1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This is an SQLite module implementing full-text search.
14 */
15
16 /*
17 ** The code in this file is only compiled if:
18 **
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
21 **
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
24 */
25
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
32 **
33 **
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
38 **
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
42 **
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
47 **
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
52 **
53 ** Example encodings:
54 **
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
58 **
59 **
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
66 **
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
69 **
70 ** A doclist is stored like this:
71 **
72 ** array {
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
86 **
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
95 **
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
98 **
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
106 **
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
112 **
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
115 **
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
122 **
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
136 **
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
139 **
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
144 **
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
153 **
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
158 **
159 **
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
168 **
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
181 **
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
184 **
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
195 **
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
202 **
203 **
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
208 **
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
216 **
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
225 **
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
228 **
229 **
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
234 **
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
242 **
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
249 **
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
256 **
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
260 **
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
266 **
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
271 **
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
276 **
277 **
278 **
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
289 */
290
291 #include "fts3Int.h"
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
293
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
296 #endif
297
298 #include <assert.h>
299 #include <stdlib.h>
300 #include <stddef.h>
301 #include <stdio.h>
302 #include <string.h>
303 #include <stdarg.h>
304
305 #include "fts3.h"
306 #ifndef SQLITE_CORE
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
309 #endif
310
311 typedef struct Fts3HashWrapper Fts3HashWrapper;
312 struct Fts3HashWrapper {
313 Fts3Hash hash; /* Hash table */
314 int nRef; /* Number of pointers to this object */
315 };
316
317 static int fts3EvalNext(Fts3Cursor *pCsr);
318 static int fts3EvalStart(Fts3Cursor *pCsr);
319 static int fts3TermSegReaderCursor(
320 Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
321
322 /*
323 ** This variable is set to false when running tests for which the on disk
324 ** structures should not be corrupt. Otherwise, true. If it is false, extra
325 ** assert() conditions in the fts3 code are activated - conditions that are
326 ** only true if it is guaranteed that the fts3 database is not corrupt.
327 */
328 #ifdef SQLITE_DEBUG
329 int sqlite3_fts3_may_be_corrupt = 1;
330 #endif
331
332 /*
333 ** Write a 64-bit variable-length integer to memory starting at p[0].
334 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
335 ** The number of bytes written is returned.
336 */
sqlite3Fts3PutVarint(char * p,sqlite_int64 v)337 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
338 unsigned char *q = (unsigned char *) p;
339 sqlite_uint64 vu = v;
340 do{
341 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
342 vu >>= 7;
343 }while( vu!=0 );
344 q[-1] &= 0x7f; /* turn off high bit in final byte */
345 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
346 return (int) (q - (unsigned char *)p);
347 }
348
349 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
350 v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \
351 if( (v & mask2)==0 ){ var = v; return ret; }
352 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
353 v = (*ptr++); \
354 if( (v & mask2)==0 ){ var = v; return ret; }
355
sqlite3Fts3GetVarintU(const char * pBuf,sqlite_uint64 * v)356 int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){
357 const unsigned char *p = (const unsigned char*)pBuf;
358 const unsigned char *pStart = p;
359 u32 a;
360 u64 b;
361 int shift;
362
363 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
364 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
365 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
366 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
367 b = (a & 0x0FFFFFFF );
368
369 for(shift=28; shift<=63; shift+=7){
370 u64 c = *p++;
371 b += (c&0x7F) << shift;
372 if( (c & 0x80)==0 ) break;
373 }
374 *v = b;
375 return (int)(p - pStart);
376 }
377
378 /*
379 ** Read a 64-bit variable-length integer from memory starting at p[0].
380 ** Return the number of bytes read, or 0 on error.
381 ** The value is stored in *v.
382 */
sqlite3Fts3GetVarint(const char * pBuf,sqlite_int64 * v)383 int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
384 return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v);
385 }
386
387 /*
388 ** Read a 64-bit variable-length integer from memory starting at p[0] and
389 ** not extending past pEnd[-1].
390 ** Return the number of bytes read, or 0 on error.
391 ** The value is stored in *v.
392 */
sqlite3Fts3GetVarintBounded(const char * pBuf,const char * pEnd,sqlite_int64 * v)393 int sqlite3Fts3GetVarintBounded(
394 const char *pBuf,
395 const char *pEnd,
396 sqlite_int64 *v
397 ){
398 const unsigned char *p = (const unsigned char*)pBuf;
399 const unsigned char *pStart = p;
400 const unsigned char *pX = (const unsigned char*)pEnd;
401 u64 b = 0;
402 int shift;
403 for(shift=0; shift<=63; shift+=7){
404 u64 c = p<pX ? *p : 0;
405 p++;
406 b += (c&0x7F) << shift;
407 if( (c & 0x80)==0 ) break;
408 }
409 *v = b;
410 return (int)(p - pStart);
411 }
412
413 /*
414 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
415 ** a non-negative 32-bit integer before it is returned.
416 */
sqlite3Fts3GetVarint32(const char * p,int * pi)417 int sqlite3Fts3GetVarint32(const char *p, int *pi){
418 const unsigned char *ptr = (const unsigned char*)p;
419 u32 a;
420
421 #ifndef fts3GetVarint32
422 GETVARINT_INIT(a, ptr, 0, 0x00, 0x80, *pi, 1);
423 #else
424 a = (*ptr++);
425 assert( a & 0x80 );
426 #endif
427
428 GETVARINT_STEP(a, ptr, 7, 0x7F, 0x4000, *pi, 2);
429 GETVARINT_STEP(a, ptr, 14, 0x3FFF, 0x200000, *pi, 3);
430 GETVARINT_STEP(a, ptr, 21, 0x1FFFFF, 0x10000000, *pi, 4);
431 a = (a & 0x0FFFFFFF );
432 *pi = (int)(a | ((u32)(*ptr & 0x07) << 28));
433 assert( 0==(a & 0x80000000) );
434 assert( *pi>=0 );
435 return 5;
436 }
437
438 /*
439 ** Return the number of bytes required to encode v as a varint
440 */
sqlite3Fts3VarintLen(sqlite3_uint64 v)441 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
442 int i = 0;
443 do{
444 i++;
445 v >>= 7;
446 }while( v!=0 );
447 return i;
448 }
449
450 /*
451 ** Convert an SQL-style quoted string into a normal string by removing
452 ** the quote characters. The conversion is done in-place. If the
453 ** input does not begin with a quote character, then this routine
454 ** is a no-op.
455 **
456 ** Examples:
457 **
458 ** "abc" becomes abc
459 ** 'xyz' becomes xyz
460 ** [pqr] becomes pqr
461 ** `mno` becomes mno
462 **
463 */
sqlite3Fts3Dequote(char * z)464 void sqlite3Fts3Dequote(char *z){
465 char quote; /* Quote character (if any ) */
466
467 quote = z[0];
468 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
469 int iIn = 1; /* Index of next byte to read from input */
470 int iOut = 0; /* Index of next byte to write to output */
471
472 /* If the first byte was a '[', then the close-quote character is a ']' */
473 if( quote=='[' ) quote = ']';
474
475 while( z[iIn] ){
476 if( z[iIn]==quote ){
477 if( z[iIn+1]!=quote ) break;
478 z[iOut++] = quote;
479 iIn += 2;
480 }else{
481 z[iOut++] = z[iIn++];
482 }
483 }
484 z[iOut] = '\0';
485 }
486 }
487
488 /*
489 ** Read a single varint from the doclist at *pp and advance *pp to point
490 ** to the first byte past the end of the varint. Add the value of the varint
491 ** to *pVal.
492 */
fts3GetDeltaVarint(char ** pp,sqlite3_int64 * pVal)493 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
494 sqlite3_int64 iVal;
495 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
496 *pVal += iVal;
497 }
498
499 /*
500 ** When this function is called, *pp points to the first byte following a
501 ** varint that is part of a doclist (or position-list, or any other list
502 ** of varints). This function moves *pp to point to the start of that varint,
503 ** and sets *pVal by the varint value.
504 **
505 ** Argument pStart points to the first byte of the doclist that the
506 ** varint is part of.
507 */
fts3GetReverseVarint(char ** pp,char * pStart,sqlite3_int64 * pVal)508 static void fts3GetReverseVarint(
509 char **pp,
510 char *pStart,
511 sqlite3_int64 *pVal
512 ){
513 sqlite3_int64 iVal;
514 char *p;
515
516 /* Pointer p now points at the first byte past the varint we are
517 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
518 ** clear on character p[-1]. */
519 for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
520 p++;
521 *pp = p;
522
523 sqlite3Fts3GetVarint(p, &iVal);
524 *pVal = iVal;
525 }
526
527 /*
528 ** The xDisconnect() virtual table method.
529 */
fts3DisconnectMethod(sqlite3_vtab * pVtab)530 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
531 Fts3Table *p = (Fts3Table *)pVtab;
532 int i;
533
534 assert( p->nPendingData==0 );
535 assert( p->pSegments==0 );
536
537 /* Free any prepared statements held */
538 sqlite3_finalize(p->pSeekStmt);
539 for(i=0; i<SizeofArray(p->aStmt); i++){
540 sqlite3_finalize(p->aStmt[i]);
541 }
542 sqlite3_free(p->zSegmentsTbl);
543 sqlite3_free(p->zReadExprlist);
544 sqlite3_free(p->zWriteExprlist);
545 sqlite3_free(p->zContentTbl);
546 sqlite3_free(p->zLanguageid);
547
548 /* Invoke the tokenizer destructor to free the tokenizer. */
549 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
550
551 sqlite3_free(p);
552 return SQLITE_OK;
553 }
554
555 /*
556 ** Write an error message into *pzErr
557 */
sqlite3Fts3ErrMsg(char ** pzErr,const char * zFormat,...)558 void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
559 va_list ap;
560 sqlite3_free(*pzErr);
561 va_start(ap, zFormat);
562 *pzErr = sqlite3_vmprintf(zFormat, ap);
563 va_end(ap);
564 }
565
566 /*
567 ** Construct one or more SQL statements from the format string given
568 ** and then evaluate those statements. The success code is written
569 ** into *pRc.
570 **
571 ** If *pRc is initially non-zero then this routine is a no-op.
572 */
fts3DbExec(int * pRc,sqlite3 * db,const char * zFormat,...)573 static void fts3DbExec(
574 int *pRc, /* Success code */
575 sqlite3 *db, /* Database in which to run SQL */
576 const char *zFormat, /* Format string for SQL */
577 ... /* Arguments to the format string */
578 ){
579 va_list ap;
580 char *zSql;
581 if( *pRc ) return;
582 va_start(ap, zFormat);
583 zSql = sqlite3_vmprintf(zFormat, ap);
584 va_end(ap);
585 if( zSql==0 ){
586 *pRc = SQLITE_NOMEM;
587 }else{
588 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
589 sqlite3_free(zSql);
590 }
591 }
592
593 /*
594 ** The xDestroy() virtual table method.
595 */
fts3DestroyMethod(sqlite3_vtab * pVtab)596 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
597 Fts3Table *p = (Fts3Table *)pVtab;
598 int rc = SQLITE_OK; /* Return code */
599 const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
600 sqlite3 *db = p->db; /* Database handle */
601
602 /* Drop the shadow tables */
603 fts3DbExec(&rc, db,
604 "DROP TABLE IF EXISTS %Q.'%q_segments';"
605 "DROP TABLE IF EXISTS %Q.'%q_segdir';"
606 "DROP TABLE IF EXISTS %Q.'%q_docsize';"
607 "DROP TABLE IF EXISTS %Q.'%q_stat';"
608 "%s DROP TABLE IF EXISTS %Q.'%q_content';",
609 zDb, p->zName,
610 zDb, p->zName,
611 zDb, p->zName,
612 zDb, p->zName,
613 (p->zContentTbl ? "--" : ""), zDb,p->zName
614 );
615
616 /* If everything has worked, invoke fts3DisconnectMethod() to free the
617 ** memory associated with the Fts3Table structure and return SQLITE_OK.
618 ** Otherwise, return an SQLite error code.
619 */
620 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
621 }
622
623
624 /*
625 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
626 ** passed as the first argument. This is done as part of the xConnect()
627 ** and xCreate() methods.
628 **
629 ** If *pRc is non-zero when this function is called, it is a no-op.
630 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
631 ** before returning.
632 */
fts3DeclareVtab(int * pRc,Fts3Table * p)633 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
634 if( *pRc==SQLITE_OK ){
635 int i; /* Iterator variable */
636 int rc; /* Return code */
637 char *zSql; /* SQL statement passed to declare_vtab() */
638 char *zCols; /* List of user defined columns */
639 const char *zLanguageid;
640
641 zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
642 sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
643
644 /* Create a list of user columns for the virtual table */
645 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
646 for(i=1; zCols && i<p->nColumn; i++){
647 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
648 }
649
650 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
651 zSql = sqlite3_mprintf(
652 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
653 zCols, p->zName, zLanguageid
654 );
655 if( !zCols || !zSql ){
656 rc = SQLITE_NOMEM;
657 }else{
658 rc = sqlite3_declare_vtab(p->db, zSql);
659 }
660
661 sqlite3_free(zSql);
662 sqlite3_free(zCols);
663 *pRc = rc;
664 }
665 }
666
667 /*
668 ** Create the %_stat table if it does not already exist.
669 */
sqlite3Fts3CreateStatTable(int * pRc,Fts3Table * p)670 void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
671 fts3DbExec(pRc, p->db,
672 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
673 "(id INTEGER PRIMARY KEY, value BLOB);",
674 p->zDb, p->zName
675 );
676 if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
677 }
678
679 /*
680 ** Create the backing store tables (%_content, %_segments and %_segdir)
681 ** required by the FTS3 table passed as the only argument. This is done
682 ** as part of the vtab xCreate() method.
683 **
684 ** If the p->bHasDocsize boolean is true (indicating that this is an
685 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
686 ** %_stat tables required by FTS4.
687 */
fts3CreateTables(Fts3Table * p)688 static int fts3CreateTables(Fts3Table *p){
689 int rc = SQLITE_OK; /* Return code */
690 int i; /* Iterator variable */
691 sqlite3 *db = p->db; /* The database connection */
692
693 if( p->zContentTbl==0 ){
694 const char *zLanguageid = p->zLanguageid;
695 char *zContentCols; /* Columns of %_content table */
696
697 /* Create a list of user columns for the content table */
698 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
699 for(i=0; zContentCols && i<p->nColumn; i++){
700 char *z = p->azColumn[i];
701 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
702 }
703 if( zLanguageid && zContentCols ){
704 zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
705 }
706 if( zContentCols==0 ) rc = SQLITE_NOMEM;
707
708 /* Create the content table */
709 fts3DbExec(&rc, db,
710 "CREATE TABLE %Q.'%q_content'(%s)",
711 p->zDb, p->zName, zContentCols
712 );
713 sqlite3_free(zContentCols);
714 }
715
716 /* Create other tables */
717 fts3DbExec(&rc, db,
718 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
719 p->zDb, p->zName
720 );
721 fts3DbExec(&rc, db,
722 "CREATE TABLE %Q.'%q_segdir'("
723 "level INTEGER,"
724 "idx INTEGER,"
725 "start_block INTEGER,"
726 "leaves_end_block INTEGER,"
727 "end_block INTEGER,"
728 "root BLOB,"
729 "PRIMARY KEY(level, idx)"
730 ");",
731 p->zDb, p->zName
732 );
733 if( p->bHasDocsize ){
734 fts3DbExec(&rc, db,
735 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
736 p->zDb, p->zName
737 );
738 }
739 assert( p->bHasStat==p->bFts4 );
740 if( p->bHasStat ){
741 sqlite3Fts3CreateStatTable(&rc, p);
742 }
743 return rc;
744 }
745
746 /*
747 ** Store the current database page-size in bytes in p->nPgsz.
748 **
749 ** If *pRc is non-zero when this function is called, it is a no-op.
750 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
751 ** before returning.
752 */
fts3DatabasePageSize(int * pRc,Fts3Table * p)753 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
754 if( *pRc==SQLITE_OK ){
755 int rc; /* Return code */
756 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
757 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
758
759 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
760 if( !zSql ){
761 rc = SQLITE_NOMEM;
762 }else{
763 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
764 if( rc==SQLITE_OK ){
765 sqlite3_step(pStmt);
766 p->nPgsz = sqlite3_column_int(pStmt, 0);
767 rc = sqlite3_finalize(pStmt);
768 }else if( rc==SQLITE_AUTH ){
769 p->nPgsz = 1024;
770 rc = SQLITE_OK;
771 }
772 }
773 assert( p->nPgsz>0 || rc!=SQLITE_OK );
774 sqlite3_free(zSql);
775 *pRc = rc;
776 }
777 }
778
779 /*
780 ** "Special" FTS4 arguments are column specifications of the following form:
781 **
782 ** <key> = <value>
783 **
784 ** There may not be whitespace surrounding the "=" character. The <value>
785 ** term may be quoted, but the <key> may not.
786 */
fts3IsSpecialColumn(const char * z,int * pnKey,char ** pzValue)787 static int fts3IsSpecialColumn(
788 const char *z,
789 int *pnKey,
790 char **pzValue
791 ){
792 char *zValue;
793 const char *zCsr = z;
794
795 while( *zCsr!='=' ){
796 if( *zCsr=='\0' ) return 0;
797 zCsr++;
798 }
799
800 *pnKey = (int)(zCsr-z);
801 zValue = sqlite3_mprintf("%s", &zCsr[1]);
802 if( zValue ){
803 sqlite3Fts3Dequote(zValue);
804 }
805 *pzValue = zValue;
806 return 1;
807 }
808
809 /*
810 ** Append the output of a printf() style formatting to an existing string.
811 */
fts3Appendf(int * pRc,char ** pz,const char * zFormat,...)812 static void fts3Appendf(
813 int *pRc, /* IN/OUT: Error code */
814 char **pz, /* IN/OUT: Pointer to string buffer */
815 const char *zFormat, /* Printf format string to append */
816 ... /* Arguments for printf format string */
817 ){
818 if( *pRc==SQLITE_OK ){
819 va_list ap;
820 char *z;
821 va_start(ap, zFormat);
822 z = sqlite3_vmprintf(zFormat, ap);
823 va_end(ap);
824 if( z && *pz ){
825 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
826 sqlite3_free(z);
827 z = z2;
828 }
829 if( z==0 ) *pRc = SQLITE_NOMEM;
830 sqlite3_free(*pz);
831 *pz = z;
832 }
833 }
834
835 /*
836 ** Return a copy of input string zInput enclosed in double-quotes (") and
837 ** with all double quote characters escaped. For example:
838 **
839 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
840 **
841 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
842 ** is the callers responsibility to call sqlite3_free() to release this
843 ** memory.
844 */
fts3QuoteId(char const * zInput)845 static char *fts3QuoteId(char const *zInput){
846 sqlite3_int64 nRet;
847 char *zRet;
848 nRet = 2 + (int)strlen(zInput)*2 + 1;
849 zRet = sqlite3_malloc64(nRet);
850 if( zRet ){
851 int i;
852 char *z = zRet;
853 *(z++) = '"';
854 for(i=0; zInput[i]; i++){
855 if( zInput[i]=='"' ) *(z++) = '"';
856 *(z++) = zInput[i];
857 }
858 *(z++) = '"';
859 *(z++) = '\0';
860 }
861 return zRet;
862 }
863
864 /*
865 ** Return a list of comma separated SQL expressions and a FROM clause that
866 ** could be used in a SELECT statement such as the following:
867 **
868 ** SELECT <list of expressions> FROM %_content AS x ...
869 **
870 ** to return the docid, followed by each column of text data in order
871 ** from left to write. If parameter zFunc is not NULL, then instead of
872 ** being returned directly each column of text data is passed to an SQL
873 ** function named zFunc first. For example, if zFunc is "unzip" and the
874 ** table has the three user-defined columns "a", "b", and "c", the following
875 ** string is returned:
876 **
877 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
878 **
879 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
880 ** is the responsibility of the caller to eventually free it.
881 **
882 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
883 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
884 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
885 ** no error occurs, *pRc is left unmodified.
886 */
fts3ReadExprList(Fts3Table * p,const char * zFunc,int * pRc)887 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
888 char *zRet = 0;
889 char *zFree = 0;
890 char *zFunction;
891 int i;
892
893 if( p->zContentTbl==0 ){
894 if( !zFunc ){
895 zFunction = "";
896 }else{
897 zFree = zFunction = fts3QuoteId(zFunc);
898 }
899 fts3Appendf(pRc, &zRet, "docid");
900 for(i=0; i<p->nColumn; i++){
901 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
902 }
903 if( p->zLanguageid ){
904 fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
905 }
906 sqlite3_free(zFree);
907 }else{
908 fts3Appendf(pRc, &zRet, "rowid");
909 for(i=0; i<p->nColumn; i++){
910 fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
911 }
912 if( p->zLanguageid ){
913 fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
914 }
915 }
916 fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
917 p->zDb,
918 (p->zContentTbl ? p->zContentTbl : p->zName),
919 (p->zContentTbl ? "" : "_content")
920 );
921 return zRet;
922 }
923
924 /*
925 ** Return a list of N comma separated question marks, where N is the number
926 ** of columns in the %_content table (one for the docid plus one for each
927 ** user-defined text column).
928 **
929 ** If argument zFunc is not NULL, then all but the first question mark
930 ** is preceded by zFunc and an open bracket, and followed by a closed
931 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
932 ** user-defined text columns, the following string is returned:
933 **
934 ** "?, zip(?), zip(?), zip(?)"
935 **
936 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
937 ** is the responsibility of the caller to eventually free it.
938 **
939 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
940 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
941 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
942 ** no error occurs, *pRc is left unmodified.
943 */
fts3WriteExprList(Fts3Table * p,const char * zFunc,int * pRc)944 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
945 char *zRet = 0;
946 char *zFree = 0;
947 char *zFunction;
948 int i;
949
950 if( !zFunc ){
951 zFunction = "";
952 }else{
953 zFree = zFunction = fts3QuoteId(zFunc);
954 }
955 fts3Appendf(pRc, &zRet, "?");
956 for(i=0; i<p->nColumn; i++){
957 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
958 }
959 if( p->zLanguageid ){
960 fts3Appendf(pRc, &zRet, ", ?");
961 }
962 sqlite3_free(zFree);
963 return zRet;
964 }
965
966 /*
967 ** Buffer z contains a positive integer value encoded as utf-8 text.
968 ** Decode this value and store it in *pnOut, returning the number of bytes
969 ** consumed. If an overflow error occurs return a negative value.
970 */
sqlite3Fts3ReadInt(const char * z,int * pnOut)971 int sqlite3Fts3ReadInt(const char *z, int *pnOut){
972 u64 iVal = 0;
973 int i;
974 for(i=0; z[i]>='0' && z[i]<='9'; i++){
975 iVal = iVal*10 + (z[i] - '0');
976 if( iVal>0x7FFFFFFF ) return -1;
977 }
978 *pnOut = (int)iVal;
979 return i;
980 }
981
982 /*
983 ** This function interprets the string at (*pp) as a non-negative integer
984 ** value. It reads the integer and sets *pnOut to the value read, then
985 ** sets *pp to point to the byte immediately following the last byte of
986 ** the integer value.
987 **
988 ** Only decimal digits ('0'..'9') may be part of an integer value.
989 **
990 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
991 ** the output value undefined. Otherwise SQLITE_OK is returned.
992 **
993 ** This function is used when parsing the "prefix=" FTS4 parameter.
994 */
fts3GobbleInt(const char ** pp,int * pnOut)995 static int fts3GobbleInt(const char **pp, int *pnOut){
996 const int MAX_NPREFIX = 10000000;
997 int nInt = 0; /* Output value */
998 int nByte;
999 nByte = sqlite3Fts3ReadInt(*pp, &nInt);
1000 if( nInt>MAX_NPREFIX ){
1001 nInt = 0;
1002 }
1003 if( nByte==0 ){
1004 return SQLITE_ERROR;
1005 }
1006 *pnOut = nInt;
1007 *pp += nByte;
1008 return SQLITE_OK;
1009 }
1010
1011 /*
1012 ** This function is called to allocate an array of Fts3Index structures
1013 ** representing the indexes maintained by the current FTS table. FTS tables
1014 ** always maintain the main "terms" index, but may also maintain one or
1015 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
1016 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
1017 **
1018 ** Argument zParam is passed the value of the "prefix=" option if one was
1019 ** specified, or NULL otherwise.
1020 **
1021 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
1022 ** the allocated array. *pnIndex is set to the number of elements in the
1023 ** array. If an error does occur, an SQLite error code is returned.
1024 **
1025 ** Regardless of whether or not an error is returned, it is the responsibility
1026 ** of the caller to call sqlite3_free() on the output array to free it.
