot.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysent.h>
74 #include <sys/sysproto.h>
75 #include <sys/vmmeter.h>
76 
77 #include <vm/vm_object.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 
81 #include <machine/asm.h>
82 #include <machine/debug_monitor.h>
83 #include <machine/machdep.h>
84 #include <machine/metadata.h>
85 #include <machine/pcb.h>
86 #include <machine/platform.h>
87 #include <machine/sysarch.h>
88 #include <machine/undefined.h>
89 #include <machine/vfp.h>
90 #include <machine/vmparam.h>
91 
92 #ifdef FDT
93 #include <dev/fdt/fdt_common.h>
94 #include <machine/ofw_machdep.h>
95 #endif
96 
97 #ifdef DEBUG
98 #define	debugf(fmt, args...) printf(fmt, ##args)
99 #else
100 #define	debugf(fmt, args...)
101 #endif
102 
103 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
104     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
105     defined(COMPAT_FREEBSD9)
106 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
107 #endif
108 
109 
110 #ifndef _ARM_ARCH_6
111 #error FreeBSD requires ARMv6 or later
112 #endif
113 
114 struct pcpu __pcpu[MAXCPU];
115 struct pcpu *pcpup = &__pcpu[0];
116 
117 static struct trapframe proc0_tf;
118 uint32_t cpu_reset_address = 0;
119 int cold = 1;
120 vm_offset_t vector_page;
121 
122 /* The address at which the kernel was loaded.  Set early in initarm(). */
123 vm_paddr_t arm_physmem_kernaddr;
124 
125 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
126 int (*_arm_bzero)(void *, int, int) = NULL;
127 int _min_memcpy_size = 0;
128 int _min_bzero_size = 0;
129 
130 extern int *end;
131 
132 #ifdef FDT
133 vm_paddr_t pmap_pa;
134 vm_offset_t systempage;
135 vm_offset_t irqstack;
136 vm_offset_t undstack;
137 vm_offset_t abtstack;
138 #endif /* FDT */
139 
140 #ifdef PLATFORM
141 static delay_func *delay_impl;
142 static void *delay_arg;
143 #endif
144 
145 struct kva_md_info kmi;
146 /*
147  * arm32_vector_init:
148  *
149  *	Initialize the vector page, and select whether or not to
150  *	relocate the vectors.
151  *
152  *	NOTE: We expect the vector page to be mapped at its expected
153  *	destination.
154  */
155 
156 extern unsigned int page0[], page0_data[];
157 void
arm_vector_init(vm_offset_t va,int which)158 arm_vector_init(vm_offset_t va, int which)
159 {
160 	unsigned int *vectors = (int *) va;
161 	unsigned int *vectors_data = vectors + (page0_data - page0);
162 	int vec;
163 
164 	/*
165 	 * Loop through the vectors we're taking over, and copy the
166 	 * vector's insn and data word.
167 	 */
168 	for (vec = 0; vec < ARM_NVEC; vec++) {
169 		if ((which & (1 << vec)) == 0) {
170 			/* Don't want to take over this vector. */
171 			continue;
172 		}
173 		vectors[vec] = page0[vec];
174 		vectors_data[vec] = page0_data[vec];
175 	}
176 
177 	/* Now sync the vectors. */
178 	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
179 
180 	vector_page = va;
181 }
182 
183 static void
cpu_startup(void * dummy)184 cpu_startup(void *dummy)
185 {
186 	struct pcb *pcb = thread0.td_pcb;
187 	const unsigned int mbyte = 1024 * 1024;
188 
189 	identify_arm_cpu();
190 
191 	vm_ksubmap_init(&kmi);
192 
193 	/*
194 	 * Display the RAM layout.
195 	 */
196 	printf("real memory  = %ju (%ju MB)\n",
197 	    (uintmax_t)arm32_ptob(realmem),
198 	    (uintmax_t)arm32_ptob(realmem) / mbyte);
199 	printf("avail memory = %ju (%ju MB)\n",
200 	    (uintmax_t)arm32_ptob(vm_free_count()),
201 	    (uintmax_t)arm32_ptob(vm_free_count()) / mbyte);
202 	if (bootverbose) {
203 		physmem_print_tables();
204 		devmap_print_table();
205 	}
206 
207 	bufinit();
208 	vm_pager_bufferinit();
209 	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
210 	    USPACE_SVC_STACK_TOP;
211 	pmap_set_pcb_pagedir(kernel_pmap, pcb);
212 }
213 
214 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
215 
216 /*
217  * Flush the D-cache for non-DMA I/O so that the I-cache can
218  * be made coherent later.
