1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 */
4
5 #ifndef _GNU_SOURCE
6 #define _GNU_SOURCE
7 #endif
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <stdint.h>
12 #include <inttypes.h>
13 #include <sys/types.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <getopt.h>
19 #include <sched.h>
20
21 #include <rte_common.h>
22 #include <rte_vect.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_memory.h>
26 #include <rte_memcpy.h>
27 #include <rte_eal.h>
28 #include <rte_launch.h>
29 #include <rte_atomic.h>
30 #include <rte_cycles.h>
31 #include <rte_prefetch.h>
32 #include <rte_lcore.h>
33 #include <rte_per_lcore.h>
34 #include <rte_branch_prediction.h>
35 #include <rte_interrupts.h>
36 #include <rte_random.h>
37 #include <rte_debug.h>
38 #include <rte_ether.h>
39 #include <rte_ethdev.h>
40 #include <rte_ring.h>
41 #include <rte_mempool.h>
42 #include <rte_mbuf.h>
43 #include <rte_ip.h>
44 #include <rte_tcp.h>
45 #include <rte_udp.h>
46 #include <rte_string_fns.h>
47 #include <rte_pause.h>
48 #include <rte_timer.h>
49
50 #include <cmdline_parse.h>
51 #include <cmdline_parse_etheraddr.h>
52
53 #include <lthread_api.h>
54
55 #define APP_LOOKUP_EXACT_MATCH 0
56 #define APP_LOOKUP_LPM 1
57 #define DO_RFC_1812_CHECKS
58
59 /* Enable cpu-load stats 0-off, 1-on */
60 #define APP_CPU_LOAD 1
61
62 #ifndef APP_LOOKUP_METHOD
63 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM
64 #endif
65
66 #ifndef __GLIBC__ /* sched_getcpu() is glibc specific */
67 #define sched_getcpu() rte_lcore_id()
68 #endif
69
70 static int
check_ptype(int portid)71 check_ptype(int portid)
72 {
73 int i, ret;
74 int ipv4 = 0, ipv6 = 0;
75
76 ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK, NULL,
77 0);
78 if (ret <= 0)
79 return 0;
80
81 uint32_t ptypes[ret];
82
83 ret = rte_eth_dev_get_supported_ptypes(portid, RTE_PTYPE_L3_MASK,
84 ptypes, ret);
85 for (i = 0; i < ret; ++i) {
86 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
87 ipv4 = 1;
88 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
89 ipv6 = 1;
90 }
91
92 if (ipv4 && ipv6)
93 return 1;
94
95 return 0;
96 }
97
98 static inline void
parse_ptype(struct rte_mbuf * m)99 parse_ptype(struct rte_mbuf *m)
100 {
101 struct rte_ether_hdr *eth_hdr;
102 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
103 uint16_t ether_type;
104
105 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
106 ether_type = eth_hdr->ether_type;
107 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
108 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
109 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
110 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
111
112 m->packet_type = packet_type;
113 }
114
115 static uint16_t
cb_parse_ptype(__rte_unused uint16_t port,__rte_unused uint16_t queue,struct rte_mbuf * pkts[],uint16_t nb_pkts,__rte_unused uint16_t max_pkts,__rte_unused void * user_param)116 cb_parse_ptype(__rte_unused uint16_t port, __rte_unused uint16_t queue,
117 struct rte_mbuf *pkts[], uint16_t nb_pkts,
118 __rte_unused uint16_t max_pkts, __rte_unused void *user_param)
119 {
120 unsigned int i;
121
122 for (i = 0; i < nb_pkts; i++)
123 parse_ptype(pkts[i]);
124
125 return nb_pkts;
126 }
127
128 /*
129 * When set to zero, simple forwaring path is eanbled.
130 * When set to one, optimized forwarding path is enabled.
131 * Note that LPM optimisation path uses SSE4.1 instructions.
132 */
133 #define ENABLE_MULTI_BUFFER_OPTIMIZE 1
134
135 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
136 #include <rte_hash.h>
137 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
138 #include <rte_lpm.h>
139 #include <rte_lpm6.h>
140 #else
141 #error "APP_LOOKUP_METHOD set to incorrect value"
142 #endif
143
144 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
145
146 #define MAX_JUMBO_PKT_LEN 9600
147
148 #define IPV6_ADDR_LEN 16
149
150 #define MEMPOOL_CACHE_SIZE 256
151
152 /*
153 * This expression is used to calculate the number of mbufs needed depending on
154 * user input, taking into account memory for rx and tx hardware rings, cache
155 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
156 * NB_MBUF never goes below a minimum value of 8192
157 */
158
159 #define NB_MBUF RTE_MAX(\
160 (nb_ports*nb_rx_queue*nb_rxd + \
161 nb_ports*nb_lcores*MAX_PKT_BURST + \
162 nb_ports*n_tx_queue*nb_txd + \
163 nb_lcores*MEMPOOL_CACHE_SIZE), \
164 (unsigned)8192)
165
166 #define MAX_PKT_BURST 32
167 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
168
169 /*
170 * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
171 */
172 #define MAX_TX_BURST (MAX_PKT_BURST / 2)
173 #define BURST_SIZE MAX_TX_BURST
174
175 #define NB_SOCKETS 8
176
177 /* Configure how many packets ahead to prefetch, when reading packets */
178 #define PREFETCH_OFFSET 3
179
180 /* Used to mark destination port as 'invalid'. */
181 #define BAD_PORT ((uint16_t)-1)
182
183 #define FWDSTEP 4
184
185 /*
186 * Configurable number of RX/TX ring descriptors
187 */
188 #define RTE_TEST_RX_DESC_DEFAULT 1024
189 #define RTE_TEST_TX_DESC_DEFAULT 1024
190 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
191 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
192
193 /* ethernet addresses of ports */
194 static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
195 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
196
197 static xmm_t val_eth[RTE_MAX_ETHPORTS];
198
199 /* replace first 12B of the ethernet header. */
200 #define MASK_ETH 0x3f
201
202 /* mask of enabled ports */
203 static uint32_t enabled_port_mask;
204 static int promiscuous_on; /**< Set in promiscuous mode off by default. */
205 static int numa_on = 1; /**< NUMA is enabled by default. */
206 static int parse_ptype_on;
207
208 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
209 static int ipv6; /**< ipv6 is false by default. */
210 #endif
211
212 #if (APP_CPU_LOAD == 1)
213
214 #define MAX_CPU RTE_MAX_LCORE
215 #define CPU_LOAD_TIMEOUT_US (5 * 1000 * 1000) /**< Timeout for collecting 5s */
216
217 #define CPU_PROCESS 0
218 #define CPU_POLL 1
219 #define MAX_CPU_COUNTER 2
220
221 struct cpu_load {
222 uint16_t n_cpu;
223 uint64_t counter;
224 uint64_t hits[MAX_CPU_COUNTER][MAX_CPU];
225 } __rte_cache_aligned;
226
227 static struct cpu_load cpu_load;
228 static int cpu_load_lcore_id = -1;
229
230 #define SET_CPU_BUSY(thread, counter) \
231 thread->conf.busy[counter] = 1
232
233 #define SET_CPU_IDLE(thread, counter) \
234 thread->conf.busy[counter] = 0
235
236 #define IS_CPU_BUSY(thread, counter) \
237 (thread->conf.busy[counter] > 0)
238
239 #else
240
241 #define SET_CPU_BUSY(thread, counter)
242 #define SET_CPU_IDLE(thread, counter)
243 #define IS_CPU_BUSY(thread, counter) 0
244
245 #endif
246
247 struct mbuf_table {
248 uint16_t len;
249 struct rte_mbuf *m_table[MAX_PKT_BURST];
250 };
251
252 struct lcore_rx_queue {
253 uint16_t port_id;
254 uint8_t queue_id;
255 } __rte_cache_aligned;
256
257 #define MAX_RX_QUEUE_PER_LCORE 16
258 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
259 #define MAX_RX_QUEUE_PER_PORT 128
260
261 #define MAX_LCORE_PARAMS 1024
262 struct rx_thread_params {
263 uint16_t port_id;
264 uint8_t queue_id;
265 uint8_t lcore_id;
266 uint8_t thread_id;
267 } __rte_cache_aligned;
268
269 static struct rx_thread_params rx_thread_params_array[MAX_LCORE_PARAMS];
270 static struct rx_thread_params rx_thread_params_array_default[] = {
271 {0, 0, 2, 0},
272 {0, 1, 2, 1},
273 {0, 2, 2, 2},
274 {1, 0, 2, 3},
275 {1, 1, 2, 4},
276 {1, 2, 2, 5},
277 {2, 0, 2, 6},
278 {3, 0, 3, 7},
279 {3, 1, 3, 8},
280 };
281
282 static struct rx_thread_params *rx_thread_params =
283 rx_thread_params_array_default;
284 static uint16_t nb_rx_thread_params = RTE_DIM(rx_thread_params_array_default);
285
286 struct tx_thread_params {
287 uint8_t lcore_id;
288 uint8_t thread_id;
289 } __rte_cache_aligned;
290
291 static struct tx_thread_params tx_thread_params_array[MAX_LCORE_PARAMS];
292 static struct tx_thread_params tx_thread_params_array_default[] = {
293 {4, 0},
294 {5, 1},
295 {6, 2},
296 {7, 3},
297 {8, 4},
298 {9, 5},
299 {10, 6},
300 {11, 7},
301 {12, 8},
302 };
303
304 static struct tx_thread_params *tx_thread_params =
305 tx_thread_params_array_default;
306 static uint16_t nb_tx_thread_params = RTE_DIM(tx_thread_params_array_default);
307
308 static struct rte_eth_conf port_conf = {
309 .rxmode = {
310 .mq_mode = ETH_MQ_RX_RSS,
311 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
312 .split_hdr_size = 0,
313 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
314 },
315 .rx_adv_conf = {
316 .rss_conf = {
317 .rss_key = NULL,
318 .rss_hf = ETH_RSS_TCP,
319 },
320 },
321 .txmode = {
322 .mq_mode = ETH_MQ_TX_NONE,
323 },
324 };
325
326 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
327
328 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
329
330 #include <rte_hash_crc.h>
331 #define DEFAULT_HASH_FUNC rte_hash_crc
332
333 struct ipv4_5tuple {
334 uint32_t ip_dst;
335 uint32_t ip_src;
336 uint16_t port_dst;
337 uint16_t port_src;
338 uint8_t proto;
339 } __rte_packed;
340
341 union ipv4_5tuple_host {
342 struct {
343 uint8_t pad0;
344 uint8_t proto;
345 uint16_t pad1;
346 uint32_t ip_src;
347 uint32_t ip_dst;
348 uint16_t port_src;
349 uint16_t port_dst;
350 };
351 __m128i xmm;
352 };
353
354 #define XMM_NUM_IN_IPV6_5TUPLE 3
355
356 struct ipv6_5tuple {
357 uint8_t ip_dst[IPV6_ADDR_LEN];
358 uint8_t ip_src[IPV6_ADDR_LEN];
359 uint16_t port_dst;
360 uint16_t port_src;
361 uint8_t proto;
362 } __rte_packed;
363
364 union ipv6_5tuple_host {
365 struct {
366 uint16_t pad0;
367 uint8_t proto;
368 uint8_t pad1;
369 uint8_t ip_src[IPV6_ADDR_LEN];
370 uint8_t ip_dst[IPV6_ADDR_LEN];
371 uint16_t port_src;
372 uint16_t port_dst;
373 uint64_t reserve;
374 };
375 __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
376 };
377
378 struct ipv4_l3fwd_route {
379 struct ipv4_5tuple key;
380 uint8_t if_out;
381 };
382
383 struct ipv6_l3fwd_route {
384 struct ipv6_5tuple key;
385 uint8_t if_out;
386 };
387
388 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
389 {{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
390 {{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
391 {{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
392 {{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
393 };
394
395 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
396 {{
397 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
398 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
399 0x05},
400 101, 11, IPPROTO_TCP}, 0},
401
402 {{
403 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
404 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
405 0x05},
406 102, 12, IPPROTO_TCP}, 1},
407
408 {{
409 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
410 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
411 0x05},
412 101, 11, IPPROTO_TCP}, 2},
413
414 {{
415 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
416 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38,
417 0x05},
418 102, 12, IPPROTO_TCP}, 3},
419 };
420
421 typedef struct rte_hash lookup_struct_t;
422 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
423 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
424
425 #ifdef RTE_ARCH_X86_64
426 /* default to 4 million hash entries (approx) */
427 #define L3FWD_HASH_ENTRIES (1024*1024*4)
428 #else
429 /* 32-bit has less address-space for hugepage memory, limit to 1M entries */
430 #define L3FWD_HASH_ENTRIES (1024*1024*1)
431 #endif
432 #define HASH_ENTRY_NUMBER_DEFAULT 4
433
434 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
435
436 static inline uint32_t
ipv4_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)437 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
438 uint32_t init_val)
439 {
440 const union ipv4_5tuple_host *k;
441 uint32_t t;
442 const uint32_t *p;
443
444 k = data;
445 t = k->proto;
446 p = (const uint32_t *)&k->port_src;
447
448 init_val = rte_hash_crc_4byte(t, init_val);
449 init_val = rte_hash_crc_4byte(k->ip_src, init_val);
450 init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
451 init_val = rte_hash_crc_4byte(*p, init_val);
452 return init_val;
453 }
454
455 static inline uint32_t
ipv6_hash_crc(const void * data,__rte_unused uint32_t data_len,uint32_t init_val)456 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
457 uint32_t init_val)
458 {
459 const union ipv6_5tuple_host *k;
460 uint32_t t;
461 const uint32_t *p;
462 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
463 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
464
465 k = data;
466 t = k->proto;
467 p = (const uint32_t *)&k->port_src;
468
469 ip_src0 = (const uint32_t *) k->ip_src;
470 ip_src1 = (const uint32_t *)(k->ip_src + 4);
471 ip_src2 = (const uint32_t *)(k->ip_src + 8);
472 ip_src3 = (const uint32_t *)(k->ip_src + 12);
473 ip_dst0 = (const uint32_t *) k->ip_dst;
474 ip_dst1 = (const uint32_t *)(k->ip_dst + 4);
475 ip_dst2 = (const uint32_t *)(k->ip_dst + 8);
476 ip_dst3 = (const uint32_t *)(k->ip_dst + 12);
477 init_val = rte_hash_crc_4byte(t, init_val);
478 init_val = rte_hash_crc_4byte(*ip_src0, init_val);
479 init_val = rte_hash_crc_4byte(*ip_src1, init_val);
480 init_val = rte_hash_crc_4byte(*ip_src2, init_val);
481 init_val = rte_hash_crc_4byte(*ip_src3, init_val);
482 init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
483 init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
484 init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
485 init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
486 init_val = rte_hash_crc_4byte(*p, init_val);
487 return init_val;
488 }
489
490 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
491 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
492
493 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
494 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
495
496 #endif
497
498 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
499 struct ipv4_l3fwd_route {
500 uint32_t ip;
501 uint8_t depth;
502 uint8_t if_out;
503 };
504
505 struct ipv6_l3fwd_route {
506 uint8_t ip[16];
507 uint8_t depth;
508 uint8_t if_out;
509 };
510
511 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
512 {RTE_IPV4(1, 1, 1, 0), 24, 0},
513 {RTE_IPV4(2, 1, 1, 0), 24, 1},
514 {RTE_IPV4(3, 1, 1, 0), 24, 2},
515 {RTE_IPV4(4, 1, 1, 0), 24, 3},
516 {RTE_IPV4(5, 1, 1, 0), 24, 4},
517 {RTE_IPV4(6, 1, 1, 0), 24, 5},
518 {RTE_IPV4(7, 1, 1, 0), 24, 6},
519 {RTE_IPV4(8, 1, 1, 0), 24, 7},
520 };
521
522 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
523 {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
524 {{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
525 {{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
526 {{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
527 {{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
528 {{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
529 {{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
530 {{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
531 };
532
533 #define IPV4_L3FWD_NUM_ROUTES RTE_DIM(ipv4_l3fwd_route_array)
534 #define IPV6_L3FWD_NUM_ROUTES RTE_DIM(ipv6_l3fwd_route_array)
535
536 #define IPV4_L3FWD_LPM_MAX_RULES 1024
537 #define IPV6_L3FWD_LPM_MAX_RULES 1024
538 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
539
540 typedef struct rte_lpm lookup_struct_t;
541 typedef struct rte_lpm6 lookup6_struct_t;
542 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
543 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
544 #endif
545
546 struct lcore_conf {
547 lookup_struct_t *ipv4_lookup_struct;
548 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
549 lookup6_struct_t *ipv6_lookup_struct;
550 #else
551 lookup_struct_t *ipv6_lookup_struct;
552 #endif
553 void *data;
554 } __rte_cache_aligned;
555
556 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
557 RTE_DEFINE_PER_LCORE(struct lcore_conf *, lcore_conf);
558
559 #define MAX_RX_QUEUE_PER_THREAD 16
560 #define MAX_TX_PORT_PER_THREAD RTE_MAX_ETHPORTS
561 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
562 #define MAX_RX_QUEUE_PER_PORT 128
563
564 #define MAX_RX_THREAD 1024
565 #define MAX_TX_THREAD 1024
566 #define MAX_THREAD (MAX_RX_THREAD + MAX_TX_THREAD)
567
568 /**
569 * Producers and consumers threads configuration
570 */
571 static int lthreads_on = 1; /**< Use lthreads for processing*/
572
573 rte_atomic16_t rx_counter; /**< Number of spawned rx threads */
574 rte_atomic16_t tx_counter; /**< Number of spawned tx threads */
575
576 struct thread_conf {
577 uint16_t lcore_id; /**< Initial lcore for rx thread */
578 uint16_t cpu_id; /**< Cpu id for cpu load stats counter */
579 uint16_t thread_id; /**< Thread ID */
580
581 #if (APP_CPU_LOAD > 0)
582 int busy[MAX_CPU_COUNTER];
583 #endif
584 };
585
586 struct thread_rx_conf {
587 struct thread_conf conf;
588
589 uint16_t n_rx_queue;
590 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
591
592 uint16_t n_ring; /**< Number of output rings */
593 struct rte_ring *ring[RTE_MAX_LCORE];
594 struct lthread_cond *ready[RTE_MAX_LCORE];
595
596 #if (APP_CPU_LOAD > 0)
597 int busy[MAX_CPU_COUNTER];
598 #endif
599 } __rte_cache_aligned;
600
601 uint16_t n_rx_thread;
602 struct thread_rx_conf rx_thread[MAX_RX_THREAD];
603
604 struct thread_tx_conf {
605 struct thread_conf conf;
606
607 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
608 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
609
610 struct rte_ring *ring;
611 struct lthread_cond **ready;
612
613 } __rte_cache_aligned;
614
615 uint16_t n_tx_thread;
616 struct thread_tx_conf tx_thread[MAX_TX_THREAD];
617
618 /* Send burst of packets on an output interface */
619 static inline int
send_burst(struct thread_tx_conf * qconf,uint16_t n,uint16_t port)620 send_burst(struct thread_tx_conf *qconf, uint16_t n, uint16_t port)
621 {
622 struct rte_mbuf **m_table;
623 int ret;
624 uint16_t queueid;
625
626 queueid = qconf->tx_queue_id[port];
627 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
628
629 ret = rte_eth_tx_burst(port, queueid, m_table, n);
630 if (unlikely(ret < n)) {
631 do {
632 rte_pktmbuf_free(m_table[ret]);
633 } while (++ret < n);
634 }
635
636 return 0;
637 }
638
639 /* Enqueue a single packet, and send burst if queue is filled */
640 static inline int
send_single_packet(struct rte_mbuf * m,uint16_t port)641 send_single_packet(struct rte_mbuf *m, uint16_t port)
642 {
643 uint16_t len;
644 struct thread_tx_conf *qconf;
645
646 if (lthreads_on)
647 qconf = (struct thread_tx_conf *)lthread_get_data();
648 else
649 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
650
651 len = qconf->tx_mbufs[port].len;
652 qconf->tx_mbufs[port].m_table[len] = m;
653 len++;
654
655 /* enough pkts to be sent */
656 if (unlikely(len == MAX_PKT_BURST)) {
657 send_burst(qconf, MAX_PKT_BURST, port);
658 len = 0;
659 }
660
661 qconf->tx_mbufs[port].len = len;
662 return 0;
663 }
664
665 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
666 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
667 static __rte_always_inline void
send_packetsx4(uint16_t port,struct rte_mbuf * m[],uint32_t num)668 send_packetsx4(uint16_t port,
669 struct rte_mbuf *m[], uint32_t num)
670 {
671 uint32_t len, j, n;
672 struct thread_tx_conf *qconf;
673
674 if (lthreads_on)
675 qconf = (struct thread_tx_conf *)lthread_get_data();
676 else
677 qconf = (struct thread_tx_conf *)RTE_PER_LCORE(lcore_conf)->data;
678
679 len = qconf->tx_mbufs[port].len;
680
681 /*
682 * If TX buffer for that queue is empty, and we have enough packets,
683 * then send them straightway.
