1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ktrace.h"
43
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89
90 #include <sys/jail.h>
91
92 #include <machine/cpu.h>
93
94 #include <security/audit/audit.h>
95
96 #define ONSIG 32 /* NSIG for osig* syscalls. XXX. */
97
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100 "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102 "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104 "struct thread *", "struct proc *", "int");
105
106 static int coredump(struct thread *);
107 static int killpg1(struct thread *td, int sig, int pgid, int all,
108 ksiginfo_t *ksi);
109 static int issignal(struct thread *td);
110 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int sigprop(int sig);
112 static void tdsigwakeup(struct thread *, int, sig_t, int);
113 static int sig_suspend_threads(struct thread *, struct proc *, int);
114 static int filt_sigattach(struct knote *kn);
115 static void filt_sigdetach(struct knote *kn);
116 static int filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void sigqueue_start(void);
119
120 static uma_zone_t ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 .f_isfd = 0,
123 .f_attach = filt_sigattach,
124 .f_detach = filt_sigdetach,
125 .f_event = filt_signal,
126 };
127
128 static int kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130 &kern_logsigexit, 0,
131 "Log processes quitting on abnormal signals to syslog(3)");
132
133 static int kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135 &kern_forcesigexit, 0, "Force trap signal to be handled");
136
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138 "POSIX real time signal");
139
140 static int max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142 &max_pending_per_proc, 0, "Max pending signals per proc");
143
144 static int preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146 &preallocate_siginfo, 0, "Preallocated signal memory size");
147
148 static int signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150 &signal_overflow, 0, "Number of signals overflew");
151
152 static int signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154 &signal_alloc_fail, 0, "signals failed to be allocated");
155
156 static int kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158 "Log invalid syscalls");
159
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162 &sigfastblock_fetch_always, 0,
163 "Fetch sigfastblock word on each syscall entry for proper "
164 "blocking semantic");
165
166 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
167
168 /*
169 * Policy -- Can ucred cr1 send SIGIO to process cr2?
170 * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
171 * in the right situations.
172 */
173 #define CANSIGIO(cr1, cr2) \
174 ((cr1)->cr_uid == 0 || \
175 (cr1)->cr_ruid == (cr2)->cr_ruid || \
176 (cr1)->cr_uid == (cr2)->cr_ruid || \
177 (cr1)->cr_ruid == (cr2)->cr_uid || \
178 (cr1)->cr_uid == (cr2)->cr_uid)
179
180 static int sugid_coredump;
181 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
182 &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
183
184 static int capmode_coredump;
185 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
186 &capmode_coredump, 0, "Allow processes in capability mode to dump core");
187
188 static int do_coredump = 1;
189 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
190 &do_coredump, 0, "Enable/Disable coredumps");
191
192 static int set_core_nodump_flag = 0;
193 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
194 0, "Enable setting the NODUMP flag on coredump files");
195
196 static int coredump_devctl = 0;
197 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
198 0, "Generate a devctl notification when processes coredump");
199
200 /*
201 * Signal properties and actions.
202 * The array below categorizes the signals and their default actions
203 * according to the following properties:
204 */
205 #define SIGPROP_KILL 0x01 /* terminates process by default */
206 #define SIGPROP_CORE 0x02 /* ditto and coredumps */
207 #define SIGPROP_STOP 0x04 /* suspend process */
208 #define SIGPROP_TTYSTOP 0x08 /* ditto, from tty */
209 #define SIGPROP_IGNORE 0x10 /* ignore by default */
210 #define SIGPROP_CONT 0x20 /* continue if suspended */
211 #define SIGPROP_CANTMASK 0x40 /* non-maskable, catchable */
212
213 static int sigproptbl[NSIG] = {
214 [SIGHUP] = SIGPROP_KILL,
215 [SIGINT] = SIGPROP_KILL,
216 [SIGQUIT] = SIGPROP_KILL | SIGPROP_CORE,
217 [SIGILL] = SIGPROP_KILL | SIGPROP_CORE,
218 [SIGTRAP] = SIGPROP_KILL | SIGPROP_CORE,
219 [SIGABRT] = SIGPROP_KILL | SIGPROP_CORE,
220 [SIGEMT] = SIGPROP_KILL | SIGPROP_CORE,
221 [SIGFPE] = SIGPROP_KILL | SIGPROP_CORE,
222 [SIGKILL] = SIGPROP_KILL,
223 [SIGBUS] = SIGPROP_KILL | SIGPROP_CORE,
224 [SIGSEGV] = SIGPROP_KILL | SIGPROP_CORE,
225 [SIGSYS] = SIGPROP_KILL | SIGPROP_CORE,
226 [SIGPIPE] = SIGPROP_KILL,
227 [SIGALRM] = SIGPROP_KILL,
228 [SIGTERM] = SIGPROP_KILL,
229 [SIGURG] = SIGPROP_IGNORE,
230 [SIGSTOP] = SIGPROP_STOP,
231 [SIGTSTP] = SIGPROP_STOP | SIGPROP_TTYSTOP,
232 [SIGCONT] = SIGPROP_IGNORE | SIGPROP_CONT,
233 [SIGCHLD] = SIGPROP_IGNORE,
234 [SIGTTIN] = SIGPROP_STOP | SIGPROP_TTYSTOP,
235 [SIGTTOU] = SIGPROP_STOP | SIGPROP_TTYSTOP,
236 [SIGIO] = SIGPROP_IGNORE,
237 [SIGXCPU] = SIGPROP_KILL,
238 [SIGXFSZ] = SIGPROP_KILL,
239 [SIGVTALRM] = SIGPROP_KILL,
240 [SIGPROF] = SIGPROP_KILL,
241 [SIGWINCH] = SIGPROP_IGNORE,
242 [SIGINFO] = SIGPROP_IGNORE,
243 [SIGUSR1] = SIGPROP_KILL,
244 [SIGUSR2] = SIGPROP_KILL,
245 };
246
247 sigset_t fastblock_mask;
248
249 static void
sigqueue_start(void)250 sigqueue_start(void)
251 {
252 ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
253 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
254 uma_prealloc(ksiginfo_zone, preallocate_siginfo);
255 p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
256 p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
257 p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
258 SIGFILLSET(fastblock_mask);
259 SIG_CANTMASK(fastblock_mask);
260 }
261
262 ksiginfo_t *
ksiginfo_alloc(int wait)263 ksiginfo_alloc(int wait)
264 {
265 int flags;
266
267 flags = M_ZERO;
268 if (! wait)
269 flags |= M_NOWAIT;
270 if (ksiginfo_zone != NULL)
271 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
272 return (NULL);
273 }
274
275 void
ksiginfo_free(ksiginfo_t * ksi)276 ksiginfo_free(ksiginfo_t *ksi)
277 {
278 uma_zfree(ksiginfo_zone, ksi);
279 }
280
281 static __inline int
ksiginfo_tryfree(ksiginfo_t * ksi)282 ksiginfo_tryfree(ksiginfo_t *ksi)
283 {
284 if (!(ksi->ksi_flags & KSI_EXT)) {
285 uma_zfree(ksiginfo_zone, ksi);
286 return (1);
287 }
288 return (0);
289 }
290
291 void
sigqueue_init(sigqueue_t * list,struct proc * p)292 sigqueue_init(sigqueue_t *list, struct proc *p)
293 {
294 SIGEMPTYSET(list->sq_signals);
295 SIGEMPTYSET(list->sq_kill);
296 SIGEMPTYSET(list->sq_ptrace);
297 TAILQ_INIT(&list->sq_list);
298 list->sq_proc = p;
299 list->sq_flags = SQ_INIT;
300 }
301
302 /*
303 * Get a signal's ksiginfo.
304 * Return:
305 * 0 - signal not found
306 * others - signal number
307 */
308 static int
sigqueue_get(sigqueue_t * sq,int signo,ksiginfo_t * si)309 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
310 {
311 struct proc *p = sq->sq_proc;
312 struct ksiginfo *ksi, *next;
313 int count = 0;
314
315 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
316
317 if (!SIGISMEMBER(sq->sq_signals, signo))
318 return (0);
319
320 if (SIGISMEMBER(sq->sq_ptrace, signo)) {
321 count++;
322 SIGDELSET(sq->sq_ptrace, signo);
323 si->ksi_flags |= KSI_PTRACE;
324 }
325 if (SIGISMEMBER(sq->sq_kill, signo)) {
326 count++;
327 if (count == 1)
328 SIGDELSET(sq->sq_kill, signo);
329 }
330
331 TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
332 if (ksi->ksi_signo == signo) {
333 if (count == 0) {
334 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
335 ksi->ksi_sigq = NULL;
336 ksiginfo_copy(ksi, si);
337 if (ksiginfo_tryfree(ksi) && p != NULL)
338 p->p_pendingcnt--;
339 }
340 if (++count > 1)
341 break;
342 }
343 }
344
345 if (count <= 1)
346 SIGDELSET(sq->sq_signals, signo);
347 si->ksi_signo = signo;
348 return (signo);
349 }
350
351 void
sigqueue_take(ksiginfo_t * ksi)352 sigqueue_take(ksiginfo_t *ksi)
353 {
354 struct ksiginfo *kp;
355 struct proc *p;
356 sigqueue_t *sq;
357
358 if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
359 return;
360
361 p = sq->sq_proc;
362 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
363 ksi->ksi_sigq = NULL;
364 if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
365 p->p_pendingcnt--;
366
367 for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
368 kp = TAILQ_NEXT(kp, ksi_link)) {
369 if (kp->ksi_signo == ksi->ksi_signo)
370 break;
371 }
372 if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
373 !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
374 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
375 }
376
377 static int
sigqueue_add(sigqueue_t * sq,int signo,ksiginfo_t * si)378 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
379 {
380 struct proc *p = sq->sq_proc;
381 struct ksiginfo *ksi;
382 int ret = 0;
383
384 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
385
386 /*
387 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
388 * for these signals.
389 */
390 if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
391 SIGADDSET(sq->sq_kill, signo);
392 goto out_set_bit;
393 }
394
395 /* directly insert the ksi, don't copy it */
396 if (si->ksi_flags & KSI_INS) {
397 if (si->ksi_flags & KSI_HEAD)
398 TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
399 else
400 TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
401 si->ksi_sigq = sq;
402 goto out_set_bit;
403 }
404
405 if (__predict_false(ksiginfo_zone == NULL)) {
406 SIGADDSET(sq->sq_kill, signo);
407 goto out_set_bit;
408 }
409
410 if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
411 signal_overflow++;
412 ret = EAGAIN;
413 } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
414 signal_alloc_fail++;
415 ret = EAGAIN;
416 } else {
417 if (p != NULL)
418 p->p_pendingcnt++;
419 ksiginfo_copy(si, ksi);
420 ksi->ksi_signo = signo;
421 if (si->ksi_flags & KSI_HEAD)
422 TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
423 else
424 TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
425 ksi->ksi_sigq = sq;
426 }
427
428 if (ret != 0) {
429 if ((si->ksi_flags & KSI_PTRACE) != 0) {
430 SIGADDSET(sq->sq_ptrace, signo);
431 ret = 0;
432 goto out_set_bit;
433 } else if ((si->ksi_flags & KSI_TRAP) != 0 ||
434 (si->ksi_flags & KSI_SIGQ) == 0) {
435 SIGADDSET(sq->sq_kill, signo);
436 ret = 0;
437 goto out_set_bit;
438 }
439 return (ret);
440 }
441
442 out_set_bit:
443 SIGADDSET(sq->sq_signals, signo);
444 return (ret);
445 }
446
447 void
sigqueue_flush(sigqueue_t * sq)448 sigqueue_flush(sigqueue_t *sq)
449 {
450 struct proc *p = sq->sq_proc;
451 ksiginfo_t *ksi;
452
453 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
454
455 if (p != NULL)
456 PROC_LOCK_ASSERT(p, MA_OWNED);
457
458 while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
459 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
460 ksi->ksi_sigq = NULL;
461 if (ksiginfo_tryfree(ksi) && p != NULL)
462 p->p_pendingcnt--;
463 }
464
465 SIGEMPTYSET(sq->sq_signals);
466 SIGEMPTYSET(sq->sq_kill);
467 SIGEMPTYSET(sq->sq_ptrace);
468 }
469
470 static void
sigqueue_move_set(sigqueue_t * src,sigqueue_t * dst,const sigset_t * set)471 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
472 {
473 sigset_t tmp;
474 struct proc *p1, *p2;
475 ksiginfo_t *ksi, *next;
476
477 KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
478 KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
479 p1 = src->sq_proc;
480 p2 = dst->sq_proc;
481 /* Move siginfo to target list */
482 TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
483 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
484 TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
485 if (p1 != NULL)
486 p1->p_pendingcnt--;
487 TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
488 ksi->ksi_sigq = dst;
489 if (p2 != NULL)
490 p2->p_pendingcnt++;
491 }
492 }
493
494 /* Move pending bits to target list */
495 tmp = src->sq_kill;
496 SIGSETAND(tmp, *set);
497 SIGSETOR(dst->sq_kill, tmp);
498 SIGSETNAND(src->sq_kill, tmp);
499
500 tmp = src->sq_ptrace;
501 SIGSETAND(tmp, *set);
502 SIGSETOR(dst->sq_ptrace, tmp);
503 SIGSETNAND(src->sq_ptrace, tmp);
504
505 tmp = src->sq_signals;
506 SIGSETAND(tmp, *set);
507 SIGSETOR(dst->sq_signals, tmp);
508 SIGSETNAND(src->sq_signals, tmp);
509 }
510
511 #if 0
512 static void
513 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
514 {
515 sigset_t set;
516
517 SIGEMPTYSET(set);
518 SIGADDSET(set, signo);
519 sigqueue_move_set(src, dst, &set);
520 }
521 #endif
522
523 static void
sigqueue_delete_set(sigqueue_t * sq,const sigset_t * set)524 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
525 {
526 struct proc *p = sq->sq_proc;
527 ksiginfo_t *ksi, *next;
528
529 KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
530
531 /* Remove siginfo queue */
532 TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
533 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
534 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
535 ksi->ksi_sigq = NULL;
536 if (ksiginfo_tryfree(ksi) && p != NULL)
537 p->p_pendingcnt--;
538 }
539 }
540 SIGSETNAND(sq->sq_kill, *set);
541 SIGSETNAND(sq->sq_ptrace, *set);
542 SIGSETNAND(sq->sq_signals, *set);
543 }
544
545 void
sigqueue_delete(sigqueue_t * sq,int signo)546 sigqueue_delete(sigqueue_t *sq, int signo)
547 {
548 sigset_t set;
549
550 SIGEMPTYSET(set);
551 SIGADDSET(set, signo);
552 sigqueue_delete_set(sq, &set);
553 }
554
555 /* Remove a set of signals for a process */
556 static void
sigqueue_delete_set_proc(struct proc * p,const sigset_t * set)557 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
558 {
559 sigqueue_t worklist;
560 struct thread *td0;
561
562 PROC_LOCK_ASSERT(p, MA_OWNED);
563
564 sigqueue_init(&worklist, NULL);
565 sigqueue_move_set(&p->p_sigqueue, &worklist, set);
566
567 FOREACH_THREAD_IN_PROC(p, td0)
568 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
569
570 sigqueue_flush(&worklist);
571 }
572
573 void
sigqueue_delete_proc(struct proc * p,int signo)574 sigqueue_delete_proc(struct proc *p, int signo)
575 {
576 sigset_t set;
577
578 SIGEMPTYSET(set);
579 SIGADDSET(set, signo);
580 sigqueue_delete_set_proc(p, &set);
581 }
582
583 static void
sigqueue_delete_stopmask_proc(struct proc * p)584 sigqueue_delete_stopmask_proc(struct proc *p)
585 {
586 sigset_t set;
587
588 SIGEMPTYSET(set);
589 SIGADDSET(set, SIGSTOP);
590 SIGADDSET(set, SIGTSTP);
591 SIGADDSET(set, SIGTTIN);
592 SIGADDSET(set, SIGTTOU);
593 sigqueue_delete_set_proc(p, &set);
594 }
595
596 /*
597 * Determine signal that should be delivered to thread td, the current
598 * thread, 0 if none. If there is a pending stop signal with default
599 * action, the process stops in issignal().
600 */
601 int
cursig(struct thread * td)602 cursig(struct thread *td)
603 {
604 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
605 mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
606 THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
607 return (SIGPENDING(td) ? issignal(td) : 0);
608 }
609
610 /*
611 * Arrange for ast() to handle unmasked pending signals on return to user
612 * mode. This must be called whenever a signal is added to td_sigqueue or
613 * unmasked in td_sigmask.
614 */
615 void
signotify(struct thread * td)616 signotify(struct thread *td)
617 {
618
619 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
620
621 if (SIGPENDING(td)) {
622 thread_lock(td);
623 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
624 thread_unlock(td);
625 }
626 }
627
628 /*
629 * Returns 1 (true) if altstack is configured for the thread, and the
630 * passed stack bottom address falls into the altstack range. Handles
631 * the 43 compat special case where the alt stack size is zero.