219  */
220 void
cpu_flush_dcache(void * ptr,size_t len)221 cpu_flush_dcache(void *ptr, size_t len)
222 {
223 
224 	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
225 }
226 
227 /* Get current clock frequency for the given cpu id. */
228 int
cpu_est_clockrate(int cpu_id,uint64_t * rate)229 cpu_est_clockrate(int cpu_id, uint64_t *rate)
230 {
231 	struct pcpu *pc;
232 
233 	pc = pcpu_find(cpu_id);
234 	if (pc == NULL || rate == NULL)
235 		return (EINVAL);
236 
237 	if (pc->pc_clock == 0)
238 		return (EOPNOTSUPP);
239 
240 	*rate = pc->pc_clock;
241 
242 	return (0);
243 }
244 
245 void
cpu_idle(int busy)246 cpu_idle(int busy)
247 {
248 
249 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
250 	spinlock_enter();
251 	if (!busy)
252 		cpu_idleclock();
253 	if (!sched_runnable())
254 		cpu_sleep(0);
255 	if (!busy)
256 		cpu_activeclock();
257 	spinlock_exit();
258 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
259 }
260 
261 int
cpu_idle_wakeup(int cpu)262 cpu_idle_wakeup(int cpu)
263 {
264 
265 	return (0);
266 }
267 
268 void
cpu_initclocks(void)269 cpu_initclocks(void)
270 {
271 
272 #ifdef SMP
273 	if (PCPU_GET(cpuid) == 0)
274 		cpu_initclocks_bsp();
275 	else
276 		cpu_initclocks_ap();
277 #else
278 	cpu_initclocks_bsp();
279 #endif
280 }
281 
282 #ifdef PLATFORM
283 void
arm_set_delay(delay_func * impl,void * arg)284 arm_set_delay(delay_func *impl, void *arg)
285 {
286 
287 	KASSERT(impl != NULL, ("No DELAY implementation"));
288 	delay_impl = impl;
289 	delay_arg = arg;
290 }
291 
292 void
DELAY(int usec)293 DELAY(int usec)
294 {
295 
296 	TSENTER();
297 	delay_impl(usec, delay_arg);
298 	TSEXIT();
299 }
300 #endif
301 
302 void
cpu_pcpu_init(struct pcpu * pcpu,int cpuid,size_t size)303 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
304 {
305 
306 	pcpu->pc_mpidr = 0xffffffff;
307 }
308 
309 void
spinlock_enter(void)310 spinlock_enter(void)
311 {
312 	struct thread *td;
313 	register_t cspr;
314 
315 	td = curthread;
316 	if (td->td_md.md_spinlock_count == 0) {
317 		cspr = disable_interrupts(PSR_I | PSR_F);
318 		td->td_md.md_spinlock_count = 1;
319 		td->td_md.md_saved_cspr = cspr;
320 		critical_enter();
321 	} else
322 		td->td_md.md_spinlock_count++;
323 }
324 
325 void
spinlock_exit(void)326 spinlock_exit(void)
327 {
328 	struct thread *td;
329 	register_t cspr;
330 
331 	td = curthread;
332 	cspr = td->td_md.md_saved_cspr;
333 	td->td_md.md_spinlock_count--;
334 	if (td->td_md.md_spinlock_count == 0) {
335 		critical_exit();
336 		restore_interrupts(cspr);
337 	}
338 }
339 
340 /*
341  * Clear registers on exec
342  */
343 void
exec_setregs(struct thread * td,struct image_params * imgp,uintptr_t stack)344 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
345 {
346 	struct trapframe *tf = td->td_frame;
347 
348 	memset(tf, 0, sizeof(*tf));
349 	tf->tf_usr_sp = stack;
350 	tf->tf_usr_lr = imgp->entry_addr;
351 	tf->tf_svc_lr = 0x77777777;
352 	tf->tf_pc = imgp->entry_addr;
353 	tf->tf_spsr = PSR_USR32_MODE;
354 }
355 
356 #ifdef VFP
357 /*
358  * Get machine VFP context.