684 */
685 if (num >= MAX_TX_BURST && len == 0) {
686 n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
687 if (unlikely(n < num)) {
688 do {
689 rte_pktmbuf_free(m[n]);
690 } while (++n < num);
691 }
692 return;
693 }
694
695 /*
696 * Put packets into TX buffer for that queue.
697 */
698
699 n = len + num;
700 n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
701
702 j = 0;
703 switch (n % FWDSTEP) {
704 while (j < n) {
705 case 0:
706 qconf->tx_mbufs[port].m_table[len + j] = m[j];
707 j++;
708 /* fall-through */
709 case 3:
710 qconf->tx_mbufs[port].m_table[len + j] = m[j];
711 j++;
712 /* fall-through */
713 case 2:
714 qconf->tx_mbufs[port].m_table[len + j] = m[j];
715 j++;
716 /* fall-through */
717 case 1:
718 qconf->tx_mbufs[port].m_table[len + j] = m[j];
719 j++;
720 }
721 }
722
723 len += n;
724
725 /* enough pkts to be sent */
726 if (unlikely(len == MAX_PKT_BURST)) {
727
728 send_burst(qconf, MAX_PKT_BURST, port);
729
730 /* copy rest of the packets into the TX buffer. */
731 len = num - n;
732 j = 0;
733 switch (len % FWDSTEP) {
734 while (j < len) {
735 case 0:
736 qconf->tx_mbufs[port].m_table[j] = m[n + j];
737 j++;
738 /* fall-through */
739 case 3:
740 qconf->tx_mbufs[port].m_table[j] = m[n + j];
741 j++;
742 /* fall-through */
743 case 2:
744 qconf->tx_mbufs[port].m_table[j] = m[n + j];
745 j++;
746 /* fall-through */
747 case 1:
748 qconf->tx_mbufs[port].m_table[j] = m[n + j];
749 j++;
750 }
751 }
752 }
753
754 qconf->tx_mbufs[port].len = len;
755 }
756 #endif /* APP_LOOKUP_LPM */
757
758 #ifdef DO_RFC_1812_CHECKS
759 static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr * pkt,uint32_t link_len)760 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
761 {
762 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
763 /*
764 * 1. The packet length reported by the Link Layer must be large
765 * enough to hold the minimum length legal IP datagram (20 bytes).
766 */
767 if (link_len < sizeof(struct rte_ipv4_hdr))
768 return -1;
769
770 /* 2. The IP checksum must be correct. */
771 /* this is checked in H/W */
772
773 /*
774 * 3. The IP version number must be 4. If the version number is not 4
775 * then the packet may be another version of IP, such as IPng or
776 * ST-II.
777 */
778 if (((pkt->version_ihl) >> 4) != 4)
779 return -3;
780 /*
781 * 4. The IP header length field must be large enough to hold the
782 * minimum length legal IP datagram (20 bytes = 5 words).
783 */
784 if ((pkt->version_ihl & 0xf) < 5)
785 return -4;
786
787 /*
788 * 5. The IP total length field must be large enough to hold the IP
789 * datagram header, whose length is specified in the IP header length
790 * field.
791 */
792 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
793 return -5;
794
795 return 0;
796 }
797 #endif
798
799 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
800
801 static __m128i mask0;
802 static __m128i mask1;
803 static __m128i mask2;
804 static inline uint16_t
get_ipv4_dst_port(void * ipv4_hdr,uint16_t portid,lookup_struct_t * ipv4_l3fwd_lookup_struct)805 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
806 lookup_struct_t *ipv4_l3fwd_lookup_struct)
807 {
808 int ret = 0;
809 union ipv4_5tuple_host key;
810
811 ipv4_hdr = (uint8_t *)ipv4_hdr +
812 offsetof(struct rte_ipv4_hdr, time_to_live);
813 __m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr));
814 /* Get 5 tuple: dst port, src port, dst IP address, src IP address and
815 protocol */
816 key.xmm = _mm_and_si128(data, mask0);
817 /* Find destination port */
818 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
819 return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
820 }
821
822 static inline uint16_t
get_ipv6_dst_port(void * ipv6_hdr,uint16_t portid,lookup_struct_t * ipv6_l3fwd_lookup_struct)823 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid,
824 lookup_struct_t *ipv6_l3fwd_lookup_struct)
825 {
826 int ret = 0;
827 union ipv6_5tuple_host key;
828
829 ipv6_hdr = (uint8_t *)ipv6_hdr +
830 offsetof(struct rte_ipv6_hdr, payload_len);
831 __m128i data0 = _mm_loadu_si128((__m128i *)(ipv6_hdr));
832 __m128i data1 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
833 sizeof(__m128i)));
834 __m128i data2 = _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr) +
835 sizeof(__m128i) + sizeof(__m128i)));
836 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
837 key.xmm[0] = _mm_and_si128(data0, mask1);
838 /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address
839 higher 32 bits */
840 key.xmm[1] = data1;
841 /* Get part of 5 tuple: dst port and src port and dst IP address higher
842 32 bits */
843 key.xmm[2] = _mm_and_si128(data2, mask2);
844
845 /* Find destination port */
846 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
847 return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
848 }
849 #endif
850
851 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
852
853 static inline uint16_t
get_ipv4_dst_port(void * ipv4_hdr,uint16_t portid,lookup_struct_t * ipv4_l3fwd_lookup_struct)854 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid,
855 lookup_struct_t *ipv4_l3fwd_lookup_struct)
856 {
857 uint32_t next_hop;
858
859 return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
860 rte_be_to_cpu_32(((struct rte_ipv4_hdr *)ipv4_hdr)->dst_addr),
861 &next_hop) == 0) ? next_hop : portid);
862 }
863
864 static inline uint16_t
get_ipv6_dst_port(void * ipv6_hdr,uint16_t portid,lookup6_struct_t * ipv6_l3fwd_lookup_struct)865 get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid,
866 lookup6_struct_t *ipv6_l3fwd_lookup_struct)
867 {
868 uint32_t next_hop;
869
870 return ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
871 ((struct rte_ipv6_hdr *)ipv6_hdr)->dst_addr, &next_hop) == 0) ?
872 next_hop : portid);
873 }
874 #endif
875
876 static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
877 __rte_unused;
878
879 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
880 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
881
882 #define MASK_ALL_PKTS 0xff
883 #define EXCLUDE_1ST_PKT 0xfe
884 #define EXCLUDE_2ND_PKT 0xfd
885 #define EXCLUDE_3RD_PKT 0xfb
886 #define EXCLUDE_4TH_PKT 0xf7
887 #define EXCLUDE_5TH_PKT 0xef
888 #define EXCLUDE_6TH_PKT 0xdf
889 #define EXCLUDE_7TH_PKT 0xbf
890 #define EXCLUDE_8TH_PKT 0x7f
891
892 static inline void
simple_ipv4_fwd_8pkts(struct rte_mbuf * m[8],uint16_t portid)893 simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
894 {
895 struct rte_ether_hdr *eth_hdr[8];
896 struct rte_ipv4_hdr *ipv4_hdr[8];
897 uint16_t dst_port[8];
898 int32_t ret[8];
899 union ipv4_5tuple_host key[8];
900 __m128i data[8];
901
902 eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct rte_ether_hdr *);
903 eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct rte_ether_hdr *);
904 eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct rte_ether_hdr *);
905 eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct rte_ether_hdr *);
906 eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct rte_ether_hdr *);
907 eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct rte_ether_hdr *);
908 eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct rte_ether_hdr *);
909 eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct rte_ether_hdr *);
910
911 /* Handle IPv4 headers.*/
912 ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct rte_ipv4_hdr *,
913 sizeof(struct rte_ether_hdr));
914 ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct rte_ipv4_hdr *,
915 sizeof(struct rte_ether_hdr));
916 ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct rte_ipv4_hdr *,
917 sizeof(struct rte_ether_hdr));
918 ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct rte_ipv4_hdr *,
919 sizeof(struct rte_ether_hdr));
920 ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct rte_ipv4_hdr *,
921 sizeof(struct rte_ether_hdr));
922 ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct rte_ipv4_hdr *,
923 sizeof(struct rte_ether_hdr));
924 ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct rte_ipv4_hdr *,
925 sizeof(struct rte_ether_hdr));
926 ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct rte_ipv4_hdr *,
927 sizeof(struct rte_ether_hdr));
928
929 #ifdef DO_RFC_1812_CHECKS
930 /* Check to make sure the packet is valid (RFC1812) */
931 uint8_t valid_mask = MASK_ALL_PKTS;
932
933 if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
934 rte_pktmbuf_free(m[0]);
935 valid_mask &= EXCLUDE_1ST_PKT;
936 }
937 if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
938 rte_pktmbuf_free(m[1]);
939 valid_mask &= EXCLUDE_2ND_PKT;
940 }
941 if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
942 rte_pktmbuf_free(m[2]);
943 valid_mask &= EXCLUDE_3RD_PKT;
944 }
945 if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
946 rte_pktmbuf_free(m[3]);
947 valid_mask &= EXCLUDE_4TH_PKT;
948 }
949 if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) {
950 rte_pktmbuf_free(m[4]);
951 valid_mask &= EXCLUDE_5TH_PKT;
952 }
953 if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) {
954 rte_pktmbuf_free(m[5]);
955 valid_mask &= EXCLUDE_6TH_PKT;
956 }
957 if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) {
958 rte_pktmbuf_free(m[6]);
959 valid_mask &= EXCLUDE_7TH_PKT;
960 }
961 if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) {
962 rte_pktmbuf_free(m[7]);
963 valid_mask &= EXCLUDE_8TH_PKT;
964 }
965 if (unlikely(valid_mask != MASK_ALL_PKTS)) {
966 if (valid_mask == 0)
967 return;
968
969 uint8_t i = 0;
970
971 for (i = 0; i < 8; i++)
972 if ((0x1 << i) & valid_mask)
973 l3fwd_simple_forward(m[i], portid);
974 }
975 #endif /* End of #ifdef DO_RFC_1812_CHECKS */
976
977 data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *,
978 sizeof(struct rte_ether_hdr) +
979 offsetof(struct rte_ipv4_hdr, time_to_live)));
980 data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *,
981 sizeof(struct rte_ether_hdr) +
982 offsetof(struct rte_ipv4_hdr, time_to_live)));
983 data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *,
984 sizeof(struct rte_ether_hdr) +
985 offsetof(struct rte_ipv4_hdr, time_to_live)));
986 data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *,
987 sizeof(struct rte_ether_hdr) +
988 offsetof(struct rte_ipv4_hdr, time_to_live)));
989 data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *,
990 sizeof(struct rte_ether_hdr) +
991 offsetof(struct rte_ipv4_hdr, time_to_live)));
992 data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *,
993 sizeof(struct rte_ether_hdr) +
994 offsetof(struct rte_ipv4_hdr, time_to_live)));
995 data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *,
996 sizeof(struct rte_ether_hdr) +
997 offsetof(struct rte_ipv4_hdr, time_to_live)));
998 data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *,
999 sizeof(struct rte_ether_hdr) +
1000 offsetof(struct rte_ipv4_hdr, time_to_live)));
1001
1002 key[0].xmm = _mm_and_si128(data[0], mask0);
1003 key[1].xmm = _mm_and_si128(data[1], mask0);
1004 key[2].xmm = _mm_and_si128(data[2], mask0);
1005 key[3].xmm = _mm_and_si128(data[3], mask0);
1006 key[4].xmm = _mm_and_si128(data[4], mask0);
1007 key[5].xmm = _mm_and_si128(data[5], mask0);
1008 key[6].xmm = _mm_and_si128(data[6], mask0);
1009 key[7].xmm = _mm_and_si128(data[7], mask0);
1010
1011 const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1012 &key[4], &key[5], &key[6], &key[7]};
1013
1014 rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct,
1015 &key_array[0], 8, ret);
1016 dst_port[0] = ((ret[0] < 0) ? portid : ipv4_l3fwd_out_if[ret[0]]);
1017 dst_port[1] = ((ret[1] < 0) ? portid : ipv4_l3fwd_out_if[ret[1]]);
1018 dst_port[2] = ((ret[2] < 0) ? portid : ipv4_l3fwd_out_if[ret[2]]);
1019 dst_port[3] = ((ret[3] < 0) ? portid : ipv4_l3fwd_out_if[ret[3]]);
1020 dst_port[4] = ((ret[4] < 0) ? portid : ipv4_l3fwd_out_if[ret[4]]);
1021 dst_port[5] = ((ret[5] < 0) ? portid : ipv4_l3fwd_out_if[ret[5]]);
1022 dst_port[6] = ((ret[6] < 0) ? portid : ipv4_l3fwd_out_if[ret[6]]);
1023 dst_port[7] = ((ret[7] < 0) ? portid : ipv4_l3fwd_out_if[ret[7]]);
1024
1025 if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1026 (enabled_port_mask & 1 << dst_port[0]) == 0)
1027 dst_port[0] = portid;
1028 if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1029 (enabled_port_mask & 1 << dst_port[1]) == 0)
1030 dst_port[1] = portid;
1031 if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1032 (enabled_port_mask & 1 << dst_port[2]) == 0)
1033 dst_port[2] = portid;
1034 if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1035 (enabled_port_mask & 1 << dst_port[3]) == 0)
1036 dst_port[3] = portid;
1037 if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1038 (enabled_port_mask & 1 << dst_port[4]) == 0)
1039 dst_port[4] = portid;
1040 if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1041 (enabled_port_mask & 1 << dst_port[5]) == 0)
1042 dst_port[5] = portid;
1043 if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1044 (enabled_port_mask & 1 << dst_port[6]) == 0)
1045 dst_port[6] = portid;
1046 if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1047 (enabled_port_mask & 1 << dst_port[7]) == 0)
1048 dst_port[7] = portid;
1049
1050 #ifdef DO_RFC_1812_CHECKS
1051 /* Update time to live and header checksum */
1052 --(ipv4_hdr[0]->time_to_live);
1053 --(ipv4_hdr[1]->time_to_live);
1054 --(ipv4_hdr[2]->time_to_live);
1055 --(ipv4_hdr[3]->time_to_live);
1056 ++(ipv4_hdr[0]->hdr_checksum);
1057 ++(ipv4_hdr[1]->hdr_checksum);
1058 ++(ipv4_hdr[2]->hdr_checksum);
1059 ++(ipv4_hdr[3]->hdr_checksum);
1060 --(ipv4_hdr[4]->time_to_live);
1061 --(ipv4_hdr[5]->time_to_live);
1062 --(ipv4_hdr[6]->time_to_live);
1063 --(ipv4_hdr[7]->time_to_live);
1064 ++(ipv4_hdr[4]->hdr_checksum);
1065 ++(ipv4_hdr[5]->hdr_checksum);
1066 ++(ipv4_hdr[6]->hdr_checksum);
1067 ++(ipv4_hdr[7]->hdr_checksum);
1068 #endif
1069
1070 /* dst addr */