1027 */
fts3PrefixParameter(const char * zParam,int * pnIndex,struct Fts3Index ** apIndex)1028 static int fts3PrefixParameter(
1029 const char *zParam, /* ABC in prefix=ABC parameter to parse */
1030 int *pnIndex, /* OUT: size of *apIndex[] array */
1031 struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
1032 ){
1033 struct Fts3Index *aIndex; /* Allocated array */
1034 int nIndex = 1; /* Number of entries in array */
1035
1036 if( zParam && zParam[0] ){
1037 const char *p;
1038 nIndex++;
1039 for(p=zParam; *p; p++){
1040 if( *p==',' ) nIndex++;
1041 }
1042 }
1043
1044 aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex);
1045 *apIndex = aIndex;
1046 if( !aIndex ){
1047 return SQLITE_NOMEM;
1048 }
1049
1050 memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
1051 if( zParam ){
1052 const char *p = zParam;
1053 int i;
1054 for(i=1; i<nIndex; i++){
1055 int nPrefix = 0;
1056 if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
1057 assert( nPrefix>=0 );
1058 if( nPrefix==0 ){
1059 nIndex--;
1060 i--;
1061 }else{
1062 aIndex[i].nPrefix = nPrefix;
1063 }
1064 p++;
1065 }
1066 }
1067
1068 *pnIndex = nIndex;
1069 return SQLITE_OK;
1070 }
1071
1072 /*
1073 ** This function is called when initializing an FTS4 table that uses the
1074 ** content=xxx option. It determines the number of and names of the columns
1075 ** of the new FTS4 table.
1076 **
1077 ** The third argument passed to this function is the value passed to the
1078 ** config=xxx option (i.e. "xxx"). This function queries the database for
1079 ** a table of that name. If found, the output variables are populated
1080 ** as follows:
1081 **
1082 ** *pnCol: Set to the number of columns table xxx has,
1083 **
1084 ** *pnStr: Set to the total amount of space required to store a copy
1085 ** of each columns name, including the nul-terminator.
1086 **
1087 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1088 ** the name of the corresponding column in table xxx. The array
1089 ** and its contents are allocated using a single allocation. It
1090 ** is the responsibility of the caller to free this allocation
1091 ** by eventually passing the *pazCol value to sqlite3_free().
1092 **
1093 ** If the table cannot be found, an error code is returned and the output
1094 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1095 ** returned (and the output variables are undefined).
1096 */
fts3ContentColumns(sqlite3 * db,const char * zDb,const char * zTbl,const char *** pazCol,int * pnCol,int * pnStr,char ** pzErr)1097 static int fts3ContentColumns(
1098 sqlite3 *db, /* Database handle */
1099 const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
1100 const char *zTbl, /* Name of content table */
1101 const char ***pazCol, /* OUT: Malloc'd array of column names */
1102 int *pnCol, /* OUT: Size of array *pazCol */
1103 int *pnStr, /* OUT: Bytes of string content */
1104 char **pzErr /* OUT: error message */
1105 ){
1106 int rc = SQLITE_OK; /* Return code */
1107 char *zSql; /* "SELECT *" statement on zTbl */
1108 sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
1109
1110 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
1111 if( !zSql ){
1112 rc = SQLITE_NOMEM;
1113 }else{
1114 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1115 if( rc!=SQLITE_OK ){
1116 sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
1117 }
1118 }
1119 sqlite3_free(zSql);
1120
1121 if( rc==SQLITE_OK ){
1122 const char **azCol; /* Output array */
1123 sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */
1124 int nCol; /* Number of table columns */
1125 int i; /* Used to iterate through columns */
1126
1127 /* Loop through the returned columns. Set nStr to the number of bytes of
1128 ** space required to store a copy of each column name, including the
1129 ** nul-terminator byte. */
1130 nCol = sqlite3_column_count(pStmt);
1131 for(i=0; i<nCol; i++){
1132 const char *zCol = sqlite3_column_name(pStmt, i);
1133 nStr += strlen(zCol) + 1;
1134 }
1135
1136 /* Allocate and populate the array to return. */
1137 azCol = (const char **)sqlite3_malloc64(sizeof(char *) * nCol + nStr);
1138 if( azCol==0 ){
1139 rc = SQLITE_NOMEM;
1140 }else{
1141 char *p = (char *)&azCol[nCol];
1142 for(i=0; i<nCol; i++){
1143 const char *zCol = sqlite3_column_name(pStmt, i);
1144 int n = (int)strlen(zCol)+1;
1145 memcpy(p, zCol, n);
1146 azCol[i] = p;
1147 p += n;
1148 }
1149 }
1150 sqlite3_finalize(pStmt);
1151
1152 /* Set the output variables. */
1153 *pnCol = nCol;
1154 *pnStr = nStr;
1155 *pazCol = azCol;
1156 }
1157
1158 return rc;
1159 }
1160
1161 /*
1162 ** This function is the implementation of both the xConnect and xCreate
1163 ** methods of the FTS3 virtual table.
1164 **
1165 ** The argv[] array contains the following:
1166 **
1167 ** argv[0] -> module name ("fts3" or "fts4")
1168 ** argv[1] -> database name
1169 ** argv[2] -> table name
1170 ** argv[...] -> "column name" and other module argument fields.
1171 */
fts3InitVtab(int isCreate,sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVTab,char ** pzErr)1172 static int fts3InitVtab(
1173 int isCreate, /* True for xCreate, false for xConnect */
1174 sqlite3 *db, /* The SQLite database connection */
1175 void *pAux, /* Hash table containing tokenizers */
1176 int argc, /* Number of elements in argv array */
1177 const char * const *argv, /* xCreate/xConnect argument array */
1178 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
1179 char **pzErr /* Write any error message here */
1180 ){
1181 Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash;
1182 Fts3Table *p = 0; /* Pointer to allocated vtab */
1183 int rc = SQLITE_OK; /* Return code */
1184 int i; /* Iterator variable */
1185 sqlite3_int64 nByte; /* Size of allocation used for *p */
1186 int iCol; /* Column index */
1187 int nString = 0; /* Bytes required to hold all column names */
1188 int nCol = 0; /* Number of columns in the FTS table */
1189 char *zCsr; /* Space for holding column names */
1190 int nDb; /* Bytes required to hold database name */
1191 int nName; /* Bytes required to hold table name */
1192 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
1193 const char **aCol; /* Array of column names */
1194 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
1195
1196 int nIndex = 0; /* Size of aIndex[] array */
1197 struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
1198
1199 /* The results of parsing supported FTS4 key=value options: */
1200 int bNoDocsize = 0; /* True to omit %_docsize table */
1201 int bDescIdx = 0; /* True to store descending indexes */
1202 char *zPrefix = 0; /* Prefix parameter value (or NULL) */
1203 char *zCompress = 0; /* compress=? parameter (or NULL) */
1204 char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
1205 char *zContent = 0; /* content=? parameter (or NULL) */
1206 char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
1207 char **azNotindexed = 0; /* The set of notindexed= columns */
1208 int nNotindexed = 0; /* Size of azNotindexed[] array */
1209
1210 assert( strlen(argv[0])==4 );
1211 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
1212 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
1213 );
1214
1215 nDb = (int)strlen(argv[1]) + 1;
1216 nName = (int)strlen(argv[2]) + 1;
1217
1218 nByte = sizeof(const char *) * (argc-2);
1219 aCol = (const char **)sqlite3_malloc64(nByte);
1220 if( aCol ){
1221 memset((void*)aCol, 0, nByte);
1222 azNotindexed = (char **)sqlite3_malloc64(nByte);
1223 }
1224 if( azNotindexed ){
1225 memset(azNotindexed, 0, nByte);
1226 }
1227 if( !aCol || !azNotindexed ){
1228 rc = SQLITE_NOMEM;
1229 goto fts3_init_out;
1230 }
1231
1232 /* Loop through all of the arguments passed by the user to the FTS3/4
1233 ** module (i.e. all the column names and special arguments). This loop
1234 ** does the following:
1235 **
1236 ** + Figures out the number of columns the FTSX table will have, and
1237 ** the number of bytes of space that must be allocated to store copies
1238 ** of the column names.
1239 **
1240 ** + If there is a tokenizer specification included in the arguments,
1241 ** initializes the tokenizer pTokenizer.
1242 */
1243 for(i=3; rc==SQLITE_OK && i<argc; i++){
1244 char const *z = argv[i];
1245 int nKey;
1246 char *zVal;
1247
1248 /* Check if this is a tokenizer specification */
1249 if( !pTokenizer
1250 && strlen(z)>8
1251 && 0==sqlite3_strnicmp(z, "tokenize", 8)
1252 && 0==sqlite3Fts3IsIdChar(z[8])
1253 ){
1254 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
1255 }
1256
1257 /* Check if it is an FTS4 special argument. */
1258 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
1259 struct Fts4Option {
1260 const char *zOpt;
1261 int nOpt;
1262 } aFts4Opt[] = {
1263 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1264 { "prefix", 6 }, /* 1 -> PREFIX */
1265 { "compress", 8 }, /* 2 -> COMPRESS */
1266 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1267 { "order", 5 }, /* 4 -> ORDER */
1268 { "content", 7 }, /* 5 -> CONTENT */
1269 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1270 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1271 };
1272
1273 int iOpt;
1274 if( !zVal ){
1275 rc = SQLITE_NOMEM;
1276 }else{
1277 for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
1278 struct Fts4Option *pOp = &aFts4Opt[iOpt];
1279 if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
1280 break;
1281 }
1282 }
1283 switch( iOpt ){
1284 case 0: /* MATCHINFO */
1285 if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
1286 sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
1287 rc = SQLITE_ERROR;
1288 }
1289 bNoDocsize = 1;
1290 break;
1291
1292 case 1: /* PREFIX */
1293 sqlite3_free(zPrefix);
1294 zPrefix = zVal;
1295 zVal = 0;
1296 break;
1297
1298 case 2: /* COMPRESS */
1299 sqlite3_free(zCompress);
1300 zCompress = zVal;
1301 zVal = 0;
1302 break;
1303
1304 case 3: /* UNCOMPRESS */
1305 sqlite3_free(zUncompress);
1306 zUncompress = zVal;
1307 zVal = 0;
1308 break;
1309
1310 case 4: /* ORDER */
1311 if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
1312 && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
1313 ){
1314 sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
1315 rc = SQLITE_ERROR;
1316 }
1317 bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
1318 break;
1319
1320 case 5: /* CONTENT */
1321 sqlite3_free(zContent);
1322 zContent = zVal;
1323 zVal = 0;
1324 break;
1325
1326 case 6: /* LANGUAGEID */
1327 assert( iOpt==6 );
1328 sqlite3_free(zLanguageid);
1329 zLanguageid = zVal;
1330 zVal = 0;
1331 break;
1332
1333 case 7: /* NOTINDEXED */
1334 azNotindexed[nNotindexed++] = zVal;
1335 zVal = 0;
1336 break;
1337
1338 default:
1339 assert( iOpt==SizeofArray(aFts4Opt) );
1340 sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
1341 rc = SQLITE_ERROR;
1342 break;
1343 }
1344 sqlite3_free(zVal);
1345 }
1346 }
1347
1348 /* Otherwise, the argument is a column name. */
1349 else {
1350 nString += (int)(strlen(z) + 1);
1351 aCol[nCol++] = z;
1352 }
1353 }
1354
1355 /* If a content=xxx option was specified, the following:
1356 **
1357 ** 1. Ignore any compress= and uncompress= options.
1358 **
1359 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1360 ** TABLE statement, use all columns from the content table.
1361 */
1362 if( rc==SQLITE_OK && zContent ){
1363 sqlite3_free(zCompress);
1364 sqlite3_free(zUncompress);
1365 zCompress = 0;
1366 zUncompress = 0;
1367 if( nCol==0 ){
1368 sqlite3_free((void*)aCol);
1369 aCol = 0;
1370 rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
1371
1372 /* If a languageid= option was specified, remove the language id
1373 ** column from the aCol[] array. */
1374 if( rc==SQLITE_OK && zLanguageid ){
1375 int j;
1376 for(j=0; j<nCol; j++){
1377 if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
1378 int k;
1379 for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
1380 nCol--;
1381 break;
1382 }
1383 }
1384 }
1385 }
1386 }
1387 if( rc!=SQLITE_OK ) goto fts3_init_out;
1388
1389 if( nCol==0 ){
1390 assert( nString==0 );
1391 aCol[0] = "content";
1392 nString = 8;
1393 nCol = 1;
1394 }
1395
1396 if( pTokenizer==0 ){
1397 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
1398 if( rc!=SQLITE_OK ) goto fts3_init_out;
1399 }
1400 assert( pTokenizer );
1401
1402 rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
1403 if( rc==SQLITE_ERROR ){
1404 assert( zPrefix );
1405 sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
1406 }
1407 if( rc!=SQLITE_OK ) goto fts3_init_out;
1408
1409 /* Allocate and populate the Fts3Table structure. */
1410 nByte = sizeof(Fts3Table) + /* Fts3Table */
1411 nCol * sizeof(char *) + /* azColumn */
1412 nIndex * sizeof(struct Fts3Index) + /* aIndex */
1413 nCol * sizeof(u8) + /* abNotindexed */
1414 nName + /* zName */
1415 nDb + /* zDb */
1416 nString; /* Space for azColumn strings */
1417 p = (Fts3Table*)sqlite3_malloc64(nByte);
1418 if( p==0 ){
1419 rc = SQLITE_NOMEM;
1420 goto fts3_init_out;
1421 }
1422 memset(p, 0, nByte);
1423 p->db = db;
1424 p->nColumn = nCol;
1425 p->nPendingData = 0;
1426 p->azColumn = (char **)&p[1];
1427 p->pTokenizer = pTokenizer;
1428 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
1429 p->bHasDocsize = (isFts4 && bNoDocsize==0);
1430 p->bHasStat = (u8)isFts4;
1431 p->bFts4 = (u8)isFts4;
1432 p->bDescIdx = (u8)bDescIdx;
1433 p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
1434 p->zContentTbl = zContent;
1435 p->zLanguageid = zLanguageid;
1436 zContent = 0;
1437 zLanguageid = 0;
1438 TESTONLY( p->inTransaction = -1 );
1439 TESTONLY( p->mxSavepoint = -1 );
1440
1441 p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
1442 memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
1443 p->nIndex = nIndex;
1444 for(i=0; i<nIndex; i++){
1445 fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
1446 }
1447 p->abNotindexed = (u8 *)&p->aIndex[nIndex];
1448
1449 /* Fill in the zName and zDb fields of the vtab structure. */
1450 zCsr = (char *)&p->abNotindexed[nCol];
1451 p->zName = zCsr;
1452 memcpy(zCsr, argv[2], nName);
1453 zCsr += nName;
1454 p->zDb = zCsr;
1455 memcpy(zCsr, argv[1], nDb);
1456 zCsr += nDb;
1457
1458 /* Fill in the azColumn array */
1459 for(iCol=0; iCol<nCol; iCol++){
1460 char *z;
1461 int n = 0;
1462 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
1463 if( n>0 ){
1464 memcpy(zCsr, z, n);
1465 }
1466 zCsr[n] = '\0';
1467 sqlite3Fts3Dequote(zCsr);
1468 p->azColumn[iCol] = zCsr;
1469 zCsr += n+1;
1470 assert( zCsr <= &((char *)p)[nByte] );
1471 }
1472
1473 /* Fill in the abNotindexed array */
1474 for(iCol=0; iCol<nCol; iCol++){
1475 int n = (int)strlen(p->azColumn[iCol]);
1476 for(i=0; i<nNotindexed; i++){
1477 char *zNot = azNotindexed[i];
1478 if( zNot && n==(int)strlen(zNot)
1479 && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
1480 ){
1481 p->abNotindexed[iCol] = 1;
1482 sqlite3_free(zNot);
1483 azNotindexed[i] = 0;
1484 }
1485 }
1486 }
1487 for(i=0; i<nNotindexed; i++){
1488 if( azNotindexed[i] ){
1489 sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
1490 rc = SQLITE_ERROR;
1491 }
1492 }
1493
1494 if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
1495 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
1496 rc = SQLITE_ERROR;
1497 sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
1498 }
1499 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
1500 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
1501 if( rc!=SQLITE_OK ) goto fts3_init_out;
1502
1503 /* If this is an xCreate call, create the underlying tables in the
1504 ** database. TODO: For xConnect(), it could verify that said tables exist.
1505 */
1506 if( isCreate ){
1507 rc = fts3CreateTables(p);
1508 }
1509
1510 /* Check to see if a legacy fts3 table has been "upgraded" by the
1511 ** addition of a %_stat table so that it can use incremental merge.
1512 */
1513 if( !isFts4 && !isCreate ){
1514 p->bHasStat = 2;
1515 }
1516
1517 /* Figure out the page-size for the database. This is required in order to
1518 ** estimate the cost of loading large doclists from the database. */
1519 fts3DatabasePageSize(&rc, p);
1520 p->nNodeSize = p->nPgsz-35;
1521
1522 #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
1523 p->nMergeCount = FTS3_MERGE_COUNT;
1524 #endif
1525
1526 /* Declare the table schema to SQLite. */
1527 fts3DeclareVtab(&rc, p);
1528
1529 fts3_init_out:
1530 sqlite3_free(zPrefix);
1531 sqlite3_free(aIndex);
1532 sqlite3_free(zCompress);
1533 sqlite3_free(zUncompress);
1534 sqlite3_free(zContent);
1535 sqlite3_free(zLanguageid);
1536 for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
1537 sqlite3_free((void *)aCol);
1538 sqlite3_free((void *)azNotindexed);
1539 if( rc!=SQLITE_OK ){
1540 if( p ){
1541 fts3DisconnectMethod((sqlite3_vtab *)p);
1542 }else if( pTokenizer ){
1543 pTokenizer->pModule->xDestroy(pTokenizer);
1544 }
1545 }else{
1546 assert( p->pSegments==0 );
1547 *ppVTab = &p->base;
1548 }
1549 return rc;
1550 }
1551
1552 /*
1553 ** The xConnect() and xCreate() methods for the virtual table. All the
1554 ** work is done in function fts3InitVtab().
1555 */
fts3ConnectMethod(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1556 static int fts3ConnectMethod(
1557 sqlite3 *db, /* Database connection */
1558 void *pAux, /* Pointer to tokenizer hash table */
1559 int argc, /* Number of elements in argv array */
1560 const char * const *argv, /* xCreate/xConnect argument array */
1561 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1562 char **pzErr /* OUT: sqlite3_malloc'd error message */
1563 ){
1564 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1565 }
fts3CreateMethod(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1566 static int fts3CreateMethod(
1567 sqlite3 *db, /* Database connection */
1568 void *pAux, /* Pointer to tokenizer hash table */
1569 int argc, /* Number of elements in argv array */
1570 const char * const *argv, /* xCreate/xConnect argument array */
1571 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1572 char **pzErr /* OUT: sqlite3_malloc'd error message */
1573 ){
1574 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1575 }
1576
1577 /*
1578 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1579 ** extension is currently being used by a version of SQLite too old to
1580 ** support estimatedRows. In that case this function is a no-op.
1581 */
fts3SetEstimatedRows(sqlite3_index_info * pIdxInfo,i64 nRow)1582 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
1583 #if SQLITE_VERSION_NUMBER>=3008002
1584 if( sqlite3_libversion_number()>=3008002 ){
1585 pIdxInfo->estimatedRows = nRow;
1586 }
1587 #endif
1588 }
1589
1590 /*
1591 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1592 ** extension is currently being used by a version of SQLite too old to
1593 ** support index-info flags. In that case this function is a no-op.
1594 */
fts3SetUniqueFlag(sqlite3_index_info * pIdxInfo)1595 static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
1596 #if SQLITE_VERSION_NUMBER>=3008012
1597 if( sqlite3_libversion_number()>=3008012 ){
1598 pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
1599 }
1600 #endif
1601 }
1602
1603 /*
1604 ** Implementation of the xBestIndex method for FTS3 tables. There
1605 ** are three possible strategies, in order of preference:
1606 **
1607 ** 1. Direct lookup by rowid or docid.
1608 ** 2. Full-text search using a MATCH operator on a non-docid column.
1609 ** 3. Linear scan of %_content table.
1610 */
fts3BestIndexMethod(sqlite3_vtab * pVTab,sqlite3_index_info * pInfo)1611 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1612 Fts3Table *p = (Fts3Table *)pVTab;
1613 int i; /* Iterator variable */
1614 int iCons = -1; /* Index of constraint to use */
1615
1616 int iLangidCons = -1; /* Index of langid=x constraint, if present */
1617 int iDocidGe = -1; /* Index of docid>=x constraint, if present */
1618 int iDocidLe = -1; /* Index of docid<=x constraint, if present */
1619 int iIdx;
1620
1621 if( p->bLock ){
1622 return SQLITE_ERROR;
1623 }
1624
1625 /* By default use a full table scan. This is an expensive option,
1626 ** so search through the constraints to see if a more efficient
1627 ** strategy is possible.
1628 */
1629 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1630 pInfo->estimatedCost = 5000000;
1631 for(i=0; i<pInfo->nConstraint; i++){
1632 int bDocid; /* True if this constraint is on docid */
1633 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1634 if( pCons->usable==0 ){
1635 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1636 /* There exists an unusable MATCH constraint. This means that if
1637 ** the planner does elect to use the results of this call as part
1638 ** of the overall query plan the user will see an "unable to use
1639 ** function MATCH in the requested context" error. To discourage
1640 ** this, return a very high cost here. */
1641 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1642 pInfo->estimatedCost = 1e50;
1643 fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
1644 return SQLITE_OK;
1645 }
1646 continue;
1647 }
1648
1649 bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
1650
1651 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1652 if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
1653 pInfo->idxNum = FTS3_DOCID_SEARCH;
1654 pInfo->estimatedCost = 1.0;
1655 iCons = i;
1656 }
1657
1658 /* A MATCH constraint. Use a full-text search.
1659 **
1660 ** If there is more than one MATCH constraint available, use the first
1661 ** one encountered. If there is both a MATCH constraint and a direct
1662 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1663 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1664 ** it would lead to an "unable to use function MATCH in the requested
1665 ** context" error.
1666 */
1667 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1668 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1669 ){
1670 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1671 pInfo->estimatedCost = 2.0;
1672 iCons = i;
1673 }
1674
1675 /* Equality constraint on the langid column */
1676 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1677 && pCons->iColumn==p->nColumn + 2
1678 ){
1679 iLangidCons = i;
1680 }
1681
1682 if( bDocid ){
1683 switch( pCons->op ){
1684 case SQLITE_INDEX_CONSTRAINT_GE:
1685 case SQLITE_INDEX_CONSTRAINT_GT:
1686 iDocidGe = i;
1687 break;
1688
1689 case SQLITE_INDEX_CONSTRAINT_LE:
1690 case SQLITE_INDEX_CONSTRAINT_LT:
1691 iDocidLe = i;
1692 break;
1693 }
1694 }
1695 }
1696
1697 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1698 if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
1699
1700 iIdx = 1;
1701 if( iCons>=0 ){
1702 pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
1703 pInfo->aConstraintUsage[iCons].omit = 1;
1704 }
1705 if( iLangidCons>=0 ){
1706 pInfo->idxNum |= FTS3_HAVE_LANGID;
1707 pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
1708 }
1709 if( iDocidGe>=0 ){
1710 pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
1711 pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
1712 }
1713 if( iDocidLe>=0 ){
1714 pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
1715 pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
1716 }
1717
1718 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1719 ** docid) order. Both ascending and descending are possible.
1720 */
1721 if( pInfo->nOrderBy==1 ){
1722 struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
1723 if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
1724 if( pOrder->desc ){
1725 pInfo->idxStr = "DESC";
1726 }else{
1727 pInfo->idxStr = "ASC";
1728 }
1729 pInfo->orderByConsumed = 1;
1730 }
1731 }
1732
1733 assert( p->pSegments==0 );
1734 return SQLITE_OK;
1735 }
1736
1737 /*
1738 ** Implementation of xOpen method.
1739 */
fts3OpenMethod(sqlite3_vtab * pVTab,sqlite3_vtab_cursor ** ppCsr)1740 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1741 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1742
1743 UNUSED_PARAMETER(pVTab);
1744
1745 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1746 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1747 ** if the allocation fails, return SQLITE_NOMEM.
1748 */
1749 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1750 if( !pCsr ){
1751 return SQLITE_NOMEM;
1752 }
1753 memset(pCsr, 0, sizeof(Fts3Cursor));
1754 return SQLITE_OK;
1755 }
1756
1757 /*
1758 ** Finalize the statement handle at pCsr->pStmt.
1759 **
1760 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1761 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1762 ** pointer there instead of finalizing it.
1763 */
fts3CursorFinalizeStmt(Fts3Cursor * pCsr)1764 static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
1765 if( pCsr->bSeekStmt ){
1766 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1767 if( p->pSeekStmt==0 ){
1768 p->pSeekStmt = pCsr->pStmt;
1769 sqlite3_reset(pCsr->pStmt);
1770 pCsr->pStmt = 0;
1771 }
1772 pCsr->bSeekStmt = 0;
1773 }
1774 sqlite3_finalize(pCsr->pStmt);
1775 }
1776
1777 /*
1778 ** Free all resources currently held by the cursor passed as the only
1779 ** argument.
1780 */
fts3ClearCursor(Fts3Cursor * pCsr)1781 static void fts3ClearCursor(Fts3Cursor *pCsr){
1782 fts3CursorFinalizeStmt(pCsr);
1783 sqlite3Fts3FreeDeferredTokens(pCsr);
1784 sqlite3_free(pCsr->aDoclist);
1785 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
1786 sqlite3Fts3ExprFree(pCsr->pExpr);
1787 memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
1788 }
1789
1790 /*
1791 ** Close the cursor. For additional information see the documentation
1792 ** on the xClose method of the virtual table interface.