359  */
360 void
get_vfpcontext(struct thread * td,mcontext_vfp_t * vfp)361 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
362 {
363 	struct pcb *pcb;
364 
365 	pcb = td->td_pcb;
366 	if (td == curthread) {
367 		critical_enter();
368 		vfp_store(&pcb->pcb_vfpstate, false);
369 		critical_exit();
370 	} else
371 		MPASS(TD_IS_SUSPENDED(td));
372 	memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg,
373 	    sizeof(vfp->mcv_reg));
374 	vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr;
375 }
376 
377 /*
378  * Set machine VFP context.
379  */
380 void
set_vfpcontext(struct thread * td,mcontext_vfp_t * vfp)381 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
382 {
383 	struct pcb *pcb;
384 
385 	pcb = td->td_pcb;
386 	if (td == curthread) {
387 		critical_enter();
388 		vfp_discard(td);
389 		critical_exit();
390 	} else
391 		MPASS(TD_IS_SUSPENDED(td));
392 	memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg,
393 	    sizeof(pcb->pcb_vfpstate.reg));
394 	pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
395 }
396 #endif
397 
398 int
arm_get_vfpstate(struct thread * td,void * args)399 arm_get_vfpstate(struct thread *td, void *args)
400 {
401 	int rv;
402 	struct arm_get_vfpstate_args ua;
403 	mcontext_vfp_t	mcontext_vfp;
404 
405 	rv = copyin(args, &ua, sizeof(ua));
406 	if (rv != 0)
407 		return (rv);
408 	if (ua.mc_vfp_size != sizeof(mcontext_vfp_t))
409 		return (EINVAL);
410 #ifdef VFP
411 	get_vfpcontext(td, &mcontext_vfp);
412 #else
413 	bzero(&mcontext_vfp, sizeof(mcontext_vfp));
414 #endif
415 
416 	rv = copyout(&mcontext_vfp, ua.mc_vfp,  sizeof(mcontext_vfp));
417 	if (rv != 0)
418 		return (rv);
419 	return (0);
420 }
421 
422 /*
423  * Get machine context.
424  */
425 int
get_mcontext(struct thread * td,mcontext_t * mcp,int clear_ret)426 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
427 {
428 	struct trapframe *tf = td->td_frame;
429 	__greg_t *gr = mcp->__gregs;
430 
431 	if (clear_ret & GET_MC_CLEAR_RET) {
432 		gr[_REG_R0] = 0;
433 		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
434 	} else {
435 		gr[_REG_R0]   = tf->tf_r0;
436 		gr[_REG_CPSR] = tf->tf_spsr;
437 	}
438 	gr[_REG_R1]   = tf->tf_r1;
439 	gr[_REG_R2]   = tf->tf_r2;
440 	gr[_REG_R3]   = tf->tf_r3;
441 	gr[_REG_R4]   = tf->tf_r4;
442 	gr[_REG_R5]   = tf->tf_r5;
443 	gr[_REG_R6]   = tf->tf_r6;
444 	gr[_REG_R7]   = tf->tf_r7;
445 	gr[_REG_R8]   = tf->tf_r8;
446 	gr[_REG_R9]   = tf->tf_r9;
447 	gr[_REG_R10]  = tf->tf_r10;
448 	gr[_REG_R11]  = tf->tf_r11;
449 	gr[_REG_R12]  = tf->tf_r12;
450 	gr[_REG_SP]   = tf->tf_usr_sp;
451 	gr[_REG_LR]   = tf->tf_usr_lr;
452 	gr[_REG_PC]   = tf->tf_pc;
453 
454 	mcp->mc_vfp_size = 0;
455 	mcp->mc_vfp_ptr = NULL;
456 	memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
457 
458 	return (0);
459 }
460 
461 /*
462  * Set machine context.
463  *
464  * However, we don't set any but the user modifiable flags, and we won't
465  * touch the cs selector.
466  */
467 int
set_mcontext(struct thread * td,mcontext_t * mcp)468 set_mcontext(struct thread *td, mcontext_t *mcp)
469 {
470 	mcontext_vfp_t mc_vfp, *vfp;
471 	struct trapframe *tf = td->td_frame;
472 	const __greg_t *gr = mcp->__gregs;
473 	int spsr;
474 
475 	/*
476 	 * Make sure the processor mode has not been tampered with and
477 	 * interrupts have not been disabled.
