1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2000 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50
51 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
52 static void *taskqueue_giant_ih;
53 static void *taskqueue_ih;
54 static void taskqueue_fast_enqueue(void *);
55 static void taskqueue_swi_enqueue(void *);
56 static void taskqueue_swi_giant_enqueue(void *);
57
58 struct taskqueue_busy {
59 struct task *tb_running;
60 TAILQ_ENTRY(taskqueue_busy) tb_link;
61 };
62
63 struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
64
65 struct taskqueue {
66 STAILQ_HEAD(, task) tq_queue;
67 taskqueue_enqueue_fn tq_enqueue;
68 void *tq_context;
69 char *tq_name;
70 TAILQ_HEAD(, taskqueue_busy) tq_active;
71 struct mtx tq_mutex;
72 struct thread **tq_threads;
73 int tq_tcount;
74 int tq_spin;
75 int tq_flags;
76 int tq_callouts;
77 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
78 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
79 };
80
81 #define TQ_FLAGS_ACTIVE (1 << 0)
82 #define TQ_FLAGS_BLOCKED (1 << 1)
83 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
84
85 #define DT_CALLOUT_ARMED (1 << 0)
86 #define DT_DRAIN_IN_PROGRESS (1 << 1)
87
88 #define TQ_LOCK(tq) \
89 do { \
90 if ((tq)->tq_spin) \
91 mtx_lock_spin(&(tq)->tq_mutex); \
92 else \
93 mtx_lock(&(tq)->tq_mutex); \
94 } while (0)
95 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
96
97 #define TQ_UNLOCK(tq) \
98 do { \
99 if ((tq)->tq_spin) \
100 mtx_unlock_spin(&(tq)->tq_mutex); \
101 else \
102 mtx_unlock(&(tq)->tq_mutex); \
103 } while (0)
104 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
105
106 void
_timeout_task_init(struct taskqueue * queue,struct timeout_task * timeout_task,int priority,task_fn_t func,void * context)107 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
108 int priority, task_fn_t func, void *context)
109 {
110
111 TASK_INIT(&timeout_task->t, priority, func, context);
112 callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
113 CALLOUT_RETURNUNLOCKED);
114 timeout_task->q = queue;
115 timeout_task->f = 0;
116 }
117
118 static __inline int
TQ_SLEEP(struct taskqueue * tq,void * p,struct mtx * m,int pri,const char * wm,int t)119 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
120 int t)
121 {
122 if (tq->tq_spin)
123 return (msleep_spin(p, m, wm, t));
124 return (msleep(p, m, pri, wm, t));
125 }
126
127 static struct taskqueue *
_taskqueue_create(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context,int mtxflags,const char * mtxname __unused)128 _taskqueue_create(const char *name, int mflags,
129 taskqueue_enqueue_fn enqueue, void *context,
130 int mtxflags, const char *mtxname __unused)
131 {
132 struct taskqueue *queue;
133 char *tq_name;
134
135 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
136 if (tq_name == NULL)
137 return (NULL);
138
139 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
140 if (queue == NULL) {
141 free(tq_name, M_TASKQUEUE);
142 return (NULL);
143 }
144
145 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
146
147 STAILQ_INIT(&queue->tq_queue);
148 TAILQ_INIT(&queue->tq_active);
149 queue->tq_enqueue = enqueue;
150 queue->tq_context = context;
151 queue->tq_name = tq_name;
152 queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
153 queue->tq_flags |= TQ_FLAGS_ACTIVE;
154 if (enqueue == taskqueue_fast_enqueue ||
155 enqueue == taskqueue_swi_enqueue ||
156 enqueue == taskqueue_swi_giant_enqueue ||
157 enqueue == taskqueue_thread_enqueue)
158 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
159 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
160
161 return (queue);
162 }
163
164 struct taskqueue *
taskqueue_create(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context)165 taskqueue_create(const char *name, int mflags,
166 taskqueue_enqueue_fn enqueue, void *context)
167 {
168
169 return _taskqueue_create(name, mflags, enqueue, context,
170 MTX_DEF, name);
171 }
172
173 void
taskqueue_set_callback(struct taskqueue * queue,enum taskqueue_callback_type cb_type,taskqueue_callback_fn callback,void * context)174 taskqueue_set_callback(struct taskqueue *queue,
175 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
176 void *context)
177 {
178
179 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
180 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
181 ("Callback type %d not valid, must be %d-%d", cb_type,
182 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
183 KASSERT((queue->tq_callbacks[cb_type] == NULL),
184 ("Re-initialization of taskqueue callback?"));
185
186 queue->tq_callbacks[cb_type] = callback;
187 queue->tq_cb_contexts[cb_type] = context;
188 }
189
190 /*
191 * Signal a taskqueue thread to terminate.
