xref: /sqlite-3.40.0/src/expr.c (revision 63b3a64c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
sqlite3TableColumnAffinity(const Table * pTab,int iCol)24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
sqlite3ExprAffinity(const Expr * pExpr)45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     assert( pExpr->y.pTab!=0 );
59     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60   }
61   if( op==TK_SELECT ){
62     assert( ExprUseXSelect(pExpr) );
63     assert( pExpr->x.pSelect!=0 );
64     assert( pExpr->x.pSelect->pEList!=0 );
65     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
66     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
67   }
68 #ifndef SQLITE_OMIT_CAST
69   if( op==TK_CAST ){
70     assert( !ExprHasProperty(pExpr, EP_IntValue) );
71     return sqlite3AffinityType(pExpr->u.zToken, 0);
72   }
73 #endif
74   if( op==TK_SELECT_COLUMN ){
75     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
76     assert( pExpr->iColumn < pExpr->iTable );
77     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
78     return sqlite3ExprAffinity(
79         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
80     );
81   }
82   if( op==TK_VECTOR ){
83     assert( ExprUseXList(pExpr) );
84     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
85   }
86   return pExpr->affExpr;
87 }
88 
89 /*
90 ** Set the collating sequence for expression pExpr to be the collating
91 ** sequence named by pToken.   Return a pointer to a new Expr node that
92 ** implements the COLLATE operator.
93 **
94 ** If a memory allocation error occurs, that fact is recorded in pParse->db
95 ** and the pExpr parameter is returned unchanged.
96 */
sqlite3ExprAddCollateToken(const Parse * pParse,Expr * pExpr,const Token * pCollName,int dequote)97 Expr *sqlite3ExprAddCollateToken(
98   const Parse *pParse,     /* Parsing context */
99   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
100   const Token *pCollName,  /* Name of collating sequence */
101   int dequote              /* True to dequote pCollName */
102 ){
103   if( pCollName->n>0 ){
104     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
105     if( pNew ){
106       pNew->pLeft = pExpr;
107       pNew->flags |= EP_Collate|EP_Skip;
108       pExpr = pNew;
109     }
110   }
111   return pExpr;
112 }
sqlite3ExprAddCollateString(const Parse * pParse,Expr * pExpr,const char * zC)113 Expr *sqlite3ExprAddCollateString(
114   const Parse *pParse,  /* Parsing context */
115   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
116   const char *zC        /* The collating sequence name */
117 ){
118   Token s;
119   assert( zC!=0 );
120   sqlite3TokenInit(&s, (char*)zC);
121   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
122 }
123 
124 /*
125 ** Skip over any TK_COLLATE operators.
126 */
sqlite3ExprSkipCollate(Expr * pExpr)127 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
128   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
129     assert( pExpr->op==TK_COLLATE );
130     pExpr = pExpr->pLeft;
131   }
132   return pExpr;
133 }
134 
135 /*
136 ** Skip over any TK_COLLATE operators and/or any unlikely()
137 ** or likelihood() or likely() functions at the root of an
138 ** expression.
139 */
sqlite3ExprSkipCollateAndLikely(Expr * pExpr)140 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
141   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
142     if( ExprHasProperty(pExpr, EP_Unlikely) ){
143       assert( ExprUseXList(pExpr) );
144       assert( pExpr->x.pList->nExpr>0 );
145       assert( pExpr->op==TK_FUNCTION );
146       pExpr = pExpr->x.pList->a[0].pExpr;
147     }else{
148       assert( pExpr->op==TK_COLLATE );
149       pExpr = pExpr->pLeft;
150     }
151   }
152   return pExpr;
153 }
154 
155 /*
156 ** Return the collation sequence for the expression pExpr. If
157 ** there is no defined collating sequence, return NULL.
158 **
159 ** See also: sqlite3ExprNNCollSeq()
160 **
161 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
162 ** default collation if pExpr has no defined collation.
163 **
164 ** The collating sequence might be determined by a COLLATE operator
165 ** or by the presence of a column with a defined collating sequence.