632 */
633 int
sigonstack(size_t sp)634 sigonstack(size_t sp)
635 {
636 struct thread *td;
637
638 td = curthread;
639 if ((td->td_pflags & TDP_ALTSTACK) == 0)
640 return (0);
641 #if defined(COMPAT_43)
642 if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
643 return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
644 #endif
645 return (sp >= (size_t)td->td_sigstk.ss_sp &&
646 sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
647 }
648
649 static __inline int
sigprop(int sig)650 sigprop(int sig)
651 {
652
653 if (sig > 0 && sig < nitems(sigproptbl))
654 return (sigproptbl[sig]);
655 return (0);
656 }
657
658 int
sig_ffs(sigset_t * set)659 sig_ffs(sigset_t *set)
660 {
661 int i;
662
663 for (i = 0; i < _SIG_WORDS; i++)
664 if (set->__bits[i])
665 return (ffs(set->__bits[i]) + (i * 32));
666 return (0);
667 }
668
669 static bool
sigact_flag_test(const struct sigaction * act,int flag)670 sigact_flag_test(const struct sigaction *act, int flag)
671 {
672
673 /*
674 * SA_SIGINFO is reset when signal disposition is set to
675 * ignore or default. Other flags are kept according to user
676 * settings.
677 */
678 return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
679 ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
680 (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
681 }
682
683 /*
684 * kern_sigaction
685 * sigaction
686 * freebsd4_sigaction
687 * osigaction
688 */
689 int
kern_sigaction(struct thread * td,int sig,const struct sigaction * act,struct sigaction * oact,int flags)690 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
691 struct sigaction *oact, int flags)
692 {
693 struct sigacts *ps;
694 struct proc *p = td->td_proc;
695
696 if (!_SIG_VALID(sig))
697 return (EINVAL);
698 if (act != NULL && act->sa_handler != SIG_DFL &&
699 act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
700 SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
701 SA_NOCLDWAIT | SA_SIGINFO)) != 0)
702 return (EINVAL);
703
704 PROC_LOCK(p);
705 ps = p->p_sigacts;
706 mtx_lock(&ps->ps_mtx);
707 if (oact) {
708 memset(oact, 0, sizeof(*oact));
709 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
710 if (SIGISMEMBER(ps->ps_sigonstack, sig))
711 oact->sa_flags |= SA_ONSTACK;
712 if (!SIGISMEMBER(ps->ps_sigintr, sig))
713 oact->sa_flags |= SA_RESTART;
714 if (SIGISMEMBER(ps->ps_sigreset, sig))
715 oact->sa_flags |= SA_RESETHAND;
716 if (SIGISMEMBER(ps->ps_signodefer, sig))
717 oact->sa_flags |= SA_NODEFER;
718 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
719 oact->sa_flags |= SA_SIGINFO;
720 oact->sa_sigaction =
721 (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
722 } else
723 oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
724 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
725 oact->sa_flags |= SA_NOCLDSTOP;
726 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
727 oact->sa_flags |= SA_NOCLDWAIT;
728 }
729 if (act) {
730 if ((sig == SIGKILL || sig == SIGSTOP) &&
731 act->sa_handler != SIG_DFL) {
732 mtx_unlock(&ps->ps_mtx);
733 PROC_UNLOCK(p);
734 return (EINVAL);
735 }
736
737 /*
738 * Change setting atomically.
739 */
740
741 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
742 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
743 if (sigact_flag_test(act, SA_SIGINFO)) {
744 ps->ps_sigact[_SIG_IDX(sig)] =
745 (__sighandler_t *)act->sa_sigaction;
746 SIGADDSET(ps->ps_siginfo, sig);
747 } else {
748 ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
749 SIGDELSET(ps->ps_siginfo, sig);
750 }
751 if (!sigact_flag_test(act, SA_RESTART))
752 SIGADDSET(ps->ps_sigintr, sig);
753 else
754 SIGDELSET(ps->ps_sigintr, sig);
755 if (sigact_flag_test(act, SA_ONSTACK))
756 SIGADDSET(ps->ps_sigonstack, sig);
757 else
758 SIGDELSET(ps->ps_sigonstack, sig);
759 if (sigact_flag_test(act, SA_RESETHAND))
760 SIGADDSET(ps->ps_sigreset, sig);
761 else
762 SIGDELSET(ps->ps_sigreset, sig);
763 if (sigact_flag_test(act, SA_NODEFER))
764 SIGADDSET(ps->ps_signodefer, sig);
765 else
766 SIGDELSET(ps->ps_signodefer, sig);
767 if (sig == SIGCHLD) {
768 if (act->sa_flags & SA_NOCLDSTOP)
769 ps->ps_flag |= PS_NOCLDSTOP;
770 else
771 ps->ps_flag &= ~PS_NOCLDSTOP;
772 if (act->sa_flags & SA_NOCLDWAIT) {
773 /*
774 * Paranoia: since SA_NOCLDWAIT is implemented
775 * by reparenting the dying child to PID 1 (and
776 * trust it to reap the zombie), PID 1 itself
777 * is forbidden to set SA_NOCLDWAIT.
778 */
779 if (p->p_pid == 1)
780 ps->ps_flag &= ~PS_NOCLDWAIT;
781 else
782 ps->ps_flag |= PS_NOCLDWAIT;
783 } else
784 ps->ps_flag &= ~PS_NOCLDWAIT;
785 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
786 ps->ps_flag |= PS_CLDSIGIGN;
787 else
788 ps->ps_flag &= ~PS_CLDSIGIGN;
789 }
790 /*
791 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
792 * and for signals set to SIG_DFL where the default is to
793 * ignore. However, don't put SIGCONT in ps_sigignore, as we
794 * have to restart the process.
795 */
796 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
797 (sigprop(sig) & SIGPROP_IGNORE &&
798 ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
799 /* never to be seen again */
800 sigqueue_delete_proc(p, sig);
801 if (sig != SIGCONT)
802 /* easier in psignal */
803 SIGADDSET(ps->ps_sigignore, sig);
804 SIGDELSET(ps->ps_sigcatch, sig);
805 } else {
806 SIGDELSET(ps->ps_sigignore, sig);
807 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
808 SIGDELSET(ps->ps_sigcatch, sig);
809 else
810 SIGADDSET(ps->ps_sigcatch, sig);
811 }
812 #ifdef COMPAT_FREEBSD4
813 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
814 ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
815 (flags & KSA_FREEBSD4) == 0)
816 SIGDELSET(ps->ps_freebsd4, sig);
817 else
818 SIGADDSET(ps->ps_freebsd4, sig);
819 #endif
820 #ifdef COMPAT_43
821 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
822 ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
823 (flags & KSA_OSIGSET) == 0)
824 SIGDELSET(ps->ps_osigset, sig);
825 else
826 SIGADDSET(ps->ps_osigset, sig);
827 #endif
828 }
829 mtx_unlock(&ps->ps_mtx);
830 PROC_UNLOCK(p);
831 return (0);
832 }
833
834 #ifndef _SYS_SYSPROTO_H_
835 struct sigaction_args {
836 int sig;
837 struct sigaction *act;
838 struct sigaction *oact;
839 };
840 #endif
841 int
sys_sigaction(struct thread * td,struct sigaction_args * uap)842 sys_sigaction(struct thread *td, struct sigaction_args *uap)
843 {
844 struct sigaction act, oact;
845 struct sigaction *actp, *oactp;
846 int error;
847
848 actp = (uap->act != NULL) ? &act : NULL;
849 oactp = (uap->oact != NULL) ? &oact : NULL;
850 if (actp) {
851 error = copyin(uap->act, actp, sizeof(act));
852 if (error)
853 return (error);
854 }
855 error = kern_sigaction(td, uap->sig, actp, oactp, 0);
856 if (oactp && !error)
857 error = copyout(oactp, uap->oact, sizeof(oact));
858 return (error);
859 }
860
861 #ifdef COMPAT_FREEBSD4
862 #ifndef _SYS_SYSPROTO_H_
863 struct freebsd4_sigaction_args {
864 int sig;
865 struct sigaction *act;
866 struct sigaction *oact;
867 };
868 #endif
869 int
freebsd4_sigaction(struct thread * td,struct freebsd4_sigaction_args * uap)870 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
871 {
872 struct sigaction act, oact;
873 struct sigaction *actp, *oactp;
874 int error;
875
876 actp = (uap->act != NULL) ? &act : NULL;
877 oactp = (uap->oact != NULL) ? &oact : NULL;
878 if (actp) {
879 error = copyin(uap->act, actp, sizeof(act));
880 if (error)
881 return (error);
882 }
883 error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
884 if (oactp && !error)
885 error = copyout(oactp, uap->oact, sizeof(oact));
886 return (error);
887 }
888 #endif /* COMAPT_FREEBSD4 */
889
890 #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
891 #ifndef _SYS_SYSPROTO_H_
892 struct osigaction_args {
893 int signum;
894 struct osigaction *nsa;
895 struct osigaction *osa;
896 };
897 #endif
898 int
osigaction(struct thread * td,struct osigaction_args * uap)899 osigaction(struct thread *td, struct osigaction_args *uap)
900 {
901 struct osigaction sa;
902 struct sigaction nsa, osa;
903 struct sigaction *nsap, *osap;
904 int error;
905
906 if (uap->signum <= 0 || uap->signum >= ONSIG)
907 return (EINVAL);
908
909 nsap = (uap->nsa != NULL) ? &nsa : NULL;
910 osap = (uap->osa != NULL) ? &osa : NULL;
911
912 if (nsap) {
913 error = copyin(uap->nsa, &sa, sizeof(sa));
914 if (error)
915 return (error);
916 nsap->sa_handler = sa.sa_handler;
917 nsap->sa_flags = sa.sa_flags;
918 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
919 }
920 error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
921 if (osap && !error) {
922 sa.sa_handler = osap->sa_handler;
923 sa.sa_flags = osap->sa_flags;
924 SIG2OSIG(osap->sa_mask, sa.sa_mask);
925 error = copyout(&sa, uap->osa, sizeof(sa));
926 }
927 return (error);
928 }
929
930 #if !defined(__i386__)
931 /* Avoid replicating the same stub everywhere */
932 int
osigreturn(struct thread * td,struct osigreturn_args * uap)933 osigreturn(struct thread *td, struct osigreturn_args *uap)
934 {
935
936 return (nosys(td, (struct nosys_args *)uap));
937 }
938 #endif
939 #endif /* COMPAT_43 */
940
941 /*
942 * Initialize signal state for process 0;
943 * set to ignore signals that are ignored by default.
944 */
945 void
siginit(struct proc * p)946 siginit(struct proc *p)
947 {
948 int i;
949 struct sigacts *ps;
950
951 PROC_LOCK(p);
952 ps = p->p_sigacts;
953 mtx_lock(&ps->ps_mtx);
954 for (i = 1; i <= NSIG; i++) {
955 if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
956 SIGADDSET(ps->ps_sigignore, i);
957 }
958 }
959 mtx_unlock(&ps->ps_mtx);
960 PROC_UNLOCK(p);
961 }
962
963 /*
964 * Reset specified signal to the default disposition.
965 */
966 static void
sigdflt(struct sigacts * ps,int sig)967 sigdflt(struct sigacts *ps, int sig)
968 {
969
970 mtx_assert(&ps->ps_mtx, MA_OWNED);
971 SIGDELSET(ps->ps_sigcatch, sig);
972 if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
973 SIGADDSET(ps->ps_sigignore, sig);
974 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
975 SIGDELSET(ps->ps_siginfo, sig);
976 }
977
978 /*
979 * Reset signals for an exec of the specified process.
980 */
981 void
execsigs(struct proc * p)982 execsigs(struct proc *p)
983 {
984 sigset_t osigignore;
985 struct sigacts *ps;
986 int sig;
987 struct thread *td;
988
989 /*
990 * Reset caught signals. Held signals remain held
991 * through td_sigmask (unless they were caught,
992 * and are now ignored by default).
993 */
994 PROC_LOCK_ASSERT(p, MA_OWNED);
995 ps = p->p_sigacts;
996 mtx_lock(&ps->ps_mtx);
997 sig_drop_caught(p);
998
999 /*
1000 * As CloudABI processes cannot modify signal handlers, fully
1001 * reset all signals to their default behavior. Do ignore
1002 * SIGPIPE, as it would otherwise be impossible to recover from
1003 * writes to broken pipes and sockets.
1004 */
1005 if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1006 osigignore = ps->ps_sigignore;
1007 while (SIGNOTEMPTY(osigignore)) {
1008 sig = sig_ffs(&osigignore);
1009 SIGDELSET(osigignore, sig);
1010 if (sig != SIGPIPE)
1011 sigdflt(ps, sig);
1012 }
1013 SIGADDSET(ps->ps_sigignore, SIGPIPE);
1014 }
1015
1016 /*
1017 * Reset stack state to the user stack.
1018 * Clear set of signals caught on the signal stack.
1019 */
1020 td = curthread;
1021 MPASS(td->td_proc == p);
1022 td->td_sigstk.ss_flags = SS_DISABLE;
1023 td->td_sigstk.ss_size = 0;
1024 td->td_sigstk.ss_sp = 0;
1025 td->td_pflags &= ~TDP_ALTSTACK;
1026 /*
1027 * Reset no zombies if child dies flag as Solaris does.
1028 */
1029 ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1030 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1031 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1032 mtx_unlock(&ps->ps_mtx);
1033 }
1034
1035 /*
1036 * kern_sigprocmask()
1037 *
1038 * Manipulate signal mask.
1039 */
1040 int
kern_sigprocmask(struct thread * td,int how,sigset_t * set,sigset_t * oset,int flags)1041 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1042 int flags)
1043 {
1044 sigset_t new_block, oset1;
1045 struct proc *p;
1046 int error;
1047
1048 p = td->td_proc;
1049 if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1050 PROC_LOCK_ASSERT(p, MA_OWNED);
1051 else
1052 PROC_LOCK(p);
1053 mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1054 ? MA_OWNED : MA_NOTOWNED);
1055 if (oset != NULL)
1056 *oset = td->td_sigmask;
1057
1058 error = 0;
1059 if (set != NULL) {
1060 switch (how) {
1061 case SIG_BLOCK:
1062 SIG_CANTMASK(*set);
1063 oset1 = td->td_sigmask;
1064 SIGSETOR(td->td_sigmask, *set);
1065 new_block = td->td_sigmask;
1066 SIGSETNAND(new_block, oset1);
1067 break;
1068 case SIG_UNBLOCK:
1069 SIGSETNAND(td->td_sigmask, *set);
1070 signotify(td);
1071 goto out;
1072 case SIG_SETMASK:
1073 SIG_CANTMASK(*set);
1074 oset1 = td->td_sigmask;
1075 if (flags & SIGPROCMASK_OLD)
1076 SIGSETLO(td->td_sigmask, *set);
1077 else
1078 td->td_sigmask = *set;
1079 new_block = td->td_sigmask;
1080 SIGSETNAND(new_block, oset1);
1081 signotify(td);
1082 break;
1083 default:
1084 error = EINVAL;
1085 goto out;
1086 }
1087
1088 /*
1089 * The new_block set contains signals that were not previously
1090 * blocked, but are blocked now.
1091 *
1092 * In case we block any signal that was not previously blocked
1093 * for td, and process has the signal pending, try to schedule
1094 * signal delivery to some thread that does not block the
1095 * signal, possibly waking it up.
