1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/libkern.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49
50 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
51 static void *taskqueue_giant_ih;
52 static void *taskqueue_ih;
53 static void taskqueue_fast_enqueue(void *);
54 static void taskqueue_swi_enqueue(void *);
55 static void taskqueue_swi_giant_enqueue(void *);
56
57 struct taskqueue_busy {
58 struct task *tb_running;
59 u_int tb_seq;
60 bool tb_canceling;
61 LIST_ENTRY(taskqueue_busy) tb_link;
62 };
63
64 struct taskqueue {
65 STAILQ_HEAD(, task) tq_queue;
66 LIST_HEAD(, taskqueue_busy) tq_active;
67 struct task *tq_hint;
68 u_int tq_seq;
69 int tq_callouts;
70 struct mtx_padalign tq_mutex;
71 taskqueue_enqueue_fn tq_enqueue;
72 void *tq_context;
73 char *tq_name;
74 struct thread **tq_threads;
75 int tq_tcount;
76 int tq_spin;
77 int tq_flags;
78 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
79 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
80 };
81
82 #define TQ_FLAGS_ACTIVE (1 << 0)
83 #define TQ_FLAGS_BLOCKED (1 << 1)
84 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
85
86 #define DT_CALLOUT_ARMED (1 << 0)
87 #define DT_DRAIN_IN_PROGRESS (1 << 1)
88
89 #define TQ_LOCK(tq) \
90 do { \
91 if ((tq)->tq_spin) \
92 mtx_lock_spin(&(tq)->tq_mutex); \
93 else \
94 mtx_lock(&(tq)->tq_mutex); \
95 } while (0)
96 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
97
98 #define TQ_UNLOCK(tq) \
99 do { \
100 if ((tq)->tq_spin) \
101 mtx_unlock_spin(&(tq)->tq_mutex); \
102 else \
103 mtx_unlock(&(tq)->tq_mutex); \
104 } while (0)
105 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
106
107 void
_timeout_task_init(struct taskqueue * queue,struct timeout_task * timeout_task,int priority,task_fn_t func,void * context)108 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
109 int priority, task_fn_t func, void *context)
110 {
111
112 TASK_INIT(&timeout_task->t, priority, func, context);
113 callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
114 CALLOUT_RETURNUNLOCKED);
115 timeout_task->q = queue;
116 timeout_task->f = 0;
117 }
118
119 static __inline int
TQ_SLEEP(struct taskqueue * tq,void * p,const char * wm)120 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
121 {
122 if (tq->tq_spin)
123 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
124 return (msleep(p, &tq->tq_mutex, 0, wm, 0));
125 }
126
127 static struct taskqueue_busy *
task_get_busy(struct taskqueue * queue,struct task * task)128 task_get_busy(struct taskqueue *queue, struct task *task)
129 {
130 struct taskqueue_busy *tb;
131
132 TQ_ASSERT_LOCKED(queue);
133 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
134 if (tb->tb_running == task)
135 return (tb);
136 }
137 return (NULL);
138 }
139
140 static struct taskqueue *
_taskqueue_create(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context,int mtxflags,const char * mtxname __unused)141 _taskqueue_create(const char *name, int mflags,
142 taskqueue_enqueue_fn enqueue, void *context,
143 int mtxflags, const char *mtxname __unused)
144 {
145 struct taskqueue *queue;
146 char *tq_name;
147
148 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
149 if (tq_name == NULL)
150 return (NULL);
151
152 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
153 if (queue == NULL) {
154 free(tq_name, M_TASKQUEUE);
155 return (NULL);
156 }
157
158 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
159
160 STAILQ_INIT(&queue->tq_queue);
161 LIST_INIT(&queue->tq_active);
