xref: /sqlite-3.40.0/src/rowset.c (revision 45dc9ca4)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometimes new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** TEST and SMALLEST may not be used by the same RowSet.  This used to
61 ** be possible, but the feature was not used, so it was removed in order
62 ** to simplify the code.
63 */
64 #include "sqliteInt.h"
65 
66 
67 /*
68 ** Target size for allocation chunks.
69 */
70 #define ROWSET_ALLOCATION_SIZE 1024
71 
72 /*
73 ** The number of rowset entries per allocation chunk.
74 */
75 #define ROWSET_ENTRY_PER_CHUNK  \
76                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
77 
78 /*
79 ** Each entry in a RowSet is an instance of the following object.
80 **
81 ** This same object is reused to store a linked list of trees of RowSetEntry
82 ** objects.  In that alternative use, pRight points to the next entry
83 ** in the list, pLeft points to the tree, and v is unused.  The
84 ** RowSet.pForest value points to the head of this forest list.
85 */
86 struct RowSetEntry {
87   i64 v;                        /* ROWID value for this entry */
88   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
89   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
90 };
91 
92 /*
93 ** RowSetEntry objects are allocated in large chunks (instances of the
94 ** following structure) to reduce memory allocation overhead.  The
95 ** chunks are kept on a linked list so that they can be deallocated
96 ** when the RowSet is destroyed.
97 */
98 struct RowSetChunk {
99   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
100   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
101 };
102 
103 /*
104 ** A RowSet in an instance of the following structure.
105 **
106 ** A typedef of this structure if found in sqliteInt.h.
107 */
108 struct RowSet {
109   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
110   sqlite3 *db;                   /* The database connection */
111   struct RowSetEntry *pEntry;    /* List of entries using pRight */
112   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
113   struct RowSetEntry *pFresh;    /* Source of new entry objects */
114   struct RowSetEntry *pForest;   /* List of binary trees of entries */
115   u16 nFresh;                    /* Number of objects on pFresh */
116   u16 rsFlags;                   /* Various flags */
117   int iBatch;                    /* Current insert batch */
118 };
119 
120 /*
121 ** Allowed values for RowSet.rsFlags
122 */
123 #define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
124 #define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */
125 
126 /*
127 ** Allocate a RowSet object.  Return NULL if a memory allocation
128 ** error occurs.
129 */
sqlite3RowSetInit(sqlite3 * db)130 RowSet *sqlite3RowSetInit(sqlite3 *db){
131   RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p));
132   if( p ){
133     int N = sqlite3DbMallocSize(db, p);
134     p->pChunk = 0;
135     p->db = db;
136     p->pEntry = 0;
137     p->pLast = 0;
138     p->pForest = 0;
139     p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
140     p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
141     p->rsFlags = ROWSET_SORTED;
142     p->iBatch = 0;
143   }
144   return p;
145 }
146 
147 /*
148 ** Deallocate all chunks from a RowSet.  This frees all memory that
149 ** the RowSet has allocated over its lifetime.  This routine is
150 ** the destructor for the RowSet.
151 */
sqlite3RowSetClear(void * pArg)152 void sqlite3RowSetClear(void *pArg){
153   RowSet *p = (RowSet*)pArg;
154   struct RowSetChunk *pChunk, *pNextChunk;
155   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
156     pNextChunk = pChunk->pNextChunk;
157     sqlite3DbFree(p->db, pChunk);
158   }
159   p->pChunk = 0;
160   p->nFresh = 0;
161   p->pEntry = 0;
162   p->pLast = 0;
163   p->pForest = 0;
164   p->rsFlags = ROWSET_SORTED;
165 }
166 
167 /*
168 ** Deallocate all chunks from a RowSet.  This frees all memory that
169 ** the RowSet has allocated over its lifetime.  This routine is
170 ** the destructor for the RowSet.
171 */
sqlite3RowSetDelete(void * pArg)172 void sqlite3RowSetDelete(void *pArg){
173   sqlite3RowSetClear(pArg);
174   sqlite3DbFree(((RowSet*)pArg)->db, pArg);
175 }
176 
177 /*
178 ** Allocate a new RowSetEntry object that is associated with the
179 ** given RowSet.  Return a pointer to the new and completely uninitialized
180 ** object.
181 **
182 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
183 ** routine returns NULL.
184 */
rowSetEntryAlloc(RowSet * p)185 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
186   assert( p!=0 );
187   if( p->nFresh==0 ){  /*OPTIMIZATION-IF-FALSE*/
188     /* We could allocate a fresh RowSetEntry each time one is needed, but it
189     ** is more efficient to pull a preallocated entry from the pool */
190     struct RowSetChunk *pNew;
191     pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
192     if( pNew==0 ){
193       return 0;
194     }
195     pNew->pNextChunk = p->pChunk;
196     p->pChunk = pNew;
197     p->pFresh = pNew->aEntry;
198     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
199   }
200   p->nFresh--;
201   return p->pFresh++;
202 }
203 
204 /*
205 ** Insert a new value into a RowSet.
206 **
207 ** The mallocFailed flag of the database connection is set if a
208 ** memory allocation fails.