1071 *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1072 *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1073 *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1074 *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1075 *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1076 *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1077 *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1078 *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1079
1080 /* src addr */
1081 rte_ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
1082 rte_ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
1083 rte_ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
1084 rte_ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
1085 rte_ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr);
1086 rte_ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr);
1087 rte_ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr);
1088 rte_ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr);
1089
1090 send_single_packet(m[0], (uint8_t)dst_port[0]);
1091 send_single_packet(m[1], (uint8_t)dst_port[1]);
1092 send_single_packet(m[2], (uint8_t)dst_port[2]);
1093 send_single_packet(m[3], (uint8_t)dst_port[3]);
1094 send_single_packet(m[4], (uint8_t)dst_port[4]);
1095 send_single_packet(m[5], (uint8_t)dst_port[5]);
1096 send_single_packet(m[6], (uint8_t)dst_port[6]);
1097 send_single_packet(m[7], (uint8_t)dst_port[7]);
1098
1099 }
1100
get_ipv6_5tuple(struct rte_mbuf * m0,__m128i mask0,__m128i mask1,union ipv6_5tuple_host * key)1101 static inline void get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0,
1102 __m128i mask1, union ipv6_5tuple_host *key)
1103 {
1104 __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1105 __m128i *, sizeof(struct rte_ether_hdr) +
1106 offsetof(struct rte_ipv6_hdr, payload_len)));
1107 __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1108 __m128i *, sizeof(struct rte_ether_hdr) +
1109 offsetof(struct rte_ipv6_hdr, payload_len) +
1110 sizeof(__m128i)));
1111 __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0,
1112 __m128i *, sizeof(struct rte_ether_hdr) +
1113 offsetof(struct rte_ipv6_hdr, payload_len) +
1114 sizeof(__m128i) + sizeof(__m128i)));
1115 key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
1116 key->xmm[1] = tmpdata1;
1117 key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
1118 }
1119
1120 static inline void
simple_ipv6_fwd_8pkts(struct rte_mbuf * m[8],uint16_t portid)1121 simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint16_t portid)
1122 {
1123 int32_t ret[8];
1124 uint16_t dst_port[8];
1125 struct rte_ether_hdr *eth_hdr[8];
1126 union ipv6_5tuple_host key[8];
1127
1128 __rte_unused struct rte_ipv6_hdr *ipv6_hdr[8];
1129
1130 eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct rte_ether_hdr *);
1131 eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct rte_ether_hdr *);
1132 eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct rte_ether_hdr *);
1133 eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct rte_ether_hdr *);
1134 eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct rte_ether_hdr *);
1135 eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct rte_ether_hdr *);
1136 eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct rte_ether_hdr *);
1137 eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct rte_ether_hdr *);
1138
1139 /* Handle IPv6 headers.*/
1140 ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct rte_ipv6_hdr *,
1141 sizeof(struct rte_ether_hdr));
1142 ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct rte_ipv6_hdr *,
1143 sizeof(struct rte_ether_hdr));
1144 ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct rte_ipv6_hdr *,
1145 sizeof(struct rte_ether_hdr));
1146 ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct rte_ipv6_hdr *,
1147 sizeof(struct rte_ether_hdr));
1148 ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct rte_ipv6_hdr *,
1149 sizeof(struct rte_ether_hdr));
1150 ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct rte_ipv6_hdr *,
1151 sizeof(struct rte_ether_hdr));
1152 ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct rte_ipv6_hdr *,
1153 sizeof(struct rte_ether_hdr));
1154 ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct rte_ipv6_hdr *,
1155 sizeof(struct rte_ether_hdr));
1156
1157 get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
1158 get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
1159 get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
1160 get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
1161 get_ipv6_5tuple(m[4], mask1, mask2, &key[4]);
1162 get_ipv6_5tuple(m[5], mask1, mask2, &key[5]);
1163 get_ipv6_5tuple(m[6], mask1, mask2, &key[6]);
1164 get_ipv6_5tuple(m[7], mask1, mask2, &key[7]);
1165
1166 const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
1167 &key[4], &key[5], &key[6], &key[7]};
1168
1169 rte_hash_lookup_bulk(RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1170 &key_array[0], 4, ret);
1171 dst_port[0] = ((ret[0] < 0) ? portid : ipv6_l3fwd_out_if[ret[0]]);
1172 dst_port[1] = ((ret[1] < 0) ? portid : ipv6_l3fwd_out_if[ret[1]]);
1173 dst_port[2] = ((ret[2] < 0) ? portid : ipv6_l3fwd_out_if[ret[2]]);
1174 dst_port[3] = ((ret[3] < 0) ? portid : ipv6_l3fwd_out_if[ret[3]]);
1175 dst_port[4] = ((ret[4] < 0) ? portid : ipv6_l3fwd_out_if[ret[4]]);
1176 dst_port[5] = ((ret[5] < 0) ? portid : ipv6_l3fwd_out_if[ret[5]]);
1177 dst_port[6] = ((ret[6] < 0) ? portid : ipv6_l3fwd_out_if[ret[6]]);
1178 dst_port[7] = ((ret[7] < 0) ? portid : ipv6_l3fwd_out_if[ret[7]]);
1179
1180 if (dst_port[0] >= RTE_MAX_ETHPORTS ||
1181 (enabled_port_mask & 1 << dst_port[0]) == 0)
1182 dst_port[0] = portid;
1183 if (dst_port[1] >= RTE_MAX_ETHPORTS ||
1184 (enabled_port_mask & 1 << dst_port[1]) == 0)
1185 dst_port[1] = portid;
1186 if (dst_port[2] >= RTE_MAX_ETHPORTS ||
1187 (enabled_port_mask & 1 << dst_port[2]) == 0)
1188 dst_port[2] = portid;
1189 if (dst_port[3] >= RTE_MAX_ETHPORTS ||
1190 (enabled_port_mask & 1 << dst_port[3]) == 0)
1191 dst_port[3] = portid;
1192 if (dst_port[4] >= RTE_MAX_ETHPORTS ||
1193 (enabled_port_mask & 1 << dst_port[4]) == 0)
1194 dst_port[4] = portid;
1195 if (dst_port[5] >= RTE_MAX_ETHPORTS ||
1196 (enabled_port_mask & 1 << dst_port[5]) == 0)
1197 dst_port[5] = portid;
1198 if (dst_port[6] >= RTE_MAX_ETHPORTS ||
1199 (enabled_port_mask & 1 << dst_port[6]) == 0)
1200 dst_port[6] = portid;
1201 if (dst_port[7] >= RTE_MAX_ETHPORTS ||
1202 (enabled_port_mask & 1 << dst_port[7]) == 0)
1203 dst_port[7] = portid;
1204
1205 /* dst addr */
1206 *(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
1207 *(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
1208 *(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
1209 *(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
1210 *(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
1211 *(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
1212 *(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
1213 *(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
1214
1215 /* src addr */
1216 rte_ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
1217 rte_ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
1218 rte_ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
1219 rte_ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
1220 rte_ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr);
1221 rte_ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr);
1222 rte_ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr);
1223 rte_ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr);
1224
1225 send_single_packet(m[0], dst_port[0]);
1226 send_single_packet(m[1], dst_port[1]);
1227 send_single_packet(m[2], dst_port[2]);
1228 send_single_packet(m[3], dst_port[3]);
1229 send_single_packet(m[4], dst_port[4]);
1230 send_single_packet(m[5], dst_port[5]);
1231 send_single_packet(m[6], dst_port[6]);
1232 send_single_packet(m[7], dst_port[7]);
1233
1234 }
1235 #endif /* APP_LOOKUP_METHOD */
1236
1237 static __rte_always_inline void
l3fwd_simple_forward(struct rte_mbuf * m,uint16_t portid)1238 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid)
1239 {
1240 struct rte_ether_hdr *eth_hdr;
1241 struct rte_ipv4_hdr *ipv4_hdr;
1242 uint16_t dst_port;
1243
1244 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1245
1246 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1247 /* Handle IPv4 headers.*/
1248 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
1249 sizeof(struct rte_ether_hdr));
1250
1251 #ifdef DO_RFC_1812_CHECKS
1252 /* Check to make sure the packet is valid (RFC1812) */
1253 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
1254 rte_pktmbuf_free(m);
1255 return;
1256 }
1257 #endif
1258
1259 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
1260 RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct);
1261 if (dst_port >= RTE_MAX_ETHPORTS ||
1262 (enabled_port_mask & 1 << dst_port) == 0)
1263 dst_port = portid;
1264
1265 #ifdef DO_RFC_1812_CHECKS
1266 /* Update time to live and header checksum */
1267 --(ipv4_hdr->time_to_live);
1268 ++(ipv4_hdr->hdr_checksum);
1269 #endif
1270 /* dst addr */
1271 *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
1272
1273 /* src addr */
1274 rte_ether_addr_copy(&ports_eth_addr[dst_port],
1275 ð_hdr->s_addr);
1276
1277 send_single_packet(m, dst_port);
1278 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1279 /* Handle IPv6 headers.*/
1280 struct rte_ipv6_hdr *ipv6_hdr;
1281
1282 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
1283 sizeof(struct rte_ether_hdr));
1284
1285 dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
1286 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct);
1287
1288 if (dst_port >= RTE_MAX_ETHPORTS ||
1289 (enabled_port_mask & 1 << dst_port) == 0)
1290 dst_port = portid;
1291
1292 /* dst addr */
1293 *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
1294
1295 /* src addr */
1296 rte_ether_addr_copy(&ports_eth_addr[dst_port],
1297 ð_hdr->s_addr);
1298
1299 send_single_packet(m, dst_port);
1300 } else
1301 /* Free the mbuf that contains non-IPV4/IPV6 packet */
1302 rte_pktmbuf_free(m);
1303 }
1304
1305 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1306 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1307 #ifdef DO_RFC_1812_CHECKS
1308
1309 #define IPV4_MIN_VER_IHL 0x45
1310 #define IPV4_MAX_VER_IHL 0x4f
1311 #define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
1312
1313 /* Minimum value of IPV4 total length (20B) in network byte order. */
1314 #define IPV4_MIN_LEN_BE (sizeof(struct rte_ipv4_hdr) << 8)
1315
1316 /*
1317 * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
1318 * - The IP version number must be 4.
1319 * - The IP header length field must be large enough to hold the
1320 * minimum length legal IP datagram (20 bytes = 5 words).
1321 * - The IP total length field must be large enough to hold the IP
1322 * datagram header, whose length is specified in the IP header length
1323 * field.
1324 * If we encounter invalid IPV4 packet, then set destination port for it
1325 * to BAD_PORT value.
1326 */
1327 static __rte_always_inline void
rfc1812_process(struct rte_ipv4_hdr * ipv4_hdr,uint16_t * dp,uint32_t ptype)1328 rfc1812_process(struct rte_ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
1329 {
1330 uint8_t ihl;
1331
1332 if (RTE_ETH_IS_IPV4_HDR(ptype)) {
1333 ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
1334
1335 ipv4_hdr->time_to_live--;
1336 ipv4_hdr->hdr_checksum++;
1337
1338 if (ihl > IPV4_MAX_VER_IHL_DIFF ||
1339 ((uint8_t)ipv4_hdr->total_length == 0 &&
1340 ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
1341 dp[0] = BAD_PORT;
1342 }
1343 }
1344 }
1345
1346 #else
1347 #define rfc1812_process(mb, dp, ptype) do { } while (0)
1348 #endif /* DO_RFC_1812_CHECKS */
1349 #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */
1350
1351
1352 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1353 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1354
1355 static __rte_always_inline uint16_t
get_dst_port(struct rte_mbuf * pkt,uint32_t dst_ipv4,uint16_t portid)1356 get_dst_port(struct rte_mbuf *pkt, uint32_t dst_ipv4, uint16_t portid)
1357 {
1358 uint32_t next_hop;
1359 struct rte_ipv6_hdr *ipv6_hdr;
1360 struct rte_ether_hdr *eth_hdr;
1361
1362 if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
1363 return (uint16_t) ((rte_lpm_lookup(
1364 RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dst_ipv4,
1365 &next_hop) == 0) ? next_hop : portid);
1366
1367 } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
1368
1369 eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
1370 ipv6_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
1371
1372 return (uint16_t) ((rte_lpm6_lookup(
1373 RTE_PER_LCORE(lcore_conf)->ipv6_lookup_struct,
1374 ipv6_hdr->dst_addr, &next_hop) == 0) ?
1375 next_hop : portid);
1376
1377 }
1378
1379 return portid;
1380 }
1381
1382 static inline void
process_packet(struct rte_mbuf * pkt,uint16_t * dst_port,uint16_t portid)1383 process_packet(struct rte_mbuf *pkt, uint16_t *dst_port, uint16_t portid)
1384 {
1385 struct rte_ether_hdr *eth_hdr;
1386 struct rte_ipv4_hdr *ipv4_hdr;
1387 uint32_t dst_ipv4;
1388 uint16_t dp;
1389 __m128i te, ve;
1390
1391 eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
1392 ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
1393
1394 dst_ipv4 = ipv4_hdr->dst_addr;
1395 dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
1396 dp = get_dst_port(pkt, dst_ipv4, portid);
1397
1398 te = _mm_load_si128((__m128i *)eth_hdr);
1399 ve = val_eth[dp];
1400
1401 dst_port[0] = dp;
1402 rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type);
1403
1404 te = _mm_blend_epi16(te, ve, MASK_ETH);
1405 _mm_store_si128((__m128i *)eth_hdr, te);
1406 }
1407
1408 /*
1409 * Read packet_type and destination IPV4 addresses from 4 mbufs.
