xref: /f-stack/freebsd/kern/kern_tc.c (revision 22ce4aff)
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <[email protected]> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26 
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43 
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP	200
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 static u_int
dummy_get_timecount(struct timecounter * tc)59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 struct timehands {
71 	/* These fields must be initialized by the driver. */
72 	struct timecounter	*th_counter;
73 	int64_t			th_adjustment;
74 	uint64_t		th_scale;
75 	u_int			th_large_delta;
76 	u_int	 		th_offset_count;
77 	struct bintime		th_offset;
78 	struct bintime		th_bintime;
79 	struct timeval		th_microtime;
80 	struct timespec		th_nanotime;
81 	struct bintime		th_boottime;
82 	/* Fields not to be copied in tc_windup start with th_generation. */
83 	u_int			th_generation;
84 	struct timehands	*th_next;
85 };
86 
87 static struct timehands ths[16] = {
88     [0] =  {
89 	.th_counter = &dummy_timecounter,
90 	.th_scale = (uint64_t)-1 / 1000000,
91 	.th_large_delta = 1000000,
92 	.th_offset = { .sec = 1 },
93 	.th_generation = 1,
94     },
95 };
96 
97 static struct timehands *volatile timehands = &ths[0];
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100 
101 int tc_min_ticktock_freq = 1;
102 
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105 
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
108     CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
109     sysctl_kern_boottime, "S,timeval",
110     "System boottime");
111 
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
113     "");
114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
115     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
116     "");
117 
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121 
122 static int timehands_count = 2;
123 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
124     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
125     &timehands_count, 0, "Count of timehands in rotation");
126 
127 struct bintime bt_timethreshold;
128 struct bintime bt_tickthreshold;
129 sbintime_t sbt_timethreshold;
130 sbintime_t sbt_tickthreshold;
131 struct bintime tc_tick_bt;
132 sbintime_t tc_tick_sbt;
133 int tc_precexp;
134 int tc_timepercentage = TC_DEFAULTPERC;
135 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
136 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
137     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
138     sysctl_kern_timecounter_adjprecision, "I",
139     "Allowed time interval deviation in percents");
140 
141 volatile int rtc_generation = 1;
142 
143 static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
144 
145 static void tc_windup(struct bintime *new_boottimebin);
146 static void cpu_tick_calibrate(int);
147 
148 void dtrace_getnanotime(struct timespec *tsp);
149 void dtrace_getnanouptime(struct timespec *tsp);
150 
151 static int
sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)152 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
153 {
154 	struct timeval boottime;
155 
156 	getboottime(&boottime);
157 
158 /* i386 is the only arch which uses a 32bits time_t */
159 #ifdef __amd64__
160 #ifdef SCTL_MASK32
161 	int tv[2];
162 
163 	if (req->flags & SCTL_MASK32) {
164 		tv[0] = boottime.tv_sec;
165 		tv[1] = boottime.tv_usec;
166 		return (SYSCTL_OUT(req, tv, sizeof(tv)));
167 	}
168 #endif
169 #endif
170 	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
171 }
172 
173 static int
sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)174 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
175 {
176 	u_int ncount;
177 	struct timecounter *tc = arg1;
178 
179 	ncount = tc->tc_get_timecount(tc);
180 	return (sysctl_handle_int(oidp, &ncount, 0, req));
181 }
182 
183 static int
sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)184 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
185 {
186 	uint64_t freq;
187 	struct timecounter *tc = arg1;
188 
189 	freq = tc->tc_frequency;
190 	return (sysctl_handle_64(oidp, &freq, 0, req));
191 }
192 
193 /*
194  * Return the difference between the timehands' counter value now and what
195  * was when we copied it to the timehands' offset_count.
196  */
197 static __inline u_int
tc_delta(struct timehands * th)198 tc_delta(struct timehands *th)
199 {
200 	struct timecounter *tc;
201 
202 	tc = th->th_counter;
203 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
204 	    tc->tc_counter_mask);
205 }
206 
207 /*
208  * Functions for reading the time.  We have to loop until we are sure that
209  * the timehands that we operated on was not updated under our feet.  See
210  * the comment in <sys/time.h> for a description of these 12 functions.
211  */
212 
213 static __inline void
bintime_off(struct bintime * bt,u_int off)214 bintime_off(struct bintime *bt, u_int off)
215 {
216 	struct timehands *th;
217 	struct bintime *btp;
218 	uint64_t scale, x;
219 	u_int delta, gen, large_delta;
220 
221 	do {
222 		th = timehands;
223 		gen = atomic_load_acq_int(&th->th_generation);
224 		btp = (struct bintime *)((vm_offset_t)th + off);
225 		*bt = *btp;
226 		scale = th->th_scale;
227 		delta = tc_delta(th);
228 		large_delta = th->th_large_delta;
229 		atomic_thread_fence_acq();
230 	} while (gen == 0 || gen != th->th_generation);
231 
232 	if (__predict_false(delta >= large_delta)) {
233 		/* Avoid overflow for scale * delta. */
234 		x = (scale >> 32) * delta;
235 		bt->sec += x >> 32;
236 		bintime_addx(bt, x << 32);
237 		bintime_addx(bt, (scale & 0xffffffff) * delta);
238 	} else {
239 		bintime_addx(bt, scale * delta);
240 	}
241 }
242 #define	GETTHBINTIME(dst, member)					\
243 do {									\
244 	bintime_off(dst, __offsetof(struct timehands, member));		\
245 } while (0)
246 
247 static __inline void
getthmember(void * out,size_t out_size,u_int off)248 getthmember(void *out, size_t out_size, u_int off)
249 {
250 	struct timehands *th;
251 	u_int gen;
252 
253 	do {
254 		th = timehands;
255 		gen = atomic_load_acq_int(&th->th_generation);
256 		memcpy(out, (char *)th + off, out_size);
257 		atomic_thread_fence_acq();
258 	} while (gen == 0 || gen != th->th_generation);
259 }
260 #define	GETTHMEMBER(dst, member)					\
261 do {									\
262 	getthmember(dst, sizeof(*dst), __offsetof(struct timehands,	\
263 	    member));							\
264 } while (0)
265 
266 #ifdef FFCLOCK
267 void
fbclock_binuptime(struct bintime * bt)268 fbclock_binuptime(struct bintime *bt)
269 {
270 
271 	GETTHBINTIME(bt, th_offset);
272 }
273 
274 void
fbclock_nanouptime(struct timespec * tsp)275 fbclock_nanouptime(struct timespec *tsp)
276 {
277 	struct bintime bt;
278 
279 	fbclock_binuptime(&bt);
280 	bintime2timespec(&bt, tsp);
281 }
282 
283 void
fbclock_microuptime(struct timeval * tvp)284 fbclock_microuptime(struct timeval *tvp)
285 {
286 	struct bintime bt;
287 
288 	fbclock_binuptime(&bt);
289 	bintime2timeval(&bt, tvp);
290 }
291 
292 void
fbclock_bintime(struct bintime * bt)293 fbclock_bintime(struct bintime *bt)
294 {
295 
296 	GETTHBINTIME(bt, th_bintime);
297 }
298 
299 void
fbclock_nanotime(struct timespec * tsp)300 fbclock_nanotime(struct timespec *tsp)
301 {
302 	struct bintime bt;
303 
304 	fbclock_bintime(&bt);
305 	bintime2timespec(&bt, tsp);
306 }
307 
308 void
fbclock_microtime(struct timeval * tvp)309 fbclock_microtime(struct timeval *tvp)
310 {
311 	struct bintime bt;
312 
313 	fbclock_bintime(&bt);
314 	bintime2timeval(&bt, tvp);
315 }
316 
317 void
fbclock_getbinuptime(struct bintime * bt)318 fbclock_getbinuptime(struct bintime *bt)
319 {
320 
321 	GETTHMEMBER(bt, th_offset);
322 }
323 
324 void
fbclock_getnanouptime(struct timespec * tsp)325 fbclock_getnanouptime(struct timespec *tsp)
326 {
327 	struct bintime bt;
328 
329 	GETTHMEMBER(&bt, th_offset);
330 	bintime2timespec(&bt, tsp);
331 }
332 
333 void
fbclock_getmicrouptime(struct timeval * tvp)334 fbclock_getmicrouptime(struct timeval *tvp)
335 {
336 	struct bintime bt;
337 
338 	GETTHMEMBER(&bt, th_offset);
339 	bintime2timeval(&bt, tvp);
340 }
341 
342 void
fbclock_getbintime(struct bintime * bt)343 fbclock_getbintime(struct bintime *bt)
344 {
345 
346 	GETTHMEMBER(bt, th_bintime);
347 }
348 
349 void
fbclock_getnanotime(struct timespec * tsp)350 fbclock_getnanotime(struct timespec *tsp)