162 queue->tq_enqueue = enqueue;
163 queue->tq_context = context;
164 queue->tq_name = tq_name;
165 queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
166 queue->tq_flags |= TQ_FLAGS_ACTIVE;
167 if (enqueue == taskqueue_fast_enqueue ||
168 enqueue == taskqueue_swi_enqueue ||
169 enqueue == taskqueue_swi_giant_enqueue ||
170 enqueue == taskqueue_thread_enqueue)
171 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
172 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
173
174 return (queue);
175 }
176
177 struct taskqueue *
taskqueue_create(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context)178 taskqueue_create(const char *name, int mflags,
179 taskqueue_enqueue_fn enqueue, void *context)
180 {
181
182 return _taskqueue_create(name, mflags, enqueue, context,
183 MTX_DEF, name);
184 }
185
186 void
taskqueue_set_callback(struct taskqueue * queue,enum taskqueue_callback_type cb_type,taskqueue_callback_fn callback,void * context)187 taskqueue_set_callback(struct taskqueue *queue,
188 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
189 void *context)
190 {
191
192 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
193 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
194 ("Callback type %d not valid, must be %d-%d", cb_type,
195 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
196 KASSERT((queue->tq_callbacks[cb_type] == NULL),
197 ("Re-initialization of taskqueue callback?"));
198
199 queue->tq_callbacks[cb_type] = callback;
200 queue->tq_cb_contexts[cb_type] = context;
201 }
202
203 /*
204 * Signal a taskqueue thread to terminate.
205 */
206 static void
taskqueue_terminate(struct thread ** pp,struct taskqueue * tq)207 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
208 {
209
210 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
211 wakeup(tq);
212 TQ_SLEEP(tq, pp, "tq_destroy");
213 }
214 }
215
216 void
taskqueue_free(struct taskqueue * queue)217 taskqueue_free(struct taskqueue *queue)
218 {
219
220 TQ_LOCK(queue);
221 queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
222 taskqueue_terminate(queue->tq_threads, queue);
223 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
224 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
225 mtx_destroy(&queue->tq_mutex);
226 free(queue->tq_threads, M_TASKQUEUE);
227 free(queue->tq_name, M_TASKQUEUE);
228 free(queue, M_TASKQUEUE);
229 }
230
231 static int
taskqueue_enqueue_locked(struct taskqueue * queue,struct task * task,int flags)232 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags)
233 {
234 struct task *ins;
235 struct task *prev;
236 struct taskqueue_busy *tb;
237
238 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
239 /*
240 * Ignore canceling task if requested.
241 */
242 if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) {
243 tb = task_get_busy(queue, task);
244 if (tb != NULL && tb->tb_canceling) {
245 TQ_UNLOCK(queue);
246 return (ECANCELED);
247 }
248 }
249
250 /*
251 * Count multiple enqueues.
252 */
253 if (task->ta_pending) {
254 if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) {
255 TQ_UNLOCK(queue);
256 return (EEXIST);
257 }
258 if (task->ta_pending < USHRT_MAX)
259 task->ta_pending++;
260 TQ_UNLOCK(queue);
261 return (0);
262 }
263
264 /*
265 * Optimise cases when all tasks use small set of priorities.
266 * In case of only one priority we always insert at the end.
267 * In case of two tq_hint typically gives the insertion point.
268 * In case of more then two tq_hint should halve the search.