1096 */
1097 if (p->p_numthreads != 1)
1098 reschedule_signals(p, new_block, flags);
1099 }
1100
1101 out:
1102 if (!(flags & SIGPROCMASK_PROC_LOCKED))
1103 PROC_UNLOCK(p);
1104 return (error);
1105 }
1106
1107 #ifndef _SYS_SYSPROTO_H_
1108 struct sigprocmask_args {
1109 int how;
1110 const sigset_t *set;
1111 sigset_t *oset;
1112 };
1113 #endif
1114 int
sys_sigprocmask(struct thread * td,struct sigprocmask_args * uap)1115 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1116 {
1117 sigset_t set, oset;
1118 sigset_t *setp, *osetp;
1119 int error;
1120
1121 setp = (uap->set != NULL) ? &set : NULL;
1122 osetp = (uap->oset != NULL) ? &oset : NULL;
1123 if (setp) {
1124 error = copyin(uap->set, setp, sizeof(set));
1125 if (error)
1126 return (error);
1127 }
1128 error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1129 if (osetp && !error) {
1130 error = copyout(osetp, uap->oset, sizeof(oset));
1131 }
1132 return (error);
1133 }
1134
1135 #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1136 #ifndef _SYS_SYSPROTO_H_
1137 struct osigprocmask_args {
1138 int how;
1139 osigset_t mask;
1140 };
1141 #endif
1142 int
osigprocmask(struct thread * td,struct osigprocmask_args * uap)1143 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1144 {
1145 sigset_t set, oset;
1146 int error;
1147
1148 OSIG2SIG(uap->mask, set);
1149 error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1150 SIG2OSIG(oset, td->td_retval[0]);
1151 return (error);
1152 }
1153 #endif /* COMPAT_43 */
1154
1155 int
sys_sigwait(struct thread * td,struct sigwait_args * uap)1156 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1157 {
1158 ksiginfo_t ksi;
1159 sigset_t set;
1160 int error;
1161
1162 error = copyin(uap->set, &set, sizeof(set));
1163 if (error) {
1164 td->td_retval[0] = error;
1165 return (0);
1166 }
1167
1168 error = kern_sigtimedwait(td, set, &ksi, NULL);
1169 if (error) {
1170 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1171 error = ERESTART;
1172 if (error == ERESTART)
1173 return (error);
1174 td->td_retval[0] = error;
1175 return (0);
1176 }
1177
1178 error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1179 td->td_retval[0] = error;
1180 return (0);
1181 }
1182
1183 int
sys_sigtimedwait(struct thread * td,struct sigtimedwait_args * uap)1184 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1185 {
1186 struct timespec ts;
1187 struct timespec *timeout;
1188 sigset_t set;
1189 ksiginfo_t ksi;
1190 int error;
1191
1192 if (uap->timeout) {
1193 error = copyin(uap->timeout, &ts, sizeof(ts));
1194 if (error)
1195 return (error);
1196
1197 timeout = &ts;
1198 } else
1199 timeout = NULL;
1200
1201 error = copyin(uap->set, &set, sizeof(set));
1202 if (error)
1203 return (error);
1204
1205 error = kern_sigtimedwait(td, set, &ksi, timeout);
1206 if (error)
1207 return (error);
1208
1209 if (uap->info)
1210 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1211
1212 if (error == 0)
1213 td->td_retval[0] = ksi.ksi_signo;
1214 return (error);
1215 }
1216
1217 int
sys_sigwaitinfo(struct thread * td,struct sigwaitinfo_args * uap)1218 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1219 {
1220 ksiginfo_t ksi;
1221 sigset_t set;
1222 int error;
1223
1224 error = copyin(uap->set, &set, sizeof(set));
1225 if (error)
1226 return (error);
1227
1228 error = kern_sigtimedwait(td, set, &ksi, NULL);
1229 if (error)
1230 return (error);
1231
1232 if (uap->info)
1233 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1234
1235 if (error == 0)
1236 td->td_retval[0] = ksi.ksi_signo;
1237 return (error);
1238 }
1239
1240 static void
proc_td_siginfo_capture(struct thread * td,siginfo_t * si)1241 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1242 {
1243 struct thread *thr;
1244
1245 FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1246 if (thr == td)
1247 thr->td_si = *si;
1248 else
1249 thr->td_si.si_signo = 0;
1250 }
1251 }
1252
1253 int
kern_sigtimedwait(struct thread * td,sigset_t waitset,ksiginfo_t * ksi,struct timespec * timeout)1254 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1255 struct timespec *timeout)
1256 {
1257 struct sigacts *ps;
1258 sigset_t saved_mask, new_block;
1259 struct proc *p;
1260 int error, sig, timo, timevalid = 0;
1261 struct timespec rts, ets, ts;
1262 struct timeval tv;
1263 bool traced;
1264
1265 p = td->td_proc;
1266 error = 0;
1267 ets.tv_sec = 0;
1268 ets.tv_nsec = 0;
1269 traced = false;
1270
1271 /* Ensure the sigfastblock value is up to date. */
1272 sigfastblock_fetch(td);
1273
1274 if (timeout != NULL) {
1275 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1276 timevalid = 1;
1277 getnanouptime(&rts);
1278 timespecadd(&rts, timeout, &ets);
1279 }
1280 }
1281 ksiginfo_init(ksi);
1282 /* Some signals can not be waited for. */
1283 SIG_CANTMASK(waitset);
1284 ps = p->p_sigacts;
1285 PROC_LOCK(p);
1286 saved_mask = td->td_sigmask;
1287 SIGSETNAND(td->td_sigmask, waitset);
1288 for (;;) {
1289 mtx_lock(&ps->ps_mtx);
1290 sig = cursig(td);
1291 mtx_unlock(&ps->ps_mtx);
1292 KASSERT(sig >= 0, ("sig %d", sig));
1293 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1294 if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1295 sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1296 error = 0;
1297 break;
1298 }
1299 }
1300
1301 if (error != 0)
1302 break;
1303
1304 /*
1305 * POSIX says this must be checked after looking for pending
1306 * signals.
1307 */
1308 if (timeout != NULL) {
1309 if (!timevalid) {
1310 error = EINVAL;
1311 break;
1312 }
1313 getnanouptime(&rts);
1314 if (timespeccmp(&rts, &ets, >=)) {
1315 error = EAGAIN;
1316 break;
1317 }
1318 timespecsub(&ets, &rts, &ts);
1319 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1320 timo = tvtohz(&tv);
1321 } else {
1322 timo = 0;
1323 }
1324
1325 if (traced) {
1326 error = EINTR;
1327 break;
1328 }
1329
1330 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1331
1332 if (timeout != NULL) {
1333 if (error == ERESTART) {
1334 /* Timeout can not be restarted. */
1335 error = EINTR;
1336 } else if (error == EAGAIN) {
1337 /* We will calculate timeout by ourself. */
1338 error = 0;
1339 }
1340 }
1341
1342 /*
1343 * If PTRACE_SCE or PTRACE_SCX were set after
1344 * userspace entered the syscall, return spurious
1345 * EINTR after wait was done. Only do this as last
1346 * resort after rechecking for possible queued signals
1347 * and expired timeouts.
1348 */
1349 if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1350 traced = true;
1351 }
1352
1353 new_block = saved_mask;
1354 SIGSETNAND(new_block, td->td_sigmask);
1355 td->td_sigmask = saved_mask;
1356 /*
1357 * Fewer signals can be delivered to us, reschedule signal
1358 * notification.
1359 */
1360 if (p->p_numthreads != 1)
1361 reschedule_signals(p, new_block, 0);
1362
1363 if (error == 0) {
1364 SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1365
1366 if (ksi->ksi_code == SI_TIMER)
1367 itimer_accept(p, ksi->ksi_timerid, ksi);
1368
1369 #ifdef KTRACE
1370 if (KTRPOINT(td, KTR_PSIG)) {
1371 sig_t action;
1372
1373 mtx_lock(&ps->ps_mtx);
1374 action = ps->ps_sigact[_SIG_IDX(sig)];
1375 mtx_unlock(&ps->ps_mtx);
1376 ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1377 }
1378 #endif
1379 if (sig == SIGKILL) {
1380 proc_td_siginfo_capture(td, &ksi->ksi_info);
1381 sigexit(td, sig);
1382 }
1383 }
1384 PROC_UNLOCK(p);
1385 return (error);
1386 }
1387
1388 #ifndef _SYS_SYSPROTO_H_
1389 struct sigpending_args {
1390 sigset_t *set;
1391 };
1392 #endif
1393 int
sys_sigpending(struct thread * td,struct sigpending_args * uap)1394 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1395 {
1396 struct proc *p = td->td_proc;
1397 sigset_t pending;
1398
1399 PROC_LOCK(p);
1400 pending = p->p_sigqueue.sq_signals;
1401 SIGSETOR(pending, td->td_sigqueue.sq_signals);
1402 PROC_UNLOCK(p);
1403 return (copyout(&pending, uap->set, sizeof(sigset_t)));
1404 }
1405
1406 #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigpending_args {
1409 int dummy;
1410 };
1411 #endif
1412 int
osigpending(struct thread * td,struct osigpending_args * uap)1413 osigpending(struct thread *td, struct osigpending_args *uap)
1414 {
1415 struct proc *p = td->td_proc;
1416 sigset_t pending;
1417
1418 PROC_LOCK(p);
1419 pending = p->p_sigqueue.sq_signals;
1420 SIGSETOR(pending, td->td_sigqueue.sq_signals);
1421 PROC_UNLOCK(p);
1422 SIG2OSIG(pending, td->td_retval[0]);
1423 return (0);
1424 }
1425 #endif /* COMPAT_43 */
1426
1427 #if defined(COMPAT_43)
1428 /*
1429 * Generalized interface signal handler, 4.3-compatible.
1430 */
1431 #ifndef _SYS_SYSPROTO_H_
1432 struct osigvec_args {
1433 int signum;
1434 struct sigvec *nsv;
1435 struct sigvec *osv;
1436 };
1437 #endif
1438 /* ARGSUSED */
1439 int
osigvec(struct thread * td,struct osigvec_args * uap)1440 osigvec(struct thread *td, struct osigvec_args *uap)
1441 {
1442 struct sigvec vec;
1443 struct sigaction nsa, osa;
1444 struct sigaction *nsap, *osap;
1445 int error;
1446
1447 if (uap->signum <= 0 || uap->signum >= ONSIG)
1448 return (EINVAL);
1449 nsap = (uap->nsv != NULL) ? &nsa : NULL;
1450 osap = (uap->osv != NULL) ? &osa : NULL;
1451 if (nsap) {
1452 error = copyin(uap->nsv, &vec, sizeof(vec));
1453 if (error)
1454 return (error);
1455 nsap->sa_handler = vec.sv_handler;
1456 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1457 nsap->sa_flags = vec.sv_flags;
1458 nsap->sa_flags ^= SA_RESTART; /* opposite of SV_INTERRUPT */
1459 }
1460 error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1461 if (osap && !error) {
1462 vec.sv_handler = osap->sa_handler;
1463 SIG2OSIG(osap->sa_mask, vec.sv_mask);
1464 vec.sv_flags = osap->sa_flags;
1465 vec.sv_flags &= ~SA_NOCLDWAIT;
1466 vec.sv_flags ^= SA_RESTART;
1467 error = copyout(&vec, uap->osv, sizeof(vec));
1468 }
1469 return (error);
1470 }
1471
1472 #ifndef _SYS_SYSPROTO_H_
1473 struct osigblock_args {
1474 int mask;
1475 };
1476 #endif
1477 int
osigblock(struct thread * td,struct osigblock_args * uap)1478 osigblock(struct thread *td, struct osigblock_args *uap)
1479 {
1480 sigset_t set, oset;
1481
1482 OSIG2SIG(uap->mask, set);
1483 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1484 SIG2OSIG(oset, td->td_retval[0]);
1485 return (0);
1486 }
1487
1488 #ifndef _SYS_SYSPROTO_H_
1489 struct osigsetmask_args {
1490 int mask;
1491 };
1492 #endif
1493 int
osigsetmask(struct thread * td,struct osigsetmask_args * uap)1494 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1495 {
1496 sigset_t set, oset;
1497
1498 OSIG2SIG(uap->mask, set);
1499 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1500 SIG2OSIG(oset, td->td_retval[0]);
1501 return (0);
1502 }
1503 #endif /* COMPAT_43 */
1504
1505 /*
1506 * Suspend calling thread until signal, providing mask to be set in the
1507 * meantime.
1508 */
1509 #ifndef _SYS_SYSPROTO_H_
1510 struct sigsuspend_args {
1511 const sigset_t *sigmask;
1512 };
1513 #endif
1514 /* ARGSUSED */
1515 int
sys_sigsuspend(struct thread * td,struct sigsuspend_args * uap)1516 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1517 {
1518 sigset_t mask;
1519 int error;
1520
1521 error = copyin(uap->sigmask, &mask, sizeof(mask));
1522 if (error)
1523 return (error);
1524 return (kern_sigsuspend(td, mask));
1525 }
1526
1527 int
kern_sigsuspend(struct thread * td,sigset_t mask)1528 kern_sigsuspend(struct thread *td, sigset_t mask)
1529 {
1530 struct proc *p = td->td_proc;
1531 int has_sig, sig;
1532
1533 /* Ensure the sigfastblock value is up to date. */
1534 sigfastblock_fetch(td);
1535
1536 /*
1537 * When returning from sigsuspend, we want
1538 * the old mask to be restored after the
1539 * signal handler has finished. Thus, we
1540 * save it here and mark the sigacts structure
1541 * to indicate this.
1542 */
1543 PROC_LOCK(p);
1544 kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1545 SIGPROCMASK_PROC_LOCKED);
1546 td->td_pflags |= TDP_OLDMASK;
1547
1548 /*
1549 * Process signals now. Otherwise, we can get spurious wakeup
1550 * due to signal entered process queue, but delivered to other
1551 * thread. But sigsuspend should return only on signal
1552 * delivery.
1553 */
1554 (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1555 for (has_sig = 0; !has_sig;) {
1556 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1557 0) == 0)
1558 /* void */;
1559 thread_suspend_check(0);
1560 mtx_lock(&p->p_sigacts->ps_mtx);
1561 while ((sig = cursig(td)) != 0) {
1562 KASSERT(sig >= 0, ("sig %d", sig));
1563 has_sig += postsig(sig);
1564 }
1565 mtx_unlock(&p->p_sigacts->ps_mtx);
1566
1567 /*
1568 * If PTRACE_SCE or PTRACE_SCX were set after
1569 * userspace entered the syscall, return spurious
1570 * EINTR.
1571 */
1572 if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1573 has_sig += 1;
1574 }
1575 PROC_UNLOCK(p);
1576 td->td_errno = EINTR;
1577 td->td_pflags |= TDP_NERRNO;
1578 return (EJUSTRETURN);
1579 }
1580
1581 #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1582 /*
1583 * Compatibility sigsuspend call for old binaries. Note nonstandard calling
1584 * convention: libc stub passes mask, not pointer, to save a copyin.
1585 */
1586 #ifndef _SYS_SYSPROTO_H_
1587 struct osigsuspend_args {
1588 osigset_t mask;
1589 };
1590 #endif
1591 /* ARGSUSED */
1592 int
osigsuspend(struct thread * td,struct osigsuspend_args * uap)1593 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1594 {
1595 sigset_t mask;
1596
1597 OSIG2SIG(uap->mask, mask);
1598 return (kern_sigsuspend(td, mask));
1599 }
1600 #endif /* COMPAT_43 */
1601
1602 #if defined(COMPAT_43)
1603 #ifndef _SYS_SYSPROTO_H_
1604 struct osigstack_args {
1605 struct sigstack *nss;
1606 struct sigstack *oss;
1607 };
1608 #endif
1609 /* ARGSUSED */
1610 int
osigstack(struct thread * td,struct osigstack_args * uap)1611 osigstack(struct thread *td, struct osigstack_args *uap)
1612 {
1613 struct sigstack nss, oss;
1614 int error = 0;
1615
1616 if (uap->nss != NULL) {
1617 error = copyin(uap->nss, &nss, sizeof(nss));
1618 if (error)
1619 return (error);
1620 }
1621 oss.ss_sp = td->td_sigstk.ss_sp;
1622 oss.ss_onstack = sigonstack(cpu_getstack(td));
1623 if (uap->nss != NULL) {
1624 td->td_sigstk.ss_sp = nss.ss_sp;
1625 td->td_sigstk.ss_size = 0;
1626 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1627 td->td_pflags |= TDP_ALTSTACK;
1628 }
1629 if (uap->oss != NULL)
1630 error = copyout(&oss, uap->oss, sizeof(oss));
1631
1632 return (error);
1633 }
1634 #endif /* COMPAT_43 */
1635
1636 #ifndef _SYS_SYSPROTO_H_
1637 struct sigaltstack_args {
1638 stack_t *ss;
1639 stack_t *oss;
1640 };
1641 #endif
1642 /* ARGSUSED */
1643 int
sys_sigaltstack(struct thread * td,struct sigaltstack_args * uap)1644 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1645 {
1646 stack_t ss, oss;
1647 int error;
1648
1649 if (uap->ss != NULL) {
1650 error = copyin(uap->ss, &ss, sizeof(ss));
1651 if (error)
1652 return (error);
1653 }
1654 error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1655 (uap->oss != NULL) ? &oss : NULL);
1656 if (error)
1657 return (error);
1658 if (uap->oss != NULL)
1659 error = copyout(&oss, uap->oss, sizeof(stack_t));
1660 return (error);
1661 }
1662
1663 int
kern_sigaltstack(struct thread * td,stack_t * ss,stack_t * oss)1664 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1665 {
1666 struct proc *p = td->td_proc;
1667 int oonstack;
1668
1669 oonstack = sigonstack(cpu_getstack(td));
1670
1671 if (oss != NULL) {
1672 *oss = td->td_sigstk;
1673 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1674 ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1675 }
1676
1677 if (ss != NULL) {
1678 if (oonstack)
1679 return (EPERM);
1680 if ((ss->ss_flags & ~SS_DISABLE) != 0)
1681 return (EINVAL);
1682 if (!(ss->ss_flags & SS_DISABLE)) {
1683 if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1684 return (ENOMEM);
1685
1686 td->td_sigstk = *ss;
1687 td->td_pflags |= TDP_ALTSTACK;
1688 } else {
1689 td->td_pflags &= ~TDP_ALTSTACK;
1690 }
1691 }
1692 return (0);
1693 }
1694
1695 struct killpg1_ctx {
1696 struct thread *td;
1697 ksiginfo_t *ksi;
1698 int sig;
1699 bool sent;
1700 bool found;
1701 int ret;
1702 };
1703
1704 static void
killpg1_sendsig(struct proc * p,bool notself,struct killpg1_ctx * arg)1705 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1706 {
1707 int err;
1708
1709 if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1710 (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1711 return;
1712 PROC_LOCK(p);
1713 err = p_cansignal(arg->td, p, arg->sig);
1714 if (err == 0 && arg->sig != 0)
1715 pksignal(p, arg->sig, arg->ksi);
1716 PROC_UNLOCK(p);
1717 if (err != ESRCH)
1718 arg->found = true;
1719 if (err == 0)
1720 arg->sent = true;
1721 else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1722 arg->ret = err;
1723 }
1724
1725 /*
1726 * Common code for kill process group/broadcast kill.