351 {
352 
353 	GETTHMEMBER(tsp, th_nanotime);
354 }
355 
356 void
fbclock_getmicrotime(struct timeval * tvp)357 fbclock_getmicrotime(struct timeval *tvp)
358 {
359 
360 	GETTHMEMBER(tvp, th_microtime);
361 }
362 #else /* !FFCLOCK */
363 
364 void
binuptime(struct bintime * bt)365 binuptime(struct bintime *bt)
366 {
367 
368 	GETTHBINTIME(bt, th_offset);
369 }
370 
371 void
nanouptime(struct timespec * tsp)372 nanouptime(struct timespec *tsp)
373 {
374 	struct bintime bt;
375 
376 	binuptime(&bt);
377 	bintime2timespec(&bt, tsp);
378 }
379 
380 void
microuptime(struct timeval * tvp)381 microuptime(struct timeval *tvp)
382 {
383 	struct bintime bt;
384 
385 	binuptime(&bt);
386 	bintime2timeval(&bt, tvp);
387 }
388 
389 void
bintime(struct bintime * bt)390 bintime(struct bintime *bt)
391 {
392 
393 	GETTHBINTIME(bt, th_bintime);
394 }
395 
396 void
nanotime(struct timespec * tsp)397 nanotime(struct timespec *tsp)
398 {
399 	struct bintime bt;
400 
401 	bintime(&bt);
402 	bintime2timespec(&bt, tsp);
403 }
404 
405 void
microtime(struct timeval * tvp)406 microtime(struct timeval *tvp)
407 {
408 	struct bintime bt;
409 
410 	bintime(&bt);
411 	bintime2timeval(&bt, tvp);
412 }
413 
414 void
getbinuptime(struct bintime * bt)415 getbinuptime(struct bintime *bt)
416 {
417 
418 	GETTHMEMBER(bt, th_offset);
419 }
420 
421 void
getnanouptime(struct timespec * tsp)422 getnanouptime(struct timespec *tsp)
423 {
424 	struct bintime bt;
425 
426 	GETTHMEMBER(&bt, th_offset);
427 	bintime2timespec(&bt, tsp);
428 }
429 
430 void
getmicrouptime(struct timeval * tvp)431 getmicrouptime(struct timeval *tvp)
432 {
433 	struct bintime bt;
434 
435 	GETTHMEMBER(&bt, th_offset);
436 	bintime2timeval(&bt, tvp);
437 }
438 
439 void
getbintime(struct bintime * bt)440 getbintime(struct bintime *bt)
441 {
442 
443 	GETTHMEMBER(bt, th_bintime);
444 }
445 
446 void
getnanotime(struct timespec * tsp)447 getnanotime(struct timespec *tsp)
448 {
449 
450 	GETTHMEMBER(tsp, th_nanotime);
451 }
452 
453 void
getmicrotime(struct timeval * tvp)454 getmicrotime(struct timeval *tvp)
455 {
456 
457 	GETTHMEMBER(tvp, th_microtime);
458 }
459 #endif /* FFCLOCK */
460 
461 void
getboottime(struct timeval * boottime)462 getboottime(struct timeval *boottime)
463 {
464 	struct bintime boottimebin;
465 
466 	getboottimebin(&boottimebin);
467 	bintime2timeval(&boottimebin, boottime);
468 }
469 
470 void
getboottimebin(struct bintime * boottimebin)471 getboottimebin(struct bintime *boottimebin)
472 {
473 
474 	GETTHMEMBER(boottimebin, th_boottime);
475 }
476 
477 #ifdef FFCLOCK
478 /*
479  * Support for feed-forward synchronization algorithms. This is heavily inspired
480  * by the timehands mechanism but kept independent from it. *_windup() functions
481  * have some connection to avoid accessing the timecounter hardware more than
482  * necessary.
483  */
484 
485 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
486 struct ffclock_estimate ffclock_estimate;
487 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
488 uint32_t ffclock_status;		/* Feed-forward clock status. */
489 int8_t ffclock_updated;			/* New estimates are available. */
490 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
491 
492 struct fftimehands {
493 	struct ffclock_estimate	cest;
494 	struct bintime		tick_time;
495 	struct bintime		tick_time_lerp;
496 	ffcounter		tick_ffcount;
497 	uint64_t		period_lerp;
498 	volatile uint8_t	gen;
499 	struct fftimehands	*next;
500 };
501 
502 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
503 
504 static struct fftimehands ffth[10];
505 static struct fftimehands *volatile fftimehands = ffth;
506 
507 static void
ffclock_init(void)508 ffclock_init(void)
509 {
510 	struct fftimehands *cur;
511 	struct fftimehands *last;
512 
513 	memset(ffth, 0, sizeof(ffth));
514 
515 	last = ffth + NUM_ELEMENTS(ffth) - 1;
516 	for (cur = ffth; cur < last; cur++)
517 		cur->next = cur + 1;
518 	last->next = ffth;
519 
520 	ffclock_updated = 0;
521 	ffclock_status = FFCLOCK_STA_UNSYNC;
522 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
523 }
524 
525 /*
526  * Reset the feed-forward clock estimates. Called from inittodr() to get things
527  * kick started and uses the timecounter nominal frequency as a first period
528  * estimate. Note: this function may be called several time just after boot.
529  * Note: this is the only function that sets the value of boot time for the
530  * monotonic (i.e. uptime) version of the feed-forward clock.
531  */
532 void
ffclock_reset_clock(struct timespec * ts)533 ffclock_reset_clock(struct timespec *ts)
534 {
535 	struct timecounter *tc;
536 	struct ffclock_estimate cest;
537 
538 	tc = timehands->th_counter;
539 	memset(&cest, 0, sizeof(struct ffclock_estimate));
540 
541 	timespec2bintime(ts, &ffclock_boottime);
542 	timespec2bintime(ts, &(cest.update_time));
543 	ffclock_read_counter(&cest.update_ffcount);
544 	cest.leapsec_next = 0;
545 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
546 	cest.errb_abs = 0;
547 	cest.errb_rate = 0;
548 	cest.status = FFCLOCK_STA_UNSYNC;
549 	cest.leapsec_total = 0;
550 	cest.leapsec = 0;
551 
552 	mtx_lock(&ffclock_mtx);
553 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
554 	ffclock_updated = INT8_MAX;
555 	mtx_unlock(&ffclock_mtx);
556 
557 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
558 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
559 	    (unsigned long)ts->tv_nsec);
560 }
561 
562 /*
563  * Sub-routine to convert a time interval measured in RAW counter units to time
564  * in seconds stored in bintime format.
565  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
566  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
567  * extra cycles.
568  */
569 static void
ffclock_convert_delta(ffcounter ffdelta,uint64_t period,struct bintime * bt)570 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
571 {
572 	struct bintime bt2;
573 	ffcounter delta, delta_max;
574 
575 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
576 	bintime_clear(bt);
577 	do {
578 		if (ffdelta > delta_max)
579 			delta = delta_max;
580 		else
581 			delta = ffdelta;
582 		bt2.sec = 0;
583 		bt2.frac = period;
584 		bintime_mul(&bt2, (unsigned int)delta);
585 		bintime_add(bt, &bt2);
586 		ffdelta -= delta;
587 	} while (ffdelta > 0);
588 }
589 
590 /*
591  * Update the fftimehands.
592  * Push the tick ffcount and time(s) forward based on current clock estimate.
593  * The conversion from ffcounter to bintime relies on the difference clock
594  * principle, whose accuracy relies on computing small time intervals. If a new
595  * clock estimate has been passed by the synchronisation daemon, make it
596  * current, and compute the linear interpolation for monotonic time if needed.
597  */
598 static void
ffclock_windup(unsigned int delta)599 ffclock_windup(unsigned int delta)
600 {
601 	struct ffclock_estimate *cest;
602 	struct fftimehands *ffth;
603 	struct bintime bt, gap_lerp;
604 	ffcounter ffdelta;
605 	uint64_t frac;
606 	unsigned int polling;
607 	uint8_t forward_jump, ogen;
608 
609 	/*
610 	 * Pick the next timehand, copy current ffclock estimates and move tick
611 	 * times and counter forward.
612 	 */
613 	forward_jump = 0;
614 	ffth = fftimehands->next;
615 	ogen = ffth->gen;
616 	ffth->gen = 0;
617 	cest = &ffth->cest;
618 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
619 	ffdelta = (ffcounter)delta;
620 	ffth->period_lerp = fftimehands->period_lerp;
621 
622 	ffth->tick_time = fftimehands->tick_time;
623 	ffclock_convert_delta(ffdelta, cest->period, &bt);
624 	bintime_add(&ffth->tick_time, &bt);
625 
626 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
627 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
628 	bintime_add(&ffth->tick_time_lerp, &bt);
629 
630 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
631 
632 	/*
633 	 * Assess the status of the clock, if the last update is too old, it is
634 	 * likely the synchronisation daemon is dead and the clock is free
635 	 * running.
636 	 */
637 	if (ffclock_updated == 0) {
638 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
639 		ffclock_convert_delta(ffdelta, cest->period, &bt);
640 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
641 			ffclock_status |= FFCLOCK_STA_UNSYNC;
642 	}
643 
644 	/*
645 	 * If available, grab updated clock estimates and make them current.