209 */
sqlite3RowSetInsert(RowSet * p,i64 rowid)210 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
211   struct RowSetEntry *pEntry;  /* The new entry */
212   struct RowSetEntry *pLast;   /* The last prior entry */
213 
214   /* This routine is never called after sqlite3RowSetNext() */
215   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
216 
217   pEntry = rowSetEntryAlloc(p);
218   if( pEntry==0 ) return;
219   pEntry->v = rowid;
220   pEntry->pRight = 0;
221   pLast = p->pLast;
222   if( pLast ){
223     if( rowid<=pLast->v ){  /*OPTIMIZATION-IF-FALSE*/
224       /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
225       ** where possible */
226       p->rsFlags &= ~ROWSET_SORTED;
227     }
228     pLast->pRight = pEntry;
229   }else{
230     p->pEntry = pEntry;
231   }
232   p->pLast = pEntry;
233 }
234 
235 /*
236 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
237 **
238 ** The input lists are connected via pRight pointers and are
239 ** assumed to each already be in sorted order.
240 */
rowSetEntryMerge(struct RowSetEntry * pA,struct RowSetEntry * pB)241 static struct RowSetEntry *rowSetEntryMerge(
242   struct RowSetEntry *pA,    /* First sorted list to be merged */
243   struct RowSetEntry *pB     /* Second sorted list to be merged */
244 ){
245   struct RowSetEntry head;
246   struct RowSetEntry *pTail;
247 
248   pTail = &head;
249   assert( pA!=0 && pB!=0 );
250   for(;;){
251     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
252     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
253     if( pA->v<=pB->v ){
254       if( pA->v<pB->v ) pTail = pTail->pRight = pA;
255       pA = pA->pRight;
256       if( pA==0 ){
257         pTail->pRight = pB;
258         break;
259       }
260     }else{
261       pTail = pTail->pRight = pB;
262       pB = pB->pRight;
263       if( pB==0 ){
264         pTail->pRight = pA;
265         break;
266       }
267     }
268   }
269   return head.pRight;
270 }
271 
272 /*
273 ** Sort all elements on the list of RowSetEntry objects into order of
274 ** increasing v.
275 */
rowSetEntrySort(struct RowSetEntry * pIn)276 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
277   unsigned int i;
278   struct RowSetEntry *pNext, *aBucket[40];
279 
280   memset(aBucket, 0, sizeof(aBucket));
281   while( pIn ){
282     pNext = pIn->pRight;
283     pIn->pRight = 0;
284     for(i=0; aBucket[i]; i++){
285       pIn = rowSetEntryMerge(aBucket[i], pIn);
286       aBucket[i] = 0;
287     }
288     aBucket[i] = pIn;
289     pIn = pNext;
290   }
291   pIn = aBucket[0];
292   for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
293     if( aBucket[i]==0 ) continue;
294     pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i];
295   }
296   return pIn;
297 }
298 
299 
300 /*
301 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
302 ** Convert this tree into a linked list connected by the pRight pointers
303 ** and return pointers to the first and last elements of the new list.
304 */
rowSetTreeToList(struct RowSetEntry * pIn,struct RowSetEntry ** ppFirst,struct RowSetEntry ** ppLast)305 static void rowSetTreeToList(
306   struct RowSetEntry *pIn,         /* Root of the input tree */
307   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
308   struct RowSetEntry **ppLast      /* Write tail of the output list here */
309 ){
310   assert( pIn!=0 );
311   if( pIn->pLeft ){
312     struct RowSetEntry *p;
313     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
314     p->pRight = pIn;
315   }else{
316     *ppFirst = pIn;
317   }
318   if( pIn->pRight ){
319     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
320   }else{
321     *ppLast = pIn;
322   }
323   assert( (*ppLast)->pRight==0 );
324 }
325 
326 
327 /*
328 ** Convert a sorted list of elements (connected by pRight) into a binary
329 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
330 ** node taken from the head of *ppList.  A depth of 2 means a tree with
331 ** three nodes.  And so forth.
332 **
333 ** Use as many entries from the input list as required and update the
334 ** *ppList to point to the unused elements of the list.  If the input
335 ** list contains too few elements, then construct an incomplete tree
336 ** and leave *ppList set to NULL.
337 **
338 ** Return a pointer to the root of the constructed binary tree.
339 */
rowSetNDeepTree(struct RowSetEntry ** ppList,int iDepth)340 static struct RowSetEntry *rowSetNDeepTree(
341   struct RowSetEntry **ppList,
342   int iDepth
343 ){
344   struct RowSetEntry *p;         /* Root of the new tree */
345   struct RowSetEntry *pLeft;     /* Left subtree */
346   if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
347     /* Prevent unnecessary deep recursion when we run out of entries */
348     return 0;
349   }
350   if( iDepth>1 ){   /*OPTIMIZATION-IF-TRUE*/
351     /* This branch causes a *balanced* tree to be generated.  A valid tree
352     ** is still generated without this branch, but the tree is wildly
353     ** unbalanced and inefficient. */
354     pLeft = rowSetNDeepTree(ppList, iDepth-1);
355     p = *ppList;
356     if( p==0 ){     /*OPTIMIZATION-IF-FALSE*/
357       /* It is safe to always return here, but the resulting tree
358       ** would be unbalanced */
359       return pLeft;
360     }
361     p->pLeft = pLeft;
362     *ppList = p->pRight;
363     p->pRight = rowSetNDeepTree(ppList, iDepth-1);
364   }else{
365     p = *ppList;
366     *ppList = p->pRight;
367     p->pLeft = p->pRight = 0;
368   }
369   return p;
370 }
371 
372 /*
373 ** Convert a sorted list of elements into a binary tree. Make the tree
374 ** as deep as it needs to be in order to contain the entire list.
