xref: /dpdk/drivers/net/txgbe/base/txgbe_hw.c (revision 75c85e39)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
3  * Copyright(c) 2010-2017 Intel Corporation
4  */
5 
6 #include "txgbe_type.h"
7 #include "txgbe_mbx.h"
8 #include "txgbe_phy.h"
9 #include "txgbe_dcb.h"
10 #include "txgbe_vf.h"
11 #include "txgbe_eeprom.h"
12 #include "txgbe_mng.h"
13 #include "txgbe_hw.h"
14 
15 #define TXGBE_RAPTOR_MAX_TX_QUEUES 128
16 #define TXGBE_RAPTOR_MAX_RX_QUEUES 128
17 #define TXGBE_RAPTOR_RAR_ENTRIES   128
18 #define TXGBE_RAPTOR_MC_TBL_SIZE   128
19 #define TXGBE_RAPTOR_VFT_TBL_SIZE  128
20 #define TXGBE_RAPTOR_RX_PB_SIZE	  512 /*KB*/
21 
22 static s32 txgbe_setup_copper_link_raptor(struct txgbe_hw *hw,
23 					 u32 speed,
24 					 bool autoneg_wait_to_complete);
25 
26 static s32 txgbe_mta_vector(struct txgbe_hw *hw, u8 *mc_addr);
27 static s32 txgbe_get_san_mac_addr_offset(struct txgbe_hw *hw,
28 					 u16 *san_mac_offset);
29 
30 /**
31  * txgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
32  * of flow control
33  * @hw: pointer to hardware structure
34  *
35  * This function returns true if the device supports flow control
36  * autonegotiation, and false if it does not.
37  *
38  **/
txgbe_device_supports_autoneg_fc(struct txgbe_hw * hw)39 bool txgbe_device_supports_autoneg_fc(struct txgbe_hw *hw)
40 {
41 	bool supported = false;
42 	u32 speed;
43 	bool link_up;
44 
45 	switch (hw->phy.media_type) {
46 	case txgbe_media_type_fiber_qsfp:
47 	case txgbe_media_type_fiber:
48 		hw->mac.check_link(hw, &speed, &link_up, false);
49 		/* if link is down, assume supported */
50 		if (link_up)
51 			supported = speed == TXGBE_LINK_SPEED_1GB_FULL ?
52 			true : false;
53 		else
54 			supported = true;
55 
56 		break;
57 	case txgbe_media_type_backplane:
58 		supported = true;
59 		break;
60 	case txgbe_media_type_copper:
61 		/* only some copper devices support flow control autoneg */
62 		switch (hw->subsystem_device_id & 0xFF) {
63 		case TXGBE_DEV_ID_XAUI:
64 		case TXGBE_DEV_ID_SGMII:
65 			supported = true;
66 			break;
67 		default:
68 			supported = false;
69 		}
70 	default:
71 		break;
72 	}
73 
74 	if (!supported)
75 		DEBUGOUT("Device %x does not support flow control autoneg",
76 			      hw->device_id);
77 	return supported;
78 }
79 
80 /**
81  *  txgbe_setup_fc - Set up flow control
82  *  @hw: pointer to hardware structure
83  *
84  *  Called at init time to set up flow control.
85  **/
txgbe_setup_fc(struct txgbe_hw * hw)86 s32 txgbe_setup_fc(struct txgbe_hw *hw)
87 {
88 	s32 err = 0;
89 	u32 reg = 0;
90 	u16 reg_cu = 0;
91 	u32 value = 0;
92 	u64 reg_bp = 0;
93 
94 	/* Validate the requested mode */
95 	if (hw->fc.strict_ieee && hw->fc.requested_mode == txgbe_fc_rx_pause) {
96 		DEBUGOUT("txgbe_fc_rx_pause not valid in strict IEEE mode");
97 		err = TXGBE_ERR_INVALID_LINK_SETTINGS;
98 		goto out;
99 	}
100 
101 	/*
102 	 * 10gig parts do not have a word in the EEPROM to determine the
103 	 * default flow control setting, so we explicitly set it to full.
104 	 */
105 	if (hw->fc.requested_mode == txgbe_fc_default)
106 		hw->fc.requested_mode = txgbe_fc_full;
107 
108 	/*
109 	 * The possible values of fc.requested_mode are:
110 	 * 0: Flow control is completely disabled
111 	 * 1: Rx flow control is enabled (we can receive pause frames,
112 	 *    but not send pause frames).
113 	 * 2: Tx flow control is enabled (we can send pause frames but
114 	 *    we do not support receiving pause frames).
115 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
116 	 * other: Invalid.
117 	 */
118 	switch (hw->fc.requested_mode) {
119 	case txgbe_fc_none:
120 		/* Flow control completely disabled by software override. */
121 		break;
122 	case txgbe_fc_tx_pause:
123 		/*
124 		 * Tx Flow control is enabled, and Rx Flow control is
125 		 * disabled by software override.
126 		 */
127 		reg |= SR_MII_MMD_AN_ADV_PAUSE_ASM;
128 		reg_bp |= SR_AN_MMD_ADV_REG1_PAUSE_ASM;
129 		break;
130 	case txgbe_fc_rx_pause:
131 		/*
132 		 * Rx Flow control is enabled and Tx Flow control is
133 		 * disabled by software override. Since there really
134 		 * isn't a way to advertise that we are capable of RX
135 		 * Pause ONLY, we will advertise that we support both
136 		 * symmetric and asymmetric Rx PAUSE, as such we fall
137 		 * through to the fc_full statement.  Later, we will
138 		 * disable the adapter's ability to send PAUSE frames.
139 		 */
140 	case txgbe_fc_full:
141 		/* Flow control (both Rx and Tx) is enabled by SW override. */
142 		reg |= SR_MII_MMD_AN_ADV_PAUSE_SYM |
143 			SR_MII_MMD_AN_ADV_PAUSE_ASM;
144 		reg_bp |= SR_AN_MMD_ADV_REG1_PAUSE_SYM |
145 			SR_AN_MMD_ADV_REG1_PAUSE_ASM;
146 		break;
147 	default:
148 		DEBUGOUT("Flow control param set incorrectly");
149 		err = TXGBE_ERR_CONFIG;
150 		goto out;
151 	}
152 
153 	/*
154 	 * Enable auto-negotiation between the MAC & PHY;
155 	 * the MAC will advertise clause 37 flow control.
156 	 */
157 	value = rd32_epcs(hw, SR_MII_MMD_AN_ADV);
158 	value = (value & ~(SR_MII_MMD_AN_ADV_PAUSE_ASM |
159 		SR_MII_MMD_AN_ADV_PAUSE_SYM)) | reg;
160 	wr32_epcs(hw, SR_MII_MMD_AN_ADV, value);
161 
162 	/*
163 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
164 	 * and copper. There is no need to set the PCS1GCTL register.
165 	 *
166 	 */
167 	if (hw->phy.media_type == txgbe_media_type_backplane) {
168 		value = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
169 		value = (value & ~(SR_AN_MMD_ADV_REG1_PAUSE_ASM |
170 			SR_AN_MMD_ADV_REG1_PAUSE_SYM)) |
171 			reg_bp;
172 		wr32_epcs(hw, SR_AN_MMD_ADV_REG1, value);
173 	} else if ((hw->phy.media_type == txgbe_media_type_copper) &&
174 		    (txgbe_device_supports_autoneg_fc(hw))) {
175 		hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_ADVT,
176 				      TXGBE_MD_DEV_AUTO_NEG, reg_cu);
177 	}
178 
179 	DEBUGOUT("Set up FC; reg = 0x%08X", reg);
180 out:
181 	return err;
182 }
183 
184 /**
185  *  txgbe_start_hw - Prepare hardware for Tx/Rx
186  *  @hw: pointer to hardware structure
187  *
188  *  Starts the hardware by filling the bus info structure and media type, clears
189  *  all on chip counters, initializes receive address registers, multicast
190  *  table, VLAN filter table, calls routine to set up link and flow control
191  *  settings, and leaves transmit and receive units disabled and uninitialized
192  **/
txgbe_start_hw(struct txgbe_hw * hw)193 s32 txgbe_start_hw(struct txgbe_hw *hw)
194 {
195 	s32 err;
196 	u16 device_caps;
197 
198 	/* Set the media type */
199 	hw->phy.media_type = hw->phy.get_media_type(hw);
200 
201 	/* Clear the VLAN filter table */
202 	hw->mac.clear_vfta(hw);
203 
204 	/* Clear statistics registers */
205 	hw->mac.clear_hw_cntrs(hw);
206 
207 	/* Setup flow control */
208 	err = txgbe_setup_fc(hw);
209 	if (err != 0 && err != TXGBE_NOT_IMPLEMENTED) {
210 		DEBUGOUT("Flow control setup failed, returning %d", err);
211 		return err;
212 	}
213 
214 	/* Cache bit indicating need for crosstalk fix */
215 	switch (hw->mac.type) {
216 	case txgbe_mac_raptor:
217 		hw->mac.get_device_caps(hw, &device_caps);
218 		if (device_caps & TXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
219 			hw->need_crosstalk_fix = false;
220 		else
221 			hw->need_crosstalk_fix = true;
222 		break;
223 	default:
224 		hw->need_crosstalk_fix = false;
225 		break;
226 	}
227 
228 	/* Clear adapter stopped flag */
229 	hw->adapter_stopped = false;
230 
231 	return 0;
232 }
233 
234 /**
235  *  txgbe_start_hw_gen2 - Init sequence for common device family
236  *  @hw: pointer to hw structure
237  *
238  * Performs the init sequence common to the second generation
239  * of 10 GbE devices.
240  **/
txgbe_start_hw_gen2(struct txgbe_hw * hw)241 s32 txgbe_start_hw_gen2(struct txgbe_hw *hw)
242 {
243 	u32 i;
244 
245 	/* Clear the rate limiters */
246 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
247 		wr32(hw, TXGBE_ARBPOOLIDX, i);
248 		wr32(hw, TXGBE_ARBTXRATE, 0);
249 	}
250 	txgbe_flush(hw);
251 
252 	/* We need to run link autotry after the driver loads */
253 	hw->mac.autotry_restart = true;
254 
255 	return 0;
256 }
257 
258 /**
259  *  txgbe_init_hw - Generic hardware initialization
260  *  @hw: pointer to hardware structure
261  *
262  *  Initialize the hardware by resetting the hardware, filling the bus info
263  *  structure and media type, clears all on chip counters, initializes receive
264  *  address registers, multicast table, VLAN filter table, calls routine to set
265  *  up link and flow control settings, and leaves transmit and receive units
266  *  disabled and uninitialized
267  **/
txgbe_init_hw(struct txgbe_hw * hw)268 s32 txgbe_init_hw(struct txgbe_hw *hw)
269 {
270 	s32 status;
271 
272 	/* Get firmware version */
273 	hw->phy.get_fw_version(hw, &hw->fw_version);
274 
275 	/* Reset the hardware */
276 	status = hw->mac.reset_hw(hw);
277 	if (status == 0 || status == TXGBE_ERR_SFP_NOT_PRESENT) {
278 		/* Start the HW */
279 		status = hw->mac.start_hw(hw);
280 	}
281 
282 	if (status != 0)
283 		DEBUGOUT("Failed to initialize HW, STATUS = %d", status);
284 
285 	return status;
286 }
287 
288 /**
289  *  txgbe_clear_hw_cntrs - Generic clear hardware counters
290  *  @hw: pointer to hardware structure
291  *
292  *  Clears all hardware statistics counters by reading them from the hardware
293  *  Statistics counters are clear on read.
294  **/
txgbe_clear_hw_cntrs(struct txgbe_hw * hw)295 s32 txgbe_clear_hw_cntrs(struct txgbe_hw *hw)
296 {
297 	u16 i = 0;
298 
299 	/* QP Stats */
300 	/* don't write clear queue stats */
301 	for (i = 0; i < TXGBE_MAX_QP; i++) {
302 		hw->qp_last[i].rx_qp_packets = 0;
303 		hw->qp_last[i].tx_qp_packets = 0;
304 		hw->qp_last[i].rx_qp_bytes = 0;
305 		hw->qp_last[i].tx_qp_bytes = 0;
306 		hw->qp_last[i].rx_qp_mc_packets = 0;
307 	}
308 
309 	/* PB Stats */
310 	for (i = 0; i < TXGBE_MAX_UP; i++) {
311 		rd32(hw, TXGBE_PBRXUPXON(i));
312 		rd32(hw, TXGBE_PBRXUPXOFF(i));
313 		rd32(hw, TXGBE_PBTXUPXON(i));
314 		rd32(hw, TXGBE_PBTXUPXOFF(i));
315 		rd32(hw, TXGBE_PBTXUPOFF(i));
316 
317 		rd32(hw, TXGBE_PBRXMISS(i));
318 	}
319 	rd32(hw, TXGBE_PBRXLNKXON);
320 	rd32(hw, TXGBE_PBRXLNKXOFF);
321 	rd32(hw, TXGBE_PBTXLNKXON);
322 	rd32(hw, TXGBE_PBTXLNKXOFF);
323 
324 	/* DMA Stats */
325 	rd32(hw, TXGBE_DMARXPKT);
326 	rd32(hw, TXGBE_DMATXPKT);
327 
328 	rd64(hw, TXGBE_DMARXOCTL);
329 	rd64(hw, TXGBE_DMATXOCTL);
330 
331 	/* MAC Stats */
332 	rd64(hw, TXGBE_MACRXERRCRCL);
333 	rd64(hw, TXGBE_MACRXMPKTL);
334 	rd64(hw, TXGBE_MACTXMPKTL);
335 
336 	rd64(hw, TXGBE_MACRXPKTL);
337 	rd64(hw, TXGBE_MACTXPKTL);
338 	rd64(hw, TXGBE_MACRXGBOCTL);
339 
340 	rd64(hw, TXGBE_MACRXOCTL);
341 	rd32(hw, TXGBE_MACTXOCTL);
342 
343 	rd64(hw, TXGBE_MACRX1TO64L);
344 	rd64(hw, TXGBE_MACRX65TO127L);
345 	rd64(hw, TXGBE_MACRX128TO255L);
346 	rd64(hw, TXGBE_MACRX256TO511L);
347 	rd64(hw, TXGBE_MACRX512TO1023L);
348 	rd64(hw, TXGBE_MACRX1024TOMAXL);
349 	rd64(hw, TXGBE_MACTX1TO64L);
350 	rd64(hw, TXGBE_MACTX65TO127L);
351 	rd64(hw, TXGBE_MACTX128TO255L);
352 	rd64(hw, TXGBE_MACTX256TO511L);
353 	rd64(hw, TXGBE_MACTX512TO1023L);
354 	rd64(hw, TXGBE_MACTX1024TOMAXL);
355 
356 	rd64(hw, TXGBE_MACRXERRLENL);
357 	rd32(hw, TXGBE_MACRXOVERSIZE);
358 	rd32(hw, TXGBE_MACRXJABBER);
359 
360 	/* FCoE Stats */
361 	rd32(hw, TXGBE_FCOECRC);
362 	rd32(hw, TXGBE_FCOELAST);
363 	rd32(hw, TXGBE_FCOERPDC);
364 	rd32(hw, TXGBE_FCOEPRC);
365 	rd32(hw, TXGBE_FCOEPTC);
366 	rd32(hw, TXGBE_FCOEDWRC);
367 	rd32(hw, TXGBE_FCOEDWTC);
368 
369 	/* Flow Director Stats */
370 	rd32(hw, TXGBE_FDIRMATCH);
371 	rd32(hw, TXGBE_FDIRMISS);
372 	rd32(hw, TXGBE_FDIRUSED);
373 	rd32(hw, TXGBE_FDIRUSED);
374 	rd32(hw, TXGBE_FDIRFAIL);
375 	rd32(hw, TXGBE_FDIRFAIL);
376 
377 	/* MACsec Stats */
378 	rd32(hw, TXGBE_LSECTX_UTPKT);
379 	rd32(hw, TXGBE_LSECTX_ENCPKT);
380 	rd32(hw, TXGBE_LSECTX_PROTPKT);
381 	rd32(hw, TXGBE_LSECTX_ENCOCT);
382 	rd32(hw, TXGBE_LSECTX_PROTOCT);
383 	rd32(hw, TXGBE_LSECRX_UTPKT);
384 	rd32(hw, TXGBE_LSECRX_BTPKT);
385 	rd32(hw, TXGBE_LSECRX_NOSCIPKT);
386 	rd32(hw, TXGBE_LSECRX_UNSCIPKT);
387 	rd32(hw, TXGBE_LSECRX_DECOCT);
388 	rd32(hw, TXGBE_LSECRX_VLDOCT);
389 	rd32(hw, TXGBE_LSECRX_UNCHKPKT);
390 	rd32(hw, TXGBE_LSECRX_DLYPKT);
391 	rd32(hw, TXGBE_LSECRX_LATEPKT);
392 	for (i = 0; i < 2; i++) {
393 		rd32(hw, TXGBE_LSECRX_OKPKT(i));
394 		rd32(hw, TXGBE_LSECRX_INVPKT(i));
395 		rd32(hw, TXGBE_LSECRX_BADPKT(i));
396 	}
397 	rd32(hw, TXGBE_LSECRX_INVSAPKT);
398 	rd32(hw, TXGBE_LSECRX_BADSAPKT);
399 
400 	return 0;
401 }
402 
403 /**
404  *  txgbe_get_mac_addr - Generic get MAC address
405  *  @hw: pointer to hardware structure
406  *  @mac_addr: Adapter MAC address
407  *
408  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
409  *  A reset of the adapter must be performed prior to calling this function
410  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
411  **/
txgbe_get_mac_addr(struct txgbe_hw * hw,u8 * mac_addr)412 s32 txgbe_get_mac_addr(struct txgbe_hw *hw, u8 *mac_addr)
413 {
414 	u32 rar_high;
415 	u32 rar_low;
416 	u16 i;
417 
418 	wr32(hw, TXGBE_ETHADDRIDX, 0);
419 	rar_high = rd32(hw, TXGBE_ETHADDRH);
420 	rar_low = rd32(hw, TXGBE_ETHADDRL);
421 
422 	for (i = 0; i < 2; i++)
423 		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
424 
425 	for (i = 0; i < 4; i++)
426 		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
427 
428 	return 0;
429 }
430 
431 /**
432  *  txgbe_set_lan_id_multi_port - Set LAN id for PCIe multiple port devices
433  *  @hw: pointer to the HW structure
434  *
435  *  Determines the LAN function id by reading memory-mapped registers and swaps
436  *  the port value if requested, and set MAC instance for devices.
437  **/
txgbe_set_lan_id_multi_port(struct txgbe_hw * hw)438 void txgbe_set_lan_id_multi_port(struct txgbe_hw *hw)
439 {
440 	struct txgbe_bus_info *bus = &hw->bus;
441 	u32 reg;
442 
443 	reg = rd32(hw, TXGBE_PORTSTAT);
444 	bus->lan_id = TXGBE_PORTSTAT_ID(reg);
445 
446 	/* check for single port */
447 	reg = rd32(hw, TXGBE_PWR);
448 	if (TXGBE_PWR_LANID(reg) == TXGBE_PWR_LANID_SWAP)
449 		bus->func = 0;
450 	else
451 		bus->func = bus->lan_id;
452 }
453 
454 /**
455  *  txgbe_stop_hw - Generic stop Tx/Rx units
456  *  @hw: pointer to hardware structure
457  *
458  *  Sets the adapter_stopped flag within txgbe_hw struct. Clears interrupts,
459  *  disables transmit and receive units. The adapter_stopped flag is used by
460  *  the shared code and drivers to determine if the adapter is in a stopped
461  *  state and should not touch the hardware.