166 ** COLLATE operators take first precedence.  Left operands take
167 ** precedence over right operands.
168 */
sqlite3ExprCollSeq(Parse * pParse,const Expr * pExpr)169 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
170   sqlite3 *db = pParse->db;
171   CollSeq *pColl = 0;
172   const Expr *p = pExpr;
173   while( p ){
174     int op = p->op;
175     if( op==TK_REGISTER ) op = p->op2;
176     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
177       int j;
178       assert( ExprUseYTab(p) );
179       assert( p->y.pTab!=0 );
180       if( (j = p->iColumn)>=0 ){
181         const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
182         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
183       }
184       break;
185     }
186     if( op==TK_CAST || op==TK_UPLUS ){
187       p = p->pLeft;
188       continue;
189     }
190     if( op==TK_VECTOR ){
191       assert( ExprUseXList(p) );
192       p = p->x.pList->a[0].pExpr;
193       continue;
194     }
195     if( op==TK_COLLATE ){
196       assert( !ExprHasProperty(p, EP_IntValue) );
197       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
198       break;
199     }
200     if( p->flags & EP_Collate ){
201       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
202         p = p->pLeft;
203       }else{
204         Expr *pNext  = p->pRight;
205         /* The Expr.x union is never used at the same time as Expr.pRight */
206         assert( ExprUseXList(p) );
207         assert( p->x.pList==0 || p->pRight==0 );
208         if( p->x.pList!=0 && !db->mallocFailed ){
209           int i;
210           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
211             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
212               pNext = p->x.pList->a[i].pExpr;
213               break;
214             }
215           }
216         }
217         p = pNext;
218       }
219     }else{
220       break;
221     }
222   }
223   if( sqlite3CheckCollSeq(pParse, pColl) ){
224     pColl = 0;
225   }
226   return pColl;
227 }
228 
229 /*
230 ** Return the collation sequence for the expression pExpr. If
231 ** there is no defined collating sequence, return a pointer to the
232 ** defautl collation sequence.
233 **
234 ** See also: sqlite3ExprCollSeq()
235 **
236 ** The sqlite3ExprCollSeq() routine works the same except that it
237 ** returns NULL if there is no defined collation.
238 */
sqlite3ExprNNCollSeq(Parse * pParse,const Expr * pExpr)239 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
240   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
241   if( p==0 ) p = pParse->db->pDfltColl;
242   assert( p!=0 );
243   return p;
244 }
245 
246 /*
247 ** Return TRUE if the two expressions have equivalent collating sequences.
248 */
sqlite3ExprCollSeqMatch(Parse * pParse,const Expr * pE1,const Expr * pE2)249 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
250   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
251   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
252   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
253 }
254 
255 /*
256 ** pExpr is an operand of a comparison operator.  aff2 is the
257 ** type affinity of the other operand.  This routine returns the
258 ** type affinity that should be used for the comparison operator.
259 */
sqlite3CompareAffinity(const Expr * pExpr,char aff2)260 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
261   char aff1 = sqlite3ExprAffinity(pExpr);
262   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
263     /* Both sides of the comparison are columns. If one has numeric
264     ** affinity, use that. Otherwise use no affinity.
265     */
266     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
267       return SQLITE_AFF_NUMERIC;
268     }else{
269       return SQLITE_AFF_BLOB;
270     }
271   }else{
272     /* One side is a column, the other is not. Use the columns affinity. */
273     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
274     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
275   }
276 }
277 
278 /*
279 ** pExpr is a comparison operator.  Return the type affinity that should
280 ** be applied to both operands prior to doing the comparison.
281 */
comparisonAffinity(const Expr * pExpr)282 static char comparisonAffinity(const Expr *pExpr){
283   char aff;
284   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
285           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
286           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
287   assert( pExpr->pLeft );
288   aff = sqlite3ExprAffinity(pExpr->pLeft);
289   if( pExpr->pRight ){
290     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
291   }else if( ExprUseXSelect(pExpr) ){
292     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
293   }else if( aff==0 ){
294     aff = SQLITE_AFF_BLOB;
295   }
296   return aff;
297 }
298 
299 /*
300 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
301 ** idx_affinity is the affinity of an indexed column. Return true
302 ** if the index with affinity idx_affinity may be used to implement
303 ** the comparison in pExpr.
