1 /*-
2 * Copyright (C) 1997-2003
3 * Sony Computer Science Laboratories Inc. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
27 * $FreeBSD$
28 */
29
30 #include "opt_altq.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33
34 #include <sys/param.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/kernel.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/sysctl.h>
45 #include <sys/queue.h>
46
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_types.h>
51 #include <net/vnet.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/ip.h>
56 #ifdef INET6
57 #include <netinet/ip6.h>
58 #endif
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61
62 #include <netpfil/pf/pf.h>
63 #include <netpfil/pf/pf_altq.h>
64 #include <net/altq/altq.h>
65
66 /* machine dependent clock related includes */
67 #include <sys/bus.h>
68 #include <sys/cpu.h>
69 #include <sys/eventhandler.h>
70 #include <machine/clock.h>
71 #if defined(__amd64__) || defined(__i386__)
72 #include <machine/cpufunc.h> /* for pentium tsc */
73 #include <machine/specialreg.h> /* for CPUID_TSC */
74 #include <machine/md_var.h> /* for cpu_feature */
75 #endif /* __amd64 || __i386__ */
76
77 /*
78 * internal function prototypes
79 */
80 static void tbr_timeout(void *);
81 int (*altq_input)(struct mbuf *, int) = NULL;
82 static struct mbuf *tbr_dequeue(struct ifaltq *, int);
83 static int tbr_timer = 0; /* token bucket regulator timer */
84 #if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
85 static struct callout tbr_callout = CALLOUT_INITIALIZER;
86 #else
87 static struct callout tbr_callout;
88 #endif
89
90 #ifdef ALTQ3_CLFIER_COMPAT
91 static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
92 #ifdef INET6
93 static int extract_ports6(struct mbuf *, struct ip6_hdr *,
94 struct flowinfo_in6 *);
95 #endif
96 static int apply_filter4(u_int32_t, struct flow_filter *,
97 struct flowinfo_in *);
98 static int apply_ppfilter4(u_int32_t, struct flow_filter *,
99 struct flowinfo_in *);
100 #ifdef INET6
101 static int apply_filter6(u_int32_t, struct flow_filter6 *,
102 struct flowinfo_in6 *);
103 #endif
104 static int apply_tosfilter4(u_int32_t, struct flow_filter *,
105 struct flowinfo_in *);
106 static u_long get_filt_handle(struct acc_classifier *, int);
107 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
108 static u_int32_t filt2fibmask(struct flow_filter *);
109
110 static void ip4f_cache(struct ip *, struct flowinfo_in *);
111 static int ip4f_lookup(struct ip *, struct flowinfo_in *);
112 static int ip4f_init(void);
113 static struct ip4_frag *ip4f_alloc(void);
114 static void ip4f_free(struct ip4_frag *);
115 #endif /* ALTQ3_CLFIER_COMPAT */
116
117 /*
118 * alternate queueing support routines
119 */
120
121 /* look up the queue state by the interface name and the queueing type. */
122 void *
altq_lookup(name,type)123 altq_lookup(name, type)
124 char *name;
125 int type;
126 {
127 struct ifnet *ifp;
128
129 if ((ifp = ifunit(name)) != NULL) {
130 /* read if_snd unlocked */
131 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
132 return (ifp->if_snd.altq_disc);
133 }
134
135 return NULL;
136 }
137
138 int
altq_attach(ifq,type,discipline,enqueue,dequeue,request,clfier,classify)139 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
140 struct ifaltq *ifq;
141 int type;
142 void *discipline;
143 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
144 struct mbuf *(*dequeue)(struct ifaltq *, int);
145 int (*request)(struct ifaltq *, int, void *);
146 void *clfier;
147 void *(*classify)(void *, struct mbuf *, int);
148 {
149 IFQ_LOCK(ifq);
150 if (!ALTQ_IS_READY(ifq)) {
151 IFQ_UNLOCK(ifq);
152 return ENXIO;
153 }
154
155 ifq->altq_type = type;
156 ifq->altq_disc = discipline;
157 ifq->altq_enqueue = enqueue;
158 ifq->altq_dequeue = dequeue;
159 ifq->altq_request = request;
160 ifq->altq_clfier = clfier;
161 ifq->altq_classify = classify;
162 ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
163 IFQ_UNLOCK(ifq);
164 return 0;
165 }
166
167 int
altq_detach(ifq)168 altq_detach(ifq)
169 struct ifaltq *ifq;
170 {
171 IFQ_LOCK(ifq);
172
173 if (!ALTQ_IS_READY(ifq)) {
174 IFQ_UNLOCK(ifq);
175 return ENXIO;
176 }
177 if (ALTQ_IS_ENABLED(ifq)) {
178 IFQ_UNLOCK(ifq);
179 return EBUSY;
180 }
181 if (!ALTQ_IS_ATTACHED(ifq)) {
182 IFQ_UNLOCK(ifq);
183 return (0);
184 }
185
186 ifq->altq_type = ALTQT_NONE;
187 ifq->altq_disc = NULL;
188 ifq->altq_enqueue = NULL;
189 ifq->altq_dequeue = NULL;
190 ifq->altq_request = NULL;
191 ifq->altq_clfier = NULL;
192 ifq->altq_classify = NULL;
193 ifq->altq_flags &= ALTQF_CANTCHANGE;
194
195 IFQ_UNLOCK(ifq);
196 return 0;
197 }
198
199 int
altq_enable(ifq)200 altq_enable(ifq)
201 struct ifaltq *ifq;
202 {
203 int s;
204
205 IFQ_LOCK(ifq);
206
207 if (!ALTQ_IS_READY(ifq)) {
208 IFQ_UNLOCK(ifq);
209 return ENXIO;
210 }
211 if (ALTQ_IS_ENABLED(ifq)) {
212 IFQ_UNLOCK(ifq);
213 return 0;
214 }
215
216 s = splnet();
217 IFQ_PURGE_NOLOCK(ifq);
218 ASSERT(ifq->ifq_len == 0);
219 ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */
220 ifq->altq_flags |= ALTQF_ENABLED;
221 if (ifq->altq_clfier != NULL)
222 ifq->altq_flags |= ALTQF_CLASSIFY;
223 splx(s);
224
225 IFQ_UNLOCK(ifq);
226 return 0;
227 }
228
229 int
altq_disable(ifq)230 altq_disable(ifq)
231 struct ifaltq *ifq;
232 {
233 int s;
234
235 IFQ_LOCK(ifq);
236 if (!ALTQ_IS_ENABLED(ifq)) {
237 IFQ_UNLOCK(ifq);
238 return 0;
239 }
240
241 s = splnet();
242 IFQ_PURGE_NOLOCK(ifq);
243 ASSERT(ifq->ifq_len == 0);
244 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
245 splx(s);
246
247 IFQ_UNLOCK(ifq);
248 return 0;
249 }
250
251 #ifdef ALTQ_DEBUG
252 void
altq_assert(file,line,failedexpr)253 altq_assert(file, line, failedexpr)
254 const char *file, *failedexpr;
255 int line;
256 {
257 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
258 failedexpr, file, line);
259 panic("altq assertion");
260 /* NOTREACHED */
261 }
262 #endif
263
264 /*
265 * internal representation of token bucket parameters
266 * rate: (byte_per_unittime << TBR_SHIFT) / machclk_freq
267 * (((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq
268 * depth: byte << TBR_SHIFT
269 *
270 */
271 #define TBR_SHIFT 29
272 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
273 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
274
275 static struct mbuf *
tbr_dequeue(ifq,op)276 tbr_dequeue(ifq, op)
277 struct ifaltq *ifq;
278 int op;
279 {
280 struct tb_regulator *tbr;
281 struct mbuf *m;
282 int64_t interval;
283 u_int64_t now;
284
285 IFQ_LOCK_ASSERT(ifq);
286 tbr = ifq->altq_tbr;
287 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
288 /* if this is a remove after poll, bypass tbr check */
289 } else {
290 /* update token only when it is negative */
291 if (tbr->tbr_token <= 0) {
292 now = read_machclk();
293 interval = now - tbr->tbr_last;
294 if (interval >= tbr->tbr_filluptime)
295 tbr->tbr_token = tbr->tbr_depth;
296 else {
297 tbr->tbr_token += interval * tbr->tbr_rate;
298 if (tbr->tbr_token > tbr->tbr_depth)
299 tbr->tbr_token = tbr->tbr_depth;
300 }
301 tbr->tbr_last = now;
302 }
303 /* if token is still negative, don't allow dequeue */
304 if (tbr->tbr_token <= 0)
305 return (NULL);
306 }
307
308 if (ALTQ_IS_ENABLED(ifq))
309 m = (*ifq->altq_dequeue)(ifq, op);
310 else {
311 if (op == ALTDQ_POLL)
312 _IF_POLL(ifq, m);
313 else
314 _IF_DEQUEUE(ifq, m);
315 }
316
317 if (m != NULL && op == ALTDQ_REMOVE)
318 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
319 tbr->tbr_lastop = op;
320 return (m);
321 }
322
323 /*
324 * set a token bucket regulator.