1793 */
fts3CloseMethod(sqlite3_vtab_cursor * pCursor)1794 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1795 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1796 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1797 fts3ClearCursor(pCsr);
1798 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1799 sqlite3_free(pCsr);
1800 return SQLITE_OK;
1801 }
1802
1803 /*
1804 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1805 ** compose and prepare an SQL statement of the form:
1806 **
1807 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1808 **
1809 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1810 ** it. If an error occurs, return an SQLite error code.
1811 */
fts3CursorSeekStmt(Fts3Cursor * pCsr)1812 static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
1813 int rc = SQLITE_OK;
1814 if( pCsr->pStmt==0 ){
1815 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1816 char *zSql;
1817 if( p->pSeekStmt ){
1818 pCsr->pStmt = p->pSeekStmt;
1819 p->pSeekStmt = 0;
1820 }else{
1821 zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
1822 if( !zSql ) return SQLITE_NOMEM;
1823 p->bLock++;
1824 rc = sqlite3_prepare_v3(
1825 p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
1826 );
1827 p->bLock--;
1828 sqlite3_free(zSql);
1829 }
1830 if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
1831 }
1832 return rc;
1833 }
1834
1835 /*
1836 ** Position the pCsr->pStmt statement so that it is on the row
1837 ** of the %_content table that contains the last match. Return
1838 ** SQLITE_OK on success.
1839 */
fts3CursorSeek(sqlite3_context * pContext,Fts3Cursor * pCsr)1840 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1841 int rc = SQLITE_OK;
1842 if( pCsr->isRequireSeek ){
1843 rc = fts3CursorSeekStmt(pCsr);
1844 if( rc==SQLITE_OK ){
1845 Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab;
1846 pTab->bLock++;
1847 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1848 pCsr->isRequireSeek = 0;
1849 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1850 pTab->bLock--;
1851 return SQLITE_OK;
1852 }else{
1853 pTab->bLock--;
1854 rc = sqlite3_reset(pCsr->pStmt);
1855 if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
1856 /* If no row was found and no error has occurred, then the %_content
1857 ** table is missing a row that is present in the full-text index.
1858 ** The data structures are corrupt. */
1859 rc = FTS_CORRUPT_VTAB;
1860 pCsr->isEof = 1;
1861 }
1862 }
1863 }
1864 }
1865
1866 if( rc!=SQLITE_OK && pContext ){
1867 sqlite3_result_error_code(pContext, rc);
1868 }
1869 return rc;
1870 }
1871
1872 /*
1873 ** This function is used to process a single interior node when searching
1874 ** a b-tree for a term or term prefix. The node data is passed to this
1875 ** function via the zNode/nNode parameters. The term to search for is
1876 ** passed in zTerm/nTerm.
1877 **
1878 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1879 ** of the child node that heads the sub-tree that may contain the term.
1880 **
1881 ** If piLast is not NULL, then *piLast is set to the right-most child node
1882 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1883 ** a prefix.
1884 **
1885 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1886 */
fts3ScanInteriorNode(const char * zTerm,int nTerm,const char * zNode,int nNode,sqlite3_int64 * piFirst,sqlite3_int64 * piLast)1887 static int fts3ScanInteriorNode(
1888 const char *zTerm, /* Term to select leaves for */
1889 int nTerm, /* Size of term zTerm in bytes */
1890 const char *zNode, /* Buffer containing segment interior node */
1891 int nNode, /* Size of buffer at zNode */
1892 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1893 sqlite3_int64 *piLast /* OUT: Selected child node */
1894 ){
1895 int rc = SQLITE_OK; /* Return code */
1896 const char *zCsr = zNode; /* Cursor to iterate through node */
1897 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1898 char *zBuffer = 0; /* Buffer to load terms into */
1899 i64 nAlloc = 0; /* Size of allocated buffer */
1900 int isFirstTerm = 1; /* True when processing first term on page */
1901 u64 iChild; /* Block id of child node to descend to */
1902 int nBuffer = 0; /* Total term size */
1903
1904 /* Skip over the 'height' varint that occurs at the start of every
1905 ** interior node. Then load the blockid of the left-child of the b-tree
1906 ** node into variable iChild.
1907 **
1908 ** Even if the data structure on disk is corrupted, this (reading two
1909 ** varints from the buffer) does not risk an overread. If zNode is a
1910 ** root node, then the buffer comes from a SELECT statement. SQLite does
1911 ** not make this guarantee explicitly, but in practice there are always
1912 ** either more than 20 bytes of allocated space following the nNode bytes of
1913 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1914 ** table, then there are always 20 bytes of zeroed padding following the
1915 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1916 */
1917 zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
1918 zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
1919 if( zCsr>zEnd ){
1920 return FTS_CORRUPT_VTAB;
1921 }
1922
1923 while( zCsr<zEnd && (piFirst || piLast) ){
1924 int cmp; /* memcmp() result */
1925 int nSuffix; /* Size of term suffix */
1926 int nPrefix = 0; /* Size of term prefix */
1927
1928 /* Load the next term on the node into zBuffer. Use realloc() to expand
1929 ** the size of zBuffer if required. */
1930 if( !isFirstTerm ){
1931 zCsr += fts3GetVarint32(zCsr, &nPrefix);
1932 if( nPrefix>nBuffer ){
1933 rc = FTS_CORRUPT_VTAB;
1934 goto finish_scan;
1935 }
1936 }
1937 isFirstTerm = 0;
1938 zCsr += fts3GetVarint32(zCsr, &nSuffix);
1939
1940 assert( nPrefix>=0 && nSuffix>=0 );
1941 if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){
1942 rc = FTS_CORRUPT_VTAB;
1943 goto finish_scan;
1944 }
1945 if( (i64)nPrefix+nSuffix>nAlloc ){
1946 char *zNew;
1947 nAlloc = ((i64)nPrefix+nSuffix) * 2;
1948 zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
1949 if( !zNew ){
1950 rc = SQLITE_NOMEM;
1951 goto finish_scan;
1952 }
1953 zBuffer = zNew;
1954 }
1955 assert( zBuffer );
1956 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1957 nBuffer = nPrefix + nSuffix;
1958 zCsr += nSuffix;
1959
1960 /* Compare the term we are searching for with the term just loaded from
1961 ** the interior node. If the specified term is greater than or equal
1962 ** to the term from the interior node, then all terms on the sub-tree
1963 ** headed by node iChild are smaller than zTerm. No need to search
1964 ** iChild.
1965 **
1966 ** If the interior node term is larger than the specified term, then
1967 ** the tree headed by iChild may contain the specified term.
1968 */
1969 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1970 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1971 *piFirst = (i64)iChild;
1972 piFirst = 0;
1973 }
1974
1975 if( piLast && cmp<0 ){
1976 *piLast = (i64)iChild;
1977 piLast = 0;
1978 }
1979
1980 iChild++;
1981 };
1982
1983 if( piFirst ) *piFirst = (i64)iChild;
1984 if( piLast ) *piLast = (i64)iChild;
1985
1986 finish_scan:
1987 sqlite3_free(zBuffer);
1988 return rc;
1989 }
1990
1991
1992 /*
1993 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1994 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1995 ** contains a term. This function searches the sub-tree headed by the zNode
1996 ** node for the range of leaf nodes that may contain the specified term
1997 ** or terms for which the specified term is a prefix.
1998 **
1999 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
2000 ** left-most leaf node in the tree that may contain the specified term.
2001 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
2002 ** right-most leaf node that may contain a term for which the specified
2003 ** term is a prefix.
2004 **
2005 ** It is possible that the range of returned leaf nodes does not contain
2006 ** the specified term or any terms for which it is a prefix. However, if the
2007 ** segment does contain any such terms, they are stored within the identified
2008 ** range. Because this function only inspects interior segment nodes (and
2009 ** never loads leaf nodes into memory), it is not possible to be sure.
2010 **
2011 ** If an error occurs, an error code other than SQLITE_OK is returned.
2012 */
fts3SelectLeaf(Fts3Table * p,const char * zTerm,int nTerm,const char * zNode,int nNode,sqlite3_int64 * piLeaf,sqlite3_int64 * piLeaf2)2013 static int fts3SelectLeaf(
2014 Fts3Table *p, /* Virtual table handle */
2015 const char *zTerm, /* Term to select leaves for */
2016 int nTerm, /* Size of term zTerm in bytes */
2017 const char *zNode, /* Buffer containing segment interior node */
2018 int nNode, /* Size of buffer at zNode */
2019 sqlite3_int64 *piLeaf, /* Selected leaf node */
2020 sqlite3_int64 *piLeaf2 /* Selected leaf node */
2021 ){
2022 int rc = SQLITE_OK; /* Return code */
2023 int iHeight; /* Height of this node in tree */
2024
2025 assert( piLeaf || piLeaf2 );
2026
2027 fts3GetVarint32(zNode, &iHeight);
2028 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
2029 assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
2030
2031 if( rc==SQLITE_OK && iHeight>1 ){
2032 char *zBlob = 0; /* Blob read from %_segments table */
2033 int nBlob = 0; /* Size of zBlob in bytes */
2034
2035 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
2036 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
2037 if( rc==SQLITE_OK ){
2038 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
2039 }
2040 sqlite3_free(zBlob);
2041 piLeaf = 0;
2042 zBlob = 0;
2043 }
2044
2045 if( rc==SQLITE_OK ){
2046 rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
2047 }
2048 if( rc==SQLITE_OK ){
2049 int iNewHeight = 0;
2050 fts3GetVarint32(zBlob, &iNewHeight);
2051 if( iNewHeight>=iHeight ){
2052 rc = FTS_CORRUPT_VTAB;
2053 }else{
2054 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
2055 }
2056 }
2057 sqlite3_free(zBlob);
2058 }
2059
2060 return rc;
2061 }
2062
2063 /*
2064 ** This function is used to create delta-encoded serialized lists of FTS3
2065 ** varints. Each call to this function appends a single varint to a list.
2066 */
fts3PutDeltaVarint(char ** pp,sqlite3_int64 * piPrev,sqlite3_int64 iVal)2067 static void fts3PutDeltaVarint(
2068 char **pp, /* IN/OUT: Output pointer */
2069 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2070 sqlite3_int64 iVal /* Write this value to the list */
2071 ){
2072 assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
2073 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
2074 *piPrev = iVal;
2075 }
2076
2077 /*
2078 ** When this function is called, *ppPoslist is assumed to point to the
2079 ** start of a position-list. After it returns, *ppPoslist points to the
2080 ** first byte after the position-list.
2081 **
2082 ** A position list is list of positions (delta encoded) and columns for
2083 ** a single document record of a doclist. So, in other words, this
2084 ** routine advances *ppPoslist so that it points to the next docid in
2085 ** the doclist, or to the first byte past the end of the doclist.
2086 **
2087 ** If pp is not NULL, then the contents of the position list are copied
2088 ** to *pp. *pp is set to point to the first byte past the last byte copied
2089 ** before this function returns.
2090 */
fts3PoslistCopy(char ** pp,char ** ppPoslist)2091 static void fts3PoslistCopy(char **pp, char **ppPoslist){
2092 char *pEnd = *ppPoslist;
2093 char c = 0;
2094
2095 /* The end of a position list is marked by a zero encoded as an FTS3
2096 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
2097 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
2098 ** of some other, multi-byte, value.
2099 **
2100 ** The following while-loop moves pEnd to point to the first byte that is not
2101 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2102 ** pEnd once more so that it points to the byte immediately following the
2103 ** last byte in the position-list.
2104 */
2105 while( *pEnd | c ){
2106 c = *pEnd++ & 0x80;
2107 testcase( c!=0 && (*pEnd)==0 );
2108 }
2109 pEnd++; /* Advance past the POS_END terminator byte */
2110
2111 if( pp ){
2112 int n = (int)(pEnd - *ppPoslist);
2113 char *p = *pp;
2114 memcpy(p, *ppPoslist, n);
2115 p += n;
2116 *pp = p;
2117 }
2118 *ppPoslist = pEnd;
2119 }
2120
2121 /*
2122 ** When this function is called, *ppPoslist is assumed to point to the
2123 ** start of a column-list. After it returns, *ppPoslist points to the
2124 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2125 **
2126 ** A column-list is list of delta-encoded positions for a single column
2127 ** within a single document within a doclist.
2128 **
2129 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2130 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2131 ** the POS_COLUMN or POS_END that terminates the column-list.
2132 **
2133 ** If pp is not NULL, then the contents of the column-list are copied
2134 ** to *pp. *pp is set to point to the first byte past the last byte copied
2135 ** before this function returns. The POS_COLUMN or POS_END terminator
2136 ** is not copied into *pp.
2137 */
fts3ColumnlistCopy(char ** pp,char ** ppPoslist)2138 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
2139 char *pEnd = *ppPoslist;
2140 char c = 0;
2141
2142 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2143 ** not part of a multi-byte varint.
2144 */
2145 while( 0xFE & (*pEnd | c) ){
2146 c = *pEnd++ & 0x80;
2147 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
2148 }
2149 if( pp ){
2150 int n = (int)(pEnd - *ppPoslist);
2151 char *p = *pp;
2152 memcpy(p, *ppPoslist, n);
2153 p += n;
2154 *pp = p;
2155 }
2156 *ppPoslist = pEnd;
2157 }
2158
2159 /*
2160 ** Value used to signify the end of an position-list. This must be
2161 ** as large or larger than any value that might appear on the
2162 ** position-list, even a position list that has been corrupted.
2163 */
2164 #define POSITION_LIST_END LARGEST_INT64
2165
2166 /*
2167 ** This function is used to help parse position-lists. When this function is
2168 ** called, *pp may point to the start of the next varint in the position-list
2169 ** being parsed, or it may point to 1 byte past the end of the position-list
2170 ** (in which case **pp will be a terminator bytes POS_END (0) or
2171 ** (1)).
2172 **
2173 ** If *pp points past the end of the current position-list, set *pi to
2174 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2175 ** increment the current value of *pi by the value read, and set *pp to
2176 ** point to the next value before returning.
2177 **
2178 ** Before calling this routine *pi must be initialized to the value of
2179 ** the previous position, or zero if we are reading the first position
2180 ** in the position-list. Because positions are delta-encoded, the value
2181 ** of the previous position is needed in order to compute the value of
2182 ** the next position.
2183 */
fts3ReadNextPos(char ** pp,sqlite3_int64 * pi)2184 static void fts3ReadNextPos(
2185 char **pp, /* IN/OUT: Pointer into position-list buffer */
2186 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
2187 ){
2188 if( (**pp)&0xFE ){
2189 int iVal;
2190 *pp += fts3GetVarint32((*pp), &iVal);
2191 *pi += iVal;
2192 *pi -= 2;
2193 }else{
2194 *pi = POSITION_LIST_END;
2195 }
2196 }
2197
2198 /*
2199 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2200 ** the value of iCol encoded as a varint to *pp. This will start a new
2201 ** column list.
2202 **
2203 ** Set *pp to point to the byte just after the last byte written before
2204 ** returning (do not modify it if iCol==0). Return the total number of bytes
2205 ** written (0 if iCol==0).
2206 */
fts3PutColNumber(char ** pp,int iCol)2207 static int fts3PutColNumber(char **pp, int iCol){
2208 int n = 0; /* Number of bytes written */
2209 if( iCol ){
2210 char *p = *pp; /* Output pointer */
2211 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
2212 *p = 0x01;
2213 *pp = &p[n];
2214 }
2215 return n;
2216 }
2217
2218 /*
2219 ** Compute the union of two position lists. The output written
2220 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2221 ** order and with any duplicates removed. All pointers are
2222 ** updated appropriately. The caller is responsible for insuring
2223 ** that there is enough space in *pp to hold the complete output.
2224 */
fts3PoslistMerge(char ** pp,char ** pp1,char ** pp2)2225 static int fts3PoslistMerge(
2226 char **pp, /* Output buffer */
2227 char **pp1, /* Left input list */
2228 char **pp2 /* Right input list */
2229 ){
2230 char *p = *pp;
2231 char *p1 = *pp1;
2232 char *p2 = *pp2;
2233
2234 while( *p1 || *p2 ){
2235 int iCol1; /* The current column index in pp1 */
2236 int iCol2; /* The current column index in pp2 */
2237
2238 if( *p1==POS_COLUMN ){
2239 fts3GetVarint32(&p1[1], &iCol1);
2240 if( iCol1==0 ) return FTS_CORRUPT_VTAB;
2241 }
2242 else if( *p1==POS_END ) iCol1 = 0x7fffffff;
2243 else iCol1 = 0;
2244
2245 if( *p2==POS_COLUMN ){
2246 fts3GetVarint32(&p2[1], &iCol2);
2247 if( iCol2==0 ) return FTS_CORRUPT_VTAB;
2248 }
2249 else if( *p2==POS_END ) iCol2 = 0x7fffffff;
2250 else iCol2 = 0;
2251
2252 if( iCol1==iCol2 ){
2253 sqlite3_int64 i1 = 0; /* Last position from pp1 */
2254 sqlite3_int64 i2 = 0; /* Last position from pp2 */
2255 sqlite3_int64 iPrev = 0;
2256 int n = fts3PutColNumber(&p, iCol1);
2257 p1 += n;
2258 p2 += n;
2259
2260 /* At this point, both p1 and p2 point to the start of column-lists
2261 ** for the same column (the column with index iCol1 and iCol2).
2262 ** A column-list is a list of non-negative delta-encoded varints, each
2263 ** incremented by 2 before being stored. Each list is terminated by a
2264 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2265 ** and writes the results to buffer p. p is left pointing to the byte
2266 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2267 ** written to the output.
2268 */
2269 fts3GetDeltaVarint(&p1, &i1);
2270 fts3GetDeltaVarint(&p2, &i2);
2271 if( i1<2 || i2<2 ){
2272 break;
2273 }
2274 do {
2275 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
2276 iPrev -= 2;
2277 if( i1==i2 ){
2278 fts3ReadNextPos(&p1, &i1);
2279 fts3ReadNextPos(&p2, &i2);
2280 }else if( i1<i2 ){
2281 fts3ReadNextPos(&p1, &i1);
2282 }else{
2283 fts3ReadNextPos(&p2, &i2);
2284 }
2285 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
2286 }else if( iCol1<iCol2 ){
2287 p1 += fts3PutColNumber(&p, iCol1);
2288 fts3ColumnlistCopy(&p, &p1);
2289 }else{
2290 p2 += fts3PutColNumber(&p, iCol2);
2291 fts3ColumnlistCopy(&p, &p2);
2292 }
2293 }
2294
2295 *p++ = POS_END;
2296 *pp = p;
2297 *pp1 = p1 + 1;
2298 *pp2 = p2 + 1;
2299 return SQLITE_OK;
2300 }
2301
2302 /*
2303 ** This function is used to merge two position lists into one. When it is
2304 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2305 ** the part of a doclist that follows each document id. For example, if a row
2306 ** contains:
2307 **
2308 ** 'a b c'|'x y z'|'a b b a'
2309 **
2310 ** Then the position list for this row for token 'b' would consist of:
2311 **
2312 ** 0x02 0x01 0x02 0x03 0x03 0x00
2313 **
2314 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2315 ** byte following the 0x00 terminator of their respective position lists.
2316 **
2317 ** If isSaveLeft is 0, an entry is added to the output position list for
2318 ** each position in *pp2 for which there exists one or more positions in
2319 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2320 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2321 ** slots before it.
2322 **
2323 ** e.g. nToken==1 searches for adjacent positions.
2324 */
fts3PoslistPhraseMerge(char ** pp,int nToken,int isSaveLeft,int isExact,char ** pp1,char ** pp2)2325 static int fts3PoslistPhraseMerge(
2326 char **pp, /* IN/OUT: Preallocated output buffer */
2327 int nToken, /* Maximum difference in token positions */
2328 int isSaveLeft, /* Save the left position */
2329 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
2330 char **pp1, /* IN/OUT: Left input list */
2331 char **pp2 /* IN/OUT: Right input list */
2332 ){
2333 char *p = *pp;
2334 char *p1 = *pp1;
2335 char *p2 = *pp2;
2336 int iCol1 = 0;
2337 int iCol2 = 0;
2338
2339 /* Never set both isSaveLeft and isExact for the same invocation. */
2340 assert( isSaveLeft==0 || isExact==0 );
2341
2342 assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 );
2343 if( *p1==POS_COLUMN ){
2344 p1++;
2345 p1 += fts3GetVarint32(p1, &iCol1);
2346 }
2347 if( *p2==POS_COLUMN ){
2348 p2++;
2349 p2 += fts3GetVarint32(p2, &iCol2);
2350 }
2351
2352 while( 1 ){
2353 if( iCol1==iCol2 ){
2354 char *pSave = p;
2355 sqlite3_int64 iPrev = 0;
2356 sqlite3_int64 iPos1 = 0;
2357 sqlite3_int64 iPos2 = 0;
2358
2359 if( iCol1 ){
2360 *p++ = POS_COLUMN;
2361 p += sqlite3Fts3PutVarint(p, iCol1);
2362 }
2363
2364 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2365 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2366 if( iPos1<0 || iPos2<0 ) break;
2367
2368 while( 1 ){
2369 if( iPos2==iPos1+nToken
2370 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
2371 ){
2372 sqlite3_int64 iSave;
2373 iSave = isSaveLeft ? iPos1 : iPos2;
2374 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
2375 pSave = 0;
2376 assert( p );
2377 }
2378 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
2379 if( (*p2&0xFE)==0 ) break;
2380 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2381 }else{
2382 if( (*p1&0xFE)==0 ) break;
2383 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2384 }
2385 }
2386
2387 if( pSave ){
2388 assert( pp && p );
2389 p = pSave;
2390 }
2391
2392 fts3ColumnlistCopy(0, &p1);
2393 fts3ColumnlistCopy(0, &p2);
2394 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
2395 if( 0==*p1 || 0==*p2 ) break;
2396
2397 p1++;
2398 p1 += fts3GetVarint32(p1, &iCol1);
2399 p2++;
2400 p2 += fts3GetVarint32(p2, &iCol2);
2401 }
2402
2403 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2404 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2405 ** end of the position list, or the 0x01 that precedes the next
2406 ** column-number in the position list.
2407 */
2408 else if( iCol1<iCol2 ){
2409 fts3ColumnlistCopy(0, &p1);
2410 if( 0==*p1 ) break;
2411 p1++;
2412 p1 += fts3GetVarint32(p1, &iCol1);
2413 }else{
2414 fts3ColumnlistCopy(0, &p2);
2415 if( 0==*p2 ) break;
2416 p2++;
2417 p2 += fts3GetVarint32(p2, &iCol2);
2418 }
2419 }
2420
2421 fts3PoslistCopy(0, &p2);
2422 fts3PoslistCopy(0, &p1);
2423 *pp1 = p1;
2424 *pp2 = p2;
2425 if( *pp==p ){
2426 return 0;
2427 }
2428 *p++ = 0x00;
2429 *pp = p;
2430 return 1;
2431 }
2432
2433 /*
2434 ** Merge two position-lists as required by the NEAR operator. The argument
2435 ** position lists correspond to the left and right phrases of an expression
2436 ** like:
2437 **
2438 ** "phrase 1" NEAR "phrase number 2"
2439 **
2440 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2441 ** expression and *pp2 to the right. As usual, the indexes in the position
2442 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2443 ** in the example above).
2444 **
2445 ** The output position list - written to *pp - is a copy of *pp2 with those
2446 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2447 */
fts3PoslistNearMerge(char ** pp,char * aTmp,int nRight,int nLeft,char ** pp1,char ** pp2)2448 static int fts3PoslistNearMerge(
2449 char **pp, /* Output buffer */
2450 char *aTmp, /* Temporary buffer space */
2451 int nRight, /* Maximum difference in token positions */
2452 int nLeft, /* Maximum difference in token positions */
2453 char **pp1, /* IN/OUT: Left input list */
2454 char **pp2 /* IN/OUT: Right input list */
2455 ){
2456 char *p1 = *pp1;
2457 char *p2 = *pp2;
2458
2459 char *pTmp1 = aTmp;
2460 char *pTmp2;
2461 char *aTmp2;
2462 int res = 1;
2463
2464 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
2465 aTmp2 = pTmp2 = pTmp1;
2466 *pp1 = p1;
2467 *pp2 = p2;
2468 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
2469 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
2470 fts3PoslistMerge(pp, &aTmp, &aTmp2);
2471 }else if( pTmp1!=aTmp ){
2472 fts3PoslistCopy(pp, &aTmp);
2473 }else if( pTmp2!=aTmp2 ){
2474 fts3PoslistCopy(pp, &aTmp2);
2475 }else{
2476 res = 0;
2477 }
2478
2479 return res;
2480 }
2481
2482 /*
2483 ** An instance of this function is used to merge together the (potentially
2484 ** large number of) doclists for each term that matches a prefix query.
2485 ** See function fts3TermSelectMerge() for details.
2486 */
2487 typedef struct TermSelect TermSelect;
2488 struct TermSelect {
2489 char *aaOutput[16]; /* Malloc'd output buffers */
2490 int anOutput[16]; /* Size each output buffer in bytes */
2491 };
2492
2493 /*
2494 ** This function is used to read a single varint from a buffer. Parameter
2495 ** pEnd points 1 byte past the end of the buffer. When this function is
2496 ** called, if *pp points to pEnd or greater, then the end of the buffer
2497 ** has been reached. In this case *pp is set to 0 and the function returns.
2498 **
2499 ** If *pp does not point to or past pEnd, then a single varint is read
2500 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2501 **
2502 ** If bDescIdx is false, the value read is added to *pVal before returning.