462  **/
txgbe_stop_hw(struct txgbe_hw * hw)463 s32 txgbe_stop_hw(struct txgbe_hw *hw)
464 {
465 	u32 reg_val;
466 	u16 i;
467 
468 	/*
469 	 * Set the adapter_stopped flag so other driver functions stop touching
470 	 * the hardware
471 	 */
472 	hw->adapter_stopped = true;
473 
474 	/* Disable the receive unit */
475 	txgbe_disable_rx(hw);
476 
477 	/* Clear interrupt mask to stop interrupts from being generated */
478 	wr32(hw, TXGBE_IENMISC, 0);
479 	wr32(hw, TXGBE_IMS(0), TXGBE_IMS_MASK);
480 	wr32(hw, TXGBE_IMS(1), TXGBE_IMS_MASK);
481 
482 	/* Clear any pending interrupts, flush previous writes */
483 	wr32(hw, TXGBE_ICRMISC, TXGBE_ICRMISC_MASK);
484 	wr32(hw, TXGBE_ICR(0), TXGBE_ICR_MASK);
485 	wr32(hw, TXGBE_ICR(1), TXGBE_ICR_MASK);
486 
487 	/* Disable the transmit unit.  Each queue must be disabled. */
488 	for (i = 0; i < hw->mac.max_tx_queues; i++)
489 		wr32(hw, TXGBE_TXCFG(i), TXGBE_TXCFG_FLUSH);
490 
491 	/* Disable the receive unit by stopping each queue */
492 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
493 		reg_val = rd32(hw, TXGBE_RXCFG(i));
494 		reg_val &= ~TXGBE_RXCFG_ENA;
495 		wr32(hw, TXGBE_RXCFG(i), reg_val);
496 	}
497 
498 	/* flush all queues disables */
499 	txgbe_flush(hw);
500 	msec_delay(2);
501 
502 	return 0;
503 }
504 
505 /**
506  *  txgbe_led_on - Turns on the software controllable LEDs.
507  *  @hw: pointer to hardware structure
508  *  @index: led number to turn on
509  **/
txgbe_led_on(struct txgbe_hw * hw,u32 index)510 s32 txgbe_led_on(struct txgbe_hw *hw, u32 index)
511 {
512 	u32 led_reg = rd32(hw, TXGBE_LEDCTL);
513 
514 	/* To turn on the LED, set mode to ON. */
515 	led_reg |= index << TXGBE_LEDCTL_ORD_SHIFT;
516 	led_reg |= index;
517 	wr32(hw, TXGBE_LEDCTL, led_reg);
518 	txgbe_flush(hw);
519 
520 	return 0;
521 }
522 
523 /**
524  *  txgbe_led_off - Turns off the software controllable LEDs.
525  *  @hw: pointer to hardware structure
526  *  @index: led number to turn off
527  **/
txgbe_led_off(struct txgbe_hw * hw,u32 index)528 s32 txgbe_led_off(struct txgbe_hw *hw, u32 index)
529 {
530 	u32 led_reg = rd32(hw, TXGBE_LEDCTL);
531 
532 	/* To turn off the LED, set mode to OFF. */
533 	led_reg &= ~(index << TXGBE_LEDCTL_ORD_SHIFT);
534 	led_reg |= index;
535 	wr32(hw, TXGBE_LEDCTL, led_reg);
536 	txgbe_flush(hw);
537 
538 	return 0;
539 }
540 
541 /**
542  *  txgbe_validate_mac_addr - Validate MAC address
543  *  @mac_addr: pointer to MAC address.
544  *
545  *  Tests a MAC address to ensure it is a valid Individual Address.
546  **/
txgbe_validate_mac_addr(u8 * mac_addr)547 s32 txgbe_validate_mac_addr(u8 *mac_addr)
548 {
549 	s32 status = 0;
550 
551 	/* Make sure it is not a multicast address */
552 	if (TXGBE_IS_MULTICAST(mac_addr)) {
553 		status = TXGBE_ERR_INVALID_MAC_ADDR;
554 	/* Not a broadcast address */
555 	} else if (TXGBE_IS_BROADCAST(mac_addr)) {
556 		status = TXGBE_ERR_INVALID_MAC_ADDR;
557 	/* Reject the zero address */
558 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
559 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
560 		status = TXGBE_ERR_INVALID_MAC_ADDR;
561 	}
562 	return status;
563 }
564 
565 /**
566  *  txgbe_set_rar - Set Rx address register
567  *  @hw: pointer to hardware structure
568  *  @index: Receive address register to write
569  *  @addr: Address to put into receive address register
570  *  @vmdq: VMDq "set" or "pool" index
571  *  @enable_addr: set flag that address is active
572  *
573  *  Puts an ethernet address into a receive address register.
574  **/
txgbe_set_rar(struct txgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)575 s32 txgbe_set_rar(struct txgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
576 			  u32 enable_addr)
577 {
578 	u32 rar_low, rar_high;
579 	u32 rar_entries = hw->mac.num_rar_entries;
580 
581 	/* Make sure we are using a valid rar index range */
582 	if (index >= rar_entries) {
583 		DEBUGOUT("RAR index %d is out of range.", index);
584 		return TXGBE_ERR_INVALID_ARGUMENT;
585 	}
586 
587 	/* setup VMDq pool selection before this RAR gets enabled */
588 	hw->mac.set_vmdq(hw, index, vmdq);
589 
590 	/*
591 	 * HW expects these in little endian so we reverse the byte
592 	 * order from network order (big endian) to little endian
593 	 */
594 	rar_low = TXGBE_ETHADDRL_AD0(addr[5]) |
595 		  TXGBE_ETHADDRL_AD1(addr[4]) |
596 		  TXGBE_ETHADDRL_AD2(addr[3]) |
597 		  TXGBE_ETHADDRL_AD3(addr[2]);
598 	/*
599 	 * Some parts put the VMDq setting in the extra RAH bits,
600 	 * so save everything except the lower 16 bits that hold part
601 	 * of the address and the address valid bit.
602 	 */
603 	rar_high = rd32(hw, TXGBE_ETHADDRH);
604 	rar_high &= ~TXGBE_ETHADDRH_AD_MASK;
605 	rar_high |= (TXGBE_ETHADDRH_AD4(addr[1]) |
606 		     TXGBE_ETHADDRH_AD5(addr[0]));
607 
608 	rar_high &= ~TXGBE_ETHADDRH_VLD;
609 	if (enable_addr != 0)
610 		rar_high |= TXGBE_ETHADDRH_VLD;
611 
612 	wr32(hw, TXGBE_ETHADDRIDX, index);
613 	wr32(hw, TXGBE_ETHADDRL, rar_low);
614 	wr32(hw, TXGBE_ETHADDRH, rar_high);
615 
616 	return 0;
617 }
618 
619 /**
620  *  txgbe_clear_rar - Remove Rx address register
621  *  @hw: pointer to hardware structure
622  *  @index: Receive address register to write
623  *
624  *  Clears an ethernet address from a receive address register.
625  **/
txgbe_clear_rar(struct txgbe_hw * hw,u32 index)626 s32 txgbe_clear_rar(struct txgbe_hw *hw, u32 index)
627 {
628 	u32 rar_high;
629 	u32 rar_entries = hw->mac.num_rar_entries;
630 
631 	/* Make sure we are using a valid rar index range */
632 	if (index >= rar_entries) {
633 		DEBUGOUT("RAR index %d is out of range.", index);
634 		return TXGBE_ERR_INVALID_ARGUMENT;
635 	}
636 
637 	/*
638 	 * Some parts put the VMDq setting in the extra RAH bits,
639 	 * so save everything except the lower 16 bits that hold part
640 	 * of the address and the address valid bit.
641 	 */
642 	wr32(hw, TXGBE_ETHADDRIDX, index);
643 	rar_high = rd32(hw, TXGBE_ETHADDRH);
644 	rar_high &= ~(TXGBE_ETHADDRH_AD_MASK | TXGBE_ETHADDRH_VLD);
645 
646 	wr32(hw, TXGBE_ETHADDRL, 0);
647 	wr32(hw, TXGBE_ETHADDRH, rar_high);
648 
649 	/* clear VMDq pool/queue selection for this RAR */
650 	hw->mac.clear_vmdq(hw, index, BIT_MASK32);
651 
652 	return 0;
653 }
654 
655 /**
656  *  txgbe_init_rx_addrs - Initializes receive address filters.
657  *  @hw: pointer to hardware structure
658  *
659  *  Places the MAC address in receive address register 0 and clears the rest
660  *  of the receive address registers. Clears the multicast table. Assumes
661  *  the receiver is in reset when the routine is called.
662  **/
txgbe_init_rx_addrs(struct txgbe_hw * hw)663 s32 txgbe_init_rx_addrs(struct txgbe_hw *hw)
664 {
665 	u32 i;
666 	u32 psrctl;
667 	u32 rar_entries = hw->mac.num_rar_entries;
668 
669 	/*
670 	 * If the current mac address is valid, assume it is a software override
671 	 * to the permanent address.
672 	 * Otherwise, use the permanent address from the eeprom.
673 	 */
674 	if (txgbe_validate_mac_addr(hw->mac.addr) ==
675 	    TXGBE_ERR_INVALID_MAC_ADDR) {
676 		/* Get the MAC address from the RAR0 for later reference */
677 		hw->mac.get_mac_addr(hw, hw->mac.addr);
678 
679 		DEBUGOUT(" Keeping Current RAR0 Addr = "
680 			  RTE_ETHER_ADDR_PRT_FMT,
681 			  hw->mac.addr[0], hw->mac.addr[1],
682 			  hw->mac.addr[2], hw->mac.addr[3],
683 			  hw->mac.addr[4], hw->mac.addr[5]);
684 	} else {
685 		/* Setup the receive address. */
686 		DEBUGOUT("Overriding MAC Address in RAR[0]");
687 		DEBUGOUT(" New MAC Addr = "
688 			  RTE_ETHER_ADDR_PRT_FMT,
689 			  hw->mac.addr[0], hw->mac.addr[1],
690 			  hw->mac.addr[2], hw->mac.addr[3],
691 			  hw->mac.addr[4], hw->mac.addr[5]);
692 
693 		hw->mac.set_rar(hw, 0, hw->mac.addr, 0, true);
694 	}
695 
696 	/* clear VMDq pool/queue selection for RAR 0 */
697 	hw->mac.clear_vmdq(hw, 0, BIT_MASK32);
698 
699 	hw->addr_ctrl.overflow_promisc = 0;
700 
701 	hw->addr_ctrl.rar_used_count = 1;
702 
703 	/* Zero out the other receive addresses. */
704 	DEBUGOUT("Clearing RAR[1-%d]", rar_entries - 1);
705 	for (i = 1; i < rar_entries; i++) {
706 		wr32(hw, TXGBE_ETHADDRIDX, i);
707 		wr32(hw, TXGBE_ETHADDRL, 0);
708 		wr32(hw, TXGBE_ETHADDRH, 0);
709 	}
710 
711 	/* Clear the MTA */
712 	hw->addr_ctrl.mta_in_use = 0;
713 	psrctl = rd32(hw, TXGBE_PSRCTL);
714 	psrctl &= ~(TXGBE_PSRCTL_ADHF12_MASK | TXGBE_PSRCTL_MCHFENA);
715 	psrctl |= TXGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
716 	wr32(hw, TXGBE_PSRCTL, psrctl);
717 
718 	DEBUGOUT(" Clearing MTA");
719 	for (i = 0; i < hw->mac.mcft_size; i++)
720 		wr32(hw, TXGBE_MCADDRTBL(i), 0);
721 
722 	txgbe_init_uta_tables(hw);
723 
724 	return 0;
725 }
726 
727 /**
728  *  txgbe_mta_vector - Determines bit-vector in multicast table to set
729  *  @hw: pointer to hardware structure
730  *  @mc_addr: the multicast address
731  *
732  *  Extracts the 12 bits, from a multicast address, to determine which
733  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
734  *  incoming rx multicast addresses, to determine the bit-vector to check in
735  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
736  *  by the MO field of the PSRCTRL. The MO field is set during initialization
737  *  to mc_filter_type.
738  **/
txgbe_mta_vector(struct txgbe_hw * hw,u8 * mc_addr)739 static s32 txgbe_mta_vector(struct txgbe_hw *hw, u8 *mc_addr)
740 {
741 	u32 vector = 0;
742 
743 	switch (hw->mac.mc_filter_type) {
744 	case 0:   /* use bits [47:36] of the address */
745 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
746 		break;
747 	case 1:   /* use bits [46:35] of the address */
748 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
749 		break;
750 	case 2:   /* use bits [45:34] of the address */
751 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
752 		break;
753 	case 3:   /* use bits [43:32] of the address */
754 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
755 		break;
756 	default:  /* Invalid mc_filter_type */
757 		DEBUGOUT("MC filter type param set incorrectly");
758 		ASSERT(0);
759 		break;
760 	}
761 
762 	/* vector can only be 12-bits or boundary will be exceeded */
763 	vector &= 0xFFF;
764 	return vector;
765 }
766 
767 /**
768  *  txgbe_set_mta - Set bit-vector in multicast table
769  *  @hw: pointer to hardware structure
770  *  @mc_addr: Multicast address
771  *
772  *  Sets the bit-vector in the multicast table.
773  **/
txgbe_set_mta(struct txgbe_hw * hw,u8 * mc_addr)774 void txgbe_set_mta(struct txgbe_hw *hw, u8 *mc_addr)
775 {
776 	u32 vector;
777 	u32 vector_bit;
778 	u32 vector_reg;
779 
780 	hw->addr_ctrl.mta_in_use++;
781 
782 	vector = txgbe_mta_vector(hw, mc_addr);
783 	DEBUGOUT(" bit-vector = 0x%03X", vector);
784 
785 	/*
786 	 * The MTA is a register array of 128 32-bit registers. It is treated
787 	 * like an array of 4096 bits.  We want to set bit
788 	 * BitArray[vector_value]. So we figure out what register the bit is
789 	 * in, read it, OR in the new bit, then write back the new value.  The
790 	 * register is determined by the upper 7 bits of the vector value and
791 	 * the bit within that register are determined by the lower 5 bits of
792 	 * the value.
793 	 */
794 	vector_reg = (vector >> 5) & 0x7F;
795 	vector_bit = vector & 0x1F;
796 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
797 }
798 
799 /**
800  *  txgbe_update_mc_addr_list - Updates MAC list of multicast addresses
801  *  @hw: pointer to hardware structure
802  *  @mc_addr_list: the list of new multicast addresses
803  *  @mc_addr_count: number of addresses
804  *  @next: iterator function to walk the multicast address list
805  *  @clear: flag, when set clears the table beforehand
806  *
807  *  When the clear flag is set, the given list replaces any existing list.
808  *  Hashes the given addresses into the multicast table.
809  **/
txgbe_update_mc_addr_list(struct txgbe_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,txgbe_mc_addr_itr next,bool clear)810 s32 txgbe_update_mc_addr_list(struct txgbe_hw *hw, u8 *mc_addr_list,
811 				      u32 mc_addr_count, txgbe_mc_addr_itr next,
812 				      bool clear)
813 {
814 	u32 i;
815 	u32 vmdq;
816 
817 	/*
818 	 * Set the new number of MC addresses that we are being requested to
819 	 * use.
820 	 */
821 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
822 	hw->addr_ctrl.mta_in_use = 0;
823 
824 	/* Clear mta_shadow */
825 	if (clear) {
826 		DEBUGOUT(" Clearing MTA");
827 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
828 	}
829 
830 	/* Update mta_shadow */
831 	for (i = 0; i < mc_addr_count; i++) {
832 		DEBUGOUT(" Adding the multicast addresses:");
833 		txgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
834 	}
835 
836 	/* Enable mta */
837 	for (i = 0; i < hw->mac.mcft_size; i++)
838 		wr32a(hw, TXGBE_MCADDRTBL(0), i,
839 				      hw->mac.mta_shadow[i]);
840 
841 	if (hw->addr_ctrl.mta_in_use > 0) {
842 		u32 psrctl = rd32(hw, TXGBE_PSRCTL);
843 		psrctl &= ~(TXGBE_PSRCTL_ADHF12_MASK | TXGBE_PSRCTL_MCHFENA);
844 		psrctl |= TXGBE_PSRCTL_MCHFENA |
845 			 TXGBE_PSRCTL_ADHF12(hw->mac.mc_filter_type);
846 		wr32(hw, TXGBE_PSRCTL, psrctl);
847 	}
848 
849 	DEBUGOUT("txgbe update mc addr list complete");
850 	return 0;
851 }
852 
853 /**
854  *  txgbe_fc_enable - Enable flow control
855  *  @hw: pointer to hardware structure
856  *
857  *  Enable flow control according to the current settings.
858  **/
txgbe_fc_enable(struct txgbe_hw * hw)859 s32 txgbe_fc_enable(struct txgbe_hw *hw)
860 {
861 	s32 err = 0;
862 	u32 mflcn_reg, fccfg_reg;
863 	u32 pause_time;
864 	u32 fcrtl, fcrth;
865 	int i;
866 
867 	/* Validate the water mark configuration */
868 	if (!hw->fc.pause_time) {
869 		err = TXGBE_ERR_INVALID_LINK_SETTINGS;
870 		goto out;
871 	}
872 
873 	/* Low water mark of zero causes XOFF floods */
874 	for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
875 		if ((hw->fc.current_mode & txgbe_fc_tx_pause) &&
876 		    hw->fc.high_water[i]) {
877 			if (!hw->fc.low_water[i] ||
878 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
879 				DEBUGOUT("Invalid water mark configuration");
880 				err = TXGBE_ERR_INVALID_LINK_SETTINGS;
881 				goto out;
882 			}
883 		}
884 	}
885 
886 	/* Negotiate the fc mode to use */
887 	hw->mac.fc_autoneg(hw);
888 
889 	/* Disable any previous flow control settings */
890 	mflcn_reg = rd32(hw, TXGBE_RXFCCFG);
891 	mflcn_reg &= ~(TXGBE_RXFCCFG_FC | TXGBE_RXFCCFG_PFC);
892 
893 	fccfg_reg = rd32(hw, TXGBE_TXFCCFG);
894 	fccfg_reg &= ~(TXGBE_TXFCCFG_FC | TXGBE_TXFCCFG_PFC);
895 
896 	/*
897 	 * The possible values of fc.current_mode are:
898 	 * 0: Flow control is completely disabled
899 	 * 1: Rx flow control is enabled (we can receive pause frames,
900 	 *    but not send pause frames).
901 	 * 2: Tx flow control is enabled (we can send pause frames but
902 	 *    we do not support receiving pause frames).
903 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
904 	 * other: Invalid.
905 	 */
906 	switch (hw->fc.current_mode) {
907 	case txgbe_fc_none:
908 		/*
909 		 * Flow control is disabled by software override or autoneg.
910 		 * The code below will actually disable it in the HW.
911 		 */
912 		break;
913 	case txgbe_fc_rx_pause:
914 		/*
915 		 * Rx Flow control is enabled and Tx Flow control is
916 		 * disabled by software override. Since there really
917 		 * isn't a way to advertise that we are capable of RX
918 		 * Pause ONLY, we will advertise that we support both
919 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
920 		 * disable the adapter's ability to send PAUSE frames.
921 		 */
922 		mflcn_reg |= TXGBE_RXFCCFG_FC;
923 		break;
924 	case txgbe_fc_tx_pause:
925 		/*
926 		 * Tx Flow control is enabled, and Rx Flow control is
927 		 * disabled by software override.
928 		 */
929 		fccfg_reg |= TXGBE_TXFCCFG_FC;
930 		break;
931 	case txgbe_fc_full:
932 		/* Flow control (both Rx and Tx) is enabled by SW override. */
933 		mflcn_reg |= TXGBE_RXFCCFG_FC;
934 		fccfg_reg |= TXGBE_TXFCCFG_FC;
935 		break;
936 	default:
937 		DEBUGOUT("Flow control param set incorrectly");
938 		err = TXGBE_ERR_CONFIG;
939 		goto out;
940 	}
941 
942 	/* Set 802.3x based flow control settings. */
943 	wr32(hw, TXGBE_RXFCCFG, mflcn_reg);
944 	wr32(hw, TXGBE_TXFCCFG, fccfg_reg);
945 
946 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
947 	for (i = 0; i < TXGBE_DCB_TC_MAX; i++) {
948 		if ((hw->fc.current_mode & txgbe_fc_tx_pause) &&
949 		    hw->fc.high_water[i]) {
950 			fcrtl = TXGBE_FCWTRLO_TH(hw->fc.low_water[i]) |
951 				TXGBE_FCWTRLO_XON;
952 			fcrth = TXGBE_FCWTRHI_TH(hw->fc.high_water[i]) |
953 				TXGBE_FCWTRHI_XOFF;
954 		} else {
955 			/*
956 			 * In order to prevent Tx hangs when the internal Tx
957 			 * switch is enabled we must set the high water mark
958 			 * to the Rx packet buffer size - 24KB.  This allows
959 			 * the Tx switch to function even under heavy Rx
960 			 * workloads.