646 	 * Recompute time at this tick using the updated estimates. The clock
647 	 * estimates passed the feed-forward synchronisation daemon may result
648 	 * in time conversion that is not monotonically increasing (just after
649 	 * the update). time_lerp is a particular linear interpolation over the
650 	 * synchronisation algo polling period that ensures monotonicity for the
651 	 * clock ids requesting it.
652 	 */
653 	if (ffclock_updated > 0) {
654 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
655 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
656 		ffth->tick_time = cest->update_time;
657 		ffclock_convert_delta(ffdelta, cest->period, &bt);
658 		bintime_add(&ffth->tick_time, &bt);
659 
660 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
661 		if (ffclock_updated == INT8_MAX)
662 			ffth->tick_time_lerp = ffth->tick_time;
663 
664 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
665 			forward_jump = 1;
666 		else
667 			forward_jump = 0;
668 
669 		bintime_clear(&gap_lerp);
670 		if (forward_jump) {
671 			gap_lerp = ffth->tick_time;
672 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
673 		} else {
674 			gap_lerp = ffth->tick_time_lerp;
675 			bintime_sub(&gap_lerp, &ffth->tick_time);
676 		}
677 
678 		/*
679 		 * The reset from the RTC clock may be far from accurate, and
680 		 * reducing the gap between real time and interpolated time
681 		 * could take a very long time if the interpolated clock insists
682 		 * on strict monotonicity. The clock is reset under very strict
683 		 * conditions (kernel time is known to be wrong and
684 		 * synchronization daemon has been restarted recently.
685 		 * ffclock_boottime absorbs the jump to ensure boot time is
686 		 * correct and uptime functions stay consistent.
687 		 */
688 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
689 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
690 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
691 			if (forward_jump)
692 				bintime_add(&ffclock_boottime, &gap_lerp);
693 			else
694 				bintime_sub(&ffclock_boottime, &gap_lerp);
695 			ffth->tick_time_lerp = ffth->tick_time;
696 			bintime_clear(&gap_lerp);
697 		}
698 
699 		ffclock_status = cest->status;
700 		ffth->period_lerp = cest->period;
701 
702 		/*
703 		 * Compute corrected period used for the linear interpolation of
704 		 * time. The rate of linear interpolation is capped to 5000PPM
705 		 * (5ms/s).
706 		 */
707 		if (bintime_isset(&gap_lerp)) {
708 			ffdelta = cest->update_ffcount;
709 			ffdelta -= fftimehands->cest.update_ffcount;
710 			ffclock_convert_delta(ffdelta, cest->period, &bt);
711 			polling = bt.sec;
712 			bt.sec = 0;
713 			bt.frac = 5000000 * (uint64_t)18446744073LL;
714 			bintime_mul(&bt, polling);
715 			if (bintime_cmp(&gap_lerp, &bt, >))
716 				gap_lerp = bt;
717 
718 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
719 			frac = 0;
720 			if (gap_lerp.sec > 0) {
721 				frac -= 1;
722 				frac /= ffdelta / gap_lerp.sec;
723 			}
724 			frac += gap_lerp.frac / ffdelta;
725 
726 			if (forward_jump)
727 				ffth->period_lerp += frac;
728 			else
729 				ffth->period_lerp -= frac;
730 		}
731 
732 		ffclock_updated = 0;
733 	}
734 	if (++ogen == 0)
735 		ogen = 1;
736 	ffth->gen = ogen;
737 	fftimehands = ffth;
738 }
739 
740 /*
741  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
742  * the old and new hardware counter cannot be read simultaneously. tc_windup()
743  * does read the two counters 'back to back', but a few cycles are effectively
744  * lost, and not accumulated in tick_ffcount. This is a fairly radical
745  * operation for a feed-forward synchronization daemon, and it is its job to not
746  * pushing irrelevant data to the kernel. Because there is no locking here,
747  * simply force to ignore pending or next update to give daemon a chance to
748  * realize the counter has changed.
749  */
750 static void
ffclock_change_tc(struct timehands * th)751 ffclock_change_tc(struct timehands *th)
752 {
753 	struct fftimehands *ffth;
754 	struct ffclock_estimate *cest;
755 	struct timecounter *tc;
756 	uint8_t ogen;
757 
758 	tc = th->th_counter;
759 	ffth = fftimehands->next;
760 	ogen = ffth->gen;
761 	ffth->gen = 0;
762 
763 	cest = &ffth->cest;
764 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
765 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
766 	cest->errb_abs = 0;
767 	cest->errb_rate = 0;
768 	cest->status |= FFCLOCK_STA_UNSYNC;
769 
770 	ffth->tick_ffcount = fftimehands->tick_ffcount;
771 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
772 	ffth->tick_time = fftimehands->tick_time;
773 	ffth->period_lerp = cest->period;
774 
775 	/* Do not lock but ignore next update from synchronization daemon. */
776 	ffclock_updated--;
777 
778 	if (++ogen == 0)
779 		ogen = 1;
780 	ffth->gen = ogen;
781 	fftimehands = ffth;
782 }
783 
784 /*
785  * Retrieve feed-forward counter and time of last kernel tick.
786  */
787 void
ffclock_last_tick(ffcounter * ffcount,struct bintime * bt,uint32_t flags)788 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
789 {
790 	struct fftimehands *ffth;
791 	uint8_t gen;
792 
793 	/*
794 	 * No locking but check generation has not changed. Also need to make
795 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
796 	 */
797 	do {
798 		ffth = fftimehands;
799 		gen = ffth->gen;
800 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
801 			*bt = ffth->tick_time_lerp;
802 		else
803 			*bt = ffth->tick_time;
804 		*ffcount = ffth->tick_ffcount;
805 	} while (gen == 0 || gen != ffth->gen);
806 }
807 
808 /*
809  * Absolute clock conversion. Low level function to convert ffcounter to
810  * bintime. The ffcounter is converted using the current ffclock period estimate
811  * or the "interpolated period" to ensure monotonicity.
812  * NOTE: this conversion may have been deferred, and the clock updated since the
813  * hardware counter has been read.
814  */
815 void
ffclock_convert_abs(ffcounter ffcount,struct bintime * bt,uint32_t flags)816 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
817 {
818 	struct fftimehands *ffth;
819 	struct bintime bt2;
820 	ffcounter ffdelta;
821 	uint8_t gen;
822 
823 	/*
824 	 * No locking but check generation has not changed. Also need to make
825 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
826 	 */
827 	do {
828 		ffth = fftimehands;
829 		gen = ffth->gen;
830 		if (ffcount > ffth->tick_ffcount)
831 			ffdelta = ffcount - ffth->tick_ffcount;
832 		else
833 			ffdelta = ffth->tick_ffcount - ffcount;
834 
835 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
836 			*bt = ffth->tick_time_lerp;
837 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
838 		} else {
839 			*bt = ffth->tick_time;
840 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
841 		}
842 
843 		if (ffcount > ffth->tick_ffcount)
844 			bintime_add(bt, &bt2);
845 		else
846 			bintime_sub(bt, &bt2);
847 	} while (gen == 0 || gen != ffth->gen);
848 }
849 
850 /*
851  * Difference clock conversion.
852  * Low level function to Convert a time interval measured in RAW counter units
853  * into bintime. The difference clock allows measuring small intervals much more
854  * reliably than the absolute clock.
855  */
856 void
ffclock_convert_diff(ffcounter ffdelta,struct bintime * bt)857 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
858 {
859 	struct fftimehands *ffth;
860 	uint8_t gen;
861 
862 	/* No locking but check generation has not changed. */
863 	do {
864 		ffth = fftimehands;
865 		gen = ffth->gen;
866 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
867 	} while (gen == 0 || gen != ffth->gen);
868 }
869 
870 /*
871  * Access to current ffcounter value.
872  */
873 void
ffclock_read_counter(ffcounter * ffcount)874 ffclock_read_counter(ffcounter *ffcount)
875 {
876 	struct timehands *th;
877 	struct fftimehands *ffth;
878 	unsigned int gen, delta;
879 
880 	/*
881 	 * ffclock_windup() called from tc_windup(), safe to rely on
882 	 * th->th_generation only, for correct delta and ffcounter.