1410 */
1411 static inline void
processx4_step1(struct rte_mbuf * pkt[FWDSTEP],__m128i * dip,uint32_t * ipv4_flag)1412 processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
1413 __m128i *dip,
1414 uint32_t *ipv4_flag)
1415 {
1416 struct rte_ipv4_hdr *ipv4_hdr;
1417 struct rte_ether_hdr *eth_hdr;
1418 uint32_t x0, x1, x2, x3;
1419
1420 eth_hdr = rte_pktmbuf_mtod(pkt[0], struct rte_ether_hdr *);
1421 ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
1422 x0 = ipv4_hdr->dst_addr;
1423 ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;
1424
1425 eth_hdr = rte_pktmbuf_mtod(pkt[1], struct rte_ether_hdr *);
1426 ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
1427 x1 = ipv4_hdr->dst_addr;
1428 ipv4_flag[0] &= pkt[1]->packet_type;
1429
1430 eth_hdr = rte_pktmbuf_mtod(pkt[2], struct rte_ether_hdr *);
1431 ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
1432 x2 = ipv4_hdr->dst_addr;
1433 ipv4_flag[0] &= pkt[2]->packet_type;
1434
1435 eth_hdr = rte_pktmbuf_mtod(pkt[3], struct rte_ether_hdr *);
1436 ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
1437 x3 = ipv4_hdr->dst_addr;
1438 ipv4_flag[0] &= pkt[3]->packet_type;
1439
1440 dip[0] = _mm_set_epi32(x3, x2, x1, x0);
1441 }
1442
1443 /*
1444 * Lookup into LPM for destination port.
1445 * If lookup fails, use incoming port (portid) as destination port.
1446 */
1447 static inline void
processx4_step2(__m128i dip,uint32_t ipv4_flag,uint16_t portid,struct rte_mbuf * pkt[FWDSTEP],uint16_t dprt[FWDSTEP])1448 processx4_step2(__m128i dip,
1449 uint32_t ipv4_flag,
1450 uint16_t portid,
1451 struct rte_mbuf *pkt[FWDSTEP],
1452 uint16_t dprt[FWDSTEP])
1453 {
1454 rte_xmm_t dst;
1455 const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
1456 4, 5, 6, 7, 0, 1, 2, 3);
1457
1458 /* Byte swap 4 IPV4 addresses. */
1459 dip = _mm_shuffle_epi8(dip, bswap_mask);
1460
1461 /* if all 4 packets are IPV4. */
1462 if (likely(ipv4_flag)) {
1463 rte_lpm_lookupx4(RTE_PER_LCORE(lcore_conf)->ipv4_lookup_struct, dip,
1464 dst.u32, portid);
1465
1466 /* get rid of unused upper 16 bit for each dport. */
1467 dst.x = _mm_packs_epi32(dst.x, dst.x);
1468 *(uint64_t *)dprt = dst.u64[0];
1469 } else {
1470 dst.x = dip;
1471 dprt[0] = get_dst_port(pkt[0], dst.u32[0], portid);
1472 dprt[1] = get_dst_port(pkt[1], dst.u32[1], portid);
1473 dprt[2] = get_dst_port(pkt[2], dst.u32[2], portid);
1474 dprt[3] = get_dst_port(pkt[3], dst.u32[3], portid);
1475 }
1476 }
1477
1478 /*
1479 * Update source and destination MAC addresses in the ethernet header.
1480 * Perform RFC1812 checks and updates for IPV4 packets.
1481 */
1482 static inline void
processx4_step3(struct rte_mbuf * pkt[FWDSTEP],uint16_t dst_port[FWDSTEP])1483 processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
1484 {
1485 __m128i te[FWDSTEP];
1486 __m128i ve[FWDSTEP];
1487 __m128i *p[FWDSTEP];
1488
1489 p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
1490 p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
1491 p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
1492 p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
1493
1494 ve[0] = val_eth[dst_port[0]];
1495 te[0] = _mm_load_si128(p[0]);
1496
1497 ve[1] = val_eth[dst_port[1]];
1498 te[1] = _mm_load_si128(p[1]);
1499
1500 ve[2] = val_eth[dst_port[2]];
1501 te[2] = _mm_load_si128(p[2]);
1502
1503 ve[3] = val_eth[dst_port[3]];
1504 te[3] = _mm_load_si128(p[3]);
1505
1506 /* Update first 12 bytes, keep rest bytes intact. */
1507 te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
1508 te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
1509 te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
1510 te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
1511
1512 _mm_store_si128(p[0], te[0]);
1513 _mm_store_si128(p[1], te[1]);
1514 _mm_store_si128(p[2], te[2]);
1515 _mm_store_si128(p[3], te[3]);
1516
1517 rfc1812_process((struct rte_ipv4_hdr *)
1518 ((struct rte_ether_hdr *)p[0] + 1),
1519 &dst_port[0], pkt[0]->packet_type);
1520 rfc1812_process((struct rte_ipv4_hdr *)
1521 ((struct rte_ether_hdr *)p[1] + 1),
1522 &dst_port[1], pkt[1]->packet_type);
1523 rfc1812_process((struct rte_ipv4_hdr *)
1524 ((struct rte_ether_hdr *)p[2] + 1),
1525 &dst_port[2], pkt[2]->packet_type);
1526 rfc1812_process((struct rte_ipv4_hdr *)
1527 ((struct rte_ether_hdr *)p[3] + 1),
1528 &dst_port[3], pkt[3]->packet_type);
1529 }
1530
1531 /*
1532 * We group consecutive packets with the same destionation port into one burst.
1533 * To avoid extra latency this is done together with some other packet
1534 * processing, but after we made a final decision about packet's destination.
1535 * To do this we maintain:
1536 * pnum - array of number of consecutive packets with the same dest port for
1537 * each packet in the input burst.
1538 * lp - pointer to the last updated element in the pnum.
1539 * dlp - dest port value lp corresponds to.
1540 */
1541
1542 #define GRPSZ (1 << FWDSTEP)
1543 #define GRPMSK (GRPSZ - 1)
1544
1545 #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \
1546 if (likely((dlp) == (dcp)[(idx)])) { \
1547 (lp)[0]++; \
1548 } else { \
1549 (dlp) = (dcp)[idx]; \
1550 (lp) = (pn) + (idx); \
1551 (lp)[0] = 1; \
1552 } \
1553 } while (0)
1554
1555 /*
1556 * Group consecutive packets with the same destination port in bursts of 4.
1557 * Suppose we have array of destionation ports:
1558 * dst_port[] = {a, b, c, d,, e, ... }
1559 * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
1560 * We doing 4 comparisons at once and the result is 4 bit mask.
1561 * This mask is used as an index into prebuild array of pnum values.
1562 */
1563 static inline uint16_t *
port_groupx4(uint16_t pn[FWDSTEP+1],uint16_t * lp,__m128i dp1,__m128i dp2)1564 port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
1565 {
1566 static const struct {
1567 uint64_t pnum; /* prebuild 4 values for pnum[]. */
1568 int32_t idx; /* index for new last updated elemnet. */
1569 uint16_t lpv; /* add value to the last updated element. */
1570 } gptbl[GRPSZ] = {
1571 {
1572 /* 0: a != b, b != c, c != d, d != e */
1573 .pnum = UINT64_C(0x0001000100010001),
1574 .idx = 4,
1575 .lpv = 0,
1576 },
1577 {
1578 /* 1: a == b, b != c, c != d, d != e */
1579 .pnum = UINT64_C(0x0001000100010002),
1580 .idx = 4,
1581 .lpv = 1,
1582 },
1583 {
1584 /* 2: a != b, b == c, c != d, d != e */
1585 .pnum = UINT64_C(0x0001000100020001),
1586 .idx = 4,
1587 .lpv = 0,
1588 },
1589 {
1590 /* 3: a == b, b == c, c != d, d != e */
1591 .pnum = UINT64_C(0x0001000100020003),
1592 .idx = 4,
1593 .lpv = 2,
1594 },
1595 {
1596 /* 4: a != b, b != c, c == d, d != e */
1597 .pnum = UINT64_C(0x0001000200010001),
1598 .idx = 4,
1599 .lpv = 0,
1600 },
1601 {
1602 /* 5: a == b, b != c, c == d, d != e */
1603 .pnum = UINT64_C(0x0001000200010002),
1604 .idx = 4,
1605 .lpv = 1,
1606 },
1607 {
1608 /* 6: a != b, b == c, c == d, d != e */
1609 .pnum = UINT64_C(0x0001000200030001),
1610 .idx = 4,
1611 .lpv = 0,
1612 },
1613 {
1614 /* 7: a == b, b == c, c == d, d != e */
1615 .pnum = UINT64_C(0x0001000200030004),
1616 .idx = 4,
1617 .lpv = 3,
1618 },
1619 {
1620 /* 8: a != b, b != c, c != d, d == e */
1621 .pnum = UINT64_C(0x0002000100010001),
1622 .idx = 3,
1623 .lpv = 0,
1624 },
1625 {
1626 /* 9: a == b, b != c, c != d, d == e */
1627 .pnum = UINT64_C(0x0002000100010002),
1628 .idx = 3,
1629 .lpv = 1,
1630 },
1631 {
1632 /* 0xa: a != b, b == c, c != d, d == e */
1633 .pnum = UINT64_C(0x0002000100020001),
1634 .idx = 3,
1635 .lpv = 0,
1636 },
1637 {
1638 /* 0xb: a == b, b == c, c != d, d == e */
1639 .pnum = UINT64_C(0x0002000100020003),
1640 .idx = 3,
1641 .lpv = 2,
1642 },
1643 {
1644 /* 0xc: a != b, b != c, c == d, d == e */
1645 .pnum = UINT64_C(0x0002000300010001),
1646 .idx = 2,
1647 .lpv = 0,
1648 },
1649 {
1650 /* 0xd: a == b, b != c, c == d, d == e */
1651 .pnum = UINT64_C(0x0002000300010002),
1652 .idx = 2,
1653 .lpv = 1,
1654 },
1655 {
1656 /* 0xe: a != b, b == c, c == d, d == e */
1657 .pnum = UINT64_C(0x0002000300040001),
1658 .idx = 1,
1659 .lpv = 0,
1660 },
1661 {
1662 /* 0xf: a == b, b == c, c == d, d == e */
1663 .pnum = UINT64_C(0x0002000300040005),
1664 .idx = 0,
1665 .lpv = 4,
1666 },
1667 };
1668
1669 union {
1670 uint16_t u16[FWDSTEP + 1];
1671 uint64_t u64;
1672 } *pnum = (void *)pn;
1673
1674 int32_t v;
1675
1676 dp1 = _mm_cmpeq_epi16(dp1, dp2);
1677 dp1 = _mm_unpacklo_epi16(dp1, dp1);
1678 v = _mm_movemask_ps((__m128)dp1);
1679
1680 /* update last port counter. */
1681 lp[0] += gptbl[v].lpv;
1682
1683 /* if dest port value has changed. */
1684 if (v != GRPMSK) {
1685 pnum->u64 = gptbl[v].pnum;
1686 pnum->u16[FWDSTEP] = 1;
1687 lp = pnum->u16 + gptbl[v].idx;
1688 }
1689
1690 return lp;
1691 }
1692
1693 #endif /* APP_LOOKUP_METHOD */
1694
1695 static void
process_burst(struct rte_mbuf * pkts_burst[MAX_PKT_BURST],int nb_rx,uint16_t portid)1696 process_burst(struct rte_mbuf *pkts_burst[MAX_PKT_BURST], int nb_rx,
1697 uint16_t portid)
1698 {
1699
1700 int j;
1701
1702 #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
1703 (ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
1704 int32_t k;
1705 uint16_t dlp;
1706 uint16_t *lp;
1707 uint16_t dst_port[MAX_PKT_BURST];
1708 __m128i dip[MAX_PKT_BURST / FWDSTEP];
1709 uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
1710 uint16_t pnum[MAX_PKT_BURST + 1];
1711 #endif
1712
1713
1714 #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
1715 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1716 {
1717 /*
1718 * Send nb_rx - nb_rx%8 packets
1719 * in groups of 8.
1720 */
1721 int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8);
1722
1723 for (j = 0; j < n; j += 8) {
1724 uint32_t pkt_type =
1725 pkts_burst[j]->packet_type &
1726 pkts_burst[j+1]->packet_type &
1727 pkts_burst[j+2]->packet_type &
1728 pkts_burst[j+3]->packet_type &
1729 pkts_burst[j+4]->packet_type &
1730 pkts_burst[j+5]->packet_type &
1731 pkts_burst[j+6]->packet_type &
1732 pkts_burst[j+7]->packet_type;
1733 if (pkt_type & RTE_PTYPE_L3_IPV4) {
1734 simple_ipv4_fwd_8pkts(&pkts_burst[j], portid);
1735 } else if (pkt_type &
1736 RTE_PTYPE_L3_IPV6) {
1737 simple_ipv6_fwd_8pkts(&pkts_burst[j], portid);
1738 } else {
1739 l3fwd_simple_forward(pkts_burst[j], portid);
1740 l3fwd_simple_forward(pkts_burst[j+1], portid);
1741 l3fwd_simple_forward(pkts_burst[j+2], portid);
1742 l3fwd_simple_forward(pkts_burst[j+3], portid);
1743 l3fwd_simple_forward(pkts_burst[j+4], portid);
1744 l3fwd_simple_forward(pkts_burst[j+5], portid);
1745 l3fwd_simple_forward(pkts_burst[j+6], portid);
1746 l3fwd_simple_forward(pkts_burst[j+7], portid);
1747 }
1748 }
1749 for (; j < nb_rx ; j++)
1750 l3fwd_simple_forward(pkts_burst[j], portid);
1751 }
1752 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1753
1754 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1755 for (j = 0; j != k; j += FWDSTEP)
1756 processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP],
1757 &ipv4_flag[j / FWDSTEP]);
1758
1759 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1760 for (j = 0; j != k; j += FWDSTEP)
1761 processx4_step2(dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP],
1762 portid, &pkts_burst[j], &dst_port[j]);
1763
1764 /*
1765 * Finish packet processing and group consecutive
1766 * packets with the same destination port.
1767 */
1768 k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
1769 if (k != 0) {
1770 __m128i dp1, dp2;
1771
1772 lp = pnum;
1773 lp[0] = 1;
1774
1775 processx4_step3(pkts_burst, dst_port);
1776
1777 /* dp1: <d[0], d[1], d[2], d[3], ... > */
1778 dp1 = _mm_loadu_si128((__m128i *)dst_port);
1779
1780 for (j = FWDSTEP; j != k; j += FWDSTEP) {
1781 processx4_step3(&pkts_burst[j], &dst_port[j]);
1782
1783 /*
1784 * dp2:
1785 * <d[j-3], d[j-2], d[j-1], d[j], ... >
1786 */
1787 dp2 = _mm_loadu_si128(
1788 (__m128i *)&dst_port[j - FWDSTEP + 1]);
1789 lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1790
1791 /*
1792 * dp1:
1793 * <d[j], d[j+1], d[j+2], d[j+3], ... >
1794 */
1795 dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
1796 sizeof(dst_port[0]));
1797 }
1798
1799 /*
1800 * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
1801 */
1802 dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
1803 lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
1804
1805 /*
1806 * remove values added by the last repeated
1807 * dst port.
1808 */
1809 lp[0]--;
1810 dlp = dst_port[j - 1];
1811 } else {
1812 /* set dlp and lp to the never used values. */
1813 dlp = BAD_PORT - 1;
1814 lp = pnum + MAX_PKT_BURST;
1815 }
1816
1817 /* Process up to last 3 packets one by one. */
1818 switch (nb_rx % FWDSTEP) {
1819 case 3:
1820 process_packet(pkts_burst[j], dst_port + j, portid);
1821 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1822 j++;
1823 /* fall-through */
1824 case 2:
1825 process_packet(pkts_burst[j], dst_port + j, portid);
1826 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1827 j++;
1828 /* fall-through */
1829 case 1:
1830 process_packet(pkts_burst[j], dst_port + j, portid);
1831 GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
1832 j++;
1833 }
1834
1835 /*
1836 * Send packets out, through destination port.
1837 * Consecuteve pacekts with the same destination port
1838 * are already grouped together.
1839 * If destination port for the packet equals BAD_PORT,
1840 * then free the packet without sending it out.