192 */
193 static void
taskqueue_terminate(struct thread ** pp,struct taskqueue * tq)194 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
195 {
196
197 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
198 wakeup(tq);
199 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
200 }
201 }
202
203 void
taskqueue_free(struct taskqueue * queue)204 taskqueue_free(struct taskqueue *queue)
205 {
206
207 TQ_LOCK(queue);
208 queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
209 taskqueue_terminate(queue->tq_threads, queue);
210 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
211 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
212 mtx_destroy(&queue->tq_mutex);
213 free(queue->tq_threads, M_TASKQUEUE);
214 free(queue->tq_name, M_TASKQUEUE);
215 free(queue, M_TASKQUEUE);
216 }
217
218 static int
taskqueue_enqueue_locked(struct taskqueue * queue,struct task * task)219 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
220 {
221 struct task *ins;
222 struct task *prev;
223
224 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
225 /*
226 * Count multiple enqueues.
227 */
228 if (task->ta_pending) {
229 if (task->ta_pending < USHRT_MAX)
230 task->ta_pending++;
231 TQ_UNLOCK(queue);
232 return (0);
233 }
234
235 /*
236 * Optimise the case when all tasks have the same priority.
237 */
238 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
239 if (!prev || prev->ta_priority >= task->ta_priority) {
240 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
241 } else {
242 prev = NULL;
243 for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
244 prev = ins, ins = STAILQ_NEXT(ins, ta_link))
245 if (ins->ta_priority < task->ta_priority)
246 break;
247
248 if (prev)
249 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
250 else
251 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
252 }
253
254 task->ta_pending = 1;
255 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
256 TQ_UNLOCK(queue);
257 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
258 queue->tq_enqueue(queue->tq_context);
259 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
260 TQ_UNLOCK(queue);
261
262 /* Return with lock released. */
263 return (0);
264 }
265
266 int
taskqueue_enqueue(struct taskqueue * queue,struct task * task)267 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
268 {
269 int res;
270
271 TQ_LOCK(queue);
272 res = taskqueue_enqueue_locked(queue, task);
273 /* The lock is released inside. */
274
275 return (res);
276 }
277
278 static void
taskqueue_timeout_func(void * arg)279 taskqueue_timeout_func(void *arg)
280 {
281 struct taskqueue *queue;
282 struct timeout_task *timeout_task;
283
284 timeout_task = arg;
285 queue = timeout_task->q;
286 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
287 timeout_task->f &= ~DT_CALLOUT_ARMED;
288 queue->tq_callouts--;
289 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
290 /* The lock is released inside. */
291 }
292
293 int
taskqueue_enqueue_timeout_sbt(struct taskqueue * queue,struct timeout_task * timeout_task,sbintime_t sbt,sbintime_t pr,int flags)294 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
295 struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
296 {
297 int res;
298
299 TQ_LOCK(queue);
300 KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
301 ("Migrated queue"));
302 KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
303 timeout_task->q = queue;
304 res = timeout_task->t.ta_pending;
305 if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
306 /* Do nothing */
307 TQ_UNLOCK(queue);
308 res = -1;
309 } else if (sbt == 0) {
310 taskqueue_enqueue_locked(queue, &timeout_task->t);
311 /* The lock is released inside. */
312 } else {
313 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
314 res++;
315 } else {
316 queue->tq_callouts++;
317 timeout_task->f |= DT_CALLOUT_ARMED;
318 if (sbt < 0)
319 sbt = -sbt; /* Ignore overflow. */
320 }
321 if (sbt > 0) {
322 callout_reset_sbt(&timeout_task->c, sbt, pr,
323 taskqueue_timeout_func, timeout_task, flags);
324 }
325 TQ_UNLOCK(queue);
326 }
327 return (res);
328 }
329
330 int
taskqueue_enqueue_timeout(struct taskqueue * queue,struct timeout_task * ttask,int ticks)331 taskqueue_enqueue_timeout(struct taskqueue *queue,
332 struct timeout_task *ttask, int ticks)
333 {
334
335 return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
336 0, 0));
337 }
338
339 static void
taskqueue_task_nop_fn(void * context,int pending)340 taskqueue_task_nop_fn(void *context, int pending)
341 {
342 }
343
344 /*
345 * Block until all currently queued tasks in this taskqueue
346 * have begun execution. Tasks queued during execution of
347 * this function are ignored.