2503 ** If it is true, the value read is subtracted from *pVal before this
2504 ** function returns.
2505 */
fts3GetDeltaVarint3(char ** pp,char * pEnd,int bDescIdx,sqlite3_int64 * pVal)2506 static void fts3GetDeltaVarint3(
2507 char **pp, /* IN/OUT: Point to read varint from */
2508 char *pEnd, /* End of buffer */
2509 int bDescIdx, /* True if docids are descending */
2510 sqlite3_int64 *pVal /* IN/OUT: Integer value */
2511 ){
2512 if( *pp>=pEnd ){
2513 *pp = 0;
2514 }else{
2515 u64 iVal;
2516 *pp += sqlite3Fts3GetVarintU(*pp, &iVal);
2517 if( bDescIdx ){
2518 *pVal = (i64)((u64)*pVal - iVal);
2519 }else{
2520 *pVal = (i64)((u64)*pVal + iVal);
2521 }
2522 }
2523 }
2524
2525 /*
2526 ** This function is used to write a single varint to a buffer. The varint
2527 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2528 ** end of the value written.
2529 **
2530 ** If *pbFirst is zero when this function is called, the value written to
2531 ** the buffer is that of parameter iVal.
2532 **
2533 ** If *pbFirst is non-zero when this function is called, then the value
2534 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2535 ** (if bDescIdx is non-zero).
2536 **
2537 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2538 ** to the value of parameter iVal.
2539 */
fts3PutDeltaVarint3(char ** pp,int bDescIdx,sqlite3_int64 * piPrev,int * pbFirst,sqlite3_int64 iVal)2540 static void fts3PutDeltaVarint3(
2541 char **pp, /* IN/OUT: Output pointer */
2542 int bDescIdx, /* True for descending docids */
2543 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2544 int *pbFirst, /* IN/OUT: True after first int written */
2545 sqlite3_int64 iVal /* Write this value to the list */
2546 ){
2547 sqlite3_uint64 iWrite;
2548 if( bDescIdx==0 || *pbFirst==0 ){
2549 assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev );
2550 iWrite = (u64)iVal - (u64)*piPrev;
2551 }else{
2552 assert_fts3_nc( *piPrev>=iVal );
2553 iWrite = (u64)*piPrev - (u64)iVal;
2554 }
2555 assert( *pbFirst || *piPrev==0 );
2556 assert_fts3_nc( *pbFirst==0 || iWrite>0 );
2557 *pp += sqlite3Fts3PutVarint(*pp, iWrite);
2558 *piPrev = iVal;
2559 *pbFirst = 1;
2560 }
2561
2562
2563 /*
2564 ** This macro is used by various functions that merge doclists. The two
2565 ** arguments are 64-bit docid values. If the value of the stack variable
2566 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2567 ** Otherwise, (i2-i1).
2568 **
2569 ** Using this makes it easier to write code that can merge doclists that are
2570 ** sorted in either ascending or descending order.
2571 */
2572 /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
2573 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))
2574
2575 /*
2576 ** This function does an "OR" merge of two doclists (output contains all
2577 ** positions contained in either argument doclist). If the docids in the
2578 ** input doclists are sorted in ascending order, parameter bDescDoclist
2579 ** should be false. If they are sorted in ascending order, it should be
2580 ** passed a non-zero value.
2581 **
2582 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2583 ** containing the output doclist and SQLITE_OK is returned. In this case
2584 ** *pnOut is set to the number of bytes in the output doclist.
2585 **
2586 ** If an error occurs, an SQLite error code is returned. The output values
2587 ** are undefined in this case.
2588 */
fts3DoclistOrMerge(int bDescDoclist,char * a1,int n1,char * a2,int n2,char ** paOut,int * pnOut)2589 static int fts3DoclistOrMerge(
2590 int bDescDoclist, /* True if arguments are desc */
2591 char *a1, int n1, /* First doclist */
2592 char *a2, int n2, /* Second doclist */
2593 char **paOut, int *pnOut /* OUT: Malloc'd doclist */
2594 ){
2595 int rc = SQLITE_OK;
2596 sqlite3_int64 i1 = 0;
2597 sqlite3_int64 i2 = 0;
2598 sqlite3_int64 iPrev = 0;
2599 char *pEnd1 = &a1[n1];
2600 char *pEnd2 = &a2[n2];
2601 char *p1 = a1;
2602 char *p2 = a2;
2603 char *p;
2604 char *aOut;
2605 int bFirstOut = 0;
2606
2607 *paOut = 0;
2608 *pnOut = 0;
2609
2610 /* Allocate space for the output. Both the input and output doclists
2611 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2612 ** then the first docid in each list is simply encoded as a varint. For
2613 ** each subsequent docid, the varint stored is the difference between the
2614 ** current and previous docid (a positive number - since the list is in
2615 ** ascending order).
2616 **
2617 ** The first docid written to the output is therefore encoded using the
2618 ** same number of bytes as it is in whichever of the input lists it is
2619 ** read from. And each subsequent docid read from the same input list
2620 ** consumes either the same or less bytes as it did in the input (since
2621 ** the difference between it and the previous value in the output must
2622 ** be a positive value less than or equal to the delta value read from
2623 ** the input list). The same argument applies to all but the first docid
2624 ** read from the 'other' list. And to the contents of all position lists
2625 ** that will be copied and merged from the input to the output.
2626 **
2627 ** However, if the first docid copied to the output is a negative number,
2628 ** then the encoding of the first docid from the 'other' input list may
2629 ** be larger in the output than it was in the input (since the delta value
2630 ** may be a larger positive integer than the actual docid).
2631 **
2632 ** The space required to store the output is therefore the sum of the
2633 ** sizes of the two inputs, plus enough space for exactly one of the input
2634 ** docids to grow.
2635 **
2636 ** A symetric argument may be made if the doclists are in descending
2637 ** order.
2638 */
2639 aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING);
2640 if( !aOut ) return SQLITE_NOMEM;
2641
2642 p = aOut;
2643 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2644 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2645 while( p1 || p2 ){
2646 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2647
2648 if( p2 && p1 && iDiff==0 ){
2649 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2650 rc = fts3PoslistMerge(&p, &p1, &p2);
2651 if( rc ) break;
2652 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2653 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2654 }else if( !p2 || (p1 && iDiff<0) ){
2655 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2656 fts3PoslistCopy(&p, &p1);
2657 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2658 }else{
2659 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
2660 fts3PoslistCopy(&p, &p2);
2661 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2662 }
2663
2664 assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
2665 }
2666
2667 if( rc!=SQLITE_OK ){
2668 sqlite3_free(aOut);
2669 p = aOut = 0;
2670 }else{
2671 assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
2672 memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING);
2673 }
2674 *paOut = aOut;
2675 *pnOut = (int)(p-aOut);
2676 return rc;
2677 }
2678
2679 /*
2680 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2681 ** the output contains a copy of each position from the right-hand input
2682 ** doclist for which there is a position in the left-hand input doclist
2683 ** exactly nDist tokens before it.
2684 **
2685 ** If the docids in the input doclists are sorted in ascending order,
2686 ** parameter bDescDoclist should be false. If they are sorted in ascending
2687 ** order, it should be passed a non-zero value.
2688 **
2689 ** The right-hand input doclist is overwritten by this function.
2690 */
fts3DoclistPhraseMerge(int bDescDoclist,int nDist,char * aLeft,int nLeft,char ** paRight,int * pnRight)2691 static int fts3DoclistPhraseMerge(
2692 int bDescDoclist, /* True if arguments are desc */
2693 int nDist, /* Distance from left to right (1=adjacent) */
2694 char *aLeft, int nLeft, /* Left doclist */
2695 char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
2696 ){
2697 sqlite3_int64 i1 = 0;
2698 sqlite3_int64 i2 = 0;
2699 sqlite3_int64 iPrev = 0;
2700 char *aRight = *paRight;
2701 char *pEnd1 = &aLeft[nLeft];
2702 char *pEnd2 = &aRight[*pnRight];
2703 char *p1 = aLeft;
2704 char *p2 = aRight;
2705 char *p;
2706 int bFirstOut = 0;
2707 char *aOut;
2708
2709 assert( nDist>0 );
2710 if( bDescDoclist ){
2711 aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX);
2712 if( aOut==0 ) return SQLITE_NOMEM;
2713 }else{
2714 aOut = aRight;
2715 }
2716 p = aOut;
2717
2718 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2719 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2720
2721 while( p1 && p2 ){
2722 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2723 if( iDiff==0 ){
2724 char *pSave = p;
2725 sqlite3_int64 iPrevSave = iPrev;
2726 int bFirstOutSave = bFirstOut;
2727
2728 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2729 if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
2730 p = pSave;
2731 iPrev = iPrevSave;
2732 bFirstOut = bFirstOutSave;
2733 }
2734 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2735 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2736 }else if( iDiff<0 ){
2737 fts3PoslistCopy(0, &p1);
2738 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2739 }else{
2740 fts3PoslistCopy(0, &p2);
2741 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2742 }
2743 }
2744
2745 *pnRight = (int)(p - aOut);
2746 if( bDescDoclist ){
2747 sqlite3_free(aRight);
2748 *paRight = aOut;
2749 }
2750
2751 return SQLITE_OK;
2752 }
2753
2754 /*
2755 ** Argument pList points to a position list nList bytes in size. This
2756 ** function checks to see if the position list contains any entries for
2757 ** a token in position 0 (of any column). If so, it writes argument iDelta
2758 ** to the output buffer pOut, followed by a position list consisting only
2759 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2760 ** The value returned is the number of bytes written to pOut (if any).
2761 */
sqlite3Fts3FirstFilter(sqlite3_int64 iDelta,char * pList,int nList,char * pOut)2762 int sqlite3Fts3FirstFilter(
2763 sqlite3_int64 iDelta, /* Varint that may be written to pOut */
2764 char *pList, /* Position list (no 0x00 term) */
2765 int nList, /* Size of pList in bytes */
2766 char *pOut /* Write output here */
2767 ){
2768 int nOut = 0;
2769 int bWritten = 0; /* True once iDelta has been written */
2770 char *p = pList;
2771 char *pEnd = &pList[nList];
2772
2773 if( *p!=0x01 ){
2774 if( *p==0x02 ){
2775 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2776 pOut[nOut++] = 0x02;
2777 bWritten = 1;
2778 }
2779 fts3ColumnlistCopy(0, &p);
2780 }
2781
2782 while( p<pEnd ){
2783 sqlite3_int64 iCol;
2784 p++;
2785 p += sqlite3Fts3GetVarint(p, &iCol);
2786 if( *p==0x02 ){
2787 if( bWritten==0 ){
2788 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2789 bWritten = 1;
2790 }
2791 pOut[nOut++] = 0x01;
2792 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
2793 pOut[nOut++] = 0x02;
2794 }
2795 fts3ColumnlistCopy(0, &p);
2796 }
2797 if( bWritten ){
2798 pOut[nOut++] = 0x00;
2799 }
2800
2801 return nOut;
2802 }
2803
2804
2805 /*
2806 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2807 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2808 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2809 **
2810 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2811 ** the responsibility of the caller to free any doclists left in the
2812 ** TermSelect.aaOutput[] array.
2813 */
fts3TermSelectFinishMerge(Fts3Table * p,TermSelect * pTS)2814 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
2815 char *aOut = 0;
2816 int nOut = 0;
2817 int i;
2818
2819 /* Loop through the doclists in the aaOutput[] array. Merge them all
2820 ** into a single doclist.
2821 */
2822 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
2823 if( pTS->aaOutput[i] ){
2824 if( !aOut ){
2825 aOut = pTS->aaOutput[i];
2826 nOut = pTS->anOutput[i];
2827 pTS->aaOutput[i] = 0;
2828 }else{
2829 int nNew;
2830 char *aNew;
2831
2832 int rc = fts3DoclistOrMerge(p->bDescIdx,
2833 pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
2834 );
2835 if( rc!=SQLITE_OK ){
2836 sqlite3_free(aOut);
2837 return rc;
2838 }
2839
2840 sqlite3_free(pTS->aaOutput[i]);
2841 sqlite3_free(aOut);
2842 pTS->aaOutput[i] = 0;
2843 aOut = aNew;
2844 nOut = nNew;
2845 }
2846 }
2847 }
2848
2849 pTS->aaOutput[0] = aOut;
2850 pTS->anOutput[0] = nOut;
2851 return SQLITE_OK;
2852 }
2853
2854 /*
2855 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2856 ** as the first argument. The merge is an "OR" merge (see function
2857 ** fts3DoclistOrMerge() for details).
2858 **
2859 ** This function is called with the doclist for each term that matches
2860 ** a queried prefix. It merges all these doclists into one, the doclist
2861 ** for the specified prefix. Since there can be a very large number of
2862 ** doclists to merge, the merging is done pair-wise using the TermSelect
2863 ** object.
2864 **
2865 ** This function returns SQLITE_OK if the merge is successful, or an
2866 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2867 */
fts3TermSelectMerge(Fts3Table * p,TermSelect * pTS,char * aDoclist,int nDoclist)2868 static int fts3TermSelectMerge(
2869 Fts3Table *p, /* FTS table handle */
2870 TermSelect *pTS, /* TermSelect object to merge into */
2871 char *aDoclist, /* Pointer to doclist */
2872 int nDoclist /* Size of aDoclist in bytes */
2873 ){
2874 if( pTS->aaOutput[0]==0 ){
2875 /* If this is the first term selected, copy the doclist to the output
2876 ** buffer using memcpy().
2877 **
2878 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2879 ** allocation. This is so as to ensure that the buffer is big enough
2880 ** to hold the current doclist AND'd with any other doclist. If the
2881 ** doclists are stored in order=ASC order, this padding would not be
2882 ** required (since the size of [doclistA AND doclistB] is always less
2883 ** than or equal to the size of [doclistA] in that case). But this is
2884 ** not true for order=DESC. For example, a doclist containing (1, -1)
2885 ** may be smaller than (-1), as in the first example the -1 may be stored
2886 ** as a single-byte delta, whereas in the second it must be stored as a
2887 ** FTS3_VARINT_MAX byte varint.
2888 **
2889 ** Similar padding is added in the fts3DoclistOrMerge() function.
2890 */
2891 pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1);
2892 pTS->anOutput[0] = nDoclist;
2893 if( pTS->aaOutput[0] ){
2894 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2895 memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
2896 }else{
2897 return SQLITE_NOMEM;
2898 }
2899 }else{
2900 char *aMerge = aDoclist;
2901 int nMerge = nDoclist;
2902 int iOut;
2903
2904 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2905 if( pTS->aaOutput[iOut]==0 ){
2906 assert( iOut>0 );
2907 pTS->aaOutput[iOut] = aMerge;
2908 pTS->anOutput[iOut] = nMerge;
2909 break;
2910 }else{
2911 char *aNew;
2912 int nNew;
2913
2914 int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
2915 pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
2916 );
2917 if( rc!=SQLITE_OK ){
2918 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2919 return rc;
2920 }
2921
2922 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2923 sqlite3_free(pTS->aaOutput[iOut]);
2924 pTS->aaOutput[iOut] = 0;
2925
2926 aMerge = aNew;
2927 nMerge = nNew;
2928 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2929 pTS->aaOutput[iOut] = aMerge;
2930 pTS->anOutput[iOut] = nMerge;
2931 }
2932 }
2933 }
2934 }
2935 return SQLITE_OK;
2936 }
2937
2938 /*
2939 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2940 */
fts3SegReaderCursorAppend(Fts3MultiSegReader * pCsr,Fts3SegReader * pNew)2941 static int fts3SegReaderCursorAppend(
2942 Fts3MultiSegReader *pCsr,
2943 Fts3SegReader *pNew
2944 ){
2945 if( (pCsr->nSegment%16)==0 ){
2946 Fts3SegReader **apNew;
2947 sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2948 apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte);
2949 if( !apNew ){
2950 sqlite3Fts3SegReaderFree(pNew);
2951 return SQLITE_NOMEM;
2952 }
2953 pCsr->apSegment = apNew;
2954 }
2955 pCsr->apSegment[pCsr->nSegment++] = pNew;
2956 return SQLITE_OK;
2957 }
2958
2959 /*
2960 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2961 ** 8th argument.
2962 **
2963 ** This function returns SQLITE_OK if successful, or an SQLite error code
2964 ** otherwise.
2965 */
fts3SegReaderCursor(Fts3Table * p,int iLangid,int iIndex,int iLevel,const char * zTerm,int nTerm,int isPrefix,int isScan,Fts3MultiSegReader * pCsr)2966 static int fts3SegReaderCursor(
2967 Fts3Table *p, /* FTS3 table handle */
2968 int iLangid, /* Language id */
2969 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2970 int iLevel, /* Level of segments to scan */
2971 const char *zTerm, /* Term to query for */
2972 int nTerm, /* Size of zTerm in bytes */
2973 int isPrefix, /* True for a prefix search */
2974 int isScan, /* True to scan from zTerm to EOF */
2975 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2976 ){
2977 int rc = SQLITE_OK; /* Error code */
2978 sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
2979 int rc2; /* Result of sqlite3_reset() */
2980
2981 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2982 ** for the pending-terms. If this is a scan, then this call must be being
2983 ** made by an fts4aux module, not an FTS table. In this case calling
2984 ** Fts3SegReaderPending might segfault, as the data structures used by
2985 ** fts4aux are not completely populated. So it's easiest to filter these
2986 ** calls out here. */
2987 if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){
2988 Fts3SegReader *pSeg = 0;
2989 rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
2990 if( rc==SQLITE_OK && pSeg ){
2991 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2992 }
2993 }
2994
2995 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2996 if( rc==SQLITE_OK ){
2997 rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
2998 }
2999
3000 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
3001 Fts3SegReader *pSeg = 0;
3002
3003 /* Read the values returned by the SELECT into local variables. */
3004 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
3005 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
3006 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
3007 int nRoot = sqlite3_column_bytes(pStmt, 4);
3008 char const *zRoot = sqlite3_column_blob(pStmt, 4);
3009
3010 /* If zTerm is not NULL, and this segment is not stored entirely on its
3011 ** root node, the range of leaves scanned can be reduced. Do this. */
3012 if( iStartBlock && zTerm && zRoot ){
3013 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
3014 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
3015 if( rc!=SQLITE_OK ) goto finished;
3016 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
3017 }
3018
3019 rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
3020 (isPrefix==0 && isScan==0),
3021 iStartBlock, iLeavesEndBlock,
3022 iEndBlock, zRoot, nRoot, &pSeg
3023 );
3024 if( rc!=SQLITE_OK ) goto finished;
3025 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
3026 }
3027 }
3028
3029 finished:
3030 rc2 = sqlite3_reset(pStmt);
3031 if( rc==SQLITE_DONE ) rc = rc2;
3032
3033 return rc;
3034 }
3035
3036 /*
3037 ** Set up a cursor object for iterating through a full-text index or a
3038 ** single level therein.
3039 */
sqlite3Fts3SegReaderCursor(Fts3Table * p,int iLangid,int iIndex,int iLevel,const char * zTerm,int nTerm,int isPrefix,int isScan,Fts3MultiSegReader * pCsr)3040 int sqlite3Fts3SegReaderCursor(
3041 Fts3Table *p, /* FTS3 table handle */
3042 int iLangid, /* Language-id to search */
3043 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
3044 int iLevel, /* Level of segments to scan */
3045 const char *zTerm, /* Term to query for */
3046 int nTerm, /* Size of zTerm in bytes */
3047 int isPrefix, /* True for a prefix search */
3048 int isScan, /* True to scan from zTerm to EOF */
3049 Fts3MultiSegReader *pCsr /* Cursor object to populate */
3050 ){
3051 assert( iIndex>=0 && iIndex<p->nIndex );
3052 assert( iLevel==FTS3_SEGCURSOR_ALL
3053 || iLevel==FTS3_SEGCURSOR_PENDING
3054 || iLevel>=0
3055 );
3056 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
3057 assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
3058 assert( isPrefix==0 || isScan==0 );
3059
3060 memset(pCsr, 0, sizeof(Fts3MultiSegReader));
3061 return fts3SegReaderCursor(
3062 p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
3063 );
3064 }
3065
3066 /*
3067 ** In addition to its current configuration, have the Fts3MultiSegReader
3068 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
3069 **
3070 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3071 */
fts3SegReaderCursorAddZero(Fts3Table * p,int iLangid,const char * zTerm,int nTerm,Fts3MultiSegReader * pCsr)3072 static int fts3SegReaderCursorAddZero(
3073 Fts3Table *p, /* FTS virtual table handle */
3074 int iLangid,
3075 const char *zTerm, /* Term to scan doclist of */
3076 int nTerm, /* Number of bytes in zTerm */
3077 Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
3078 ){
3079 return fts3SegReaderCursor(p,
3080 iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
3081 );
3082 }
3083
3084 /*
3085 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
3086 ** if isPrefix is true, to scan the doclist for all terms for which
3087 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
3088 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
3089 ** an SQLite error code.
3090 **
3091 ** It is the responsibility of the caller to free this object by eventually
3092 ** passing it to fts3SegReaderCursorFree()
3093 **
3094 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3095 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
3096 */
fts3TermSegReaderCursor(Fts3Cursor * pCsr,const char * zTerm,int nTerm,int isPrefix,Fts3MultiSegReader ** ppSegcsr)3097 static int fts3TermSegReaderCursor(
3098 Fts3Cursor *pCsr, /* Virtual table cursor handle */
3099 const char *zTerm, /* Term to query for */
3100 int nTerm, /* Size of zTerm in bytes */
3101 int isPrefix, /* True for a prefix search */
3102 Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
3103 ){
3104 Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
3105 int rc = SQLITE_NOMEM; /* Return code */
3106
3107 pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
3108 if( pSegcsr ){
3109 int i;
3110 int bFound = 0; /* True once an index has been found */
3111 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
3112
3113 if( isPrefix ){
3114 for(i=1; bFound==0 && i<p->nIndex; i++){
3115 if( p->aIndex[i].nPrefix==nTerm ){
3116 bFound = 1;
3117 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3118 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
3119 );
3120 pSegcsr->bLookup = 1;
3121 }
3122 }
3123
3124 for(i=1; bFound==0 && i<p->nIndex; i++){
3125 if( p->aIndex[i].nPrefix==nTerm+1 ){
3126 bFound = 1;
3127 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3128 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
3129 );
3130 if( rc==SQLITE_OK ){
3131 rc = fts3SegReaderCursorAddZero(
3132 p, pCsr->iLangid, zTerm, nTerm, pSegcsr
3133 );
3134 }
3135 }
3136 }
3137 }
3138
3139 if( bFound==0 ){
3140 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3141 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
3142 );
3143 pSegcsr->bLookup = !isPrefix;
3144 }
3145 }
3146
3147 *ppSegcsr = pSegcsr;
3148 return rc;
3149 }
3150
3151 /*
3152 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3153 */
fts3SegReaderCursorFree(Fts3MultiSegReader * pSegcsr)3154 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
3155 sqlite3Fts3SegReaderFinish(pSegcsr);
3156 sqlite3_free(pSegcsr);
3157 }
3158
3159 /*
3160 ** This function retrieves the doclist for the specified term (or term
3161 ** prefix) from the database.
3162 */
fts3TermSelect(Fts3Table * p,Fts3PhraseToken * pTok,int iColumn,int * pnOut,char ** ppOut)3163 static int fts3TermSelect(
3164 Fts3Table *p, /* Virtual table handle */
3165 Fts3PhraseToken *pTok, /* Token to query for */
3166 int iColumn, /* Column to query (or -ve for all columns) */
3167 int *pnOut, /* OUT: Size of buffer at *ppOut */
3168 char **ppOut /* OUT: Malloced result buffer */
3169 ){
3170 int rc; /* Return code */
3171 Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
3172 TermSelect tsc; /* Object for pair-wise doclist merging */
3173 Fts3SegFilter filter; /* Segment term filter configuration */
3174
3175 pSegcsr = pTok->pSegcsr;
3176 memset(&tsc, 0, sizeof(TermSelect));
3177
3178 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
3179 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
3180 | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
3181 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
3182 filter.iCol = iColumn;
3183 filter.zTerm = pTok->z;
3184 filter.nTerm = pTok->n;
3185
3186 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
3187 while( SQLITE_OK==rc
3188 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
3189 ){
3190 rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
3191 }
3192
3193 if( rc==SQLITE_OK ){
3194 rc = fts3TermSelectFinishMerge(p, &tsc);
3195 }
3196 if( rc==SQLITE_OK ){
3197 *ppOut = tsc.aaOutput[0];
3198 *pnOut = tsc.anOutput[0];
3199 }else{
3200 int i;
3201 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
3202 sqlite3_free(tsc.aaOutput[i]);
3203 }
3204 }
3205
3206 fts3SegReaderCursorFree(pSegcsr);
3207 pTok->pSegcsr = 0;
3208 return rc;
3209 }
3210
3211 /*
3212 ** This function counts the total number of docids in the doclist stored
3213 ** in buffer aList[], size nList bytes.
3214 **
3215 ** If the isPoslist argument is true, then it is assumed that the doclist
3216 ** contains a position-list following each docid. Otherwise, it is assumed
3217 ** that the doclist is simply a list of docids stored as delta encoded
3218 ** varints.