478 	 */
479 	spsr = gr[_REG_CPSR];
480 	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
481 	    (spsr & (PSR_I | PSR_F)) != 0)
482 		return (EINVAL);
483 
484 #ifdef WITNESS
485 	if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
486 		printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
487 		    td->td_proc->p_comm, __func__,
488 		    mcp->mc_vfp_size, mcp->mc_vfp_size);
489 	} else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
490 		printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
491 		    td->td_proc->p_comm, __func__);
492 	}
493 #endif
494 
495 	if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
496 		if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
497 			return (EFAULT);
498 		vfp = &mc_vfp;
499 	} else {
500 		vfp = NULL;
501 	}
502 
503 	tf->tf_r0 = gr[_REG_R0];
504 	tf->tf_r1 = gr[_REG_R1];
505 	tf->tf_r2 = gr[_REG_R2];
506 	tf->tf_r3 = gr[_REG_R3];
507 	tf->tf_r4 = gr[_REG_R4];
508 	tf->tf_r5 = gr[_REG_R5];
509 	tf->tf_r6 = gr[_REG_R6];
510 	tf->tf_r7 = gr[_REG_R7];
511 	tf->tf_r8 = gr[_REG_R8];
512 	tf->tf_r9 = gr[_REG_R9];
513 	tf->tf_r10 = gr[_REG_R10];
514 	tf->tf_r11 = gr[_REG_R11];
515 	tf->tf_r12 = gr[_REG_R12];
516 	tf->tf_usr_sp = gr[_REG_SP];
517 	tf->tf_usr_lr = gr[_REG_LR];
518 	tf->tf_pc = gr[_REG_PC];
519 	tf->tf_spsr = gr[_REG_CPSR];
520 #ifdef VFP
521 	if (vfp != NULL)
522 		set_vfpcontext(td, vfp);
523 #endif
524 	return (0);
525 }
526 
527 void
sendsig(catcher,ksi,mask)528 sendsig(catcher, ksi, mask)
529 	sig_t catcher;
530 	ksiginfo_t *ksi;
531 	sigset_t *mask;
532 {
533 	struct thread *td;
534 	struct proc *p;
535 	struct trapframe *tf;
536 	struct sigframe *fp, frame;
537 	struct sigacts *psp;
538 	struct sysentvec *sysent;
539 	int onstack;
540 	int sig;
541 	int code;
542 
543 	td = curthread;
544 	p = td->td_proc;
545 	PROC_LOCK_ASSERT(p, MA_OWNED);
546 	sig = ksi->ksi_signo;
547 	code = ksi->ksi_code;
548 	psp = p->p_sigacts;
549 	mtx_assert(&psp->ps_mtx, MA_OWNED);
550 	tf = td->td_frame;
551 	onstack = sigonstack(tf->tf_usr_sp);
552 
553 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
554 	    catcher, sig);
555 
556 	/* Allocate and validate space for the signal handler context. */
557 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
558 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
559 		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
560 		    td->td_sigstk.ss_size);
561 #if defined(COMPAT_43)
562 		td->td_sigstk.ss_flags |= SS_ONSTACK;
563 #endif
564 	} else
565 		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
566 
567 	/* make room on the stack */
568 	fp--;
569 
570 	/* make the stack aligned */
571 	fp = (struct sigframe *)STACKALIGN(fp);
572 	/* Populate the siginfo frame. */
573 	bzero(&frame, sizeof(frame));
574 	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
575 #ifdef VFP
576 	get_vfpcontext(td, &frame.sf_vfp);
577 	frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
578 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
579 #else
580 	frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
581 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
582 #endif
583 	frame.sf_si = ksi->ksi_info;
584 	frame.sf_uc.uc_sigmask = *mask;
585 	frame.sf_uc.uc_stack = td->td_sigstk;
586 	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ?
587 	    (onstack ? SS_ONSTACK : 0) : SS_DISABLE;
588 	mtx_unlock(&psp->ps_mtx);
589 	PROC_UNLOCK(td->td_proc);
590 
591 	/* Copy the sigframe out to the user's stack. */
592 	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
593 		/* Process has trashed its stack. Kill it. */
594 		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
595 		PROC_LOCK(p);
596 		sigexit(td, SIGILL);
597 	}
598 
599 	/*
600 	 * Build context to run handler in.  We invoke the handler
601 	 * directly, only returning via the trampoline.  Note the
602 	 * trampoline version numbers are coordinated with machine-
603 	 * dependent code in libc.