375 */
rowSetListToTree(struct RowSetEntry * pList)376 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
377   int iDepth;           /* Depth of the tree so far */
378   struct RowSetEntry *p;       /* Current tree root */
379   struct RowSetEntry *pLeft;   /* Left subtree */
380 
381   assert( pList!=0 );
382   p = pList;
383   pList = p->pRight;
384   p->pLeft = p->pRight = 0;
385   for(iDepth=1; pList; iDepth++){
386     pLeft = p;
387     p = pList;
388     pList = p->pRight;
389     p->pLeft = pLeft;
390     p->pRight = rowSetNDeepTree(&pList, iDepth);
391   }
392   return p;
393 }
394 
395 /*
396 ** Extract the smallest element from the RowSet.
397 ** Write the element into *pRowid.  Return 1 on success.  Return
398 ** 0 if the RowSet is already empty.
399 **
400 ** After this routine has been called, the sqlite3RowSetInsert()
401 ** routine may not be called again.
402 **
403 ** This routine may not be called after sqlite3RowSetTest() has
404 ** been used.  Older versions of RowSet allowed that, but as the
405 ** capability was not used by the code generator, it was removed
406 ** for code economy.
407 */
sqlite3RowSetNext(RowSet * p,i64 * pRowid)408 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
409   assert( p!=0 );
410   assert( p->pForest==0 );  /* Cannot be used with sqlite3RowSetText() */
411 
412   /* Merge the forest into a single sorted list on first call */
413   if( (p->rsFlags & ROWSET_NEXT)==0 ){  /*OPTIMIZATION-IF-FALSE*/
414     if( (p->rsFlags & ROWSET_SORTED)==0 ){  /*OPTIMIZATION-IF-FALSE*/
415       p->pEntry = rowSetEntrySort(p->pEntry);
416     }
417     p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
418   }
419 
420   /* Return the next entry on the list */
421   if( p->pEntry ){
422     *pRowid = p->pEntry->v;
423     p->pEntry = p->pEntry->pRight;
424     if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
425       /* Free memory immediately, rather than waiting on sqlite3_finalize() */
426       sqlite3RowSetClear(p);
427     }
428     return 1;
429   }else{
430     return 0;
431   }
432 }
433 
434 /*
435 ** Check to see if element iRowid was inserted into the rowset as
436 ** part of any insert batch prior to iBatch.  Return 1 or 0.
437 **
438 ** If this is the first test of a new batch and if there exist entries
439 ** on pRowSet->pEntry, then sort those entries into the forest at
440 ** pRowSet->pForest so that they can be tested.
441 */
sqlite3RowSetTest(RowSet * pRowSet,int iBatch,sqlite3_int64 iRowid)442 int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
443   struct RowSetEntry *p, *pTree;
444 
445   /* This routine is never called after sqlite3RowSetNext() */
446   assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
447 
448   /* Sort entries into the forest on the first test of a new batch.
449   ** To save unnecessary work, only do this when the batch number changes.
450   */
451   if( iBatch!=pRowSet->iBatch ){  /*OPTIMIZATION-IF-FALSE*/
452     p = pRowSet->pEntry;
453     if( p ){
454       struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
455       if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
456         /* Only sort the current set of entries if they need it */
457         p = rowSetEntrySort(p);
458       }
459       for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
460         ppPrevTree = &pTree->pRight;
461         if( pTree->pLeft==0 ){
462           pTree->pLeft = rowSetListToTree(p);
463           break;
464         }else{
465           struct RowSetEntry *pAux, *pTail;
466           rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
467           pTree->pLeft = 0;
468           p = rowSetEntryMerge(pAux, p);
469         }
470       }
471       if( pTree==0 ){
472         *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
473         if( pTree ){
474           pTree->v = 0;
475           pTree->pRight = 0;
476           pTree->pLeft = rowSetListToTree(p);
477         }
478       }
479       pRowSet->pEntry = 0;
480       pRowSet->pLast = 0;
481       pRowSet->rsFlags |= ROWSET_SORTED;
482     }
483     pRowSet->iBatch = iBatch;
484   }
485 
486   /* Test to see if the iRowid value appears anywhere in the forest.
487   ** Return 1 if it does and 0 if not.
488   */
489   for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
490     p = pTree->pLeft;
491     while( p ){
492       if( p->v<iRowid ){
493         p = p->pRight;
494       }else if( p->v>iRowid ){
495         p = p->pLeft;
496       }else{
497         return 1;
498       }
499     }
500   }
501   return 0;
502 }
503