3219 */
fts3DoclistCountDocids(char * aList,int nList)3220 static int fts3DoclistCountDocids(char *aList, int nList){
3221 int nDoc = 0; /* Return value */
3222 if( aList ){
3223 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
3224 char *p = aList; /* Cursor */
3225 while( p<aEnd ){
3226 nDoc++;
3227 while( (*p++)&0x80 ); /* Skip docid varint */
3228 fts3PoslistCopy(0, &p); /* Skip over position list */
3229 }
3230 }
3231
3232 return nDoc;
3233 }
3234
3235 /*
3236 ** Advance the cursor to the next row in the %_content table that
3237 ** matches the search criteria. For a MATCH search, this will be
3238 ** the next row that matches. For a full-table scan, this will be
3239 ** simply the next row in the %_content table. For a docid lookup,
3240 ** this routine simply sets the EOF flag.
3241 **
3242 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3243 ** even if we reach end-of-file. The fts3EofMethod() will be called
3244 ** subsequently to determine whether or not an EOF was hit.
3245 */
fts3NextMethod(sqlite3_vtab_cursor * pCursor)3246 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
3247 int rc;
3248 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3249 if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
3250 Fts3Table *pTab = (Fts3Table*)pCursor->pVtab;
3251 pTab->bLock++;
3252 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3253 pCsr->isEof = 1;
3254 rc = sqlite3_reset(pCsr->pStmt);
3255 }else{
3256 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3257 rc = SQLITE_OK;
3258 }
3259 pTab->bLock--;
3260 }else{
3261 rc = fts3EvalNext((Fts3Cursor *)pCursor);
3262 }
3263 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3264 return rc;
3265 }
3266
3267 /*
3268 ** If the numeric type of argument pVal is "integer", then return it
3269 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3270 ** the second parameter, iDefault.
3271 */
fts3DocidRange(sqlite3_value * pVal,i64 iDefault)3272 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
3273 if( pVal ){
3274 int eType = sqlite3_value_numeric_type(pVal);
3275 if( eType==SQLITE_INTEGER ){
3276 return sqlite3_value_int64(pVal);
3277 }
3278 }
3279 return iDefault;
3280 }
3281
3282 /*
3283 ** This is the xFilter interface for the virtual table. See
3284 ** the virtual table xFilter method documentation for additional
3285 ** information.
3286 **
3287 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3288 ** the %_content table.
3289 **
3290 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3291 ** in the %_content table.
3292 **
3293 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3294 ** column on the left-hand side of the MATCH operator is column
3295 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3296 ** side of the MATCH operator.
3297 */
fts3FilterMethod(sqlite3_vtab_cursor * pCursor,int idxNum,const char * idxStr,int nVal,sqlite3_value ** apVal)3298 static int fts3FilterMethod(
3299 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3300 int idxNum, /* Strategy index */
3301 const char *idxStr, /* Unused */
3302 int nVal, /* Number of elements in apVal */
3303 sqlite3_value **apVal /* Arguments for the indexing scheme */
3304 ){
3305 int rc = SQLITE_OK;
3306 char *zSql; /* SQL statement used to access %_content */
3307 int eSearch;
3308 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3309 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3310
3311 sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
3312 sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
3313 sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
3314 sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
3315 int iIdx;
3316
3317 UNUSED_PARAMETER(idxStr);
3318 UNUSED_PARAMETER(nVal);
3319
3320 if( p->bLock ){
3321 return SQLITE_ERROR;
3322 }
3323
3324 eSearch = (idxNum & 0x0000FFFF);
3325 assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3326 assert( p->pSegments==0 );
3327
3328 /* Collect arguments into local variables */
3329 iIdx = 0;
3330 if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
3331 if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
3332 if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
3333 if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
3334 assert( iIdx==nVal );
3335
3336 /* In case the cursor has been used before, clear it now. */
3337 fts3ClearCursor(pCsr);
3338
3339 /* Set the lower and upper bounds on docids to return */
3340 pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
3341 pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
3342
3343 if( idxStr ){
3344 pCsr->bDesc = (idxStr[0]=='D');
3345 }else{
3346 pCsr->bDesc = p->bDescIdx;
3347 }
3348 pCsr->eSearch = (i16)eSearch;
3349
3350 if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
3351 int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
3352 const char *zQuery = (const char *)sqlite3_value_text(pCons);
3353
3354 if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
3355 return SQLITE_NOMEM;
3356 }
3357
3358 pCsr->iLangid = 0;
3359 if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
3360
3361 assert( p->base.zErrMsg==0 );
3362 rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
3363 p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
3364 &p->base.zErrMsg
3365 );
3366 if( rc!=SQLITE_OK ){
3367 return rc;
3368 }
3369
3370 rc = fts3EvalStart(pCsr);
3371 sqlite3Fts3SegmentsClose(p);
3372 if( rc!=SQLITE_OK ) return rc;
3373 pCsr->pNextId = pCsr->aDoclist;
3374 pCsr->iPrevId = 0;
3375 }
3376
3377 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3378 ** statement loops through all rows of the %_content table. For a
3379 ** full-text query or docid lookup, the statement retrieves a single
3380 ** row by docid.
3381 */
3382 if( eSearch==FTS3_FULLSCAN_SEARCH ){
3383 if( pDocidGe || pDocidLe ){
3384 zSql = sqlite3_mprintf(
3385 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3386 p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
3387 (pCsr->bDesc ? "DESC" : "ASC")
3388 );
3389 }else{
3390 zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3391 p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
3392 );
3393 }
3394 if( zSql ){
3395 p->bLock++;
3396 rc = sqlite3_prepare_v3(
3397 p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
3398 );
3399 p->bLock--;
3400 sqlite3_free(zSql);
3401 }else{
3402 rc = SQLITE_NOMEM;
3403 }
3404 }else if( eSearch==FTS3_DOCID_SEARCH ){
3405 rc = fts3CursorSeekStmt(pCsr);
3406 if( rc==SQLITE_OK ){
3407 rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
3408 }
3409 }
3410 if( rc!=SQLITE_OK ) return rc;
3411
3412 return fts3NextMethod(pCursor);
3413 }
3414
3415 /*
3416 ** This is the xEof method of the virtual table. SQLite calls this
3417 ** routine to find out if it has reached the end of a result set.
3418 */
fts3EofMethod(sqlite3_vtab_cursor * pCursor)3419 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3420 Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
3421 if( pCsr->isEof ){
3422 fts3ClearCursor(pCsr);
3423 pCsr->isEof = 1;
3424 }
3425 return pCsr->isEof;
3426 }
3427
3428 /*
3429 ** This is the xRowid method. The SQLite core calls this routine to
3430 ** retrieve the rowid for the current row of the result set. fts3
3431 ** exposes %_content.docid as the rowid for the virtual table. The
3432 ** rowid should be written to *pRowid.
3433 */
fts3RowidMethod(sqlite3_vtab_cursor * pCursor,sqlite_int64 * pRowid)3434 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3435 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3436 *pRowid = pCsr->iPrevId;
3437 return SQLITE_OK;
3438 }
3439
3440 /*
3441 ** This is the xColumn method, called by SQLite to request a value from
3442 ** the row that the supplied cursor currently points to.
3443 **
3444 ** If:
3445 **
3446 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3447 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3448 ** (iCol == p->nColumn+1) -> Docid column
3449 ** (iCol == p->nColumn+2) -> Langid column
3450 */
fts3ColumnMethod(sqlite3_vtab_cursor * pCursor,sqlite3_context * pCtx,int iCol)3451 static int fts3ColumnMethod(
3452 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3453 sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
3454 int iCol /* Index of column to read value from */
3455 ){
3456 int rc = SQLITE_OK; /* Return Code */
3457 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3458 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3459
3460 /* The column value supplied by SQLite must be in range. */
3461 assert( iCol>=0 && iCol<=p->nColumn+2 );
3462
3463 switch( iCol-p->nColumn ){
3464 case 0:
3465 /* The special 'table-name' column */
3466 sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0);
3467 break;
3468
3469 case 1:
3470 /* The docid column */
3471 sqlite3_result_int64(pCtx, pCsr->iPrevId);
3472 break;
3473
3474 case 2:
3475 if( pCsr->pExpr ){
3476 sqlite3_result_int64(pCtx, pCsr->iLangid);
3477 break;
3478 }else if( p->zLanguageid==0 ){
3479 sqlite3_result_int(pCtx, 0);
3480 break;
3481 }else{
3482 iCol = p->nColumn;
3483 /* no break */ deliberate_fall_through
3484 }
3485
3486 default:
3487 /* A user column. Or, if this is a full-table scan, possibly the
3488 ** language-id column. Seek the cursor. */
3489 rc = fts3CursorSeek(0, pCsr);
3490 if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
3491 sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
3492 }
3493 break;
3494 }
3495
3496 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3497 return rc;
3498 }
3499
3500 /*
3501 ** This function is the implementation of the xUpdate callback used by
3502 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3503 ** inserted, updated or deleted.
3504 */
fts3UpdateMethod(sqlite3_vtab * pVtab,int nArg,sqlite3_value ** apVal,sqlite_int64 * pRowid)3505 static int fts3UpdateMethod(
3506 sqlite3_vtab *pVtab, /* Virtual table handle */
3507 int nArg, /* Size of argument array */
3508 sqlite3_value **apVal, /* Array of arguments */
3509 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3510 ){
3511 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3512 }
3513
3514 /*
3515 ** Implementation of xSync() method. Flush the contents of the pending-terms
3516 ** hash-table to the database.
3517 */
fts3SyncMethod(sqlite3_vtab * pVtab)3518 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3519
3520 /* Following an incremental-merge operation, assuming that the input
3521 ** segments are not completely consumed (the usual case), they are updated
3522 ** in place to remove the entries that have already been merged. This
3523 ** involves updating the leaf block that contains the smallest unmerged
3524 ** entry and each block (if any) between the leaf and the root node. So
3525 ** if the height of the input segment b-trees is N, and input segments
3526 ** are merged eight at a time, updating the input segments at the end
3527 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3528 ** small - often between 0 and 2. So the overhead of the incremental
3529 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3530 ** dwarfing the actual productive work accomplished, the incremental merge
3531 ** is only attempted if it will write at least 64 leaf blocks. Hence
3532 ** nMinMerge.
3533 **
3534 ** Of course, updating the input segments also involves deleting a bunch
3535 ** of blocks from the segments table. But this is not considered overhead
3536 ** as it would also be required by a crisis-merge that used the same input
3537 ** segments.
3538 */
3539 const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
3540
3541 Fts3Table *p = (Fts3Table*)pVtab;
3542 int rc;
3543 i64 iLastRowid = sqlite3_last_insert_rowid(p->db);
3544
3545 rc = sqlite3Fts3PendingTermsFlush(p);
3546 if( rc==SQLITE_OK
3547 && p->nLeafAdd>(nMinMerge/16)
3548 && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
3549 ){
3550 int mxLevel = 0; /* Maximum relative level value in db */
3551 int A; /* Incr-merge parameter A */
3552
3553 rc = sqlite3Fts3MaxLevel(p, &mxLevel);
3554 assert( rc==SQLITE_OK || mxLevel==0 );
3555 A = p->nLeafAdd * mxLevel;
3556 A += (A/2);
3557 if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
3558 }
3559 sqlite3Fts3SegmentsClose(p);
3560 sqlite3_set_last_insert_rowid(p->db, iLastRowid);
3561 return rc;
3562 }
3563
3564 /*
3565 ** If it is currently unknown whether or not the FTS table has an %_stat
3566 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3567 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3568 ** if an error occurs.
3569 */
fts3SetHasStat(Fts3Table * p)3570 static int fts3SetHasStat(Fts3Table *p){
3571 int rc = SQLITE_OK;
3572 if( p->bHasStat==2 ){
3573 char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
3574 if( zTbl ){
3575 int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);
3576 sqlite3_free(zTbl);
3577 p->bHasStat = (res==SQLITE_OK);
3578 }else{
3579 rc = SQLITE_NOMEM;
3580 }
3581 }
3582 return rc;
3583 }
3584
3585 /*
3586 ** Implementation of xBegin() method.
3587 */
fts3BeginMethod(sqlite3_vtab * pVtab)3588 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3589 Fts3Table *p = (Fts3Table*)pVtab;
3590 int rc;
3591 UNUSED_PARAMETER(pVtab);
3592 assert( p->pSegments==0 );
3593 assert( p->nPendingData==0 );
3594 assert( p->inTransaction!=1 );
3595 p->nLeafAdd = 0;
3596 rc = fts3SetHasStat(p);
3597 #ifdef SQLITE_DEBUG
3598 if( rc==SQLITE_OK ){
3599 p->inTransaction = 1;
3600 p->mxSavepoint = -1;
3601 }
3602 #endif
3603 return rc;
3604 }
3605
3606 /*
3607 ** Implementation of xCommit() method. This is a no-op. The contents of
3608 ** the pending-terms hash-table have already been flushed into the database
3609 ** by fts3SyncMethod().
3610 */
fts3CommitMethod(sqlite3_vtab * pVtab)3611 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3612 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3613 UNUSED_PARAMETER(pVtab);
3614 assert( p->nPendingData==0 );
3615 assert( p->inTransaction!=0 );
3616 assert( p->pSegments==0 );
3617 TESTONLY( p->inTransaction = 0 );
3618 TESTONLY( p->mxSavepoint = -1; );
3619 return SQLITE_OK;
3620 }
3621
3622 /*
3623 ** Implementation of xRollback(). Discard the contents of the pending-terms
3624 ** hash-table. Any changes made to the database are reverted by SQLite.
3625 */
fts3RollbackMethod(sqlite3_vtab * pVtab)3626 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3627 Fts3Table *p = (Fts3Table*)pVtab;
3628 sqlite3Fts3PendingTermsClear(p);
3629 assert( p->inTransaction!=0 );
3630 TESTONLY( p->inTransaction = 0 );
3631 TESTONLY( p->mxSavepoint = -1; );
3632 return SQLITE_OK;
3633 }
3634
3635 /*
3636 ** When called, *ppPoslist must point to the byte immediately following the
3637 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3638 ** moves *ppPoslist so that it instead points to the first byte of the
3639 ** same position list.
3640 */
fts3ReversePoslist(char * pStart,char ** ppPoslist)3641 static void fts3ReversePoslist(char *pStart, char **ppPoslist){
3642 char *p = &(*ppPoslist)[-2];
3643 char c = 0;
3644
3645 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3646 while( p>pStart && (c=*p--)==0 );
3647
3648 /* Search backwards for a varint with value zero (the end of the previous
3649 ** poslist). This is an 0x00 byte preceded by some byte that does not
3650 ** have the 0x80 bit set. */
3651 while( p>pStart && (*p & 0x80) | c ){
3652 c = *p--;
3653 }
3654 assert( p==pStart || c==0 );
3655
3656 /* At this point p points to that preceding byte without the 0x80 bit
3657 ** set. So to find the start of the poslist, skip forward 2 bytes then
3658 ** over a varint.
3659 **
3660 ** Normally. The other case is that p==pStart and the poslist to return
3661 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3662 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3663 ** is required for cases where the first byte of a doclist and the
3664 ** doclist is empty. For example, if the first docid is 10, a doclist
3665 ** that begins with:
3666 **
3667 ** 0x0A 0x00 <next docid delta varint>
3668 */
3669 if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
3670 while( *p++&0x80 );
3671 *ppPoslist = p;
3672 }
3673
3674 /*
3675 ** Helper function used by the implementation of the overloaded snippet(),
3676 ** offsets() and optimize() SQL functions.
3677 **
3678 ** If the value passed as the third argument is a blob of size
3679 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3680 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3681 ** message is written to context pContext and SQLITE_ERROR returned. The
3682 ** string passed via zFunc is used as part of the error message.
3683 */
fts3FunctionArg(sqlite3_context * pContext,const char * zFunc,sqlite3_value * pVal,Fts3Cursor ** ppCsr)3684 static int fts3FunctionArg(
3685 sqlite3_context *pContext, /* SQL function call context */
3686 const char *zFunc, /* Function name */
3687 sqlite3_value *pVal, /* argv[0] passed to function */
3688 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3689 ){
3690 int rc;
3691 *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor");
3692 if( (*ppCsr)!=0 ){
3693 rc = SQLITE_OK;
3694 }else{
3695 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3696 sqlite3_result_error(pContext, zErr, -1);
3697 sqlite3_free(zErr);
3698 rc = SQLITE_ERROR;
3699 }
3700 return rc;
3701 }
3702
3703 /*
3704 ** Implementation of the snippet() function for FTS3
3705 */
fts3SnippetFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3706 static void fts3SnippetFunc(
3707 sqlite3_context *pContext, /* SQLite function call context */
3708 int nVal, /* Size of apVal[] array */
3709 sqlite3_value **apVal /* Array of arguments */
3710 ){
3711 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3712 const char *zStart = "<b>";
3713 const char *zEnd = "</b>";
3714 const char *zEllipsis = "<b>...</b>";
3715 int iCol = -1;
3716 int nToken = 15; /* Default number of tokens in snippet */
3717
3718 /* There must be at least one argument passed to this function (otherwise
3719 ** the non-overloaded version would have been called instead of this one).
3720 */
3721 assert( nVal>=1 );
3722
3723 if( nVal>6 ){
3724 sqlite3_result_error(pContext,
3725 "wrong number of arguments to function snippet()", -1);
3726 return;
3727 }
3728 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3729
3730 switch( nVal ){
3731 case 6: nToken = sqlite3_value_int(apVal[5]);
3732 /* no break */ deliberate_fall_through
3733 case 5: iCol = sqlite3_value_int(apVal[4]);
3734 /* no break */ deliberate_fall_through
3735 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3736 /* no break */ deliberate_fall_through
3737 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3738 /* no break */ deliberate_fall_through
3739 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3740 }
3741 if( !zEllipsis || !zEnd || !zStart ){
3742 sqlite3_result_error_nomem(pContext);
3743 }else if( nToken==0 ){
3744 sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
3745 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3746 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3747 }
3748 }
3749
3750 /*
3751 ** Implementation of the offsets() function for FTS3
3752 */
fts3OffsetsFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3753 static void fts3OffsetsFunc(
3754 sqlite3_context *pContext, /* SQLite function call context */
3755 int nVal, /* Size of argument array */
3756 sqlite3_value **apVal /* Array of arguments */
3757 ){
3758 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3759
3760 UNUSED_PARAMETER(nVal);
3761
3762 assert( nVal==1 );
3763 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3764 assert( pCsr );
3765 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3766 sqlite3Fts3Offsets(pContext, pCsr);
3767 }
3768 }
3769
3770 /*
3771 ** Implementation of the special optimize() function for FTS3. This
3772 ** function merges all segments in the database to a single segment.
3773 ** Example usage is:
3774 **
3775 ** SELECT optimize(t) FROM t LIMIT 1;
3776 **
3777 ** where 't' is the name of an FTS3 table.
3778 */
fts3OptimizeFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3779 static void fts3OptimizeFunc(
3780 sqlite3_context *pContext, /* SQLite function call context */
3781 int nVal, /* Size of argument array */
3782 sqlite3_value **apVal /* Array of arguments */
3783 ){
3784 int rc; /* Return code */
3785 Fts3Table *p; /* Virtual table handle */
3786 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3787
3788 UNUSED_PARAMETER(nVal);
3789
3790 assert( nVal==1 );
3791 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3792 p = (Fts3Table *)pCursor->base.pVtab;
3793 assert( p );
3794
3795 rc = sqlite3Fts3Optimize(p);
3796
3797 switch( rc ){
3798 case SQLITE_OK:
3799 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3800 break;
3801 case SQLITE_DONE:
3802 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3803 break;
3804 default:
3805 sqlite3_result_error_code(pContext, rc);
3806 break;
3807 }
3808 }
3809
3810 /*
3811 ** Implementation of the matchinfo() function for FTS3
3812 */
fts3MatchinfoFunc(sqlite3_context * pContext,int nVal,sqlite3_value ** apVal)3813 static void fts3MatchinfoFunc(
3814 sqlite3_context *pContext, /* SQLite function call context */
3815 int nVal, /* Size of argument array */
3816 sqlite3_value **apVal /* Array of arguments */
3817 ){
3818 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3819 assert( nVal==1 || nVal==2 );
3820 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3821 const char *zArg = 0;
3822 if( nVal>1 ){
3823 zArg = (const char *)sqlite3_value_text(apVal[1]);
3824 }
3825 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3826 }
3827 }
3828
3829 /*
3830 ** This routine implements the xFindFunction method for the FTS3
3831 ** virtual table.
3832 */
fts3FindFunctionMethod(sqlite3_vtab * pVtab,int nArg,const char * zName,void (** pxFunc)(sqlite3_context *,int,sqlite3_value **),void ** ppArg)3833 static int fts3FindFunctionMethod(
3834 sqlite3_vtab *pVtab, /* Virtual table handle */
3835 int nArg, /* Number of SQL function arguments */
3836 const char *zName, /* Name of SQL function */
3837 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3838 void **ppArg /* Unused */
3839 ){
3840 struct Overloaded {
3841 const char *zName;
3842 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3843 } aOverload[] = {
3844 { "snippet", fts3SnippetFunc },
3845 { "offsets", fts3OffsetsFunc },
3846 { "optimize", fts3OptimizeFunc },
3847 { "matchinfo", fts3MatchinfoFunc },
3848 };
3849 int i; /* Iterator variable */
3850
3851 UNUSED_PARAMETER(pVtab);
3852 UNUSED_PARAMETER(nArg);
3853 UNUSED_PARAMETER(ppArg);
3854
3855 for(i=0; i<SizeofArray(aOverload); i++){
3856 if( strcmp(zName, aOverload[i].zName)==0 ){
3857 *pxFunc = aOverload[i].xFunc;
3858 return 1;
3859 }
3860 }
3861
3862 /* No function of the specified name was found. Return 0. */
3863 return 0;
3864 }
3865
3866 /*
3867 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3868 */
fts3RenameMethod(sqlite3_vtab * pVtab,const char * zName)3869 static int fts3RenameMethod(
3870 sqlite3_vtab *pVtab, /* Virtual table handle */
3871 const char *zName /* New name of table */
3872 ){
3873 Fts3Table *p = (Fts3Table *)pVtab;
3874 sqlite3 *db = p->db; /* Database connection */
3875 int rc; /* Return Code */
3876
3877 /* At this point it must be known if the %_stat table exists or not.
3878 ** So bHasStat may not be 2. */
3879 rc = fts3SetHasStat(p);
3880
3881 /* As it happens, the pending terms table is always empty here. This is
3882 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3883 ** always opens a savepoint transaction. And the xSavepoint() method
3884 ** flushes the pending terms table. But leave the (no-op) call to
3885 ** PendingTermsFlush() in in case that changes.
3886 */
3887 assert( p->nPendingData==0 );
3888 if( rc==SQLITE_OK ){
3889 rc = sqlite3Fts3PendingTermsFlush(p);
3890 }
3891
3892 if( p->zContentTbl==0 ){
3893 fts3DbExec(&rc, db,
3894 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3895 p->zDb, p->zName, zName
3896 );
3897 }
3898
3899 if( p->bHasDocsize ){
3900 fts3DbExec(&rc, db,
3901 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3902 p->zDb, p->zName, zName
3903 );
3904 }
3905 if( p->bHasStat ){
3906 fts3DbExec(&rc, db,
3907 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3908 p->zDb, p->zName, zName
3909 );
3910 }
3911 fts3DbExec(&rc, db,
3912 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3913 p->zDb, p->zName, zName
3914 );
3915 fts3DbExec(&rc, db,
3916 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3917 p->zDb, p->zName, zName
3918 );
3919 return rc;
3920 }
3921
3922 /*
3923 ** The xSavepoint() method.
3924 **
3925 ** Flush the contents of the pending-terms table to disk.
3926 */
fts3SavepointMethod(sqlite3_vtab * pVtab,int iSavepoint)3927 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
3928 int rc = SQLITE_OK;
3929 UNUSED_PARAMETER(iSavepoint);
3930 assert( ((Fts3Table *)pVtab)->inTransaction );
3931 assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint );
3932 TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
3933 if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
3934 rc = fts3SyncMethod(pVtab);
3935 }
3936 return rc;
3937 }
3938
3939 /*
3940 ** The xRelease() method.
3941 **
3942 ** This is a no-op.
3943 */
fts3ReleaseMethod(sqlite3_vtab * pVtab,int iSavepoint)3944 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
3945 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3946 UNUSED_PARAMETER(iSavepoint);
3947 UNUSED_PARAMETER(pVtab);
3948 assert( p->inTransaction );
3949 assert( p->mxSavepoint >= iSavepoint );
3950 TESTONLY( p->mxSavepoint = iSavepoint-1 );
3951 return SQLITE_OK;
3952 }
3953
3954 /*
3955 ** The xRollbackTo() method.
3956 **
3957 ** Discard the contents of the pending terms table.
3958 */
fts3RollbackToMethod(sqlite3_vtab * pVtab,int iSavepoint)3959 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
3960 Fts3Table *p = (Fts3Table*)pVtab;
3961 UNUSED_PARAMETER(iSavepoint);
3962 assert( p->inTransaction );
3963 TESTONLY( p->mxSavepoint = iSavepoint );
3964 sqlite3Fts3PendingTermsClear(p);
3965 return SQLITE_OK;
3966 }
3967
3968 /*
3969 ** Return true if zName is the extension on one of the shadow tables used
3970 ** by this module.