604 	 */
605 
606 	tf->tf_r0 = sig;
607 	tf->tf_r1 = (register_t)&fp->sf_si;
608 	tf->tf_r2 = (register_t)&fp->sf_uc;
609 
610 	/* the trampoline uses r5 as the uc address */
611 	tf->tf_r5 = (register_t)&fp->sf_uc;
612 	tf->tf_pc = (register_t)catcher;
613 	tf->tf_usr_sp = (register_t)fp;
614 	sysent = p->p_sysent;
615 	if (sysent->sv_sigcode_base != 0)
616 		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
617 	else
618 		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
619 		    *(sysent->sv_szsigcode));
620 	/* Set the mode to enter in the signal handler */
621 #if __ARM_ARCH >= 7
622 	if ((register_t)catcher & 1)
623 		tf->tf_spsr |= PSR_T;
624 	else
625 		tf->tf_spsr &= ~PSR_T;
626 #endif
627 
628 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
629 	    tf->tf_usr_sp);
630 
631 	PROC_LOCK(p);
632 	mtx_lock(&psp->ps_mtx);
633 }
634 
635 int
sys_sigreturn(td,uap)636 sys_sigreturn(td, uap)
637 	struct thread *td;
638 	struct sigreturn_args /* {
639 		const struct __ucontext *sigcntxp;
640 	} */ *uap;
641 {
642 	ucontext_t uc;
643 	int error;
644 
645 	if (uap == NULL)
646 		return (EFAULT);
647 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
648 		return (EFAULT);
649 	/* Restore register context. */
650 	error = set_mcontext(td, &uc.uc_mcontext);
651 	if (error != 0)
652 		return (error);
653 
654 	/* Restore signal mask. */
655 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
656 
657 	return (EJUSTRETURN);
658 }
659 
660 /*
661  * Construct a PCB from a trapframe. This is called from kdb_trap() where
662  * we want to start a backtrace from the function that caused us to enter
663  * the debugger. We have the context in the trapframe, but base the trace
664  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
665  * enough for a backtrace.
666  */
667 void
makectx(struct trapframe * tf,struct pcb * pcb)668 makectx(struct trapframe *tf, struct pcb *pcb)
669 {
670 	pcb->pcb_regs.sf_r4 = tf->tf_r4;
671 	pcb->pcb_regs.sf_r5 = tf->tf_r5;
672 	pcb->pcb_regs.sf_r6 = tf->tf_r6;
673 	pcb->pcb_regs.sf_r7 = tf->tf_r7;
674 	pcb->pcb_regs.sf_r8 = tf->tf_r8;
675 	pcb->pcb_regs.sf_r9 = tf->tf_r9;
676 	pcb->pcb_regs.sf_r10 = tf->tf_r10;
677 	pcb->pcb_regs.sf_r11 = tf->tf_r11;
678 	pcb->pcb_regs.sf_r12 = tf->tf_r12;
679 	pcb->pcb_regs.sf_pc = tf->tf_pc;
680 	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
681 	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
682 }
683 
684 void
pcpu0_init(void)685 pcpu0_init(void)
686 {
687 	set_curthread(&thread0);
688 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
689 	pcpup->pc_mpidr = cp15_mpidr_get() & 0xFFFFFF;
690 	PCPU_SET(curthread, &thread0);
691 }
692 
693 /*
694  * Initialize proc0
695  */
696 void
init_proc0(vm_offset_t kstack)697 init_proc0(vm_offset_t kstack)
698 {
699 	proc_linkup0(&proc0, &thread0);
700 	thread0.td_kstack = kstack;
701 	thread0.td_kstack_pages = kstack_pages;
702 	thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
703 	    thread0.td_kstack_pages * PAGE_SIZE) - 1;
704 	thread0.td_pcb->pcb_flags = 0;
705 	thread0.td_pcb->pcb_vfpcpu = -1;
706 	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
707 	thread0.td_frame = &proc0_tf;
708 	pcpup->pc_curpcb = thread0.td_pcb;
709 }
710 
711 void
set_stackptrs(int cpu)712 set_stackptrs(int cpu)
713 {
714 
715 	set_stackptr(PSR_IRQ32_MODE,
716 	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
717 	set_stackptr(PSR_ABT32_MODE,
718 	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
719 	set_stackptr(PSR_UND32_MODE,
720 	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
721 }
722 
723 static void