961 			 */
962 			fcrtl = 0;
963 			fcrth = rd32(hw, TXGBE_PBRXSIZE(i)) - 24576;
964 		}
965 		wr32(hw, TXGBE_FCWTRLO(i), fcrtl);
966 		wr32(hw, TXGBE_FCWTRHI(i), fcrth);
967 	}
968 
969 	/* Configure pause time (2 TCs per register) */
970 	pause_time = TXGBE_RXFCFSH_TIME(hw->fc.pause_time);
971 	for (i = 0; i < (TXGBE_DCB_TC_MAX / 2); i++)
972 		wr32(hw, TXGBE_FCXOFFTM(i), pause_time * 0x00010001);
973 
974 	/* Configure flow control refresh threshold value */
975 	wr32(hw, TXGBE_RXFCRFSH, hw->fc.pause_time / 2);
976 
977 out:
978 	return err;
979 }
980 
981 /**
982  *  txgbe_negotiate_fc - Negotiate flow control
983  *  @hw: pointer to hardware structure
984  *  @adv_reg: flow control advertised settings
985  *  @lp_reg: link partner's flow control settings
986  *  @adv_sym: symmetric pause bit in advertisement
987  *  @adv_asm: asymmetric pause bit in advertisement
988  *  @lp_sym: symmetric pause bit in link partner advertisement
989  *  @lp_asm: asymmetric pause bit in link partner advertisement
990  *
991  *  Find the intersection between advertised settings and link partner's
992  *  advertised settings
993  **/
txgbe_negotiate_fc(struct txgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)994 s32 txgbe_negotiate_fc(struct txgbe_hw *hw, u32 adv_reg, u32 lp_reg,
995 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
996 {
997 	if ((!(adv_reg)) ||  (!(lp_reg))) {
998 		DEBUGOUT("Local or link partner's advertised flow control settings are NULL. Local: %x, link partner: %x",
999 			      adv_reg, lp_reg);
1000 		return TXGBE_ERR_FC_NOT_NEGOTIATED;
1001 	}
1002 
1003 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
1004 		/*
1005 		 * Now we need to check if the user selected Rx ONLY
1006 		 * of pause frames.  In this case, we had to advertise
1007 		 * FULL flow control because we could not advertise RX
1008 		 * ONLY. Hence, we must now check to see if we need to
1009 		 * turn OFF the TRANSMISSION of PAUSE frames.
1010 		 */
1011 		if (hw->fc.requested_mode == txgbe_fc_full) {
1012 			hw->fc.current_mode = txgbe_fc_full;
1013 			DEBUGOUT("Flow Control = FULL.");
1014 		} else {
1015 			hw->fc.current_mode = txgbe_fc_rx_pause;
1016 			DEBUGOUT("Flow Control=RX PAUSE frames only");
1017 		}
1018 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1019 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1020 		hw->fc.current_mode = txgbe_fc_tx_pause;
1021 		DEBUGOUT("Flow Control = TX PAUSE frames only.");
1022 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1023 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1024 		hw->fc.current_mode = txgbe_fc_rx_pause;
1025 		DEBUGOUT("Flow Control = RX PAUSE frames only.");
1026 	} else {
1027 		hw->fc.current_mode = txgbe_fc_none;
1028 		DEBUGOUT("Flow Control = NONE.");
1029 	}
1030 	return 0;
1031 }
1032 
1033 /**
1034  *  txgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
1035  *  @hw: pointer to hardware structure
1036  *
1037  *  Enable flow control according on 1 gig fiber.
1038  **/
txgbe_fc_autoneg_fiber(struct txgbe_hw * hw)1039 STATIC s32 txgbe_fc_autoneg_fiber(struct txgbe_hw *hw)
1040 {
1041 	u32 pcs_anadv_reg, pcs_lpab_reg;
1042 	s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
1043 
1044 	/*
1045 	 * On multispeed fiber at 1g, bail out if
1046 	 * - link is up but AN did not complete, or if
1047 	 * - link is up and AN completed but timed out
1048 	 */
1049 
1050 	pcs_anadv_reg = rd32_epcs(hw, SR_MII_MMD_AN_ADV);
1051 	pcs_lpab_reg = rd32_epcs(hw, SR_MII_MMD_LP_BABL);
1052 
1053 	err =  txgbe_negotiate_fc(hw, pcs_anadv_reg,
1054 				      pcs_lpab_reg,
1055 				      SR_MII_MMD_AN_ADV_PAUSE_SYM,
1056 				      SR_MII_MMD_AN_ADV_PAUSE_ASM,
1057 				      SR_MII_MMD_AN_ADV_PAUSE_SYM,
1058 				      SR_MII_MMD_AN_ADV_PAUSE_ASM);
1059 
1060 	return err;
1061 }
1062 
1063 /**
1064  *  txgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
1065  *  @hw: pointer to hardware structure
1066  *
1067  *  Enable flow control according to IEEE clause 37.
1068  **/
txgbe_fc_autoneg_backplane(struct txgbe_hw * hw)1069 STATIC s32 txgbe_fc_autoneg_backplane(struct txgbe_hw *hw)
1070 {
1071 	u32 anlp1_reg, autoc_reg;
1072 	s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
1073 
1074 	/*
1075 	 * Read the 10g AN autoc and LP ability registers and resolve
1076 	 * local flow control settings accordingly
1077 	 */
1078 	autoc_reg = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
1079 	anlp1_reg = rd32_epcs(hw, SR_AN_MMD_LP_ABL1);
1080 
1081 	err = txgbe_negotiate_fc(hw, autoc_reg,
1082 		anlp1_reg,
1083 		SR_AN_MMD_ADV_REG1_PAUSE_SYM,
1084 		SR_AN_MMD_ADV_REG1_PAUSE_ASM,
1085 		SR_AN_MMD_ADV_REG1_PAUSE_SYM,
1086 		SR_AN_MMD_ADV_REG1_PAUSE_ASM);
1087 
1088 	return err;
1089 }
1090 
1091 /**
1092  *  txgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
1093  *  @hw: pointer to hardware structure
1094  *
1095  *  Enable flow control according to IEEE clause 37.
1096  **/
txgbe_fc_autoneg_copper(struct txgbe_hw * hw)1097 STATIC s32 txgbe_fc_autoneg_copper(struct txgbe_hw *hw)
1098 {
1099 	u16 technology_ability_reg = 0;
1100 	u16 lp_technology_ability_reg = 0;
1101 
1102 	hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_ADVT,
1103 			     TXGBE_MD_DEV_AUTO_NEG,
1104 			     &technology_ability_reg);
1105 	hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_LP,
1106 			     TXGBE_MD_DEV_AUTO_NEG,
1107 			     &lp_technology_ability_reg);
1108 
1109 	return txgbe_negotiate_fc(hw, (u32)technology_ability_reg,
1110 				  (u32)lp_technology_ability_reg,
1111 				  TXGBE_TAF_SYM_PAUSE, TXGBE_TAF_ASM_PAUSE,
1112 				  TXGBE_TAF_SYM_PAUSE, TXGBE_TAF_ASM_PAUSE);
1113 }
1114 
1115 /**
1116  *  txgbe_fc_autoneg - Configure flow control
1117  *  @hw: pointer to hardware structure
1118  *
1119  *  Compares our advertised flow control capabilities to those advertised by
1120  *  our link partner, and determines the proper flow control mode to use.
1121  **/
txgbe_fc_autoneg(struct txgbe_hw * hw)1122 void txgbe_fc_autoneg(struct txgbe_hw *hw)
1123 {
1124 	s32 err = TXGBE_ERR_FC_NOT_NEGOTIATED;
1125 	u32 speed;
1126 	bool link_up;
1127 
1128 	/*
1129 	 * AN should have completed when the cable was plugged in.
1130 	 * Look for reasons to bail out.  Bail out if:
1131 	 * - FC autoneg is disabled, or if
1132 	 * - link is not up.
1133 	 */
1134 	if (hw->fc.disable_fc_autoneg) {
1135 		DEBUGOUT("Flow control autoneg is disabled");
1136 		goto out;
1137 	}
1138 
1139 	hw->mac.check_link(hw, &speed, &link_up, false);
1140 	if (!link_up) {
1141 		DEBUGOUT("The link is down");
1142 		goto out;
1143 	}
1144 
1145 	switch (hw->phy.media_type) {
1146 	/* Autoneg flow control on fiber adapters */
1147 	case txgbe_media_type_fiber_qsfp:
1148 	case txgbe_media_type_fiber:
1149 		if (speed == TXGBE_LINK_SPEED_1GB_FULL)
1150 			err = txgbe_fc_autoneg_fiber(hw);
1151 		break;
1152 
1153 	/* Autoneg flow control on backplane adapters */
1154 	case txgbe_media_type_backplane:
1155 		err = txgbe_fc_autoneg_backplane(hw);
1156 		break;
1157 
1158 	/* Autoneg flow control on copper adapters */
1159 	case txgbe_media_type_copper:
1160 		if (txgbe_device_supports_autoneg_fc(hw))
1161 			err = txgbe_fc_autoneg_copper(hw);
1162 		break;
1163 
1164 	default:
1165 		break;
1166 	}
1167 
1168 out:
1169 	if (err == 0) {
1170 		hw->fc.fc_was_autonegged = true;
1171 	} else {
1172 		hw->fc.fc_was_autonegged = false;
1173 		hw->fc.current_mode = hw->fc.requested_mode;
1174 	}
1175 }
1176 
1177 /**
1178  *  txgbe_acquire_swfw_sync - Acquire SWFW semaphore
1179  *  @hw: pointer to hardware structure
1180  *  @mask: Mask to specify which semaphore to acquire
1181  *
1182  *  Acquires the SWFW semaphore through the MNGSEM register for the specified
1183  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1184  **/
txgbe_acquire_swfw_sync(struct txgbe_hw * hw,u32 mask)1185 s32 txgbe_acquire_swfw_sync(struct txgbe_hw *hw, u32 mask)
1186 {
1187 	u32 mngsem = 0;
1188 	u32 swmask = TXGBE_MNGSEM_SW(mask);
1189 	u32 fwmask = TXGBE_MNGSEM_FW(mask);
1190 	u32 timeout = 200;
1191 	u32 i;
1192 
1193 	for (i = 0; i < timeout; i++) {
1194 		/*
1195 		 * SW NVM semaphore bit is used for access to all
1196 		 * SW_FW_SYNC bits (not just NVM)
1197 		 */
1198 		if (txgbe_get_eeprom_semaphore(hw))
1199 			return TXGBE_ERR_SWFW_SYNC;
1200 
1201 		mngsem = rd32(hw, TXGBE_MNGSEM);
1202 		if (mngsem & (fwmask | swmask)) {
1203 			/* Resource is currently in use by FW or SW */
1204 			txgbe_release_eeprom_semaphore(hw);
1205 			msec_delay(5);
1206 		} else {
1207 			mngsem |= swmask;
1208 			wr32(hw, TXGBE_MNGSEM, mngsem);
1209 			txgbe_release_eeprom_semaphore(hw);
1210 			return 0;
1211 		}
1212 	}
1213 
1214 	/* If time expired clear the bits holding the lock and retry */
1215 	if (mngsem & (fwmask | swmask))
1216 		txgbe_release_swfw_sync(hw, mngsem & (fwmask | swmask));
1217 
1218 	msec_delay(5);
1219 	return TXGBE_ERR_SWFW_SYNC;
1220 }
1221 
1222 /**
1223  *  txgbe_release_swfw_sync - Release SWFW semaphore
1224  *  @hw: pointer to hardware structure
1225  *  @mask: Mask to specify which semaphore to release
1226  *
1227  *  Releases the SWFW semaphore through the MNGSEM register for the specified
1228  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1229  **/
txgbe_release_swfw_sync(struct txgbe_hw * hw,u32 mask)1230 void txgbe_release_swfw_sync(struct txgbe_hw *hw, u32 mask)
1231 {
1232 	u32 mngsem;
1233 	u32 swmask = mask;
1234 
1235 	txgbe_get_eeprom_semaphore(hw);
1236 
1237 	mngsem = rd32(hw, TXGBE_MNGSEM);
1238 	mngsem &= ~swmask;
1239 	wr32(hw, TXGBE_MNGSEM, mngsem);
1240 
1241 	txgbe_release_eeprom_semaphore(hw);
1242 }
1243 
1244 /**
1245  *  txgbe_disable_sec_rx_path - Stops the receive data path
1246  *  @hw: pointer to hardware structure
1247  *
1248  *  Stops the receive data path and waits for the HW to internally empty
1249  *  the Rx security block
1250  **/
txgbe_disable_sec_rx_path(struct txgbe_hw * hw)1251 s32 txgbe_disable_sec_rx_path(struct txgbe_hw *hw)
1252 {
1253 #define TXGBE_MAX_SECRX_POLL 4000
1254 
1255 	int i;
1256 	u32 secrxreg;
1257 
1258 	secrxreg = rd32(hw, TXGBE_SECRXCTL);
1259 	secrxreg |= TXGBE_SECRXCTL_XDSA;
1260 	wr32(hw, TXGBE_SECRXCTL, secrxreg);
1261 	for (i = 0; i < TXGBE_MAX_SECRX_POLL; i++) {
1262 		secrxreg = rd32(hw, TXGBE_SECRXSTAT);
1263 		if (!(secrxreg & TXGBE_SECRXSTAT_RDY))
1264 			/* Use interrupt-safe sleep just in case */
1265 			usec_delay(10);
1266 		else
1267 			break;
1268 	}
1269 
1270 	/* For informational purposes only */
1271 	if (i >= TXGBE_MAX_SECRX_POLL)
1272 		DEBUGOUT("Rx unit being enabled before security path fully disabled.  Continuing with init.");
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  *  txgbe_enable_sec_rx_path - Enables the receive data path
1279  *  @hw: pointer to hardware structure
1280  *
1281  *  Enables the receive data path.
1282  **/
txgbe_enable_sec_rx_path(struct txgbe_hw * hw)1283 s32 txgbe_enable_sec_rx_path(struct txgbe_hw *hw)
1284 {
1285 	u32 secrxreg;
1286 
1287 	secrxreg = rd32(hw, TXGBE_SECRXCTL);
1288 	secrxreg &= ~TXGBE_SECRXCTL_XDSA;
1289 	wr32(hw, TXGBE_SECRXCTL, secrxreg);
1290 	txgbe_flush(hw);
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  *  txgbe_disable_sec_tx_path - Stops the transmit data path
1297  *  @hw: pointer to hardware structure
1298  *
1299  *  Stops the transmit data path and waits for the HW to internally empty
1300  *  the Tx security block
1301  **/
txgbe_disable_sec_tx_path(struct txgbe_hw * hw)1302 int txgbe_disable_sec_tx_path(struct txgbe_hw *hw)
1303 {
1304 #define TXGBE_MAX_SECTX_POLL 40
1305 
1306 	int i;
1307 	u32 sectxreg;
1308 
1309 	sectxreg = rd32(hw, TXGBE_SECTXCTL);
1310 	sectxreg |= TXGBE_SECTXCTL_XDSA;
1311 	wr32(hw, TXGBE_SECTXCTL, sectxreg);
1312 	for (i = 0; i < TXGBE_MAX_SECTX_POLL; i++) {
1313 		sectxreg = rd32(hw, TXGBE_SECTXSTAT);
1314 		if (sectxreg & TXGBE_SECTXSTAT_RDY)
1315 			break;
1316 		/* Use interrupt-safe sleep just in case */
1317 		usec_delay(1000);
1318 	}
1319 
1320 	/* For informational purposes only */
1321 	if (i >= TXGBE_MAX_SECTX_POLL)
1322 		DEBUGOUT("Tx unit being enabled before security path fully disabled.  Continuing with init.");
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  *  txgbe_enable_sec_tx_path - Enables the transmit data path
1329  *  @hw: pointer to hardware structure
1330  *
1331  *  Enables the transmit data path.
1332  **/
txgbe_enable_sec_tx_path(struct txgbe_hw * hw)1333 int txgbe_enable_sec_tx_path(struct txgbe_hw *hw)
1334 {
1335 	uint32_t sectxreg;
1336 
1337 	sectxreg = rd32(hw, TXGBE_SECTXCTL);
1338 	sectxreg &= ~TXGBE_SECTXCTL_XDSA;
1339 	wr32(hw, TXGBE_SECTXCTL, sectxreg);
1340 	txgbe_flush(hw);
1341 
1342 	return 0;
1343 }
1344 
1345 /**
1346  *  txgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
1347  *  @hw: pointer to hardware structure
1348  *  @san_mac_offset: SAN MAC address offset
1349  *
1350  *  This function will read the EEPROM location for the SAN MAC address
1351  *  pointer, and returns the value at that location.  This is used in both
1352  *  get and set mac_addr routines.
1353  **/
txgbe_get_san_mac_addr_offset(struct txgbe_hw * hw,u16 * san_mac_offset)1354 static s32 txgbe_get_san_mac_addr_offset(struct txgbe_hw *hw,
1355 					 u16 *san_mac_offset)
1356 {
1357 	s32 err;
1358 
1359 	/*
1360 	 * First read the EEPROM pointer to see if the MAC addresses are
1361 	 * available.
1362 	 */
1363 	err = hw->rom.readw_sw(hw, TXGBE_SAN_MAC_ADDR_PTR,
1364 				      san_mac_offset);
1365 	if (err) {
1366 		DEBUGOUT("eeprom at offset %d failed",
1367 			 TXGBE_SAN_MAC_ADDR_PTR);
1368 	}
1369 
1370 	return err;
1371 }
1372 
1373 /**
1374  *  txgbe_get_san_mac_addr - SAN MAC address retrieval from the EEPROM
1375  *  @hw: pointer to hardware structure
1376  *  @san_mac_addr: SAN MAC address
1377  *
1378  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
1379  *  per-port, so set_lan_id() must be called before reading the addresses.
1380  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
1381  *  upon for non-SFP connections, so we must call it here.
1382  **/
txgbe_get_san_mac_addr(struct txgbe_hw * hw,u8 * san_mac_addr)1383 s32 txgbe_get_san_mac_addr(struct txgbe_hw *hw, u8 *san_mac_addr)
1384 {
1385 	u16 san_mac_data, san_mac_offset;
1386 	u8 i;
1387 	s32 err;
1388 
1389 	/*
1390 	 * First read the EEPROM pointer to see if the MAC addresses are
1391 	 * available. If they're not, no point in calling set_lan_id() here.
1392 	 */
1393 	err = txgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
1394 	if (err || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
1395 		goto san_mac_addr_out;
1396 
1397 	/* apply the port offset to the address offset */
1398 	(hw->bus.func) ? (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
1399 			 (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
1400 	for (i = 0; i < 3; i++) {
1401 		err = hw->rom.read16(hw, san_mac_offset,
1402 					      &san_mac_data);
1403 		if (err) {
1404 			DEBUGOUT("eeprom read at offset %d failed",
1405 				 san_mac_offset);
1406 			goto san_mac_addr_out;
1407 		}
1408 		san_mac_addr[i * 2] = (u8)(san_mac_data);
1409 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
1410 		san_mac_offset++;
1411 	}
1412 	return 0;
1413 
1414 san_mac_addr_out:
1415 	/*
1416 	 * No addresses available in this EEPROM.  It's not an
1417 	 * error though, so just wipe the local address and return.
1418 	 */
1419 	for (i = 0; i < 6; i++)
1420 		san_mac_addr[i] = 0xFF;
1421 	return 0;
1422 }
1423 
1424 /**
1425  *  txgbe_set_san_mac_addr - Write the SAN MAC address to the EEPROM
1426  *  @hw: pointer to hardware structure
1427  *  @san_mac_addr: SAN MAC address
1428  *
1429  *  Write a SAN MAC address to the EEPROM.