1841 */
1842 for (j = 0; j < nb_rx; j += k) {
1843
1844 int32_t m;
1845 uint16_t pn;
1846
1847 pn = dst_port[j];
1848 k = pnum[j];
1849
1850 if (likely(pn != BAD_PORT))
1851 send_packetsx4(pn, pkts_burst + j, k);
1852 else
1853 for (m = j; m != j + k; m++)
1854 rte_pktmbuf_free(pkts_burst[m]);
1855
1856 }
1857
1858 #endif /* APP_LOOKUP_METHOD */
1859 #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
1860
1861 /* Prefetch first packets */
1862 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++)
1863 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
1864
1865 /* Prefetch and forward already prefetched packets */
1866 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1867 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1868 j + PREFETCH_OFFSET], void *));
1869 l3fwd_simple_forward(pkts_burst[j], portid);
1870 }
1871
1872 /* Forward remaining prefetched packets */
1873 for (; j < nb_rx; j++)
1874 l3fwd_simple_forward(pkts_burst[j], portid);
1875
1876 #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
1877
1878 }
1879
1880 #if (APP_CPU_LOAD > 0)
1881
1882 /*
1883 * CPU-load stats collector
1884 */
1885 static int __rte_noreturn
cpu_load_collector(__rte_unused void * arg)1886 cpu_load_collector(__rte_unused void *arg) {
1887 unsigned i, j, k;
1888 uint64_t hits;
1889 uint64_t prev_tsc, diff_tsc, cur_tsc;
1890 uint64_t total[MAX_CPU] = { 0 };
1891 unsigned min_cpu = MAX_CPU;
1892 unsigned max_cpu = 0;
1893 unsigned cpu_id;
1894 int busy_total = 0;
1895 int busy_flag = 0;
1896
1897 unsigned int n_thread_per_cpu[MAX_CPU] = { 0 };
1898 struct thread_conf *thread_per_cpu[MAX_CPU][MAX_THREAD];
1899
1900 struct thread_conf *thread_conf;
1901
1902 const uint64_t interval_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1903 US_PER_S * CPU_LOAD_TIMEOUT_US;
1904
1905 prev_tsc = 0;
1906 /*
1907 * Wait for all threads
1908 */
1909
1910 printf("Waiting for %d rx threads and %d tx threads\n", n_rx_thread,
1911 n_tx_thread);
1912
1913 while (rte_atomic16_read(&rx_counter) < n_rx_thread)
1914 rte_pause();
1915
1916 while (rte_atomic16_read(&tx_counter) < n_tx_thread)
1917 rte_pause();
1918
1919 for (i = 0; i < n_rx_thread; i++) {
1920
1921 thread_conf = &rx_thread[i].conf;
1922 cpu_id = thread_conf->cpu_id;
1923 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1924
1925 if (cpu_id > max_cpu)
1926 max_cpu = cpu_id;
1927 if (cpu_id < min_cpu)
1928 min_cpu = cpu_id;
1929 }
1930 for (i = 0; i < n_tx_thread; i++) {
1931
1932 thread_conf = &tx_thread[i].conf;
1933 cpu_id = thread_conf->cpu_id;
1934 thread_per_cpu[cpu_id][n_thread_per_cpu[cpu_id]++] = thread_conf;
1935
1936 if (thread_conf->cpu_id > max_cpu)
1937 max_cpu = thread_conf->cpu_id;
1938 if (thread_conf->cpu_id < min_cpu)
1939 min_cpu = thread_conf->cpu_id;
1940 }
1941
1942 while (1) {
1943
1944 cpu_load.counter++;
1945 for (i = min_cpu; i <= max_cpu; i++) {
1946 for (j = 0; j < MAX_CPU_COUNTER; j++) {
1947 for (k = 0; k < n_thread_per_cpu[i]; k++)
1948 if (thread_per_cpu[i][k]->busy[j]) {
1949 busy_flag = 1;
1950 break;
1951 }
1952 if (busy_flag) {
1953 cpu_load.hits[j][i]++;
1954 busy_total = 1;
1955 busy_flag = 0;
1956 }
1957 }
1958
1959 if (busy_total) {
1960 total[i]++;
1961 busy_total = 0;
1962 }
1963 }
1964
1965 cur_tsc = rte_rdtsc();
1966
1967 diff_tsc = cur_tsc - prev_tsc;
1968 if (unlikely(diff_tsc > interval_tsc)) {
1969
1970 printf("\033c");
1971
1972 printf("Cpu usage for %d rx threads and %d tx threads:\n\n",
1973 n_rx_thread, n_tx_thread);
1974
1975 printf("cpu# proc%% poll%% overhead%%\n\n");
1976
1977 for (i = min_cpu; i <= max_cpu; i++) {
1978 hits = 0;
1979 printf("CPU %d:", i);
1980 for (j = 0; j < MAX_CPU_COUNTER; j++) {
1981 printf("%7" PRIu64 "",
1982 cpu_load.hits[j][i] * 100 / cpu_load.counter);
1983 hits += cpu_load.hits[j][i];
1984 cpu_load.hits[j][i] = 0;
1985 }
1986 printf("%7" PRIu64 "\n",
1987 100 - total[i] * 100 / cpu_load.counter);
1988 total[i] = 0;
1989 }
1990 cpu_load.counter = 0;
1991
1992 prev_tsc = cur_tsc;
1993 }
1994
1995 }
1996 }
1997 #endif /* APP_CPU_LOAD */
1998
1999 /*
2000 * Null processing lthread loop
2001 *
2002 * This loop is used to start empty scheduler on lcore.
2003 */
2004 static void *
lthread_null(__rte_unused void * args)2005 lthread_null(__rte_unused void *args)
2006 {
2007 int lcore_id = rte_lcore_id();
2008
2009 RTE_LOG(INFO, L3FWD, "Starting scheduler on lcore %d.\n", lcore_id);
2010 lthread_exit(NULL);
2011 return NULL;
2012 }
2013
2014 /* main processing loop */
2015 static void *
lthread_tx_per_ring(void * dummy)2016 lthread_tx_per_ring(void *dummy)
2017 {
2018 int nb_rx;
2019 uint16_t portid;
2020 struct rte_ring *ring;
2021 struct thread_tx_conf *tx_conf;
2022 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2023 struct lthread_cond *ready;
2024
2025 tx_conf = (struct thread_tx_conf *)dummy;
2026 ring = tx_conf->ring;
2027 ready = *tx_conf->ready;
2028
2029 lthread_set_data((void *)tx_conf);
2030
2031 /*
2032 * Move this lthread to lcore
2033 */
2034 lthread_set_affinity(tx_conf->conf.lcore_id);
2035
2036 RTE_LOG(INFO, L3FWD, "entering main tx loop on lcore %u\n", rte_lcore_id());
2037
2038 nb_rx = 0;
2039 rte_atomic16_inc(&tx_counter);
2040 while (1) {
2041
2042 /*
2043 * Read packet from ring
2044 */
2045 SET_CPU_BUSY(tx_conf, CPU_POLL);
2046 nb_rx = rte_ring_sc_dequeue_burst(ring, (void **)pkts_burst,
2047 MAX_PKT_BURST, NULL);
2048 SET_CPU_IDLE(tx_conf, CPU_POLL);
2049
2050 if (nb_rx > 0) {
2051 SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2052 portid = pkts_burst[0]->port;
2053 process_burst(pkts_burst, nb_rx, portid);
2054 SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2055 lthread_yield();
2056 } else
2057 lthread_cond_wait(ready, 0);
2058
2059 }
2060 return NULL;
2061 }
2062
2063 /*
2064 * Main tx-lthreads spawner lthread.
2065 *
2066 * This lthread is used to spawn one new lthread per ring from producers.
2067 *
2068 */
2069 static void *
lthread_tx(void * args)2070 lthread_tx(void *args)
2071 {
2072 struct lthread *lt;
2073
2074 unsigned lcore_id;
2075 uint16_t portid;
2076 struct thread_tx_conf *tx_conf;
2077
2078 tx_conf = (struct thread_tx_conf *)args;
2079 lthread_set_data((void *)tx_conf);
2080
2081 /*
2082 * Move this lthread to the selected lcore
2083 */
2084 lthread_set_affinity(tx_conf->conf.lcore_id);
2085
2086 /*
2087 * Spawn tx readers (one per input ring)
2088 */
2089 lthread_create(<, tx_conf->conf.lcore_id, lthread_tx_per_ring,
2090 (void *)tx_conf);
2091
2092 lcore_id = rte_lcore_id();
2093
2094 RTE_LOG(INFO, L3FWD, "Entering Tx main loop on lcore %u\n", lcore_id);
2095
2096 tx_conf->conf.cpu_id = sched_getcpu();
2097 while (1) {
2098
2099 lthread_sleep(BURST_TX_DRAIN_US * 1000);
2100
2101 /*
2102 * TX burst queue drain
2103 */
2104 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2105 if (tx_conf->tx_mbufs[portid].len == 0)
2106 continue;
2107 SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2108 send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2109 SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2110 tx_conf->tx_mbufs[portid].len = 0;
2111 }
2112
2113 }
2114 return NULL;
2115 }
2116
2117 static void *
lthread_rx(void * dummy)2118 lthread_rx(void *dummy)
2119 {
2120 int ret;
2121 uint16_t nb_rx;
2122 int i;
2123 uint16_t portid;
2124 uint8_t queueid;
2125 int worker_id;
2126 int len[RTE_MAX_LCORE] = { 0 };
2127 int old_len, new_len;
2128 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2129 struct thread_rx_conf *rx_conf;
2130
2131 rx_conf = (struct thread_rx_conf *)dummy;
2132 lthread_set_data((void *)rx_conf);
2133
2134 /*
2135 * Move this lthread to lcore
2136 */
2137 lthread_set_affinity(rx_conf->conf.lcore_id);
2138
2139 if (rx_conf->n_rx_queue == 0) {
2140 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", rte_lcore_id());
2141 return NULL;
2142 }
2143
2144 RTE_LOG(INFO, L3FWD, "Entering main Rx loop on lcore %u\n", rte_lcore_id());
2145
2146 for (i = 0; i < rx_conf->n_rx_queue; i++) {
2147
2148 portid = rx_conf->rx_queue_list[i].port_id;
2149 queueid = rx_conf->rx_queue_list[i].queue_id;
2150 RTE_LOG(INFO, L3FWD,
2151 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2152 rte_lcore_id(), portid, queueid);
2153 }
2154
2155 /*
2156 * Init all condition variables (one per rx thread)
2157 */
2158 for (i = 0; i < rx_conf->n_rx_queue; i++)
2159 lthread_cond_init(NULL, &rx_conf->ready[i], NULL);
2160
2161 worker_id = 0;
2162
2163 rx_conf->conf.cpu_id = sched_getcpu();
2164 rte_atomic16_inc(&rx_counter);
2165 while (1) {
2166
2167 /*
2168 * Read packet from RX queues
2169 */
2170 for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2171 portid = rx_conf->rx_queue_list[i].port_id;
2172 queueid = rx_conf->rx_queue_list[i].queue_id;
2173
2174 SET_CPU_BUSY(rx_conf, CPU_POLL);
2175 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2176 MAX_PKT_BURST);
2177 SET_CPU_IDLE(rx_conf, CPU_POLL);
2178
2179 if (nb_rx != 0) {
2180 worker_id = (worker_id + 1) % rx_conf->n_ring;
2181 old_len = len[worker_id];
2182
2183 SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2184 ret = rte_ring_sp_enqueue_burst(
2185 rx_conf->ring[worker_id],
2186 (void **) pkts_burst,
2187 nb_rx, NULL);
2188
2189 new_len = old_len + ret;
2190
2191 if (new_len >= BURST_SIZE) {
2192 lthread_cond_signal(rx_conf->ready[worker_id]);
2193 new_len = 0;
2194 }
2195
2196 len[worker_id] = new_len;
2197
2198 if (unlikely(ret < nb_rx)) {
2199 uint32_t k;
2200
2201 for (k = ret; k < nb_rx; k++) {
2202 struct rte_mbuf *m = pkts_burst[k];
2203
2204 rte_pktmbuf_free(m);
2205 }
2206 }
2207 SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2208 }
2209
2210 lthread_yield();
2211 }
2212 }
2213 return NULL;
2214 }
2215
2216 /*
2217 * Start scheduler with initial lthread on lcore
2218 *
2219 * This lthread loop spawns all rx and tx lthreads on main lcore
2220 */
2221
2222 static void *
lthread_spawner(__rte_unused void * arg)2223 lthread_spawner(__rte_unused void *arg)
2224 {
2225 struct lthread *lt[MAX_THREAD];
2226 int i;
2227 int n_thread = 0;
2228
2229 printf("Entering lthread_spawner\n");
2230
2231 /*
2232 * Create producers (rx threads) on default lcore
2233 */
2234 for (i = 0; i < n_rx_thread; i++) {
2235 rx_thread[i].conf.thread_id = i;
2236 lthread_create(<[n_thread], -1, lthread_rx,
2237 (void *)&rx_thread[i]);
2238 n_thread++;
2239 }
2240
2241 /*
2242 * Wait for all producers. Until some producers can be started on the same
2243 * scheduler as this lthread, yielding is required to let them to run and
2244 * prevent deadlock here.
2245 */
2246 while (rte_atomic16_read(&rx_counter) < n_rx_thread)
2247 lthread_sleep(100000);
2248
2249 /*
2250 * Create consumers (tx threads) on default lcore_id
2251 */
2252 for (i = 0; i < n_tx_thread; i++) {
2253 tx_thread[i].conf.thread_id = i;
2254 lthread_create(<[n_thread], -1, lthread_tx,
2255 (void *)&tx_thread[i]);
2256 n_thread++;
2257 }
2258
2259 /*
2260 * Wait for all threads finished
2261 */
2262 for (i = 0; i < n_thread; i++)
2263 lthread_join(lt[i], NULL);
2264
2265 return NULL;
2266 }
2267
2268 /*
2269 * Start main scheduler with initial lthread spawning rx and tx lthreads
2270 * (main_lthread_main).
2271 */
2272 static int
lthread_main_spawner(__rte_unused void * arg)2273 lthread_main_spawner(__rte_unused void *arg) {
2274 struct lthread *lt;
2275 int lcore_id = rte_lcore_id();
2276
2277 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2278 lthread_create(<, -1, lthread_spawner, NULL);
2279 lthread_run();
2280
2281 return 0;
2282 }
2283
2284 /*
2285 * Start scheduler on lcore.