304 */
sqlite3IndexAffinityOk(const Expr * pExpr,char idx_affinity)305 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
306   char aff = comparisonAffinity(pExpr);
307   if( aff<SQLITE_AFF_TEXT ){
308     return 1;
309   }
310   if( aff==SQLITE_AFF_TEXT ){
311     return idx_affinity==SQLITE_AFF_TEXT;
312   }
313   return sqlite3IsNumericAffinity(idx_affinity);
314 }
315 
316 /*
317 ** Return the P5 value that should be used for a binary comparison
318 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
319 */
binaryCompareP5(const Expr * pExpr1,const Expr * pExpr2,int jumpIfNull)320 static u8 binaryCompareP5(
321   const Expr *pExpr1,   /* Left operand */
322   const Expr *pExpr2,   /* Right operand */
323   int jumpIfNull        /* Extra flags added to P5 */
324 ){
325   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
326   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
327   return aff;
328 }
329 
330 /*
331 ** Return a pointer to the collation sequence that should be used by
332 ** a binary comparison operator comparing pLeft and pRight.
333 **
334 ** If the left hand expression has a collating sequence type, then it is
335 ** used. Otherwise the collation sequence for the right hand expression
336 ** is used, or the default (BINARY) if neither expression has a collating
337 ** type.
338 **
339 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
340 ** it is not considered.
341 */
sqlite3BinaryCompareCollSeq(Parse * pParse,const Expr * pLeft,const Expr * pRight)342 CollSeq *sqlite3BinaryCompareCollSeq(
343   Parse *pParse,
344   const Expr *pLeft,
345   const Expr *pRight
346 ){
347   CollSeq *pColl;
348   assert( pLeft );
349   if( pLeft->flags & EP_Collate ){
350     pColl = sqlite3ExprCollSeq(pParse, pLeft);
351   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
352     pColl = sqlite3ExprCollSeq(pParse, pRight);
353   }else{
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355     if( !pColl ){
356       pColl = sqlite3ExprCollSeq(pParse, pRight);
357     }
358   }
359   return pColl;
360 }
361 
362 /* Expresssion p is a comparison operator.  Return a collation sequence
363 ** appropriate for the comparison operator.
364 **
365 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
366 ** However, if the OP_Commuted flag is set, then the order of the operands
367 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
368 ** correct collating sequence is found.
369 */
sqlite3ExprCompareCollSeq(Parse * pParse,const Expr * p)370 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
371   if( ExprHasProperty(p, EP_Commuted) ){
372     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
373   }else{
374     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
375   }
376 }
377 
378 /*
379 ** Generate code for a comparison operator.
380 */
codeCompare(Parse * pParse,Expr * pLeft,Expr * pRight,int opcode,int in1,int in2,int dest,int jumpIfNull,int isCommuted)381 static int codeCompare(
382   Parse *pParse,    /* The parsing (and code generating) context */
383   Expr *pLeft,      /* The left operand */
384   Expr *pRight,     /* The right operand */
385   int opcode,       /* The comparison opcode */
386   int in1, int in2, /* Register holding operands */
387   int dest,         /* Jump here if true.  */
388   int jumpIfNull,   /* If true, jump if either operand is NULL */
389   int isCommuted    /* The comparison has been commuted */
390 ){
391   int p5;
392   int addr;
393   CollSeq *p4;
394 
395   if( pParse->nErr ) return 0;
396   if( isCommuted ){
397     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
398   }else{
399     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
400   }
401   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
402   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
403                            (void*)p4, P4_COLLSEQ);
404   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
405   return addr;
406 }
407 
408 /*
409 ** Return true if expression pExpr is a vector, or false otherwise.
410 **
411 ** A vector is defined as any expression that results in two or more
412 ** columns of result.  Every TK_VECTOR node is an vector because the
413 ** parser will not generate a TK_VECTOR with fewer than two entries.