348 */
349 static int
taskqueue_drain_tq_queue(struct taskqueue * queue)350 taskqueue_drain_tq_queue(struct taskqueue *queue)
351 {
352 struct task t_barrier;
353
354 if (STAILQ_EMPTY(&queue->tq_queue))
355 return (0);
356
357 /*
358 * Enqueue our barrier after all current tasks, but with
359 * the highest priority so that newly queued tasks cannot
360 * pass it. Because of the high priority, we can not use
361 * taskqueue_enqueue_locked directly (which drops the lock
362 * anyway) so just insert it at tail while we have the
363 * queue lock.
364 */
365 TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
366 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
367 t_barrier.ta_pending = 1;
368
369 /*
370 * Once the barrier has executed, all previously queued tasks
371 * have completed or are currently executing.
372 */
373 while (t_barrier.ta_pending != 0)
374 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
375 return (1);
376 }
377
378 /*
379 * Block until all currently executing tasks for this taskqueue
380 * complete. Tasks that begin execution during the execution
381 * of this function are ignored.
382 */
383 static int
taskqueue_drain_tq_active(struct taskqueue * queue)384 taskqueue_drain_tq_active(struct taskqueue *queue)
385 {
386 struct taskqueue_busy tb_marker, *tb_first;
387
388 if (TAILQ_EMPTY(&queue->tq_active))
389 return (0);
390
391 /* Block taskq_terminate().*/
392 queue->tq_callouts++;
393
394 /*
395 * Wait for all currently executing taskqueue threads
396 * to go idle.
397 */
398 tb_marker.tb_running = TB_DRAIN_WAITER;
399 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
400 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
401 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
402 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
403
404 /*
405 * Wakeup any other drain waiter that happened to queue up
406 * without any intervening active thread.
407 */
408 tb_first = TAILQ_FIRST(&queue->tq_active);
409 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
410 wakeup(tb_first);
411
412 /* Release taskqueue_terminate(). */
413 queue->tq_callouts--;
414 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
415 wakeup_one(queue->tq_threads);
416 return (1);
417 }
418
419 void
taskqueue_block(struct taskqueue * queue)420 taskqueue_block(struct taskqueue *queue)
421 {
422
423 TQ_LOCK(queue);
424 queue->tq_flags |= TQ_FLAGS_BLOCKED;
425 TQ_UNLOCK(queue);
426 }
427
428 void
taskqueue_unblock(struct taskqueue * queue)429 taskqueue_unblock(struct taskqueue *queue)
430 {
431
432 TQ_LOCK(queue);
433 queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
434 if (!STAILQ_EMPTY(&queue->tq_queue))
435 queue->tq_enqueue(queue->tq_context);
436 TQ_UNLOCK(queue);
437 }
438
439 static void
taskqueue_run_locked(struct taskqueue * queue)440 taskqueue_run_locked(struct taskqueue *queue)
441 {
442 struct taskqueue_busy tb;
443 struct taskqueue_busy *tb_first;
444 struct task *task;
445 int pending;
446
447 KASSERT(queue != NULL, ("tq is NULL"));
448 TQ_ASSERT_LOCKED(queue);
449 tb.tb_running = NULL;
450
451 while (STAILQ_FIRST(&queue->tq_queue)) {
452 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
453
454 /*
455 * Carefully remove the first task from the queue and
456 * zero its pending count.