325 * if the specified rate is zero, the token bucket regulator is deleted.
326 */
327 int
tbr_set(ifq,profile)328 tbr_set(ifq, profile)
329 struct ifaltq *ifq;
330 struct tb_profile *profile;
331 {
332 struct tb_regulator *tbr, *otbr;
333
334 if (tbr_dequeue_ptr == NULL)
335 tbr_dequeue_ptr = tbr_dequeue;
336
337 if (machclk_freq == 0)
338 init_machclk();
339 if (machclk_freq == 0) {
340 printf("tbr_set: no cpu clock available!\n");
341 return (ENXIO);
342 }
343
344 IFQ_LOCK(ifq);
345 if (profile->rate == 0) {
346 /* delete this tbr */
347 if ((tbr = ifq->altq_tbr) == NULL) {
348 IFQ_UNLOCK(ifq);
349 return (ENOENT);
350 }
351 ifq->altq_tbr = NULL;
352 free(tbr, M_DEVBUF);
353 IFQ_UNLOCK(ifq);
354 return (0);
355 }
356
357 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
358 if (tbr == NULL) {
359 IFQ_UNLOCK(ifq);
360 return (ENOMEM);
361 }
362
363 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
364 tbr->tbr_depth = TBR_SCALE(profile->depth);
365 if (tbr->tbr_rate > 0)
366 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
367 else
368 tbr->tbr_filluptime = LLONG_MAX;
369 /*
370 * The longest time between tbr_dequeue() calls will be about 1
371 * system tick, as the callout that drives it is scheduled once per
372 * tick. The refill-time detection logic in tbr_dequeue() can only
373 * properly detect the passage of up to LLONG_MAX machclk ticks.
374 * Therefore, in order for this logic to function properly in the
375 * extreme case, the maximum value of tbr_filluptime should be
376 * LLONG_MAX less one system tick's worth of machclk ticks less
377 * some additional slop factor (here one more system tick's worth
378 * of machclk ticks).
379 */
380 if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick))
381 tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick;
382 tbr->tbr_token = tbr->tbr_depth;
383 tbr->tbr_last = read_machclk();
384 tbr->tbr_lastop = ALTDQ_REMOVE;
385
386 otbr = ifq->altq_tbr;
387 ifq->altq_tbr = tbr; /* set the new tbr */
388
389 if (otbr != NULL)
390 free(otbr, M_DEVBUF);
391 else {
392 if (tbr_timer == 0) {
393 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
394 tbr_timer = 1;
395 }
396 }
397 IFQ_UNLOCK(ifq);
398 return (0);
399 }
400
401 /*
402 * tbr_timeout goes through the interface list, and kicks the drivers
403 * if necessary.
404 *
405 * MPSAFE
406 */
407 static void
tbr_timeout(arg)408 tbr_timeout(arg)
409 void *arg;
410 {
411 VNET_ITERATOR_DECL(vnet_iter);
412 struct ifnet *ifp;
413 struct epoch_tracker et;
414 int active;
415
416 active = 0;
417 NET_EPOCH_ENTER(et);
418 VNET_LIST_RLOCK_NOSLEEP();
419 VNET_FOREACH(vnet_iter) {
420 CURVNET_SET(vnet_iter);
421 for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp;
422 ifp = CK_STAILQ_NEXT(ifp, if_link)) {
423 /* read from if_snd unlocked */
424 if (!TBR_IS_ENABLED(&ifp->if_snd))
425 continue;
426 active++;
427 if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
428 ifp->if_start != NULL)
429 (*ifp->if_start)(ifp);
430 }
431 CURVNET_RESTORE();
432 }
433 VNET_LIST_RUNLOCK_NOSLEEP();
434 NET_EPOCH_EXIT(et);
435 if (active > 0)
436 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
437 else
438 tbr_timer = 0; /* don't need tbr_timer anymore */
439 }
440
441 /*
442 * attach a discipline to the interface. if one already exists, it is
443 * overridden.
444 * Locking is done in the discipline specific attach functions. Basically
445 * they call back to altq_attach which takes care of the attach and locking.
446 */
447 int
altq_pfattach(struct pf_altq * a)448 altq_pfattach(struct pf_altq *a)
449 {
450 int error = 0;
451
452 switch (a->scheduler) {
453 case ALTQT_NONE:
454 break;
455 #ifdef ALTQ_CBQ
456 case ALTQT_CBQ:
457 error = cbq_pfattach(a);
458 break;
459 #endif
460 #ifdef ALTQ_PRIQ
461 case ALTQT_PRIQ:
462 error = priq_pfattach(a);
463 break;
464 #endif
465 #ifdef ALTQ_HFSC
466 case ALTQT_HFSC:
467 error = hfsc_pfattach(a);
468 break;
469 #endif
470 #ifdef ALTQ_FAIRQ
471 case ALTQT_FAIRQ:
472 error = fairq_pfattach(a);
473 break;
474 #endif
475 #ifdef ALTQ_CODEL
476 case ALTQT_CODEL:
477 error = codel_pfattach(a);
478 break;
479 #endif
480 default:
481 error = ENXIO;
482 }
483
484 return (error);
485 }
486
487 /*
488 * detach a discipline from the interface.
489 * it is possible that the discipline was already overridden by another
490 * discipline.