269 */
270 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
271 if (!prev || prev->ta_priority >= task->ta_priority) {
272 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
273 } else {
274 prev = queue->tq_hint;
275 if (prev && prev->ta_priority >= task->ta_priority) {
276 ins = STAILQ_NEXT(prev, ta_link);
277 } else {
278 prev = NULL;
279 ins = STAILQ_FIRST(&queue->tq_queue);
280 }
281 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
282 if (ins->ta_priority < task->ta_priority)
283 break;
284
285 if (prev) {
286 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
287 queue->tq_hint = task;
288 } else
289 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
290 }
291
292 task->ta_pending = 1;
293 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
294 TQ_UNLOCK(queue);
295 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
296 queue->tq_enqueue(queue->tq_context);
297 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
298 TQ_UNLOCK(queue);
299
300 /* Return with lock released. */
301 return (0);
302 }
303
304 int
taskqueue_enqueue_flags(struct taskqueue * queue,struct task * task,int flags)305 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags)
306 {
307 int res;
308
309 TQ_LOCK(queue);
310 res = taskqueue_enqueue_locked(queue, task, flags);
311 /* The lock is released inside. */
312
313 return (res);
314 }
315
316 int
taskqueue_enqueue(struct taskqueue * queue,struct task * task)317 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
318 {
319 return (taskqueue_enqueue_flags(queue, task, 0));
320 }
321
322 static void
taskqueue_timeout_func(void * arg)323 taskqueue_timeout_func(void *arg)
324 {
325 struct taskqueue *queue;
326 struct timeout_task *timeout_task;
327
328 timeout_task = arg;
329 queue = timeout_task->q;
330 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
331 timeout_task->f &= ~DT_CALLOUT_ARMED;
332 queue->tq_callouts--;
333 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0);
334 /* The lock is released inside. */
335 }
336
337 int
taskqueue_enqueue_timeout_sbt(struct taskqueue * queue,struct timeout_task * timeout_task,sbintime_t sbt,sbintime_t pr,int flags)338 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
339 struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
340 {
341 int res;
342
343 TQ_LOCK(queue);
344 KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
345 ("Migrated queue"));
346 timeout_task->q = queue;
347 res = timeout_task->t.ta_pending;
348 if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
349 /* Do nothing */
350 TQ_UNLOCK(queue);
351 res = -1;
352 } else if (sbt == 0) {
353 taskqueue_enqueue_locked(queue, &timeout_task->t, 0);
354 /* The lock is released inside. */
355 } else {
356 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
357 res++;
358 } else {
359 queue->tq_callouts++;
360 timeout_task->f |= DT_CALLOUT_ARMED;
361 if (sbt < 0)
362 sbt = -sbt; /* Ignore overflow. */
363 }
364 if (sbt > 0) {
365 if (queue->tq_spin)
366 flags |= C_DIRECT_EXEC;
367 if (queue->tq_spin && queue->tq_tcount == 1 &&
368 queue->tq_threads[0] == curthread) {
369 callout_reset_sbt_curcpu(&timeout_task->c, sbt, pr,
370 taskqueue_timeout_func, timeout_task, flags);
371 } else {
372 callout_reset_sbt(&timeout_task->c, sbt, pr,
373 taskqueue_timeout_func, timeout_task, flags);
374 }
375 }
376 TQ_UNLOCK(queue);
377 }
378 return (res);
379 }
380
381 int
taskqueue_enqueue_timeout(struct taskqueue * queue,struct timeout_task * ttask,int ticks)382 taskqueue_enqueue_timeout(struct taskqueue *queue,
383 struct timeout_task *ttask, int ticks)
384 {
385
386 return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
387 0, C_HARDCLOCK));
388 }
389
390 static void
taskqueue_task_nop_fn(void * context,int pending)391 taskqueue_task_nop_fn(void *context, int pending)
392 {
393 }
394
395 /*
396 * Block until all currently queued tasks in this taskqueue
397 * have begun execution. Tasks queued during execution of
398 * this function are ignored.
399 */
400 static int
taskqueue_drain_tq_queue(struct taskqueue * queue)401 taskqueue_drain_tq_queue(struct taskqueue *queue)
402 {
403 struct task t_barrier;
404
405 if (STAILQ_EMPTY(&queue->tq_queue))
406 return (0);
407
408 /*
409 * Enqueue our barrier after all current tasks, but with
410 * the highest priority so that newly queued tasks cannot
411 * pass it. Because of the high priority, we can not use
412 * taskqueue_enqueue_locked directly (which drops the lock
413 * anyway) so just insert it at tail while we have the
414 * queue lock.