883 	 */
884 	do {
885 		th = timehands;
886 		gen = atomic_load_acq_int(&th->th_generation);
887 		ffth = fftimehands;
888 		delta = tc_delta(th);
889 		*ffcount = ffth->tick_ffcount;
890 		atomic_thread_fence_acq();
891 	} while (gen == 0 || gen != th->th_generation);
892 
893 	*ffcount += delta;
894 }
895 
896 void
binuptime(struct bintime * bt)897 binuptime(struct bintime *bt)
898 {
899 
900 	binuptime_fromclock(bt, sysclock_active);
901 }
902 
903 void
nanouptime(struct timespec * tsp)904 nanouptime(struct timespec *tsp)
905 {
906 
907 	nanouptime_fromclock(tsp, sysclock_active);
908 }
909 
910 void
microuptime(struct timeval * tvp)911 microuptime(struct timeval *tvp)
912 {
913 
914 	microuptime_fromclock(tvp, sysclock_active);
915 }
916 
917 void
bintime(struct bintime * bt)918 bintime(struct bintime *bt)
919 {
920 
921 	bintime_fromclock(bt, sysclock_active);
922 }
923 
924 void
nanotime(struct timespec * tsp)925 nanotime(struct timespec *tsp)
926 {
927 
928 	nanotime_fromclock(tsp, sysclock_active);
929 }
930 
931 void
microtime(struct timeval * tvp)932 microtime(struct timeval *tvp)
933 {
934 
935 	microtime_fromclock(tvp, sysclock_active);
936 }
937 
938 void
getbinuptime(struct bintime * bt)939 getbinuptime(struct bintime *bt)
940 {
941 
942 	getbinuptime_fromclock(bt, sysclock_active);
943 }
944 
945 void
getnanouptime(struct timespec * tsp)946 getnanouptime(struct timespec *tsp)
947 {
948 
949 	getnanouptime_fromclock(tsp, sysclock_active);
950 }
951 
952 void
getmicrouptime(struct timeval * tvp)953 getmicrouptime(struct timeval *tvp)
954 {
955 
956 	getmicrouptime_fromclock(tvp, sysclock_active);
957 }
958 
959 void
getbintime(struct bintime * bt)960 getbintime(struct bintime *bt)
961 {
962 
963 	getbintime_fromclock(bt, sysclock_active);
964 }
965 
966 void
getnanotime(struct timespec * tsp)967 getnanotime(struct timespec *tsp)
968 {
969 
970 	getnanotime_fromclock(tsp, sysclock_active);
971 }
972 
973 void
getmicrotime(struct timeval * tvp)974 getmicrotime(struct timeval *tvp)
975 {
976 
977 	getmicrouptime_fromclock(tvp, sysclock_active);
978 }
979 
980 #endif /* FFCLOCK */
981 
982 /*
983  * This is a clone of getnanotime and used for walltimestamps.
984  * The dtrace_ prefix prevents fbt from creating probes for
985  * it so walltimestamp can be safely used in all fbt probes.
986  */
987 void
dtrace_getnanotime(struct timespec * tsp)988 dtrace_getnanotime(struct timespec *tsp)
989 {
990 
991 	GETTHMEMBER(tsp, th_nanotime);
992 }
993 
994 /*
995  * This is a clone of getnanouptime used for time since boot.
996  * The dtrace_ prefix prevents fbt from creating probes for
997  * it so an uptime that can be safely used in all fbt probes.
998  */
999 void
dtrace_getnanouptime(struct timespec * tsp)1000 dtrace_getnanouptime(struct timespec *tsp)
1001 {
1002 	struct bintime bt;
1003 
1004 	GETTHMEMBER(&bt, th_offset);
1005 	bintime2timespec(&bt, tsp);
1006 }
1007 
1008 /*
1009  * System clock currently providing time to the system. Modifiable via sysctl
1010  * when the FFCLOCK option is defined.
1011  */
1012 int sysclock_active = SYSCLOCK_FBCK;
1013 
1014 /* Internal NTP status and error estimates. */
1015 extern int time_status;
1016 extern long time_esterror;
1017 
1018 /*
1019  * Take a snapshot of sysclock data which can be used to compare system clocks
1020  * and generate timestamps after the fact.
1021  */
1022 void
sysclock_getsnapshot(struct sysclock_snap * clock_snap,int fast)1023 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1024 {
1025 	struct fbclock_info *fbi;
1026 	struct timehands *th;
1027 	struct bintime bt;
1028 	unsigned int delta, gen;
1029 #ifdef FFCLOCK
1030 	ffcounter ffcount;
1031 	struct fftimehands *ffth;
1032 	struct ffclock_info *ffi;
1033 	struct ffclock_estimate cest;
1034 
1035 	ffi = &clock_snap->ff_info;
1036 #endif
1037 
1038 	fbi = &clock_snap->fb_info;
1039 	delta = 0;
1040 
1041 	do {
1042 		th = timehands;
1043 		gen = atomic_load_acq_int(&th->th_generation);
1044 		fbi->th_scale = th->th_scale;
1045 		fbi->tick_time = th->th_offset;
1046 #ifdef FFCLOCK
1047 		ffth = fftimehands;
1048 		ffi->tick_time = ffth->tick_time_lerp;
1049 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1050 		ffi->period = ffth->cest.period;
1051 		ffi->period_lerp = ffth->period_lerp;
1052 		clock_snap->ffcount = ffth->tick_ffcount;
1053 		cest = ffth->cest;
1054 #endif
1055 		if (!fast)
1056 			delta = tc_delta(th);
1057 		atomic_thread_fence_acq();
1058 	} while (gen == 0 || gen != th->th_generation);
1059 
1060 	clock_snap->delta = delta;
1061 	clock_snap->sysclock_active = sysclock_active;
1062 
1063 	/* Record feedback clock status and error. */
1064 	clock_snap->fb_info.status = time_status;
1065 	/* XXX: Very crude estimate of feedback clock error. */
1066 	bt.sec = time_esterror / 1000000;
1067 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1068 	    (uint64_t)18446744073709ULL;
1069 	clock_snap->fb_info.error = bt;
1070 
1071 #ifdef FFCLOCK
1072 	if (!fast)
1073 		clock_snap->ffcount += delta;
1074 
1075 	/* Record feed-forward clock leap second adjustment. */
1076 	ffi->leapsec_adjustment = cest.leapsec_total;
1077 	if (clock_snap->ffcount > cest.leapsec_next)
1078 		ffi->leapsec_adjustment -= cest.leapsec;
1079 
1080 	/* Record feed-forward clock status and error. */
1081 	clock_snap->ff_info.status = cest.status;
1082 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1083 	ffclock_convert_delta(ffcount, cest.period, &bt);
1084 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1085 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1086 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1087 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1088 	clock_snap->ff_info.error = bt;
1089 #endif
1090 }
1091 
1092 /*
1093  * Convert a sysclock snapshot into a struct bintime based on the specified
1094  * clock source and flags.
1095  */
1096 int
sysclock_snap2bintime(struct sysclock_snap * cs,struct bintime * bt,int whichclock,uint32_t flags)1097 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1098     int whichclock, uint32_t flags)
1099 {
1100 	struct bintime boottimebin;
1101 #ifdef FFCLOCK
1102 	struct bintime bt2;
1103 	uint64_t period;
1104 #endif
1105 
1106 	switch (whichclock) {
1107 	case SYSCLOCK_FBCK:
1108 		*bt = cs->fb_info.tick_time;
1109 
1110 		/* If snapshot was created with !fast, delta will be >0. */
1111 		if (cs->delta > 0)
1112 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1113 
1114 		if ((flags & FBCLOCK_UPTIME) == 0) {
1115 			getboottimebin(&boottimebin);
1116 			bintime_add(bt, &boottimebin);
1117 		}
1118 		break;
1119 #ifdef FFCLOCK
1120 	case SYSCLOCK_FFWD:
1121 		if (flags & FFCLOCK_LERP) {
1122 			*bt = cs->ff_info.tick_time_lerp;
1123 			period = cs->ff_info.period_lerp;
1124 		} else {
1125 			*bt = cs->ff_info.tick_time;
1126 			period = cs->ff_info.period;
1127 		}
1128 
1129 		/* If snapshot was created with !fast, delta will be >0. */
1130 		if (cs->delta > 0) {
1131 			ffclock_convert_delta(cs->delta, period, &bt2);
1132 			bintime_add(bt, &bt2);
1133 		}
1134 
1135 		/* Leap second adjustment. */
1136 		if (flags & FFCLOCK_LEAPSEC)
1137 			bt->sec -= cs->ff_info.leapsec_adjustment;
1138 
1139 		/* Boot time adjustment, for uptime/monotonic clocks. */
1140 		if (flags & FFCLOCK_UPTIME)
1141 			bintime_sub(bt, &ffclock_boottime);
1142 		break;
1143 #endif
1144 	default:
1145 		return (EINVAL);
1146 		break;
1147 	}
1148 
1149 	return (0);
1150 }
1151 
1152 /*
1153  * Initialize a new timecounter and possibly use it.
1154  */
1155 void
tc_init(struct timecounter * tc)1156 tc_init(struct timecounter *tc)
1157 {
1158 	u_int u;
1159 	struct sysctl_oid *tc_root;
1160 
1161 	u = tc->tc_frequency / tc->tc_counter_mask;
1162 	/* XXX: We need some margin here, 10% is a guess */
1163 	u *= 11;
1164 	u /= 10;
1165 	if (u > hz && tc->tc_quality >= 0) {
1166 		tc->tc_quality = -2000;
1167 		if (bootverbose) {
1168 			printf("Timecounter \"%s\" frequency %ju Hz",
1169 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1170 			printf(" -- Insufficient hz, needs at least %u\n", u);
1171 		}
1172 	} else if (tc->tc_quality >= 0 || bootverbose) {
1173 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1174 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1175 		    tc->tc_quality);
1176 	}
1177 
1178 	tc->tc_next = timecounters;
1179 	timecounters = tc;
1180 	/*
1181 	 * Set up sysctl tree for this counter.