414 ** But a TK_SELECT might be either a vector or a scalar. It is only
415 ** considered a vector if it has two or more result columns.
416 */
sqlite3ExprIsVector(const Expr * pExpr)417 int sqlite3ExprIsVector(const Expr *pExpr){
418   return sqlite3ExprVectorSize(pExpr)>1;
419 }
420 
421 /*
422 ** If the expression passed as the only argument is of type TK_VECTOR
423 ** return the number of expressions in the vector. Or, if the expression
424 ** is a sub-select, return the number of columns in the sub-select. For
425 ** any other type of expression, return 1.
426 */
sqlite3ExprVectorSize(const Expr * pExpr)427 int sqlite3ExprVectorSize(const Expr *pExpr){
428   u8 op = pExpr->op;
429   if( op==TK_REGISTER ) op = pExpr->op2;
430   if( op==TK_VECTOR ){
431     assert( ExprUseXList(pExpr) );
432     return pExpr->x.pList->nExpr;
433   }else if( op==TK_SELECT ){
434     assert( ExprUseXSelect(pExpr) );
435     return pExpr->x.pSelect->pEList->nExpr;
436   }else{
437     return 1;
438   }
439 }
440 
441 /*
442 ** Return a pointer to a subexpression of pVector that is the i-th
443 ** column of the vector (numbered starting with 0).  The caller must
444 ** ensure that i is within range.
445 **
446 ** If pVector is really a scalar (and "scalar" here includes subqueries
447 ** that return a single column!) then return pVector unmodified.
448 **
449 ** pVector retains ownership of the returned subexpression.
450 **
451 ** If the vector is a (SELECT ...) then the expression returned is
452 ** just the expression for the i-th term of the result set, and may
453 ** not be ready for evaluation because the table cursor has not yet
454 ** been positioned.
455 */
sqlite3VectorFieldSubexpr(Expr * pVector,int i)456 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
457   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
458   if( sqlite3ExprIsVector(pVector) ){
459     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
460     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
461       assert( ExprUseXSelect(pVector) );
462       return pVector->x.pSelect->pEList->a[i].pExpr;
463     }else{
464       assert( ExprUseXList(pVector) );
465       return pVector->x.pList->a[i].pExpr;
466     }
467   }
468   return pVector;
469 }
470 
471 /*
472 ** Compute and return a new Expr object which when passed to
473 ** sqlite3ExprCode() will generate all necessary code to compute
474 ** the iField-th column of the vector expression pVector.
475 **
476 ** It is ok for pVector to be a scalar (as long as iField==0).
477 ** In that case, this routine works like sqlite3ExprDup().
478 **
479 ** The caller owns the returned Expr object and is responsible for
480 ** ensuring that the returned value eventually gets freed.
481 **
482 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
483 ** then the returned object will reference pVector and so pVector must remain
484 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
485 ** or a scalar expression, then it can be deleted as soon as this routine
486 ** returns.
487 **
488 ** A trick to cause a TK_SELECT pVector to be deleted together with
489 ** the returned Expr object is to attach the pVector to the pRight field
490 ** of the returned TK_SELECT_COLUMN Expr object.
491 */
sqlite3ExprForVectorField(Parse * pParse,Expr * pVector,int iField,int nField)492 Expr *sqlite3ExprForVectorField(
493   Parse *pParse,       /* Parsing context */
494   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
495   int iField,          /* Which column of the vector to return */
496   int nField           /* Total number of columns in the vector */
497 ){
498   Expr *pRet;
499   if( pVector->op==TK_SELECT ){
500     assert( ExprUseXSelect(pVector) );
501     /* The TK_SELECT_COLUMN Expr node:
502     **
503     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
504     ** pRight:          not used.  But recursively deleted.
505     ** iColumn:         Index of a column in pVector
506     ** iTable:          0 or the number of columns on the LHS of an assignment
507     ** pLeft->iTable:   First in an array of register holding result, or 0
508     **                  if the result is not yet computed.