1430  **/
txgbe_set_san_mac_addr(struct txgbe_hw * hw,u8 * san_mac_addr)1431 s32 txgbe_set_san_mac_addr(struct txgbe_hw *hw, u8 *san_mac_addr)
1432 {
1433 	s32 err;
1434 	u16 san_mac_data, san_mac_offset;
1435 	u8 i;
1436 
1437 	/* Look for SAN mac address pointer.  If not defined, return */
1438 	err = txgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
1439 	if (err || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
1440 		return TXGBE_ERR_NO_SAN_ADDR_PTR;
1441 
1442 	/* Apply the port offset to the address offset */
1443 	(hw->bus.func) ? (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
1444 			 (san_mac_offset += TXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
1445 
1446 	for (i = 0; i < 3; i++) {
1447 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
1448 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
1449 		hw->rom.write16(hw, san_mac_offset, san_mac_data);
1450 		san_mac_offset++;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  txgbe_clear_vmdq - Disassociate a VMDq pool index from a rx address
1458  *  @hw: pointer to hardware struct
1459  *  @rar: receive address register index to disassociate
1460  *  @vmdq: VMDq pool index to remove from the rar
1461  **/
txgbe_clear_vmdq(struct txgbe_hw * hw,u32 rar,u32 vmdq)1462 s32 txgbe_clear_vmdq(struct txgbe_hw *hw, u32 rar, u32 vmdq)
1463 {
1464 	u32 mpsar_lo, mpsar_hi;
1465 	u32 rar_entries = hw->mac.num_rar_entries;
1466 
1467 	/* Make sure we are using a valid rar index range */
1468 	if (rar >= rar_entries) {
1469 		DEBUGOUT("RAR index %d is out of range.", rar);
1470 		return TXGBE_ERR_INVALID_ARGUMENT;
1471 	}
1472 
1473 	wr32(hw, TXGBE_ETHADDRIDX, rar);
1474 	mpsar_lo = rd32(hw, TXGBE_ETHADDRASSL);
1475 	mpsar_hi = rd32(hw, TXGBE_ETHADDRASSH);
1476 
1477 	if (TXGBE_REMOVED(hw->hw_addr))
1478 		goto done;
1479 
1480 	if (!mpsar_lo && !mpsar_hi)
1481 		goto done;
1482 
1483 	if (vmdq == BIT_MASK32) {
1484 		if (mpsar_lo) {
1485 			wr32(hw, TXGBE_ETHADDRASSL, 0);
1486 			mpsar_lo = 0;
1487 		}
1488 		if (mpsar_hi) {
1489 			wr32(hw, TXGBE_ETHADDRASSH, 0);
1490 			mpsar_hi = 0;
1491 		}
1492 	} else if (vmdq < 32) {
1493 		mpsar_lo &= ~(1 << vmdq);
1494 		wr32(hw, TXGBE_ETHADDRASSL, mpsar_lo);
1495 	} else {
1496 		mpsar_hi &= ~(1 << (vmdq - 32));
1497 		wr32(hw, TXGBE_ETHADDRASSH, mpsar_hi);
1498 	}
1499 
1500 	/* was that the last pool using this rar? */
1501 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
1502 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
1503 		hw->mac.clear_rar(hw, rar);
1504 done:
1505 	return 0;
1506 }
1507 
1508 /**
1509  *  txgbe_set_vmdq - Associate a VMDq pool index with a rx address
1510  *  @hw: pointer to hardware struct
1511  *  @rar: receive address register index to associate with a VMDq index
1512  *  @vmdq: VMDq pool index
1513  **/
txgbe_set_vmdq(struct txgbe_hw * hw,u32 rar,u32 vmdq)1514 s32 txgbe_set_vmdq(struct txgbe_hw *hw, u32 rar, u32 vmdq)
1515 {
1516 	u32 mpsar;
1517 	u32 rar_entries = hw->mac.num_rar_entries;
1518 
1519 	/* Make sure we are using a valid rar index range */
1520 	if (rar >= rar_entries) {
1521 		DEBUGOUT("RAR index %d is out of range.", rar);
1522 		return TXGBE_ERR_INVALID_ARGUMENT;
1523 	}
1524 
1525 	wr32(hw, TXGBE_ETHADDRIDX, rar);
1526 	if (vmdq < 32) {
1527 		mpsar = rd32(hw, TXGBE_ETHADDRASSL);
1528 		mpsar |= 1 << vmdq;
1529 		wr32(hw, TXGBE_ETHADDRASSL, mpsar);
1530 	} else {
1531 		mpsar = rd32(hw, TXGBE_ETHADDRASSH);
1532 		mpsar |= 1 << (vmdq - 32);
1533 		wr32(hw, TXGBE_ETHADDRASSH, mpsar);
1534 	}
1535 	return 0;
1536 }
1537 
1538 /**
1539  *  txgbe_init_uta_tables - Initialize the Unicast Table Array
1540  *  @hw: pointer to hardware structure
1541  **/
txgbe_init_uta_tables(struct txgbe_hw * hw)1542 s32 txgbe_init_uta_tables(struct txgbe_hw *hw)
1543 {
1544 	int i;
1545 
1546 	DEBUGOUT(" Clearing UTA");
1547 
1548 	for (i = 0; i < 128; i++)
1549 		wr32(hw, TXGBE_UCADDRTBL(i), 0);
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  *  txgbe_find_vlvf_slot - find the vlanid or the first empty slot
1556  *  @hw: pointer to hardware structure
1557  *  @vlan: VLAN id to write to VLAN filter
1558  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
1559  *		  vlanid not found
1560  *
1561  *
1562  *  return the VLVF index where this VLAN id should be placed
1563  *
1564  **/
txgbe_find_vlvf_slot(struct txgbe_hw * hw,u32 vlan,bool vlvf_bypass)1565 s32 txgbe_find_vlvf_slot(struct txgbe_hw *hw, u32 vlan, bool vlvf_bypass)
1566 {
1567 	s32 regindex, first_empty_slot;
1568 	u32 bits;
1569 
1570 	/* short cut the special case */
1571 	if (vlan == 0)
1572 		return 0;
1573 
1574 	/* if vlvf_bypass is set we don't want to use an empty slot, we
1575 	 * will simply bypass the VLVF if there are no entries present in the
1576 	 * VLVF that contain our VLAN
1577 	 */
1578 	first_empty_slot = vlvf_bypass ? TXGBE_ERR_NO_SPACE : 0;
1579 
1580 	/* add VLAN enable bit for comparison */
1581 	vlan |= TXGBE_PSRVLAN_EA;
1582 
1583 	/* Search for the vlan id in the VLVF entries. Save off the first empty
1584 	 * slot found along the way.
1585 	 *
1586 	 * pre-decrement loop covering (TXGBE_NUM_POOL - 1) .. 1
1587 	 */
1588 	for (regindex = TXGBE_NUM_POOL; --regindex;) {
1589 		wr32(hw, TXGBE_PSRVLANIDX, regindex);
1590 		bits = rd32(hw, TXGBE_PSRVLAN);
1591 		if (bits == vlan)
1592 			return regindex;
1593 		if (!first_empty_slot && !bits)
1594 			first_empty_slot = regindex;
1595 	}
1596 
1597 	/* If we are here then we didn't find the VLAN.  Return first empty
1598 	 * slot we found during our search, else error.
1599 	 */
1600 	if (!first_empty_slot)
1601 		DEBUGOUT("No space in VLVF.");
1602 
1603 	return first_empty_slot ? first_empty_slot : TXGBE_ERR_NO_SPACE;
1604 }
1605 
1606 /**
1607  *  txgbe_set_vfta - Set VLAN filter table
1608  *  @hw: pointer to hardware structure
1609  *  @vlan: VLAN id to write to VLAN filter
1610  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
1611  *  @vlan_on: boolean flag to turn on/off VLAN
1612  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
1613  *
1614  *  Turn on/off specified VLAN in the VLAN filter table.
1615  **/
txgbe_set_vfta(struct txgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool vlvf_bypass)1616 s32 txgbe_set_vfta(struct txgbe_hw *hw, u32 vlan, u32 vind,
1617 			   bool vlan_on, bool vlvf_bypass)
1618 {
1619 	u32 regidx, vfta_delta, vfta;
1620 	s32 err;
1621 
1622 	if (vlan > 4095 || vind > 63)
1623 		return TXGBE_ERR_PARAM;
1624 
1625 	/*
1626 	 * this is a 2 part operation - first the VFTA, then the
1627 	 * VLVF and VLVFB if VT Mode is set
1628 	 * We don't write the VFTA until we know the VLVF part succeeded.
1629 	 */
1630 
1631 	/* Part 1
1632 	 * The VFTA is a bitstring made up of 128 32-bit registers
1633 	 * that enable the particular VLAN id, much like the MTA:
1634 	 *    bits[11-5]: which register
1635 	 *    bits[4-0]:  which bit in the register
1636 	 */
1637 	regidx = vlan / 32;
1638 	vfta_delta = 1 << (vlan % 32);
1639 	vfta = rd32(hw, TXGBE_VLANTBL(regidx));
1640 
1641 	/*
1642 	 * vfta_delta represents the difference between the current value
1643 	 * of vfta and the value we want in the register.  Since the diff
1644 	 * is an XOR mask we can just update the vfta using an XOR
1645 	 */
1646 	vfta_delta &= vlan_on ? ~vfta : vfta;
1647 	vfta ^= vfta_delta;
1648 
1649 	/* Part 2
1650 	 * Call txgbe_set_vlvf to set VLVFB and VLVF
1651 	 */
1652 	err = txgbe_set_vlvf(hw, vlan, vind, vlan_on, &vfta_delta,
1653 					 vfta, vlvf_bypass);
1654 	if (err != 0) {
1655 		if (vlvf_bypass)
1656 			goto vfta_update;
1657 		return err;
1658 	}
1659 
1660 vfta_update:
1661 	/* Update VFTA now that we are ready for traffic */
1662 	if (vfta_delta)
1663 		wr32(hw, TXGBE_VLANTBL(regidx), vfta);
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  *  txgbe_set_vlvf - Set VLAN Pool Filter
1670  *  @hw: pointer to hardware structure
1671  *  @vlan: VLAN id to write to VLAN filter
1672  *  @vind: VMDq output index that maps queue to VLAN id in PSRVLANPLM
1673  *  @vlan_on: boolean flag to turn on/off VLAN in PSRVLAN
1674  *  @vfta_delta: pointer to the difference between the current value
1675  *		 of PSRVLANPLM and the desired value
1676  *  @vfta: the desired value of the VFTA
1677  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
1678  *
1679  *  Turn on/off specified bit in VLVF table.
1680  **/
txgbe_set_vlvf(struct txgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,u32 * vfta_delta,u32 vfta,bool vlvf_bypass)1681 s32 txgbe_set_vlvf(struct txgbe_hw *hw, u32 vlan, u32 vind,
1682 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
1683 			   bool vlvf_bypass)
1684 {
1685 	u32 bits;
1686 	u32 portctl;
1687 	s32 vlvf_index;
1688 
1689 	if (vlan > 4095 || vind > 63)
1690 		return TXGBE_ERR_PARAM;
1691 
1692 	/* If VT Mode is set
1693 	 *   Either vlan_on
1694 	 *     make sure the vlan is in PSRVLAN
1695 	 *     set the vind bit in the matching PSRVLANPLM
1696 	 *   Or !vlan_on
1697 	 *     clear the pool bit and possibly the vind
1698 	 */
1699 	portctl = rd32(hw, TXGBE_PORTCTL);
1700 	if (!(portctl & TXGBE_PORTCTL_NUMVT_MASK))
1701 		return 0;
1702 
1703 	vlvf_index = txgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
1704 	if (vlvf_index < 0)
1705 		return vlvf_index;
1706 
1707 	wr32(hw, TXGBE_PSRVLANIDX, vlvf_index);
1708 	bits = rd32(hw, TXGBE_PSRVLANPLM(vind / 32));
1709 
1710 	/* set the pool bit */
1711 	bits |= 1 << (vind % 32);
1712 	if (vlan_on)
1713 		goto vlvf_update;
1714 
1715 	/* clear the pool bit */
1716 	bits ^= 1 << (vind % 32);
1717 
1718 	if (!bits &&
1719 	    !rd32(hw, TXGBE_PSRVLANPLM(vind / 32))) {
1720 		/* Clear PSRVLANPLM first, then disable PSRVLAN. Otherwise
1721 		 * we run the risk of stray packets leaking into
1722 		 * the PF via the default pool
1723 		 */
1724 		if (*vfta_delta)
1725 			wr32(hw, TXGBE_PSRVLANPLM(vlan / 32), vfta);
1726 
1727 		/* disable VLVF and clear remaining bit from pool */
1728 		wr32(hw, TXGBE_PSRVLAN, 0);
1729 		wr32(hw, TXGBE_PSRVLANPLM(vind / 32), 0);
1730 
1731 		return 0;
1732 	}
1733 
1734 	/* If there are still bits set in the PSRVLANPLM registers
1735 	 * for the VLAN ID indicated we need to see if the
1736 	 * caller is requesting that we clear the PSRVLANPLM entry bit.
1737 	 * If the caller has requested that we clear the PSRVLANPLM
1738 	 * entry bit but there are still pools/VFs using this VLAN
1739 	 * ID entry then ignore the request.  We're not worried
1740 	 * about the case where we're turning the PSRVLANPLM VLAN ID
1741 	 * entry bit on, only when requested to turn it off as
1742 	 * there may be multiple pools and/or VFs using the
1743 	 * VLAN ID entry.  In that case we cannot clear the
1744 	 * PSRVLANPLM bit until all pools/VFs using that VLAN ID have also
1745 	 * been cleared.  This will be indicated by "bits" being
1746 	 * zero.
1747 	 */
1748 	*vfta_delta = 0;
1749 
1750 vlvf_update:
1751 	/* record pool change and enable VLAN ID if not already enabled */
1752 	wr32(hw, TXGBE_PSRVLANPLM(vind / 32), bits);
1753 	wr32(hw, TXGBE_PSRVLAN, TXGBE_PSRVLAN_EA | vlan);
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  *  txgbe_clear_vfta - Clear VLAN filter table
1760  *  @hw: pointer to hardware structure
1761  *
1762  *  Clears the VLAN filer table, and the VMDq index associated with the filter
1763  **/
txgbe_clear_vfta(struct txgbe_hw * hw)1764 s32 txgbe_clear_vfta(struct txgbe_hw *hw)
1765 {
1766 	u32 offset;
1767 
1768 	for (offset = 0; offset < hw->mac.vft_size; offset++)
1769 		wr32(hw, TXGBE_VLANTBL(offset), 0);
1770 
1771 	for (offset = 0; offset < TXGBE_NUM_POOL; offset++) {
1772 		wr32(hw, TXGBE_PSRVLANIDX, offset);
1773 		wr32(hw, TXGBE_PSRVLAN, 0);
1774 		wr32(hw, TXGBE_PSRVLANPLM(0), 0);
1775 		wr32(hw, TXGBE_PSRVLANPLM(1), 0);
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 /**
1782  *  txgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
1783  *  @hw: pointer to hardware structure
1784  *
1785  *  Contains the logic to identify if we need to verify link for the
1786  *  crosstalk fix
1787  **/
txgbe_need_crosstalk_fix(struct txgbe_hw * hw)1788 static bool txgbe_need_crosstalk_fix(struct txgbe_hw *hw)
1789 {
1790 	/* Does FW say we need the fix */
1791 	if (!hw->need_crosstalk_fix)
1792 		return false;
1793 
1794 	/* Only consider SFP+ PHYs i.e. media type fiber */
1795 	switch (hw->phy.media_type) {
1796 	case txgbe_media_type_fiber:
1797 	case txgbe_media_type_fiber_qsfp:
1798 		break;
1799 	default:
1800 		return false;
1801 	}
1802 
1803 	return true;
1804 }
1805 
1806 /**
1807  *  txgbe_check_mac_link - Determine link and speed status
1808  *  @hw: pointer to hardware structure
1809  *  @speed: pointer to link speed
1810  *  @link_up: true when link is up
1811  *  @link_up_wait_to_complete: bool used to wait for link up or not
1812  *
1813  *  Reads the links register to determine if link is up and the current speed
1814  **/
txgbe_check_mac_link(struct txgbe_hw * hw,u32 * speed,bool * link_up,bool link_up_wait_to_complete)1815 s32 txgbe_check_mac_link(struct txgbe_hw *hw, u32 *speed,
1816 				 bool *link_up, bool link_up_wait_to_complete)
1817 {
1818 	u32 links_reg, links_orig;
1819 	u32 i;
1820 
1821 	/* If Crosstalk fix enabled do the sanity check of making sure
1822 	 * the SFP+ cage is full.
1823 	 */
1824 	if (txgbe_need_crosstalk_fix(hw)) {
1825 		u32 sfp_cage_full;
1826 
1827 		switch (hw->mac.type) {
1828 		case txgbe_mac_raptor:
1829 			sfp_cage_full = !rd32m(hw, TXGBE_GPIODATA,
1830 					TXGBE_GPIOBIT_2);
1831 			break;
1832 		default:
1833 			/* sanity check - No SFP+ devices here */
1834 			sfp_cage_full = false;
1835 			break;
1836 		}
1837 
1838 		if (!sfp_cage_full) {
1839 			*link_up = false;
1840 			*speed = TXGBE_LINK_SPEED_UNKNOWN;
1841 			return 0;
1842 		}
1843 	}
1844 
1845 	/* clear the old state */
1846 	links_orig = rd32(hw, TXGBE_PORTSTAT);
1847 
1848 	links_reg = rd32(hw, TXGBE_PORTSTAT);
1849 
1850 	if (links_orig != links_reg) {
1851 		DEBUGOUT("LINKS changed from %08X to %08X",
1852 			  links_orig, links_reg);
1853 	}
1854 
1855 	if (link_up_wait_to_complete) {
1856 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
1857 			if (!(links_reg & TXGBE_PORTSTAT_UP)) {
1858 				*link_up = false;
1859 			} else {
1860 				*link_up = true;
1861 				break;
1862 			}
1863 			msec_delay(100);
1864 			links_reg = rd32(hw, TXGBE_PORTSTAT);
1865 		}
1866 	} else {
1867 		if (links_reg & TXGBE_PORTSTAT_UP)
1868 			*link_up = true;
1869 		else
1870 			*link_up = false;
1871 	}
1872 
1873 	switch (links_reg & TXGBE_PORTSTAT_BW_MASK) {
1874 	case TXGBE_PORTSTAT_BW_10G:
1875 		*speed = TXGBE_LINK_SPEED_10GB_FULL;
1876 		break;
1877 	case TXGBE_PORTSTAT_BW_1G:
1878 		*speed = TXGBE_LINK_SPEED_1GB_FULL;
1879 		break;
1880 	case TXGBE_PORTSTAT_BW_100M:
1881 		*speed = TXGBE_LINK_SPEED_100M_FULL;
1882 		break;
1883 	default:
1884 		*speed = TXGBE_LINK_SPEED_UNKNOWN;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  *  txgbe_get_wwn_prefix - Get alternative WWNN/WWPN prefix from
1892  *  the EEPROM
1893  *  @hw: pointer to hardware structure
1894  *  @wwnn_prefix: the alternative WWNN prefix
1895  *  @wwpn_prefix: the alternative WWPN prefix
1896  *
1897  *  This function will read the EEPROM from the alternative SAN MAC address
1898  *  block to check the support for the alternative WWNN/WWPN prefix support.