1727 * cp is calling process.
1728 */
1729 static int
killpg1(struct thread * td,int sig,int pgid,int all,ksiginfo_t * ksi)1730 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1731 {
1732 struct proc *p;
1733 struct pgrp *pgrp;
1734 struct killpg1_ctx arg;
1735
1736 arg.td = td;
1737 arg.ksi = ksi;
1738 arg.sig = sig;
1739 arg.sent = false;
1740 arg.found = false;
1741 arg.ret = 0;
1742 if (all) {
1743 /*
1744 * broadcast
1745 */
1746 sx_slock(&allproc_lock);
1747 FOREACH_PROC_IN_SYSTEM(p) {
1748 killpg1_sendsig(p, true, &arg);
1749 }
1750 sx_sunlock(&allproc_lock);
1751 } else {
1752 sx_slock(&proctree_lock);
1753 if (pgid == 0) {
1754 /*
1755 * zero pgid means send to my process group.
1756 */
1757 pgrp = td->td_proc->p_pgrp;
1758 PGRP_LOCK(pgrp);
1759 } else {
1760 pgrp = pgfind(pgid);
1761 if (pgrp == NULL) {
1762 sx_sunlock(&proctree_lock);
1763 return (ESRCH);
1764 }
1765 }
1766 sx_sunlock(&proctree_lock);
1767 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1768 killpg1_sendsig(p, false, &arg);
1769 }
1770 PGRP_UNLOCK(pgrp);
1771 }
1772 MPASS(arg.ret != 0 || arg.found || !arg.sent);
1773 if (arg.ret == 0 && !arg.sent)
1774 arg.ret = arg.found ? EPERM : ESRCH;
1775 return (arg.ret);
1776 }
1777
1778 #ifndef _SYS_SYSPROTO_H_
1779 struct kill_args {
1780 int pid;
1781 int signum;
1782 };
1783 #endif
1784 /* ARGSUSED */
1785 int
sys_kill(struct thread * td,struct kill_args * uap)1786 sys_kill(struct thread *td, struct kill_args *uap)
1787 {
1788
1789 return (kern_kill(td, uap->pid, uap->signum));
1790 }
1791
1792 int
kern_kill(struct thread * td,pid_t pid,int signum)1793 kern_kill(struct thread *td, pid_t pid, int signum)
1794 {
1795 ksiginfo_t ksi;
1796 struct proc *p;
1797 int error;
1798
1799 /*
1800 * A process in capability mode can send signals only to himself.
1801 * The main rationale behind this is that abort(3) is implemented as
1802 * kill(getpid(), SIGABRT).
1803 */
1804 if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1805 return (ECAPMODE);
1806
1807 AUDIT_ARG_SIGNUM(signum);
1808 AUDIT_ARG_PID(pid);
1809 if ((u_int)signum > _SIG_MAXSIG)
1810 return (EINVAL);
1811
1812 ksiginfo_init(&ksi);
1813 ksi.ksi_signo = signum;
1814 ksi.ksi_code = SI_USER;
1815 ksi.ksi_pid = td->td_proc->p_pid;
1816 ksi.ksi_uid = td->td_ucred->cr_ruid;
1817
1818 if (pid > 0) {
1819 /* kill single process */
1820 if ((p = pfind_any(pid)) == NULL)
1821 return (ESRCH);
1822 AUDIT_ARG_PROCESS(p);
1823 error = p_cansignal(td, p, signum);
1824 if (error == 0 && signum)
1825 pksignal(p, signum, &ksi);
1826 PROC_UNLOCK(p);
1827 return (error);
1828 }
1829 switch (pid) {
1830 case -1: /* broadcast signal */
1831 return (killpg1(td, signum, 0, 1, &ksi));
1832 case 0: /* signal own process group */
1833 return (killpg1(td, signum, 0, 0, &ksi));
1834 default: /* negative explicit process group */
1835 return (killpg1(td, signum, -pid, 0, &ksi));
1836 }
1837 /* NOTREACHED */
1838 }
1839
1840 int
sys_pdkill(struct thread * td,struct pdkill_args * uap)1841 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1842 {
1843 struct proc *p;
1844 int error;
1845
1846 AUDIT_ARG_SIGNUM(uap->signum);
1847 AUDIT_ARG_FD(uap->fd);
1848 if ((u_int)uap->signum > _SIG_MAXSIG)
1849 return (EINVAL);
1850
1851 error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1852 if (error)
1853 return (error);
1854 AUDIT_ARG_PROCESS(p);
1855 error = p_cansignal(td, p, uap->signum);
1856 if (error == 0 && uap->signum)
1857 kern_psignal(p, uap->signum);
1858 PROC_UNLOCK(p);
1859 return (error);
1860 }
1861
1862 #if defined(COMPAT_43)
1863 #ifndef _SYS_SYSPROTO_H_
1864 struct okillpg_args {
1865 int pgid;
1866 int signum;
1867 };
1868 #endif
1869 /* ARGSUSED */
1870 int
okillpg(struct thread * td,struct okillpg_args * uap)1871 okillpg(struct thread *td, struct okillpg_args *uap)
1872 {
1873 ksiginfo_t ksi;
1874
1875 AUDIT_ARG_SIGNUM(uap->signum);
1876 AUDIT_ARG_PID(uap->pgid);
1877 if ((u_int)uap->signum > _SIG_MAXSIG)
1878 return (EINVAL);
1879
1880 ksiginfo_init(&ksi);
1881 ksi.ksi_signo = uap->signum;
1882 ksi.ksi_code = SI_USER;
1883 ksi.ksi_pid = td->td_proc->p_pid;
1884 ksi.ksi_uid = td->td_ucred->cr_ruid;
1885 return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1886 }
1887 #endif /* COMPAT_43 */
1888
1889 #ifndef _SYS_SYSPROTO_H_
1890 struct sigqueue_args {
1891 pid_t pid;
1892 int signum;
1893 /* union sigval */ void *value;
1894 };
1895 #endif
1896 int
sys_sigqueue(struct thread * td,struct sigqueue_args * uap)1897 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1898 {
1899 union sigval sv;
1900
1901 sv.sival_ptr = uap->value;
1902
1903 return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1904 }
1905
1906 int
kern_sigqueue(struct thread * td,pid_t pid,int signum,union sigval * value)1907 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1908 {
1909 ksiginfo_t ksi;
1910 struct proc *p;
1911 int error;
1912
1913 if ((u_int)signum > _SIG_MAXSIG)
1914 return (EINVAL);
1915
1916 /*
1917 * Specification says sigqueue can only send signal to
1918 * single process.
1919 */
1920 if (pid <= 0)
1921 return (EINVAL);
1922
1923 if ((p = pfind_any(pid)) == NULL)
1924 return (ESRCH);
1925 error = p_cansignal(td, p, signum);
1926 if (error == 0 && signum != 0) {
1927 ksiginfo_init(&ksi);
1928 ksi.ksi_flags = KSI_SIGQ;
1929 ksi.ksi_signo = signum;
1930 ksi.ksi_code = SI_QUEUE;
1931 ksi.ksi_pid = td->td_proc->p_pid;
1932 ksi.ksi_uid = td->td_ucred->cr_ruid;
1933 ksi.ksi_value = *value;
1934 error = pksignal(p, ksi.ksi_signo, &ksi);
1935 }
1936 PROC_UNLOCK(p);
1937 return (error);
1938 }
1939
1940 /*
1941 * Send a signal to a process group.
1942 */
1943 void
gsignal(int pgid,int sig,ksiginfo_t * ksi)1944 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1945 {
1946 struct pgrp *pgrp;
1947
1948 if (pgid != 0) {
1949 sx_slock(&proctree_lock);
1950 pgrp = pgfind(pgid);
1951 sx_sunlock(&proctree_lock);
1952 if (pgrp != NULL) {
1953 pgsignal(pgrp, sig, 0, ksi);
1954 PGRP_UNLOCK(pgrp);
1955 }
1956 }
1957 }
1958
1959 /*
1960 * Send a signal to a process group. If checktty is 1,
1961 * limit to members which have a controlling terminal.
1962 */
1963 void
pgsignal(struct pgrp * pgrp,int sig,int checkctty,ksiginfo_t * ksi)1964 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1965 {
1966 struct proc *p;
1967
1968 if (pgrp) {
1969 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1970 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1971 PROC_LOCK(p);
1972 if (p->p_state == PRS_NORMAL &&
1973 (checkctty == 0 || p->p_flag & P_CONTROLT))
1974 pksignal(p, sig, ksi);
1975 PROC_UNLOCK(p);
1976 }
1977 }
1978 }
1979
1980 /*
1981 * Recalculate the signal mask and reset the signal disposition after
1982 * usermode frame for delivery is formed. Should be called after
1983 * mach-specific routine, because sysent->sv_sendsig() needs correct
1984 * ps_siginfo and signal mask.
1985 */
1986 static void
postsig_done(int sig,struct thread * td,struct sigacts * ps)1987 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1988 {
1989 sigset_t mask;
1990
1991 mtx_assert(&ps->ps_mtx, MA_OWNED);
1992 td->td_ru.ru_nsignals++;
1993 mask = ps->ps_catchmask[_SIG_IDX(sig)];
1994 if (!SIGISMEMBER(ps->ps_signodefer, sig))
1995 SIGADDSET(mask, sig);
1996 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1997 SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1998 if (SIGISMEMBER(ps->ps_sigreset, sig))
1999 sigdflt(ps, sig);
2000 }
2001
2002 /*
2003 * Send a signal caused by a trap to the current thread. If it will be
2004 * caught immediately, deliver it with correct code. Otherwise, post it
2005 * normally.
2006 */
2007 void
trapsignal(struct thread * td,ksiginfo_t * ksi)2008 trapsignal(struct thread *td, ksiginfo_t *ksi)
2009 {
2010 struct sigacts *ps;
2011 struct proc *p;
2012 sigset_t sigmask;
2013 int code, sig;
2014
2015 p = td->td_proc;
2016 sig = ksi->ksi_signo;
2017 code = ksi->ksi_code;
2018 KASSERT(_SIG_VALID(sig), ("invalid signal"));
2019
2020 sigfastblock_fetch(td);
2021 PROC_LOCK(p);
2022 ps = p->p_sigacts;
2023 mtx_lock(&ps->ps_mtx);
2024 sigmask = td->td_sigmask;
2025 if (td->td_sigblock_val != 0)
2026 SIGSETOR(sigmask, fastblock_mask);
2027 if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2028 !SIGISMEMBER(sigmask, sig)) {
2029 #ifdef KTRACE
2030 if (KTRPOINT(curthread, KTR_PSIG))
2031 ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2032 &td->td_sigmask, code);
2033 #endif
2034 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2035 ksi, &td->td_sigmask);
2036 postsig_done(sig, td, ps);
2037 mtx_unlock(&ps->ps_mtx);
2038 } else {
2039 /*
2040 * Avoid a possible infinite loop if the thread
2041 * masking the signal or process is ignoring the
2042 * signal.
2043 */
2044 if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2045 ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2046 SIGDELSET(td->td_sigmask, sig);
2047 SIGDELSET(ps->ps_sigcatch, sig);
2048 SIGDELSET(ps->ps_sigignore, sig);
2049 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2050 td->td_pflags &= ~TDP_SIGFASTBLOCK;
2051 td->td_sigblock_val = 0;
2052 }
2053 mtx_unlock(&ps->ps_mtx);
2054 p->p_sig = sig; /* XXX to verify code */
2055 tdsendsignal(p, td, sig, ksi);
2056 }
2057 PROC_UNLOCK(p);
2058 }
2059
2060 static struct thread *
sigtd(struct proc * p,int sig,bool fast_sigblock)2061 sigtd(struct proc *p, int sig, bool fast_sigblock)
2062 {
2063 struct thread *td, *signal_td;
2064
2065 PROC_LOCK_ASSERT(p, MA_OWNED);
2066 MPASS(!fast_sigblock || p == curproc);
2067
2068 /*
2069 * Check if current thread can handle the signal without
2070 * switching context to another thread.
2071 */
2072 if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2073 (!fast_sigblock || curthread->td_sigblock_val == 0))
2074 return (curthread);
2075 signal_td = NULL;
2076 FOREACH_THREAD_IN_PROC(p, td) {
2077 if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2078 td != curthread || td->td_sigblock_val == 0)) {
2079 signal_td = td;
2080 break;
2081 }
2082 }
2083 if (signal_td == NULL)
2084 signal_td = FIRST_THREAD_IN_PROC(p);
2085 return (signal_td);
2086 }
2087
2088 /*
2089 * Send the signal to the process. If the signal has an action, the action
2090 * is usually performed by the target process rather than the caller; we add
2091 * the signal to the set of pending signals for the process.
2092 *
2093 * Exceptions:
2094 * o When a stop signal is sent to a sleeping process that takes the
2095 * default action, the process is stopped without awakening it.
2096 * o SIGCONT restarts stopped processes (or puts them back to sleep)
2097 * regardless of the signal action (eg, blocked or ignored).
2098 *
2099 * Other ignored signals are discarded immediately.
2100 *
2101 * NB: This function may be entered from the debugger via the "kill" DDB
2102 * command. There is little that can be done to mitigate the possibly messy
2103 * side effects of this unwise possibility.
2104 */
2105 void
kern_psignal(struct proc * p,int sig)2106 kern_psignal(struct proc *p, int sig)
2107 {
2108 ksiginfo_t ksi;
2109
2110 ksiginfo_init(&ksi);
2111 ksi.ksi_signo = sig;
2112 ksi.ksi_code = SI_KERNEL;
2113 (void) tdsendsignal(p, NULL, sig, &ksi);
2114 }
2115
2116 int
pksignal(struct proc * p,int sig,ksiginfo_t * ksi)2117 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2118 {
2119
2120 return (tdsendsignal(p, NULL, sig, ksi));
2121 }
2122
2123 /* Utility function for finding a thread to send signal event to. */
2124 int
sigev_findtd(struct proc * p,struct sigevent * sigev,struct thread ** ttd)2125 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2126 {
2127 struct thread *td;
2128
2129 if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2130 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2131 if (td == NULL)
2132 return (ESRCH);
2133 *ttd = td;
2134 } else {
2135 *ttd = NULL;
2136 PROC_LOCK(p);
2137 }
2138 return (0);
2139 }
2140
2141 void
tdsignal(struct thread * td,int sig)2142 tdsignal(struct thread *td, int sig)
2143 {
2144 ksiginfo_t ksi;
2145
2146 ksiginfo_init(&ksi);
2147 ksi.ksi_signo = sig;
2148 ksi.ksi_code = SI_KERNEL;
2149 (void) tdsendsignal(td->td_proc, td, sig, &ksi);
2150 }
2151
2152 void
tdksignal(struct thread * td,int sig,ksiginfo_t * ksi)2153 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2154 {
2155
2156 (void) tdsendsignal(td->td_proc, td, sig, ksi);
2157 }
2158
2159 int
tdsendsignal(struct proc * p,struct thread * td,int sig,ksiginfo_t * ksi)2160 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2161 {
2162 sig_t action;
2163 sigqueue_t *sigqueue;
2164 int prop;
2165 struct sigacts *ps;
2166 int intrval;
2167 int ret = 0;
2168 int wakeup_swapper;
2169
2170 MPASS(td == NULL || p == td->td_proc);
2171 PROC_LOCK_ASSERT(p, MA_OWNED);
2172
2173 if (!_SIG_VALID(sig))
2174 panic("%s(): invalid signal %d", __func__, sig);
2175
2176 KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2177
2178 /*
2179 * IEEE Std 1003.1-2001: return success when killing a zombie.
2180 */
2181 if (p->p_state == PRS_ZOMBIE) {
2182 if (ksi && (ksi->ksi_flags & KSI_INS))
2183 ksiginfo_tryfree(ksi);
2184 return (ret);
2185 }
2186
2187 ps = p->p_sigacts;
2188 KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2189 prop = sigprop(sig);
2190
2191 if (td == NULL) {
2192 td = sigtd(p, sig, false);
2193 sigqueue = &p->p_sigqueue;
2194 } else
2195 sigqueue = &td->td_sigqueue;
2196
2197 SDT_PROBE3(proc, , , signal__send, td, p, sig);
2198
2199 /*
2200 * If the signal is being ignored,
2201 * then we forget about it immediately.