415 */
416 TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
417 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
418 queue->tq_hint = &t_barrier;
419 t_barrier.ta_pending = 1;
420
421 /*
422 * Once the barrier has executed, all previously queued tasks
423 * have completed or are currently executing.
424 */
425 while (t_barrier.ta_pending != 0)
426 TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
427 return (1);
428 }
429
430 /*
431 * Block until all currently executing tasks for this taskqueue
432 * complete. Tasks that begin execution during the execution
433 * of this function are ignored.
434 */
435 static int
taskqueue_drain_tq_active(struct taskqueue * queue)436 taskqueue_drain_tq_active(struct taskqueue *queue)
437 {
438 struct taskqueue_busy *tb;
439 u_int seq;
440
441 if (LIST_EMPTY(&queue->tq_active))
442 return (0);
443
444 /* Block taskq_terminate().*/
445 queue->tq_callouts++;
446
447 /* Wait for any active task with sequence from the past. */
448 seq = queue->tq_seq;
449 restart:
450 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
451 if ((int)(tb->tb_seq - seq) <= 0) {
452 TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
453 goto restart;
454 }
455 }
456
457 /* Release taskqueue_terminate(). */
458 queue->tq_callouts--;
459 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
460 wakeup_one(queue->tq_threads);
461 return (1);
462 }
463
464 void
taskqueue_block(struct taskqueue * queue)465 taskqueue_block(struct taskqueue *queue)
466 {
467
468 TQ_LOCK(queue);
469 queue->tq_flags |= TQ_FLAGS_BLOCKED;
470 TQ_UNLOCK(queue);
471 }
472
473 void
taskqueue_unblock(struct taskqueue * queue)474 taskqueue_unblock(struct taskqueue *queue)
475 {
476
477 TQ_LOCK(queue);
478 queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
479 if (!STAILQ_EMPTY(&queue->tq_queue))
480 queue->tq_enqueue(queue->tq_context);
481 TQ_UNLOCK(queue);
482 }
483
484 static void
taskqueue_run_locked(struct taskqueue * queue)485 taskqueue_run_locked(struct taskqueue *queue)
486 {
487 struct epoch_tracker et;
488 struct taskqueue_busy tb;
489 struct task *task;
490 bool in_net_epoch;
491 int pending;
492
493 KASSERT(queue != NULL, ("tq is NULL"));
494 TQ_ASSERT_LOCKED(queue);
495 tb.tb_running = NULL;
496 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
497 in_net_epoch = false;
498
499 while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
500 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
501 if (queue->tq_hint == task)
502 queue->tq_hint = NULL;
503 pending = task->ta_pending;
504 task->ta_pending = 0;
505 tb.tb_running = task;
506 tb.tb_seq = ++queue->tq_seq;
507 tb.tb_canceling = false;
508 TQ_UNLOCK(queue);
509
510 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
511 if (!in_net_epoch && TASK_IS_NET(task)) {
512 in_net_epoch = true;
513 NET_EPOCH_ENTER(et);
514 } else if (in_net_epoch && !TASK_IS_NET(task)) {
515 NET_EPOCH_EXIT(et);
516 in_net_epoch = false;
517 }
518 task->ta_func(task->ta_context, pending);
519
520 TQ_LOCK(queue);
521 wakeup(task);
522 }
523 if (in_net_epoch)
524 NET_EPOCH_EXIT(et);
525 LIST_REMOVE(&tb, tb_link);
526 }
527
528 void
taskqueue_run(struct taskqueue * queue)529 taskqueue_run(struct taskqueue *queue)
530 {
531
532 TQ_LOCK(queue);
533 taskqueue_run_locked(queue);
534 TQ_UNLOCK(queue);
535 }
536
537 /*
538 * Only use this function in single threaded contexts. It returns
539 * non-zero if the given task is either pending or running. Else the
540 * task is idle and can be queued again or freed.