457 */
458 task = STAILQ_FIRST(&queue->tq_queue);
459 KASSERT(task != NULL, ("task is NULL"));
460 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
461 pending = task->ta_pending;
462 task->ta_pending = 0;
463 tb.tb_running = task;
464 TQ_UNLOCK(queue);
465
466 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
467 task->ta_func(task->ta_context, pending);
468
469 TQ_LOCK(queue);
470 tb.tb_running = NULL;
471 wakeup(task);
472
473 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
474 tb_first = TAILQ_FIRST(&queue->tq_active);
475 if (tb_first != NULL &&
476 tb_first->tb_running == TB_DRAIN_WAITER)
477 wakeup(tb_first);
478 }
479 }
480
481 void
taskqueue_run(struct taskqueue * queue)482 taskqueue_run(struct taskqueue *queue)
483 {
484
485 TQ_LOCK(queue);
486 taskqueue_run_locked(queue);
487 TQ_UNLOCK(queue);
488 }
489
490 static int
task_is_running(struct taskqueue * queue,struct task * task)491 task_is_running(struct taskqueue *queue, struct task *task)
492 {
493 struct taskqueue_busy *tb;
494
495 TQ_ASSERT_LOCKED(queue);
496 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
497 if (tb->tb_running == task)
498 return (1);
499 }
500 return (0);
501 }
502
503 /*
504 * Only use this function in single threaded contexts. It returns
505 * non-zero if the given task is either pending or running. Else the
506 * task is idle and can be queued again or freed.
507 */
508 int
taskqueue_poll_is_busy(struct taskqueue * queue,struct task * task)509 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
510 {
511 int retval;
512
513 TQ_LOCK(queue);
514 retval = task->ta_pending > 0 || task_is_running(queue, task);
515 TQ_UNLOCK(queue);
516
517 return (retval);
518 }
519
520 static int
taskqueue_cancel_locked(struct taskqueue * queue,struct task * task,u_int * pendp)521 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
522 u_int *pendp)
523 {
524
525 if (task->ta_pending > 0)
526 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
527 if (pendp != NULL)
528 *pendp = task->ta_pending;
529 task->ta_pending = 0;
530 return (task_is_running(queue, task) ? EBUSY : 0);
531 }
532
533 int
taskqueue_cancel(struct taskqueue * queue,struct task * task,u_int * pendp)534 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
535 {
536 int error;
537
538 TQ_LOCK(queue);
539 error = taskqueue_cancel_locked(queue, task, pendp);
540 TQ_UNLOCK(queue);
541
542 return (error);
543 }
544
545 int
taskqueue_cancel_timeout(struct taskqueue * queue,struct timeout_task * timeout_task,u_int * pendp)546 taskqueue_cancel_timeout(struct taskqueue *queue,
547 struct timeout_task *timeout_task, u_int *pendp)
548 {
549 u_int pending, pending1;
550 int error;
551
552 TQ_LOCK(queue);
553 pending = !!(callout_stop(&timeout_task->c) > 0);
554 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
555 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
556 timeout_task->f &= ~DT_CALLOUT_ARMED;
557 queue->tq_callouts--;
558 }
559 TQ_UNLOCK(queue);
560
561 if (pendp != NULL)
562 *pendp = pending + pending1;
563 return (error);
564 }
565
566 void
taskqueue_drain(struct taskqueue * queue,struct task * task)567 taskqueue_drain(struct taskqueue *queue, struct task *task)
568 {
569
570 if (!queue->tq_spin)
571 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
572
573 TQ_LOCK(queue);
574 while (task->ta_pending != 0 || task_is_running(queue, task))
575 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
576 TQ_UNLOCK(queue);
577 }
578
579 void
taskqueue_drain_all(struct taskqueue * queue)580 taskqueue_drain_all(struct taskqueue *queue)
581 {
582
583 if (!queue->tq_spin)
584 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
585
586 TQ_LOCK(queue);
587 (void)taskqueue_drain_tq_queue(queue);