491 */
492 int
altq_pfdetach(struct pf_altq * a)493 altq_pfdetach(struct pf_altq *a)
494 {
495 struct ifnet *ifp;
496 int s, error = 0;
497
498 if ((ifp = ifunit(a->ifname)) == NULL)
499 return (EINVAL);
500
501 /* if this discipline is no longer referenced, just return */
502 /* read unlocked from if_snd */
503 if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
504 return (0);
505
506 s = splnet();
507 /* read unlocked from if_snd, _disable and _detach take care */
508 if (ALTQ_IS_ENABLED(&ifp->if_snd))
509 error = altq_disable(&ifp->if_snd);
510 if (error == 0)
511 error = altq_detach(&ifp->if_snd);
512 splx(s);
513
514 return (error);
515 }
516
517 /*
518 * add a discipline or a queue
519 * Locking is done in the discipline specific functions with regards to
520 * malloc with WAITOK, also it is not yet clear which lock to use.
521 */
522 int
altq_add(struct ifnet * ifp,struct pf_altq * a)523 altq_add(struct ifnet *ifp, struct pf_altq *a)
524 {
525 int error = 0;
526
527 if (a->qname[0] != 0)
528 return (altq_add_queue(a));
529
530 if (machclk_freq == 0)
531 init_machclk();
532 if (machclk_freq == 0)
533 panic("altq_add: no cpu clock");
534
535 switch (a->scheduler) {
536 #ifdef ALTQ_CBQ
537 case ALTQT_CBQ:
538 error = cbq_add_altq(ifp, a);
539 break;
540 #endif
541 #ifdef ALTQ_PRIQ
542 case ALTQT_PRIQ:
543 error = priq_add_altq(ifp, a);
544 break;
545 #endif
546 #ifdef ALTQ_HFSC
547 case ALTQT_HFSC:
548 error = hfsc_add_altq(ifp, a);
549 break;
550 #endif
551 #ifdef ALTQ_FAIRQ
552 case ALTQT_FAIRQ:
553 error = fairq_add_altq(ifp, a);
554 break;
555 #endif
556 #ifdef ALTQ_CODEL
557 case ALTQT_CODEL:
558 error = codel_add_altq(ifp, a);
559 break;
560 #endif
561 default:
562 error = ENXIO;
563 }
564
565 return (error);
566 }
567
568 /*
569 * remove a discipline or a queue
570 * It is yet unclear what lock to use to protect this operation, the
571 * discipline specific functions will determine and grab it
572 */
573 int
altq_remove(struct pf_altq * a)574 altq_remove(struct pf_altq *a)
575 {
576 int error = 0;
577
578 if (a->qname[0] != 0)
579 return (altq_remove_queue(a));
580
581 switch (a->scheduler) {
582 #ifdef ALTQ_CBQ
583 case ALTQT_CBQ:
584 error = cbq_remove_altq(a);
585 break;
586 #endif
587 #ifdef ALTQ_PRIQ
588 case ALTQT_PRIQ:
589 error = priq_remove_altq(a);
590 break;
591 #endif
592 #ifdef ALTQ_HFSC
593 case ALTQT_HFSC:
594 error = hfsc_remove_altq(a);
595 break;
596 #endif
597 #ifdef ALTQ_FAIRQ
598 case ALTQT_FAIRQ:
599 error = fairq_remove_altq(a);
600 break;
601 #endif
602 #ifdef ALTQ_CODEL
603 case ALTQT_CODEL:
604 error = codel_remove_altq(a);
605 break;
606 #endif
607 default:
608 error = ENXIO;
609 }
610
611 return (error);
612 }
613
614 /*
615 * add a queue to the discipline
616 * It is yet unclear what lock to use to protect this operation, the
617 * discipline specific functions will determine and grab it
618 */
619 int
altq_add_queue(struct pf_altq * a)620 altq_add_queue(struct pf_altq *a)
621 {
622 int error = 0;
623
624 switch (a->scheduler) {
625 #ifdef ALTQ_CBQ
626 case ALTQT_CBQ:
627 error = cbq_add_queue(a);
628 break;
629 #endif
630 #ifdef ALTQ_PRIQ
631 case ALTQT_PRIQ:
632 error = priq_add_queue(a);
633 break;
634 #endif
635 #ifdef ALTQ_HFSC
636 case ALTQT_HFSC:
637 error = hfsc_add_queue(a);
638 break;
639 #endif
640 #ifdef ALTQ_FAIRQ
641 case ALTQT_FAIRQ:
642 error = fairq_add_queue(a);
643 break;
644 #endif
645 default:
646 error = ENXIO;
647 }
648
649 return (error);
650 }
651
652 /*
653 * remove a queue from the discipline
654 * It is yet unclear what lock to use to protect this operation, the
655 * discipline specific functions will determine and grab it
656 */
657 int
altq_remove_queue(struct pf_altq * a)658 altq_remove_queue(struct pf_altq *a)
659 {
660 int error = 0;
661
662 switch (a->scheduler) {
663 #ifdef ALTQ_CBQ
664 case ALTQT_CBQ:
665 error = cbq_remove_queue(a);
666 break;
667 #endif
668 #ifdef ALTQ_PRIQ
669 case ALTQT_PRIQ:
670 error = priq_remove_queue(a);
671 break;
672 #endif
673 #ifdef ALTQ_HFSC
674 case ALTQT_HFSC:
675 error = hfsc_remove_queue(a);
676 break;
677 #endif
678 #ifdef ALTQ_FAIRQ
679 case ALTQT_FAIRQ:
680 error = fairq_remove_queue(a);
681 break;
682 #endif
683 default:
684 error = ENXIO;
685 }
686
687 return (error);
688 }
689
690 /*
691 * get queue statistics
692 * Locking is done in the discipline specific functions with regards to
693 * copyout operations, also it is not yet clear which lock to use.