arm_kdb_init(void)724 arm_kdb_init(void)
725 {
726 
727 	kdb_init();
728 #ifdef KDB
729 	if (boothowto & RB_KDB)
730 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
731 #endif
732 }
733 
734 #ifdef FDT
735 void *
initarm(struct arm_boot_params * abp)736 initarm(struct arm_boot_params *abp)
737 {
738 	struct mem_region mem_regions[FDT_MEM_REGIONS];
739 	vm_paddr_t lastaddr;
740 	vm_offset_t dtbp, kernelstack, dpcpu;
741 	char *env;
742 	void *kmdp;
743 	int err_devmap, mem_regions_sz;
744 	phandle_t root;
745 	char dts_version[255];
746 #ifdef EFI
747 	struct efi_map_header *efihdr;
748 #endif
749 
750 	/* get last allocated physical address */
751 	arm_physmem_kernaddr = abp->abp_physaddr;
752 	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
753 
754 	set_cpufuncs();
755 	cpuinfo_init();
756 
757 	/*
758 	 * Find the dtb passed in by the boot loader.
759 	 */
760 	kmdp = preload_search_by_type("elf kernel");
761 	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
762 #if defined(FDT_DTB_STATIC)
763 	/*
764 	 * In case the device tree blob was not retrieved (from metadata) try
765 	 * to use the statically embedded one.
766 	 */
767 	if (dtbp == (vm_offset_t)NULL)
768 		dtbp = (vm_offset_t)&fdt_static_dtb;
769 #endif
770 
771 	if (OF_install(OFW_FDT, 0) == FALSE)
772 		panic("Cannot install FDT");
773 
774 	if (OF_init((void *)dtbp) != 0)
775 		panic("OF_init failed with the found device tree");
776 
777 #if defined(LINUX_BOOT_ABI)
778 	arm_parse_fdt_bootargs();
779 #endif
780 
781 #ifdef EFI
782 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
783 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
784 	if (efihdr != NULL) {
785 		arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
786 	} else
787 #endif
788 	{
789 		/* Grab physical memory regions information from device tree. */
790 		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
791 			panic("Cannot get physical memory regions");
792 	}
793 	physmem_hardware_regions(mem_regions, mem_regions_sz);
794 
795 	/* Grab reserved memory regions information from device tree. */
796 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
797 		physmem_exclude_regions(mem_regions, mem_regions_sz,
798 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
799 
800 	/*
801 	 * Set TEX remapping registers.
802 	 * Setup kernel page tables and switch to kernel L1 page table.
803 	 */
804 	pmap_set_tex();
805 	pmap_bootstrap_prepare(lastaddr);
806 
807 	/*
808 	 * If EARLY_PRINTF support is enabled, we need to re-establish the
809 	 * mapping after pmap_bootstrap_prepare() switches to new page tables.
810 	 * Note that we can only do the remapping if the VA is outside the
811 	 * kernel, now that we have real virtual (not VA=PA) mappings in effect.
812 	 * Early printf does not work between the time pmap_set_tex() does
813 	 * cp15_prrr_set() and this code remaps the VA.
814 	 */
815 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
816 	pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024,
817 	    VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE);
818 #endif
819 
820 	/*
821 	 * Now that proper page tables are installed, call cpu_setup() to enable
822 	 * instruction and data caches and other chip-specific features.
823 	 */
824 	cpu_setup();
825 
826 	/* Platform-specific initialisation */
827 	platform_probe_and_attach();
828 	pcpu0_init();
829 
830 	/* Do basic tuning, hz etc */
831 	init_param1();
832 
833 	/*
834 	 * Allocate a page for the system page mapped to 0xffff0000
835 	 * This page will just contain the system vectors and can be
836 	 * shared by all processes.