1182 	 */
1183 	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1184 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1185 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1186 	    "timecounter description", "timecounter");
1187 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1188 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1189 	    "mask for implemented bits");
1190 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1191 	    "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1192 	    sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1193 	    "current timecounter value");
1194 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1195 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1196 	    sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1197 	    "timecounter frequency");
1198 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1199 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1200 	    "goodness of time counter");
1201 	/*
1202 	 * Do not automatically switch if the current tc was specifically
1203 	 * chosen.  Never automatically use a timecounter with negative quality.
1204 	 * Even though we run on the dummy counter, switching here may be
1205 	 * worse since this timecounter may not be monotonic.
1206 	 */
1207 	if (tc_chosen)
1208 		return;
1209 	if (tc->tc_quality < 0)
1210 		return;
1211 	if (tc->tc_quality < timecounter->tc_quality)
1212 		return;
1213 	if (tc->tc_quality == timecounter->tc_quality &&
1214 	    tc->tc_frequency < timecounter->tc_frequency)
1215 		return;
1216 	(void)tc->tc_get_timecount(tc);
1217 	timecounter = tc;
1218 }
1219 
1220 /* Report the frequency of the current timecounter. */
1221 uint64_t
tc_getfrequency(void)1222 tc_getfrequency(void)
1223 {
1224 
1225 	return (timehands->th_counter->tc_frequency);
1226 }
1227 
1228 static bool
sleeping_on_old_rtc(struct thread * td)1229 sleeping_on_old_rtc(struct thread *td)
1230 {
1231 
1232 	/*
1233 	 * td_rtcgen is modified by curthread when it is running,
1234 	 * and by other threads in this function.  By finding the thread
1235 	 * on a sleepqueue and holding the lock on the sleepqueue
1236 	 * chain, we guarantee that the thread is not running and that
1237 	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1238 	 * the thread that it was woken due to a real-time clock adjustment.
1239 	 * (The declaration of td_rtcgen refers to this comment.)
1240 	 */
1241 	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1242 		td->td_rtcgen = 0;
1243 		return (true);
1244 	}
1245 	return (false);
1246 }
1247 
1248 static struct mtx tc_setclock_mtx;
1249 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1250 
1251 /*
1252  * Step our concept of UTC.  This is done by modifying our estimate of
1253  * when we booted.
1254  */
1255 void
tc_setclock(struct timespec * ts)1256 tc_setclock(struct timespec *ts)
1257 {
1258 	struct timespec tbef, taft;
1259 	struct bintime bt, bt2;
1260 
1261 	timespec2bintime(ts, &bt);
1262 	nanotime(&tbef);
1263 	mtx_lock_spin(&tc_setclock_mtx);
1264 	cpu_tick_calibrate(1);
1265 	binuptime(&bt2);
1266 	bintime_sub(&bt, &bt2);
1267 
1268 	/* XXX fiddle all the little crinkly bits around the fiords... */
1269 	tc_windup(&bt);
1270 	mtx_unlock_spin(&tc_setclock_mtx);
1271 
1272 	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1273 	atomic_add_rel_int(&rtc_generation, 2);
1274 	sleepq_chains_remove_matching(sleeping_on_old_rtc);
1275 	if (timestepwarnings) {
1276 		nanotime(&taft);
1277 		log(LOG_INFO,
1278 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1279 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1280 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1281 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1282 	}
1283 }
1284 
1285 /*
1286  * Initialize the next struct timehands in the ring and make
1287  * it the active timehands.  Along the way we might switch to a different
1288  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1289  */
1290 static void
tc_windup(struct bintime * new_boottimebin)1291 tc_windup(struct bintime *new_boottimebin)
1292 {
1293 	struct bintime bt;
1294 	struct timehands *th, *tho;
1295 	uint64_t scale;
1296 	u_int delta, ncount, ogen;
1297 	int i;
1298 	time_t t;
1299 
1300 	/*
1301 	 * Make the next timehands a copy of the current one, but do
1302 	 * not overwrite the generation or next pointer.  While we
1303 	 * update the contents, the generation must be zero.  We need
1304 	 * to ensure that the zero generation is visible before the
1305 	 * data updates become visible, which requires release fence.
1306 	 * For similar reasons, re-reading of the generation after the
1307 	 * data is read should use acquire fence.
1308 	 */
1309 	tho = timehands;
1310 	th = tho->th_next;
1311 	ogen = th->th_generation;
1312 	th->th_generation = 0;
1313 	atomic_thread_fence_rel();
1314 	memcpy(th, tho, offsetof(struct timehands, th_generation));
1315 	if (new_boottimebin != NULL)
1316 		th->th_boottime = *new_boottimebin;
1317 
1318 	/*
1319 	 * Capture a timecounter delta on the current timecounter and if
1320 	 * changing timecounters, a counter value from the new timecounter.
1321 	 * Update the offset fields accordingly.
1322 	 */
1323 	delta = tc_delta(th);
1324 	if (th->th_counter != timecounter)
1325 		ncount = timecounter->tc_get_timecount(timecounter);
1326 	else
1327 		ncount = 0;
1328 #ifdef FFCLOCK
1329 	ffclock_windup(delta);
1330 #endif
1331 	th->th_offset_count += delta;
1332 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1333 	while (delta > th->th_counter->tc_frequency) {
1334 		/* Eat complete unadjusted seconds. */
1335 		delta -= th->th_counter->tc_frequency;
1336 		th->th_offset.sec++;
1337 	}
1338 	if ((delta > th->th_counter->tc_frequency / 2) &&
1339 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1340 		/* The product th_scale * delta just barely overflows. */
1341 		th->th_offset.sec++;
1342 	}
1343 	bintime_addx(&th->th_offset, th->th_scale * delta);
1344 
1345 	/*
1346 	 * Hardware latching timecounters may not generate interrupts on
1347 	 * PPS events, so instead we poll them.  There is a finite risk that
1348 	 * the hardware might capture a count which is later than the one we
1349 	 * got above, and therefore possibly in the next NTP second which might
1350 	 * have a different rate than the current NTP second.  It doesn't
1351 	 * matter in practice.
1352 	 */
1353 	if (tho->th_counter->tc_poll_pps)
1354 		tho->th_counter->tc_poll_pps(tho->th_counter);
1355 
1356 	/*
1357 	 * Deal with NTP second processing.  The for loop normally
1358 	 * iterates at most once, but in extreme situations it might
1359 	 * keep NTP sane if timeouts are not run for several seconds.
1360 	 * At boot, the time step can be large when the TOD hardware
1361 	 * has been read, so on really large steps, we call
1362 	 * ntp_update_second only twice.  We need to call it twice in
1363 	 * case we missed a leap second.
1364 	 */
1365 	bt = th->th_offset;
1366 	bintime_add(&bt, &th->th_boottime);
1367 	i = bt.sec - tho->th_microtime.tv_sec;
1368 	if (i > LARGE_STEP)
1369 		i = 2;
1370 	for (; i > 0; i--) {
1371 		t = bt.sec;
1372 		ntp_update_second(&th->th_adjustment, &bt.sec);
1373 		if (bt.sec != t)
1374 			th->th_boottime.sec += bt.sec - t;
1375 	}
1376 	/* Update the UTC timestamps used by the get*() functions. */
1377 	th->th_bintime = bt;
1378 	bintime2timeval(&bt, &th->th_microtime);
1379 	bintime2timespec(&bt, &th->th_nanotime);
1380 
1381 	/* Now is a good time to change timecounters. */
1382 	if (th->th_counter != timecounter) {
1383 #ifndef __arm__
1384 		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1385 			cpu_disable_c2_sleep++;
1386 		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1387 			cpu_disable_c2_sleep--;
1388 #endif
1389 		th->th_counter = timecounter;
1390 		th->th_offset_count = ncount;
1391 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1392 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1393 #ifdef FFCLOCK
1394 		ffclock_change_tc(th);
1395 #endif
1396 	}
1397 
1398 	/*-
1399 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1400 	 * fractions of a second per period of the hardware counter, taking
1401 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1402 	 * processing provides us with.
1403 	 *
1404 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1405 	 * fraction and we want 64 bit binary fraction of second:
1406 	 *
1407 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1408 	 *
1409 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1410 	 * we can only multiply by about 850 without overflowing, that
1411 	 * leaves no suitably precise fractions for multiply before divide.
1412 	 *
1413 	 * Divide before multiply with a fraction of 2199/512 results in a
1414 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1415 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1416  	 *
1417 	 * We happily sacrifice the lowest of the 64 bits of our result
1418 	 * to the goddess of code clarity.