694 */
695 int
altq_getqstats(struct pf_altq * a,void * ubuf,int * nbytes,int version)696 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
697 {
698 int error = 0;
699
700 switch (a->scheduler) {
701 #ifdef ALTQ_CBQ
702 case ALTQT_CBQ:
703 error = cbq_getqstats(a, ubuf, nbytes, version);
704 break;
705 #endif
706 #ifdef ALTQ_PRIQ
707 case ALTQT_PRIQ:
708 error = priq_getqstats(a, ubuf, nbytes, version);
709 break;
710 #endif
711 #ifdef ALTQ_HFSC
712 case ALTQT_HFSC:
713 error = hfsc_getqstats(a, ubuf, nbytes, version);
714 break;
715 #endif
716 #ifdef ALTQ_FAIRQ
717 case ALTQT_FAIRQ:
718 error = fairq_getqstats(a, ubuf, nbytes, version);
719 break;
720 #endif
721 #ifdef ALTQ_CODEL
722 case ALTQT_CODEL:
723 error = codel_getqstats(a, ubuf, nbytes, version);
724 break;
725 #endif
726 default:
727 error = ENXIO;
728 }
729
730 return (error);
731 }
732
733 /*
734 * read and write diffserv field in IPv4 or IPv6 header
735 */
736 u_int8_t
read_dsfield(m,pktattr)737 read_dsfield(m, pktattr)
738 struct mbuf *m;
739 struct altq_pktattr *pktattr;
740 {
741 struct mbuf *m0;
742 u_int8_t ds_field = 0;
743
744 if (pktattr == NULL ||
745 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
746 return ((u_int8_t)0);
747
748 /* verify that pattr_hdr is within the mbuf data */
749 for (m0 = m; m0 != NULL; m0 = m0->m_next)
750 if ((pktattr->pattr_hdr >= m0->m_data) &&
751 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
752 break;
753 if (m0 == NULL) {
754 /* ick, pattr_hdr is stale */
755 pktattr->pattr_af = AF_UNSPEC;
756 #ifdef ALTQ_DEBUG
757 printf("read_dsfield: can't locate header!\n");
758 #endif
759 return ((u_int8_t)0);
760 }
761
762 if (pktattr->pattr_af == AF_INET) {
763 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
764
765 if (ip->ip_v != 4)
766 return ((u_int8_t)0); /* version mismatch! */
767 ds_field = ip->ip_tos;
768 }
769 #ifdef INET6
770 else if (pktattr->pattr_af == AF_INET6) {
771 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
772 u_int32_t flowlabel;
773
774 flowlabel = ntohl(ip6->ip6_flow);
775 if ((flowlabel >> 28) != 6)
776 return ((u_int8_t)0); /* version mismatch! */
777 ds_field = (flowlabel >> 20) & 0xff;
778 }
779 #endif
780 return (ds_field);
781 }
782
783 void
write_dsfield(struct mbuf * m,struct altq_pktattr * pktattr,u_int8_t dsfield)784 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
785 {
786 struct mbuf *m0;
787
788 if (pktattr == NULL ||
789 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
790 return;
791
792 /* verify that pattr_hdr is within the mbuf data */
793 for (m0 = m; m0 != NULL; m0 = m0->m_next)
794 if ((pktattr->pattr_hdr >= m0->m_data) &&
795 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
796 break;
797 if (m0 == NULL) {
798 /* ick, pattr_hdr is stale */
799 pktattr->pattr_af = AF_UNSPEC;
800 #ifdef ALTQ_DEBUG
801 printf("write_dsfield: can't locate header!\n");
802 #endif
803 return;
804 }
805
806 if (pktattr->pattr_af == AF_INET) {
807 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
808 u_int8_t old;
809 int32_t sum;
810
811 if (ip->ip_v != 4)
812 return; /* version mismatch! */
813 old = ip->ip_tos;
814 dsfield |= old & 3; /* leave CU bits */
815 if (old == dsfield)
816 return;
817 ip->ip_tos = dsfield;
818 /*
819 * update checksum (from RFC1624)
820 * HC' = ~(~HC + ~m + m')
821 */
822 sum = ~ntohs(ip->ip_sum) & 0xffff;
823 sum += 0xff00 + (~old & 0xff) + dsfield;
824 sum = (sum >> 16) + (sum & 0xffff);
825 sum += (sum >> 16); /* add carry */
826
827 ip->ip_sum = htons(~sum & 0xffff);
828 }
829 #ifdef INET6
830 else if (pktattr->pattr_af == AF_INET6) {
831 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
832 u_int32_t flowlabel;
833
834 flowlabel = ntohl(ip6->ip6_flow);
835 if ((flowlabel >> 28) != 6)
836 return; /* version mismatch! */
837 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
838 ip6->ip6_flow = htonl(flowlabel);
839 }
840 #endif
841 return;
842 }
843
844 /*
845 * high resolution clock support taking advantage of a machine dependent
846 * high resolution time counter (e.g., timestamp counter of intel pentium).
847 * we assume
848 * - 64-bit-long monotonically-increasing counter
849 * - frequency range is 100M-4GHz (CPU speed)
850 */
851 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
852 #define MACHCLK_SHIFT 8
853
854 int machclk_usepcc;
855 u_int32_t machclk_freq;
856 u_int32_t machclk_per_tick;
857
858 #if defined(__i386__) && defined(__NetBSD__)
859 extern u_int64_t cpu_tsc_freq;
860 #endif
861
862 #if (__FreeBSD_version >= 700035)
863 /* Update TSC freq with the value indicated by the caller. */
864 static void
tsc_freq_changed(void * arg,const struct cf_level * level,int status)865 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
866 {
867 /* If there was an error during the transition, don't do anything. */
868 if (status != 0)
869 return;
870
871 #if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
872 /* If TSC is P-state invariant, don't do anything. */
873 if (tsc_is_invariant)
874 return;
875 #endif
876
877 /* Total setting for this level gives the new frequency in MHz. */
878 init_machclk();
879 }
880 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
881 EVENTHANDLER_PRI_LAST);
882 #endif /* __FreeBSD_version >= 700035 */
883
884 static void
init_machclk_setup(void)885 init_machclk_setup(void)
886 {
887 #if (__FreeBSD_version >= 600000)
888 callout_init(&tbr_callout, 0);
889 #endif
890
891 machclk_usepcc = 1;
892
893 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
894 machclk_usepcc = 0;
895 #endif
896 #if defined(__FreeBSD__) && defined(SMP)
897 machclk_usepcc = 0;
898 #endif
899 #if defined(__NetBSD__) && defined(MULTIPROCESSOR)
900 machclk_usepcc = 0;
901 #endif
902 #if defined(__amd64__) || defined(__i386__)
903 /* check if TSC is available */
904 if ((cpu_feature & CPUID_TSC) == 0 ||
905 atomic_load_acq_64(&tsc_freq) == 0)
906 machclk_usepcc = 0;
907 #endif
908 }
909
910 void
init_machclk(void)911 init_machclk(void)
912 {
913 static int called;
914
915 /* Call one-time initialization function. */
916 if (!called) {
917 init_machclk_setup();
918 called = 1;
919 }
920
921 if (machclk_usepcc == 0) {
922 /* emulate 256MHz using microtime() */
923 machclk_freq = 1000000 << MACHCLK_SHIFT;
924 machclk_per_tick = machclk_freq / hz;
925 #ifdef ALTQ_DEBUG
926 printf("altq: emulate %uHz cpu clock\n", machclk_freq);
927 #endif
928 return;
929 }
930
931 /*
932 * if the clock frequency (of Pentium TSC or Alpha PCC) is
933 * accessible, just use it.
934 */
935 #if defined(__amd64__) || defined(__i386__)
936 machclk_freq = atomic_load_acq_64(&tsc_freq);
937 #endif
938
939 /*
940 * if we don't know the clock frequency, measure it.
941 */
942 if (machclk_freq == 0) {
943 static int wait;
944 struct timeval tv_start, tv_end;
945 u_int64_t start, end, diff;
946 int timo;
947
948 microtime(&tv_start);
949 start = read_machclk();
950 timo = hz; /* 1 sec */
951 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
952 microtime(&tv_end);
953 end = read_machclk();
954 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
955 + tv_end.tv_usec - tv_start.tv_usec;
956 if (diff != 0)
957 machclk_freq = (u_int)((end - start) * 1000000 / diff);
958 }
959
960 machclk_per_tick = machclk_freq / hz;
961
962 #ifdef ALTQ_DEBUG
963 printf("altq: CPU clock: %uHz\n", machclk_freq);
964 #endif
965 }
966
967 #if defined(__OpenBSD__) && defined(__i386__)
968 static __inline u_int64_t
rdtsc(void)969 rdtsc(void)
970 {
971 u_int64_t rv;
972 __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
973 return (rv);
974 }
975 #endif /* __OpenBSD__ && __i386__ */
976
977 u_int64_t
read_machclk(void)978 read_machclk(void)
979 {
980 u_int64_t val;
981
982 if (machclk_usepcc) {
983 #if defined(__amd64__) || defined(__i386__)
984 val = rdtsc();
985 #else
986 panic("read_machclk");
987 #endif
988 } else {
989 struct timeval tv, boottime;
990
991 microtime(&tv);
992 getboottime(&boottime);
993 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
994 + tv.tv_usec) << MACHCLK_SHIFT);
995 }
996 return (val);
997 }
998
999 #ifdef ALTQ3_CLFIER_COMPAT
1000
1001 #ifndef IPPROTO_ESP
1002 #define IPPROTO_ESP 50 /* encapsulating security payload */
1003 #endif
1004 #ifndef IPPROTO_AH
1005 #define IPPROTO_AH 51 /* authentication header */
1006 #endif
1007
1008 /*
1009 * extract flow information from a given packet.
