xref: /xnu-11215/osfmk/kern/stack.c (revision 8d741a5d)
1 /*
2  * Copyright (c) 2003-2019 Apple Inc. All rights reserved.
3  *
4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. The rights granted to you under the License
10  * may not be used to create, or enable the creation or redistribution of,
11  * unlawful or unlicensed copies of an Apple operating system, or to
12  * circumvent, violate, or enable the circumvention or violation of, any
13  * terms of an Apple operating system software license agreement.
14  *
15  * Please obtain a copy of the License at
16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
17  *
18  * The Original Code and all software distributed under the License are
19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23  * Please see the License for the specific language governing rights and
24  * limitations under the License.
25  *
26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27  */
28 /*
29  *	Kernel stack management routines.
30  */
31 
32 #include <mach/mach_host.h>
33 #include <mach/mach_types.h>
34 #include <mach/processor_set.h>
35 
36 #include <kern/kern_types.h>
37 #include <kern/lock_group.h>
38 #include <kern/mach_param.h>
39 #include <kern/misc_protos.h>
40 #include <kern/percpu.h>
41 #include <kern/processor.h>
42 #include <kern/thread.h>
43 #include <kern/zalloc.h>
44 #include <kern/kalloc.h>
45 #include <kern/ledger.h>
46 
47 #include <vm/vm_map_xnu.h>
48 #include <vm/vm_kern_xnu.h>
49 
50 #include <san/kasan.h>
51 
52 /*
53  *	We allocate stacks from generic kernel VM.
54  *
55  *	The stack_free_list can only be accessed at splsched,
56  *	because stack_alloc_try/thread_invoke operate at splsched.
57  */
58 
59 static SIMPLE_LOCK_DECLARE(stack_lock_data, 0);
60 #define stack_lock()            simple_lock(&stack_lock_data, LCK_GRP_NULL)
61 #define stack_unlock()          simple_unlock(&stack_lock_data)
62 
63 #define STACK_CACHE_SIZE        2
64 
65 static vm_offset_t              stack_free_list;
66 
67 static unsigned int             stack_free_count, stack_free_hiwat;             /* free list count */
68 static unsigned int             stack_hiwat;
69 unsigned int                    stack_total;                            /* current total count */
70 unsigned long long              stack_allocs;                           /* total count of allocations */
71 
72 static unsigned int             stack_free_target;
73 static int                      stack_free_delta;
74 
75 static unsigned int             stack_new_count;                                                /* total new stack allocations */
76 
77 static SECURITY_READ_ONLY_LATE(vm_offset_t)  stack_addr_mask;
78 SECURITY_READ_ONLY_LATE(vm_offset_t)         kernel_stack_size;
79 SECURITY_READ_ONLY_LATE(vm_offset_t)         kernel_stack_mask;
80 vm_offset_t                                  kernel_stack_depth_max;
81 
82 struct stack_cache {
83 	vm_offset_t     free;
84 	unsigned int    count;
85 };
86 static struct stack_cache PERCPU_DATA(stack_cache);
87 
88 /*
89  *	The next field is at the base of the stack,
90  *	so the low end is left unsullied.
91  */
92 #define stack_next(stack)       \
93 	(*((vm_offset_t *)((stack) + kernel_stack_size) - 1))
94 
95 static inline vm_offset_t
roundup_pow2(vm_offset_t size)96 roundup_pow2(vm_offset_t size)
97 {
98 	if ((size & (size - 1)) == 0) {
99 		/* if size is a power of 2 we're good */
100 		return size;
101 	}
102 
103 	return 1ul << flsll(size);
104 }
105 
106 static vm_offset_t stack_alloc_internal(void);
107 static void stack_free_stack(vm_offset_t);
108 
109 static void
stack_init(void)110 stack_init(void)
111 {
112 	uint32_t kernel_stack_pages = atop(KERNEL_STACK_SIZE);
113 
114 	kernel_stack_size = KERNEL_STACK_SIZE;
115 	kernel_stack_mask = -KERNEL_STACK_SIZE;
116 
117 	if (PE_parse_boot_argn("kernel_stack_pages",
118 	    &kernel_stack_pages,
119 	    sizeof(kernel_stack_pages))) {
120 		kernel_stack_size = kernel_stack_pages * PAGE_SIZE;
121 	}
122 
123 	if (kernel_stack_size < round_page(kernel_stack_size)) {
124 		panic("stack_init: stack size %p not a multiple of page size %d",
125 		    (void *) kernel_stack_size, PAGE_SIZE);
126 	}
127 
128 	stack_addr_mask = roundup_pow2(kernel_stack_size) - 1;
129 	kernel_stack_mask = ~stack_addr_mask;
130 }
131 STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, stack_init);
132 
133 /*
134  *	stack_alloc:
135  *
136  *	Allocate a stack for a thread, may
137  *	block.