2202 * (Note: we don't set SIGCONT in ps_sigignore,
2203 * and if it is set to SIG_IGN,
2204 * action will be SIG_DFL here.)
2205 */
2206 mtx_lock(&ps->ps_mtx);
2207 if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2208 SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2209
2210 mtx_unlock(&ps->ps_mtx);
2211 if (ksi && (ksi->ksi_flags & KSI_INS))
2212 ksiginfo_tryfree(ksi);
2213 return (ret);
2214 }
2215 if (SIGISMEMBER(td->td_sigmask, sig))
2216 action = SIG_HOLD;
2217 else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2218 action = SIG_CATCH;
2219 else
2220 action = SIG_DFL;
2221 if (SIGISMEMBER(ps->ps_sigintr, sig))
2222 intrval = EINTR;
2223 else
2224 intrval = ERESTART;
2225 mtx_unlock(&ps->ps_mtx);
2226
2227 if (prop & SIGPROP_CONT)
2228 sigqueue_delete_stopmask_proc(p);
2229 else if (prop & SIGPROP_STOP) {
2230 /*
2231 * If sending a tty stop signal to a member of an orphaned
2232 * process group, discard the signal here if the action
2233 * is default; don't stop the process below if sleeping,
2234 * and don't clear any pending SIGCONT.
2235 */
2236 if ((prop & SIGPROP_TTYSTOP) != 0 &&
2237 (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2238 action == SIG_DFL) {
2239 if (ksi && (ksi->ksi_flags & KSI_INS))
2240 ksiginfo_tryfree(ksi);
2241 return (ret);
2242 }
2243 sigqueue_delete_proc(p, SIGCONT);
2244 if (p->p_flag & P_CONTINUED) {
2245 p->p_flag &= ~P_CONTINUED;
2246 PROC_LOCK(p->p_pptr);
2247 sigqueue_take(p->p_ksi);
2248 PROC_UNLOCK(p->p_pptr);
2249 }
2250 }
2251
2252 ret = sigqueue_add(sigqueue, sig, ksi);
2253 if (ret != 0)
2254 return (ret);
2255 signotify(td);
2256 /*
2257 * Defer further processing for signals which are held,
2258 * except that stopped processes must be continued by SIGCONT.
2259 */
2260 if (action == SIG_HOLD &&
2261 !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2262 return (ret);
2263
2264 wakeup_swapper = 0;
2265
2266 /*
2267 * Some signals have a process-wide effect and a per-thread
2268 * component. Most processing occurs when the process next
2269 * tries to cross the user boundary, however there are some
2270 * times when processing needs to be done immediately, such as
2271 * waking up threads so that they can cross the user boundary.
2272 * We try to do the per-process part here.
2273 */
2274 if (P_SHOULDSTOP(p)) {
2275 KASSERT(!(p->p_flag & P_WEXIT),
2276 ("signal to stopped but exiting process"));
2277 if (sig == SIGKILL) {
2278 /*
2279 * If traced process is already stopped,
2280 * then no further action is necessary.
2281 */
2282 if (p->p_flag & P_TRACED)
2283 goto out;
2284 /*
2285 * SIGKILL sets process running.
2286 * It will die elsewhere.
2287 * All threads must be restarted.
2288 */
2289 p->p_flag &= ~P_STOPPED_SIG;
2290 goto runfast;
2291 }
2292
2293 if (prop & SIGPROP_CONT) {
2294 /*
2295 * If traced process is already stopped,
2296 * then no further action is necessary.
2297 */
2298 if (p->p_flag & P_TRACED)
2299 goto out;
2300 /*
2301 * If SIGCONT is default (or ignored), we continue the
2302 * process but don't leave the signal in sigqueue as
2303 * it has no further action. If SIGCONT is held, we
2304 * continue the process and leave the signal in
2305 * sigqueue. If the process catches SIGCONT, let it
2306 * handle the signal itself. If it isn't waiting on
2307 * an event, it goes back to run state.
2308 * Otherwise, process goes back to sleep state.
2309 */
2310 p->p_flag &= ~P_STOPPED_SIG;
2311 PROC_SLOCK(p);
2312 if (p->p_numthreads == p->p_suspcount) {
2313 PROC_SUNLOCK(p);
2314 p->p_flag |= P_CONTINUED;
2315 p->p_xsig = SIGCONT;
2316 PROC_LOCK(p->p_pptr);
2317 childproc_continued(p);
2318 PROC_UNLOCK(p->p_pptr);
2319 PROC_SLOCK(p);
2320 }
2321 if (action == SIG_DFL) {
2322 thread_unsuspend(p);
2323 PROC_SUNLOCK(p);
2324 sigqueue_delete(sigqueue, sig);
2325 goto out;
2326 }
2327 if (action == SIG_CATCH) {
2328 /*
2329 * The process wants to catch it so it needs
2330 * to run at least one thread, but which one?
2331 */
2332 PROC_SUNLOCK(p);
2333 goto runfast;
2334 }
2335 /*
2336 * The signal is not ignored or caught.
2337 */
2338 thread_unsuspend(p);
2339 PROC_SUNLOCK(p);
2340 goto out;
2341 }
2342
2343 if (prop & SIGPROP_STOP) {
2344 /*
2345 * If traced process is already stopped,
2346 * then no further action is necessary.
2347 */
2348 if (p->p_flag & P_TRACED)
2349 goto out;
2350 /*
2351 * Already stopped, don't need to stop again
2352 * (If we did the shell could get confused).
2353 * Just make sure the signal STOP bit set.
2354 */
2355 p->p_flag |= P_STOPPED_SIG;
2356 sigqueue_delete(sigqueue, sig);
2357 goto out;
2358 }
2359
2360 /*
2361 * All other kinds of signals:
2362 * If a thread is sleeping interruptibly, simulate a
2363 * wakeup so that when it is continued it will be made
2364 * runnable and can look at the signal. However, don't make
2365 * the PROCESS runnable, leave it stopped.
2366 * It may run a bit until it hits a thread_suspend_check().
2367 */
2368 PROC_SLOCK(p);
2369 thread_lock(td);
2370 if (TD_CAN_ABORT(td))
2371 wakeup_swapper = sleepq_abort(td, intrval);
2372 else
2373 thread_unlock(td);
2374 PROC_SUNLOCK(p);
2375 goto out;
2376 /*
2377 * Mutexes are short lived. Threads waiting on them will
2378 * hit thread_suspend_check() soon.
2379 */
2380 } else if (p->p_state == PRS_NORMAL) {
2381 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2382 tdsigwakeup(td, sig, action, intrval);
2383 goto out;
2384 }
2385
2386 MPASS(action == SIG_DFL);
2387
2388 if (prop & SIGPROP_STOP) {
2389 if (p->p_flag & (P_PPWAIT|P_WEXIT))
2390 goto out;
2391 p->p_flag |= P_STOPPED_SIG;
2392 p->p_xsig = sig;
2393 PROC_SLOCK(p);
2394 wakeup_swapper = sig_suspend_threads(td, p, 1);
2395 if (p->p_numthreads == p->p_suspcount) {
2396 /*
2397 * only thread sending signal to another
2398 * process can reach here, if thread is sending
2399 * signal to its process, because thread does
2400 * not suspend itself here, p_numthreads
2401 * should never be equal to p_suspcount.
2402 */
2403 thread_stopped(p);
2404 PROC_SUNLOCK(p);
2405 sigqueue_delete_proc(p, p->p_xsig);
2406 } else
2407 PROC_SUNLOCK(p);
2408 goto out;
2409 }
2410 } else {
2411 /* Not in "NORMAL" state. discard the signal. */
2412 sigqueue_delete(sigqueue, sig);
2413 goto out;
2414 }
2415
2416 /*
2417 * The process is not stopped so we need to apply the signal to all the
2418 * running threads.
2419 */
2420 runfast:
2421 tdsigwakeup(td, sig, action, intrval);
2422 PROC_SLOCK(p);
2423 thread_unsuspend(p);
2424 PROC_SUNLOCK(p);
2425 out:
2426 /* If we jump here, proc slock should not be owned. */
2427 PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2428 if (wakeup_swapper)
2429 kick_proc0();
2430
2431 return (ret);
2432 }
2433
2434 /*
2435 * The force of a signal has been directed against a single
2436 * thread. We need to see what we can do about knocking it
2437 * out of any sleep it may be in etc.
2438 */
2439 static void
tdsigwakeup(struct thread * td,int sig,sig_t action,int intrval)2440 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2441 {
2442 struct proc *p = td->td_proc;
2443 int prop, wakeup_swapper;
2444
2445 PROC_LOCK_ASSERT(p, MA_OWNED);
2446 prop = sigprop(sig);
2447
2448 PROC_SLOCK(p);
2449 thread_lock(td);
2450 /*
2451 * Bring the priority of a thread up if we want it to get
2452 * killed in this lifetime. Be careful to avoid bumping the
2453 * priority of the idle thread, since we still allow to signal
2454 * kernel processes.
2455 */
2456 if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2457 td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2458 sched_prio(td, PUSER);
2459 if (TD_ON_SLEEPQ(td)) {
2460 /*
2461 * If thread is sleeping uninterruptibly
2462 * we can't interrupt the sleep... the signal will
2463 * be noticed when the process returns through
2464 * trap() or syscall().
2465 */
2466 if ((td->td_flags & TDF_SINTR) == 0)
2467 goto out;
2468 /*
2469 * If SIGCONT is default (or ignored) and process is
2470 * asleep, we are finished; the process should not
2471 * be awakened.
2472 */
2473 if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2474 thread_unlock(td);
2475 PROC_SUNLOCK(p);
2476 sigqueue_delete(&p->p_sigqueue, sig);
2477 /*
2478 * It may be on either list in this state.
2479 * Remove from both for now.
2480 */
2481 sigqueue_delete(&td->td_sigqueue, sig);
2482 return;
2483 }
2484
2485 /*
2486 * Don't awaken a sleeping thread for SIGSTOP if the
2487 * STOP signal is deferred.
2488 */
2489 if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2490 TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2491 goto out;
2492
2493 /*
2494 * Give low priority threads a better chance to run.
2495 */
2496 if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2497 sched_prio(td, PUSER);
2498
2499 wakeup_swapper = sleepq_abort(td, intrval);
2500 PROC_SUNLOCK(p);
2501 if (wakeup_swapper)
2502 kick_proc0();
2503 return;
2504 }
2505
2506 /*
2507 * Other states do nothing with the signal immediately,
2508 * other than kicking ourselves if we are running.
2509 * It will either never be noticed, or noticed very soon.
2510 */
2511 #ifdef SMP
2512 if (TD_IS_RUNNING(td) && td != curthread)
2513 forward_signal(td);
2514 #endif
2515
2516 out:
2517 PROC_SUNLOCK(p);
2518 thread_unlock(td);
2519 }
2520
2521 static int
sig_suspend_threads(struct thread * td,struct proc * p,int sending)2522 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2523 {
2524 struct thread *td2;
2525 int wakeup_swapper;
2526
2527 PROC_LOCK_ASSERT(p, MA_OWNED);
2528 PROC_SLOCK_ASSERT(p, MA_OWNED);
2529 MPASS(sending || td == curthread);
2530
2531 wakeup_swapper = 0;
2532 FOREACH_THREAD_IN_PROC(p, td2) {
2533 thread_lock(td2);
2534 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2535 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2536 (td2->td_flags & TDF_SINTR)) {
2537 if (td2->td_flags & TDF_SBDRY) {
2538 /*
2539 * Once a thread is asleep with
2540 * TDF_SBDRY and without TDF_SERESTART
2541 * or TDF_SEINTR set, it should never
2542 * become suspended due to this check.
2543 */
2544 KASSERT(!TD_IS_SUSPENDED(td2),
2545 ("thread with deferred stops suspended"));
2546 if (TD_SBDRY_INTR(td2)) {
2547 wakeup_swapper |= sleepq_abort(td2,
2548 TD_SBDRY_ERRNO(td2));
2549 continue;
2550 }
2551 } else if (!TD_IS_SUSPENDED(td2))
2552 thread_suspend_one(td2);
2553 } else if (!TD_IS_SUSPENDED(td2)) {
2554 if (sending || td != td2)
2555 td2->td_flags |= TDF_ASTPENDING;
2556 #ifdef SMP
2557 if (TD_IS_RUNNING(td2) && td2 != td)
2558 forward_signal(td2);
2559 #endif
2560 }
2561 thread_unlock(td2);
2562 }
2563 return (wakeup_swapper);
2564 }
2565
2566 /*
2567 * Stop the process for an event deemed interesting to the debugger. If si is
2568 * non-NULL, this is a signal exchange; the new signal requested by the
2569 * debugger will be returned for handling. If si is NULL, this is some other
2570 * type of interesting event. The debugger may request a signal be delivered in
2571 * that case as well, however it will be deferred until it can be handled.
2572 */
2573 int
ptracestop(struct thread * td,int sig,ksiginfo_t * si)2574 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2575 {
2576 struct proc *p = td->td_proc;
2577 struct thread *td2;
2578 ksiginfo_t ksi;
2579
2580 PROC_LOCK_ASSERT(p, MA_OWNED);
2581 KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2582 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2583 &p->p_mtx.lock_object, "Stopping for traced signal");
2584
2585 td->td_xsig = sig;
2586
2587 if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2588 td->td_dbgflags |= TDB_XSIG;
2589 CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2590 td->td_tid, p->p_pid, td->td_dbgflags, sig);
2591 PROC_SLOCK(p);
2592 while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2593 if (P_KILLED(p)) {
2594 /*
2595 * Ensure that, if we've been PT_KILLed, the
2596 * exit status reflects that. Another thread
2597 * may also be in ptracestop(), having just
2598 * received the SIGKILL, but this thread was
2599 * unsuspended first.
2600 */
2601 td->td_dbgflags &= ~TDB_XSIG;
2602 td->td_xsig = SIGKILL;
2603 p->p_ptevents = 0;
2604 break;
2605 }
2606 if (p->p_flag & P_SINGLE_EXIT &&
2607 !(td->td_dbgflags & TDB_EXIT)) {
2608 /*
2609 * Ignore ptrace stops except for thread exit
2610 * events when the process exits.
2611 */
2612 td->td_dbgflags &= ~TDB_XSIG;
2613 PROC_SUNLOCK(p);
2614 return (0);
2615 }
2616
2617 /*
2618 * Make wait(2) work. Ensure that right after the
2619 * attach, the thread which was decided to become the
2620 * leader of attach gets reported to the waiter.
2621 * Otherwise, just avoid overwriting another thread's
2622 * assignment to p_xthread. If another thread has
2623 * already set p_xthread, the current thread will get
2624 * a chance to report itself upon the next iteration.
2625 */
2626 if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2627 ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2628 p->p_xthread == NULL)) {
2629 p->p_xsig = sig;
2630 p->p_xthread = td;
2631
2632 /*
2633 * If we are on sleepqueue already,
2634 * let sleepqueue code decide if it
2635 * needs to go sleep after attach.
2636 */
2637 if (td->td_wchan == NULL)
2638 td->td_dbgflags &= ~TDB_FSTP;
2639
2640 p->p_flag2 &= ~P2_PTRACE_FSTP;
2641 p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2642 sig_suspend_threads(td, p, 0);
2643 }
2644 if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2645 td->td_dbgflags &= ~TDB_STOPATFORK;
2646 }
2647 stopme:
2648 thread_suspend_switch(td, p);
2649 if (p->p_xthread == td)
2650 p->p_xthread = NULL;
2651 if (!(p->p_flag & P_TRACED))
2652 break;
2653 if (td->td_dbgflags & TDB_SUSPEND) {
2654 if (p->p_flag & P_SINGLE_EXIT)
2655 break;
2656 goto stopme;
2657 }
2658 }
2659 PROC_SUNLOCK(p);
2660 }
2661
2662 if (si != NULL && sig == td->td_xsig) {
2663 /* Parent wants us to take the original signal unchanged. */
2664 si->ksi_flags |= KSI_HEAD;
2665 if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2666 si->ksi_signo = 0;
2667 } else if (td->td_xsig != 0) {
2668 /*
2669 * If parent wants us to take a new signal, then it will leave
2670 * it in td->td_xsig; otherwise we just look for signals again.