1010 * filt_mask shows flowinfo fields required.
1011 * we assume the ip header is in one mbuf, and addresses and ports are
1012 * in network byte order.
1013 */
1014 int
altq_extractflow(m,af,flow,filt_bmask)1015 altq_extractflow(m, af, flow, filt_bmask)
1016 struct mbuf *m;
1017 int af;
1018 struct flowinfo *flow;
1019 u_int32_t filt_bmask;
1020 {
1021
1022 switch (af) {
1023 case PF_INET: {
1024 struct flowinfo_in *fin;
1025 struct ip *ip;
1026
1027 ip = mtod(m, struct ip *);
1028
1029 if (ip->ip_v != 4)
1030 break;
1031
1032 fin = (struct flowinfo_in *)flow;
1033 fin->fi_len = sizeof(struct flowinfo_in);
1034 fin->fi_family = AF_INET;
1035
1036 fin->fi_proto = ip->ip_p;
1037 fin->fi_tos = ip->ip_tos;
1038
1039 fin->fi_src.s_addr = ip->ip_src.s_addr;
1040 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
1041
1042 if (filt_bmask & FIMB4_PORTS)
1043 /* if port info is required, extract port numbers */
1044 extract_ports4(m, ip, fin);
1045 else {
1046 fin->fi_sport = 0;
1047 fin->fi_dport = 0;
1048 fin->fi_gpi = 0;
1049 }
1050 return (1);
1051 }
1052
1053 #ifdef INET6
1054 case PF_INET6: {
1055 struct flowinfo_in6 *fin6;
1056 struct ip6_hdr *ip6;
1057
1058 ip6 = mtod(m, struct ip6_hdr *);
1059 /* should we check the ip version? */
1060
1061 fin6 = (struct flowinfo_in6 *)flow;
1062 fin6->fi6_len = sizeof(struct flowinfo_in6);
1063 fin6->fi6_family = AF_INET6;
1064
1065 fin6->fi6_proto = ip6->ip6_nxt;
1066 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1067
1068 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
1069 fin6->fi6_src = ip6->ip6_src;
1070 fin6->fi6_dst = ip6->ip6_dst;
1071
1072 if ((filt_bmask & FIMB6_PORTS) ||
1073 ((filt_bmask & FIMB6_PROTO)
1074 && ip6->ip6_nxt > IPPROTO_IPV6))
1075 /*
1076 * if port info is required, or proto is required
1077 * but there are option headers, extract port
1078 * and protocol numbers.
1079 */
1080 extract_ports6(m, ip6, fin6);
1081 else {
1082 fin6->fi6_sport = 0;
1083 fin6->fi6_dport = 0;
1084 fin6->fi6_gpi = 0;
1085 }
1086 return (1);
1087 }
1088 #endif /* INET6 */
1089
1090 default:
1091 break;
1092 }
1093
1094 /* failed */
1095 flow->fi_len = sizeof(struct flowinfo);
1096 flow->fi_family = AF_UNSPEC;
1097 return (0);
1098 }
1099
1100 /*
1101 * helper routine to extract port numbers
1102 */
1103 /* structure for ipsec and ipv6 option header template */
1104 struct _opt6 {
1105 u_int8_t opt6_nxt; /* next header */
1106 u_int8_t opt6_hlen; /* header extension length */
1107 u_int16_t _pad;
1108 u_int32_t ah_spi; /* security parameter index
1109 for authentication header */
1110 };
1111
1112 /*
1113 * extract port numbers from a ipv4 packet.
1114 */
1115 static int
extract_ports4(m,ip,fin)1116 extract_ports4(m, ip, fin)
1117 struct mbuf *m;
1118 struct ip *ip;
1119 struct flowinfo_in *fin;
1120 {
1121 struct mbuf *m0;
1122 u_short ip_off;
1123 u_int8_t proto;
1124 int off;
1125
1126 fin->fi_sport = 0;
1127 fin->fi_dport = 0;
1128 fin->fi_gpi = 0;
1129
1130 ip_off = ntohs(ip->ip_off);
1131 /* if it is a fragment, try cached fragment info */
1132 if (ip_off & IP_OFFMASK) {
1133 ip4f_lookup(ip, fin);
1134 return (1);
1135 }
1136
1137 /* locate the mbuf containing the protocol header */
1138 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1139 if (((caddr_t)ip >= m0->m_data) &&
1140 ((caddr_t)ip < m0->m_data + m0->m_len))
1141 break;
1142 if (m0 == NULL) {
1143 #ifdef ALTQ_DEBUG
1144 printf("extract_ports4: can't locate header! ip=%p\n", ip);
1145 #endif
1146 return (0);
1147 }
1148 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
1149 proto = ip->ip_p;
1150
1151 #ifdef ALTQ_IPSEC
1152 again:
1153 #endif
1154 while (off >= m0->m_len) {
1155 off -= m0->m_len;
1156 m0 = m0->m_next;
1157 if (m0 == NULL)
1158 return (0); /* bogus ip_hl! */
1159 }
1160 if (m0->m_len < off + 4)
1161 return (0);
1162
1163 switch (proto) {
1164 case IPPROTO_TCP:
1165 case IPPROTO_UDP: {
1166 struct udphdr *udp;
1167
1168 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1169 fin->fi_sport = udp->uh_sport;
1170 fin->fi_dport = udp->uh_dport;
1171 fin->fi_proto = proto;
1172 }
1173 break;
1174
1175 #ifdef ALTQ_IPSEC
1176 case IPPROTO_ESP:
1177 if (fin->fi_gpi == 0){
1178 u_int32_t *gpi;
1179
1180 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1181 fin->fi_gpi = *gpi;
1182 }
1183 fin->fi_proto = proto;
1184 break;
1185
1186 case IPPROTO_AH: {
1187 /* get next header and header length */
1188 struct _opt6 *opt6;
1189
1190 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1191 proto = opt6->opt6_nxt;
1192 off += 8 + (opt6->opt6_hlen * 4);
1193 if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1194 fin->fi_gpi = opt6->ah_spi;
1195 }
1196 /* goto the next header */
1197 goto again;
1198 #endif /* ALTQ_IPSEC */
1199
1200 default:
1201 fin->fi_proto = proto;
1202 return (0);
1203 }
1204
1205 /* if this is a first fragment, cache it. */
1206 if (ip_off & IP_MF)
1207 ip4f_cache(ip, fin);
1208
1209 return (1);
1210 }
1211
1212 #ifdef INET6
1213 static int
extract_ports6(m,ip6,fin6)1214 extract_ports6(m, ip6, fin6)
1215 struct mbuf *m;
1216 struct ip6_hdr *ip6;
1217 struct flowinfo_in6 *fin6;
1218 {
1219 struct mbuf *m0;
1220 int off;
1221 u_int8_t proto;
1222
1223 fin6->fi6_gpi = 0;
1224 fin6->fi6_sport = 0;
1225 fin6->fi6_dport = 0;
1226
1227 /* locate the mbuf containing the protocol header */
1228 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1229 if (((caddr_t)ip6 >= m0->m_data) &&
1230 ((caddr_t)ip6 < m0->m_data + m0->m_len))
1231 break;
1232 if (m0 == NULL) {
1233 #ifdef ALTQ_DEBUG
1234 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1235 #endif
1236 return (0);
1237 }
1238 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1239
1240 proto = ip6->ip6_nxt;
1241 do {
1242 while (off >= m0->m_len) {
1243 off -= m0->m_len;
1244 m0 = m0->m_next;
1245 if (m0 == NULL)
1246 return (0);
1247 }
1248 if (m0->m_len < off + 4)
1249 return (0);
1250