1419 	 *
1420 	 */
1421 	scale = (uint64_t)1 << 63;
1422 	scale += (th->th_adjustment / 1024) * 2199;
1423 	scale /= th->th_counter->tc_frequency;
1424 	th->th_scale = scale * 2;
1425 	th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1426 
1427 	/*
1428 	 * Now that the struct timehands is again consistent, set the new
1429 	 * generation number, making sure to not make it zero.
1430 	 */
1431 	if (++ogen == 0)
1432 		ogen = 1;
1433 	atomic_store_rel_int(&th->th_generation, ogen);
1434 
1435 	/* Go live with the new struct timehands. */
1436 #ifdef FFCLOCK
1437 	switch (sysclock_active) {
1438 	case SYSCLOCK_FBCK:
1439 #endif
1440 		time_second = th->th_microtime.tv_sec;
1441 		time_uptime = th->th_offset.sec;
1442 #ifdef FFCLOCK
1443 		break;
1444 	case SYSCLOCK_FFWD:
1445 		time_second = fftimehands->tick_time_lerp.sec;
1446 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1447 		break;
1448 	}
1449 #endif
1450 
1451 	timehands = th;
1452 	timekeep_push_vdso();
1453 }
1454 
1455 /* Report or change the active timecounter hardware. */
1456 static int
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)1457 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1458 {
1459 	char newname[32];
1460 	struct timecounter *newtc, *tc;
1461 	int error;
1462 
1463 	tc = timecounter;
1464 	strlcpy(newname, tc->tc_name, sizeof(newname));
1465 
1466 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1467 	if (error != 0 || req->newptr == NULL)
1468 		return (error);
1469 	/* Record that the tc in use now was specifically chosen. */
1470 	tc_chosen = 1;
1471 	if (strcmp(newname, tc->tc_name) == 0)
1472 		return (0);
1473 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1474 		if (strcmp(newname, newtc->tc_name) != 0)
1475 			continue;
1476 
1477 		/* Warm up new timecounter. */
1478 		(void)newtc->tc_get_timecount(newtc);
1479 
1480 		timecounter = newtc;
1481 
1482 		/*
1483 		 * The vdso timehands update is deferred until the next
1484 		 * 'tc_windup()'.
1485 		 *
1486 		 * This is prudent given that 'timekeep_push_vdso()' does not
1487 		 * use any locking and that it can be called in hard interrupt
1488 		 * context via 'tc_windup()'.
1489 		 */
1490 		return (0);
1491 	}
1492 	return (EINVAL);
1493 }
1494 
1495 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1496     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
1497     sysctl_kern_timecounter_hardware, "A",
1498     "Timecounter hardware selected");
1499 
1500 /* Report the available timecounter hardware. */
1501 static int
sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)1502 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1503 {
1504 	struct sbuf sb;
1505 	struct timecounter *tc;
1506 	int error;
1507 
1508 	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1509 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1510 		if (tc != timecounters)
1511 			sbuf_putc(&sb, ' ');
1512 		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1513 	}
1514 	error = sbuf_finish(&sb);
1515 	sbuf_delete(&sb);
1516 	return (error);
1517 }
1518 
1519 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1520     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1521     sysctl_kern_timecounter_choice, "A",
1522     "Timecounter hardware detected");
1523 
1524 /*
1525  * RFC 2783 PPS-API implementation.
1526  */
1527 
1528 /*
1529  *  Return true if the driver is aware of the abi version extensions in the
1530  *  pps_state structure, and it supports at least the given abi version number.
1531  */
1532 static inline int
abi_aware(struct pps_state * pps,int vers)1533 abi_aware(struct pps_state *pps, int vers)
1534 {
1535 
1536 	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1537 }
1538 
1539 static int
pps_fetch(struct pps_fetch_args * fapi,struct pps_state * pps)1540 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1541 {
1542 	int err, timo;
1543 	pps_seq_t aseq, cseq;
1544 	struct timeval tv;
1545 
1546 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1547 		return (EINVAL);
1548 
1549 	/*
1550 	 * If no timeout is requested, immediately return whatever values were
1551 	 * most recently captured.  If timeout seconds is -1, that's a request
1552 	 * to block without a timeout.  WITNESS won't let us sleep forever
1553 	 * without a lock (we really don't need a lock), so just repeatedly
1554 	 * sleep a long time.
1555 	 */
1556 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1557 		if (fapi->timeout.tv_sec == -1)
1558 			timo = 0x7fffffff;
1559 		else {
1560 			tv.tv_sec = fapi->timeout.tv_sec;
1561 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1562 			timo = tvtohz(&tv);
1563 		}
1564 		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1565 		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1566 		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1567 		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1568 			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1569 				if (pps->flags & PPSFLAG_MTX_SPIN) {
1570 					err = msleep_spin(pps, pps->driver_mtx,
1571 					    "ppsfch", timo);
1572 				} else {
1573 					err = msleep(pps, pps->driver_mtx, PCATCH,
1574 					    "ppsfch", timo);
1575 				}
1576 			} else {
1577 				err = tsleep(pps, PCATCH, "ppsfch", timo);
1578 			}
1579 			if (err == EWOULDBLOCK) {
1580 				if (fapi->timeout.tv_sec == -1) {
1581 					continue;
1582 				} else {
1583 					return (ETIMEDOUT);
1584 				}
1585 			} else if (err != 0) {
1586 				return (err);
1587 			}
1588 		}
1589 	}
1590 
1591 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1592 	fapi->pps_info_buf = pps->ppsinfo;
1593 
1594 	return (0);
1595 }
1596 
1597 int
pps_ioctl(u_long cmd,caddr_t data,struct pps_state * pps)1598 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1599 {
1600 	pps_params_t *app;
1601 	struct pps_fetch_args *fapi;
1602 #ifdef FFCLOCK
1603 	struct pps_fetch_ffc_args *fapi_ffc;
1604 #endif
1605 #ifdef PPS_SYNC
1606 	struct pps_kcbind_args *kapi;
1607 #endif
1608 
1609 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1610 	switch (cmd) {
1611 	case PPS_IOC_CREATE:
1612 		return (0);
1613 	case PPS_IOC_DESTROY:
1614 		return (0);
1615 	case PPS_IOC_SETPARAMS:
1616 		app = (pps_params_t *)data;
1617 		if (app->mode & ~pps->ppscap)
1618 			return (EINVAL);
1619 #ifdef FFCLOCK
1620 		/* Ensure only a single clock is selected for ffc timestamp. */
1621 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1622 			return (EINVAL);
1623 #endif
1624 		pps->ppsparam = *app;
1625 		return (0);
1626 	case PPS_IOC_GETPARAMS:
1627 		app = (pps_params_t *)data;
1628 		*app = pps->ppsparam;
1629 		app->api_version = PPS_API_VERS_1;
1630 		return (0);
1631 	case PPS_IOC_GETCAP:
1632 		*(int*)data = pps->ppscap;
1633 		return (0);
1634 	case PPS_IOC_FETCH:
1635 		fapi = (struct pps_fetch_args *)data;
1636 		return (pps_fetch(fapi, pps));
1637 #ifdef FFCLOCK
1638 	case PPS_IOC_FETCH_FFCOUNTER:
1639 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1640 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1641 		    PPS_TSFMT_TSPEC)
1642 			return (EINVAL);
1643 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1644 			return (EOPNOTSUPP);
1645 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1646 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1647 		/* Overwrite timestamps if feedback clock selected. */
1648 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1649 		case PPS_TSCLK_FBCK:
1650 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1651 			    pps->ppsinfo.assert_timestamp;
1652 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1653 			    pps->ppsinfo.clear_timestamp;
1654 			break;
1655 		case PPS_TSCLK_FFWD:
1656 			break;
1657 		default:
1658 			break;
1659 		}
1660 		return (0);
1661 #endif /* FFCLOCK */
1662 	case PPS_IOC_KCBIND:
1663 #ifdef PPS_SYNC
1664 		kapi = (struct pps_kcbind_args *)data;
1665 		/* XXX Only root should be able to do this */
1666 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1667 			return (EINVAL);
1668 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1669 			return (EINVAL);
1670 		if (kapi->edge & ~pps->ppscap)
1671 			return (EINVAL);
1672 		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1673 		    (pps->kcmode & KCMODE_ABIFLAG);
1674 		return (0);
1675 #else
1676 		return (EOPNOTSUPP);
1677 #endif
1678 	default:
1679 		return (ENOIOCTL);