541 */
542 int
taskqueue_poll_is_busy(struct taskqueue * queue,struct task * task)543 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
544 {
545 int retval;
546
547 TQ_LOCK(queue);
548 retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL;
549 TQ_UNLOCK(queue);
550
551 return (retval);
552 }
553
554 static int
taskqueue_cancel_locked(struct taskqueue * queue,struct task * task,u_int * pendp)555 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
556 u_int *pendp)
557 {
558 struct taskqueue_busy *tb;
559 int retval = 0;
560
561 if (task->ta_pending > 0) {
562 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
563 if (queue->tq_hint == task)
564 queue->tq_hint = NULL;
565 }
566 if (pendp != NULL)
567 *pendp = task->ta_pending;
568 task->ta_pending = 0;
569 tb = task_get_busy(queue, task);
570 if (tb != NULL) {
571 tb->tb_canceling = true;
572 retval = EBUSY;
573 }
574
575 return (retval);
576 }
577
578 int
taskqueue_cancel(struct taskqueue * queue,struct task * task,u_int * pendp)579 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
580 {
581 int error;
582
583 TQ_LOCK(queue);
584 error = taskqueue_cancel_locked(queue, task, pendp);
585 TQ_UNLOCK(queue);
586
587 return (error);
588 }
589
590 int
taskqueue_cancel_timeout(struct taskqueue * queue,struct timeout_task * timeout_task,u_int * pendp)591 taskqueue_cancel_timeout(struct taskqueue *queue,
592 struct timeout_task *timeout_task, u_int *pendp)
593 {
594 u_int pending, pending1;
595 int error;
596
597 TQ_LOCK(queue);
598 pending = !!(callout_stop(&timeout_task->c) > 0);
599 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
600 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
601 timeout_task->f &= ~DT_CALLOUT_ARMED;
602 queue->tq_callouts--;
603 }
604 TQ_UNLOCK(queue);
605
606 if (pendp != NULL)
607 *pendp = pending + pending1;
608 return (error);
609 }
610
611 void
taskqueue_drain(struct taskqueue * queue,struct task * task)612 taskqueue_drain(struct taskqueue *queue, struct task *task)
613 {
614
615 if (!queue->tq_spin)
616 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
617
618 TQ_LOCK(queue);
619 while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL)
620 TQ_SLEEP(queue, task, "tq_drain");
621 TQ_UNLOCK(queue);
622 }
623
624 void
taskqueue_drain_all(struct taskqueue * queue)625 taskqueue_drain_all(struct taskqueue *queue)
626 {
627
628 if (!queue->tq_spin)
629 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
630
631 TQ_LOCK(queue);
632 (void)taskqueue_drain_tq_queue(queue);
633 (void)taskqueue_drain_tq_active(queue);
634 TQ_UNLOCK(queue);
635 }
636
637 void
taskqueue_drain_timeout(struct taskqueue * queue,struct timeout_task * timeout_task)638 taskqueue_drain_timeout(struct taskqueue *queue,
639 struct timeout_task *timeout_task)
640 {
641
642 /*
643 * Set flag to prevent timer from re-starting during drain:
644 */
645 TQ_LOCK(queue);
646 KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
647 ("Drain already in progress"));
648 timeout_task->f |= DT_DRAIN_IN_PROGRESS;
649 TQ_UNLOCK(queue);
650
651 callout_drain(&timeout_task->c);
652 taskqueue_drain(queue, &timeout_task->t);
653
654 /*
655 * Clear flag to allow timer to re-start:
656 */
657 TQ_LOCK(queue);
658 timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
659 TQ_UNLOCK(queue);
660 }
661
662 void