588 (void)taskqueue_drain_tq_active(queue);
589 TQ_UNLOCK(queue);
590 }
591
592 void
taskqueue_drain_timeout(struct taskqueue * queue,struct timeout_task * timeout_task)593 taskqueue_drain_timeout(struct taskqueue *queue,
594 struct timeout_task *timeout_task)
595 {
596
597 /*
598 * Set flag to prevent timer from re-starting during drain:
599 */
600 TQ_LOCK(queue);
601 KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
602 ("Drain already in progress"));
603 timeout_task->f |= DT_DRAIN_IN_PROGRESS;
604 TQ_UNLOCK(queue);
605
606 callout_drain(&timeout_task->c);
607 taskqueue_drain(queue, &timeout_task->t);
608
609 /*
610 * Clear flag to allow timer to re-start:
611 */
612 TQ_LOCK(queue);
613 timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
614 TQ_UNLOCK(queue);
615 }
616
617 void
taskqueue_quiesce(struct taskqueue * queue)618 taskqueue_quiesce(struct taskqueue *queue)
619 {
620 int ret;
621
622 TQ_LOCK(queue);
623 do {
624 ret = taskqueue_drain_tq_queue(queue);
625 if (ret == 0)
626 ret = taskqueue_drain_tq_active(queue);
627 } while (ret != 0);
628 TQ_UNLOCK(queue);
629 }
630
631 static void
taskqueue_swi_enqueue(void * context)632 taskqueue_swi_enqueue(void *context)
633 {
634 swi_sched(taskqueue_ih, 0);
635 }
636
637 static void
taskqueue_swi_run(void * dummy)638 taskqueue_swi_run(void *dummy)
639 {
640 taskqueue_run(taskqueue_swi);
641 }
642
643 static void
taskqueue_swi_giant_enqueue(void * context)644 taskqueue_swi_giant_enqueue(void *context)
645 {
646 swi_sched(taskqueue_giant_ih, 0);
647 }
648
649 static void
taskqueue_swi_giant_run(void * dummy)650 taskqueue_swi_giant_run(void *dummy)
651 {
652 taskqueue_run(taskqueue_swi_giant);
653 }
654
655 static int
_taskqueue_start_threads(struct taskqueue ** tqp,int count,int pri,cpuset_t * mask,const char * name,va_list ap)656 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
657 cpuset_t *mask, const char *name, va_list ap)
658 {
659 char ktname[MAXCOMLEN + 1];
660 struct thread *td;
661 struct taskqueue *tq;
662 int i, error;
663
664 if (count <= 0)
665 return (EINVAL);
666
667 vsnprintf(ktname, sizeof(ktname), name, ap);
668 tq = *tqp;
669
670 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
671 M_NOWAIT | M_ZERO);
672 if (tq->tq_threads == NULL) {
673 printf("%s: no memory for %s threads\n", __func__, ktname);
674 return (ENOMEM);
675 }
676
677 for (i = 0; i < count; i++) {
678 if (count == 1)
679 error = kthread_add(taskqueue_thread_loop, tqp, NULL,
680 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
681 else
682 error = kthread_add(taskqueue_thread_loop, tqp, NULL,
683 &tq->tq_threads[i], RFSTOPPED, 0,
684 "%s_%d", ktname, i);
685 if (error) {
686 /* should be ok to continue, taskqueue_free will dtrt */
687 printf("%s: kthread_add(%s): error %d", __func__,
688 ktname, error);
689 tq->tq_threads[i] = NULL; /* paranoid */
690 } else
691 tq->tq_tcount++;
692 }
693 if (tq->tq_tcount == 0) {
694 free(tq->tq_threads, M_TASKQUEUE);
695 tq->tq_threads = NULL;
696 return (ENOMEM);
697 }
698 for (i = 0; i < count; i++) {
699 if (tq->tq_threads[i] == NULL)
700 continue;
701 td = tq->tq_threads[i];
702 if (mask) {
703 error = cpuset_setthread(td->td_tid, mask);
704 /*
705 * Failing to pin is rarely an actual fatal error;
706 * it'll just affect performance.
707 */
708 if (error)
709 printf("%s: curthread=%llu: can't pin; "
710 "error=%d\n",
711 __func__,
712 (unsigned long long) td->td_tid,
713 error);
714 }
715 thread_lock(td);
716 sched_prio(td, pri);
717 sched_add(td, SRQ_BORING);
718 thread_unlock(td);
719 }
720
721 return (0);
722 }
723
724 int
taskqueue_start_threads(struct taskqueue ** tqp,int count,int pri,const char * name,...)725 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
726 const char *name, ...)