509     **
510     ** sqlite3ExprDelete() specifically skips the recursive delete of
511     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
512     ** can be attached to pRight to cause this node to take ownership of
513     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
514     ** with the same pLeft pointer to the pVector, but only one of them
515     ** will own the pVector.
516     */
517     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
518     if( pRet ){
519       pRet->iTable = nField;
520       pRet->iColumn = iField;
521       pRet->pLeft = pVector;
522     }
523   }else{
524     if( pVector->op==TK_VECTOR ){
525       Expr **ppVector;
526       assert( ExprUseXList(pVector) );
527       ppVector = &pVector->x.pList->a[iField].pExpr;
528       pVector = *ppVector;
529       if( IN_RENAME_OBJECT ){
530         /* This must be a vector UPDATE inside a trigger */
531         *ppVector = 0;
532         return pVector;
533       }
534     }
535     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
536   }
537   return pRet;
538 }
539 
540 /*
541 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
542 ** it. Return the register in which the result is stored (or, if the
543 ** sub-select returns more than one column, the first in an array
544 ** of registers in which the result is stored).
545 **
546 ** If pExpr is not a TK_SELECT expression, return 0.
547 */
exprCodeSubselect(Parse * pParse,Expr * pExpr)548 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
549   int reg = 0;
550 #ifndef SQLITE_OMIT_SUBQUERY
551   if( pExpr->op==TK_SELECT ){
552     reg = sqlite3CodeSubselect(pParse, pExpr);
553   }
554 #endif
555   return reg;
556 }
557 
558 /*
559 ** Argument pVector points to a vector expression - either a TK_VECTOR
560 ** or TK_SELECT that returns more than one column. This function returns
561 ** the register number of a register that contains the value of
562 ** element iField of the vector.
563 **
564 ** If pVector is a TK_SELECT expression, then code for it must have
565 ** already been generated using the exprCodeSubselect() routine. In this
566 ** case parameter regSelect should be the first in an array of registers
567 ** containing the results of the sub-select.
568 **
569 ** If pVector is of type TK_VECTOR, then code for the requested field
570 ** is generated. In this case (*pRegFree) may be set to the number of
571 ** a temporary register to be freed by the caller before returning.
572 **
573 ** Before returning, output parameter (*ppExpr) is set to point to the
574 ** Expr object corresponding to element iElem of the vector.
575 */
exprVectorRegister(Parse * pParse,Expr * pVector,int iField,int regSelect,Expr ** ppExpr,int * pRegFree)576 static int exprVectorRegister(
577   Parse *pParse,                  /* Parse context */
578   Expr *pVector,                  /* Vector to extract element from */
579   int iField,                     /* Field to extract from pVector */
580   int regSelect,                  /* First in array of registers */
581   Expr **ppExpr,                  /* OUT: Expression element */
582   int *pRegFree                   /* OUT: Temp register to free */
583 ){
584   u8 op = pVector->op;
585   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
586   if( op==TK_REGISTER ){
587     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
588     return pVector->iTable+iField;
589   }
590   if( op==TK_SELECT ){
591     assert( ExprUseXSelect(pVector) );
592     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
593      return regSelect+iField;
594   }
595   if( op==TK_VECTOR ){
596     assert( ExprUseXList(pVector) );
597     *ppExpr = pVector->x.pList->a[iField].pExpr;
598     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
599   }
600   return 0;
601 }
602 
603 /*
604 ** Expression pExpr is a comparison between two vector values. Compute
605 ** the result of the comparison (1, 0, or NULL) and write that
606 ** result into register dest.