2286 */
2287 static int
sched_spawner(__rte_unused void * arg)2288 sched_spawner(__rte_unused void *arg) {
2289 struct lthread *lt;
2290 int lcore_id = rte_lcore_id();
2291
2292 #if (APP_CPU_LOAD)
2293 if (lcore_id == cpu_load_lcore_id) {
2294 cpu_load_collector(arg);
2295 return 0;
2296 }
2297 #endif /* APP_CPU_LOAD */
2298
2299 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2300 lthread_create(<, -1, lthread_null, NULL);
2301 lthread_run();
2302
2303 return 0;
2304 }
2305
2306 /* main processing loop */
2307 static int __rte_noreturn
pthread_tx(void * dummy)2308 pthread_tx(void *dummy)
2309 {
2310 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2311 uint64_t prev_tsc, diff_tsc, cur_tsc;
2312 int nb_rx;
2313 uint16_t portid;
2314 struct thread_tx_conf *tx_conf;
2315
2316 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
2317 US_PER_S * BURST_TX_DRAIN_US;
2318
2319 prev_tsc = 0;
2320
2321 tx_conf = (struct thread_tx_conf *)dummy;
2322
2323 RTE_LOG(INFO, L3FWD, "Entering main Tx loop on lcore %u\n", rte_lcore_id());
2324
2325 tx_conf->conf.cpu_id = sched_getcpu();
2326 rte_atomic16_inc(&tx_counter);
2327 while (1) {
2328
2329 cur_tsc = rte_rdtsc();
2330
2331 /*
2332 * TX burst queue drain
2333 */
2334 diff_tsc = cur_tsc - prev_tsc;
2335 if (unlikely(diff_tsc > drain_tsc)) {
2336
2337 /*
2338 * This could be optimized (use queueid instead of
2339 * portid), but it is not called so often
2340 */
2341 SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2342 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
2343 if (tx_conf->tx_mbufs[portid].len == 0)
2344 continue;
2345 send_burst(tx_conf, tx_conf->tx_mbufs[portid].len, portid);
2346 tx_conf->tx_mbufs[portid].len = 0;
2347 }
2348 SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2349
2350 prev_tsc = cur_tsc;
2351 }
2352
2353 /*
2354 * Read packet from ring
2355 */
2356 SET_CPU_BUSY(tx_conf, CPU_POLL);
2357 nb_rx = rte_ring_sc_dequeue_burst(tx_conf->ring,
2358 (void **)pkts_burst, MAX_PKT_BURST, NULL);
2359 SET_CPU_IDLE(tx_conf, CPU_POLL);
2360
2361 if (unlikely(nb_rx == 0)) {
2362 sched_yield();
2363 continue;
2364 }
2365
2366 SET_CPU_BUSY(tx_conf, CPU_PROCESS);
2367 portid = pkts_burst[0]->port;
2368 process_burst(pkts_burst, nb_rx, portid);
2369 SET_CPU_IDLE(tx_conf, CPU_PROCESS);
2370
2371 }
2372 }
2373
2374 static int
pthread_rx(void * dummy)2375 pthread_rx(void *dummy)
2376 {
2377 int i;
2378 int worker_id;
2379 uint32_t n;
2380 uint32_t nb_rx;
2381 unsigned lcore_id;
2382 uint8_t queueid;
2383 uint16_t portid;
2384 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
2385
2386 struct thread_rx_conf *rx_conf;
2387
2388 lcore_id = rte_lcore_id();
2389 rx_conf = (struct thread_rx_conf *)dummy;
2390
2391 if (rx_conf->n_rx_queue == 0) {
2392 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
2393 return 0;
2394 }
2395
2396 RTE_LOG(INFO, L3FWD, "entering main rx loop on lcore %u\n", lcore_id);
2397
2398 for (i = 0; i < rx_conf->n_rx_queue; i++) {
2399
2400 portid = rx_conf->rx_queue_list[i].port_id;
2401 queueid = rx_conf->rx_queue_list[i].queue_id;
2402 RTE_LOG(INFO, L3FWD,
2403 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
2404 lcore_id, portid, queueid);
2405 }
2406
2407 worker_id = 0;
2408 rx_conf->conf.cpu_id = sched_getcpu();
2409 rte_atomic16_inc(&rx_counter);
2410 while (1) {
2411
2412 /*
2413 * Read packet from RX queues
2414 */
2415 for (i = 0; i < rx_conf->n_rx_queue; ++i) {
2416 portid = rx_conf->rx_queue_list[i].port_id;
2417 queueid = rx_conf->rx_queue_list[i].queue_id;
2418
2419 SET_CPU_BUSY(rx_conf, CPU_POLL);
2420 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
2421 MAX_PKT_BURST);
2422 SET_CPU_IDLE(rx_conf, CPU_POLL);
2423
2424 if (nb_rx == 0) {
2425 sched_yield();
2426 continue;
2427 }
2428
2429 SET_CPU_BUSY(rx_conf, CPU_PROCESS);
2430 worker_id = (worker_id + 1) % rx_conf->n_ring;
2431 n = rte_ring_sp_enqueue_burst(rx_conf->ring[worker_id],
2432 (void **)pkts_burst, nb_rx, NULL);
2433
2434 if (unlikely(n != nb_rx)) {
2435 uint32_t k;
2436
2437 for (k = n; k < nb_rx; k++) {
2438 struct rte_mbuf *m = pkts_burst[k];
2439
2440 rte_pktmbuf_free(m);
2441 }
2442 }
2443
2444 SET_CPU_IDLE(rx_conf, CPU_PROCESS);
2445
2446 }
2447 }
2448 }
2449
2450 /*
2451 * P-Thread spawner.
2452 */
2453 static int
pthread_run(__rte_unused void * arg)2454 pthread_run(__rte_unused void *arg) {
2455 int lcore_id = rte_lcore_id();
2456 int i;
2457
2458 for (i = 0; i < n_rx_thread; i++)
2459 if (rx_thread[i].conf.lcore_id == lcore_id) {
2460 printf("Start rx thread on %d...\n", lcore_id);
2461 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2462 RTE_PER_LCORE(lcore_conf)->data = (void *)&rx_thread[i];
2463 pthread_rx((void *)&rx_thread[i]);
2464 return 0;
2465 }
2466
2467 for (i = 0; i < n_tx_thread; i++)
2468 if (tx_thread[i].conf.lcore_id == lcore_id) {
2469 printf("Start tx thread on %d...\n", lcore_id);
2470 RTE_PER_LCORE(lcore_conf) = &lcore_conf[lcore_id];
2471 RTE_PER_LCORE(lcore_conf)->data = (void *)&tx_thread[i];
2472 pthread_tx((void *)&tx_thread[i]);
2473 return 0;
2474 }
2475
2476 #if (APP_CPU_LOAD)
2477 if (lcore_id == cpu_load_lcore_id)
2478 cpu_load_collector(arg);
2479 #endif /* APP_CPU_LOAD */
2480
2481 return 0;
2482 }
2483
2484 static int
check_lcore_params(void)2485 check_lcore_params(void)
2486 {
2487 uint8_t queue, lcore;
2488 uint16_t i;
2489 int socketid;
2490
2491 for (i = 0; i < nb_rx_thread_params; ++i) {
2492 queue = rx_thread_params[i].queue_id;
2493 if (queue >= MAX_RX_QUEUE_PER_PORT) {
2494 printf("invalid queue number: %hhu\n", queue);
2495 return -1;
2496 }
2497 lcore = rx_thread_params[i].lcore_id;
2498 if (!rte_lcore_is_enabled(lcore)) {
2499 printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
2500 return -1;
2501 }
2502 socketid = rte_lcore_to_socket_id(lcore);
2503 if ((socketid != 0) && (numa_on == 0))
2504 printf("warning: lcore %hhu is on socket %d with numa off\n",
2505 lcore, socketid);
2506 }
2507 return 0;
2508 }
2509
2510 static int
check_port_config(void)2511 check_port_config(void)
2512 {
2513 unsigned portid;
2514 uint16_t i;
2515
2516 for (i = 0; i < nb_rx_thread_params; ++i) {
2517 portid = rx_thread_params[i].port_id;
2518 if ((enabled_port_mask & (1 << portid)) == 0) {
2519 printf("port %u is not enabled in port mask\n", portid);
2520 return -1;
2521 }
2522 if (!rte_eth_dev_is_valid_port(portid)) {
2523 printf("port %u is not present on the board\n", portid);
2524 return -1;
2525 }
2526 }
2527 return 0;
2528 }
2529
2530 static uint8_t
get_port_n_rx_queues(const uint16_t port)2531 get_port_n_rx_queues(const uint16_t port)
2532 {
2533 int queue = -1;
2534 uint16_t i;
2535
2536 for (i = 0; i < nb_rx_thread_params; ++i)
2537 if (rx_thread_params[i].port_id == port &&
2538 rx_thread_params[i].queue_id > queue)
2539 queue = rx_thread_params[i].queue_id;
2540
2541 return (uint8_t)(++queue);
2542 }
2543
2544 static int
init_rx_rings(void)2545 init_rx_rings(void)
2546 {
2547 unsigned socket_io;
2548 struct thread_rx_conf *rx_conf;
2549 struct thread_tx_conf *tx_conf;
2550 unsigned rx_thread_id, tx_thread_id;
2551 char name[256];
2552 struct rte_ring *ring = NULL;
2553
2554 for (tx_thread_id = 0; tx_thread_id < n_tx_thread; tx_thread_id++) {
2555
2556 tx_conf = &tx_thread[tx_thread_id];
2557
2558 printf("Connecting tx-thread %d with rx-thread %d\n", tx_thread_id,
2559 tx_conf->conf.thread_id);
2560
2561 rx_thread_id = tx_conf->conf.thread_id;
2562 if (rx_thread_id > n_tx_thread) {
2563 printf("connection from tx-thread %u to rx-thread %u fails "
2564 "(rx-thread not defined)\n", tx_thread_id, rx_thread_id);
2565 return -1;
2566 }
2567
2568 rx_conf = &rx_thread[rx_thread_id];
2569 socket_io = rte_lcore_to_socket_id(rx_conf->conf.lcore_id);
2570
2571 snprintf(name, sizeof(name), "app_ring_s%u_rx%u_tx%u",
2572 socket_io, rx_thread_id, tx_thread_id);
2573
2574 ring = rte_ring_create(name, 1024 * 4, socket_io,
2575 RING_F_SP_ENQ | RING_F_SC_DEQ);
2576
2577 if (ring == NULL) {
2578 rte_panic("Cannot create ring to connect rx-thread %u "
2579 "with tx-thread %u\n", rx_thread_id, tx_thread_id);
2580 }
2581
2582 rx_conf->ring[rx_conf->n_ring] = ring;
2583
2584 tx_conf->ring = ring;
2585 tx_conf->ready = &rx_conf->ready[rx_conf->n_ring];
2586
2587 rx_conf->n_ring++;
2588 }
2589 return 0;
2590 }
2591
2592 static int
init_rx_queues(void)2593 init_rx_queues(void)
2594 {
2595 uint16_t i, nb_rx_queue;
2596 uint8_t thread;
2597
2598 n_rx_thread = 0;
2599
2600 for (i = 0; i < nb_rx_thread_params; ++i) {
2601 thread = rx_thread_params[i].thread_id;
2602 nb_rx_queue = rx_thread[thread].n_rx_queue;
2603
2604 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
2605 printf("error: too many queues (%u) for thread: %u\n",
2606 (unsigned)nb_rx_queue + 1, (unsigned)thread);
2607 return -1;
2608 }
2609
2610 rx_thread[thread].conf.thread_id = thread;
2611 rx_thread[thread].conf.lcore_id = rx_thread_params[i].lcore_id;
2612 rx_thread[thread].rx_queue_list[nb_rx_queue].port_id =
2613 rx_thread_params[i].port_id;
2614 rx_thread[thread].rx_queue_list[nb_rx_queue].queue_id =
2615 rx_thread_params[i].queue_id;
2616 rx_thread[thread].n_rx_queue++;
2617
2618 if (thread >= n_rx_thread)
2619 n_rx_thread = thread + 1;
2620
2621 }
2622 return 0;
2623 }
2624
2625 static int
init_tx_threads(void)2626 init_tx_threads(void)
2627 {
2628 int i;
2629
2630 n_tx_thread = 0;
2631 for (i = 0; i < nb_tx_thread_params; ++i) {
2632 tx_thread[n_tx_thread].conf.thread_id = tx_thread_params[i].thread_id;
2633 tx_thread[n_tx_thread].conf.lcore_id = tx_thread_params[i].lcore_id;
2634 n_tx_thread++;
2635 }
2636 return 0;
2637 }
2638
2639 /* display usage */
2640 static void
print_usage(const char * prgname)2641 print_usage(const char *prgname)
2642 {
2643 printf("%s [EAL options] -- -p PORTMASK -P"
2644 " [--rx (port,queue,lcore,thread)[,(port,queue,lcore,thread]]"
2645 " [--tx (lcore,thread)[,(lcore,thread]]"
2646 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
2647 " [--parse-ptype]\n\n"
2648 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
2649 " -P : enable promiscuous mode\n"
2650 " --rx (port,queue,lcore,thread): rx queues configuration\n"
2651 " --tx (lcore,thread): tx threads configuration\n"
2652 " --stat-lcore LCORE: use lcore for stat collector\n"
2653 " --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n"
2654 " --no-numa: optional, disable numa awareness\n"
2655 " --ipv6: optional, specify it if running ipv6 packets\n"
2656 " --enable-jumbo: enable jumbo frame"
2657 " which max packet len is PKTLEN in decimal (64-9600)\n"
2658 " --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n"
2659 " --no-lthreads: turn off lthread model\n"
2660 " --parse-ptype: set to use software to analyze packet type\n\n",
2661 prgname);
2662 }
2663
parse_max_pkt_len(const char * pktlen)2664 static int parse_max_pkt_len(const char *pktlen)
2665 {
2666 char *end = NULL;
2667 unsigned long len;
2668
2669 /* parse decimal string */
2670 len = strtoul(pktlen, &end, 10);
2671 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
2672 return -1;
2673
2674 if (len == 0)
2675 return -1;
2676
2677 return len;
2678 }
2679
2680 static int
parse_portmask(const char * portmask)2681 parse_portmask(const char *portmask)
2682 {
2683 char *end = NULL;
2684 unsigned long pm;
2685
2686 /* parse hexadecimal string */
2687 pm = strtoul(portmask, &end, 16);
2688 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
2689 return 0;
2690
2691 return pm;
2692 }
2693
2694 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2695 static int
parse_hash_entry_number(const char * hash_entry_num)2696 parse_hash_entry_number(const char *hash_entry_num)
2697 {
2698 char *end = NULL;
2699 unsigned long hash_en;
2700
2701 /* parse hexadecimal string */
2702 hash_en = strtoul(hash_entry_num, &end, 16);
2703 if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
2704 return -1;
2705
2706 if (hash_en == 0)
2707 return -1;
2708
2709 return hash_en;
2710 }
2711 #endif
2712
2713 static int
parse_rx_config(const char * q_arg)2714 parse_rx_config(const char *q_arg)
2715 {
2716 char s[256];
2717 const char *p, *p0 = q_arg;
2718 char *end;
2719 enum fieldnames {
2720 FLD_PORT = 0,
2721 FLD_QUEUE,
2722 FLD_LCORE,
2723 FLD_THREAD,
2724 _NUM_FLD
2725 };
2726 unsigned long int_fld[_NUM_FLD];
2727 char *str_fld[_NUM_FLD];
2728 int i;
2729 unsigned size;
2730
2731 nb_rx_thread_params = 0;
2732
2733 while ((p = strchr(p0, '(')) != NULL) {
2734 ++p;
2735 p0 = strchr(p, ')');
2736 if (p0 == NULL)
2737 return -1;
2738
2739 size = p0 - p;
2740 if (size >= sizeof(s))
2741 return -1;
2742
2743 snprintf(s, sizeof(s), "%.*s", size, p);
2744 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2745 return -1;
2746 for (i = 0; i < _NUM_FLD; i++) {
2747 errno = 0;
2748 int_fld[i] = strtoul(str_fld[i], &end, 0);
2749 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2750 return -1;
2751 }
2752 if (nb_rx_thread_params >= MAX_LCORE_PARAMS) {
2753 printf("exceeded max number of rx params: %hu\n",
2754 nb_rx_thread_params);
2755 return -1;
2756 }
2757 rx_thread_params_array[nb_rx_thread_params].port_id =
2758 int_fld[FLD_PORT];
2759 rx_thread_params_array[nb_rx_thread_params].queue_id =
2760 (uint8_t)int_fld[FLD_QUEUE];
2761 rx_thread_params_array[nb_rx_thread_params].lcore_id =
2762 (uint8_t)int_fld[FLD_LCORE];
2763 rx_thread_params_array[nb_rx_thread_params].thread_id =
2764 (uint8_t)int_fld[FLD_THREAD];
2765 ++nb_rx_thread_params;
2766 }
2767 rx_thread_params = rx_thread_params_array;
2768 return 0;
2769 }
2770
2771 static int
parse_tx_config(const char * q_arg)2772 parse_tx_config(const char *q_arg)
2773 {
2774 char s[256];
2775 const char *p, *p0 = q_arg;
2776 char *end;
2777 enum fieldnames {
2778 FLD_LCORE = 0,
2779 FLD_THREAD,
2780 _NUM_FLD
2781 };
2782 unsigned long int_fld[_NUM_FLD];
2783 char *str_fld[_NUM_FLD];
2784 int i;
2785 unsigned size;
2786
2787 nb_tx_thread_params = 0;
2788
2789 while ((p = strchr(p0, '(')) != NULL) {
2790 ++p;
2791 p0 = strchr(p, ')');
2792 if (p0 == NULL)
2793 return -1;
2794
2795 size = p0 - p;
2796 if (size >= sizeof(s))
2797 return -1;
2798
2799 snprintf(s, sizeof(s), "%.*s", size, p);
2800 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
2801 return -1;
2802 for (i = 0; i < _NUM_FLD; i++) {
2803 errno = 0;
2804 int_fld[i] = strtoul(str_fld[i], &end, 0);
2805 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
2806 return -1;
2807 }
2808 if (nb_tx_thread_params >= MAX_LCORE_PARAMS) {
2809 printf("exceeded max number of tx params: %hu\n",
2810 nb_tx_thread_params);
2811 return -1;
2812 }
2813 tx_thread_params_array[nb_tx_thread_params].lcore_id =
2814 (uint8_t)int_fld[FLD_LCORE];
2815 tx_thread_params_array[nb_tx_thread_params].thread_id =
2816 (uint8_t)int_fld[FLD_THREAD];
2817 ++nb_tx_thread_params;
2818 }
2819 tx_thread_params = tx_thread_params_array;
2820
2821 return 0;
2822 }
2823
2824 #if (APP_CPU_LOAD > 0)