1899  **/
txgbe_get_wwn_prefix(struct txgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)1900 s32 txgbe_get_wwn_prefix(struct txgbe_hw *hw, u16 *wwnn_prefix,
1901 				 u16 *wwpn_prefix)
1902 {
1903 	u16 offset, caps;
1904 	u16 alt_san_mac_blk_offset;
1905 
1906 	/* clear output first */
1907 	*wwnn_prefix = 0xFFFF;
1908 	*wwpn_prefix = 0xFFFF;
1909 
1910 	/* check if alternative SAN MAC is supported */
1911 	offset = TXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
1912 	if (hw->rom.readw_sw(hw, offset, &alt_san_mac_blk_offset))
1913 		goto wwn_prefix_err;
1914 
1915 	if (alt_san_mac_blk_offset == 0 || alt_san_mac_blk_offset == 0xFFFF)
1916 		goto wwn_prefix_out;
1917 
1918 	/* check capability in alternative san mac address block */
1919 	offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
1920 	if (hw->rom.read16(hw, offset, &caps))
1921 		goto wwn_prefix_err;
1922 	if (!(caps & TXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
1923 		goto wwn_prefix_out;
1924 
1925 	/* get the corresponding prefix for WWNN/WWPN */
1926 	offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
1927 	if (hw->rom.read16(hw, offset, wwnn_prefix))
1928 		DEBUGOUT("eeprom read at offset %d failed", offset);
1929 
1930 	offset = alt_san_mac_blk_offset + TXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
1931 	if (hw->rom.read16(hw, offset, wwpn_prefix))
1932 		goto wwn_prefix_err;
1933 
1934 wwn_prefix_out:
1935 	return 0;
1936 
1937 wwn_prefix_err:
1938 	DEBUGOUT("eeprom read at offset %d failed", offset);
1939 	return 0;
1940 }
1941 
1942 /**
1943  *  txgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
1944  *  @hw: pointer to hardware structure
1945  *  @enable: enable or disable switch for MAC anti-spoofing
1946  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
1947  *
1948  **/
txgbe_set_mac_anti_spoofing(struct txgbe_hw * hw,bool enable,int vf)1949 void txgbe_set_mac_anti_spoofing(struct txgbe_hw *hw, bool enable, int vf)
1950 {
1951 	int vf_target_reg = vf >> 3;
1952 	int vf_target_shift = vf % 8;
1953 	u32 pfvfspoof;
1954 
1955 	pfvfspoof = rd32(hw, TXGBE_POOLTXASMAC(vf_target_reg));
1956 	if (enable)
1957 		pfvfspoof |= (1 << vf_target_shift);
1958 	else
1959 		pfvfspoof &= ~(1 << vf_target_shift);
1960 	wr32(hw, TXGBE_POOLTXASMAC(vf_target_reg), pfvfspoof);
1961 }
1962 
1963 /**
1964  * txgbe_set_ethertype_anti_spoofing - Configure Ethertype anti-spoofing
1965  * @hw: pointer to hardware structure
1966  * @enable: enable or disable switch for Ethertype anti-spoofing
1967  * @vf: Virtual Function pool - VF Pool to set for Ethertype anti-spoofing
1968  *
1969  **/
txgbe_set_ethertype_anti_spoofing(struct txgbe_hw * hw,bool enable,int vf)1970 void txgbe_set_ethertype_anti_spoofing(struct txgbe_hw *hw,
1971 		bool enable, int vf)
1972 {
1973 	int vf_target_reg = vf >> 3;
1974 	int vf_target_shift = vf % 8;
1975 	u32 pfvfspoof;
1976 
1977 	pfvfspoof = rd32(hw, TXGBE_POOLTXASET(vf_target_reg));
1978 	if (enable)
1979 		pfvfspoof |= (1 << vf_target_shift);
1980 	else
1981 		pfvfspoof &= ~(1 << vf_target_shift);
1982 	wr32(hw, TXGBE_POOLTXASET(vf_target_reg), pfvfspoof);
1983 }
1984 
1985 /**
1986  *  txgbe_get_device_caps - Get additional device capabilities
1987  *  @hw: pointer to hardware structure
1988  *  @device_caps: the EEPROM word with the extra device capabilities
1989  *
1990  *  This function will read the EEPROM location for the device capabilities,
1991  *  and return the word through device_caps.
1992  **/
txgbe_get_device_caps(struct txgbe_hw * hw,u16 * device_caps)1993 s32 txgbe_get_device_caps(struct txgbe_hw *hw, u16 *device_caps)
1994 {
1995 	hw->rom.readw_sw(hw, TXGBE_DEVICE_CAPS, device_caps);
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  * txgbe_set_pba - Initialize Rx packet buffer
2002  * @hw: pointer to hardware structure
2003  * @num_pb: number of packet buffers to allocate
2004  * @headroom: reserve n KB of headroom
2005  * @strategy: packet buffer allocation strategy
2006  **/
txgbe_set_pba(struct txgbe_hw * hw,int num_pb,u32 headroom,int strategy)2007 void txgbe_set_pba(struct txgbe_hw *hw, int num_pb, u32 headroom,
2008 			     int strategy)
2009 {
2010 	u32 pbsize = hw->mac.rx_pb_size;
2011 	int i = 0;
2012 	u32 rxpktsize, txpktsize, txpbthresh;
2013 
2014 	UNREFERENCED_PARAMETER(hw);
2015 
2016 	/* Reserve headroom */
2017 	pbsize -= headroom;
2018 
2019 	if (!num_pb)
2020 		num_pb = 1;
2021 
2022 	/* Divide remaining packet buffer space amongst the number of packet
2023 	 * buffers requested using supplied strategy.
2024 	 */
2025 	switch (strategy) {
2026 	case PBA_STRATEGY_WEIGHTED:
2027 		/* txgbe_dcb_pba_80_48 strategy weight first half of packet
2028 		 * buffer with 5/8 of the packet buffer space.
2029 		 */
2030 		rxpktsize = (pbsize * 5) / (num_pb * 4);
2031 		pbsize -= rxpktsize * (num_pb / 2);
2032 		rxpktsize <<= 10;
2033 		for (; i < (num_pb / 2); i++)
2034 			wr32(hw, TXGBE_PBRXSIZE(i), rxpktsize);
2035 		/* fall through - configure remaining packet buffers */
2036 	case PBA_STRATEGY_EQUAL:
2037 		rxpktsize = (pbsize / (num_pb - i));
2038 		rxpktsize <<= 10;
2039 		for (; i < num_pb; i++)
2040 			wr32(hw, TXGBE_PBRXSIZE(i), rxpktsize);
2041 		break;
2042 	default:
2043 		break;
2044 	}
2045 
2046 	/* Only support an equally distributed Tx packet buffer strategy. */
2047 	txpktsize = TXGBE_PBTXSIZE_MAX / num_pb;
2048 	txpbthresh = (txpktsize / 1024) - TXGBE_TXPKT_SIZE_MAX;
2049 	for (i = 0; i < num_pb; i++) {
2050 		wr32(hw, TXGBE_PBTXSIZE(i), txpktsize);
2051 		wr32(hw, TXGBE_PBTXDMATH(i), txpbthresh);
2052 	}
2053 
2054 	/* Clear unused TCs, if any, to zero buffer size*/
2055 	for (; i < TXGBE_MAX_UP; i++) {
2056 		wr32(hw, TXGBE_PBRXSIZE(i), 0);
2057 		wr32(hw, TXGBE_PBTXSIZE(i), 0);
2058 		wr32(hw, TXGBE_PBTXDMATH(i), 0);
2059 	}
2060 }
2061 
2062 /**
2063  * txgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
2064  * @hw: pointer to the hardware structure
2065  *
2066  * The MACs can experience issues if TX work is still pending
2067  * when a reset occurs.  This function prevents this by flushing the PCIe
2068  * buffers on the system.
2069  **/
txgbe_clear_tx_pending(struct txgbe_hw * hw)2070 void txgbe_clear_tx_pending(struct txgbe_hw *hw)
2071 {
2072 	u32 hlreg0, i, poll;
2073 
2074 	/*
2075 	 * If double reset is not requested then all transactions should
2076 	 * already be clear and as such there is no work to do
2077 	 */
2078 	if (!(hw->mac.flags & TXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
2079 		return;
2080 
2081 	hlreg0 = rd32(hw, TXGBE_PSRCTL);
2082 	wr32(hw, TXGBE_PSRCTL, hlreg0 | TXGBE_PSRCTL_LBENA);
2083 
2084 	/* Wait for a last completion before clearing buffers */
2085 	txgbe_flush(hw);
2086 	msec_delay(3);
2087 
2088 	/*
2089 	 * Before proceeding, make sure that the PCIe block does not have
2090 	 * transactions pending.
2091 	 */
2092 	poll = (800 * 11) / 10;
2093 	for (i = 0; i < poll; i++)
2094 		usec_delay(100);
2095 
2096 	/* Flush all writes and allow 20usec for all transactions to clear */
2097 	txgbe_flush(hw);
2098 	usec_delay(20);
2099 
2100 	/* restore previous register values */
2101 	wr32(hw, TXGBE_PSRCTL, hlreg0);
2102 }
2103 
2104 /**
2105  *  txgbe_get_thermal_sensor_data - Gathers thermal sensor data
2106  *  @hw: pointer to hardware structure
2107  *
2108  *  Returns the thermal sensor data structure
2109  **/
txgbe_get_thermal_sensor_data(struct txgbe_hw * hw)2110 s32 txgbe_get_thermal_sensor_data(struct txgbe_hw *hw)
2111 {
2112 	struct txgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2113 	s64 tsv;
2114 	u32 ts_stat;
2115 
2116 	/* Only support thermal sensors attached to physical port 0 */
2117 	if (hw->bus.lan_id != 0)
2118 		return TXGBE_NOT_IMPLEMENTED;
2119 
2120 	ts_stat = rd32(hw, TXGBE_TSSTAT);
2121 	tsv = (s64)TXGBE_TSSTAT_DATA(ts_stat);
2122 	tsv = tsv > 1200 ? tsv : 1200;
2123 	tsv = -(48380 << 8) / 1000
2124 		+ tsv * (31020 << 8) / 100000
2125 		- tsv * tsv * (18201 << 8) / 100000000
2126 		+ tsv * tsv * tsv * (81542 << 8) / 1000000000000
2127 		- tsv * tsv * tsv * tsv * (16743 << 8) / 1000000000000000;
2128 	tsv >>= 8;
2129 
2130 	data->sensor[0].temp = (s16)tsv;
2131 
2132 	return 0;
2133 }
2134 
2135 /**
2136  *  txgbe_init_thermal_sensor_thresh - Inits thermal sensor thresholds
2137  *  @hw: pointer to hardware structure
2138  *
2139  *  Inits the thermal sensor thresholds according to the NVM map
2140  *  and save off the threshold and location values into mac.thermal_sensor_data
2141  **/
txgbe_init_thermal_sensor_thresh(struct txgbe_hw * hw)2142 s32 txgbe_init_thermal_sensor_thresh(struct txgbe_hw *hw)
2143 {
2144 	struct txgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2145 
2146 	memset(data, 0, sizeof(struct txgbe_thermal_sensor_data));
2147 
2148 	if (hw->bus.lan_id != 0)
2149 		return TXGBE_NOT_IMPLEMENTED;
2150 
2151 	wr32(hw, TXGBE_TSCTRL, TXGBE_TSCTRL_EVALMD);
2152 	wr32(hw, TXGBE_TSINTR,
2153 		TXGBE_TSINTR_AEN | TXGBE_TSINTR_DEN);
2154 	wr32(hw, TXGBE_TSEN, TXGBE_TSEN_ENA);
2155 
2156 
2157 	data->sensor[0].alarm_thresh = 100;
2158 	wr32(hw, TXGBE_TSATHRE, 677);
2159 	data->sensor[0].dalarm_thresh = 90;
2160 	wr32(hw, TXGBE_TSDTHRE, 614);
2161 
2162 	return 0;
2163 }
2164 
txgbe_disable_rx(struct txgbe_hw * hw)2165 void txgbe_disable_rx(struct txgbe_hw *hw)
2166 {
2167 	u32 pfdtxgswc;
2168 
2169 	pfdtxgswc = rd32(hw, TXGBE_PSRCTL);
2170 	if (pfdtxgswc & TXGBE_PSRCTL_LBENA) {
2171 		pfdtxgswc &= ~TXGBE_PSRCTL_LBENA;
2172 		wr32(hw, TXGBE_PSRCTL, pfdtxgswc);
2173 		hw->mac.set_lben = true;
2174 	} else {
2175 		hw->mac.set_lben = false;
2176 	}
2177 
2178 	wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, 0);
2179 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, 0);
2180 }
2181 
txgbe_enable_rx(struct txgbe_hw * hw)2182 void txgbe_enable_rx(struct txgbe_hw *hw)
2183 {
2184 	u32 pfdtxgswc;
2185 
2186 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, TXGBE_MACRXCFG_ENA);
2187 	wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, TXGBE_PBRXCTL_ENA);
2188 
2189 	if (hw->mac.set_lben) {
2190 		pfdtxgswc = rd32(hw, TXGBE_PSRCTL);
2191 		pfdtxgswc |= TXGBE_PSRCTL_LBENA;
2192 		wr32(hw, TXGBE_PSRCTL, pfdtxgswc);
2193 		hw->mac.set_lben = false;
2194 	}
2195 }
2196 
2197 /**
2198  *  txgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
2199  *  @hw: pointer to hardware structure
2200  *  @speed: new link speed
2201  *  @autoneg_wait_to_complete: true when waiting for completion is needed
2202  *
2203  *  Set the link speed in the MAC and/or PHY register and restarts link.
2204  **/
txgbe_setup_mac_link_multispeed_fiber(struct txgbe_hw * hw,u32 speed,bool autoneg_wait_to_complete)2205 s32 txgbe_setup_mac_link_multispeed_fiber(struct txgbe_hw *hw,
2206 					  u32 speed,
2207 					  bool autoneg_wait_to_complete)
2208 {
2209 	u32 link_speed = TXGBE_LINK_SPEED_UNKNOWN;
2210 	u32 highest_link_speed = TXGBE_LINK_SPEED_UNKNOWN;
2211 	s32 status = 0;
2212 	u32 speedcnt = 0;
2213 	u32 i = 0;
2214 	bool autoneg, link_up = false;
2215 
2216 	/* Mask off requested but non-supported speeds */
2217 	status = hw->mac.get_link_capabilities(hw, &link_speed, &autoneg);
2218 	if (status != 0)
2219 		return status;
2220 
2221 	speed &= link_speed;
2222 
2223 	/* Try each speed one by one, highest priority first.  We do this in
2224 	 * software because 10Gb fiber doesn't support speed autonegotiation.
2225 	 */
2226 	if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
2227 		speedcnt++;
2228 		highest_link_speed = TXGBE_LINK_SPEED_10GB_FULL;
2229 
2230 		/* Set the module link speed */
2231 		switch (hw->phy.media_type) {
2232 		case txgbe_media_type_fiber:
2233 			hw->mac.set_rate_select_speed(hw,
2234 				TXGBE_LINK_SPEED_10GB_FULL);
2235 			break;
2236 		case txgbe_media_type_fiber_qsfp:
2237 			/* QSFP module automatically detects MAC link speed */
2238 			break;
2239 		default:
2240 			DEBUGOUT("Unexpected media type.");
2241 			break;
2242 		}
2243 
2244 		/* Allow module to change analog characteristics (1G->10G) */
2245 		msec_delay(40);
2246 
2247 		status = hw->mac.setup_mac_link(hw,
2248 				TXGBE_LINK_SPEED_10GB_FULL,
2249 				autoneg_wait_to_complete);
2250 		if (status != 0)
2251 			return status;
2252 
2253 		/* Flap the Tx laser if it has not already been done */
2254 		hw->mac.flap_tx_laser(hw);
2255 
2256 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
2257 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
2258 		 * attempted.  uses the same timing for 10g SFI.
2259 		 */
2260 		for (i = 0; i < 5; i++) {
2261 			/* Wait for the link partner to also set speed */
2262 			msec_delay(100);
2263 
2264 			/* If we have link, just jump out */
2265 			status = hw->mac.check_link(hw, &link_speed,
2266 				&link_up, false);
2267 			if (status != 0)
2268 				return status;
2269 
2270 			if (link_up)
2271 				goto out;
2272 		}
2273 	}
2274 
2275 	if (speed & TXGBE_LINK_SPEED_1GB_FULL) {
2276 		speedcnt++;
2277 		if (highest_link_speed == TXGBE_LINK_SPEED_UNKNOWN)
2278 			highest_link_speed = TXGBE_LINK_SPEED_1GB_FULL;
2279 
2280 		/* Set the module link speed */
2281 		switch (hw->phy.media_type) {
2282 		case txgbe_media_type_fiber:
2283 			hw->mac.set_rate_select_speed(hw,
2284 				TXGBE_LINK_SPEED_1GB_FULL);
2285 			break;
2286 		case txgbe_media_type_fiber_qsfp:
2287 			/* QSFP module automatically detects link speed */
2288 			break;
2289 		default:
2290 			DEBUGOUT("Unexpected media type.");
2291 			break;
2292 		}
2293 
2294 		/* Allow module to change analog characteristics (10G->1G) */
2295 		msec_delay(40);
2296 
2297 		status = hw->mac.setup_mac_link(hw,
2298 				TXGBE_LINK_SPEED_1GB_FULL,
2299 				autoneg_wait_to_complete);
2300 		if (status != 0)
2301 			return status;
2302 
2303 		/* Flap the Tx laser if it has not already been done */
2304 		hw->mac.flap_tx_laser(hw);
2305 
2306 		/* Wait for the link partner to also set speed */
2307 		msec_delay(100);
2308 
2309 		/* If we have link, just jump out */
2310 		status = hw->mac.check_link(hw, &link_speed, &link_up, false);
2311 		if (status != 0)
2312 			return status;
2313 
2314 		if (link_up)
2315 			goto out;
2316 	}
2317 
2318 	/* We didn't get link.  Configure back to the highest speed we tried,
2319 	 * (if there was more than one).  We call ourselves back with just the
2320 	 * single highest speed that the user requested.
2321 	 */
2322 	if (speedcnt > 1)
2323 		status = txgbe_setup_mac_link_multispeed_fiber(hw,
2324 						      highest_link_speed,
2325 						      autoneg_wait_to_complete);
2326 
2327 out:
2328 	/* Set autoneg_advertised value based on input link speed */
2329 	hw->phy.autoneg_advertised = 0;
2330 
2331 	if (speed & TXGBE_LINK_SPEED_10GB_FULL)
2332 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
2333 
2334 	if (speed & TXGBE_LINK_SPEED_1GB_FULL)
2335 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
2336 
2337 	return status;
2338 }
2339 
2340 /**
2341  *  txgbe_init_shared_code - Initialize the shared code
2342  *  @hw: pointer to hardware structure
2343  *
2344  *  This will assign function pointers and assign the MAC type and PHY code.
2345  *  Does not touch the hardware. This function must be called prior to any
2346  *  other function in the shared code. The txgbe_hw structure should be
2347  *  memset to 0 prior to calling this function.  The following fields in
2348  *  hw structure should be filled in prior to calling this function:
2349  *  hw_addr, back, device_id, vendor_id, subsystem_device_id,
2350  *  subsystem_vendor_id, and revision_id
2351  **/
txgbe_init_shared_code(struct txgbe_hw * hw)2352 s32 txgbe_init_shared_code(struct txgbe_hw *hw)
2353 {
2354 	s32 status;
2355 
2356 	/*
2357 	 * Set the mac type
2358 	 */
2359 	txgbe_set_mac_type(hw);
2360 
2361 	txgbe_init_ops_dummy(hw);
2362 	switch (hw->mac.type) {
2363 	case txgbe_mac_raptor:
2364 		status = txgbe_init_ops_pf(hw);
2365 		break;
2366 	case txgbe_mac_raptor_vf:
2367 		status = txgbe_init_ops_vf(hw);
2368 		break;
2369 	default:
2370 		status = TXGBE_ERR_DEVICE_NOT_SUPPORTED;
2371 		break;
2372 	}
2373 	hw->mac.max_link_up_time = TXGBE_LINK_UP_TIME;
2374 
2375 	hw->bus.set_lan_id(hw);
2376 
2377 	return status;
2378 }
2379 
2380 /**
2381  *  txgbe_set_mac_type - Sets MAC type
2382  *  @hw: pointer to the HW structure
2383  *
2384  *  This function sets the mac type of the adapter based on the
2385  *  vendor ID and device ID stored in the hw structure.