1680 	}
1681 }
1682 
1683 void
pps_init(struct pps_state * pps)1684 pps_init(struct pps_state *pps)
1685 {
1686 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1687 	if (pps->ppscap & PPS_CAPTUREASSERT)
1688 		pps->ppscap |= PPS_OFFSETASSERT;
1689 	if (pps->ppscap & PPS_CAPTURECLEAR)
1690 		pps->ppscap |= PPS_OFFSETCLEAR;
1691 #ifdef FFCLOCK
1692 	pps->ppscap |= PPS_TSCLK_MASK;
1693 #endif
1694 	pps->kcmode &= ~KCMODE_ABIFLAG;
1695 }
1696 
1697 void
pps_init_abi(struct pps_state * pps)1698 pps_init_abi(struct pps_state *pps)
1699 {
1700 
1701 	pps_init(pps);
1702 	if (pps->driver_abi > 0) {
1703 		pps->kcmode |= KCMODE_ABIFLAG;
1704 		pps->kernel_abi = PPS_ABI_VERSION;
1705 	}
1706 }
1707 
1708 void
pps_capture(struct pps_state * pps)1709 pps_capture(struct pps_state *pps)
1710 {
1711 	struct timehands *th;
1712 
1713 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1714 	th = timehands;
1715 	pps->capgen = atomic_load_acq_int(&th->th_generation);
1716 	pps->capth = th;
1717 #ifdef FFCLOCK
1718 	pps->capffth = fftimehands;
1719 #endif
1720 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1721 	atomic_thread_fence_acq();
1722 	if (pps->capgen != th->th_generation)
1723 		pps->capgen = 0;
1724 }
1725 
1726 void
pps_event(struct pps_state * pps,int event)1727 pps_event(struct pps_state *pps, int event)
1728 {
1729 	struct bintime bt;
1730 	struct timespec ts, *tsp, *osp;
1731 	u_int tcount, *pcount;
1732 	int foff;
1733 	pps_seq_t *pseq;
1734 #ifdef FFCLOCK
1735 	struct timespec *tsp_ffc;
1736 	pps_seq_t *pseq_ffc;
1737 	ffcounter *ffcount;
1738 #endif
1739 #ifdef PPS_SYNC
1740 	int fhard;
1741 #endif
1742 
1743 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1744 	/* Nothing to do if not currently set to capture this event type. */
1745 	if ((event & pps->ppsparam.mode) == 0)
1746 		return;
1747 	/* If the timecounter was wound up underneath us, bail out. */
1748 	if (pps->capgen == 0 || pps->capgen !=
1749 	    atomic_load_acq_int(&pps->capth->th_generation))
1750 		return;
1751 
1752 	/* Things would be easier with arrays. */
1753 	if (event == PPS_CAPTUREASSERT) {
1754 		tsp = &pps->ppsinfo.assert_timestamp;
1755 		osp = &pps->ppsparam.assert_offset;
1756 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1757 #ifdef PPS_SYNC
1758 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1759 #endif
1760 		pcount = &pps->ppscount[0];
1761 		pseq = &pps->ppsinfo.assert_sequence;
1762 #ifdef FFCLOCK
1763 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1764 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1765 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1766 #endif
1767 	} else {
1768 		tsp = &pps->ppsinfo.clear_timestamp;
1769 		osp = &pps->ppsparam.clear_offset;
1770 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1771 #ifdef PPS_SYNC
1772 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1773 #endif
1774 		pcount = &pps->ppscount[1];
1775 		pseq = &pps->ppsinfo.clear_sequence;
1776 #ifdef FFCLOCK
1777 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1778 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1779 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1780 #endif
1781 	}
1782 
1783 	/*
1784 	 * If the timecounter changed, we cannot compare the count values, so
1785 	 * we have to drop the rest of the PPS-stuff until the next event.
1786 	 */
1787 	if (pps->ppstc != pps->capth->th_counter) {
1788 		pps->ppstc = pps->capth->th_counter;
1789 		*pcount = pps->capcount;
1790 		pps->ppscount[2] = pps->capcount;
1791 		return;
1792 	}
1793 
1794 	/* Convert the count to a timespec. */
1795 	tcount = pps->capcount - pps->capth->th_offset_count;
1796 	tcount &= pps->capth->th_counter->tc_counter_mask;
1797 	bt = pps->capth->th_bintime;
1798 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1799 	bintime2timespec(&bt, &ts);
1800 
1801 	/* If the timecounter was wound up underneath us, bail out. */
1802 	atomic_thread_fence_acq();
1803 	if (pps->capgen != pps->capth->th_generation)
1804 		return;
1805 
1806 	*pcount = pps->capcount;
1807 	(*pseq)++;
1808 	*tsp = ts;
1809 
1810 	if (foff) {
1811 		timespecadd(tsp, osp, tsp);
1812 		if (tsp->tv_nsec < 0) {
1813 			tsp->tv_nsec += 1000000000;
1814 			tsp->tv_sec -= 1;
1815 		}
1816 	}
1817 
1818 #ifdef FFCLOCK
1819 	*ffcount = pps->capffth->tick_ffcount + tcount;
1820 	bt = pps->capffth->tick_time;
1821 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1822 	bintime_add(&bt, &pps->capffth->tick_time);
1823 	bintime2timespec(&bt, &ts);
1824 	(*pseq_ffc)++;
1825 	*tsp_ffc = ts;
1826 #endif
1827 
1828 #ifdef PPS_SYNC
1829 	if (fhard) {
1830 		uint64_t scale;
1831 
1832 		/*
1833 		 * Feed the NTP PLL/FLL.
1834 		 * The FLL wants to know how many (hardware) nanoseconds
1835 		 * elapsed since the previous event.
1836 		 */
1837 		tcount = pps->capcount - pps->ppscount[2];
1838 		pps->ppscount[2] = pps->capcount;
1839 		tcount &= pps->capth->th_counter->tc_counter_mask;
1840 		scale = (uint64_t)1 << 63;
1841 		scale /= pps->capth->th_counter->tc_frequency;
1842 		scale *= 2;
1843 		bt.sec = 0;
1844 		bt.frac = 0;
1845 		bintime_addx(&bt, scale * tcount);
1846 		bintime2timespec(&bt, &ts);
1847 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1848 	}
1849 #endif
1850 
1851 	/* Wakeup anyone sleeping in pps_fetch().  */
1852 	wakeup(pps);
1853 }
1854 
1855 /*
1856  * Timecounters need to be updated every so often to prevent the hardware
1857  * counter from overflowing.  Updating also recalculates the cached values
1858  * used by the get*() family of functions, so their precision depends on
1859  * the update frequency.
1860  */
1861 
1862 static int tc_tick;
1863 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1864     "Approximate number of hardclock ticks in a millisecond");
1865 
1866 void
tc_ticktock(int cnt)1867 tc_ticktock(int cnt)
1868 {
1869 	static int count;
1870 
1871 	if (mtx_trylock_spin(&tc_setclock_mtx)) {
1872 		count += cnt;
1873 		if (count >= tc_tick) {
1874 			count = 0;
1875 			tc_windup(NULL);
1876 		}
1877 		mtx_unlock_spin(&tc_setclock_mtx);
1878 	}
1879 }
1880 
1881 static void __inline
tc_adjprecision(void)1882 tc_adjprecision(void)
1883 {
1884 	int t;
1885 
1886 	if (tc_timepercentage > 0) {
1887 		t = (99 + tc_timepercentage) / tc_timepercentage;
1888 		tc_precexp = fls(t + (t >> 1)) - 1;
1889 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1890 		FREQ2BT(hz, &bt_tickthreshold);
1891 		bintime_shift(&bt_timethreshold, tc_precexp);
1892 		bintime_shift(&bt_tickthreshold, tc_precexp);
1893 	} else {
1894 		tc_precexp = 31;
1895 		bt_timethreshold.sec = INT_MAX;
1896 		bt_timethreshold.frac = ~(uint64_t)0;
1897 		bt_tickthreshold = bt_timethreshold;
1898 	}
1899 	sbt_timethreshold = bttosbt(bt_timethreshold);
1900 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1901 }
1902 
1903 static int
sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)1904 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1905 {
1906 	int error, val;
1907 
1908 	val = tc_timepercentage;
1909 	error = sysctl_handle_int(oidp, &val, 0, req);
1910 	if (error != 0 || req->newptr == NULL)
1911 		return (error);
1912 	tc_timepercentage = val;
1913 	if (cold)
1914 		goto done;
1915 	tc_adjprecision();
1916 done:
1917 	return (0);
1918 }
1919 
1920 /* Set up the requested number of timehands. */
1921 static void
inittimehands(void * dummy)1922 inittimehands(void *dummy)
1923 {
1924 	struct timehands *thp;
1925 	int i;
1926 
1927 	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1928 	    &timehands_count);
1929 	if (timehands_count < 1)
1930 		timehands_count = 1;
1931 	if (timehands_count > nitems(ths))
1932 		timehands_count = nitems(ths);
1933 	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1934 		thp->th_next = &ths[i];
1935 	thp->th_next = &ths[0];
1936 }
1937 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1938 
1939 static void
inittimecounter(void * dummy)1940 inittimecounter(void *dummy)
1941 {
1942 	u_int p;
1943 	int tick_rate;
1944 
1945 	/*
1946 	 * Set the initial timeout to
1947 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1948 	 * People should probably not use the sysctl to set the timeout
1949 	 * to smaller than its initial value, since that value is the
1950 	 * smallest reasonable one.  If they want better timestamps they
1951 	 * should use the non-"get"* functions.