2825 static int
parse_stat_lcore(const char * stat_lcore)2826 parse_stat_lcore(const char *stat_lcore)
2827 {
2828 char *end = NULL;
2829 unsigned long lcore_id;
2830
2831 lcore_id = strtoul(stat_lcore, &end, 10);
2832 if ((stat_lcore[0] == '\0') || (end == NULL) || (*end != '\0'))
2833 return -1;
2834
2835 return lcore_id;
2836 }
2837 #endif
2838
2839 static void
parse_eth_dest(const char * optarg)2840 parse_eth_dest(const char *optarg)
2841 {
2842 uint16_t portid;
2843 char *port_end;
2844 uint8_t c, *dest, peer_addr[6];
2845
2846 errno = 0;
2847 portid = strtoul(optarg, &port_end, 10);
2848 if (errno != 0 || port_end == optarg || *port_end++ != ',')
2849 rte_exit(EXIT_FAILURE,
2850 "Invalid eth-dest: %s", optarg);
2851 if (portid >= RTE_MAX_ETHPORTS)
2852 rte_exit(EXIT_FAILURE,
2853 "eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n",
2854 portid, RTE_MAX_ETHPORTS);
2855
2856 if (cmdline_parse_etheraddr(NULL, port_end,
2857 &peer_addr, sizeof(peer_addr)) < 0)
2858 rte_exit(EXIT_FAILURE,
2859 "Invalid ethernet address: %s\n",
2860 port_end);
2861 dest = (uint8_t *)&dest_eth_addr[portid];
2862 for (c = 0; c < 6; c++)
2863 dest[c] = peer_addr[c];
2864 *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
2865 }
2866
2867 #define CMD_LINE_OPT_RX_CONFIG "rx"
2868 #define CMD_LINE_OPT_TX_CONFIG "tx"
2869 #define CMD_LINE_OPT_STAT_LCORE "stat-lcore"
2870 #define CMD_LINE_OPT_ETH_DEST "eth-dest"
2871 #define CMD_LINE_OPT_NO_NUMA "no-numa"
2872 #define CMD_LINE_OPT_IPV6 "ipv6"
2873 #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
2874 #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"
2875 #define CMD_LINE_OPT_NO_LTHREADS "no-lthreads"
2876 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
2877
2878 /* Parse the argument given in the command line of the application */
2879 static int
parse_args(int argc,char ** argv)2880 parse_args(int argc, char **argv)
2881 {
2882 int opt, ret;
2883 char **argvopt;
2884 int option_index;
2885 char *prgname = argv[0];
2886 static struct option lgopts[] = {
2887 {CMD_LINE_OPT_RX_CONFIG, 1, 0, 0},
2888 {CMD_LINE_OPT_TX_CONFIG, 1, 0, 0},
2889 {CMD_LINE_OPT_STAT_LCORE, 1, 0, 0},
2890 {CMD_LINE_OPT_ETH_DEST, 1, 0, 0},
2891 {CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
2892 {CMD_LINE_OPT_IPV6, 0, 0, 0},
2893 {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
2894 {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
2895 {CMD_LINE_OPT_NO_LTHREADS, 0, 0, 0},
2896 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
2897 {NULL, 0, 0, 0}
2898 };
2899
2900 argvopt = argv;
2901
2902 while ((opt = getopt_long(argc, argvopt, "p:P",
2903 lgopts, &option_index)) != EOF) {
2904
2905 switch (opt) {
2906 /* portmask */
2907 case 'p':
2908 enabled_port_mask = parse_portmask(optarg);
2909 if (enabled_port_mask == 0) {
2910 printf("invalid portmask\n");
2911 print_usage(prgname);
2912 return -1;
2913 }
2914 break;
2915 case 'P':
2916 printf("Promiscuous mode selected\n");
2917 promiscuous_on = 1;
2918 break;
2919
2920 /* long options */
2921 case 0:
2922 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_RX_CONFIG,
2923 sizeof(CMD_LINE_OPT_RX_CONFIG))) {
2924 ret = parse_rx_config(optarg);
2925 if (ret) {
2926 printf("invalid rx-config\n");
2927 print_usage(prgname);
2928 return -1;
2929 }
2930 }
2931
2932 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_TX_CONFIG,
2933 sizeof(CMD_LINE_OPT_TX_CONFIG))) {
2934 ret = parse_tx_config(optarg);
2935 if (ret) {
2936 printf("invalid tx-config\n");
2937 print_usage(prgname);
2938 return -1;
2939 }
2940 }
2941
2942 #if (APP_CPU_LOAD > 0)
2943 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_STAT_LCORE,
2944 sizeof(CMD_LINE_OPT_STAT_LCORE))) {
2945 cpu_load_lcore_id = parse_stat_lcore(optarg);
2946 }
2947 #endif
2948
2949 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST,
2950 sizeof(CMD_LINE_OPT_ETH_DEST)))
2951 parse_eth_dest(optarg);
2952
2953 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
2954 sizeof(CMD_LINE_OPT_NO_NUMA))) {
2955 printf("numa is disabled\n");
2956 numa_on = 0;
2957 }
2958
2959 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2960 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
2961 sizeof(CMD_LINE_OPT_IPV6))) {
2962 printf("ipv6 is specified\n");
2963 ipv6 = 1;
2964 }
2965 #endif
2966
2967 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_LTHREADS,
2968 sizeof(CMD_LINE_OPT_NO_LTHREADS))) {
2969 printf("l-threads model is disabled\n");
2970 lthreads_on = 0;
2971 }
2972
2973 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_PARSE_PTYPE,
2974 sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
2975 printf("software packet type parsing enabled\n");
2976 parse_ptype_on = 1;
2977 }
2978
2979 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
2980 sizeof(CMD_LINE_OPT_ENABLE_JUMBO))) {
2981 struct option lenopts = {"max-pkt-len", required_argument, 0,
2982 0};
2983
2984 printf("jumbo frame is enabled - disabling simple TX path\n");
2985 port_conf.rxmode.offloads |=
2986 DEV_RX_OFFLOAD_JUMBO_FRAME;
2987 port_conf.txmode.offloads |=
2988 DEV_TX_OFFLOAD_MULTI_SEGS;
2989
2990 /* if no max-pkt-len set, use the default value
2991 * RTE_ETHER_MAX_LEN
2992 */
2993 if (0 == getopt_long(argc, argvopt, "", &lenopts,
2994 &option_index)) {
2995
2996 ret = parse_max_pkt_len(optarg);
2997 if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)) {
2998 printf("invalid packet length\n");
2999 print_usage(prgname);
3000 return -1;
3001 }
3002 port_conf.rxmode.max_rx_pkt_len = ret;
3003 }
3004 printf("set jumbo frame max packet length to %u\n",
3005 (unsigned int)port_conf.rxmode.max_rx_pkt_len);
3006 }
3007 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
3008 if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
3009 sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
3010 ret = parse_hash_entry_number(optarg);
3011 if ((ret > 0) && (ret <= L3FWD_HASH_ENTRIES)) {
3012 hash_entry_number = ret;
3013 } else {
3014 printf("invalid hash entry number\n");
3015 print_usage(prgname);
3016 return -1;
3017 }
3018 }
3019 #endif
3020 break;
3021
3022 default:
3023 print_usage(prgname);
3024 return -1;
3025 }
3026 }
3027
3028 if (optind >= 0)
3029 argv[optind-1] = prgname;
3030
3031 ret = optind-1;
3032 optind = 1; /* reset getopt lib */
3033 return ret;
3034 }
3035
3036 static void
print_ethaddr(const char * name,const struct rte_ether_addr * eth_addr)3037 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
3038 {
3039 char buf[RTE_ETHER_ADDR_FMT_SIZE];
3040
3041 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
3042 printf("%s%s", name, buf);
3043 }
3044
3045 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
3046
convert_ipv4_5tuple(struct ipv4_5tuple * key1,union ipv4_5tuple_host * key2)3047 static void convert_ipv4_5tuple(struct ipv4_5tuple *key1,
3048 union ipv4_5tuple_host *key2)
3049 {
3050 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
3051 key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
3052 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3053 key2->port_src = rte_cpu_to_be_16(key1->port_src);
3054 key2->proto = key1->proto;
3055 key2->pad0 = 0;
3056 key2->pad1 = 0;
3057 }
3058
convert_ipv6_5tuple(struct ipv6_5tuple * key1,union ipv6_5tuple_host * key2)3059 static void convert_ipv6_5tuple(struct ipv6_5tuple *key1,
3060 union ipv6_5tuple_host *key2)
3061 {
3062 uint32_t i;
3063
3064 for (i = 0; i < 16; i++) {
3065 key2->ip_dst[i] = key1->ip_dst[i];
3066 key2->ip_src[i] = key1->ip_src[i];
3067 }
3068 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
3069 key2->port_src = rte_cpu_to_be_16(key1->port_src);
3070 key2->proto = key1->proto;
3071 key2->pad0 = 0;
3072 key2->pad1 = 0;
3073 key2->reserve = 0;
3074 }
3075
3076 #define BYTE_VALUE_MAX 256
3077 #define ALL_32_BITS 0xffffffff
3078 #define BIT_8_TO_15 0x0000ff00
3079 static inline void
populate_ipv4_few_flow_into_table(const struct rte_hash * h)3080 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
3081 {
3082 uint32_t i;
3083 int32_t ret;
3084 uint32_t array_len = RTE_DIM(ipv4_l3fwd_route_array);
3085
3086 mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3087 for (i = 0; i < array_len; i++) {
3088 struct ipv4_l3fwd_route entry;
3089 union ipv4_5tuple_host newkey;
3090
3091 entry = ipv4_l3fwd_route_array[i];
3092 convert_ipv4_5tuple(&entry.key, &newkey);
3093 ret = rte_hash_add_key(h, (void *)&newkey);
3094 if (ret < 0) {
3095 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3096 " to the l3fwd hash.\n", i);
3097 }
3098 ipv4_l3fwd_out_if[ret] = entry.if_out;
3099 }
3100 printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
3101 }
3102
3103 #define BIT_16_TO_23 0x00ff0000
3104 static inline void
populate_ipv6_few_flow_into_table(const struct rte_hash * h)3105 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
3106 {
3107 uint32_t i;
3108 int32_t ret;
3109 uint32_t array_len = RTE_DIM(ipv6_l3fwd_route_array);
3110
3111 mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3112 mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3113 for (i = 0; i < array_len; i++) {
3114 struct ipv6_l3fwd_route entry;
3115 union ipv6_5tuple_host newkey;
3116
3117 entry = ipv6_l3fwd_route_array[i];
3118 convert_ipv6_5tuple(&entry.key, &newkey);
3119 ret = rte_hash_add_key(h, (void *)&newkey);
3120 if (ret < 0) {
3121 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
3122 " to the l3fwd hash.\n", i);
3123 }
3124 ipv6_l3fwd_out_if[ret] = entry.if_out;
3125 }
3126 printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
3127 }
3128
3129 #define NUMBER_PORT_USED 4
3130 static inline void
populate_ipv4_many_flow_into_table(const struct rte_hash * h,unsigned int nr_flow)3131 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
3132 unsigned int nr_flow)
3133 {
3134 unsigned i;
3135
3136 mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
3137
3138 for (i = 0; i < nr_flow; i++) {
3139 struct ipv4_l3fwd_route entry;
3140 union ipv4_5tuple_host newkey;
3141 uint8_t a = (uint8_t)((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3142 uint8_t b = (uint8_t)(((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3143 BYTE_VALUE_MAX);
3144 uint8_t c = (uint8_t)((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3145 BYTE_VALUE_MAX));
3146 /* Create the ipv4 exact match flow */
3147 memset(&entry, 0, sizeof(entry));
3148 switch (i & (NUMBER_PORT_USED - 1)) {
3149 case 0:
3150 entry = ipv4_l3fwd_route_array[0];
3151 entry.key.ip_dst = RTE_IPV4(101, c, b, a);
3152 break;
3153 case 1:
3154 entry = ipv4_l3fwd_route_array[1];
3155 entry.key.ip_dst = RTE_IPV4(201, c, b, a);
3156 break;
3157 case 2:
3158 entry = ipv4_l3fwd_route_array[2];
3159 entry.key.ip_dst = RTE_IPV4(111, c, b, a);
3160 break;
3161 case 3:
3162 entry = ipv4_l3fwd_route_array[3];
3163 entry.key.ip_dst = RTE_IPV4(211, c, b, a);
3164 break;
3165 };
3166 convert_ipv4_5tuple(&entry.key, &newkey);
3167 int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3168
3169 if (ret < 0)
3170 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3171
3172 ipv4_l3fwd_out_if[ret] = (uint8_t)entry.if_out;
3173
3174 }
3175 printf("Hash: Adding 0x%x keys\n", nr_flow);
3176 }
3177
3178 static inline void
populate_ipv6_many_flow_into_table(const struct rte_hash * h,unsigned int nr_flow)3179 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
3180 unsigned int nr_flow)
3181 {
3182 unsigned i;
3183
3184 mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
3185 mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
3186 for (i = 0; i < nr_flow; i++) {
3187 struct ipv6_l3fwd_route entry;
3188 union ipv6_5tuple_host newkey;
3189
3190 uint8_t a = (uint8_t) ((i / NUMBER_PORT_USED) % BYTE_VALUE_MAX);
3191 uint8_t b = (uint8_t) (((i / NUMBER_PORT_USED) / BYTE_VALUE_MAX) %
3192 BYTE_VALUE_MAX);
3193 uint8_t c = (uint8_t) ((i / NUMBER_PORT_USED) / (BYTE_VALUE_MAX *
3194 BYTE_VALUE_MAX));
3195
3196 /* Create the ipv6 exact match flow */
3197 memset(&entry, 0, sizeof(entry));
3198 switch (i & (NUMBER_PORT_USED - 1)) {
3199 case 0:
3200 entry = ipv6_l3fwd_route_array[0];
3201 break;
3202 case 1:
3203 entry = ipv6_l3fwd_route_array[1];
3204 break;
3205 case 2:
3206 entry = ipv6_l3fwd_route_array[2];
3207 break;
3208 case 3:
3209 entry = ipv6_l3fwd_route_array[3];
3210 break;
3211 };
3212 entry.key.ip_dst[13] = c;
3213 entry.key.ip_dst[14] = b;
3214 entry.key.ip_dst[15] = a;
3215 convert_ipv6_5tuple(&entry.key, &newkey);
3216 int32_t ret = rte_hash_add_key(h, (void *)&newkey);
3217
3218 if (ret < 0)
3219 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
3220
3221 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
3222
3223 }
3224 printf("Hash: Adding 0x%x keys\n", nr_flow);
3225 }
3226
3227 static void
setup_hash(int socketid)3228 setup_hash(int socketid)
3229 {
3230 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
3231 .name = NULL,
3232 .entries = L3FWD_HASH_ENTRIES,
3233 .key_len = sizeof(union ipv4_5tuple_host),
3234 .hash_func = ipv4_hash_crc,
3235 .hash_func_init_val = 0,
3236 };
3237
3238 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
3239 .name = NULL,
3240 .entries = L3FWD_HASH_ENTRIES,
3241 .key_len = sizeof(union ipv6_5tuple_host),
3242 .hash_func = ipv6_hash_crc,
3243 .hash_func_init_val = 0,
3244 };
3245
3246 char s[64];
3247
3248 /* create ipv4 hash */
3249 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
3250 ipv4_l3fwd_hash_params.name = s;
3251 ipv4_l3fwd_hash_params.socket_id = socketid;
3252 ipv4_l3fwd_lookup_struct[socketid] =
3253 rte_hash_create(&ipv4_l3fwd_hash_params);
3254 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3255 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3256 "socket %d\n", socketid);
3257
3258 /* create ipv6 hash */
3259 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
3260 ipv6_l3fwd_hash_params.name = s;
3261 ipv6_l3fwd_hash_params.socket_id = socketid;
3262 ipv6_l3fwd_lookup_struct[socketid] =
3263 rte_hash_create(&ipv6_l3fwd_hash_params);
3264 if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3265 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
3266 "socket %d\n", socketid);
3267
3268 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
3269 /* For testing hash matching with a large number of flows we
3270 * generate millions of IP 5-tuples with an incremented dst
3271 * address to initialize the hash table. */
3272 if (ipv6 == 0) {
3273 /* populate the ipv4 hash */
3274 populate_ipv4_many_flow_into_table(
3275 ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
3276 } else {
3277 /* populate the ipv6 hash */
3278 populate_ipv6_many_flow_into_table(
3279 ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
3280 }
3281 } else {
3282 /* Use data in ipv4/ipv6 l3fwd lookup table directly to initialize
3283 * the hash table */
3284 if (ipv6 == 0) {
3285 /* populate the ipv4 hash */
3286 populate_ipv4_few_flow_into_table(