1251 switch (proto) {
1252 case IPPROTO_TCP:
1253 case IPPROTO_UDP: {
1254 struct udphdr *udp;
1255
1256 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1257 fin6->fi6_sport = udp->uh_sport;
1258 fin6->fi6_dport = udp->uh_dport;
1259 fin6->fi6_proto = proto;
1260 }
1261 return (1);
1262
1263 case IPPROTO_ESP:
1264 if (fin6->fi6_gpi == 0) {
1265 u_int32_t *gpi;
1266
1267 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1268 fin6->fi6_gpi = *gpi;
1269 }
1270 fin6->fi6_proto = proto;
1271 return (1);
1272
1273 case IPPROTO_AH: {
1274 /* get next header and header length */
1275 struct _opt6 *opt6;
1276
1277 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1278 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1279 fin6->fi6_gpi = opt6->ah_spi;
1280 proto = opt6->opt6_nxt;
1281 off += 8 + (opt6->opt6_hlen * 4);
1282 /* goto the next header */
1283 break;
1284 }
1285
1286 case IPPROTO_HOPOPTS:
1287 case IPPROTO_ROUTING:
1288 case IPPROTO_DSTOPTS: {
1289 /* get next header and header length */
1290 struct _opt6 *opt6;
1291
1292 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1293 proto = opt6->opt6_nxt;
1294 off += (opt6->opt6_hlen + 1) * 8;
1295 /* goto the next header */
1296 break;
1297 }
1298
1299 case IPPROTO_FRAGMENT:
1300 /* ipv6 fragmentations are not supported yet */
1301 default:
1302 fin6->fi6_proto = proto;
1303 return (0);
1304 }
1305 } while (1);
1306 /*NOTREACHED*/
1307 }
1308 #endif /* INET6 */
1309
1310 /*
1311 * altq common classifier
1312 */
1313 int
acc_add_filter(classifier,filter,class,phandle)1314 acc_add_filter(classifier, filter, class, phandle)
1315 struct acc_classifier *classifier;
1316 struct flow_filter *filter;
1317 void *class;
1318 u_long *phandle;
1319 {
1320 struct acc_filter *afp, *prev, *tmp;
1321 int i, s;
1322
1323 #ifdef INET6
1324 if (filter->ff_flow.fi_family != AF_INET &&
1325 filter->ff_flow.fi_family != AF_INET6)
1326 return (EINVAL);
1327 #else
1328 if (filter->ff_flow.fi_family != AF_INET)
1329 return (EINVAL);
1330 #endif
1331
1332 afp = malloc(sizeof(struct acc_filter),
1333 M_DEVBUF, M_WAITOK);
1334 if (afp == NULL)
1335 return (ENOMEM);
1336 bzero(afp, sizeof(struct acc_filter));
1337
1338 afp->f_filter = *filter;
1339 afp->f_class = class;
1340
1341 i = ACC_WILDCARD_INDEX;
1342 if (filter->ff_flow.fi_family == AF_INET) {
1343 struct flow_filter *filter4 = &afp->f_filter;
1344
1345 /*
1346 * if address is 0, it's a wildcard. if address mask
1347 * isn't set, use full mask.
1348 */
1349 if (filter4->ff_flow.fi_dst.s_addr == 0)
1350 filter4->ff_mask.mask_dst.s_addr = 0;
1351 else if (filter4->ff_mask.mask_dst.s_addr == 0)
1352 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1353 if (filter4->ff_flow.fi_src.s_addr == 0)
1354 filter4->ff_mask.mask_src.s_addr = 0;
1355 else if (filter4->ff_mask.mask_src.s_addr == 0)
1356 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1357
1358 /* clear extra bits in addresses */
1359 filter4->ff_flow.fi_dst.s_addr &=
1360 filter4->ff_mask.mask_dst.s_addr;
1361 filter4->ff_flow.fi_src.s_addr &=
1362 filter4->ff_mask.mask_src.s_addr;
1363
1364 /*
1365 * if dst address is a wildcard, use hash-entry
1366 * ACC_WILDCARD_INDEX.
1367 */
1368 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1369 i = ACC_WILDCARD_INDEX;
1370 else
1371 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1372 }
1373 #ifdef INET6
1374 else if (filter->ff_flow.fi_family == AF_INET6) {
1375 struct flow_filter6 *filter6 =
1376 (struct flow_filter6 *)&afp->f_filter;
1377 #ifndef IN6MASK0 /* taken from kame ipv6 */
1378 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
1379 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1380 const struct in6_addr in6mask0 = IN6MASK0;
1381 const struct in6_addr in6mask128 = IN6MASK128;
1382 #endif
1383
1384 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1385 filter6->ff_mask6.mask6_dst = in6mask0;
1386 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1387 filter6->ff_mask6.mask6_dst = in6mask128;
1388 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1389 filter6->ff_mask6.mask6_src = in6mask0;
1390 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1391 filter6->ff_mask6.mask6_src = in6mask128;
1392
1393 /* clear extra bits in addresses */
1394 for (i = 0; i < 16; i++)
1395 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1396 filter6->ff_mask6.mask6_dst.s6_addr[i];
1397 for (i = 0; i < 16; i++)
1398 filter6->ff_flow6.fi6_src.s6_addr[i] &=
1399 filter6->ff_mask6.mask6_src.s6_addr[i];
1400
1401 if (filter6->ff_flow6.fi6_flowlabel == 0)
1402 i = ACC_WILDCARD_INDEX;
1403 else
1404 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1405 }
1406 #endif /* INET6 */
1407
1408 afp->f_handle = get_filt_handle(classifier, i);
1409
1410 /* update filter bitmask */
1411 afp->f_fbmask = filt2fibmask(filter);
1412 classifier->acc_fbmask |= afp->f_fbmask;
1413
1414 /*
1415 * add this filter to the filter list.
1416 * filters are ordered from the highest rule number.
1417 */
1418 s = splnet();
1419 prev = NULL;
1420 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1421 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1422 prev = tmp;
1423 else
1424 break;
1425 }
1426 if (prev == NULL)
1427 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1428 else
1429 LIST_INSERT_AFTER(prev, afp, f_chain);
1430 splx(s);
1431
1432 *phandle = afp->f_handle;
1433 return (0);
1434 }
1435
1436 int
acc_delete_filter(classifier,handle)1437 acc_delete_filter(classifier, handle)
1438 struct acc_classifier *classifier;
1439 u_long handle;
1440 {
1441 struct acc_filter *afp;
1442 int s;
1443
1444 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1445 return (EINVAL);
1446
1447 s = splnet();
1448 LIST_REMOVE(afp, f_chain);
1449 splx(s);
1450
1451 free(afp, M_DEVBUF);
1452
1453 /* todo: update filt_bmask */
1454
1455 return (0);
1456 }
1457
1458 /*
1459 * delete filters referencing to the specified class.