taskqueue_quiesce(struct taskqueue * queue)663 taskqueue_quiesce(struct taskqueue *queue)
664 {
665 int ret;
666
667 TQ_LOCK(queue);
668 do {
669 ret = taskqueue_drain_tq_queue(queue);
670 if (ret == 0)
671 ret = taskqueue_drain_tq_active(queue);
672 } while (ret != 0);
673 TQ_UNLOCK(queue);
674 }
675
676 static void
taskqueue_swi_enqueue(void * context)677 taskqueue_swi_enqueue(void *context)
678 {
679 swi_sched(taskqueue_ih, 0);
680 }
681
682 static void
taskqueue_swi_run(void * dummy)683 taskqueue_swi_run(void *dummy)
684 {
685 taskqueue_run(taskqueue_swi);
686 }
687
688 static void
taskqueue_swi_giant_enqueue(void * context)689 taskqueue_swi_giant_enqueue(void *context)
690 {
691 swi_sched(taskqueue_giant_ih, 0);
692 }
693
694 static void
taskqueue_swi_giant_run(void * dummy)695 taskqueue_swi_giant_run(void *dummy)
696 {
697 taskqueue_run(taskqueue_swi_giant);
698 }
699
700 static int
_taskqueue_start_threads(struct taskqueue ** tqp,int count,int pri,cpuset_t * mask,struct proc * p,const char * name,va_list ap)701 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
702 cpuset_t *mask, struct proc *p, const char *name, va_list ap)
703 {
704 char ktname[MAXCOMLEN + 1];
705 struct thread *td;
706 struct taskqueue *tq;
707 int i, error;
708
709 if (count <= 0)
710 return (EINVAL);
711
712 vsnprintf(ktname, sizeof(ktname), name, ap);
713 tq = *tqp;
714
715 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
716 M_NOWAIT | M_ZERO);
717 if (tq->tq_threads == NULL) {
718 printf("%s: no memory for %s threads\n", __func__, ktname);
719 return (ENOMEM);
720 }
721
722 for (i = 0; i < count; i++) {
723 if (count == 1)
724 error = kthread_add(taskqueue_thread_loop, tqp, p,
725 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
726 else
727 error = kthread_add(taskqueue_thread_loop, tqp, p,
728 &tq->tq_threads[i], RFSTOPPED, 0,
729 "%s_%d", ktname, i);
730 if (error) {
731 /* should be ok to continue, taskqueue_free will dtrt */
732 printf("%s: kthread_add(%s): error %d", __func__,
733 ktname, error);
734 tq->tq_threads[i] = NULL; /* paranoid */
735 } else
736 tq->tq_tcount++;
737 }
738 if (tq->tq_tcount == 0) {
739 free(tq->tq_threads, M_TASKQUEUE);
740 tq->tq_threads = NULL;
741 return (ENOMEM);
742 }
743 for (i = 0; i < count; i++) {
744 if (tq->tq_threads[i] == NULL)
745 continue;
746 td = tq->tq_threads[i];
747 if (mask) {
748 error = cpuset_setthread(td->td_tid, mask);
749 /*
750 * Failing to pin is rarely an actual fatal error;
751 * it'll just affect performance.
752 */
753 if (error)
754 printf("%s: curthread=%llu: can't pin; "
755 "error=%d\n",
756 __func__,
757 (unsigned long long) td->td_tid,
758 error);
759 }
760 thread_lock(td);
761 sched_prio(td, pri);
762 sched_add(td, SRQ_BORING);
763 }
764
765 return (0);
766 }
767
768 int
taskqueue_start_threads(struct taskqueue ** tqp,int count,int pri,const char * name,...)769 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
770 const char *name, ...)
771 {
772 va_list ap;
773 int error;
774
775 va_start(ap, name);
776 error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
777 va_end(ap);
778 return (error);
779 }
780
781 int
taskqueue_start_threads_in_proc(struct taskqueue ** tqp,int count,int pri,struct proc * proc,const char * name,...)782 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
783 struct proc *proc, const char *name, ...)