727 {
728 va_list ap;
729 int error;
730
731 va_start(ap, name);
732 error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap);
733 va_end(ap);
734 return (error);
735 }
736
737 int
taskqueue_start_threads_cpuset(struct taskqueue ** tqp,int count,int pri,cpuset_t * mask,const char * name,...)738 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
739 cpuset_t *mask, const char *name, ...)
740 {
741 va_list ap;
742 int error;
743
744 va_start(ap, name);
745 error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap);
746 va_end(ap);
747 return (error);
748 }
749
750 static inline void
taskqueue_run_callback(struct taskqueue * tq,enum taskqueue_callback_type cb_type)751 taskqueue_run_callback(struct taskqueue *tq,
752 enum taskqueue_callback_type cb_type)
753 {
754 taskqueue_callback_fn tq_callback;
755
756 TQ_ASSERT_UNLOCKED(tq);
757 tq_callback = tq->tq_callbacks[cb_type];
758 if (tq_callback != NULL)
759 tq_callback(tq->tq_cb_contexts[cb_type]);
760 }
761
762 void
taskqueue_thread_loop(void * arg)763 taskqueue_thread_loop(void *arg)
764 {
765 struct taskqueue **tqp, *tq;
766
767 tqp = arg;
768 tq = *tqp;
769 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
770 TQ_LOCK(tq);
771 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
772 /* XXX ? */
773 taskqueue_run_locked(tq);
774 /*
775 * Because taskqueue_run() can drop tq_mutex, we need to
776 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
777 * meantime, which means we missed a wakeup.
778 */
779 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
780 break;
781 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
782 }
783 taskqueue_run_locked(tq);
784 /*
785 * This thread is on its way out, so just drop the lock temporarily
786 * in order to call the shutdown callback. This allows the callback
787 * to look at the taskqueue, even just before it dies.
788 */
789 TQ_UNLOCK(tq);
790 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
791 TQ_LOCK(tq);
792
793 /* rendezvous with thread that asked us to terminate */
794 tq->tq_tcount--;
795 wakeup_one(tq->tq_threads);
796 TQ_UNLOCK(tq);
797 kthread_exit();
798 }
799
800 void
taskqueue_thread_enqueue(void * context)801 taskqueue_thread_enqueue(void *context)
802 {
803 struct taskqueue **tqp, *tq;
804
805 tqp = context;
806 tq = *tqp;
807 wakeup_any(tq);
808 }
809
810 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
811 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
812 INTR_MPSAFE, &taskqueue_ih));
813
814 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
815 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
816 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
817
818 TASKQUEUE_DEFINE_THREAD(thread);
819
820 struct taskqueue *
taskqueue_create_fast(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context)821 taskqueue_create_fast(const char *name, int mflags,
822 taskqueue_enqueue_fn enqueue, void *context)
823 {
824 return _taskqueue_create(name, mflags, enqueue, context,
825 MTX_SPIN, "fast_taskqueue");
826 }
827
828 static void *taskqueue_fast_ih;
829
830 static void
taskqueue_fast_enqueue(void * context)831 taskqueue_fast_enqueue(void *context)
832 {
833 swi_sched(taskqueue_fast_ih, 0);
834 }
835
836 static void
taskqueue_fast_run(void * dummy)837 taskqueue_fast_run(void *dummy)
838 {
839 taskqueue_run(taskqueue_fast);
840 }
841
842 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
843 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
844 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
845
846 int
taskqueue_member(struct taskqueue * queue,struct thread * td)847 taskqueue_member(struct taskqueue *queue, struct thread *td)
848 {
849 int i, j, ret = 0;
850
851 for (i = 0, j = 0; ; i++) {
852 if (queue->tq_threads[i] == NULL)
853 continue;
854 if (queue->tq_threads[i] == td) {
855 ret = 1;
856 break;
857 }
858 if (++j >= queue->tq_tcount)
859 break;
860 }
861 return (ret);
862 }
863