2386  **/
txgbe_set_mac_type(struct txgbe_hw * hw)2387 s32 txgbe_set_mac_type(struct txgbe_hw *hw)
2388 {
2389 	s32 err = 0;
2390 
2391 	if (hw->vendor_id != PCI_VENDOR_ID_WANGXUN) {
2392 		DEBUGOUT("Unsupported vendor id: %x", hw->vendor_id);
2393 		return TXGBE_ERR_DEVICE_NOT_SUPPORTED;
2394 	}
2395 
2396 	switch (hw->device_id) {
2397 	case TXGBE_DEV_ID_SP1000:
2398 	case TXGBE_DEV_ID_WX1820:
2399 		hw->mac.type = txgbe_mac_raptor;
2400 		break;
2401 	case TXGBE_DEV_ID_SP1000_VF:
2402 	case TXGBE_DEV_ID_WX1820_VF:
2403 		hw->phy.media_type = txgbe_media_type_virtual;
2404 		hw->mac.type = txgbe_mac_raptor_vf;
2405 		break;
2406 	default:
2407 		err = TXGBE_ERR_DEVICE_NOT_SUPPORTED;
2408 		DEBUGOUT("Unsupported device id: %x", hw->device_id);
2409 		break;
2410 	}
2411 
2412 	DEBUGOUT("found mac: %d, returns: %d",
2413 		  hw->mac.type, err);
2414 	return err;
2415 }
2416 
txgbe_init_mac_link_ops(struct txgbe_hw * hw)2417 void txgbe_init_mac_link_ops(struct txgbe_hw *hw)
2418 {
2419 	struct txgbe_mac_info *mac = &hw->mac;
2420 
2421 	/*
2422 	 * enable the laser control functions for SFP+ fiber
2423 	 * and MNG not enabled
2424 	 */
2425 	if (hw->phy.media_type == txgbe_media_type_fiber &&
2426 	    !txgbe_mng_enabled(hw)) {
2427 		mac->disable_tx_laser =
2428 			txgbe_disable_tx_laser_multispeed_fiber;
2429 		mac->enable_tx_laser =
2430 			txgbe_enable_tx_laser_multispeed_fiber;
2431 		mac->flap_tx_laser =
2432 			txgbe_flap_tx_laser_multispeed_fiber;
2433 	}
2434 
2435 	if ((hw->phy.media_type == txgbe_media_type_fiber ||
2436 	     hw->phy.media_type == txgbe_media_type_fiber_qsfp) &&
2437 	    hw->phy.multispeed_fiber) {
2438 		/* Set up dual speed SFP+ support */
2439 		mac->setup_link = txgbe_setup_mac_link_multispeed_fiber;
2440 		mac->setup_mac_link = txgbe_setup_mac_link;
2441 		mac->set_rate_select_speed = txgbe_set_hard_rate_select_speed;
2442 	} else {
2443 		mac->setup_link = txgbe_setup_mac_link;
2444 		mac->set_rate_select_speed = txgbe_set_hard_rate_select_speed;
2445 	}
2446 }
2447 
2448 /**
2449  *  txgbe_init_phy_raptor - PHY/SFP specific init
2450  *  @hw: pointer to hardware structure
2451  *
2452  *  Initialize any function pointers that were not able to be
2453  *  set during init_shared_code because the PHY/SFP type was
2454  *  not known.  Perform the SFP init if necessary.
2455  *
2456  **/
txgbe_init_phy_raptor(struct txgbe_hw * hw)2457 s32 txgbe_init_phy_raptor(struct txgbe_hw *hw)
2458 {
2459 	struct txgbe_mac_info *mac = &hw->mac;
2460 	struct txgbe_phy_info *phy = &hw->phy;
2461 	s32 err = 0;
2462 
2463 	if ((hw->device_id & 0xFF) == TXGBE_DEV_ID_QSFP) {
2464 		/* Store flag indicating I2C bus access control unit. */
2465 		hw->phy.qsfp_shared_i2c_bus = TRUE;
2466 
2467 		/* Initialize access to QSFP+ I2C bus */
2468 		txgbe_flush(hw);
2469 	}
2470 
2471 	/* Identify the PHY or SFP module */
2472 	err = phy->identify(hw);
2473 	if (err == TXGBE_ERR_SFP_NOT_SUPPORTED)
2474 		goto init_phy_ops_out;
2475 
2476 	/* Setup function pointers based on detected SFP module and speeds */
2477 	txgbe_init_mac_link_ops(hw);
2478 
2479 	/* If copper media, overwrite with copper function pointers */
2480 	if (phy->media_type == txgbe_media_type_copper) {
2481 		mac->setup_link = txgbe_setup_copper_link_raptor;
2482 		mac->get_link_capabilities =
2483 				  txgbe_get_copper_link_capabilities;
2484 	}
2485 
2486 	if (phy->media_type == txgbe_media_type_backplane) {
2487 		mac->kr_handle = txgbe_kr_handle;
2488 		mac->bp_down_event = txgbe_bp_down_event;
2489 	}
2490 
2491 	/* Set necessary function pointers based on PHY type */
2492 	switch (hw->phy.type) {
2493 	case txgbe_phy_tn:
2494 		phy->setup_link = txgbe_setup_phy_link_tnx;
2495 		phy->check_link = txgbe_check_phy_link_tnx;
2496 		break;
2497 	default:
2498 		break;
2499 	}
2500 
2501 init_phy_ops_out:
2502 	return err;
2503 }
2504 
txgbe_setup_sfp_modules(struct txgbe_hw * hw)2505 s32 txgbe_setup_sfp_modules(struct txgbe_hw *hw)
2506 {
2507 	s32 err = 0;
2508 
2509 	if (hw->phy.sfp_type == txgbe_sfp_type_unknown)
2510 		return 0;
2511 
2512 	txgbe_init_mac_link_ops(hw);
2513 
2514 	/* PHY config will finish before releasing the semaphore */
2515 	err = hw->mac.acquire_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
2516 	if (err != 0)
2517 		return TXGBE_ERR_SWFW_SYNC;
2518 
2519 	/* Release the semaphore */
2520 	hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
2521 
2522 	/* Delay obtaining semaphore again to allow FW access
2523 	 * prot_autoc_write uses the semaphore too.
2524 	 */
2525 	msec_delay(hw->rom.semaphore_delay);
2526 
2527 	if (err) {
2528 		DEBUGOUT("sfp module setup not complete");
2529 		return TXGBE_ERR_SFP_SETUP_NOT_COMPLETE;
2530 	}
2531 
2532 	return err;
2533 }
2534 
2535 /**
2536  *  txgbe_prot_autoc_read_raptor - Hides MAC differences needed for AUTOC read
2537  *  @hw: pointer to hardware structure
2538  *  @locked: Return the if we locked for this read.
2539  *  @value: Value we read from AUTOC
2540  *
2541  *  For this part we need to wrap read-modify-writes with a possible
2542  *  FW/SW lock.  It is assumed this lock will be freed with the next
2543  *  prot_autoc_write_raptor().
2544  */
txgbe_prot_autoc_read_raptor(struct txgbe_hw * hw,bool * locked,u64 * value)2545 s32 txgbe_prot_autoc_read_raptor(struct txgbe_hw *hw, bool *locked, u64 *value)
2546 {
2547 	s32 err;
2548 	bool lock_state = false;
2549 
2550 	 /* If LESM is on then we need to hold the SW/FW semaphore. */
2551 	if (txgbe_verify_lesm_fw_enabled_raptor(hw)) {
2552 		err = hw->mac.acquire_swfw_sync(hw,
2553 					TXGBE_MNGSEM_SWPHY);
2554 		if (err != 0)
2555 			return TXGBE_ERR_SWFW_SYNC;
2556 
2557 		lock_state = true;
2558 	}
2559 
2560 	if (locked)
2561 		*locked = lock_state;
2562 
2563 	*value = txgbe_autoc_read(hw);
2564 	return 0;
2565 }
2566 
2567 /**
2568  * txgbe_prot_autoc_write_raptor - Hides MAC differences needed for AUTOC write
2569  * @hw: pointer to hardware structure
2570  * @autoc: value to write to AUTOC
2571  * @locked: bool to indicate whether the SW/FW lock was already taken by
2572  *           previous prot_autoc_read_raptor.
2573  *
2574  * This part may need to hold the SW/FW lock around all writes to
2575  * AUTOC. Likewise after a write we need to do a pipeline reset.
2576  */
txgbe_prot_autoc_write_raptor(struct txgbe_hw * hw,bool locked,u64 autoc)2577 s32 txgbe_prot_autoc_write_raptor(struct txgbe_hw *hw, bool locked, u64 autoc)
2578 {
2579 	int err = 0;
2580 
2581 	/* Blocked by MNG FW so bail */
2582 	if (txgbe_check_reset_blocked(hw))
2583 		goto out;
2584 
2585 	/* We only need to get the lock if:
2586 	 *  - We didn't do it already (in the read part of a read-modify-write)
2587 	 *  - LESM is enabled.
2588 	 */
2589 	if (!locked && txgbe_verify_lesm_fw_enabled_raptor(hw)) {
2590 		err = hw->mac.acquire_swfw_sync(hw,
2591 					TXGBE_MNGSEM_SWPHY);
2592 		if (err != 0)
2593 			return TXGBE_ERR_SWFW_SYNC;
2594 
2595 		locked = true;
2596 	}
2597 
2598 	txgbe_autoc_write(hw, autoc);
2599 	err = txgbe_reset_pipeline_raptor(hw);
2600 
2601 out:
2602 	/* Free the SW/FW semaphore as we either grabbed it here or
2603 	 * already had it when this function was called.
2604 	 */
2605 	if (locked)
2606 		hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
2607 
2608 	return err;
2609 }
2610 
2611 /**
2612  *  txgbe_init_ops_pf - Inits func ptrs and MAC type
2613  *  @hw: pointer to hardware structure
2614  *
2615  *  Initialize the function pointers and assign the MAC type.
2616  *  Does not touch the hardware.
2617  **/
txgbe_init_ops_pf(struct txgbe_hw * hw)2618 s32 txgbe_init_ops_pf(struct txgbe_hw *hw)
2619 {
2620 	struct txgbe_bus_info *bus = &hw->bus;
2621 	struct txgbe_mac_info *mac = &hw->mac;
2622 	struct txgbe_phy_info *phy = &hw->phy;
2623 	struct txgbe_rom_info *rom = &hw->rom;
2624 	struct txgbe_mbx_info *mbx = &hw->mbx;
2625 
2626 	/* BUS */
2627 	bus->set_lan_id = txgbe_set_lan_id_multi_port;
2628 
2629 	/* PHY */
2630 	phy->get_media_type = txgbe_get_media_type_raptor;
2631 	phy->identify = txgbe_identify_phy;
2632 	phy->init = txgbe_init_phy_raptor;
2633 	phy->read_reg = txgbe_read_phy_reg;
2634 	phy->write_reg = txgbe_write_phy_reg;
2635 	phy->read_reg_mdi = txgbe_read_phy_reg_mdi;
2636 	phy->write_reg_mdi = txgbe_write_phy_reg_mdi;
2637 	phy->setup_link = txgbe_setup_phy_link;
2638 	phy->setup_link_speed = txgbe_setup_phy_link_speed;
2639 	phy->get_fw_version = txgbe_get_phy_fw_version;
2640 	phy->read_i2c_byte = txgbe_read_i2c_byte;
2641 	phy->write_i2c_byte = txgbe_write_i2c_byte;
2642 	phy->read_i2c_sff8472 = txgbe_read_i2c_sff8472;
2643 	phy->read_i2c_eeprom = txgbe_read_i2c_eeprom;
2644 	phy->write_i2c_eeprom = txgbe_write_i2c_eeprom;
2645 	phy->identify_sfp = txgbe_identify_module;
2646 	phy->read_i2c_byte_unlocked = txgbe_read_i2c_byte_unlocked;
2647 	phy->write_i2c_byte_unlocked = txgbe_write_i2c_byte_unlocked;
2648 	phy->reset = txgbe_reset_phy;
2649 
2650 	/* MAC */
2651 	mac->init_hw = txgbe_init_hw;
2652 	mac->start_hw = txgbe_start_hw_raptor;
2653 	mac->clear_hw_cntrs = txgbe_clear_hw_cntrs;
2654 	mac->enable_rx_dma = txgbe_enable_rx_dma_raptor;
2655 	mac->get_mac_addr = txgbe_get_mac_addr;
2656 	mac->stop_hw = txgbe_stop_hw;
2657 	mac->acquire_swfw_sync = txgbe_acquire_swfw_sync;
2658 	mac->release_swfw_sync = txgbe_release_swfw_sync;
2659 	mac->reset_hw = txgbe_reset_hw;
2660 	mac->update_mc_addr_list = txgbe_update_mc_addr_list;
2661 
2662 	mac->disable_sec_rx_path = txgbe_disable_sec_rx_path;
2663 	mac->enable_sec_rx_path = txgbe_enable_sec_rx_path;
2664 	mac->disable_sec_tx_path = txgbe_disable_sec_tx_path;
2665 	mac->enable_sec_tx_path = txgbe_enable_sec_tx_path;
2666 	mac->get_san_mac_addr = txgbe_get_san_mac_addr;
2667 	mac->set_san_mac_addr = txgbe_set_san_mac_addr;
2668 	mac->get_device_caps = txgbe_get_device_caps;
2669 	mac->get_wwn_prefix = txgbe_get_wwn_prefix;
2670 	mac->autoc_read = txgbe_autoc_read;
2671 	mac->autoc_write = txgbe_autoc_write;
2672 	mac->prot_autoc_read = txgbe_prot_autoc_read_raptor;
2673 	mac->prot_autoc_write = txgbe_prot_autoc_write_raptor;
2674 
2675 	/* RAR, Multicast, VLAN */
2676 	mac->set_rar = txgbe_set_rar;
2677 	mac->clear_rar = txgbe_clear_rar;
2678 	mac->init_rx_addrs = txgbe_init_rx_addrs;
2679 	mac->enable_rx = txgbe_enable_rx;
2680 	mac->disable_rx = txgbe_disable_rx;
2681 	mac->set_vmdq = txgbe_set_vmdq;
2682 	mac->clear_vmdq = txgbe_clear_vmdq;
2683 	mac->set_vfta = txgbe_set_vfta;
2684 	mac->set_vlvf = txgbe_set_vlvf;
2685 	mac->clear_vfta = txgbe_clear_vfta;
2686 	mac->init_uta_tables = txgbe_init_uta_tables;
2687 	mac->setup_sfp = txgbe_setup_sfp_modules;
2688 	mac->set_mac_anti_spoofing = txgbe_set_mac_anti_spoofing;
2689 	mac->set_ethertype_anti_spoofing = txgbe_set_ethertype_anti_spoofing;
2690 
2691 	/* Flow Control */
2692 	mac->fc_enable = txgbe_fc_enable;
2693 	mac->setup_fc = txgbe_setup_fc;
2694 	mac->fc_autoneg = txgbe_fc_autoneg;
2695 
2696 	/* Link */
2697 	mac->get_link_capabilities = txgbe_get_link_capabilities_raptor;
2698 	mac->check_link = txgbe_check_mac_link;
2699 	mac->setup_pba = txgbe_set_pba;
2700 
2701 	/* Manageability interface */
2702 	mac->set_fw_drv_ver = txgbe_hic_set_drv_ver;
2703 	mac->get_thermal_sensor_data = txgbe_get_thermal_sensor_data;
2704 	mac->init_thermal_sensor_thresh = txgbe_init_thermal_sensor_thresh;
2705 
2706 	mbx->init_params = txgbe_init_mbx_params_pf;
2707 	mbx->read = txgbe_read_mbx_pf;
2708 	mbx->write = txgbe_write_mbx_pf;
2709 	mbx->check_for_msg = txgbe_check_for_msg_pf;
2710 	mbx->check_for_ack = txgbe_check_for_ack_pf;
2711 	mbx->check_for_rst = txgbe_check_for_rst_pf;
2712 
2713 	/* EEPROM */
2714 	rom->init_params = txgbe_init_eeprom_params;
2715 	rom->read16 = txgbe_ee_read16;
2716 	rom->readw_buffer = txgbe_ee_readw_buffer;
2717 	rom->readw_sw = txgbe_ee_readw_sw;
2718 	rom->read32 = txgbe_ee_read32;
2719 	rom->write16 = txgbe_ee_write16;
2720 	rom->writew_buffer = txgbe_ee_writew_buffer;
2721 	rom->writew_sw = txgbe_ee_writew_sw;
2722 	rom->write32 = txgbe_ee_write32;
2723 	rom->validate_checksum = txgbe_validate_eeprom_checksum;
2724 	rom->update_checksum = txgbe_update_eeprom_checksum;
2725 	rom->calc_checksum = txgbe_calc_eeprom_checksum;
2726 
2727 	mac->mcft_size		= TXGBE_RAPTOR_MC_TBL_SIZE;
2728 	mac->vft_size		= TXGBE_RAPTOR_VFT_TBL_SIZE;
2729 	mac->num_rar_entries	= TXGBE_RAPTOR_RAR_ENTRIES;
2730 	mac->rx_pb_size		= TXGBE_RAPTOR_RX_PB_SIZE;
2731 	mac->max_rx_queues	= TXGBE_RAPTOR_MAX_RX_QUEUES;
2732 	mac->max_tx_queues	= TXGBE_RAPTOR_MAX_TX_QUEUES;
2733 
2734 	return 0;
2735 }
2736 
2737 /**
2738  *  txgbe_get_link_capabilities_raptor - Determines link capabilities
2739  *  @hw: pointer to hardware structure
2740  *  @speed: pointer to link speed
2741  *  @autoneg: true when autoneg or autotry is enabled
2742  *
2743  *  Determines the link capabilities by reading the AUTOC register.
2744  **/
txgbe_get_link_capabilities_raptor(struct txgbe_hw * hw,u32 * speed,bool * autoneg)2745 s32 txgbe_get_link_capabilities_raptor(struct txgbe_hw *hw,
2746 				      u32 *speed,
2747 				      bool *autoneg)
2748 {
2749 	s32 status = 0;
2750 	u32 autoc = 0;
2751 
2752 	/* Check if 1G SFP module. */
2753 	if (hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
2754 	    hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
2755 	    hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
2756 	    hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
2757 	    hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
2758 	    hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1) {
2759 		*speed = TXGBE_LINK_SPEED_1GB_FULL;
2760 		*autoneg = true;
2761 		return 0;
2762 	}
2763 
2764 	/*
2765 	 * Determine link capabilities based on the stored value of AUTOC,
2766 	 * which represents EEPROM defaults.  If AUTOC value has not
2767 	 * been stored, use the current register values.