1952 	 */
1953 	if (hz > 1000)
1954 		tc_tick = (hz + 500) / 1000;
1955 	else
1956 		tc_tick = 1;
1957 	tc_adjprecision();
1958 	FREQ2BT(hz, &tick_bt);
1959 	tick_sbt = bttosbt(tick_bt);
1960 	tick_rate = hz / tc_tick;
1961 	FREQ2BT(tick_rate, &tc_tick_bt);
1962 	tc_tick_sbt = bttosbt(tc_tick_bt);
1963 	p = (tc_tick * 1000000) / hz;
1964 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1965 
1966 #ifdef FFCLOCK
1967 	ffclock_init();
1968 #endif
1969 
1970 	/* warm up new timecounter (again) and get rolling. */
1971 	(void)timecounter->tc_get_timecount(timecounter);
1972 	mtx_lock_spin(&tc_setclock_mtx);
1973 	tc_windup(NULL);
1974 	mtx_unlock_spin(&tc_setclock_mtx);
1975 }
1976 
1977 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1978 
1979 /* Cpu tick handling -------------------------------------------------*/
1980 
1981 static int cpu_tick_variable;
1982 static uint64_t	cpu_tick_frequency;
1983 
1984 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
1985 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
1986 
1987 static uint64_t
tc_cpu_ticks(void)1988 tc_cpu_ticks(void)
1989 {
1990 	struct timecounter *tc;
1991 	uint64_t res, *base;
1992 	unsigned u, *last;
1993 
1994 	critical_enter();
1995 	base = DPCPU_PTR(tc_cpu_ticks_base);
1996 	last = DPCPU_PTR(tc_cpu_ticks_last);
1997 	tc = timehands->th_counter;
1998 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1999 	if (u < *last)
2000 		*base += (uint64_t)tc->tc_counter_mask + 1;
2001 	*last = u;
2002 	res = u + *base;
2003 	critical_exit();
2004 	return (res);
2005 }
2006 
2007 void
cpu_tick_calibration(void)2008 cpu_tick_calibration(void)
2009 {
2010 	static time_t last_calib;
2011 
2012 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2013 		cpu_tick_calibrate(0);
2014 		last_calib = time_uptime;
2015 	}
2016 }
2017 
2018 /*
2019  * This function gets called every 16 seconds on only one designated
2020  * CPU in the system from hardclock() via cpu_tick_calibration()().
2021  *
2022  * Whenever the real time clock is stepped we get called with reset=1
2023  * to make sure we handle suspend/resume and similar events correctly.
2024  */
2025 
2026 static void
cpu_tick_calibrate(int reset)2027 cpu_tick_calibrate(int reset)
2028 {
2029 	static uint64_t c_last;
2030 	uint64_t c_this, c_delta;
2031 	static struct bintime  t_last;
2032 	struct bintime t_this, t_delta;
2033 	uint32_t divi;
2034 
2035 	if (reset) {
2036 		/* The clock was stepped, abort & reset */
2037 		t_last.sec = 0;
2038 		return;
2039 	}
2040 
2041 	/* we don't calibrate fixed rate cputicks */
2042 	if (!cpu_tick_variable)
2043 		return;
2044 
2045 	getbinuptime(&t_this);
2046 	c_this = cpu_ticks();
2047 	if (t_last.sec != 0) {
2048 		c_delta = c_this - c_last;
2049 		t_delta = t_this;
2050 		bintime_sub(&t_delta, &t_last);
2051 		/*
2052 		 * Headroom:
2053 		 * 	2^(64-20) / 16[s] =
2054 		 * 	2^(44) / 16[s] =
2055 		 * 	17.592.186.044.416 / 16 =
2056 		 * 	1.099.511.627.776 [Hz]
2057 		 */
2058 		divi = t_delta.sec << 20;
2059 		divi |= t_delta.frac >> (64 - 20);
2060 		c_delta <<= 20;
2061 		c_delta /= divi;
2062 		if (c_delta > cpu_tick_frequency) {
2063 			if (0 && bootverbose)
2064 				printf("cpu_tick increased to %ju Hz\n",
2065 				    c_delta);
2066 			cpu_tick_frequency = c_delta;
2067 		}
2068 	}
2069 	c_last = c_this;
2070 	t_last = t_this;
2071 }
2072 
2073 void
set_cputicker(cpu_tick_f * func,uint64_t freq,unsigned var)2074 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2075 {
2076 
2077 	if (func == NULL) {
2078 		cpu_ticks = tc_cpu_ticks;
2079 	} else {
2080 		cpu_tick_frequency = freq;
2081 		cpu_tick_variable = var;
2082 		cpu_ticks = func;
2083 	}
2084 }
2085 
2086 uint64_t
cpu_tickrate(void)2087 cpu_tickrate(void)
2088 {
2089 
2090 	if (cpu_ticks == tc_cpu_ticks)
2091 		return (tc_getfrequency());
2092 	return (cpu_tick_frequency);
2093 }
2094 
2095 /*
2096  * We need to be slightly careful converting cputicks to microseconds.
2097  * There is plenty of margin in 64 bits of microseconds (half a million
2098  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2099  * before divide conversion (to retain precision) we find that the
2100  * margin shrinks to 1.5 hours (one millionth of 146y).
2101  * With a three prong approach we never lose significant bits, no
2102  * matter what the cputick rate and length of timeinterval is.
2103  */
2104 
2105 uint64_t
cputick2usec(uint64_t tick)2106 cputick2usec(uint64_t tick)
2107 {
2108 
2109 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
2110 		return (tick / (cpu_tickrate() / 1000000LL));
2111 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
2112 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2113 	else
2114 		return ((tick * 1000000LL) / cpu_tickrate());
2115 }
2116 
2117 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2118 
2119 static int vdso_th_enable = 1;
2120 static int
sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)2121 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2122 {
2123 	int old_vdso_th_enable, error;
2124 
2125 	old_vdso_th_enable = vdso_th_enable;
2126 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2127 	if (error != 0)
2128 		return (error);
2129 	vdso_th_enable = old_vdso_th_enable;
2130 	return (0);
2131 }
2132 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2133     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2134     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2135 
2136 uint32_t
tc_fill_vdso_timehands(struct vdso_timehands * vdso_th)2137 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2138 {
2139 	struct timehands *th;
2140 	uint32_t enabled;
2141 
2142 	th = timehands;
2143 	vdso_th->th_scale = th->th_scale;
2144 	vdso_th->th_offset_count = th->th_offset_count;
2145 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2146 	vdso_th->th_offset = th->th_offset;
2147 	vdso_th->th_boottime = th->th_boottime;
2148 	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2149 		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2150 		    th->th_counter);
2151 	} else
2152 		enabled = 0;
2153 	if (!vdso_th_enable)
2154 		enabled = 0;
2155 	return (enabled);
2156 }
2157 
2158 #ifdef COMPAT_FREEBSD32
2159 uint32_t
tc_fill_vdso_timehands32(struct vdso_timehands32 * vdso_th32)2160 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2161 {
2162 	struct timehands *th;
2163 	uint32_t enabled;
2164 
2165 	th = timehands;
2166 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2167 	vdso_th32->th_offset_count = th->th_offset_count;
2168 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2169 	vdso_th32->th_offset.sec = th->th_offset.sec;
2170 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2171 	vdso_th32->th_boottime.sec = th->th_boottime.sec;
2172 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2173 	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2174 		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2175 		    th->th_counter);
2176 	} else
2177 		enabled = 0;
2178 	if (!vdso_th_enable)
2179 		enabled = 0;
2180 	return (enabled);
2181 }
2182 #endif
2183 
2184 #include "opt_ddb.h"
2185 #ifdef DDB
2186 #include <ddb/ddb.h>
2187 
DB_SHOW_COMMAND(timecounter,db_show_timecounter)2188 DB_SHOW_COMMAND(timecounter, db_show_timecounter)
2189 {
2190 	struct timehands *th;
2191 	struct timecounter *tc;
2192 	u_int val1, val2;
2193 
2194 	th = timehands;
2195 	tc = th->th_counter;
2196 	val1 = tc->tc_get_timecount(tc);
2197 	__compiler_membar();
2198 	val2 = tc->tc_get_timecount(tc);
2199 
2200 	db_printf("timecounter %p %s\n", tc, tc->tc_name);
2201 	db_printf("  mask %#x freq %ju qual %d flags %#x priv %p\n",
2202 	    tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality,
2203 	    tc->tc_flags, tc->tc_priv);
2204 	db_printf("  val %#x %#x\n", val1, val2);
2205 	db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n",
2206 	    (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale,
2207 	    th->th_large_delta, th->th_offset_count, th->th_generation);
2208 	db_printf("  offset %jd %jd boottime %jd %jd\n",
2209 	    (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac,
2210 	    (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac);
2211 }
2212 #endif
2213