138  */
139 
140 static vm_offset_t
stack_alloc_internal(void)141 stack_alloc_internal(void)
142 {
143 	vm_offset_t     stack = 0;
144 	spl_t           s;
145 	kma_flags_t     flags = KMA_NOFAIL | KMA_GUARD_FIRST | KMA_GUARD_LAST |
146 	    KMA_KSTACK | KMA_KOBJECT | KMA_ZERO | KMA_SPRAYQTN;
147 
148 	s = splsched();
149 	stack_lock();
150 	stack_allocs++;
151 	stack = stack_free_list;
152 	if (stack != 0) {
153 		stack_free_list = stack_next(stack);
154 		stack_free_count--;
155 	} else {
156 		if (++stack_total > stack_hiwat) {
157 			stack_hiwat = stack_total;
158 		}
159 		stack_new_count++;
160 	}
161 	stack_free_delta--;
162 	stack_unlock();
163 	splx(s);
164 
165 	if (stack == 0) {
166 		/*
167 		 * Request guard pages on either side of the stack.  Ask
168 		 * kernel_memory_allocate() for two extra pages to account
169 		 * for these.
170 		 */
171 
172 		kernel_memory_allocate(kernel_map, &stack,
173 		    kernel_stack_size + ptoa(2), stack_addr_mask,
174 		    flags, VM_KERN_MEMORY_STACK);
175 
176 		/*
177 		 * The stack address that comes back is the address of the lower
178 		 * guard page.  Skip past it to get the actual stack base address.
179 		 */
180 
181 		stack += PAGE_SIZE;
182 	}
183 	return stack;
184 }
185 
186 void
stack_alloc(thread_t thread)187 stack_alloc(
188 	thread_t        thread)
189 {
190 	assert(thread->kernel_stack == 0);
191 	machine_stack_attach(thread, stack_alloc_internal());
192 }
193 
194 void
stack_handoff(thread_t from,thread_t to)195 stack_handoff(thread_t from, thread_t to)
196 {
197 	assert(from == current_thread());
198 	machine_stack_handoff(from, to);
199 }
200 
201 /*
202  *	stack_free:
203  *
204  *	Detach and free the stack for a thread.
205  */
206 void
stack_free(thread_t thread)207 stack_free(
208 	thread_t        thread)
209 {
210 	vm_offset_t         stack = machine_stack_detach(thread);
211 
212 	assert(stack);
213 	if (stack != thread->reserved_stack) {
214 		stack_free_stack(stack);
215 	}
216 }
217 
218 void
stack_free_reserved(thread_t thread)219 stack_free_reserved(
220 	thread_t        thread)
221 {
222 	if (thread->reserved_stack != thread->kernel_stack) {
223 		stack_free_stack(thread->reserved_stack);
224 	}
225 }
226 
227 static void
stack_free_stack(vm_offset_t stack)228 stack_free_stack(
229 	vm_offset_t             stack)
230 {
231 	struct stack_cache      *cache;
232 	spl_t                           s;
233 
234 #if KASAN_DEBUG
235 	/* Sanity check - stack should be unpoisoned by now */
236 	assert(kasan_check_shadow(stack, kernel_stack_size, 0));
237 #endif
238 
239 	s = splsched();
240 	cache = PERCPU_GET(stack_cache);
241 	if (cache->count < STACK_CACHE_SIZE) {
242 		stack_next(stack) = cache->free;
243 		cache->free = stack;
244 		cache->count++;
245 	} else {
246 		stack_lock();
247 		stack_next(stack) = stack_free_list;
248 		stack_free_list = stack;
249 		if (++stack_free_count > stack_free_hiwat) {
250 			stack_free_hiwat = stack_free_count;
251 		}
252 		stack_free_delta++;
253 		stack_unlock();
254 	}
255 	splx(s);
256 }
257 
258 /*
259  *	stack_alloc_try:
260  *
261  *	Non-blocking attempt to allocate a
262  *	stack for a thread.
263  *
264  *	Returns TRUE on success.
265  *
266  *	Called at splsched.
267  */
268 boolean_t
stack_alloc_try(thread_t thread)269 stack_alloc_try(
270 	thread_t                thread)
271 {
272 	struct stack_cache      *cache;
273 	vm_offset_t                     stack;
274 
275 	cache = PERCPU_GET(stack_cache);
276 	stack = cache->free;
277 	if (stack != 0) {
278 		cache->free = stack_next(stack);
279 		cache->count--;
280 	} else {
281 		if (stack_free_list != 0) {
282 			stack_lock();
283 			stack = stack_free_list;
284 			if (stack != 0) {
285 				stack_free_list = stack_next(stack);
286 				stack_free_count--;
287 				stack_free_delta--;
288 			}
289 			stack_unlock();
290 		}
291 	}
292 
293 	if (stack != 0 || (stack = thread->reserved_stack) != 0) {
294 		machine_stack_attach(thread, stack);
295 		return TRUE;
296 	}
297 
298 	return FALSE;
299 }
300 
301 static unsigned int             stack_collect_tick, last_stack_tick;
302 
303 /*
304  *	stack_collect:
305  *
306  *	Free excess kernel stacks, may
307  *	block.