2671 */
2672 ksiginfo_init(&ksi);
2673 ksi.ksi_signo = td->td_xsig;
2674 ksi.ksi_flags |= KSI_PTRACE;
2675 td2 = sigtd(p, td->td_xsig, false);
2676 tdsendsignal(p, td2, td->td_xsig, &ksi);
2677 if (td != td2)
2678 return (0);
2679 }
2680
2681 return (td->td_xsig);
2682 }
2683
2684 static void
reschedule_signals(struct proc * p,sigset_t block,int flags)2685 reschedule_signals(struct proc *p, sigset_t block, int flags)
2686 {
2687 struct sigacts *ps;
2688 struct thread *td;
2689 int sig;
2690 bool fastblk, pslocked;
2691
2692 PROC_LOCK_ASSERT(p, MA_OWNED);
2693 ps = p->p_sigacts;
2694 pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2695 mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2696 if (SIGISEMPTY(p->p_siglist))
2697 return;
2698 SIGSETAND(block, p->p_siglist);
2699 fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2700 while ((sig = sig_ffs(&block)) != 0) {
2701 SIGDELSET(block, sig);
2702 td = sigtd(p, sig, fastblk);
2703
2704 /*
2705 * If sigtd() selected us despite sigfastblock is
2706 * blocking, do not activate AST or wake us, to avoid
2707 * loop in AST handler.
2708 */
2709 if (fastblk && td == curthread)
2710 continue;
2711
2712 signotify(td);
2713 if (!pslocked)
2714 mtx_lock(&ps->ps_mtx);
2715 if (p->p_flag & P_TRACED ||
2716 (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2717 !SIGISMEMBER(td->td_sigmask, sig))) {
2718 tdsigwakeup(td, sig, SIG_CATCH,
2719 (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2720 ERESTART));
2721 }
2722 if (!pslocked)
2723 mtx_unlock(&ps->ps_mtx);
2724 }
2725 }
2726
2727 void
tdsigcleanup(struct thread * td)2728 tdsigcleanup(struct thread *td)
2729 {
2730 struct proc *p;
2731 sigset_t unblocked;
2732
2733 p = td->td_proc;
2734 PROC_LOCK_ASSERT(p, MA_OWNED);
2735
2736 sigqueue_flush(&td->td_sigqueue);
2737 if (p->p_numthreads == 1)
2738 return;
2739
2740 /*
2741 * Since we cannot handle signals, notify signal post code
2742 * about this by filling the sigmask.
2743 *
2744 * Also, if needed, wake up thread(s) that do not block the
2745 * same signals as the exiting thread, since the thread might
2746 * have been selected for delivery and woken up.
2747 */
2748 SIGFILLSET(unblocked);
2749 SIGSETNAND(unblocked, td->td_sigmask);
2750 SIGFILLSET(td->td_sigmask);
2751 reschedule_signals(p, unblocked, 0);
2752
2753 }
2754
2755 static int
sigdeferstop_curr_flags(int cflags)2756 sigdeferstop_curr_flags(int cflags)
2757 {
2758
2759 MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2760 (cflags & TDF_SBDRY) != 0);
2761 return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2762 }
2763
2764 /*
2765 * Defer the delivery of SIGSTOP for the current thread, according to
2766 * the requested mode. Returns previous flags, which must be restored
2767 * by sigallowstop().
2768 *
2769 * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2770 * cleared by the current thread, which allow the lock-less read-only
2771 * accesses below.
2772 */
2773 int
sigdeferstop_impl(int mode)2774 sigdeferstop_impl(int mode)
2775 {
2776 struct thread *td;
2777 int cflags, nflags;
2778
2779 td = curthread;
2780 cflags = sigdeferstop_curr_flags(td->td_flags);
2781 switch (mode) {
2782 case SIGDEFERSTOP_NOP:
2783 nflags = cflags;
2784 break;
2785 case SIGDEFERSTOP_OFF:
2786 nflags = 0;
2787 break;
2788 case SIGDEFERSTOP_SILENT:
2789 nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2790 break;
2791 case SIGDEFERSTOP_EINTR:
2792 nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2793 break;
2794 case SIGDEFERSTOP_ERESTART:
2795 nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2796 break;
2797 default:
2798 panic("sigdeferstop: invalid mode %x", mode);
2799 break;
2800 }
2801 if (cflags == nflags)
2802 return (SIGDEFERSTOP_VAL_NCHG);
2803 thread_lock(td);
2804 td->td_flags = (td->td_flags & ~cflags) | nflags;
2805 thread_unlock(td);
2806 return (cflags);
2807 }
2808
2809 /*
2810 * Restores the STOP handling mode, typically permitting the delivery
2811 * of SIGSTOP for the current thread. This does not immediately
2812 * suspend if a stop was posted. Instead, the thread will suspend
2813 * either via ast() or a subsequent interruptible sleep.
2814 */
2815 void
sigallowstop_impl(int prev)2816 sigallowstop_impl(int prev)
2817 {
2818 struct thread *td;
2819 int cflags;
2820
2821 KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2822 KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2823 ("sigallowstop: incorrect previous mode %x", prev));
2824 td = curthread;
2825 cflags = sigdeferstop_curr_flags(td->td_flags);
2826 if (cflags != prev) {
2827 thread_lock(td);
2828 td->td_flags = (td->td_flags & ~cflags) | prev;
2829 thread_unlock(td);
2830 }
2831 }
2832
2833 /*
2834 * If the current process has received a signal (should be caught or cause
2835 * termination, should interrupt current syscall), return the signal number.
2836 * Stop signals with default action are processed immediately, then cleared;
2837 * they aren't returned. This is checked after each entry to the system for
2838 * a syscall or trap (though this can usually be done without calling issignal
2839 * by checking the pending signal masks in cursig.) The normal call
2840 * sequence is
2841 *
2842 * while (sig = cursig(curthread))
2843 * postsig(sig);
2844 */
2845 static int
issignal(struct thread * td)2846 issignal(struct thread *td)
2847 {
2848 struct proc *p;
2849 struct sigacts *ps;
2850 struct sigqueue *queue;
2851 sigset_t sigpending;
2852 ksiginfo_t ksi;
2853 int prop, sig;
2854
2855 p = td->td_proc;
2856 ps = p->p_sigacts;
2857 mtx_assert(&ps->ps_mtx, MA_OWNED);
2858 PROC_LOCK_ASSERT(p, MA_OWNED);
2859 for (;;) {
2860 sigpending = td->td_sigqueue.sq_signals;
2861 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2862 SIGSETNAND(sigpending, td->td_sigmask);
2863
2864 if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2865 (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2866 SIG_STOPSIGMASK(sigpending);
2867 if (SIGISEMPTY(sigpending)) /* no signal to send */
2868 return (0);
2869
2870 /*
2871 * Do fast sigblock if requested by usermode. Since
2872 * we do know that there was a signal pending at this
2873 * point, set the FAST_SIGBLOCK_PEND as indicator for
2874 * usermode to perform a dummy call to
2875 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
2876 * delivery of postponed pending signal.
2877 */
2878 if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
2879 if (td->td_sigblock_val != 0)
2880 SIGSETNAND(sigpending, fastblock_mask);
2881 if (SIGISEMPTY(sigpending)) {
2882 td->td_pflags |= TDP_SIGFASTPENDING;
2883 return (0);
2884 }
2885 }
2886
2887 if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2888 (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2889 SIGISMEMBER(sigpending, SIGSTOP)) {
2890 /*
2891 * If debugger just attached, always consume
2892 * SIGSTOP from ptrace(PT_ATTACH) first, to
2893 * execute the debugger attach ritual in
2894 * order.
2895 */
2896 sig = SIGSTOP;
2897 td->td_dbgflags |= TDB_FSTP;
2898 } else {
2899 sig = sig_ffs(&sigpending);
2900 }
2901
2902 /*
2903 * We should see pending but ignored signals
2904 * only if P_TRACED was on when they were posted.
2905 */
2906 if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2907 (p->p_flag & P_TRACED) == 0) {
2908 sigqueue_delete(&td->td_sigqueue, sig);
2909 sigqueue_delete(&p->p_sigqueue, sig);
2910 continue;
2911 }
2912 if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2913 /*
2914 * If traced, always stop.
2915 * Remove old signal from queue before the stop.
2916 * XXX shrug off debugger, it causes siginfo to
2917 * be thrown away.
2918 */
2919 queue = &td->td_sigqueue;
2920 ksiginfo_init(&ksi);
2921 if (sigqueue_get(queue, sig, &ksi) == 0) {
2922 queue = &p->p_sigqueue;
2923 sigqueue_get(queue, sig, &ksi);
2924 }
2925 td->td_si = ksi.ksi_info;
2926
2927 mtx_unlock(&ps->ps_mtx);
2928 sig = ptracestop(td, sig, &ksi);
2929 mtx_lock(&ps->ps_mtx);
2930
2931 td->td_si.si_signo = 0;
2932
2933 /*
2934 * Keep looking if the debugger discarded or
2935 * replaced the signal.
2936 */
2937 if (sig == 0)
2938 continue;
2939
2940 /*
2941 * If the signal became masked, re-queue it.
2942 */
2943 if (SIGISMEMBER(td->td_sigmask, sig)) {
2944 ksi.ksi_flags |= KSI_HEAD;
2945 sigqueue_add(&p->p_sigqueue, sig, &ksi);
2946 continue;
2947 }
2948
2949 /*
2950 * If the traced bit got turned off, requeue
2951 * the signal and go back up to the top to
2952 * rescan signals. This ensures that p_sig*
2953 * and p_sigact are consistent.
2954 */
2955 if ((p->p_flag & P_TRACED) == 0) {
2956 ksi.ksi_flags |= KSI_HEAD;
2957 sigqueue_add(queue, sig, &ksi);
2958 continue;
2959 }
2960 }
2961
2962 prop = sigprop(sig);
2963
2964 /*
2965 * Decide whether the signal should be returned.
2966 * Return the signal's number, or fall through
2967 * to clear it from the pending mask.
2968 */
2969 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2970 case (intptr_t)SIG_DFL:
2971 /*
2972 * Don't take default actions on system processes.
2973 */
2974 if (p->p_pid <= 1) {
2975 #ifdef DIAGNOSTIC
2976 /*
2977 * Are you sure you want to ignore SIGSEGV
2978 * in init? XXX
2979 */
2980 printf("Process (pid %lu) got signal %d\n",
2981 (u_long)p->p_pid, sig);
2982 #endif
2983 break; /* == ignore */
2984 }
2985 /*
2986 * If there is a pending stop signal to process with
2987 * default action, stop here, then clear the signal.
2988 * Traced or exiting processes should ignore stops.
2989 * Additionally, a member of an orphaned process group
2990 * should ignore tty stops.
2991 */
2992 if (prop & SIGPROP_STOP) {
2993 mtx_unlock(&ps->ps_mtx);
2994 if ((p->p_flag & (P_TRACED | P_WEXIT |
2995 P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
2996 pg_flags & PGRP_ORPHANED) != 0 &&
2997 (prop & SIGPROP_TTYSTOP) != 0)) {
2998 mtx_lock(&ps->ps_mtx);
2999 break; /* == ignore */
3000 }
3001 if (TD_SBDRY_INTR(td)) {
3002 KASSERT((td->td_flags & TDF_SBDRY) != 0,
3003 ("lost TDF_SBDRY"));
3004 mtx_lock(&ps->ps_mtx);
3005 return (-1);
3006 }
3007 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3008 &p->p_mtx.lock_object, "Catching SIGSTOP");
3009 sigqueue_delete(&td->td_sigqueue, sig);
3010 sigqueue_delete(&p->p_sigqueue, sig);
3011 p->p_flag |= P_STOPPED_SIG;
3012 p->p_xsig = sig;
3013 PROC_SLOCK(p);
3014 sig_suspend_threads(td, p, 0);
3015 thread_suspend_switch(td, p);
3016 PROC_SUNLOCK(p);
3017 mtx_lock(&ps->ps_mtx);
3018 goto next;
3019 } else if (prop & SIGPROP_IGNORE) {
3020 /*
3021 * Except for SIGCONT, shouldn't get here.
3022 * Default action is to ignore; drop it.
3023 */
3024 break; /* == ignore */
3025 } else
3026 return (sig);
3027 /*NOTREACHED*/
3028
3029 case (intptr_t)SIG_IGN:
3030 /*
3031 * Masking above should prevent us ever trying
3032 * to take action on an ignored signal other
3033 * than SIGCONT, unless process is traced.
3034 */
3035 if ((prop & SIGPROP_CONT) == 0 &&
3036 (p->p_flag & P_TRACED) == 0)
3037 printf("issignal\n");
3038 break; /* == ignore */
3039
3040 default:
3041 /*
3042 * This signal has an action, let
3043 * postsig() process it.
3044 */
3045 return (sig);
3046 }
3047 sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */
3048 sigqueue_delete(&p->p_sigqueue, sig);
3049 next:;
3050 }
3051 /* NOTREACHED */
3052 }
3053
3054 void
thread_stopped(struct proc * p)3055 thread_stopped(struct proc *p)
3056 {
3057 int n;
3058
3059 PROC_LOCK_ASSERT(p, MA_OWNED);
3060 PROC_SLOCK_ASSERT(p, MA_OWNED);
3061 n = p->p_suspcount;
3062 if (p == curproc)
3063 n++;
3064 if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3065 PROC_SUNLOCK(p);
3066 p->p_flag &= ~P_WAITED;
3067 PROC_LOCK(p->p_pptr);
3068 childproc_stopped(p, (p->p_flag & P_TRACED) ?
3069 CLD_TRAPPED : CLD_STOPPED);
3070 PROC_UNLOCK(p->p_pptr);
3071 PROC_SLOCK(p);
3072 }
3073 }
3074
3075 /*
3076 * Take the action for the specified signal
3077 * from the current set of pending signals.
3078 */
3079 int
postsig(int sig)3080 postsig(int sig)
3081 {
3082 struct thread *td;
3083 struct proc *p;
3084 struct sigacts *ps;
3085 sig_t action;
3086 ksiginfo_t ksi;
3087 sigset_t returnmask;
3088
3089 KASSERT(sig != 0, ("postsig"));
3090
3091 td = curthread;
3092 p = td->td_proc;
3093 PROC_LOCK_ASSERT(p, MA_OWNED);
3094 ps = p->p_sigacts;
3095 mtx_assert(&ps->ps_mtx, MA_OWNED);
3096 ksiginfo_init(&ksi);
3097 if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3098 sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3099 return (0);
3100 ksi.ksi_signo = sig;
3101 if (ksi.ksi_code == SI_TIMER)
3102 itimer_accept(p, ksi.ksi_timerid, &ksi);
3103 action = ps->ps_sigact[_SIG_IDX(sig)];
3104 #ifdef KTRACE
3105 if (KTRPOINT(td, KTR_PSIG))
3106 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3107 &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3108 #endif
3109
3110 if (action == SIG_DFL) {
3111 /*
3112 * Default action, where the default is to kill
3113 * the process. (Other cases were ignored above.)
3114 */
3115 mtx_unlock(&ps->ps_mtx);
3116 proc_td_siginfo_capture(td, &ksi.ksi_info);
3117 sigexit(td, sig);
3118 /* NOTREACHED */
3119 } else {
3120 /*
3121 * If we get here, the signal must be caught.
3122 */
3123 KASSERT(action != SIG_IGN, ("postsig action %p", action));
3124 KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3125 ("postsig action: blocked sig %d", sig));
3126
3127 /*
3128 * Set the new mask value and also defer further
3129 * occurrences of this signal.
3130 *
3131 * Special case: user has done a sigsuspend. Here the
3132 * current mask is not of interest, but rather the
3133 * mask from before the sigsuspend is what we want
3134 * restored after the signal processing is completed.
3135 */
3136 if (td->td_pflags & TDP_OLDMASK) {
3137 returnmask = td->td_oldsigmask;
3138 td->td_pflags &= ~TDP_OLDMASK;
3139 } else
3140 returnmask = td->td_sigmask;
3141
3142 if (p->p_sig == sig) {
3143 p->p_sig = 0;
3144 }
3145 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3146 postsig_done(sig, td, ps);
3147 }
3148 return (1);
3149 }
3150
3151 int
sig_ast_checksusp(struct thread * td)3152 sig_ast_checksusp(struct thread *td)
3153 {
3154 struct proc *p;
3155 int ret;
3156
3157 p = td->td_proc;
3158 PROC_LOCK_ASSERT(p, MA_OWNED);
3159
3160 if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3161 return (0);
3162
3163 ret = thread_suspend_check(1);
3164 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3165 return (ret);
3166 }
3167
3168 int
sig_ast_needsigchk(struct thread * td)3169 sig_ast_needsigchk(struct thread *td)
3170 {
3171 struct proc *p;
3172 struct sigacts *ps;
3173 int ret, sig;
3174
3175 p = td->td_proc;
3176 PROC_LOCK_ASSERT(p, MA_OWNED);
3177
3178 if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3179 return (0);
3180
3181 ps = p->p_sigacts;
3182 mtx_lock(&ps->ps_mtx);
3183 sig = cursig(td);
3184 if (sig == -1) {
3185 mtx_unlock(&ps->ps_mtx);
3186 KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3187 KASSERT(TD_SBDRY_INTR(td),
3188 ("lost TDF_SERESTART of TDF_SEINTR"));
3189 KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3190 (TDF_SEINTR | TDF_SERESTART),
3191 ("both TDF_SEINTR and TDF_SERESTART"));
3192 ret = TD_SBDRY_ERRNO(td);
3193 } else if (sig != 0) {
3194 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3195 mtx_unlock(&ps->ps_mtx);
3196 } else {
3197 mtx_unlock(&ps->ps_mtx);
3198 ret = 0;
3199 }
3200
3201 /*
3202 * Do not go into sleep if this thread was the ptrace(2)
3203 * attach leader. cursig() consumed SIGSTOP from PT_ATTACH,
3204 * but we usually act on the signal by interrupting sleep, and
3205 * should do that here as well.