3287 ipv4_l3fwd_lookup_struct[socketid]);
3288 } else {
3289 /* populate the ipv6 hash */
3290 populate_ipv6_few_flow_into_table(
3291 ipv6_l3fwd_lookup_struct[socketid]);
3292 }
3293 }
3294 }
3295 #endif
3296
3297 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3298 static void
setup_lpm(int socketid)3299 setup_lpm(int socketid)
3300 {
3301 struct rte_lpm6_config config;
3302 struct rte_lpm_config lpm_ipv4_config;
3303 unsigned i;
3304 int ret;
3305 char s[64];
3306
3307 /* create the LPM table */
3308 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
3309 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
3310 lpm_ipv4_config.number_tbl8s = 256;
3311 lpm_ipv4_config.flags = 0;
3312 ipv4_l3fwd_lookup_struct[socketid] =
3313 rte_lpm_create(s, socketid, &lpm_ipv4_config);
3314 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
3315 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3316 " on socket %d\n", socketid);
3317
3318 /* populate the LPM table */
3319 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
3320
3321 /* skip unused ports */
3322 if ((1 << ipv4_l3fwd_route_array[i].if_out &
3323 enabled_port_mask) == 0)
3324 continue;
3325
3326 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
3327 ipv4_l3fwd_route_array[i].ip,
3328 ipv4_l3fwd_route_array[i].depth,
3329 ipv4_l3fwd_route_array[i].if_out);
3330
3331 if (ret < 0) {
3332 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3333 "l3fwd LPM table on socket %d\n",
3334 i, socketid);
3335 }
3336
3337 printf("LPM: Adding route 0x%08x / %d (%d)\n",
3338 (unsigned)ipv4_l3fwd_route_array[i].ip,
3339 ipv4_l3fwd_route_array[i].depth,
3340 ipv4_l3fwd_route_array[i].if_out);
3341 }
3342
3343 /* create the LPM6 table */
3344 snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
3345
3346 config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
3347 config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
3348 config.flags = 0;
3349 ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
3350 &config);
3351 if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
3352 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
3353 " on socket %d\n", socketid);
3354
3355 /* populate the LPM table */
3356 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
3357
3358 /* skip unused ports */
3359 if ((1 << ipv6_l3fwd_route_array[i].if_out &
3360 enabled_port_mask) == 0)
3361 continue;
3362
3363 ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
3364 ipv6_l3fwd_route_array[i].ip,
3365 ipv6_l3fwd_route_array[i].depth,
3366 ipv6_l3fwd_route_array[i].if_out);
3367
3368 if (ret < 0) {
3369 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
3370 "l3fwd LPM table on socket %d\n",
3371 i, socketid);
3372 }
3373
3374 printf("LPM: Adding route %s / %d (%d)\n",
3375 "IPV6",
3376 ipv6_l3fwd_route_array[i].depth,
3377 ipv6_l3fwd_route_array[i].if_out);
3378 }
3379 }
3380 #endif
3381
3382 static int
init_mem(unsigned nb_mbuf)3383 init_mem(unsigned nb_mbuf)
3384 {
3385 struct lcore_conf *qconf;
3386 int socketid;
3387 unsigned lcore_id;
3388 char s[64];
3389
3390 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3391 if (rte_lcore_is_enabled(lcore_id) == 0)
3392 continue;
3393
3394 if (numa_on)
3395 socketid = rte_lcore_to_socket_id(lcore_id);
3396 else
3397 socketid = 0;
3398
3399 if (socketid >= NB_SOCKETS) {
3400 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
3401 socketid, lcore_id, NB_SOCKETS);
3402 }
3403 if (pktmbuf_pool[socketid] == NULL) {
3404 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
3405 pktmbuf_pool[socketid] =
3406 rte_pktmbuf_pool_create(s, nb_mbuf,
3407 MEMPOOL_CACHE_SIZE, 0,
3408 RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
3409 if (pktmbuf_pool[socketid] == NULL)
3410 rte_exit(EXIT_FAILURE,
3411 "Cannot init mbuf pool on socket %d\n", socketid);
3412 else
3413 printf("Allocated mbuf pool on socket %d\n", socketid);
3414
3415 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
3416 setup_lpm(socketid);
3417 #else
3418 setup_hash(socketid);
3419 #endif
3420 }
3421 qconf = &lcore_conf[lcore_id];
3422 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
3423 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
3424 }
3425 return 0;
3426 }
3427
3428 /* Check the link status of all ports in up to 9s, and print them finally */
3429 static void
check_all_ports_link_status(uint32_t port_mask)3430 check_all_ports_link_status(uint32_t port_mask)
3431 {
3432 #define CHECK_INTERVAL 100 /* 100ms */
3433 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
3434 uint16_t portid;
3435 uint8_t count, all_ports_up, print_flag = 0;
3436 struct rte_eth_link link;
3437 int ret;
3438 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
3439
3440 printf("\nChecking link status");
3441 fflush(stdout);
3442 for (count = 0; count <= MAX_CHECK_TIME; count++) {
3443 all_ports_up = 1;
3444 RTE_ETH_FOREACH_DEV(portid) {
3445 if ((port_mask & (1 << portid)) == 0)
3446 continue;
3447 memset(&link, 0, sizeof(link));
3448 ret = rte_eth_link_get_nowait(portid, &link);
3449 if (ret < 0) {
3450 all_ports_up = 0;
3451 if (print_flag == 1)
3452 printf("Port %u link get failed: %s\n",
3453 portid, rte_strerror(-ret));
3454 continue;
3455 }
3456 /* print link status if flag set */
3457 if (print_flag == 1) {
3458 rte_eth_link_to_str(link_status_text,
3459 sizeof(link_status_text), &link);
3460 printf("Port %d %s\n", portid,
3461 link_status_text);
3462 continue;
3463 }
3464 /* clear all_ports_up flag if any link down */
3465 if (link.link_status == ETH_LINK_DOWN) {
3466 all_ports_up = 0;
3467 break;
3468 }
3469 }
3470 /* after finally printing all link status, get out */
3471 if (print_flag == 1)
3472 break;
3473
3474 if (all_ports_up == 0) {
3475 printf(".");
3476 fflush(stdout);
3477 rte_delay_ms(CHECK_INTERVAL);
3478 }
3479
3480 /* set the print_flag if all ports up or timeout */
3481 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
3482 print_flag = 1;
3483 printf("done\n");
3484 }
3485 }
3486 }
3487
3488 int
main(int argc,char ** argv)3489 main(int argc, char **argv)
3490 {
3491 struct rte_eth_dev_info dev_info;
3492 struct rte_eth_txconf *txconf;
3493 int ret;
3494 int i;
3495 unsigned nb_ports;
3496 uint16_t queueid, portid;
3497 unsigned lcore_id;
3498 uint32_t n_tx_queue, nb_lcores;
3499 uint8_t nb_rx_queue, queue, socketid;
3500
3501 /* init EAL */
3502 ret = rte_eal_init(argc, argv);
3503 if (ret < 0)
3504 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
3505 argc -= ret;
3506 argv += ret;
3507
3508 ret = rte_timer_subsystem_init();
3509 if (ret < 0)
3510 rte_exit(EXIT_FAILURE, "Failed to initialize timer subystem\n");
3511
3512 /* pre-init dst MACs for all ports to 02:00:00:00:00:xx */
3513 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
3514 dest_eth_addr[portid] = RTE_ETHER_LOCAL_ADMIN_ADDR +
3515 ((uint64_t)portid << 40);
3516 *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
3517 }
3518
3519 /* parse application arguments (after the EAL ones) */
3520 ret = parse_args(argc, argv);
3521 if (ret < 0)
3522 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
3523
3524 if (check_lcore_params() < 0)
3525 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
3526
3527 printf("Initializing rx-queues...\n");
3528 ret = init_rx_queues();
3529 if (ret < 0)
3530 rte_exit(EXIT_FAILURE, "init_rx_queues failed\n");
3531
3532 printf("Initializing tx-threads...\n");
3533 ret = init_tx_threads();
3534 if (ret < 0)
3535 rte_exit(EXIT_FAILURE, "init_tx_threads failed\n");
3536
3537 printf("Initializing rings...\n");
3538 ret = init_rx_rings();
3539 if (ret < 0)
3540 rte_exit(EXIT_FAILURE, "init_rx_rings failed\n");
3541
3542 nb_ports = rte_eth_dev_count_avail();
3543
3544 if (check_port_config() < 0)
3545 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
3546
3547 nb_lcores = rte_lcore_count();
3548
3549 /* initialize all ports */
3550 RTE_ETH_FOREACH_DEV(portid) {
3551 struct rte_eth_conf local_port_conf = port_conf;
3552
3553 /* skip ports that are not enabled */
3554 if ((enabled_port_mask & (1 << portid)) == 0) {
3555 printf("\nSkipping disabled port %d\n", portid);
3556 continue;
3557 }
3558
3559 /* init port */
3560 printf("Initializing port %d ... ", portid);
3561 fflush(stdout);
3562
3563 nb_rx_queue = get_port_n_rx_queues(portid);
3564 n_tx_queue = nb_lcores;
3565 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
3566 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
3567 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
3568 nb_rx_queue, (unsigned)n_tx_queue);
3569
3570 ret = rte_eth_dev_info_get(portid, &dev_info);
3571 if (ret != 0)
3572 rte_exit(EXIT_FAILURE,
3573 "Error during getting device (port %u) info: %s\n",
3574 portid, strerror(-ret));
3575
3576 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
3577 local_port_conf.txmode.offloads |=
3578 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
3579
3580 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
3581 dev_info.flow_type_rss_offloads;
3582 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
3583 port_conf.rx_adv_conf.rss_conf.rss_hf) {
3584 printf("Port %u modified RSS hash function based on hardware support,"
3585 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
3586 portid,
3587 port_conf.rx_adv_conf.rss_conf.rss_hf,
3588 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
3589 }
3590
3591 ret = rte_eth_dev_configure(portid, nb_rx_queue,
3592 (uint16_t)n_tx_queue, &local_port_conf);
3593 if (ret < 0)
3594 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
3595 ret, portid);
3596
3597 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
3598 &nb_txd);
3599 if (ret < 0)
3600 rte_exit(EXIT_FAILURE,
3601 "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
3602 ret, portid);
3603
3604 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
3605 if (ret < 0)
3606 rte_exit(EXIT_FAILURE,
3607 "rte_eth_macaddr_get: err=%d, port=%d\n",
3608 ret, portid);
3609
3610 print_ethaddr(" Address:", &ports_eth_addr[portid]);
3611 printf(", ");
3612 print_ethaddr("Destination:",
3613 (const struct rte_ether_addr *)&dest_eth_addr[portid]);
3614 printf(", ");
3615
3616 /*
3617 * prepare src MACs for each port.
3618 */
3619 rte_ether_addr_copy(&ports_eth_addr[portid],
3620 (struct rte_ether_addr *)(val_eth + portid) + 1);
3621
3622 /* init memory */
3623 ret = init_mem(NB_MBUF);
3624 if (ret < 0)
3625 rte_exit(EXIT_FAILURE, "init_mem failed\n");
3626
3627 /* init one TX queue per couple (lcore,port) */
3628 queueid = 0;
3629 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
3630 if (rte_lcore_is_enabled(lcore_id) == 0)
3631 continue;
3632
3633 if (numa_on)
3634 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3635 else
3636 socketid = 0;
3637
3638 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
3639 fflush(stdout);
3640
3641 txconf = &dev_info.default_txconf;
3642 txconf->offloads = local_port_conf.txmode.offloads;
3643 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
3644 socketid, txconf);
3645 if (ret < 0)
3646 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
3647 "port=%d\n", ret, portid);
3648
3649 tx_thread[lcore_id].tx_queue_id[portid] = queueid;
3650 queueid++;
3651 }
3652 printf("\n");
3653 }
3654
3655 for (i = 0; i < n_rx_thread; i++) {
3656 lcore_id = rx_thread[i].conf.lcore_id;
3657
3658 if (rte_lcore_is_enabled(lcore_id) == 0) {
3659 rte_exit(EXIT_FAILURE,
3660 "Cannot start Rx thread on lcore %u: lcore disabled\n",
3661 lcore_id
3662 );
3663 }
3664
3665 printf("\nInitializing rx queues for Rx thread %d on lcore %u ... ",
3666 i, lcore_id);
3667 fflush(stdout);
3668
3669 /* init RX queues */
3670 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3671 struct rte_eth_rxconf rxq_conf;
3672
3673 portid = rx_thread[i].rx_queue_list[queue].port_id;
3674 queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3675
3676 if (numa_on)
3677 socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
3678 else
3679 socketid = 0;
3680
3681 printf("rxq=%d,%d,%d ", portid, queueid, socketid);
3682 fflush(stdout);
3683
3684 ret = rte_eth_dev_info_get(portid, &dev_info);
3685 if (ret != 0)
3686 rte_exit(EXIT_FAILURE,
3687 "Error during getting device (port %u) info: %s\n",
3688 portid, strerror(-ret));
3689
3690 rxq_conf = dev_info.default_rxconf;
3691 rxq_conf.offloads = port_conf.rxmode.offloads;
3692 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
3693 socketid,
3694 &rxq_conf,
3695 pktmbuf_pool[socketid]);
3696 if (ret < 0)
3697 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, "
3698 "port=%d\n", ret, portid);
3699 }
3700 }
3701
3702 printf("\n");
3703
3704 /* start ports */
3705 RTE_ETH_FOREACH_DEV(portid) {
3706 if ((enabled_port_mask & (1 << portid)) == 0)
3707 continue;
3708
3709 /* Start device */
3710 ret = rte_eth_dev_start(portid);
3711 if (ret < 0)
3712 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
3713 ret, portid);
3714
3715 /*
3716 * If enabled, put device in promiscuous mode.
3717 * This allows IO forwarding mode to forward packets
3718 * to itself through 2 cross-connected ports of the
3719 * target machine.
3720 */
3721 if (promiscuous_on) {
3722 ret = rte_eth_promiscuous_enable(portid);
3723 if (ret != 0)
3724 rte_exit(EXIT_FAILURE,
3725 "rte_eth_promiscuous_enable: err=%s, port=%u\n",
3726 rte_strerror(-ret), portid);
3727 }
3728 }
3729
3730 for (i = 0; i < n_rx_thread; i++) {
3731 lcore_id = rx_thread[i].conf.lcore_id;
3732 if (rte_lcore_is_enabled(lcore_id) == 0)
3733 continue;
3734
3735 /* check if hw packet type is supported */
3736 for (queue = 0; queue < rx_thread[i].n_rx_queue; ++queue) {
3737 portid = rx_thread[i].rx_queue_list[queue].port_id;
3738 queueid = rx_thread[i].rx_queue_list[queue].queue_id;
3739
3740 if (parse_ptype_on) {
3741 if (!rte_eth_add_rx_callback(portid, queueid,
3742 cb_parse_ptype, NULL))
3743 rte_exit(EXIT_FAILURE,
3744 "Failed to add rx callback: "
3745 "port=%d\n", portid);
3746 } else if (!check_ptype(portid))
3747 rte_exit(EXIT_FAILURE,
3748 "Port %d cannot parse packet type.\n\n"
3749 "Please add --parse-ptype to use sw "
3750 "packet type analyzer.\n\n",
3751 portid);
3752 }
3753 }
3754
3755 check_all_ports_link_status(enabled_port_mask);
3756
3757 if (lthreads_on) {
3758 printf("Starting L-Threading Model\n");
3759
3760 #if (APP_CPU_LOAD > 0)
3761 if (cpu_load_lcore_id > 0)
3762 /* Use one lcore for cpu load collector */
3763 nb_lcores--;
3764 #endif
3765
3766 lthread_num_schedulers_set(nb_lcores);
3767 rte_eal_mp_remote_launch(sched_spawner, NULL, SKIP_MAIN);
3768 lthread_main_spawner(NULL);
3769
3770 } else {
3771 printf("Starting P-Threading Model\n");
3772 /* launch per-lcore init on every lcore */
3773 rte_eal_mp_remote_launch(pthread_run, NULL, CALL_MAIN);
3774 RTE_LCORE_FOREACH_WORKER(lcore_id) {
3775 if (rte_eal_wait_lcore(lcore_id) < 0)
3776 return -1;
3777 }
3778 }
3779
3780 return 0;
3781 }
3782