308  */
309 void
stack_collect(void)310 stack_collect(void)
311 {
312 	if (stack_collect_tick != last_stack_tick) {
313 		unsigned int    target;
314 		vm_offset_t             stack;
315 		spl_t                   s;
316 
317 		s = splsched();
318 		stack_lock();
319 
320 		target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
321 		target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
322 
323 		while (stack_free_count > target) {
324 			stack = stack_free_list;
325 			stack_free_list = stack_next(stack);
326 			stack_free_count--; stack_total--;
327 			stack_unlock();
328 			splx(s);
329 
330 			/*
331 			 * Get the stack base address, then decrement by one page
332 			 * to account for the lower guard page.  Add two extra pages
333 			 * to the size to account for the guard pages on both ends
334 			 * that were originally requested when the stack was allocated
335 			 * back in stack_alloc().
336 			 */
337 
338 			stack = (vm_offset_t)vm_map_trunc_page(
339 				stack,
340 				VM_MAP_PAGE_MASK(kernel_map));
341 			stack -= PAGE_SIZE;
342 			kmem_free(kernel_map, stack, kernel_stack_size + ptoa(2));
343 			stack = 0;
344 
345 			s = splsched();
346 			stack_lock();
347 
348 			target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
349 			target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
350 		}
351 
352 		last_stack_tick = stack_collect_tick;
353 
354 		stack_unlock();
355 		splx(s);
356 	}
357 }
358 
359 /*
360  *	compute_stack_target:
361  *
362  *	Computes a new target free list count
363  *	based on recent alloc / free activity.
364  *
365  *	Limits stack collection to once per
366  *	computation period.
367  */
368 void
compute_stack_target(__unused void * arg)369 compute_stack_target(
370 	__unused void           *arg)
371 {
372 	spl_t           s;
373 
374 	s = splsched();
375 	stack_lock();
376 
377 	if (stack_free_target > 5) {
378 		stack_free_target = (4 * stack_free_target) / 5;
379 	} else if (stack_free_target > 0) {
380 		stack_free_target--;
381 	}
382 
383 	stack_free_target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
384 
385 	stack_free_delta = 0;
386 	stack_collect_tick++;
387 
388 	stack_unlock();
389 	splx(s);
390 }
391 
392 /* OBSOLETE */
393 void    stack_privilege(
394 	thread_t        thread);
395 
396 void
stack_privilege(__unused thread_t thread)397 stack_privilege(
398 	__unused thread_t       thread)
399 {
400 	/* OBSOLETE */
401 }
402 
403 /*
404  * Return info on stack usage for threads in a specific processor set
405  */
406 kern_return_t
processor_set_stack_usage(processor_set_t pset,unsigned int * totalp,vm_size_t * spacep,vm_size_t * residentp,vm_size_t * maxusagep,vm_offset_t * maxstackp)407 processor_set_stack_usage(
408 	processor_set_t pset,
409 	unsigned int    *totalp,
410 	vm_size_t       *spacep,
411 	vm_size_t       *residentp,
412 	vm_size_t       *maxusagep,
413 	vm_offset_t     *maxstackp)
414 {
415 #if DEVELOPMENT || DEBUG
416 	unsigned int total = 0;
417 	thread_t thread;
418 
419 	if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
420 		return KERN_INVALID_ARGUMENT;
421 	}
422 
423 	lck_mtx_lock(&tasks_threads_lock);
424 
425 	queue_iterate(&threads, thread, thread_t, threads) {
426 		total += (thread->kernel_stack != 0);
427 	}
428 
429 	lck_mtx_unlock(&tasks_threads_lock);
430 
431 	*totalp = total;
432 	*residentp = *spacep = total * round_page(kernel_stack_size);
433 	*maxusagep = 0;
434 	*maxstackp = 0;
435 	return KERN_SUCCESS;
436 
437 #else
438 #pragma unused(pset, totalp, spacep, residentp, maxusagep, maxstackp)
439 	return KERN_NOT_SUPPORTED;
440 #endif /* DEVELOPMENT || DEBUG */
441 }
442 
443 vm_offset_t
min_valid_stack_address(void)444 min_valid_stack_address(void)
445 {
446 	return (vm_offset_t)vm_map_min(kernel_map);
447 }
448 
449 vm_offset_t
max_valid_stack_address(void)450 max_valid_stack_address(void)
451 {
452 	return (vm_offset_t)vm_map_max(kernel_map);
453 }
454