3206 */
3207 if ((td->td_dbgflags & TDB_FSTP) != 0) {
3208 if (ret == 0)
3209 ret = EINTR;
3210 td->td_dbgflags &= ~TDB_FSTP;
3211 }
3212
3213 return (ret);
3214 }
3215
3216 int
sig_intr(void)3217 sig_intr(void)
3218 {
3219 struct thread *td;
3220 struct proc *p;
3221 int ret;
3222
3223 td = curthread;
3224 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3225 return (0);
3226
3227 p = td->td_proc;
3228
3229 PROC_LOCK(p);
3230 ret = sig_ast_checksusp(td);
3231 if (ret == 0)
3232 ret = sig_ast_needsigchk(td);
3233 PROC_UNLOCK(p);
3234 return (ret);
3235 }
3236
3237 void
proc_wkilled(struct proc * p)3238 proc_wkilled(struct proc *p)
3239 {
3240
3241 PROC_LOCK_ASSERT(p, MA_OWNED);
3242 if ((p->p_flag & P_WKILLED) == 0) {
3243 p->p_flag |= P_WKILLED;
3244 /*
3245 * Notify swapper that there is a process to swap in.
3246 * The notification is racy, at worst it would take 10
3247 * seconds for the swapper process to notice.
3248 */
3249 if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3250 wakeup(&proc0);
3251 }
3252 }
3253
3254 /*
3255 * Kill the current process for stated reason.
3256 */
3257 void
killproc(struct proc * p,const char * why)3258 killproc(struct proc *p, const char *why)
3259 {
3260
3261 PROC_LOCK_ASSERT(p, MA_OWNED);
3262 CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3263 p->p_comm);
3264 log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3265 p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3266 p->p_ucred->cr_uid, why);
3267 proc_wkilled(p);
3268 kern_psignal(p, SIGKILL);
3269 }
3270
3271 /*
3272 * Force the current process to exit with the specified signal, dumping core
3273 * if appropriate. We bypass the normal tests for masked and caught signals,
3274 * allowing unrecoverable failures to terminate the process without changing
3275 * signal state. Mark the accounting record with the signal termination.
3276 * If dumping core, save the signal number for the debugger. Calls exit and
3277 * does not return.
3278 */
3279 void
sigexit(struct thread * td,int sig)3280 sigexit(struct thread *td, int sig)
3281 {
3282 struct proc *p = td->td_proc;
3283
3284 PROC_LOCK_ASSERT(p, MA_OWNED);
3285 p->p_acflag |= AXSIG;
3286 /*
3287 * We must be single-threading to generate a core dump. This
3288 * ensures that the registers in the core file are up-to-date.
3289 * Also, the ELF dump handler assumes that the thread list doesn't
3290 * change out from under it.
3291 *
3292 * XXX If another thread attempts to single-thread before us
3293 * (e.g. via fork()), we won't get a dump at all.
3294 */
3295 if ((sigprop(sig) & SIGPROP_CORE) &&
3296 thread_single(p, SINGLE_NO_EXIT) == 0) {
3297 p->p_sig = sig;
3298 /*
3299 * Log signals which would cause core dumps
3300 * (Log as LOG_INFO to appease those who don't want
3301 * these messages.)
3302 * XXX : Todo, as well as euid, write out ruid too
3303 * Note that coredump() drops proc lock.
3304 */
3305 if (coredump(td) == 0)
3306 sig |= WCOREFLAG;
3307 if (kern_logsigexit)
3308 log(LOG_INFO,
3309 "pid %d (%s), jid %d, uid %d: exited on "
3310 "signal %d%s\n", p->p_pid, p->p_comm,
3311 p->p_ucred->cr_prison->pr_id,
3312 td->td_ucred->cr_uid,
3313 sig &~ WCOREFLAG,
3314 sig & WCOREFLAG ? " (core dumped)" : "");
3315 } else
3316 PROC_UNLOCK(p);
3317 exit1(td, 0, sig);
3318 /* NOTREACHED */
3319 }
3320
3321 /*
3322 * Send queued SIGCHLD to parent when child process's state
3323 * is changed.
3324 */
3325 static void
sigparent(struct proc * p,int reason,int status)3326 sigparent(struct proc *p, int reason, int status)
3327 {
3328 PROC_LOCK_ASSERT(p, MA_OWNED);
3329 PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3330
3331 if (p->p_ksi != NULL) {
3332 p->p_ksi->ksi_signo = SIGCHLD;
3333 p->p_ksi->ksi_code = reason;
3334 p->p_ksi->ksi_status = status;
3335 p->p_ksi->ksi_pid = p->p_pid;
3336 p->p_ksi->ksi_uid = p->p_ucred->cr_ruid;
3337 if (KSI_ONQ(p->p_ksi))
3338 return;
3339 }
3340 pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3341 }
3342
3343 static void
childproc_jobstate(struct proc * p,int reason,int sig)3344 childproc_jobstate(struct proc *p, int reason, int sig)
3345 {
3346 struct sigacts *ps;
3347
3348 PROC_LOCK_ASSERT(p, MA_OWNED);
3349 PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3350
3351 /*
3352 * Wake up parent sleeping in kern_wait(), also send
3353 * SIGCHLD to parent, but SIGCHLD does not guarantee
3354 * that parent will awake, because parent may masked
3355 * the signal.
3356 */
3357 p->p_pptr->p_flag |= P_STATCHILD;
3358 wakeup(p->p_pptr);
3359
3360 ps = p->p_pptr->p_sigacts;
3361 mtx_lock(&ps->ps_mtx);
3362 if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3363 mtx_unlock(&ps->ps_mtx);
3364 sigparent(p, reason, sig);
3365 } else
3366 mtx_unlock(&ps->ps_mtx);
3367 }
3368
3369 void
childproc_stopped(struct proc * p,int reason)3370 childproc_stopped(struct proc *p, int reason)
3371 {
3372
3373 childproc_jobstate(p, reason, p->p_xsig);
3374 }
3375
3376 void
childproc_continued(struct proc * p)3377 childproc_continued(struct proc *p)
3378 {
3379 childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3380 }
3381
3382 void
childproc_exited(struct proc * p)3383 childproc_exited(struct proc *p)
3384 {
3385 int reason, status;
3386
3387 if (WCOREDUMP(p->p_xsig)) {
3388 reason = CLD_DUMPED;
3389 status = WTERMSIG(p->p_xsig);
3390 } else if (WIFSIGNALED(p->p_xsig)) {
3391 reason = CLD_KILLED;
3392 status = WTERMSIG(p->p_xsig);
3393 } else {
3394 reason = CLD_EXITED;
3395 status = p->p_xexit;
3396 }
3397 /*
3398 * XXX avoid calling wakeup(p->p_pptr), the work is
3399 * done in exit1().
3400 */
3401 sigparent(p, reason, status);
3402 }
3403
3404 #define MAX_NUM_CORE_FILES 100000
3405 #ifndef NUM_CORE_FILES
3406 #define NUM_CORE_FILES 5
3407 #endif
3408 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3409 static int num_cores = NUM_CORE_FILES;
3410
3411 static int
sysctl_debug_num_cores_check(SYSCTL_HANDLER_ARGS)3412 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3413 {
3414 int error;
3415 int new_val;
3416
3417 new_val = num_cores;
3418 error = sysctl_handle_int(oidp, &new_val, 0, req);
3419 if (error != 0 || req->newptr == NULL)
3420 return (error);
3421 if (new_val > MAX_NUM_CORE_FILES)
3422 new_val = MAX_NUM_CORE_FILES;
3423 if (new_val < 0)
3424 new_val = 0;
3425 num_cores = new_val;
3426 return (0);
3427 }
3428 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3429 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3430 sysctl_debug_num_cores_check, "I",
3431 "Maximum number of generated process corefiles while using index format");
3432
3433 #define GZIP_SUFFIX ".gz"
3434 #define ZSTD_SUFFIX ".zst"
3435
3436 int compress_user_cores = 0;
3437
3438 static int
sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)3439 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3440 {
3441 int error, val;
3442
3443 val = compress_user_cores;
3444 error = sysctl_handle_int(oidp, &val, 0, req);
3445 if (error != 0 || req->newptr == NULL)
3446 return (error);
3447 if (val != 0 && !compressor_avail(val))
3448 return (EINVAL);
3449 compress_user_cores = val;
3450 return (error);
3451 }
3452 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3453 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3454 sysctl_compress_user_cores, "I",
3455 "Enable compression of user corefiles ("
3456 __XSTRING(COMPRESS_GZIP) " = gzip, "
3457 __XSTRING(COMPRESS_ZSTD) " = zstd)");
3458
3459 int compress_user_cores_level = 6;
3460 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3461 &compress_user_cores_level, 0,
3462 "Corefile compression level");
3463
3464 /*
3465 * Protect the access to corefilename[] by allproc_lock.
3466 */
3467 #define corefilename_lock allproc_lock
3468
3469 static char corefilename[MAXPATHLEN] = {"%N.core"};
3470 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3471
3472 static int
sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)3473 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3474 {
3475 int error;
3476
3477 sx_xlock(&corefilename_lock);
3478 error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3479 req);
3480 sx_xunlock(&corefilename_lock);
3481
3482 return (error);
3483 }
3484 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3485 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3486 "Process corefile name format string");
3487
3488 static void
vnode_close_locked(struct thread * td,struct vnode * vp)3489 vnode_close_locked(struct thread *td, struct vnode *vp)
3490 {
3491
3492 VOP_UNLOCK(vp);
3493 vn_close(vp, FWRITE, td->td_ucred, td);
3494 }
3495
3496 /*
3497 * If the core format has a %I in it, then we need to check
3498 * for existing corefiles before defining a name.
3499 * To do this we iterate over 0..ncores to find a
3500 * non-existing core file name to use. If all core files are
3501 * already used we choose the oldest one.
3502 */
3503 static int
corefile_open_last(struct thread * td,char * name,int indexpos,int indexlen,int ncores,struct vnode ** vpp)3504 corefile_open_last(struct thread *td, char *name, int indexpos,
3505 int indexlen, int ncores, struct vnode **vpp)
3506 {
3507 struct vnode *oldvp, *nextvp, *vp;
3508 struct vattr vattr;
3509 struct nameidata nd;
3510 int error, i, flags, oflags, cmode;
3511 char ch;
3512 struct timespec lasttime;
3513
3514 nextvp = oldvp = NULL;
3515 cmode = S_IRUSR | S_IWUSR;
3516 oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3517 (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3518
3519 for (i = 0; i < ncores; i++) {
3520 flags = O_CREAT | FWRITE | O_NOFOLLOW;
3521
3522 ch = name[indexpos + indexlen];
3523 (void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3524 i);
3525 name[indexpos + indexlen] = ch;
3526
3527 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3528 error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3529 NULL);
3530 if (error != 0)
3531 break;
3532
3533 vp = nd.ni_vp;
3534 NDFREE(&nd, NDF_ONLY_PNBUF);
3535 if ((flags & O_CREAT) == O_CREAT) {
3536 nextvp = vp;
3537 break;
3538 }
3539
3540 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3541 if (error != 0) {
3542 vnode_close_locked(td, vp);
3543 break;
3544 }
3545
3546 if (oldvp == NULL ||
3547 lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3548 (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3549 lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3550 if (oldvp != NULL)
3551 vn_close(oldvp, FWRITE, td->td_ucred, td);
3552 oldvp = vp;
3553 VOP_UNLOCK(oldvp);
3554 lasttime = vattr.va_mtime;
3555 } else {
3556 vnode_close_locked(td, vp);
3557 }
3558 }
3559
3560 if (oldvp != NULL) {
3561 if (nextvp == NULL) {
3562 if ((td->td_proc->p_flag & P_SUGID) != 0) {
3563 error = EFAULT;
3564 vn_close(oldvp, FWRITE, td->td_ucred, td);
3565 } else {
3566 nextvp = oldvp;
3567 error = vn_lock(nextvp, LK_EXCLUSIVE);
3568 if (error != 0) {
3569 vn_close(nextvp, FWRITE, td->td_ucred,
3570 td);
3571 nextvp = NULL;
3572 }
3573 }
3574 } else {
3575 vn_close(oldvp, FWRITE, td->td_ucred, td);
3576 }
3577 }
3578 if (error != 0) {
3579 if (nextvp != NULL)
3580 vnode_close_locked(td, oldvp);
3581 } else {
3582 *vpp = nextvp;
3583 }
3584
3585 return (error);
3586 }
3587
3588 /*
3589 * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3590 * Expand the name described in corefilename, using name, uid, and pid
3591 * and open/create core file.
3592 * corefilename is a printf-like string, with three format specifiers:
3593 * %N name of process ("name")
3594 * %P process id (pid)
3595 * %U user id (uid)
3596 * For example, "%N.core" is the default; they can be disabled completely
3597 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3598 * This is controlled by the sysctl variable kern.corefile (see above).
3599 */
3600 static int
corefile_open(const char * comm,uid_t uid,pid_t pid,struct thread * td,int compress,int signum,struct vnode ** vpp,char ** namep)3601 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3602 int compress, int signum, struct vnode **vpp, char **namep)
3603 {
3604 struct sbuf sb;
3605 struct nameidata nd;
3606 const char *format;
3607 char *hostname, *name;
3608 int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3609
3610 hostname = NULL;
3611 format = corefilename;
3612 name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3613 indexlen = 0;
3614 indexpos = -1;
3615 ncores = num_cores;
3616 (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3617 sx_slock(&corefilename_lock);
3618 for (i = 0; format[i] != '\0'; i++) {
3619 switch (format[i]) {
3620 case '%': /* Format character */
3621 i++;
3622 switch (format[i]) {
3623 case '%':
3624 sbuf_putc(&sb, '%');
3625 break;
3626 case 'H': /* hostname */
3627 if (hostname == NULL) {
3628 hostname = malloc(MAXHOSTNAMELEN,
3629 M_TEMP, M_WAITOK);
3630 }
3631 getcredhostname(td->td_ucred, hostname,
3632 MAXHOSTNAMELEN);
3633 sbuf_printf(&sb, "%s", hostname);
3634 break;
3635 case 'I': /* autoincrementing index */
3636 if (indexpos != -1) {
3637 sbuf_printf(&sb, "%%I");
3638 break;
3639 }
3640
3641 indexpos = sbuf_len(&sb);
3642 sbuf_printf(&sb, "%u", ncores - 1);
3643 indexlen = sbuf_len(&sb) - indexpos;
3644 break;
3645 case 'N': /* process name */
3646 sbuf_printf(&sb, "%s", comm);
3647 break;
3648 case 'P': /* process id */
3649 sbuf_printf(&sb, "%u", pid);
3650 break;
3651 case 'S': /* signal number */
3652 sbuf_printf(&sb, "%i", signum);
3653 break;
3654 case 'U': /* user id */
3655 sbuf_printf(&sb, "%u", uid);
3656 break;
3657 default:
3658 log(LOG_ERR,
3659 "Unknown format character %c in "
3660 "corename `%s'\n", format[i], format);
3661 break;
3662 }
3663 break;
3664 default:
3665 sbuf_putc(&sb, format[i]);
3666 break;
3667 }
3668 }
3669 sx_sunlock(&corefilename_lock);
3670 free(hostname, M_TEMP);
3671 if (compress == COMPRESS_GZIP)
3672 sbuf_printf(&sb, GZIP_SUFFIX);
3673 else if (compress == COMPRESS_ZSTD)
3674 sbuf_printf(&sb, ZSTD_SUFFIX);
3675 if (sbuf_error(&sb) != 0) {
3676 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3677 "long\n", (long)pid, comm, (u_long)uid);
3678 sbuf_delete(&sb);
3679 free(name, M_TEMP);
3680 return (ENOMEM);
3681 }
3682 sbuf_finish(&sb);
3683 sbuf_delete(&sb);
3684
3685 if (indexpos != -1) {
3686 error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3687 vpp);
3688 if (error != 0) {
3689 log(LOG_ERR,
3690 "pid %d (%s), uid (%u): Path `%s' failed "
3691 "on initial open test, error = %d\n",
3692 pid, comm, uid, name, error);
3693 }
3694 } else {
3695 cmode = S_IRUSR | S_IWUSR;
3696 oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3697 (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3698 flags = O_CREAT | FWRITE | O_NOFOLLOW;
3699 if ((td->td_proc->p_flag & P_SUGID) != 0)
3700 flags |= O_EXCL;
3701
3702 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3703 error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3704 NULL);
3705 if (error == 0) {
3706 *vpp = nd.ni_vp;
3707 NDFREE(&nd, NDF_ONLY_PNBUF);
3708 }
3709 }
3710
3711 if (error != 0) {
3712 #ifdef AUDIT
3713 audit_proc_coredump(td, name, error);
3714 #endif
3715 free(name, M_TEMP);
3716 return (error);
3717 }
3718 *namep = name;
3719 return (0);
3720 }
3721
3722 /*
3723 * Dump a process' core. The main routine does some
3724 * policy checking, and creates the name of the coredump;
3725 * then it passes on a vnode and a size limit to the process-specific
3726 * coredump routine if there is one; if there _is not_ one, it returns
3727 * ENOSYS; otherwise it returns the error from the process-specific routine.