837 	 */
838 	systempage = pmap_preboot_get_pages(1);
839 
840 	/* Map the vector page. */
841 	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
842 	if (virtual_end >= ARM_VECTORS_HIGH)
843 		virtual_end = ARM_VECTORS_HIGH - 1;
844 
845 	/* Allocate dynamic per-cpu area. */
846 	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
847 	dpcpu_init((void *)dpcpu, 0);
848 
849 	/* Allocate stacks for all modes */
850 	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
851 	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
852 	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
853 	kernelstack = pmap_preboot_get_vpages(kstack_pages);
854 
855 	/* Allocate message buffer. */
856 	msgbufp = (void *)pmap_preboot_get_vpages(
857 	    round_page(msgbufsize) / PAGE_SIZE);
858 
859 	/*
860 	 * Pages were allocated during the secondary bootstrap for the
861 	 * stacks for different CPU modes.
862 	 * We must now set the r13 registers in the different CPU modes to
863 	 * point to these stacks.
864 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
865 	 * of the stack memory.
866 	 */
867 	set_stackptrs(0);
868 	mutex_init();
869 
870 	/* Establish static device mappings. */
871 	err_devmap = platform_devmap_init();
872 	devmap_bootstrap(0, NULL);
873 	vm_max_kernel_address = platform_lastaddr();
874 
875 	/*
876 	 * Only after the SOC registers block is mapped we can perform device
877 	 * tree fixups, as they may attempt to read parameters from hardware.
878 	 */
879 	OF_interpret("perform-fixup", 0);
880 	platform_gpio_init();
881 	cninit();
882 
883 	/*
884 	 * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(),
885 	 * undo it now that the normal console printf works.
886 	 */
887 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
888 	pmap_kremove(SOCDEV_VA);
889 #endif
890 
891 	debugf("initarm: console initialized\n");
892 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
893 	debugf(" boothowto = 0x%08x\n", boothowto);
894 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
895 	debugf(" lastaddr1: 0x%08x\n", lastaddr);
896 	arm_print_kenv();
897 
898 	env = kern_getenv("kernelname");
899 	if (env != NULL)
900 		strlcpy(kernelname, env, sizeof(kernelname));
901 
902 	if (err_devmap != 0)
903 		printf("WARNING: could not fully configure devmap, error=%d\n",
904 		    err_devmap);
905 
906 	platform_late_init();
907 
908 	root = OF_finddevice("/");
909 	if (OF_getprop(root, "freebsd,dts-version", dts_version, sizeof(dts_version)) > 0) {
910 		if (strcmp(LINUX_DTS_VERSION, dts_version) != 0)
911 			printf("WARNING: DTB version is %s while kernel expects %s, "
912 			    "please update the DTB in the ESP\n",
913 			    dts_version,
914 			    LINUX_DTS_VERSION);
915 	} else {
916 		printf("WARNING: Cannot find freebsd,dts-version property, "
917 		    "cannot check DTB compliance\n");
918 	}
919 
920 	/*
921 	 * We must now clean the cache again....
922 	 * Cleaning may be done by reading new data to displace any
923 	 * dirty data in the cache. This will have happened in cpu_setttb()
924 	 * but since we are boot strapping the addresses used for the read
925 	 * may have just been remapped and thus the cache could be out
926 	 * of sync. A re-clean after the switch will cure this.
927 	 * After booting there are no gross relocations of the kernel thus
928 	 * this problem will not occur after initarm().
929 	 */
930 	/* Set stack for exception handlers */
931 	undefined_init();
932 	init_proc0(kernelstack);
933 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
934 	enable_interrupts(PSR_A);
935 	pmap_bootstrap(0);
936 
937 	/* Exclude the kernel (and all the things we allocated which immediately
938 	 * follow the kernel) from the VM allocation pool but not from crash
939 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
940 	 * "allocated" while setting up pmaps.
941 	 *
942 	 * Prepare the list of physical memory available to the vm subsystem.
943 	 */
944 	physmem_exclude_region(abp->abp_physaddr,
945 		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
946 	physmem_init_kernel_globals();
947 
948 	init_param2(physmem);
949 	/* Init message buffer. */
950 	msgbufinit(msgbufp, msgbufsize);
951 	dbg_monitor_init();
952 	arm_kdb_init();
953 	/* Apply possible BP hardening. */
954 	cpuinfo_init_bp_hardening();
955 	return ((void *)STACKALIGN(thread0.td_pcb));
956 
957 }
958 #endif /* FDT */
959