784 {
785 va_list ap;
786 int error;
787
788 va_start(ap, name);
789 error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
790 va_end(ap);
791 return (error);
792 }
793
794 int
taskqueue_start_threads_cpuset(struct taskqueue ** tqp,int count,int pri,cpuset_t * mask,const char * name,...)795 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
796 cpuset_t *mask, const char *name, ...)
797 {
798 va_list ap;
799 int error;
800
801 va_start(ap, name);
802 error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
803 va_end(ap);
804 return (error);
805 }
806
807 static inline void
taskqueue_run_callback(struct taskqueue * tq,enum taskqueue_callback_type cb_type)808 taskqueue_run_callback(struct taskqueue *tq,
809 enum taskqueue_callback_type cb_type)
810 {
811 taskqueue_callback_fn tq_callback;
812
813 TQ_ASSERT_UNLOCKED(tq);
814 tq_callback = tq->tq_callbacks[cb_type];
815 if (tq_callback != NULL)
816 tq_callback(tq->tq_cb_contexts[cb_type]);
817 }
818
819 void
taskqueue_thread_loop(void * arg)820 taskqueue_thread_loop(void *arg)
821 {
822 struct taskqueue **tqp, *tq;
823
824 tqp = arg;
825 tq = *tqp;
826 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
827 TQ_LOCK(tq);
828 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
829 /* XXX ? */
830 taskqueue_run_locked(tq);
831 /*
832 * Because taskqueue_run() can drop tq_mutex, we need to
833 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
834 * meantime, which means we missed a wakeup.
835 */
836 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
837 break;
838 TQ_SLEEP(tq, tq, "-");
839 }
840 taskqueue_run_locked(tq);
841 /*
842 * This thread is on its way out, so just drop the lock temporarily
843 * in order to call the shutdown callback. This allows the callback
844 * to look at the taskqueue, even just before it dies.
845 */
846 TQ_UNLOCK(tq);
847 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
848 TQ_LOCK(tq);
849
850 /* rendezvous with thread that asked us to terminate */
851 tq->tq_tcount--;
852 wakeup_one(tq->tq_threads);
853 TQ_UNLOCK(tq);
854 kthread_exit();
855 }
856
857 void
taskqueue_thread_enqueue(void * context)858 taskqueue_thread_enqueue(void *context)
859 {
860 struct taskqueue **tqp, *tq;
861
862 tqp = context;
863 tq = *tqp;
864 wakeup_any(tq);
865 }
866
867 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
868 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
869 INTR_MPSAFE, &taskqueue_ih));
870
871 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
872 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
873 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
874
875 TASKQUEUE_DEFINE_THREAD(thread);
876
877 struct taskqueue *
taskqueue_create_fast(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context)878 taskqueue_create_fast(const char *name, int mflags,
879 taskqueue_enqueue_fn enqueue, void *context)
880 {
881 return _taskqueue_create(name, mflags, enqueue, context,
882 MTX_SPIN, "fast_taskqueue");
883 }
884
885 static void *taskqueue_fast_ih;
886
887 static void
taskqueue_fast_enqueue(void * context)888 taskqueue_fast_enqueue(void *context)
889 {
890 swi_sched(taskqueue_fast_ih, 0);
891 }
892
893 static void
taskqueue_fast_run(void * dummy)894 taskqueue_fast_run(void *dummy)
895 {
896 taskqueue_run(taskqueue_fast);
897 }
898
899 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
900 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
901 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
902
903 int
taskqueue_member(struct taskqueue * queue,struct thread * td)904 taskqueue_member(struct taskqueue *queue, struct thread *td)
905 {
906 int i, j, ret = 0;
907
908 for (i = 0, j = 0; ; i++) {
909 if (queue->tq_threads[i] == NULL)
910 continue;
911 if (queue->tq_threads[i] == td) {
912 ret = 1;
913 break;
914 }
915 if (++j >= queue->tq_tcount)
916 break;
917 }
918 return (ret);
919 }
920