3728 */
3729
3730 static int
coredump(struct thread * td)3731 coredump(struct thread *td)
3732 {
3733 struct proc *p = td->td_proc;
3734 struct ucred *cred = td->td_ucred;
3735 struct vnode *vp;
3736 struct flock lf;
3737 struct vattr vattr;
3738 size_t fullpathsize;
3739 int error, error1, locked;
3740 char *name; /* name of corefile */
3741 void *rl_cookie;
3742 off_t limit;
3743 char *fullpath, *freepath = NULL;
3744 struct sbuf *sb;
3745
3746 PROC_LOCK_ASSERT(p, MA_OWNED);
3747 MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3748
3749 if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3750 (p->p_flag2 & P2_NOTRACE) != 0) {
3751 PROC_UNLOCK(p);
3752 return (EFAULT);
3753 }
3754
3755 /*
3756 * Note that the bulk of limit checking is done after
3757 * the corefile is created. The exception is if the limit
3758 * for corefiles is 0, in which case we don't bother
3759 * creating the corefile at all. This layout means that
3760 * a corefile is truncated instead of not being created,
3761 * if it is larger than the limit.
3762 */
3763 limit = (off_t)lim_cur(td, RLIMIT_CORE);
3764 if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3765 PROC_UNLOCK(p);
3766 return (EFBIG);
3767 }
3768 PROC_UNLOCK(p);
3769
3770 error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3771 compress_user_cores, p->p_sig, &vp, &name);
3772 if (error != 0)
3773 return (error);
3774
3775 /*
3776 * Don't dump to non-regular files or files with links.
3777 * Do not dump into system files. Effective user must own the corefile.
3778 */
3779 if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3780 vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3781 vattr.va_uid != cred->cr_uid) {
3782 VOP_UNLOCK(vp);
3783 error = EFAULT;
3784 goto out;
3785 }
3786
3787 VOP_UNLOCK(vp);
3788
3789 /* Postpone other writers, including core dumps of other processes. */
3790 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3791
3792 lf.l_whence = SEEK_SET;
3793 lf.l_start = 0;
3794 lf.l_len = 0;
3795 lf.l_type = F_WRLCK;
3796 locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3797
3798 VATTR_NULL(&vattr);
3799 vattr.va_size = 0;
3800 if (set_core_nodump_flag)
3801 vattr.va_flags = UF_NODUMP;
3802 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3803 VOP_SETATTR(vp, &vattr, cred);
3804 VOP_UNLOCK(vp);
3805 PROC_LOCK(p);
3806 p->p_acflag |= ACORE;
3807 PROC_UNLOCK(p);
3808
3809 if (p->p_sysent->sv_coredump != NULL) {
3810 error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3811 } else {
3812 error = ENOSYS;
3813 }
3814
3815 if (locked) {
3816 lf.l_type = F_UNLCK;
3817 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3818 }
3819 vn_rangelock_unlock(vp, rl_cookie);
3820
3821 /*
3822 * Notify the userland helper that a process triggered a core dump.
3823 * This allows the helper to run an automated debugging session.
3824 */
3825 if (error != 0 || coredump_devctl == 0)
3826 goto out;
3827 sb = sbuf_new_auto();
3828 if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3829 goto out2;
3830 sbuf_printf(sb, "comm=\"");
3831 devctl_safe_quote_sb(sb, fullpath);
3832 free(freepath, M_TEMP);
3833 sbuf_printf(sb, "\" core=\"");
3834
3835 /*
3836 * We can't lookup core file vp directly. When we're replacing a core, and
3837 * other random times, we flush the name cache, so it will fail. Instead,
3838 * if the path of the core is relative, add the current dir in front if it.
3839 */
3840 if (name[0] != '/') {
3841 fullpathsize = MAXPATHLEN;
3842 freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3843 if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3844 free(freepath, M_TEMP);
3845 goto out2;
3846 }
3847 devctl_safe_quote_sb(sb, fullpath);
3848 free(freepath, M_TEMP);
3849 sbuf_putc(sb, '/');
3850 }
3851 devctl_safe_quote_sb(sb, name);
3852 sbuf_printf(sb, "\"");
3853 if (sbuf_finish(sb) == 0)
3854 devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3855 out2:
3856 sbuf_delete(sb);
3857 out:
3858 error1 = vn_close(vp, FWRITE, cred, td);
3859 if (error == 0)
3860 error = error1;
3861 #ifdef AUDIT
3862 audit_proc_coredump(td, name, error);
3863 #endif
3864 free(name, M_TEMP);
3865 return (error);
3866 }
3867
3868 /*
3869 * Nonexistent system call-- signal process (may want to handle it). Flag
3870 * error in case process won't see signal immediately (blocked or ignored).
3871 */
3872 #ifndef _SYS_SYSPROTO_H_
3873 struct nosys_args {
3874 int dummy;
3875 };
3876 #endif
3877 /* ARGSUSED */
3878 int
nosys(struct thread * td,struct nosys_args * args)3879 nosys(struct thread *td, struct nosys_args *args)
3880 {
3881 struct proc *p;
3882
3883 p = td->td_proc;
3884
3885 PROC_LOCK(p);
3886 tdsignal(td, SIGSYS);
3887 PROC_UNLOCK(p);
3888 if (kern_lognosys == 1 || kern_lognosys == 3) {
3889 uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3890 td->td_sa.code);
3891 }
3892 if (kern_lognosys == 2 || kern_lognosys == 3 ||
3893 (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
3894 printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3895 td->td_sa.code);
3896 }
3897 return (ENOSYS);
3898 }
3899
3900 /*
3901 * Send a SIGIO or SIGURG signal to a process or process group using stored
3902 * credentials rather than those of the current process.
3903 */
3904 void
pgsigio(struct sigio ** sigiop,int sig,int checkctty)3905 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3906 {
3907 ksiginfo_t ksi;
3908 struct sigio *sigio;
3909
3910 ksiginfo_init(&ksi);
3911 ksi.ksi_signo = sig;
3912 ksi.ksi_code = SI_KERNEL;
3913
3914 SIGIO_LOCK();
3915 sigio = *sigiop;
3916 if (sigio == NULL) {
3917 SIGIO_UNLOCK();
3918 return;
3919 }
3920 if (sigio->sio_pgid > 0) {
3921 PROC_LOCK(sigio->sio_proc);
3922 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3923 kern_psignal(sigio->sio_proc, sig);
3924 PROC_UNLOCK(sigio->sio_proc);
3925 } else if (sigio->sio_pgid < 0) {
3926 struct proc *p;
3927
3928 PGRP_LOCK(sigio->sio_pgrp);
3929 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3930 PROC_LOCK(p);
3931 if (p->p_state == PRS_NORMAL &&
3932 CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3933 (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3934 kern_psignal(p, sig);
3935 PROC_UNLOCK(p);
3936 }
3937 PGRP_UNLOCK(sigio->sio_pgrp);
3938 }
3939 SIGIO_UNLOCK();
3940 }
3941
3942 static int
filt_sigattach(struct knote * kn)3943 filt_sigattach(struct knote *kn)
3944 {
3945 struct proc *p = curproc;
3946
3947 kn->kn_ptr.p_proc = p;
3948 kn->kn_flags |= EV_CLEAR; /* automatically set */
3949
3950 knlist_add(p->p_klist, kn, 0);
3951
3952 return (0);
3953 }
3954
3955 static void
filt_sigdetach(struct knote * kn)3956 filt_sigdetach(struct knote *kn)
3957 {
3958 struct proc *p = kn->kn_ptr.p_proc;
3959
3960 knlist_remove(p->p_klist, kn, 0);
3961 }
3962
3963 /*
3964 * signal knotes are shared with proc knotes, so we apply a mask to
3965 * the hint in order to differentiate them from process hints. This
3966 * could be avoided by using a signal-specific knote list, but probably
3967 * isn't worth the trouble.
3968 */
3969 static int
filt_signal(struct knote * kn,long hint)3970 filt_signal(struct knote *kn, long hint)
3971 {
3972
3973 if (hint & NOTE_SIGNAL) {
3974 hint &= ~NOTE_SIGNAL;
3975
3976 if (kn->kn_id == hint)
3977 kn->kn_data++;
3978 }
3979 return (kn->kn_data != 0);
3980 }
3981
3982 struct sigacts *
sigacts_alloc(void)3983 sigacts_alloc(void)
3984 {
3985 struct sigacts *ps;
3986
3987 ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3988 refcount_init(&ps->ps_refcnt, 1);
3989 mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3990 return (ps);
3991 }
3992
3993 void
sigacts_free(struct sigacts * ps)3994 sigacts_free(struct sigacts *ps)
3995 {
3996
3997 if (refcount_release(&ps->ps_refcnt) == 0)
3998 return;
3999 mtx_destroy(&ps->ps_mtx);
4000 free(ps, M_SUBPROC);
4001 }
4002
4003 struct sigacts *
sigacts_hold(struct sigacts * ps)4004 sigacts_hold(struct sigacts *ps)
4005 {
4006
4007 refcount_acquire(&ps->ps_refcnt);
4008 return (ps);
4009 }
4010
4011 void
sigacts_copy(struct sigacts * dest,struct sigacts * src)4012 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4013 {
4014
4015 KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4016 mtx_lock(&src->ps_mtx);
4017 bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4018 mtx_unlock(&src->ps_mtx);
4019 }
4020
4021 int
sigacts_shared(struct sigacts * ps)4022 sigacts_shared(struct sigacts *ps)
4023 {
4024
4025 return (ps->ps_refcnt > 1);
4026 }
4027
4028 void
sig_drop_caught(struct proc * p)4029 sig_drop_caught(struct proc *p)
4030 {
4031 int sig;
4032 struct sigacts *ps;
4033
4034 ps = p->p_sigacts;
4035 PROC_LOCK_ASSERT(p, MA_OWNED);
4036 mtx_assert(&ps->ps_mtx, MA_OWNED);
4037 while (SIGNOTEMPTY(ps->ps_sigcatch)) {
4038 sig = sig_ffs(&ps->ps_sigcatch);
4039 sigdflt(ps, sig);
4040 if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4041 sigqueue_delete_proc(p, sig);
4042 }
4043 }
4044
4045 static void
sigfastblock_failed(struct thread * td,bool sendsig,bool write)4046 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4047 {
4048 ksiginfo_t ksi;
4049
4050 /*
4051 * Prevent further fetches and SIGSEGVs, allowing thread to
4052 * issue syscalls despite corruption.
4053 */
4054 sigfastblock_clear(td);
4055
4056 if (!sendsig)
4057 return;
4058 ksiginfo_init_trap(&ksi);
4059 ksi.ksi_signo = SIGSEGV;
4060 ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4061 ksi.ksi_addr = td->td_sigblock_ptr;
4062 trapsignal(td, &ksi);
4063 }
4064
4065 static bool
sigfastblock_fetch_sig(struct thread * td,bool sendsig,uint32_t * valp)4066 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4067 {
4068 uint32_t res;
4069
4070 if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4071 return (true);
4072 if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4073 sigfastblock_failed(td, sendsig, false);
4074 return (false);
4075 }
4076 *valp = res;
4077 td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4078 return (true);
4079 }
4080
4081 static void
sigfastblock_resched(struct thread * td,bool resched)4082 sigfastblock_resched(struct thread *td, bool resched)
4083 {
4084 struct proc *p;
4085
4086 if (resched) {
4087 p = td->td_proc;
4088 PROC_LOCK(p);
4089 reschedule_signals(p, td->td_sigmask, 0);
4090 PROC_UNLOCK(p);
4091 }
4092 thread_lock(td);
4093 td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4094 thread_unlock(td);
4095 }
4096
4097 int
sys_sigfastblock(struct thread * td,struct sigfastblock_args * uap)4098 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4099 {
4100 struct proc *p;
4101 int error, res;
4102 uint32_t oldval;
4103
4104 error = 0;
4105 p = td->td_proc;
4106 switch (uap->cmd) {
4107 case SIGFASTBLOCK_SETPTR:
4108 if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4109 error = EBUSY;
4110 break;
4111 }
4112 if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4113 error = EINVAL;
4114 break;
4115 }
4116 td->td_pflags |= TDP_SIGFASTBLOCK;
4117 td->td_sigblock_ptr = uap->ptr;
4118 break;
4119
4120 case SIGFASTBLOCK_UNBLOCK:
4121 if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4122 error = EINVAL;
4123 break;
4124 }
4125
4126 for (;;) {
4127 res = casueword32(td->td_sigblock_ptr,
4128 SIGFASTBLOCK_PEND, &oldval, 0);
4129 if (res == -1) {
4130 error = EFAULT;
4131 sigfastblock_failed(td, false, true);
4132 break;
4133 }
4134 if (res == 0)
4135 break;
4136 MPASS(res == 1);
4137 if (oldval != SIGFASTBLOCK_PEND) {
4138 error = EBUSY;
4139 break;
4140 }
4141 error = thread_check_susp(td, false);
4142 if (error != 0)
4143 break;
4144 }
4145 if (error != 0)
4146 break;
4147
4148 /*
4149 * td_sigblock_val is cleared there, but not on a
4150 * syscall exit. The end effect is that a single
4151 * interruptible sleep, while user sigblock word is
4152 * set, might return EINTR or ERESTART to usermode
4153 * without delivering signal. All further sleeps,
4154 * until userspace clears the word and does
4155 * sigfastblock(UNBLOCK), observe current word and no
4156 * longer get interrupted. It is slight
4157 * non-conformance, with alternative to have read the
4158 * sigblock word on each syscall entry.
4159 */
4160 td->td_sigblock_val = 0;
4161
4162 /*
4163 * Rely on normal ast mechanism to deliver pending
4164 * signals to current thread. But notify others about
4165 * fake unblock.
4166 */
4167 sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4168
4169 break;
4170
4171 case SIGFASTBLOCK_UNSETPTR:
4172 if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4173 error = EINVAL;
4174 break;
4175 }
4176 if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4177 error = EFAULT;
4178 break;
4179 }
4180 if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4181 error = EBUSY;
4182 break;
4183 }
4184 sigfastblock_clear(td);
4185 break;
4186
4187 default:
4188 error = EINVAL;
4189 break;
4190 }
4191 return (error);
4192 }
4193
4194 void
sigfastblock_clear(struct thread * td)4195 sigfastblock_clear(struct thread *td)
4196 {
4197 bool resched;
4198
4199 if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4200 return;
4201 td->td_sigblock_val = 0;
4202 resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4203 SIGPENDING(td);
4204 td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4205 sigfastblock_resched(td, resched);
4206 }
4207
4208 void
sigfastblock_fetch(struct thread * td)4209 sigfastblock_fetch(struct thread *td)
4210 {
4211 uint32_t val;
4212
4213 (void)sigfastblock_fetch_sig(td, true, &val);
4214 }
4215
4216 static void
sigfastblock_setpend1(struct thread * td)4217 sigfastblock_setpend1(struct thread *td)
4218 {
4219 int res;
4220 uint32_t oldval;
4221
4222 if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4223 return;
4224 res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4225 if (res == -1) {
4226 sigfastblock_failed(td, true, false);
4227 return;
4228 }
4229 for (;;) {
4230 res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4231 oldval | SIGFASTBLOCK_PEND);
4232 if (res == -1) {
4233 sigfastblock_failed(td, true, true);
4234 return;
4235 }
4236 if (res == 0) {
4237 td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4238 td->td_pflags &= ~TDP_SIGFASTPENDING;
4239 break;
4240 }
4241 MPASS(res == 1);
4242 if (thread_check_susp(td, false) != 0)
4243 break;
4244 }
4245 }
4246
4247 void
sigfastblock_setpend(struct thread * td,bool resched)4248 sigfastblock_setpend(struct thread *td, bool resched)
4249 {
4250 struct proc *p;
4251
4252 sigfastblock_setpend1(td);
4253 if (resched) {
4254 p = td->td_proc;
4255 PROC_LOCK(p);
4256 reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4257 PROC_UNLOCK(p);
4258 }
4259 }
4260