3971 */
fts3ShadowName(const char * zName)3972 static int fts3ShadowName(const char *zName){
3973 static const char *azName[] = {
3974 "content", "docsize", "segdir", "segments", "stat",
3975 };
3976 unsigned int i;
3977 for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
3978 if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
3979 }
3980 return 0;
3981 }
3982
3983 static const sqlite3_module fts3Module = {
3984 /* iVersion */ 3,
3985 /* xCreate */ fts3CreateMethod,
3986 /* xConnect */ fts3ConnectMethod,
3987 /* xBestIndex */ fts3BestIndexMethod,
3988 /* xDisconnect */ fts3DisconnectMethod,
3989 /* xDestroy */ fts3DestroyMethod,
3990 /* xOpen */ fts3OpenMethod,
3991 /* xClose */ fts3CloseMethod,
3992 /* xFilter */ fts3FilterMethod,
3993 /* xNext */ fts3NextMethod,
3994 /* xEof */ fts3EofMethod,
3995 /* xColumn */ fts3ColumnMethod,
3996 /* xRowid */ fts3RowidMethod,
3997 /* xUpdate */ fts3UpdateMethod,
3998 /* xBegin */ fts3BeginMethod,
3999 /* xSync */ fts3SyncMethod,
4000 /* xCommit */ fts3CommitMethod,
4001 /* xRollback */ fts3RollbackMethod,
4002 /* xFindFunction */ fts3FindFunctionMethod,
4003 /* xRename */ fts3RenameMethod,
4004 /* xSavepoint */ fts3SavepointMethod,
4005 /* xRelease */ fts3ReleaseMethod,
4006 /* xRollbackTo */ fts3RollbackToMethod,
4007 /* xShadowName */ fts3ShadowName,
4008 };
4009
4010 /*
4011 ** This function is registered as the module destructor (called when an
4012 ** FTS3 enabled database connection is closed). It frees the memory
4013 ** allocated for the tokenizer hash table.
4014 */
hashDestroy(void * p)4015 static void hashDestroy(void *p){
4016 Fts3HashWrapper *pHash = (Fts3HashWrapper *)p;
4017 pHash->nRef--;
4018 if( pHash->nRef<=0 ){
4019 sqlite3Fts3HashClear(&pHash->hash);
4020 sqlite3_free(pHash);
4021 }
4022 }
4023
4024 /*
4025 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
4026 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
4027 ** respectively. The following three forward declarations are for functions
4028 ** declared in these files used to retrieve the respective implementations.
4029 **
4030 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
4031 ** to by the argument to point to the "simple" tokenizer implementation.
4032 ** And so on.
4033 */
4034 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4035 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4036 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4037 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
4038 #endif
4039 #ifdef SQLITE_ENABLE_ICU
4040 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4041 #endif
4042
4043 /*
4044 ** Initialize the fts3 extension. If this extension is built as part
4045 ** of the sqlite library, then this function is called directly by
4046 ** SQLite. If fts3 is built as a dynamically loadable extension, this
4047 ** function is called by the sqlite3_extension_init() entry point.
4048 */
sqlite3Fts3Init(sqlite3 * db)4049 int sqlite3Fts3Init(sqlite3 *db){
4050 int rc = SQLITE_OK;
4051 Fts3HashWrapper *pHash = 0;
4052 const sqlite3_tokenizer_module *pSimple = 0;
4053 const sqlite3_tokenizer_module *pPorter = 0;
4054 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4055 const sqlite3_tokenizer_module *pUnicode = 0;
4056 #endif
4057
4058 #ifdef SQLITE_ENABLE_ICU
4059 const sqlite3_tokenizer_module *pIcu = 0;
4060 sqlite3Fts3IcuTokenizerModule(&pIcu);
4061 #endif
4062
4063 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4064 sqlite3Fts3UnicodeTokenizer(&pUnicode);
4065 #endif
4066
4067 #ifdef SQLITE_TEST
4068 rc = sqlite3Fts3InitTerm(db);
4069 if( rc!=SQLITE_OK ) return rc;
4070 #endif
4071
4072 rc = sqlite3Fts3InitAux(db);
4073 if( rc!=SQLITE_OK ) return rc;
4074
4075 sqlite3Fts3SimpleTokenizerModule(&pSimple);
4076 sqlite3Fts3PorterTokenizerModule(&pPorter);
4077
4078 /* Allocate and initialize the hash-table used to store tokenizers. */
4079 pHash = sqlite3_malloc(sizeof(Fts3HashWrapper));
4080 if( !pHash ){
4081 rc = SQLITE_NOMEM;
4082 }else{
4083 sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1);
4084 pHash->nRef = 0;
4085 }
4086
4087 /* Load the built-in tokenizers into the hash table */
4088 if( rc==SQLITE_OK ){
4089 if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple)
4090 || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter)
4091
4092 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4093 || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode)
4094 #endif
4095 #ifdef SQLITE_ENABLE_ICU
4096 || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu))
4097 #endif
4098 ){
4099 rc = SQLITE_NOMEM;
4100 }
4101 }
4102
4103 #ifdef SQLITE_TEST
4104 if( rc==SQLITE_OK ){
4105 rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash);
4106 }
4107 #endif
4108
4109 /* Create the virtual table wrapper around the hash-table and overload
4110 ** the four scalar functions. If this is successful, register the
4111 ** module with sqlite.
4112 */
4113 if( SQLITE_OK==rc
4114 && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer"))
4115 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
4116 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
4117 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
4118 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
4119 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
4120 ){
4121 pHash->nRef++;
4122 rc = sqlite3_create_module_v2(
4123 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
4124 );
4125 if( rc==SQLITE_OK ){
4126 pHash->nRef++;
4127 rc = sqlite3_create_module_v2(
4128 db, "fts4", &fts3Module, (void *)pHash, hashDestroy
4129 );
4130 }
4131 if( rc==SQLITE_OK ){
4132 pHash->nRef++;
4133 rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy);
4134 }
4135 return rc;
4136 }
4137
4138
4139 /* An error has occurred. Delete the hash table and return the error code. */
4140 assert( rc!=SQLITE_OK );
4141 if( pHash ){
4142 sqlite3Fts3HashClear(&pHash->hash);
4143 sqlite3_free(pHash);
4144 }
4145 return rc;
4146 }
4147
4148 /*
4149 ** Allocate an Fts3MultiSegReader for each token in the expression headed
4150 ** by pExpr.
4151 **
4152 ** An Fts3SegReader object is a cursor that can seek or scan a range of
4153 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
4154 ** Fts3SegReader objects internally to provide an interface to seek or scan
4155 ** within the union of all segments of a b-tree. Hence the name.
4156 **
4157 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
4158 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4159 ** there exists prefix b-tree of the right length) then it may be traversed
4160 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4161 ** doclist and then traversed.
4162 */
fts3EvalAllocateReaders(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pnToken,int * pnOr,int * pRc)4163 static void fts3EvalAllocateReaders(
4164 Fts3Cursor *pCsr, /* FTS cursor handle */
4165 Fts3Expr *pExpr, /* Allocate readers for this expression */
4166 int *pnToken, /* OUT: Total number of tokens in phrase. */
4167 int *pnOr, /* OUT: Total number of OR nodes in expr. */
4168 int *pRc /* IN/OUT: Error code */
4169 ){
4170 if( pExpr && SQLITE_OK==*pRc ){
4171 if( pExpr->eType==FTSQUERY_PHRASE ){
4172 int i;
4173 int nToken = pExpr->pPhrase->nToken;
4174 *pnToken += nToken;
4175 for(i=0; i<nToken; i++){
4176 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
4177 int rc = fts3TermSegReaderCursor(pCsr,
4178 pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
4179 );
4180 if( rc!=SQLITE_OK ){
4181 *pRc = rc;
4182 return;
4183 }
4184 }
4185 assert( pExpr->pPhrase->iDoclistToken==0 );
4186 pExpr->pPhrase->iDoclistToken = -1;
4187 }else{
4188 *pnOr += (pExpr->eType==FTSQUERY_OR);
4189 fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
4190 fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
4191 }
4192 }
4193 }
4194
4195 /*
4196 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4197 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4198 **
4199 ** This function assumes that pList points to a buffer allocated using
4200 ** sqlite3_malloc(). This function takes responsibility for eventually
4201 ** freeing the buffer.
4202 **
4203 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4204 */
fts3EvalPhraseMergeToken(Fts3Table * pTab,Fts3Phrase * p,int iToken,char * pList,int nList)4205 static int fts3EvalPhraseMergeToken(
4206 Fts3Table *pTab, /* FTS Table pointer */
4207 Fts3Phrase *p, /* Phrase to merge pList/nList into */
4208 int iToken, /* Token pList/nList corresponds to */
4209 char *pList, /* Pointer to doclist */
4210 int nList /* Number of bytes in pList */
4211 ){
4212 int rc = SQLITE_OK;
4213 assert( iToken!=p->iDoclistToken );
4214
4215 if( pList==0 ){
4216 sqlite3_free(p->doclist.aAll);
4217 p->doclist.aAll = 0;
4218 p->doclist.nAll = 0;
4219 }
4220
4221 else if( p->iDoclistToken<0 ){
4222 p->doclist.aAll = pList;
4223 p->doclist.nAll = nList;
4224 }
4225
4226 else if( p->doclist.aAll==0 ){
4227 sqlite3_free(pList);
4228 }
4229
4230 else {
4231 char *pLeft;
4232 char *pRight;
4233 int nLeft;
4234 int nRight;
4235 int nDiff;
4236
4237 if( p->iDoclistToken<iToken ){
4238 pLeft = p->doclist.aAll;
4239 nLeft = p->doclist.nAll;
4240 pRight = pList;
4241 nRight = nList;
4242 nDiff = iToken - p->iDoclistToken;
4243 }else{
4244 pRight = p->doclist.aAll;
4245 nRight = p->doclist.nAll;
4246 pLeft = pList;
4247 nLeft = nList;
4248 nDiff = p->iDoclistToken - iToken;
4249 }
4250
4251 rc = fts3DoclistPhraseMerge(
4252 pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
4253 );
4254 sqlite3_free(pLeft);
4255 p->doclist.aAll = pRight;
4256 p->doclist.nAll = nRight;
4257 }
4258
4259 if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
4260 return rc;
4261 }
4262
4263 /*
4264 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4265 ** does not take deferred tokens into account.
4266 **
4267 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4268 */
fts3EvalPhraseLoad(Fts3Cursor * pCsr,Fts3Phrase * p)4269 static int fts3EvalPhraseLoad(
4270 Fts3Cursor *pCsr, /* FTS Cursor handle */
4271 Fts3Phrase *p /* Phrase object */
4272 ){
4273 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4274 int iToken;
4275 int rc = SQLITE_OK;
4276
4277 for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
4278 Fts3PhraseToken *pToken = &p->aToken[iToken];
4279 assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
4280
4281 if( pToken->pSegcsr ){
4282 int nThis = 0;
4283 char *pThis = 0;
4284 rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
4285 if( rc==SQLITE_OK ){
4286 rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
4287 }
4288 }
4289 assert( pToken->pSegcsr==0 );
4290 }
4291
4292 return rc;
4293 }
4294
4295 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4296 /*
4297 ** This function is called on each phrase after the position lists for
4298 ** any deferred tokens have been loaded into memory. It updates the phrases
4299 ** current position list to include only those positions that are really
4300 ** instances of the phrase (after considering deferred tokens). If this
4301 ** means that the phrase does not appear in the current row, doclist.pList
4302 ** and doclist.nList are both zeroed.
4303 **
4304 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4305 */
fts3EvalDeferredPhrase(Fts3Cursor * pCsr,Fts3Phrase * pPhrase)4306 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
4307 int iToken; /* Used to iterate through phrase tokens */
4308 char *aPoslist = 0; /* Position list for deferred tokens */
4309 int nPoslist = 0; /* Number of bytes in aPoslist */
4310 int iPrev = -1; /* Token number of previous deferred token */
4311 char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0);
4312
4313 for(iToken=0; iToken<pPhrase->nToken; iToken++){
4314 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4315 Fts3DeferredToken *pDeferred = pToken->pDeferred;
4316
4317 if( pDeferred ){
4318 char *pList;
4319 int nList;
4320 int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
4321 if( rc!=SQLITE_OK ) return rc;
4322
4323 if( pList==0 ){
4324 sqlite3_free(aPoslist);
4325 sqlite3_free(aFree);
4326 pPhrase->doclist.pList = 0;
4327 pPhrase->doclist.nList = 0;
4328 return SQLITE_OK;
4329
4330 }else if( aPoslist==0 ){
4331 aPoslist = pList;
4332 nPoslist = nList;
4333
4334 }else{
4335 char *aOut = pList;
4336 char *p1 = aPoslist;
4337 char *p2 = aOut;
4338
4339 assert( iPrev>=0 );
4340 fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
4341 sqlite3_free(aPoslist);
4342 aPoslist = pList;
4343 nPoslist = (int)(aOut - aPoslist);
4344 if( nPoslist==0 ){
4345 sqlite3_free(aPoslist);
4346 sqlite3_free(aFree);
4347 pPhrase->doclist.pList = 0;
4348 pPhrase->doclist.nList = 0;
4349 return SQLITE_OK;
4350 }
4351 }
4352 iPrev = iToken;
4353 }
4354 }
4355
4356 if( iPrev>=0 ){
4357 int nMaxUndeferred = pPhrase->iDoclistToken;
4358 if( nMaxUndeferred<0 ){
4359 pPhrase->doclist.pList = aPoslist;
4360 pPhrase->doclist.nList = nPoslist;
4361 pPhrase->doclist.iDocid = pCsr->iPrevId;
4362 pPhrase->doclist.bFreeList = 1;
4363 }else{
4364 int nDistance;
4365 char *p1;
4366 char *p2;
4367 char *aOut;
4368
4369 if( nMaxUndeferred>iPrev ){
4370 p1 = aPoslist;
4371 p2 = pPhrase->doclist.pList;
4372 nDistance = nMaxUndeferred - iPrev;
4373 }else{
4374 p1 = pPhrase->doclist.pList;
4375 p2 = aPoslist;
4376 nDistance = iPrev - nMaxUndeferred;
4377 }
4378
4379 aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING);
4380 if( !aOut ){
4381 sqlite3_free(aPoslist);
4382 return SQLITE_NOMEM;
4383 }
4384
4385 pPhrase->doclist.pList = aOut;
4386 assert( p1 && p2 );
4387 if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
4388 pPhrase->doclist.bFreeList = 1;
4389 pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
4390 }else{
4391 sqlite3_free(aOut);
4392 pPhrase->doclist.pList = 0;
4393 pPhrase->doclist.nList = 0;
4394 }
4395 sqlite3_free(aPoslist);
4396 }
4397 }
4398
4399 if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree);
4400 return SQLITE_OK;
4401 }
4402 #endif /* SQLITE_DISABLE_FTS4_DEFERRED */
4403
4404 /*
4405 ** Maximum number of tokens a phrase may have to be considered for the
4406 ** incremental doclists strategy.
4407 */
4408 #define MAX_INCR_PHRASE_TOKENS 4
4409
4410 /*
4411 ** This function is called for each Fts3Phrase in a full-text query
4412 ** expression to initialize the mechanism for returning rows. Once this
4413 ** function has been called successfully on an Fts3Phrase, it may be
4414 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4415 **
4416 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4417 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4418 ** memory within this call.
4419 **
4420 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4421 */
fts3EvalPhraseStart(Fts3Cursor * pCsr,int bOptOk,Fts3Phrase * p)4422 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
4423 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4424 int rc = SQLITE_OK; /* Error code */
4425 int i;
4426
4427 /* Determine if doclists may be loaded from disk incrementally. This is
4428 ** possible if the bOptOk argument is true, the FTS doclists will be
4429 ** scanned in forward order, and the phrase consists of
4430 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4431 ** tokens or prefix tokens that cannot use a prefix-index. */
4432 int bHaveIncr = 0;
4433 int bIncrOk = (bOptOk
4434 && pCsr->bDesc==pTab->bDescIdx
4435 && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
4436 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
4437 && pTab->bNoIncrDoclist==0
4438 #endif
4439 );
4440 for(i=0; bIncrOk==1 && i<p->nToken; i++){
4441 Fts3PhraseToken *pToken = &p->aToken[i];
4442 if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
4443 bIncrOk = 0;
4444 }
4445 if( pToken->pSegcsr ) bHaveIncr = 1;
4446 }
4447
4448 if( bIncrOk && bHaveIncr ){
4449 /* Use the incremental approach. */
4450 int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
4451 for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
4452 Fts3PhraseToken *pToken = &p->aToken[i];
4453 Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
4454 if( pSegcsr ){
4455 rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
4456 }
4457 }
4458 p->bIncr = 1;
4459 }else{
4460 /* Load the full doclist for the phrase into memory. */
4461 rc = fts3EvalPhraseLoad(pCsr, p);
4462 p->bIncr = 0;
4463 }
4464
4465 assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
4466 return rc;
4467 }
4468
4469 /*
4470 ** This function is used to iterate backwards (from the end to start)
4471 ** through doclists. It is used by this module to iterate through phrase
4472 ** doclists in reverse and by the fts3_write.c module to iterate through
4473 ** pending-terms lists when writing to databases with "order=desc".
4474 **
4475 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4476 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4477 ** function iterates from the end of the doclist to the beginning.
4478 */
sqlite3Fts3DoclistPrev(int bDescIdx,char * aDoclist,int nDoclist,char ** ppIter,sqlite3_int64 * piDocid,int * pnList,u8 * pbEof)4479 void sqlite3Fts3DoclistPrev(
4480 int bDescIdx, /* True if the doclist is desc */
4481 char *aDoclist, /* Pointer to entire doclist */
4482 int nDoclist, /* Length of aDoclist in bytes */
4483 char **ppIter, /* IN/OUT: Iterator pointer */
4484 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4485 int *pnList, /* OUT: List length pointer */
4486 u8 *pbEof /* OUT: End-of-file flag */
4487 ){
4488 char *p = *ppIter;
4489
4490 assert( nDoclist>0 );
4491 assert( *pbEof==0 );
4492 assert_fts3_nc( p || *piDocid==0 );
4493 assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
4494
4495 if( p==0 ){
4496 sqlite3_int64 iDocid = 0;
4497 char *pNext = 0;
4498 char *pDocid = aDoclist;
4499 char *pEnd = &aDoclist[nDoclist];
4500 int iMul = 1;
4501
4502 while( pDocid<pEnd ){
4503 sqlite3_int64 iDelta;
4504 pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
4505 iDocid += (iMul * iDelta);
4506 pNext = pDocid;
4507 fts3PoslistCopy(0, &pDocid);
4508 while( pDocid<pEnd && *pDocid==0 ) pDocid++;
4509 iMul = (bDescIdx ? -1 : 1);
4510 }
4511
4512 *pnList = (int)(pEnd - pNext);
4513 *ppIter = pNext;
4514 *piDocid = iDocid;
4515 }else{
4516 int iMul = (bDescIdx ? -1 : 1);
4517 sqlite3_int64 iDelta;
4518 fts3GetReverseVarint(&p, aDoclist, &iDelta);
4519 *piDocid -= (iMul * iDelta);
4520
4521 if( p==aDoclist ){
4522 *pbEof = 1;
4523 }else{
4524 char *pSave = p;
4525 fts3ReversePoslist(aDoclist, &p);
4526 *pnList = (int)(pSave - p);
4527 }
4528 *ppIter = p;
4529 }
4530 }
4531
4532 /*
4533 ** Iterate forwards through a doclist.
4534 */
sqlite3Fts3DoclistNext(int bDescIdx,char * aDoclist,int nDoclist,char ** ppIter,sqlite3_int64 * piDocid,u8 * pbEof)4535 void sqlite3Fts3DoclistNext(
4536 int bDescIdx, /* True if the doclist is desc */
4537 char *aDoclist, /* Pointer to entire doclist */
4538 int nDoclist, /* Length of aDoclist in bytes */
4539 char **ppIter, /* IN/OUT: Iterator pointer */
4540 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4541 u8 *pbEof /* OUT: End-of-file flag */
4542 ){
4543 char *p = *ppIter;
4544
4545 assert( nDoclist>0 );
4546 assert( *pbEof==0 );
4547 assert_fts3_nc( p || *piDocid==0 );
4548 assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
4549
4550 if( p==0 ){
4551 p = aDoclist;
4552 p += sqlite3Fts3GetVarint(p, piDocid);
4553 }else{
4554 fts3PoslistCopy(0, &p);
4555 while( p<&aDoclist[nDoclist] && *p==0 ) p++;
4556 if( p>=&aDoclist[nDoclist] ){
4557 *pbEof = 1;
4558 }else{
4559 sqlite3_int64 iVar;
4560 p += sqlite3Fts3GetVarint(p, &iVar);
4561 *piDocid += ((bDescIdx ? -1 : 1) * iVar);
4562 }
4563 }
4564
4565 *ppIter = p;
4566 }
4567
4568 /*
4569 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4570 ** to true if EOF is reached.
4571 */
fts3EvalDlPhraseNext(Fts3Table * pTab,Fts3Doclist * pDL,u8 * pbEof)4572 static void fts3EvalDlPhraseNext(
4573 Fts3Table *pTab,
4574 Fts3Doclist *pDL,
4575 u8 *pbEof
4576 ){
4577 char *pIter; /* Used to iterate through aAll */
4578 char *pEnd; /* 1 byte past end of aAll */
4579
4580 if( pDL->pNextDocid ){
4581 pIter = pDL->pNextDocid;
4582 assert( pDL->aAll!=0 || pIter==0 );
4583 }else{
4584 pIter = pDL->aAll;
4585 }
4586
4587 if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){
4588 /* We have already reached the end of this doclist. EOF. */
4589 *pbEof = 1;
4590 }else{
4591 sqlite3_int64 iDelta;
4592 pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
4593 if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
4594 pDL->iDocid += iDelta;
4595 }else{
4596 pDL->iDocid -= iDelta;
4597 }
4598 pDL->pList = pIter;
4599 fts3PoslistCopy(0, &pIter);
4600 pDL->nList = (int)(pIter - pDL->pList);
4601
4602 /* pIter now points just past the 0x00 that terminates the position-
4603 ** list for document pDL->iDocid. However, if this position-list was
4604 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4605 ** point to the start of the next docid value. The following line deals
4606 ** with this case by advancing pIter past the zero-padding added by
4607 ** fts3EvalNearTrim(). */
4608 while( pIter<pEnd && *pIter==0 ) pIter++;
4609
4610 pDL->pNextDocid = pIter;
4611 assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
4612 *pbEof = 0;
4613 }
4614 }
4615
4616 /*
4617 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4618 */
4619 typedef struct TokenDoclist TokenDoclist;
4620 struct TokenDoclist {
4621 int bIgnore;
4622 sqlite3_int64 iDocid;
4623 char *pList;
4624 int nList;
4625 };
4626
4627 /*
4628 ** Token pToken is an incrementally loaded token that is part of a
4629 ** multi-token phrase. Advance it to the next matching document in the
4630 ** database and populate output variable *p with the details of the new
4631 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4632 **
4633 ** If an error occurs, return an SQLite error code. Otherwise, return
4634 ** SQLITE_OK.
4635 */
incrPhraseTokenNext(Fts3Table * pTab,Fts3Phrase * pPhrase,int iToken,TokenDoclist * p,u8 * pbEof)4636 static int incrPhraseTokenNext(
4637 Fts3Table *pTab, /* Virtual table handle */
4638 Fts3Phrase *pPhrase, /* Phrase to advance token of */
4639 int iToken, /* Specific token to advance */
4640 TokenDoclist *p, /* OUT: Docid and doclist for new entry */
4641 u8 *pbEof /* OUT: True if iterator is at EOF */
4642 ){
4643 int rc = SQLITE_OK;
4644
4645 if( pPhrase->iDoclistToken==iToken ){
4646 assert( p->bIgnore==0 );
4647 assert( pPhrase->aToken[iToken].pSegcsr==0 );
4648 fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
4649 p->pList = pPhrase->doclist.pList;
4650 p->nList = pPhrase->doclist.nList;
4651 p->iDocid = pPhrase->doclist.iDocid;
4652 }else{
4653 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4654 assert( pToken->pDeferred==0 );
4655 assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
4656 if( pToken->pSegcsr ){
4657 assert( p->bIgnore==0 );
4658 rc = sqlite3Fts3MsrIncrNext(
4659 pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
4660 );
4661 if( p->pList==0 ) *pbEof = 1;
4662 }else{
4663 p->bIgnore = 1;
4664 }
4665 }
4666
4667 return rc;
4668 }
4669
4670
4671 /*
4672 ** The phrase iterator passed as the second argument:
4673 **
4674 ** * features at least one token that uses an incremental doclist, and
4675 **
4676 ** * does not contain any deferred tokens.
4677 **
4678 ** Advance it to the next matching documnent in the database and populate
4679 ** the Fts3Doclist.pList and nList fields.
4680 **
4681 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4682 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4683 ** successfully advanced, *pbEof is set to 0.
4684 **
4685 ** If an error occurs, return an SQLite error code. Otherwise, return
4686 ** SQLITE_OK.