2768 	 */
2769 	if (hw->mac.orig_link_settings_stored)
2770 		autoc = hw->mac.orig_autoc;
2771 	else
2772 		autoc = hw->mac.autoc_read(hw);
2773 
2774 	switch (autoc & TXGBE_AUTOC_LMS_MASK) {
2775 	case TXGBE_AUTOC_LMS_1G_LINK_NO_AN:
2776 		*speed = TXGBE_LINK_SPEED_1GB_FULL;
2777 		*autoneg = false;
2778 		break;
2779 
2780 	case TXGBE_AUTOC_LMS_10G_LINK_NO_AN:
2781 		*speed = TXGBE_LINK_SPEED_10GB_FULL;
2782 		*autoneg = false;
2783 		break;
2784 
2785 	case TXGBE_AUTOC_LMS_1G_AN:
2786 		*speed = TXGBE_LINK_SPEED_1GB_FULL;
2787 		*autoneg = true;
2788 		break;
2789 
2790 	case TXGBE_AUTOC_LMS_10G:
2791 		*speed = TXGBE_LINK_SPEED_10GB_FULL;
2792 		*autoneg = false;
2793 		break;
2794 
2795 	case TXGBE_AUTOC_LMS_KX4_KX_KR:
2796 	case TXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
2797 		*speed = TXGBE_LINK_SPEED_UNKNOWN;
2798 		if (autoc & TXGBE_AUTOC_KR_SUPP)
2799 			*speed |= TXGBE_LINK_SPEED_10GB_FULL;
2800 		if (autoc & TXGBE_AUTOC_KX4_SUPP)
2801 			*speed |= TXGBE_LINK_SPEED_10GB_FULL;
2802 		if (autoc & TXGBE_AUTOC_KX_SUPP)
2803 			*speed |= TXGBE_LINK_SPEED_1GB_FULL;
2804 		*autoneg = true;
2805 		break;
2806 
2807 	case TXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
2808 		*speed = TXGBE_LINK_SPEED_100M_FULL;
2809 		if (autoc & TXGBE_AUTOC_KR_SUPP)
2810 			*speed |= TXGBE_LINK_SPEED_10GB_FULL;
2811 		if (autoc & TXGBE_AUTOC_KX4_SUPP)
2812 			*speed |= TXGBE_LINK_SPEED_10GB_FULL;
2813 		if (autoc & TXGBE_AUTOC_KX_SUPP)
2814 			*speed |= TXGBE_LINK_SPEED_1GB_FULL;
2815 		*autoneg = true;
2816 		break;
2817 
2818 	case TXGBE_AUTOC_LMS_SGMII_1G_100M:
2819 		*speed = TXGBE_LINK_SPEED_1GB_FULL |
2820 			 TXGBE_LINK_SPEED_100M_FULL |
2821 			 TXGBE_LINK_SPEED_10M_FULL;
2822 		*autoneg = false;
2823 		break;
2824 
2825 	default:
2826 		return TXGBE_ERR_LINK_SETUP;
2827 	}
2828 
2829 	if (hw->phy.multispeed_fiber) {
2830 		*speed |= TXGBE_LINK_SPEED_10GB_FULL |
2831 			  TXGBE_LINK_SPEED_1GB_FULL;
2832 
2833 		/* QSFP must not enable full auto-negotiation
2834 		 * Limited autoneg is enabled at 1G
2835 		 */
2836 		if (hw->phy.media_type == txgbe_media_type_fiber_qsfp)
2837 			*autoneg = false;
2838 		else
2839 			*autoneg = true;
2840 	}
2841 
2842 	return status;
2843 }
2844 
2845 /**
2846  *  txgbe_get_media_type_raptor - Get media type
2847  *  @hw: pointer to hardware structure
2848  *
2849  *  Returns the media type (fiber, copper, backplane)
2850  **/
txgbe_get_media_type_raptor(struct txgbe_hw * hw)2851 u32 txgbe_get_media_type_raptor(struct txgbe_hw *hw)
2852 {
2853 	u32 media_type;
2854 
2855 	if (hw->phy.ffe_set)
2856 		txgbe_bp_mode_set(hw);
2857 
2858 	/* Detect if there is a copper PHY attached. */
2859 	switch (hw->phy.type) {
2860 	case txgbe_phy_cu_unknown:
2861 	case txgbe_phy_tn:
2862 		media_type = txgbe_media_type_copper;
2863 		return media_type;
2864 	default:
2865 		break;
2866 	}
2867 
2868 	switch (hw->subsystem_device_id & 0xFF) {
2869 	case TXGBE_DEV_ID_KR_KX_KX4:
2870 	case TXGBE_DEV_ID_MAC_SGMII:
2871 	case TXGBE_DEV_ID_MAC_XAUI:
2872 		/* Default device ID is mezzanine card KX/KX4 */
2873 		media_type = txgbe_media_type_backplane;
2874 		break;
2875 	case TXGBE_DEV_ID_SFP:
2876 		media_type = txgbe_media_type_fiber;
2877 		break;
2878 	case TXGBE_DEV_ID_QSFP:
2879 		media_type = txgbe_media_type_fiber_qsfp;
2880 		break;
2881 	case TXGBE_DEV_ID_XAUI:
2882 	case TXGBE_DEV_ID_SGMII:
2883 		media_type = txgbe_media_type_copper;
2884 		break;
2885 	case TXGBE_DEV_ID_SFI_XAUI:
2886 		if (hw->bus.lan_id == 0)
2887 			media_type = txgbe_media_type_fiber;
2888 		else
2889 			media_type = txgbe_media_type_copper;
2890 		break;
2891 	default:
2892 		media_type = txgbe_media_type_unknown;
2893 		break;
2894 	}
2895 
2896 	return media_type;
2897 }
2898 
2899 /**
2900  *  txgbe_start_mac_link_raptor - Setup MAC link settings
2901  *  @hw: pointer to hardware structure
2902  *  @autoneg_wait_to_complete: true when waiting for completion is needed
2903  *
2904  *  Configures link settings based on values in the txgbe_hw struct.
2905  *  Restarts the link.  Performs autonegotiation if needed.
2906  **/
txgbe_start_mac_link_raptor(struct txgbe_hw * hw,bool autoneg_wait_to_complete)2907 s32 txgbe_start_mac_link_raptor(struct txgbe_hw *hw,
2908 			       bool autoneg_wait_to_complete)
2909 {
2910 	s32 status = 0;
2911 	bool got_lock = false;
2912 
2913 	UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
2914 
2915 	/*  reset_pipeline requires us to hold this lock as it writes to
2916 	 *  AUTOC.
2917 	 */
2918 	if (txgbe_verify_lesm_fw_enabled_raptor(hw)) {
2919 		status = hw->mac.acquire_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
2920 		if (status != 0)
2921 			goto out;
2922 
2923 		got_lock = true;
2924 	}
2925 
2926 	/* Restart link */
2927 	txgbe_reset_pipeline_raptor(hw);
2928 
2929 	if (got_lock)
2930 		hw->mac.release_swfw_sync(hw, TXGBE_MNGSEM_SWPHY);
2931 
2932 	/* Add delay to filter out noises during initial link setup */
2933 	msec_delay(50);
2934 
2935 out:
2936 	return status;
2937 }
2938 
2939 /**
2940  *  txgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser
2941  *  @hw: pointer to hardware structure
2942  *
2943  *  The base drivers may require better control over SFP+ module
2944  *  PHY states.  This includes selectively shutting down the Tx
2945  *  laser on the PHY, effectively halting physical link.
2946  **/
txgbe_disable_tx_laser_multispeed_fiber(struct txgbe_hw * hw)2947 void txgbe_disable_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
2948 {
2949 	u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
2950 
2951 	/* Blocked by MNG FW so bail */
2952 	if (txgbe_check_reset_blocked(hw))
2953 		return;
2954 
2955 	if (txgbe_close_notify(hw))
2956 		txgbe_led_off(hw, TXGBE_LEDCTL_UP | TXGBE_LEDCTL_10G |
2957 				TXGBE_LEDCTL_1G | TXGBE_LEDCTL_ACTIVE);
2958 
2959 	/* Disable Tx laser; allow 100us to go dark per spec */
2960 	esdp_reg |= (TXGBE_GPIOBIT_0 | TXGBE_GPIOBIT_1);
2961 	wr32(hw, TXGBE_GPIODATA, esdp_reg);
2962 	txgbe_flush(hw);
2963 	usec_delay(100);
2964 }
2965 
2966 /**
2967  *  txgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser
2968  *  @hw: pointer to hardware structure
2969  *
2970  *  The base drivers may require better control over SFP+ module
2971  *  PHY states.  This includes selectively turning on the Tx
2972  *  laser on the PHY, effectively starting physical link.
2973  **/
txgbe_enable_tx_laser_multispeed_fiber(struct txgbe_hw * hw)2974 void txgbe_enable_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
2975 {
2976 	u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
2977 
2978 	if (txgbe_open_notify(hw))
2979 		wr32(hw, TXGBE_LEDCTL, 0);
2980 
2981 	/* Enable Tx laser; allow 100ms to light up */
2982 	esdp_reg &= ~(TXGBE_GPIOBIT_0 | TXGBE_GPIOBIT_1);
2983 	wr32(hw, TXGBE_GPIODATA, esdp_reg);
2984 	txgbe_flush(hw);
2985 	msec_delay(100);
2986 }
2987 
2988 /**
2989  *  txgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
2990  *  @hw: pointer to hardware structure
2991  *
2992  *  When the driver changes the link speeds that it can support,
2993  *  it sets autotry_restart to true to indicate that we need to
2994  *  initiate a new autotry session with the link partner.  To do
2995  *  so, we set the speed then disable and re-enable the Tx laser, to
2996  *  alert the link partner that it also needs to restart autotry on its
2997  *  end.  This is consistent with true clause 37 autoneg, which also
2998  *  involves a loss of signal.
2999  **/
txgbe_flap_tx_laser_multispeed_fiber(struct txgbe_hw * hw)3000 void txgbe_flap_tx_laser_multispeed_fiber(struct txgbe_hw *hw)
3001 {
3002 	/* Blocked by MNG FW so bail */
3003 	if (txgbe_check_reset_blocked(hw))
3004 		return;
3005 
3006 	if (hw->mac.autotry_restart) {
3007 		txgbe_disable_tx_laser_multispeed_fiber(hw);
3008 		txgbe_enable_tx_laser_multispeed_fiber(hw);
3009 		hw->mac.autotry_restart = false;
3010 	}
3011 }
3012 
3013 /**
3014  *  txgbe_set_hard_rate_select_speed - Set module link speed
3015  *  @hw: pointer to hardware structure
3016  *  @speed: link speed to set
3017  *
3018  *  Set module link speed via RS0/RS1 rate select pins.
3019  */
txgbe_set_hard_rate_select_speed(struct txgbe_hw * hw,u32 speed)3020 void txgbe_set_hard_rate_select_speed(struct txgbe_hw *hw,
3021 					u32 speed)
3022 {
3023 	u32 esdp_reg = rd32(hw, TXGBE_GPIODATA);
3024 
3025 	switch (speed) {
3026 	case TXGBE_LINK_SPEED_10GB_FULL:
3027 		esdp_reg |= (TXGBE_GPIOBIT_4 | TXGBE_GPIOBIT_5);
3028 		break;
3029 	case TXGBE_LINK_SPEED_1GB_FULL:
3030 		esdp_reg &= ~(TXGBE_GPIOBIT_4 | TXGBE_GPIOBIT_5);
3031 		break;
3032 	default:
3033 		DEBUGOUT("Invalid fixed module speed");
3034 		return;
3035 	}
3036 
3037 	wr32(hw, TXGBE_GPIODATA, esdp_reg);
3038 	txgbe_flush(hw);
3039 }
3040 
3041 /**
3042  *  txgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
3043  *  @hw: pointer to hardware structure
3044  *  @speed: new link speed
3045  *  @autoneg_wait_to_complete: true when waiting for completion is needed
3046  *
3047  *  Implements the Intel SmartSpeed algorithm.
3048  **/
txgbe_setup_mac_link_smartspeed(struct txgbe_hw * hw,u32 speed,bool autoneg_wait_to_complete)3049 s32 txgbe_setup_mac_link_smartspeed(struct txgbe_hw *hw,
3050 				    u32 speed,
3051 				    bool autoneg_wait_to_complete)
3052 {
3053 	s32 status = 0;
3054 	u32 link_speed = TXGBE_LINK_SPEED_UNKNOWN;
3055 	s32 i, j;
3056 	bool link_up = false;
3057 	u32 autoc_reg = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
3058 
3059 	 /* Set autoneg_advertised value based on input link speed */
3060 	hw->phy.autoneg_advertised = 0;
3061 
3062 	if (speed & TXGBE_LINK_SPEED_10GB_FULL)
3063 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
3064 
3065 	if (speed & TXGBE_LINK_SPEED_1GB_FULL)
3066 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
3067 
3068 	if (speed & TXGBE_LINK_SPEED_100M_FULL)
3069 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_100M_FULL;
3070 
3071 	/*
3072 	 * Implement Intel SmartSpeed algorithm.  SmartSpeed will reduce the
3073 	 * autoneg advertisement if link is unable to be established at the
3074 	 * highest negotiated rate.  This can sometimes happen due to integrity
3075 	 * issues with the physical media connection.
3076 	 */
3077 
3078 	/* First, try to get link with full advertisement */
3079 	hw->phy.smart_speed_active = false;
3080 	for (j = 0; j < TXGBE_SMARTSPEED_MAX_RETRIES; j++) {
3081 		status = txgbe_setup_mac_link(hw, speed,
3082 						    autoneg_wait_to_complete);
3083 		if (status != 0)
3084 			goto out;
3085 
3086 		/*
3087 		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
3088 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
3089 		 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
3090 		 * Table 9 in the AN MAS.
3091 		 */
3092 		for (i = 0; i < 5; i++) {
3093 			msec_delay(100);
3094 
3095 			/* If we have link, just jump out */
3096 			status = hw->mac.check_link(hw, &link_speed, &link_up,
3097 						  false);
3098 			if (status != 0)
3099 				goto out;
3100 
3101 			if (link_up)
3102 				goto out;
3103 		}
3104 	}
3105 
3106 	/*
3107 	 * We didn't get link.  If we advertised KR plus one of KX4/KX
3108 	 * (or BX4/BX), then disable KR and try again.
3109 	 */
3110 	if (((autoc_reg & TXGBE_AUTOC_KR_SUPP) == 0) ||
3111 	    ((autoc_reg & TXGBE_AUTOC_KX_SUPP) == 0 &&
3112 	     (autoc_reg & TXGBE_AUTOC_KX4_SUPP) == 0))
3113 		goto out;
3114 
3115 	/* Turn SmartSpeed on to disable KR support */
3116 	hw->phy.smart_speed_active = true;
3117 	status = txgbe_setup_mac_link(hw, speed,
3118 					    autoneg_wait_to_complete);
3119 	if (status != 0)
3120 		goto out;
3121 
3122 	/*
3123 	 * Wait for the controller to acquire link.  600ms will allow for
3124 	 * the AN link_fail_inhibit_timer as well for multiple cycles of
3125 	 * parallel detect, both 10g and 1g. This allows for the maximum
3126 	 * connect attempts as defined in the AN MAS table 73-7.
3127 	 */
3128 	for (i = 0; i < 6; i++) {
3129 		msec_delay(100);
3130 
3131 		/* If we have link, just jump out */
3132 		status = hw->mac.check_link(hw, &link_speed, &link_up, false);
3133 		if (status != 0)
3134 			goto out;
3135 
3136 		if (link_up)
3137 			goto out;
3138 	}
3139 
3140 	/* We didn't get link.  Turn SmartSpeed back off. */
3141 	hw->phy.smart_speed_active = false;
3142 	status = txgbe_setup_mac_link(hw, speed,
3143 					    autoneg_wait_to_complete);
3144 
3145 out:
3146 	if (link_up && link_speed == TXGBE_LINK_SPEED_1GB_FULL)
3147 		DEBUGOUT("Smartspeed has downgraded the link speed from the maximum advertised");
3148 	return status;
3149 }
3150 
3151 /**
3152  *  txgbe_setup_mac_link - Set MAC link speed
3153  *  @hw: pointer to hardware structure
3154  *  @speed: new link speed
3155  *  @autoneg_wait_to_complete: true when waiting for completion is needed
3156  *
3157  *  Set the link speed in the AUTOC register and restarts link.
3158  **/
txgbe_setup_mac_link(struct txgbe_hw * hw,u32 speed,bool autoneg_wait_to_complete)3159 s32 txgbe_setup_mac_link(struct txgbe_hw *hw,
3160 			       u32 speed,
3161 			       bool autoneg_wait_to_complete)
3162 {
3163 	bool autoneg = false;
3164 	s32 status = 0;
3165 
3166 	u64 autoc = hw->mac.autoc_read(hw);
3167 	u64 pma_pmd_10gs = autoc & TXGBE_AUTOC_10GS_PMA_PMD_MASK;
3168 	u64 pma_pmd_1g = autoc & TXGBE_AUTOC_1G_PMA_PMD_MASK;
3169 	u64 link_mode = autoc & TXGBE_AUTOC_LMS_MASK;
3170 	u64 orig_autoc = 0;
3171 	u32 link_capabilities = TXGBE_LINK_SPEED_UNKNOWN;
3172 
3173 	UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
3174 
3175 	/* Check to see if speed passed in is supported. */
3176 	status = hw->mac.get_link_capabilities(hw,
3177 			&link_capabilities, &autoneg);
3178 	if (status)
3179 		return status;
3180 
3181 	speed &= link_capabilities;
3182 	if (speed == TXGBE_LINK_SPEED_UNKNOWN)
3183 		return TXGBE_ERR_LINK_SETUP;
3184 
3185 	/* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
3186 	if (hw->mac.orig_link_settings_stored)
3187 		orig_autoc = hw->mac.orig_autoc;
3188 	else
3189 		orig_autoc = autoc;
3190 
3191 	link_mode = autoc & TXGBE_AUTOC_LMS_MASK;
3192 	pma_pmd_1g = autoc & TXGBE_AUTOC_1G_PMA_PMD_MASK;
3193 
3194 	if (link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR ||
3195 	    link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
3196 	    link_mode == TXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
3197 		/* Set KX4/KX/KR support according to speed requested */
3198 		autoc &= ~(TXGBE_AUTOC_KX_SUPP |
3199 			   TXGBE_AUTOC_KX4_SUPP |
3200 			   TXGBE_AUTOC_KR_SUPP);
3201 		if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
3202 			if (orig_autoc & TXGBE_AUTOC_KX4_SUPP)
3203 				autoc |= TXGBE_AUTOC_KX4_SUPP;
3204 			if (orig_autoc & TXGBE_AUTOC_KR_SUPP)
3205 				autoc |= TXGBE_AUTOC_KR_SUPP;
3206 		}
3207 		if (speed & TXGBE_LINK_SPEED_1GB_FULL)
3208 			autoc |= TXGBE_AUTOC_KX_SUPP;
3209 	} else if ((pma_pmd_1g == TXGBE_AUTOC_1G_SFI) &&
3210 		   (link_mode == TXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
3211 		    link_mode == TXGBE_AUTOC_LMS_1G_AN)) {
3212 		/* Switch from 1G SFI to 10G SFI if requested */
3213 		if (speed == TXGBE_LINK_SPEED_10GB_FULL &&
3214 		    pma_pmd_10gs == TXGBE_AUTOC_10GS_SFI) {
3215 			autoc &= ~TXGBE_AUTOC_LMS_MASK;
3216 			autoc |= TXGBE_AUTOC_LMS_10G;
3217 		}
3218 	} else if ((pma_pmd_10gs == TXGBE_AUTOC_10GS_SFI) &&
3219 		   (link_mode == TXGBE_AUTOC_LMS_10G)) {
3220 		/* Switch from 10G SFI to 1G SFI if requested */
3221 		if (speed == TXGBE_LINK_SPEED_1GB_FULL &&
3222 		    pma_pmd_1g == TXGBE_AUTOC_1G_SFI) {
3223 			autoc &= ~TXGBE_AUTOC_LMS_MASK;
3224 			if (autoneg || hw->phy.type == txgbe_phy_qsfp_intel)
3225 				autoc |= TXGBE_AUTOC_LMS_1G_AN;
3226 			else
3227 				autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN;
3228 		}
3229 	}
3230 
3231 	autoc &= ~TXGBE_AUTOC_SPEED_MASK;
3232 	autoc |= TXGBE_AUTOC_SPEED(speed);
3233 	autoc &= ~TXGBE_AUTOC_AUTONEG;
3234 	autoc |= (autoneg ? TXGBE_AUTOC_AUTONEG : 0);
3235 
3236 	/* Restart link */
3237 	hw->mac.autoc_write(hw, autoc);
3238 
3239 	/* Add delay to filter out noises during initial link setup */
3240 	msec_delay(50);
3241 
3242 	return status;
3243 }
3244 
3245 /**
3246  *  txgbe_setup_copper_link_raptor - Set the PHY autoneg advertised field
3247  *  @hw: pointer to hardware structure
3248  *  @speed: new link speed
3249  *  @autoneg_wait_to_complete: true if waiting is needed to complete
3250  *
3251  *  Restarts link on PHY and MAC based on settings passed in.