1460 * if the all flag is not 0, delete all the filters.
1461 */
1462 int
acc_discard_filters(classifier,class,all)1463 acc_discard_filters(classifier, class, all)
1464 struct acc_classifier *classifier;
1465 void *class;
1466 int all;
1467 {
1468 struct acc_filter *afp;
1469 int i, s;
1470
1471 s = splnet();
1472 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1473 do {
1474 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1475 if (all || afp->f_class == class) {
1476 LIST_REMOVE(afp, f_chain);
1477 free(afp, M_DEVBUF);
1478 /* start again from the head */
1479 break;
1480 }
1481 } while (afp != NULL);
1482 }
1483 splx(s);
1484
1485 if (all)
1486 classifier->acc_fbmask = 0;
1487
1488 return (0);
1489 }
1490
1491 void *
acc_classify(clfier,m,af)1492 acc_classify(clfier, m, af)
1493 void *clfier;
1494 struct mbuf *m;
1495 int af;
1496 {
1497 struct acc_classifier *classifier;
1498 struct flowinfo flow;
1499 struct acc_filter *afp;
1500 int i;
1501
1502 classifier = (struct acc_classifier *)clfier;
1503 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1504
1505 if (flow.fi_family == AF_INET) {
1506 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1507
1508 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1509 /* only tos is used */
1510 LIST_FOREACH(afp,
1511 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1512 f_chain)
1513 if (apply_tosfilter4(afp->f_fbmask,
1514 &afp->f_filter, fp))
1515 /* filter matched */
1516 return (afp->f_class);
1517 } else if ((classifier->acc_fbmask &
1518 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1519 == 0) {
1520 /* only proto and ports are used */
1521 LIST_FOREACH(afp,
1522 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1523 f_chain)
1524 if (apply_ppfilter4(afp->f_fbmask,
1525 &afp->f_filter, fp))
1526 /* filter matched */
1527 return (afp->f_class);
1528 } else {
1529 /* get the filter hash entry from its dest address */
1530 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1531 do {
1532 /*
1533 * go through this loop twice. first for dst
1534 * hash, second for wildcards.
1535 */
1536 LIST_FOREACH(afp, &classifier->acc_filters[i],
1537 f_chain)
1538 if (apply_filter4(afp->f_fbmask,
1539 &afp->f_filter, fp))
1540 /* filter matched */
1541 return (afp->f_class);
1542
1543 /*
1544 * check again for filters with a dst addr
1545 * wildcard.
1546 * (daddr == 0 || dmask != 0xffffffff).
1547 */
1548 if (i != ACC_WILDCARD_INDEX)
1549 i = ACC_WILDCARD_INDEX;
1550 else
1551 break;
1552 } while (1);
1553 }
1554 }
1555 #ifdef INET6
1556 else if (flow.fi_family == AF_INET6) {
1557 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1558
1559 /* get the filter hash entry from its flow ID */
1560 if (fp6->fi6_flowlabel != 0)
1561 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1562 else
1563 /* flowlable can be zero */
1564 i = ACC_WILDCARD_INDEX;
1565
1566 /* go through this loop twice. first for flow hash, second
1567 for wildcards. */
1568 do {
1569 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1570 if (apply_filter6(afp->f_fbmask,
1571 (struct flow_filter6 *)&afp->f_filter,
1572 fp6))
1573 /* filter matched */
1574 return (afp->f_class);
1575
1576 /*
1577 * check again for filters with a wildcard.
1578 */
1579 if (i != ACC_WILDCARD_INDEX)
1580 i = ACC_WILDCARD_INDEX;
1581 else
1582 break;
1583 } while (1);
1584 }
1585 #endif /* INET6 */
1586
1587 /* no filter matched */
1588 return (NULL);
1589 }
1590
1591 static int
apply_filter4(fbmask,filt,pkt)1592 apply_filter4(fbmask, filt, pkt)
1593 u_int32_t fbmask;
1594 struct flow_filter *filt;
1595 struct flowinfo_in *pkt;
1596 {
1597 if (filt->ff_flow.fi_family != AF_INET)
1598 return (0);
1599 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1600 return (0);
1601 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1602 return (0);
1603 if ((fbmask & FIMB4_DADDR) &&
1604 filt->ff_flow.fi_dst.s_addr !=
1605 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1606 return (0);
1607 if ((fbmask & FIMB4_SADDR) &&
1608 filt->ff_flow.fi_src.s_addr !=
1609 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1610 return (0);
1611 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1612 return (0);
1613 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1614 (pkt->fi_tos & filt->ff_mask.mask_tos))
1615 return (0);
1616 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1617 return (0);
1618 /* match */
1619 return (1);
1620 }
1621
1622 /*
1623 * filter matching function optimized for a common case that checks
1624 * only protocol and port numbers
1625 */
1626 static int
apply_ppfilter4(fbmask,filt,pkt)1627 apply_ppfilter4(fbmask, filt, pkt)
1628 u_int32_t fbmask;
1629 struct flow_filter *filt;
1630 struct flowinfo_in *pkt;
1631 {
1632 if (filt->ff_flow.fi_family != AF_INET)
1633 return (0);
1634 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1635 return (0);
1636 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1637 return (0);
1638 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1639 return (0);
1640 /* match */
1641 return (1);
1642 }
1643
1644 /*
1645 * filter matching function only for tos field.
1646 */
1647 static int
apply_tosfilter4(fbmask,filt,pkt)1648 apply_tosfilter4(fbmask, filt, pkt)
1649 u_int32_t fbmask;
1650 struct flow_filter *filt;
1651 struct flowinfo_in *pkt;
1652 {
1653 if (filt->ff_flow.fi_family != AF_INET)
1654 return (0);
1655 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1656 (pkt->fi_tos & filt->ff_mask.mask_tos))
1657 return (0);
1658 /* match */
1659 return (1);
1660 }
1661
1662 #ifdef INET6
1663 static int
apply_filter6(fbmask,filt,pkt)1664 apply_filter6(fbmask, filt, pkt)
1665 u_int32_t fbmask;
1666 struct flow_filter6 *filt;
1667 struct flowinfo_in6 *pkt;
1668 {
1669 int i;
1670
1671 if (filt->ff_flow6.fi6_family != AF_INET6)
1672 return (0);
1673 if ((fbmask & FIMB6_FLABEL) &&
1674 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1675 return (0);
1676 if ((fbmask & FIMB6_PROTO) &&
1677 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1678 return (0);
1679 if ((fbmask & FIMB6_SPORT) &&
1680 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1681 return (0);
1682 if ((fbmask & FIMB6_DPORT) &&
1683 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1684 return (0);
1685 if (fbmask & FIMB6_SADDR) {
1686 for (i = 0; i < 4; i++)
1687 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1688 (pkt->fi6_src.s6_addr32[i] &
1689 filt->ff_mask6.mask6_src.s6_addr32[i]))
1690 return (0);
1691 }
1692 if (fbmask & FIMB6_DADDR) {
1693 for (i = 0; i < 4; i++)
1694 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1695 (pkt->fi6_dst.s6_addr32[i] &
1696 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1697 return (0);
1698 }
1699 if ((fbmask & FIMB6_TCLASS) &&
1700 filt->ff_flow6.fi6_tclass !=
1701 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1702 return (0);
1703 if ((fbmask & FIMB6_GPI) &&
1704 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1705 return (0);
1706 /* match */
1707 return (1);
1708 }
1709 #endif /* INET6 */
1710
1711 /*
1712 * filter handle:
1713 * bit 20-28: index to the filter hash table
1714 * bit 0-19: unique id in the hash bucket.