4687 */
fts3EvalIncrPhraseNext(Fts3Cursor * pCsr,Fts3Phrase * p,u8 * pbEof)4688 static int fts3EvalIncrPhraseNext(
4689 Fts3Cursor *pCsr, /* FTS Cursor handle */
4690 Fts3Phrase *p, /* Phrase object to advance to next docid */
4691 u8 *pbEof /* OUT: Set to 1 if EOF */
4692 ){
4693 int rc = SQLITE_OK;
4694 Fts3Doclist *pDL = &p->doclist;
4695 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4696 u8 bEof = 0;
4697
4698 /* This is only called if it is guaranteed that the phrase has at least
4699 ** one incremental token. In which case the bIncr flag is set. */
4700 assert( p->bIncr==1 );
4701
4702 if( p->nToken==1 ){
4703 rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
4704 &pDL->iDocid, &pDL->pList, &pDL->nList
4705 );
4706 if( pDL->pList==0 ) bEof = 1;
4707 }else{
4708 int bDescDoclist = pCsr->bDesc;
4709 struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
4710
4711 memset(a, 0, sizeof(a));
4712 assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
4713 assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
4714
4715 while( bEof==0 ){
4716 int bMaxSet = 0;
4717 sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
4718 int i; /* Used to iterate through tokens */
4719
4720 /* Advance the iterator for each token in the phrase once. */
4721 for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
4722 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4723 if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
4724 iMax = a[i].iDocid;
4725 bMaxSet = 1;
4726 }
4727 }
4728 assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
4729 assert( rc!=SQLITE_OK || bMaxSet );
4730
4731 /* Keep advancing iterators until they all point to the same document */
4732 for(i=0; i<p->nToken; i++){
4733 while( rc==SQLITE_OK && bEof==0
4734 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
4735 ){
4736 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4737 if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
4738 iMax = a[i].iDocid;
4739 i = 0;
4740 }
4741 }
4742 }
4743
4744 /* Check if the current entries really are a phrase match */
4745 if( bEof==0 ){
4746 int nList = 0;
4747 int nByte = a[p->nToken-1].nList;
4748 char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING);
4749 if( !aDoclist ) return SQLITE_NOMEM;
4750 memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
4751 memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);
4752
4753 for(i=0; i<(p->nToken-1); i++){
4754 if( a[i].bIgnore==0 ){
4755 char *pL = a[i].pList;
4756 char *pR = aDoclist;
4757 char *pOut = aDoclist;
4758 int nDist = p->nToken-1-i;
4759 int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
4760 if( res==0 ) break;
4761 nList = (int)(pOut - aDoclist);
4762 }
4763 }
4764 if( i==(p->nToken-1) ){
4765 pDL->iDocid = iMax;
4766 pDL->pList = aDoclist;
4767 pDL->nList = nList;
4768 pDL->bFreeList = 1;
4769 break;
4770 }
4771 sqlite3_free(aDoclist);
4772 }
4773 }
4774 }
4775
4776 *pbEof = bEof;
4777 return rc;
4778 }
4779
4780 /*
4781 ** Attempt to move the phrase iterator to point to the next matching docid.
4782 ** If an error occurs, return an SQLite error code. Otherwise, return
4783 ** SQLITE_OK.
4784 **
4785 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4786 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4787 ** successfully advanced, *pbEof is set to 0.
4788 */
fts3EvalPhraseNext(Fts3Cursor * pCsr,Fts3Phrase * p,u8 * pbEof)4789 static int fts3EvalPhraseNext(
4790 Fts3Cursor *pCsr, /* FTS Cursor handle */
4791 Fts3Phrase *p, /* Phrase object to advance to next docid */
4792 u8 *pbEof /* OUT: Set to 1 if EOF */
4793 ){
4794 int rc = SQLITE_OK;
4795 Fts3Doclist *pDL = &p->doclist;
4796 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4797
4798 if( p->bIncr ){
4799 rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
4800 }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
4801 sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
4802 &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
4803 );
4804 pDL->pList = pDL->pNextDocid;
4805 }else{
4806 fts3EvalDlPhraseNext(pTab, pDL, pbEof);
4807 }
4808
4809 return rc;
4810 }
4811
4812 /*
4813 **
4814 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4815 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4816 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4817 ** expressions for which all descendent tokens are deferred.
4818 **
4819 ** If parameter bOptOk is zero, then it is guaranteed that the
4820 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4821 ** each phrase in the expression (subject to deferred token processing).
4822 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4823 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4824 **
4825 ** If an error occurs within this function, *pRc is set to an SQLite error
4826 ** code before returning.
4827 */
fts3EvalStartReaders(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pRc)4828 static void fts3EvalStartReaders(
4829 Fts3Cursor *pCsr, /* FTS Cursor handle */
4830 Fts3Expr *pExpr, /* Expression to initialize phrases in */
4831 int *pRc /* IN/OUT: Error code */
4832 ){
4833 if( pExpr && SQLITE_OK==*pRc ){
4834 if( pExpr->eType==FTSQUERY_PHRASE ){
4835 int nToken = pExpr->pPhrase->nToken;
4836 if( nToken ){
4837 int i;
4838 for(i=0; i<nToken; i++){
4839 if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
4840 }
4841 pExpr->bDeferred = (i==nToken);
4842 }
4843 *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
4844 }else{
4845 fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
4846 fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
4847 pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
4848 }
4849 }
4850 }
4851
4852 /*
4853 ** An array of the following structures is assembled as part of the process
4854 ** of selecting tokens to defer before the query starts executing (as part
4855 ** of the xFilter() method). There is one element in the array for each
4856 ** token in the FTS expression.
4857 **
4858 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4859 ** to phrases that are connected only by AND and NEAR operators (not OR or
4860 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4861 ** separately. The root of a tokens AND/NEAR cluster is stored in
4862 ** Fts3TokenAndCost.pRoot.
4863 */
4864 typedef struct Fts3TokenAndCost Fts3TokenAndCost;
4865 struct Fts3TokenAndCost {
4866 Fts3Phrase *pPhrase; /* The phrase the token belongs to */
4867 int iToken; /* Position of token in phrase */
4868 Fts3PhraseToken *pToken; /* The token itself */
4869 Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
4870 int nOvfl; /* Number of overflow pages to load doclist */
4871 int iCol; /* The column the token must match */
4872 };
4873
4874 /*
4875 ** This function is used to populate an allocated Fts3TokenAndCost array.
4876 **
4877 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4878 ** Otherwise, if an error occurs during execution, *pRc is set to an
4879 ** SQLite error code.
4880 */
fts3EvalTokenCosts(Fts3Cursor * pCsr,Fts3Expr * pRoot,Fts3Expr * pExpr,Fts3TokenAndCost ** ppTC,Fts3Expr *** ppOr,int * pRc)4881 static void fts3EvalTokenCosts(
4882 Fts3Cursor *pCsr, /* FTS Cursor handle */
4883 Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
4884 Fts3Expr *pExpr, /* Expression to consider */
4885 Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
4886 Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
4887 int *pRc /* IN/OUT: Error code */
4888 ){
4889 if( *pRc==SQLITE_OK ){
4890 if( pExpr->eType==FTSQUERY_PHRASE ){
4891 Fts3Phrase *pPhrase = pExpr->pPhrase;
4892 int i;
4893 for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
4894 Fts3TokenAndCost *pTC = (*ppTC)++;
4895 pTC->pPhrase = pPhrase;
4896 pTC->iToken = i;
4897 pTC->pRoot = pRoot;
4898 pTC->pToken = &pPhrase->aToken[i];
4899 pTC->iCol = pPhrase->iColumn;
4900 *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
4901 }
4902 }else if( pExpr->eType!=FTSQUERY_NOT ){
4903 assert( pExpr->eType==FTSQUERY_OR
4904 || pExpr->eType==FTSQUERY_AND
4905 || pExpr->eType==FTSQUERY_NEAR
4906 );
4907 assert( pExpr->pLeft && pExpr->pRight );
4908 if( pExpr->eType==FTSQUERY_OR ){
4909 pRoot = pExpr->pLeft;
4910 **ppOr = pRoot;
4911 (*ppOr)++;
4912 }
4913 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
4914 if( pExpr->eType==FTSQUERY_OR ){
4915 pRoot = pExpr->pRight;
4916 **ppOr = pRoot;
4917 (*ppOr)++;
4918 }
4919 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
4920 }
4921 }
4922 }
4923
4924 /*
4925 ** Determine the average document (row) size in pages. If successful,
4926 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4927 ** an SQLite error code.
4928 **
4929 ** The average document size in pages is calculated by first calculating
4930 ** determining the average size in bytes, B. If B is less than the amount
4931 ** of data that will fit on a single leaf page of an intkey table in
4932 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4933 ** the number of overflow pages consumed by a record B bytes in size.
4934 */
fts3EvalAverageDocsize(Fts3Cursor * pCsr,int * pnPage)4935 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
4936 int rc = SQLITE_OK;
4937 if( pCsr->nRowAvg==0 ){
4938 /* The average document size, which is required to calculate the cost
4939 ** of each doclist, has not yet been determined. Read the required
4940 ** data from the %_stat table to calculate it.
4941 **
4942 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
4943 ** varints, where nCol is the number of columns in the FTS3 table.
4944 ** The first varint is the number of documents currently stored in
4945 ** the table. The following nCol varints contain the total amount of
4946 ** data stored in all rows of each column of the table, from left
4947 ** to right.
4948 */
4949 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
4950 sqlite3_stmt *pStmt;
4951 sqlite3_int64 nDoc = 0;
4952 sqlite3_int64 nByte = 0;
4953 const char *pEnd;
4954 const char *a;
4955
4956 rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
4957 if( rc!=SQLITE_OK ) return rc;
4958 a = sqlite3_column_blob(pStmt, 0);
4959 testcase( a==0 ); /* If %_stat.value set to X'' */
4960 if( a ){
4961 pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
4962 a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
4963 while( a<pEnd ){
4964 a += sqlite3Fts3GetVarintBounded(a, pEnd, &nByte);
4965 }
4966 }
4967 if( nDoc==0 || nByte==0 ){
4968 sqlite3_reset(pStmt);
4969 return FTS_CORRUPT_VTAB;
4970 }
4971
4972 pCsr->nDoc = nDoc;
4973 pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
4974 assert( pCsr->nRowAvg>0 );
4975 rc = sqlite3_reset(pStmt);
4976 }
4977
4978 *pnPage = pCsr->nRowAvg;
4979 return rc;
4980 }
4981
4982 /*
4983 ** This function is called to select the tokens (if any) that will be
4984 ** deferred. The array aTC[] has already been populated when this is
4985 ** called.
4986 **
4987 ** This function is called once for each AND/NEAR cluster in the
4988 ** expression. Each invocation determines which tokens to defer within
4989 ** the cluster with root node pRoot. See comments above the definition
4990 ** of struct Fts3TokenAndCost for more details.
4991 **
4992 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
4993 ** called on each token to defer. Otherwise, an SQLite error code is
4994 ** returned.
4995 */
fts3EvalSelectDeferred(Fts3Cursor * pCsr,Fts3Expr * pRoot,Fts3TokenAndCost * aTC,int nTC)4996 static int fts3EvalSelectDeferred(
4997 Fts3Cursor *pCsr, /* FTS Cursor handle */
4998 Fts3Expr *pRoot, /* Consider tokens with this root node */
4999 Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
5000 int nTC /* Number of entries in aTC[] */
5001 ){
5002 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5003 int nDocSize = 0; /* Number of pages per doc loaded */
5004 int rc = SQLITE_OK; /* Return code */
5005 int ii; /* Iterator variable for various purposes */
5006 int nOvfl = 0; /* Total overflow pages used by doclists */
5007 int nToken = 0; /* Total number of tokens in cluster */
5008
5009 int nMinEst = 0; /* The minimum count for any phrase so far. */
5010 int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
5011
5012 /* Tokens are never deferred for FTS tables created using the content=xxx
5013 ** option. The reason being that it is not guaranteed that the content
5014 ** table actually contains the same data as the index. To prevent this from
5015 ** causing any problems, the deferred token optimization is completely
5016 ** disabled for content=xxx tables. */
5017 if( pTab->zContentTbl ){
5018 return SQLITE_OK;
5019 }
5020
5021 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
5022 ** associated with the tokens spill onto overflow pages, or if there is
5023 ** only 1 token, exit early. No tokens to defer in this case. */
5024 for(ii=0; ii<nTC; ii++){
5025 if( aTC[ii].pRoot==pRoot ){
5026 nOvfl += aTC[ii].nOvfl;
5027 nToken++;
5028 }
5029 }
5030 if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
5031
5032 /* Obtain the average docsize (in pages). */
5033 rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
5034 assert( rc!=SQLITE_OK || nDocSize>0 );
5035
5036
5037 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
5038 ** of the number of overflow pages that will be loaded by the pager layer
5039 ** to retrieve the entire doclist for the token from the full-text index.
5040 ** Load the doclists for tokens that are either:
5041 **
5042 ** a. The cheapest token in the entire query (i.e. the one visited by the
5043 ** first iteration of this loop), or
5044 **
5045 ** b. Part of a multi-token phrase.
5046 **
5047 ** After each token doclist is loaded, merge it with the others from the
5048 ** same phrase and count the number of documents that the merged doclist
5049 ** contains. Set variable "nMinEst" to the smallest number of documents in
5050 ** any phrase doclist for which 1 or more token doclists have been loaded.
5051 ** Let nOther be the number of other phrases for which it is certain that
5052 ** one or more tokens will not be deferred.
5053 **
5054 ** Then, for each token, defer it if loading the doclist would result in
5055 ** loading N or more overflow pages into memory, where N is computed as:
5056 **
5057 ** (nMinEst + 4^nOther - 1) / (4^nOther)
5058 */
5059 for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
5060 int iTC; /* Used to iterate through aTC[] array. */
5061 Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
5062
5063 /* Set pTC to point to the cheapest remaining token. */
5064 for(iTC=0; iTC<nTC; iTC++){
5065 if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
5066 && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
5067 ){
5068 pTC = &aTC[iTC];
5069 }
5070 }
5071 assert( pTC );
5072
5073 if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
5074 /* The number of overflow pages to load for this (and therefore all
5075 ** subsequent) tokens is greater than the estimated number of pages
5076 ** that will be loaded if all subsequent tokens are deferred.
5077 */
5078 Fts3PhraseToken *pToken = pTC->pToken;
5079 rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
5080 fts3SegReaderCursorFree(pToken->pSegcsr);
5081 pToken->pSegcsr = 0;
5082 }else{
5083 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
5084 ** for-loop. Except, limit the value to 2^24 to prevent it from
5085 ** overflowing the 32-bit integer it is stored in. */
5086 if( ii<12 ) nLoad4 = nLoad4*4;
5087
5088 if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
5089 /* Either this is the cheapest token in the entire query, or it is
5090 ** part of a multi-token phrase. Either way, the entire doclist will
5091 ** (eventually) be loaded into memory. It may as well be now. */
5092 Fts3PhraseToken *pToken = pTC->pToken;
5093 int nList = 0;
5094 char *pList = 0;
5095 rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
5096 assert( rc==SQLITE_OK || pList==0 );
5097 if( rc==SQLITE_OK ){
5098 rc = fts3EvalPhraseMergeToken(
5099 pTab, pTC->pPhrase, pTC->iToken,pList,nList
5100 );
5101 }
5102 if( rc==SQLITE_OK ){
5103 int nCount;
5104 nCount = fts3DoclistCountDocids(
5105 pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
5106 );
5107 if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
5108 }
5109 }
5110 }
5111 pTC->pToken = 0;
5112 }
5113
5114 return rc;
5115 }
5116
5117 /*
5118 ** This function is called from within the xFilter method. It initializes
5119 ** the full-text query currently stored in pCsr->pExpr. To iterate through
5120 ** the results of a query, the caller does:
5121 **
5122 ** fts3EvalStart(pCsr);
5123 ** while( 1 ){
5124 ** fts3EvalNext(pCsr);
5125 ** if( pCsr->bEof ) break;
5126 ** ... return row pCsr->iPrevId to the caller ...
5127 ** }
5128 */
fts3EvalStart(Fts3Cursor * pCsr)5129 static int fts3EvalStart(Fts3Cursor *pCsr){
5130 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5131 int rc = SQLITE_OK;
5132 int nToken = 0;
5133 int nOr = 0;
5134
5135 /* Allocate a MultiSegReader for each token in the expression. */
5136 fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
5137
5138 /* Determine which, if any, tokens in the expression should be deferred. */
5139 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5140 if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
5141 Fts3TokenAndCost *aTC;
5142 aTC = (Fts3TokenAndCost *)sqlite3_malloc64(
5143 sizeof(Fts3TokenAndCost) * nToken
5144 + sizeof(Fts3Expr *) * nOr * 2
5145 );
5146
5147 if( !aTC ){
5148 rc = SQLITE_NOMEM;
5149 }else{
5150 Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken];
5151 int ii;
5152 Fts3TokenAndCost *pTC = aTC;
5153 Fts3Expr **ppOr = apOr;
5154
5155 fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
5156 nToken = (int)(pTC-aTC);
5157 nOr = (int)(ppOr-apOr);
5158
5159 if( rc==SQLITE_OK ){
5160 rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
5161 for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
5162 rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
5163 }
5164 }
5165
5166 sqlite3_free(aTC);
5167 }
5168 }
5169 #endif
5170
5171 fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
5172 return rc;
5173 }
5174
5175 /*
5176 ** Invalidate the current position list for phrase pPhrase.
5177 */
fts3EvalInvalidatePoslist(Fts3Phrase * pPhrase)5178 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
5179 if( pPhrase->doclist.bFreeList ){
5180 sqlite3_free(pPhrase->doclist.pList);
5181 }
5182 pPhrase->doclist.pList = 0;
5183 pPhrase->doclist.nList = 0;
5184 pPhrase->doclist.bFreeList = 0;
5185 }
5186
5187 /*
5188 ** This function is called to edit the position list associated with
5189 ** the phrase object passed as the fifth argument according to a NEAR
5190 ** condition. For example:
5191 **
5192 ** abc NEAR/5 "def ghi"
5193 **
5194 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5195 ** the example above). When this function is called, *paPoslist points to
5196 ** the position list, and *pnToken is the number of phrase tokens in the
5197 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5198 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5199 ** the position list associated with phrase "abc".
5200 **
5201 ** All positions in the pPhrase position list that are not sufficiently
5202 ** close to a position in the *paPoslist position list are removed. If this
5203 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5204 **
5205 ** Before returning, *paPoslist is set to point to the position lsit
5206 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5207 ** pPhrase.
5208 */
fts3EvalNearTrim(int nNear,char * aTmp,char ** paPoslist,int * pnToken,Fts3Phrase * pPhrase)5209 static int fts3EvalNearTrim(
5210 int nNear, /* NEAR distance. As in "NEAR/nNear". */
5211 char *aTmp, /* Temporary space to use */
5212 char **paPoslist, /* IN/OUT: Position list */
5213 int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
5214 Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
5215 ){
5216 int nParam1 = nNear + pPhrase->nToken;
5217 int nParam2 = nNear + *pnToken;
5218 int nNew;
5219 char *p2;
5220 char *pOut;
5221 int res;
5222
5223 assert( pPhrase->doclist.pList );
5224
5225 p2 = pOut = pPhrase->doclist.pList;
5226 res = fts3PoslistNearMerge(
5227 &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
5228 );
5229 if( res ){
5230 nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
5231 assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 );
5232 if( nNew>=0 && nNew<=pPhrase->doclist.nList ){
5233 assert( pPhrase->doclist.pList[nNew]=='\0' );
5234 memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
5235 pPhrase->doclist.nList = nNew;
5236 }
5237 *paPoslist = pPhrase->doclist.pList;
5238 *pnToken = pPhrase->nToken;
5239 }
5240
5241 return res;
5242 }
5243
5244 /*
5245 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5246 ** Otherwise, it advances the expression passed as the second argument to
5247 ** point to the next matching row in the database. Expressions iterate through
5248 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5249 ** or descending if it is non-zero.
5250 **
5251 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5252 ** successful, the following variables in pExpr are set:
5253 **
5254 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5255 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5256 **
5257 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5258 ** at EOF, then the following variables are populated with the position list
5259 ** for the phrase for the visited row:
5260 **
5261 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5262 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5263 **
5264 ** It says above that this function advances the expression to the next
5265 ** matching row. This is usually true, but there are the following exceptions:
5266 **
5267 ** 1. Deferred tokens are not taken into account. If a phrase consists
5268 ** entirely of deferred tokens, it is assumed to match every row in
5269 ** the db. In this case the position-list is not populated at all.
5270 **
5271 ** Or, if a phrase contains one or more deferred tokens and one or
5272 ** more non-deferred tokens, then the expression is advanced to the
5273 ** next possible match, considering only non-deferred tokens. In other
5274 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5275 ** is advanced to the next row that contains an instance of "A * C",
5276 ** where "*" may match any single token. The position list in this case
5277 ** is populated as for "A * C" before returning.
5278 **
5279 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5280 ** advanced to point to the next row that matches "x AND y".
5281 **
5282 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5283 ** really a match, taking into account deferred tokens and NEAR operators.
5284 */
fts3EvalNextRow(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pRc)5285 static void fts3EvalNextRow(
5286 Fts3Cursor *pCsr, /* FTS Cursor handle */
5287 Fts3Expr *pExpr, /* Expr. to advance to next matching row */
5288 int *pRc /* IN/OUT: Error code */
5289 ){
5290 if( *pRc==SQLITE_OK ){
5291 int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
5292 assert( pExpr->bEof==0 );
5293 pExpr->bStart = 1;
5294
5295 switch( pExpr->eType ){
5296 case FTSQUERY_NEAR:
5297 case FTSQUERY_AND: {
5298 Fts3Expr *pLeft = pExpr->pLeft;
5299 Fts3Expr *pRight = pExpr->pRight;
5300 assert( !pLeft->bDeferred || !pRight->bDeferred );
5301
5302 if( pLeft->bDeferred ){
5303 /* LHS is entirely deferred. So we assume it matches every row.
5304 ** Advance the RHS iterator to find the next row visited. */
5305 fts3EvalNextRow(pCsr, pRight, pRc);
5306 pExpr->iDocid = pRight->iDocid;
5307 pExpr->bEof = pRight->bEof;
5308 }else if( pRight->bDeferred ){
5309 /* RHS is entirely deferred. So we assume it matches every row.
5310 ** Advance the LHS iterator to find the next row visited. */
5311 fts3EvalNextRow(pCsr, pLeft, pRc);
5312 pExpr->iDocid = pLeft->iDocid;
5313 pExpr->bEof = pLeft->bEof;
5314 }else{
5315 /* Neither the RHS or LHS are deferred. */
5316 fts3EvalNextRow(pCsr, pLeft, pRc);
5317 fts3EvalNextRow(pCsr, pRight, pRc);
5318 while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
5319 sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5320 if( iDiff==0 ) break;
5321 if( iDiff<0 ){
5322 fts3EvalNextRow(pCsr, pLeft, pRc);
5323 }else{
5324 fts3EvalNextRow(pCsr, pRight, pRc);
5325 }
5326 }
5327 pExpr->iDocid = pLeft->iDocid;
5328 pExpr->bEof = (pLeft->bEof || pRight->bEof);
5329 if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
5330 assert( pRight->eType==FTSQUERY_PHRASE );
5331 if( pRight->pPhrase->doclist.aAll ){
5332 Fts3Doclist *pDl = &pRight->pPhrase->doclist;
5333 while( *pRc==SQLITE_OK && pRight->bEof==0 ){
5334 memset(pDl->pList, 0, pDl->nList);
5335 fts3EvalNextRow(pCsr, pRight, pRc);
5336 }
5337 }
5338 if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
5339 Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
5340 while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
5341 memset(pDl->pList, 0, pDl->nList);
5342 fts3EvalNextRow(pCsr, pLeft, pRc);
5343 }
5344 }
5345 pRight->bEof = pLeft->bEof = 1;
5346 }
5347 }
5348 break;
5349 }
5350
5351 case FTSQUERY_OR: {
5352 Fts3Expr *pLeft = pExpr->pLeft;
5353 Fts3Expr *pRight = pExpr->pRight;
5354 sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5355
5356 assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
5357 assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid );
5358
5359 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5360 fts3EvalNextRow(pCsr, pLeft, pRc);
5361 }else if( pLeft->bEof || iCmp>0 ){
5362 fts3EvalNextRow(pCsr, pRight, pRc);
5363 }else{
5364 fts3EvalNextRow(pCsr, pLeft, pRc);
5365 fts3EvalNextRow(pCsr, pRight, pRc);
5366 }
5367
5368 pExpr->bEof = (pLeft->bEof && pRight->bEof);
5369 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5370 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5371 pExpr->iDocid = pLeft->iDocid;
5372 }else{
5373 pExpr->iDocid = pRight->iDocid;
5374 }
5375
5376 break;
5377 }
5378
5379 case FTSQUERY_NOT: {
5380 Fts3Expr *pLeft = pExpr->pLeft;
5381 Fts3Expr *pRight = pExpr->pRight;
5382
5383 if( pRight->bStart==0 ){
5384 fts3EvalNextRow(pCsr, pRight, pRc);
5385 assert( *pRc!=SQLITE_OK || pRight->bStart );
5386 }
5387
5388 fts3EvalNextRow(pCsr, pLeft, pRc);
5389 if( pLeft->bEof==0 ){
5390 while( !*pRc
5391 && !pRight->bEof
5392 && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
5393 ){
5394 fts3EvalNextRow(pCsr, pRight, pRc);
5395 }
5396 }
5397 pExpr->iDocid = pLeft->iDocid;
5398 pExpr->bEof = pLeft->bEof;
5399 break;
5400 }
5401
5402 default: {
5403 Fts3Phrase *pPhrase = pExpr->pPhrase;
5404 fts3EvalInvalidatePoslist(pPhrase);
5405 *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
5406 pExpr->iDocid = pPhrase->doclist.iDocid;
5407 break;
5408 }
5409 }
5410 }
5411 }
5412
5413 /*
5414 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5415 ** cluster, then this function returns 1 immediately.