3252  **/
txgbe_setup_copper_link_raptor(struct txgbe_hw * hw,u32 speed,bool autoneg_wait_to_complete)3253 static s32 txgbe_setup_copper_link_raptor(struct txgbe_hw *hw,
3254 					 u32 speed,
3255 					 bool autoneg_wait_to_complete)
3256 {
3257 	s32 status;
3258 
3259 	/* Setup the PHY according to input speed */
3260 	status = hw->phy.setup_link_speed(hw, speed,
3261 					      autoneg_wait_to_complete);
3262 	/* Set up MAC */
3263 	txgbe_start_mac_link_raptor(hw, autoneg_wait_to_complete);
3264 
3265 	return status;
3266 }
3267 
3268 static int
txgbe_check_flash_load(struct txgbe_hw * hw,u32 check_bit)3269 txgbe_check_flash_load(struct txgbe_hw *hw, u32 check_bit)
3270 {
3271 	u32 reg = 0;
3272 	u32 i;
3273 	int err = 0;
3274 	/* if there's flash existing */
3275 	if (!(rd32(hw, TXGBE_SPISTAT) & TXGBE_SPISTAT_BPFLASH)) {
3276 		/* wait hw load flash done */
3277 		for (i = 0; i < 10; i++) {
3278 			reg = rd32(hw, TXGBE_ILDRSTAT);
3279 			if (!(reg & check_bit)) {
3280 				/* done */
3281 				break;
3282 			}
3283 			msleep(100);
3284 		}
3285 		if (i == 10)
3286 			err = TXGBE_ERR_FLASH_LOADING_FAILED;
3287 	}
3288 	return err;
3289 }
3290 
3291 static void
txgbe_reset_misc(struct txgbe_hw * hw)3292 txgbe_reset_misc(struct txgbe_hw *hw)
3293 {
3294 	int i;
3295 	u32 value;
3296 
3297 	wr32(hw, TXGBE_ISBADDRL, hw->isb_dma & 0x00000000FFFFFFFF);
3298 	wr32(hw, TXGBE_ISBADDRH, hw->isb_dma >> 32);
3299 
3300 	value = rd32_epcs(hw, SR_XS_PCS_CTRL2);
3301 	if ((value & 0x3) != SR_PCS_CTRL2_TYPE_SEL_X)
3302 		hw->link_status = TXGBE_LINK_STATUS_NONE;
3303 
3304 	/* receive packets that size > 2048 */
3305 	wr32m(hw, TXGBE_MACRXCFG,
3306 		TXGBE_MACRXCFG_JUMBO, TXGBE_MACRXCFG_JUMBO);
3307 
3308 	wr32m(hw, TXGBE_FRMSZ, TXGBE_FRMSZ_MAX_MASK,
3309 		TXGBE_FRMSZ_MAX(TXGBE_FRAME_SIZE_DFT));
3310 
3311 	/* clear counters on read */
3312 	wr32m(hw, TXGBE_MACCNTCTL,
3313 		TXGBE_MACCNTCTL_RC, TXGBE_MACCNTCTL_RC);
3314 
3315 	wr32m(hw, TXGBE_RXFCCFG,
3316 		TXGBE_RXFCCFG_FC, TXGBE_RXFCCFG_FC);
3317 	wr32m(hw, TXGBE_TXFCCFG,
3318 		TXGBE_TXFCCFG_FC, TXGBE_TXFCCFG_FC);
3319 
3320 	wr32m(hw, TXGBE_MACRXFLT,
3321 		TXGBE_MACRXFLT_PROMISC, TXGBE_MACRXFLT_PROMISC);
3322 
3323 	wr32m(hw, TXGBE_RSTSTAT,
3324 		TXGBE_RSTSTAT_TMRINIT_MASK, TXGBE_RSTSTAT_TMRINIT(30));
3325 
3326 	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
3327 	wr32(hw, TXGBE_MNGFLEXSEL, 0);
3328 	for (i = 0; i < 16; i++) {
3329 		wr32(hw, TXGBE_MNGFLEXDWL(i), 0);
3330 		wr32(hw, TXGBE_MNGFLEXDWH(i), 0);
3331 		wr32(hw, TXGBE_MNGFLEXMSK(i), 0);
3332 	}
3333 	wr32(hw, TXGBE_LANFLEXSEL, 0);
3334 	for (i = 0; i < 16; i++) {
3335 		wr32(hw, TXGBE_LANFLEXDWL(i), 0);
3336 		wr32(hw, TXGBE_LANFLEXDWH(i), 0);
3337 		wr32(hw, TXGBE_LANFLEXMSK(i), 0);
3338 	}
3339 
3340 	/* set pause frame dst mac addr */
3341 	wr32(hw, TXGBE_RXPBPFCDMACL, 0xC2000001);
3342 	wr32(hw, TXGBE_RXPBPFCDMACH, 0x0180);
3343 
3344 	hw->mac.init_thermal_sensor_thresh(hw);
3345 
3346 	/* enable mac transmitter */
3347 	wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, TXGBE_MACTXCFG_TXE);
3348 
3349 	hw->mac.autoc = hw->mac.orig_autoc;
3350 	for (i = 0; i < 4; i++)
3351 		wr32m(hw, TXGBE_IVAR(i), 0x80808080, 0);
3352 }
3353 
3354 /**
3355  *  txgbe_reset_hw - Perform hardware reset
3356  *  @hw: pointer to hardware structure
3357  *
3358  *  Resets the hardware by resetting the transmit and receive units, masks
3359  *  and clears all interrupts, perform a PHY reset, and perform a link (MAC)
3360  *  reset.
3361  **/
txgbe_reset_hw(struct txgbe_hw * hw)3362 s32 txgbe_reset_hw(struct txgbe_hw *hw)
3363 {
3364 	s32 status;
3365 	u32 autoc;
3366 
3367 	/* Call adapter stop to disable tx/rx and clear interrupts */
3368 	status = hw->mac.stop_hw(hw);
3369 	if (status != 0)
3370 		return status;
3371 
3372 	/* flush pending Tx transactions */
3373 	txgbe_clear_tx_pending(hw);
3374 
3375 	/* Identify PHY and related function pointers */
3376 	status = hw->phy.init(hw);
3377 	if (status == TXGBE_ERR_SFP_NOT_SUPPORTED)
3378 		return status;
3379 
3380 	/* Setup SFP module if there is one present. */
3381 	if (hw->phy.sfp_setup_needed) {
3382 		status = hw->mac.setup_sfp(hw);
3383 		hw->phy.sfp_setup_needed = false;
3384 	}
3385 	if (status == TXGBE_ERR_SFP_NOT_SUPPORTED)
3386 		return status;
3387 
3388 	/* Reset PHY */
3389 	if (!hw->phy.reset_disable)
3390 		hw->phy.reset(hw);
3391 
3392 	/* remember AUTOC from before we reset */
3393 	autoc = hw->mac.autoc_read(hw);
3394 
3395 mac_reset_top:
3396 	/*
3397 	 * Issue global reset to the MAC.  Needs to be SW reset if link is up.
3398 	 * If link reset is used when link is up, it might reset the PHY when
3399 	 * mng is using it.  If link is down or the flag to force full link
3400 	 * reset is set, then perform link reset.
3401 	 */
3402 	if (txgbe_mng_present(hw)) {
3403 		txgbe_hic_reset(hw);
3404 	} else {
3405 		wr32(hw, TXGBE_RST, TXGBE_RST_LAN(hw->bus.lan_id));
3406 		txgbe_flush(hw);
3407 	}
3408 	usec_delay(10);
3409 
3410 	txgbe_reset_misc(hw);
3411 
3412 	if (hw->bus.lan_id == 0) {
3413 		status = txgbe_check_flash_load(hw,
3414 				TXGBE_ILDRSTAT_SWRST_LAN0);
3415 	} else {
3416 		status = txgbe_check_flash_load(hw,
3417 				TXGBE_ILDRSTAT_SWRST_LAN1);
3418 	}
3419 	if (status != 0)
3420 		return status;
3421 
3422 	msec_delay(50);
3423 
3424 	/*
3425 	 * Double resets are required for recovery from certain error
3426 	 * conditions.  Between resets, it is necessary to stall to
3427 	 * allow time for any pending HW events to complete.
3428 	 */
3429 	if (hw->mac.flags & TXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
3430 		hw->mac.flags &= ~TXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3431 		goto mac_reset_top;
3432 	}
3433 
3434 	/*
3435 	 * Store the original AUTOC/AUTOC2 values if they have not been
3436 	 * stored off yet.  Otherwise restore the stored original
3437 	 * values since the reset operation sets back to defaults.
3438 	 */
3439 	if (!hw->mac.orig_link_settings_stored) {
3440 		hw->mac.orig_autoc = hw->mac.autoc_read(hw);
3441 		hw->mac.orig_link_settings_stored = true;
3442 	} else {
3443 		hw->mac.orig_autoc = autoc;
3444 	}
3445 
3446 	if (hw->phy.ffe_set) {
3447 		/* Make sure phy power is up */
3448 		msec_delay(50);
3449 
3450 		/* A temporary solution to set phy */
3451 		txgbe_set_phy_temp(hw);
3452 	}
3453 
3454 	/* Store the permanent mac address */
3455 	hw->mac.get_mac_addr(hw, hw->mac.perm_addr);
3456 
3457 	/*
3458 	 * Store MAC address from RAR0, clear receive address registers, and
3459 	 * clear the multicast table.  Also reset num_rar_entries to 128,
3460 	 * since we modify this value when programming the SAN MAC address.
3461 	 */
3462 	hw->mac.num_rar_entries = 128;
3463 	hw->mac.init_rx_addrs(hw);
3464 
3465 	/* Store the permanent SAN mac address */
3466 	hw->mac.get_san_mac_addr(hw, hw->mac.san_addr);
3467 
3468 	/* Add the SAN MAC address to the RAR only if it's a valid address */
3469 	if (txgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
3470 		/* Save the SAN MAC RAR index */
3471 		hw->mac.san_mac_rar_index = hw->mac.num_rar_entries - 1;
3472 
3473 		hw->mac.set_rar(hw, hw->mac.san_mac_rar_index,
3474 				    hw->mac.san_addr, 0, true);
3475 
3476 		/* clear VMDq pool/queue selection for this RAR */
3477 		hw->mac.clear_vmdq(hw, hw->mac.san_mac_rar_index,
3478 				       BIT_MASK32);
3479 
3480 		/* Reserve the last RAR for the SAN MAC address */
3481 		hw->mac.num_rar_entries--;
3482 	}
3483 
3484 	/* Store the alternative WWNN/WWPN prefix */
3485 	hw->mac.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
3486 				   &hw->mac.wwpn_prefix);
3487 
3488 	return status;
3489 }
3490 
3491 /**
3492  * txgbe_fdir_check_cmd_complete - poll to check whether FDIRPICMD is complete
3493  * @hw: pointer to hardware structure
3494  * @fdircmd: current value of FDIRCMD register
3495  */
txgbe_fdir_check_cmd_complete(struct txgbe_hw * hw,u32 * fdircmd)3496 static s32 txgbe_fdir_check_cmd_complete(struct txgbe_hw *hw, u32 *fdircmd)
3497 {
3498 	int i;
3499 
3500 	for (i = 0; i < TXGBE_FDIRCMD_CMD_POLL; i++) {
3501 		*fdircmd = rd32(hw, TXGBE_FDIRPICMD);
3502 		if (!(*fdircmd & TXGBE_FDIRPICMD_OP_MASK))
3503 			return 0;
3504 		usec_delay(10);
3505 	}
3506 
3507 	return TXGBE_ERR_FDIR_CMD_INCOMPLETE;
3508 }
3509 
3510 /**
3511  *  txgbe_reinit_fdir_tables - Reinitialize Flow Director tables.
3512  *  @hw: pointer to hardware structure
3513  **/
txgbe_reinit_fdir_tables(struct txgbe_hw * hw)3514 s32 txgbe_reinit_fdir_tables(struct txgbe_hw *hw)
3515 {
3516 	s32 err;
3517 	int i;
3518 	u32 fdirctrl = rd32(hw, TXGBE_FDIRCTL);
3519 	u32 fdircmd;
3520 	fdirctrl &= ~TXGBE_FDIRCTL_INITDONE;
3521 
3522 	/*
3523 	 * Before starting reinitialization process,
3524 	 * FDIRPICMD.OP must be zero.
3525 	 */
3526 	err = txgbe_fdir_check_cmd_complete(hw, &fdircmd);
3527 	if (err) {
3528 		DEBUGOUT("Flow Director previous command did not complete, aborting table re-initialization.");
3529 		return err;
3530 	}
3531 
3532 	wr32(hw, TXGBE_FDIRFREE, 0);
3533 	txgbe_flush(hw);
3534 	/*
3535 	 * adapters flow director init flow cannot be restarted,
3536 	 * Workaround silicon errata by performing the following steps
3537 	 * before re-writing the FDIRCTL control register with the same value.
3538 	 * - write 1 to bit 8 of FDIRPICMD register &
3539 	 * - write 0 to bit 8 of FDIRPICMD register
3540 	 */
3541 	wr32m(hw, TXGBE_FDIRPICMD, TXGBE_FDIRPICMD_CLR, TXGBE_FDIRPICMD_CLR);
3542 	txgbe_flush(hw);
3543 	wr32m(hw, TXGBE_FDIRPICMD, TXGBE_FDIRPICMD_CLR, 0);
3544 	txgbe_flush(hw);
3545 	/*
3546 	 * Clear FDIR Hash register to clear any leftover hashes
3547 	 * waiting to be programmed.
3548 	 */
3549 	wr32(hw, TXGBE_FDIRPIHASH, 0x00);
3550 	txgbe_flush(hw);
3551 
3552 	wr32(hw, TXGBE_FDIRCTL, fdirctrl);
3553 	txgbe_flush(hw);
3554 
3555 	/* Poll init-done after we write FDIRCTL register */
3556 	for (i = 0; i < TXGBE_FDIR_INIT_DONE_POLL; i++) {
3557 		if (rd32m(hw, TXGBE_FDIRCTL, TXGBE_FDIRCTL_INITDONE))
3558 			break;
3559 		msec_delay(1);
3560 	}
3561 	if (i >= TXGBE_FDIR_INIT_DONE_POLL) {
3562 		DEBUGOUT("Flow Director Signature poll time exceeded!");
3563 		return TXGBE_ERR_FDIR_REINIT_FAILED;
3564 	}
3565 
3566 	/* Clear FDIR statistics registers (read to clear) */
3567 	rd32(hw, TXGBE_FDIRUSED);
3568 	rd32(hw, TXGBE_FDIRFAIL);
3569 	rd32(hw, TXGBE_FDIRMATCH);
3570 	rd32(hw, TXGBE_FDIRMISS);
3571 	rd32(hw, TXGBE_FDIRLEN);
3572 
3573 	return 0;
3574 }
3575 
3576 /**
3577  *  txgbe_start_hw_raptor - Prepare hardware for Tx/Rx
3578  *  @hw: pointer to hardware structure
3579  *
3580  *  Starts the hardware using the generic start_hw function
3581  *  and the generation start_hw function.
3582  *  Then performs revision-specific operations, if any.
3583  **/
txgbe_start_hw_raptor(struct txgbe_hw * hw)3584 s32 txgbe_start_hw_raptor(struct txgbe_hw *hw)
3585 {
3586 	s32 err = 0;
3587 
3588 	err = txgbe_start_hw(hw);
3589 	if (err != 0)
3590 		goto out;
3591 
3592 	err = txgbe_start_hw_gen2(hw);
3593 	if (err != 0)
3594 		goto out;
3595 
3596 	/* We need to run link autotry after the driver loads */
3597 	hw->mac.autotry_restart = true;
3598 
3599 out:
3600 	return err;
3601 }
3602 
3603 /**
3604  *  txgbe_enable_rx_dma_raptor - Enable the Rx DMA unit
3605  *  @hw: pointer to hardware structure
3606  *  @regval: register value to write to RXCTRL
3607  *
3608  *  Enables the Rx DMA unit
3609  **/
txgbe_enable_rx_dma_raptor(struct txgbe_hw * hw,u32 regval)3610 s32 txgbe_enable_rx_dma_raptor(struct txgbe_hw *hw, u32 regval)
3611 {
3612 	/*
3613 	 * Workaround silicon errata when enabling the Rx datapath.
3614 	 * If traffic is incoming before we enable the Rx unit, it could hang
3615 	 * the Rx DMA unit.  Therefore, make sure the security engine is
3616 	 * completely disabled prior to enabling the Rx unit.
3617 	 */
3618 
3619 	hw->mac.disable_sec_rx_path(hw);
3620 
3621 	if (regval & TXGBE_PBRXCTL_ENA)
3622 		txgbe_enable_rx(hw);
3623 	else
3624 		txgbe_disable_rx(hw);
3625 
3626 	hw->mac.enable_sec_rx_path(hw);
3627 
3628 	return 0;
3629 }
3630 
3631 /**
3632  *  txgbe_verify_lesm_fw_enabled_raptor - Checks LESM FW module state.
3633  *  @hw: pointer to hardware structure
3634  *
3635  *  Returns true if the LESM FW module is present and enabled. Otherwise
3636  *  returns false. Smart Speed must be disabled if LESM FW module is enabled.
3637  **/
txgbe_verify_lesm_fw_enabled_raptor(struct txgbe_hw * hw)3638 bool txgbe_verify_lesm_fw_enabled_raptor(struct txgbe_hw *hw)
3639 {
3640 	bool lesm_enabled = false;
3641 	u16 fw_offset, fw_lesm_param_offset, fw_lesm_state;
3642 	s32 status;
3643 
3644 	/* get the offset to the Firmware Module block */
3645 	status = hw->rom.read16(hw, TXGBE_FW_PTR, &fw_offset);
3646 
3647 	if (status != 0 || fw_offset == 0 || fw_offset == 0xFFFF)
3648 		goto out;
3649 
3650 	/* get the offset to the LESM Parameters block */
3651 	status = hw->rom.read16(hw, (fw_offset +
3652 				     TXGBE_FW_LESM_PARAMETERS_PTR),
3653 				     &fw_lesm_param_offset);
3654 
3655 	if (status != 0 ||
3656 	    fw_lesm_param_offset == 0 || fw_lesm_param_offset == 0xFFFF)
3657 		goto out;
3658 
3659 	/* get the LESM state word */
3660 	status = hw->rom.read16(hw, (fw_lesm_param_offset +
3661 				     TXGBE_FW_LESM_STATE_1),
3662 				     &fw_lesm_state);
3663 
3664 	if (status == 0 && (fw_lesm_state & TXGBE_FW_LESM_STATE_ENABLED))
3665 		lesm_enabled = true;
3666 
3667 out:
3668 	lesm_enabled = false;
3669 	return lesm_enabled;
3670 }
3671 
3672 /**
3673  * txgbe_reset_pipeline_raptor - perform pipeline reset
3674  *
3675  *  @hw: pointer to hardware structure
3676  *
3677  * Reset pipeline by asserting Restart_AN together with LMS change to ensure
3678  * full pipeline reset.  This function assumes the SW/FW lock is held.
3679  **/
txgbe_reset_pipeline_raptor(struct txgbe_hw * hw)3680 s32 txgbe_reset_pipeline_raptor(struct txgbe_hw *hw)
3681 {
3682 	s32 err = 0;
3683 	u64 autoc;
3684 
3685 	autoc = hw->mac.autoc_read(hw);
3686 
3687 	/* Enable link if disabled in NVM */
3688 	if (autoc & TXGBE_AUTOC_LINK_DIA_MASK)
3689 		autoc &= ~TXGBE_AUTOC_LINK_DIA_MASK;
3690 
3691 	autoc |= TXGBE_AUTOC_AN_RESTART;
3692 	/* Write AUTOC register with toggled LMS[2] bit and Restart_AN */
3693 	hw->mac.autoc_write(hw, autoc ^ TXGBE_AUTOC_LMS_AN);
3694 
3695 	/* Write AUTOC register with original LMS field and Restart_AN */
3696 	hw->mac.autoc_write(hw, autoc);
3697 	txgbe_flush(hw);
3698 
3699 	return err;
3700 }
3701 
3702