1715 */
1716 static u_long
get_filt_handle(classifier,i)1717 get_filt_handle(classifier, i)
1718 struct acc_classifier *classifier;
1719 int i;
1720 {
1721 static u_long handle_number = 1;
1722 u_long handle;
1723 struct acc_filter *afp;
1724
1725 while (1) {
1726 handle = handle_number++ & 0x000fffff;
1727
1728 if (LIST_EMPTY(&classifier->acc_filters[i]))
1729 break;
1730
1731 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1732 if ((afp->f_handle & 0x000fffff) == handle)
1733 break;
1734 if (afp == NULL)
1735 break;
1736 /* this handle is already used, try again */
1737 }
1738
1739 return ((i << 20) | handle);
1740 }
1741
1742 /* convert filter handle to filter pointer */
1743 static struct acc_filter *
filth_to_filtp(classifier,handle)1744 filth_to_filtp(classifier, handle)
1745 struct acc_classifier *classifier;
1746 u_long handle;
1747 {
1748 struct acc_filter *afp;
1749 int i;
1750
1751 i = ACC_GET_HINDEX(handle);
1752
1753 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1754 if (afp->f_handle == handle)
1755 return (afp);
1756
1757 return (NULL);
1758 }
1759
1760 /* create flowinfo bitmask */
1761 static u_int32_t
filt2fibmask(filt)1762 filt2fibmask(filt)
1763 struct flow_filter *filt;
1764 {
1765 u_int32_t mask = 0;
1766 #ifdef INET6
1767 struct flow_filter6 *filt6;
1768 #endif
1769
1770 switch (filt->ff_flow.fi_family) {
1771 case AF_INET:
1772 if (filt->ff_flow.fi_proto != 0)
1773 mask |= FIMB4_PROTO;
1774 if (filt->ff_flow.fi_tos != 0)
1775 mask |= FIMB4_TOS;
1776 if (filt->ff_flow.fi_dst.s_addr != 0)
1777 mask |= FIMB4_DADDR;
1778 if (filt->ff_flow.fi_src.s_addr != 0)
1779 mask |= FIMB4_SADDR;
1780 if (filt->ff_flow.fi_sport != 0)
1781 mask |= FIMB4_SPORT;
1782 if (filt->ff_flow.fi_dport != 0)
1783 mask |= FIMB4_DPORT;
1784 if (filt->ff_flow.fi_gpi != 0)
1785 mask |= FIMB4_GPI;
1786 break;
1787 #ifdef INET6
1788 case AF_INET6:
1789 filt6 = (struct flow_filter6 *)filt;
1790
1791 if (filt6->ff_flow6.fi6_proto != 0)
1792 mask |= FIMB6_PROTO;
1793 if (filt6->ff_flow6.fi6_tclass != 0)
1794 mask |= FIMB6_TCLASS;
1795 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1796 mask |= FIMB6_DADDR;
1797 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1798 mask |= FIMB6_SADDR;
1799 if (filt6->ff_flow6.fi6_sport != 0)
1800 mask |= FIMB6_SPORT;
1801 if (filt6->ff_flow6.fi6_dport != 0)
1802 mask |= FIMB6_DPORT;
1803 if (filt6->ff_flow6.fi6_gpi != 0)
1804 mask |= FIMB6_GPI;
1805 if (filt6->ff_flow6.fi6_flowlabel != 0)
1806 mask |= FIMB6_FLABEL;
1807 break;
1808 #endif /* INET6 */
1809 }
1810 return (mask);
1811 }
1812
1813 /*
1814 * helper functions to handle IPv4 fragments.
1815 * currently only in-sequence fragments are handled.
1816 * - fragment info is cached in a LRU list.
1817 * - when a first fragment is found, cache its flow info.
1818 * - when a non-first fragment is found, lookup the cache.
1819 */
1820
1821 struct ip4_frag {
1822 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1823 char ip4f_valid;
1824 u_short ip4f_id;
1825 struct flowinfo_in ip4f_info;
1826 };
1827
1828 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1829
1830 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1831
1832 static void
ip4f_cache(ip,fin)1833 ip4f_cache(ip, fin)
1834 struct ip *ip;
1835 struct flowinfo_in *fin;
1836 {
1837 struct ip4_frag *fp;
1838
1839 if (TAILQ_EMPTY(&ip4f_list)) {
1840 /* first time call, allocate fragment cache entries. */
1841 if (ip4f_init() < 0)
1842 /* allocation failed! */
1843 return;
1844 }
1845
1846 fp = ip4f_alloc();
1847 fp->ip4f_id = ip->ip_id;
1848 fp->ip4f_info.fi_proto = ip->ip_p;
1849 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1850 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1851
1852 /* save port numbers */
1853 fp->ip4f_info.fi_sport = fin->fi_sport;
1854 fp->ip4f_info.fi_dport = fin->fi_dport;
1855 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1856 }
1857
1858 static int
ip4f_lookup(ip,fin)1859 ip4f_lookup(ip, fin)
1860 struct ip *ip;
1861 struct flowinfo_in *fin;
1862 {
1863 struct ip4_frag *fp;
1864
1865 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1866 fp = TAILQ_NEXT(fp, ip4f_chain))
1867 if (ip->ip_id == fp->ip4f_id &&
1868 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1869 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1870 ip->ip_p == fp->ip4f_info.fi_proto) {
1871 /* found the matching entry */
1872 fin->fi_sport = fp->ip4f_info.fi_sport;
1873 fin->fi_dport = fp->ip4f_info.fi_dport;
1874 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1875
1876 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1877 /* this is the last fragment,
1878 release the entry. */
1879 ip4f_free(fp);
1880
1881 return (1);
1882 }
1883
1884 /* no matching entry found */
1885 return (0);
1886 }
1887
1888 static int
ip4f_init(void)1889 ip4f_init(void)
1890 {
1891 struct ip4_frag *fp;
1892 int i;
1893
1894 TAILQ_INIT(&ip4f_list);
1895 for (i=0; i<IP4F_TABSIZE; i++) {
1896 fp = malloc(sizeof(struct ip4_frag),
1897 M_DEVBUF, M_NOWAIT);
1898 if (fp == NULL) {
1899 printf("ip4f_init: can't alloc %dth entry!\n", i);
1900 if (i == 0)
1901 return (-1);
1902 return (0);
1903 }
1904 fp->ip4f_valid = 0;
1905 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1906 }
1907 return (0);
1908 }
1909
1910 static struct ip4_frag *
ip4f_alloc(void)1911 ip4f_alloc(void)
1912 {
1913 struct ip4_frag *fp;
1914
1915 /* reclaim an entry at the tail, put it at the head */
1916 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1917 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1918 fp->ip4f_valid = 1;
1919 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1920 return (fp);
1921 }
1922
1923 static void
ip4f_free(fp)1924 ip4f_free(fp)
1925 struct ip4_frag *fp;
1926 {
1927 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1928 fp->ip4f_valid = 0;
1929 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1930 }
1931
1932 #endif /* ALTQ3_CLFIER_COMPAT */
1933