5416 **
5417 ** Otherwise, it checks if the current row really does match the NEAR
5418 ** expression, using the data currently stored in the position lists
5419 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5420 **
5421 ** If the current row is a match, the position list associated with each
5422 ** phrase in the NEAR expression is edited in place to contain only those
5423 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5424 ** constraints. In this case it returns 1. If the NEAR expression does not
5425 ** match the current row, 0 is returned. The position lists may or may not
5426 ** be edited if 0 is returned.
5427 */
fts3EvalNearTest(Fts3Expr * pExpr,int * pRc)5428 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
5429 int res = 1;
5430
5431 /* The following block runs if pExpr is the root of a NEAR query.
5432 ** For example, the query:
5433 **
5434 ** "w" NEAR "x" NEAR "y" NEAR "z"
5435 **
5436 ** which is represented in tree form as:
5437 **
5438 ** |
5439 ** +--NEAR--+ <-- root of NEAR query
5440 ** | |
5441 ** +--NEAR--+ "z"
5442 ** | |
5443 ** +--NEAR--+ "y"
5444 ** | |
5445 ** "w" "x"
5446 **
5447 ** The right-hand child of a NEAR node is always a phrase. The
5448 ** left-hand child may be either a phrase or a NEAR node. There are
5449 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5450 */
5451 if( *pRc==SQLITE_OK
5452 && pExpr->eType==FTSQUERY_NEAR
5453 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5454 ){
5455 Fts3Expr *p;
5456 sqlite3_int64 nTmp = 0; /* Bytes of temp space */
5457 char *aTmp; /* Temp space for PoslistNearMerge() */
5458
5459 /* Allocate temporary working space. */
5460 for(p=pExpr; p->pLeft; p=p->pLeft){
5461 assert( p->pRight->pPhrase->doclist.nList>0 );
5462 nTmp += p->pRight->pPhrase->doclist.nList;
5463 }
5464 nTmp += p->pPhrase->doclist.nList;
5465 aTmp = sqlite3_malloc64(nTmp*2);
5466 if( !aTmp ){
5467 *pRc = SQLITE_NOMEM;
5468 res = 0;
5469 }else{
5470 char *aPoslist = p->pPhrase->doclist.pList;
5471 int nToken = p->pPhrase->nToken;
5472
5473 for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
5474 Fts3Phrase *pPhrase = p->pRight->pPhrase;
5475 int nNear = p->nNear;
5476 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5477 }
5478
5479 aPoslist = pExpr->pRight->pPhrase->doclist.pList;
5480 nToken = pExpr->pRight->pPhrase->nToken;
5481 for(p=pExpr->pLeft; p && res; p=p->pLeft){
5482 int nNear;
5483 Fts3Phrase *pPhrase;
5484 assert( p->pParent && p->pParent->pLeft==p );
5485 nNear = p->pParent->nNear;
5486 pPhrase = (
5487 p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
5488 );
5489 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5490 }
5491 }
5492
5493 sqlite3_free(aTmp);
5494 }
5495
5496 return res;
5497 }
5498
5499 /*
5500 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5501 ** Assuming no error occurs or has occurred, It returns non-zero if the
5502 ** expression passed as the second argument matches the row that pCsr
5503 ** currently points to, or zero if it does not.
5504 **
5505 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5506 ** If an error occurs during execution of this function, *pRc is set to
5507 ** the appropriate SQLite error code. In this case the returned value is
5508 ** undefined.
5509 */
fts3EvalTestExpr(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pRc)5510 static int fts3EvalTestExpr(
5511 Fts3Cursor *pCsr, /* FTS cursor handle */
5512 Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
5513 int *pRc /* IN/OUT: Error code */
5514 ){
5515 int bHit = 1; /* Return value */
5516 if( *pRc==SQLITE_OK ){
5517 switch( pExpr->eType ){
5518 case FTSQUERY_NEAR:
5519 case FTSQUERY_AND:
5520 bHit = (
5521 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5522 && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5523 && fts3EvalNearTest(pExpr, pRc)
5524 );
5525
5526 /* If the NEAR expression does not match any rows, zero the doclist for
5527 ** all phrases involved in the NEAR. This is because the snippet(),
5528 ** offsets() and matchinfo() functions are not supposed to recognize
5529 ** any instances of phrases that are part of unmatched NEAR queries.
5530 ** For example if this expression:
5531 **
5532 ** ... MATCH 'a OR (b NEAR c)'
5533 **
5534 ** is matched against a row containing:
5535 **
5536 ** 'a b d e'
5537 **
5538 ** then any snippet() should ony highlight the "a" term, not the "b"
5539 ** (as "b" is part of a non-matching NEAR clause).
5540 */
5541 if( bHit==0
5542 && pExpr->eType==FTSQUERY_NEAR
5543 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5544 ){
5545 Fts3Expr *p;
5546 for(p=pExpr; p->pPhrase==0; p=p->pLeft){
5547 if( p->pRight->iDocid==pCsr->iPrevId ){
5548 fts3EvalInvalidatePoslist(p->pRight->pPhrase);
5549 }
5550 }
5551 if( p->iDocid==pCsr->iPrevId ){
5552 fts3EvalInvalidatePoslist(p->pPhrase);
5553 }
5554 }
5555
5556 break;
5557
5558 case FTSQUERY_OR: {
5559 int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
5560 int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
5561 bHit = bHit1 || bHit2;
5562 break;
5563 }
5564
5565 case FTSQUERY_NOT:
5566 bHit = (
5567 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5568 && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5569 );
5570 break;
5571
5572 default: {
5573 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5574 if( pCsr->pDeferred && (pExpr->bDeferred || (
5575 pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList
5576 ))){
5577 Fts3Phrase *pPhrase = pExpr->pPhrase;
5578 if( pExpr->bDeferred ){
5579 fts3EvalInvalidatePoslist(pPhrase);
5580 }
5581 *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
5582 bHit = (pPhrase->doclist.pList!=0);
5583 pExpr->iDocid = pCsr->iPrevId;
5584 }else
5585 #endif
5586 {
5587 bHit = (
5588 pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId
5589 && pExpr->pPhrase->doclist.nList>0
5590 );
5591 }
5592 break;
5593 }
5594 }
5595 }
5596 return bHit;
5597 }
5598
5599 /*
5600 ** This function is called as the second part of each xNext operation when
5601 ** iterating through the results of a full-text query. At this point the
5602 ** cursor points to a row that matches the query expression, with the
5603 ** following caveats:
5604 **
5605 ** * Up until this point, "NEAR" operators in the expression have been
5606 ** treated as "AND".
5607 **
5608 ** * Deferred tokens have not yet been considered.
5609 **
5610 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5611 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5612 ** operators and deferred tokens the current row is still a match for the
5613 ** expression. It returns 1 if both of the following are true:
5614 **
5615 ** 1. *pRc is SQLITE_OK when this function returns, and
5616 **
5617 ** 2. After scanning the current FTS table row for the deferred tokens,
5618 ** it is determined that the row does *not* match the query.
5619 **
5620 ** Or, if no error occurs and it seems the current row does match the FTS
5621 ** query, return 0.
5622 */
sqlite3Fts3EvalTestDeferred(Fts3Cursor * pCsr,int * pRc)5623 int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
5624 int rc = *pRc;
5625 int bMiss = 0;
5626 if( rc==SQLITE_OK ){
5627
5628 /* If there are one or more deferred tokens, load the current row into
5629 ** memory and scan it to determine the position list for each deferred
5630 ** token. Then, see if this row is really a match, considering deferred
5631 ** tokens and NEAR operators (neither of which were taken into account
5632 ** earlier, by fts3EvalNextRow()).
5633 */
5634 if( pCsr->pDeferred ){
5635 rc = fts3CursorSeek(0, pCsr);
5636 if( rc==SQLITE_OK ){
5637 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
5638 }
5639 }
5640 bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
5641
5642 /* Free the position-lists accumulated for each deferred token above. */
5643 sqlite3Fts3FreeDeferredDoclists(pCsr);
5644 *pRc = rc;
5645 }
5646 return (rc==SQLITE_OK && bMiss);
5647 }
5648
5649 /*
5650 ** Advance to the next document that matches the FTS expression in
5651 ** Fts3Cursor.pExpr.
5652 */
fts3EvalNext(Fts3Cursor * pCsr)5653 static int fts3EvalNext(Fts3Cursor *pCsr){
5654 int rc = SQLITE_OK; /* Return Code */
5655 Fts3Expr *pExpr = pCsr->pExpr;
5656 assert( pCsr->isEof==0 );
5657 if( pExpr==0 ){
5658 pCsr->isEof = 1;
5659 }else{
5660 do {
5661 if( pCsr->isRequireSeek==0 ){
5662 sqlite3_reset(pCsr->pStmt);
5663 }
5664 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5665 fts3EvalNextRow(pCsr, pExpr, &rc);
5666 pCsr->isEof = pExpr->bEof;
5667 pCsr->isRequireSeek = 1;
5668 pCsr->isMatchinfoNeeded = 1;
5669 pCsr->iPrevId = pExpr->iDocid;
5670 }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
5671 }
5672
5673 /* Check if the cursor is past the end of the docid range specified
5674 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5675 if( rc==SQLITE_OK && (
5676 (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
5677 || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
5678 )){
5679 pCsr->isEof = 1;
5680 }
5681
5682 return rc;
5683 }
5684
5685 /*
5686 ** Restart interation for expression pExpr so that the next call to
5687 ** fts3EvalNext() visits the first row. Do not allow incremental
5688 ** loading or merging of phrase doclists for this iteration.
5689 **
5690 ** If *pRc is other than SQLITE_OK when this function is called, it is
5691 ** a no-op. If an error occurs within this function, *pRc is set to an
5692 ** SQLite error code before returning.
5693 */
fts3EvalRestart(Fts3Cursor * pCsr,Fts3Expr * pExpr,int * pRc)5694 static void fts3EvalRestart(
5695 Fts3Cursor *pCsr,
5696 Fts3Expr *pExpr,
5697 int *pRc
5698 ){
5699 if( pExpr && *pRc==SQLITE_OK ){
5700 Fts3Phrase *pPhrase = pExpr->pPhrase;
5701
5702 if( pPhrase ){
5703 fts3EvalInvalidatePoslist(pPhrase);
5704 if( pPhrase->bIncr ){
5705 int i;
5706 for(i=0; i<pPhrase->nToken; i++){
5707 Fts3PhraseToken *pToken = &pPhrase->aToken[i];
5708 assert( pToken->pDeferred==0 );
5709 if( pToken->pSegcsr ){
5710 sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
5711 }
5712 }
5713 *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
5714 }
5715 pPhrase->doclist.pNextDocid = 0;
5716 pPhrase->doclist.iDocid = 0;
5717 pPhrase->pOrPoslist = 0;
5718 }
5719
5720 pExpr->iDocid = 0;
5721 pExpr->bEof = 0;
5722 pExpr->bStart = 0;
5723
5724 fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
5725 fts3EvalRestart(pCsr, pExpr->pRight, pRc);
5726 }
5727 }
5728
5729 /*
5730 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5731 ** expression rooted at pExpr, the cursor iterates through all rows matched
5732 ** by pExpr, calling this function for each row. This function increments
5733 ** the values in Fts3Expr.aMI[] according to the position-list currently
5734 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5735 ** expression nodes.
5736 */
fts3EvalUpdateCounts(Fts3Expr * pExpr,int nCol)5737 static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){
5738 if( pExpr ){
5739 Fts3Phrase *pPhrase = pExpr->pPhrase;
5740 if( pPhrase && pPhrase->doclist.pList ){
5741 int iCol = 0;
5742 char *p = pPhrase->doclist.pList;
5743
5744 do{
5745 u8 c = 0;
5746 int iCnt = 0;
5747 while( 0xFE & (*p | c) ){
5748 if( (c&0x80)==0 ) iCnt++;
5749 c = *p++ & 0x80;
5750 }
5751
5752 /* aMI[iCol*3 + 1] = Number of occurrences
5753 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5754 */
5755 pExpr->aMI[iCol*3 + 1] += iCnt;
5756 pExpr->aMI[iCol*3 + 2] += (iCnt>0);
5757 if( *p==0x00 ) break;
5758 p++;
5759 p += fts3GetVarint32(p, &iCol);
5760 }while( iCol<nCol );
5761 }
5762
5763 fts3EvalUpdateCounts(pExpr->pLeft, nCol);
5764 fts3EvalUpdateCounts(pExpr->pRight, nCol);
5765 }
5766 }
5767
5768 /*
5769 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5770 **
5771 ** If it is not already allocated and populated, this function allocates and
5772 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5773 ** of a NEAR expression, then it also allocates and populates the same array
5774 ** for all other phrases that are part of the NEAR expression.
5775 **
5776 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5777 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5778 */
fts3EvalGatherStats(Fts3Cursor * pCsr,Fts3Expr * pExpr)5779 static int fts3EvalGatherStats(
5780 Fts3Cursor *pCsr, /* Cursor object */
5781 Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
5782 ){
5783 int rc = SQLITE_OK; /* Return code */
5784
5785 assert( pExpr->eType==FTSQUERY_PHRASE );
5786 if( pExpr->aMI==0 ){
5787 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5788 Fts3Expr *pRoot; /* Root of NEAR expression */
5789 Fts3Expr *p; /* Iterator used for several purposes */
5790
5791 sqlite3_int64 iPrevId = pCsr->iPrevId;
5792 sqlite3_int64 iDocid;
5793 u8 bEof;
5794
5795 /* Find the root of the NEAR expression */
5796 pRoot = pExpr;
5797 while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
5798 pRoot = pRoot->pParent;
5799 }
5800 iDocid = pRoot->iDocid;
5801 bEof = pRoot->bEof;
5802 assert( pRoot->bStart );
5803
5804 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5805 for(p=pRoot; p; p=p->pLeft){
5806 Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
5807 assert( pE->aMI==0 );
5808 pE->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32));
5809 if( !pE->aMI ) return SQLITE_NOMEM;
5810 memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
5811 }
5812
5813 fts3EvalRestart(pCsr, pRoot, &rc);
5814
5815 while( pCsr->isEof==0 && rc==SQLITE_OK ){
5816
5817 do {
5818 /* Ensure the %_content statement is reset. */
5819 if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
5820 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5821
5822 /* Advance to the next document */
5823 fts3EvalNextRow(pCsr, pRoot, &rc);
5824 pCsr->isEof = pRoot->bEof;
5825 pCsr->isRequireSeek = 1;
5826 pCsr->isMatchinfoNeeded = 1;
5827 pCsr->iPrevId = pRoot->iDocid;
5828 }while( pCsr->isEof==0
5829 && pRoot->eType==FTSQUERY_NEAR
5830 && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
5831 );
5832
5833 if( rc==SQLITE_OK && pCsr->isEof==0 ){
5834 fts3EvalUpdateCounts(pRoot, pTab->nColumn);
5835 }
5836 }
5837
5838 pCsr->isEof = 0;
5839 pCsr->iPrevId = iPrevId;
5840
5841 if( bEof ){
5842 pRoot->bEof = bEof;
5843 }else{
5844 /* Caution: pRoot may iterate through docids in ascending or descending
5845 ** order. For this reason, even though it seems more defensive, the
5846 ** do loop can not be written:
5847 **
5848 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5849 */
5850 fts3EvalRestart(pCsr, pRoot, &rc);
5851 do {
5852 fts3EvalNextRow(pCsr, pRoot, &rc);
5853 assert_fts3_nc( pRoot->bEof==0 );
5854 if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB;
5855 }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
5856 }
5857 }
5858 return rc;
5859 }
5860
5861 /*
5862 ** This function is used by the matchinfo() module to query a phrase
5863 ** expression node for the following information:
5864 **
5865 ** 1. The total number of occurrences of the phrase in each column of
5866 ** the FTS table (considering all rows), and
5867 **
5868 ** 2. For each column, the number of rows in the table for which the
5869 ** column contains at least one instance of the phrase.
5870 **
5871 ** If no error occurs, SQLITE_OK is returned and the values for each column
5872 ** written into the array aiOut as follows:
5873 **
5874 ** aiOut[iCol*3 + 1] = Number of occurrences
5875 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5876 **
5877 ** Caveats:
5878 **
5879 ** * If a phrase consists entirely of deferred tokens, then all output
5880 ** values are set to the number of documents in the table. In other
5881 ** words we assume that very common tokens occur exactly once in each
5882 ** column of each row of the table.
5883 **
5884 ** * If a phrase contains some deferred tokens (and some non-deferred
5885 ** tokens), count the potential occurrence identified by considering
5886 ** the non-deferred tokens instead of actual phrase occurrences.
5887 **
5888 ** * If the phrase is part of a NEAR expression, then only phrase instances
5889 ** that meet the NEAR constraint are included in the counts.
5890 */
sqlite3Fts3EvalPhraseStats(Fts3Cursor * pCsr,Fts3Expr * pExpr,u32 * aiOut)5891 int sqlite3Fts3EvalPhraseStats(
5892 Fts3Cursor *pCsr, /* FTS cursor handle */
5893 Fts3Expr *pExpr, /* Phrase expression */
5894 u32 *aiOut /* Array to write results into (see above) */
5895 ){
5896 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5897 int rc = SQLITE_OK;
5898 int iCol;
5899
5900 if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
5901 assert( pCsr->nDoc>0 );
5902 for(iCol=0; iCol<pTab->nColumn; iCol++){
5903 aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
5904 aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
5905 }
5906 }else{
5907 rc = fts3EvalGatherStats(pCsr, pExpr);
5908 if( rc==SQLITE_OK ){
5909 assert( pExpr->aMI );
5910 for(iCol=0; iCol<pTab->nColumn; iCol++){
5911 aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
5912 aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
5913 }
5914 }
5915 }
5916
5917 return rc;
5918 }
5919
5920 /*
5921 ** The expression pExpr passed as the second argument to this function
5922 ** must be of type FTSQUERY_PHRASE.
5923 **
5924 ** The returned value is either NULL or a pointer to a buffer containing
5925 ** a position-list indicating the occurrences of the phrase in column iCol
5926 ** of the current row.
5927 **
5928 ** More specifically, the returned buffer contains 1 varint for each
5929 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5930 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5931 ** if the requested column contains "a b X c d X X" and the position-list
5932 ** for 'X' is requested, the buffer returned may contain:
5933 **
5934 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
5935 **
5936 ** This function works regardless of whether or not the phrase is deferred,
5937 ** incremental, or neither.
5938 */
sqlite3Fts3EvalPhrasePoslist(Fts3Cursor * pCsr,Fts3Expr * pExpr,int iCol,char ** ppOut)5939 int sqlite3Fts3EvalPhrasePoslist(
5940 Fts3Cursor *pCsr, /* FTS3 cursor object */
5941 Fts3Expr *pExpr, /* Phrase to return doclist for */
5942 int iCol, /* Column to return position list for */
5943 char **ppOut /* OUT: Pointer to position list */
5944 ){
5945 Fts3Phrase *pPhrase = pExpr->pPhrase;
5946 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5947 char *pIter;
5948 int iThis;
5949 sqlite3_int64 iDocid;
5950
5951 /* If this phrase is applies specifically to some column other than
5952 ** column iCol, return a NULL pointer. */
5953 *ppOut = 0;
5954 assert( iCol>=0 && iCol<pTab->nColumn );
5955 if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
5956 return SQLITE_OK;
5957 }
5958
5959 iDocid = pExpr->iDocid;
5960 pIter = pPhrase->doclist.pList;
5961 if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
5962 int rc = SQLITE_OK;
5963 int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
5964 int bOr = 0;
5965 u8 bTreeEof = 0;
5966 Fts3Expr *p; /* Used to iterate from pExpr to root */
5967 Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
5968 int bMatch;
5969
5970 /* Check if this phrase descends from an OR expression node. If not,
5971 ** return NULL. Otherwise, the entry that corresponds to docid
5972 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
5973 ** tree that the node is part of has been marked as EOF, but the node
5974 ** itself is not EOF, then it may point to an earlier entry. */
5975 pNear = pExpr;
5976 for(p=pExpr->pParent; p; p=p->pParent){
5977 if( p->eType==FTSQUERY_OR ) bOr = 1;
5978 if( p->eType==FTSQUERY_NEAR ) pNear = p;
5979 if( p->bEof ) bTreeEof = 1;
5980 }
5981 if( bOr==0 ) return SQLITE_OK;
5982
5983 /* This is the descendent of an OR node. In this case we cannot use
5984 ** an incremental phrase. Load the entire doclist for the phrase
5985 ** into memory in this case. */
5986 if( pPhrase->bIncr ){
5987 int bEofSave = pNear->bEof;
5988 fts3EvalRestart(pCsr, pNear, &rc);
5989 while( rc==SQLITE_OK && !pNear->bEof ){
5990 fts3EvalNextRow(pCsr, pNear, &rc);
5991 if( bEofSave==0 && pNear->iDocid==iDocid ) break;
5992 }
5993 assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
5994 if( rc==SQLITE_OK && pNear->bEof!=bEofSave ){
5995 rc = FTS_CORRUPT_VTAB;
5996 }
5997 }
5998 if( bTreeEof ){
5999 while( rc==SQLITE_OK && !pNear->bEof ){
6000 fts3EvalNextRow(pCsr, pNear, &rc);
6001 }
6002 }
6003 if( rc!=SQLITE_OK ) return rc;
6004
6005 bMatch = 1;
6006 for(p=pNear; p; p=p->pLeft){
6007 u8 bEof = 0;
6008 Fts3Expr *pTest = p;
6009 Fts3Phrase *pPh;
6010 assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
6011 if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
6012 assert( pTest->eType==FTSQUERY_PHRASE );
6013 pPh = pTest->pPhrase;
6014
6015 pIter = pPh->pOrPoslist;
6016 iDocid = pPh->iOrDocid;
6017 if( pCsr->bDesc==bDescDoclist ){
6018 bEof = !pPh->doclist.nAll ||
6019 (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
6020 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
6021 sqlite3Fts3DoclistNext(
6022 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
6023 &pIter, &iDocid, &bEof
6024 );
6025 }
6026 }else{
6027 bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
6028 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
6029 int dummy;
6030 sqlite3Fts3DoclistPrev(
6031 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
6032 &pIter, &iDocid, &dummy, &bEof
6033 );
6034 }
6035 }
6036 pPh->pOrPoslist = pIter;
6037 pPh->iOrDocid = iDocid;
6038 if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
6039 }
6040
6041 if( bMatch ){
6042 pIter = pPhrase->pOrPoslist;
6043 }else{
6044 pIter = 0;
6045 }
6046 }
6047 if( pIter==0 ) return SQLITE_OK;
6048
6049 if( *pIter==0x01 ){
6050 pIter++;
6051 pIter += fts3GetVarint32(pIter, &iThis);
6052 }else{
6053 iThis = 0;
6054 }
6055 while( iThis<iCol ){
6056 fts3ColumnlistCopy(0, &pIter);
6057 if( *pIter==0x00 ) return SQLITE_OK;
6058 pIter++;
6059 pIter += fts3GetVarint32(pIter, &iThis);
6060 }
6061 if( *pIter==0x00 ){
6062 pIter = 0;
6063 }
6064
6065 *ppOut = ((iCol==iThis)?pIter:0);
6066 return SQLITE_OK;
6067 }
6068
6069 /*
6070 ** Free all components of the Fts3Phrase structure that were allocated by
6071 ** the eval module. Specifically, this means to free:
6072 **
6073 ** * the contents of pPhrase->doclist, and
6074 ** * any Fts3MultiSegReader objects held by phrase tokens.
6075 */
sqlite3Fts3EvalPhraseCleanup(Fts3Phrase * pPhrase)6076 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
6077 if( pPhrase ){
6078 int i;
6079 sqlite3_free(pPhrase->doclist.aAll);
6080 fts3EvalInvalidatePoslist(pPhrase);
6081 memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
6082 for(i=0; i<pPhrase->nToken; i++){
6083 fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
6084 pPhrase->aToken[i].pSegcsr = 0;
6085 }
6086 }
6087 }
6088
6089
6090 /*
6091 ** Return SQLITE_CORRUPT_VTAB.
6092 */
6093 #ifdef SQLITE_DEBUG
sqlite3Fts3Corrupt()6094 int sqlite3Fts3Corrupt(){
6095 return SQLITE_CORRUPT_VTAB;
6096 }
6097 #endif
6098
6099 #if !SQLITE_CORE
6100 /*
6101 ** Initialize API pointer table, if required.
6102 */
6103 #ifdef _WIN32
6104 __declspec(dllexport)
6105 #endif
sqlite3_fts3_init(sqlite3 * db,char ** pzErrMsg,const sqlite3_api_routines * pApi)6106 int sqlite3_fts3_init(
6107 sqlite3 *db,
6108 char **pzErrMsg,
6109 const sqlite3_api_routines *pApi
6110 ){
6111 SQLITE_EXTENSION_INIT2(pApi)
6112 return sqlite3Fts3Init(db);
6113 }
6114 #endif
6115
6116 #endif
6117