607 **
608 ** The caller must satisfy the following preconditions:
609 **
610 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
611 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
612 **    otherwise:                op==pExpr->op and p5==0
613 */
codeVectorCompare(Parse * pParse,Expr * pExpr,int dest,u8 op,u8 p5)614 static void codeVectorCompare(
615   Parse *pParse,        /* Code generator context */
616   Expr *pExpr,          /* The comparison operation */
617   int dest,             /* Write results into this register */
618   u8 op,                /* Comparison operator */
619   u8 p5                 /* SQLITE_NULLEQ or zero */
620 ){
621   Vdbe *v = pParse->pVdbe;
622   Expr *pLeft = pExpr->pLeft;
623   Expr *pRight = pExpr->pRight;
624   int nLeft = sqlite3ExprVectorSize(pLeft);
625   int i;
626   int regLeft = 0;
627   int regRight = 0;
628   u8 opx = op;
629   int addrCmp = 0;
630   int addrDone = sqlite3VdbeMakeLabel(pParse);
631   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
632 
633   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
634   if( pParse->nErr ) return;
635   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
636     sqlite3ErrorMsg(pParse, "row value misused");
637     return;
638   }
639   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
640        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
641        || pExpr->op==TK_LT || pExpr->op==TK_GT
642        || pExpr->op==TK_LE || pExpr->op==TK_GE
643   );
644   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
645             || (pExpr->op==TK_ISNOT && op==TK_NE) );
646   assert( p5==0 || pExpr->op!=op );
647   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
648 
649   if( op==TK_LE ) opx = TK_LT;
650   if( op==TK_GE ) opx = TK_GT;
651   if( op==TK_NE ) opx = TK_EQ;
652 
653   regLeft = exprCodeSubselect(pParse, pLeft);
654   regRight = exprCodeSubselect(pParse, pRight);
655 
656   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
657   for(i=0; 1 /*Loop exits by "break"*/; i++){
658     int regFree1 = 0, regFree2 = 0;
659     Expr *pL = 0, *pR = 0;
660     int r1, r2;
661     assert( i>=0 && i<nLeft );
662     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
663     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
664     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
665     addrCmp = sqlite3VdbeCurrentAddr(v);
666     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
667     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
668     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
669     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
670     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
671     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
672     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
673     sqlite3ReleaseTempReg(pParse, regFree1);
674     sqlite3ReleaseTempReg(pParse, regFree2);
675     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
676       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
677       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
678       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
679     }
680     if( p5==SQLITE_NULLEQ ){
681       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
682     }else{
683       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
684     }
685     if( i==nLeft-1 ){
686       break;
687     }
688     if( opx==TK_EQ ){
689       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
690     }else{
691       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
692       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
693       if( i==nLeft-2 ) opx = op;
694     }
695   }
696   sqlite3VdbeJumpHere(v, addrCmp);
697   sqlite3VdbeResolveLabel(v, addrDone);
698   if( op==TK_NE ){
699     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
700   }
701 }
702 
703 #if SQLITE_MAX_EXPR_DEPTH>0
704 /*
705 ** Check that argument nHeight is less than or equal to the maximum
706 ** expression depth allowed. If it is not, leave an error message in
707 ** pParse.
708 */
sqlite3ExprCheckHeight(Parse * pParse,int nHeight)709 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
710   int rc = SQLITE_OK;
711   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
712   if( nHeight>mxHeight ){
713     sqlite3ErrorMsg(pParse,
714        "Expression tree is too large (maximum depth %d)", mxHeight
715     );
716     rc = SQLITE_ERROR;
717   }
718   return rc;
719 }
720 
721 /* The following three functions, heightOfExpr(), heightOfExprList()
722 ** and heightOfSelect(), are used to determine the maximum height
723 ** of any expression tree referenced by the structure passed as the
724 ** first argument.
725 **
726 ** If this maximum height is greater than the current value pointed
727 ** to by pnHeight, the second parameter, then set *pnHeight to that
728 ** value.
729 */
heightOfExpr(const Expr * p,int * pnHeight)730 static void heightOfExpr(const Expr *p, int *pnHeight){
731   if( p ){
732     if( p->nHeight>*pnHeight ){
733       *pnHeight = p->nHeight;
734     }
735   }
736 }
heightOfExprList(const ExprList * p,int * pnHeight)737 static void heightOfExprList(const ExprList *p, int *pnHeight){
738   if( p ){
739     int i;
740     for(i=0; i<p->nExpr; i++){
741       heightOfExpr(p->a[i].pExpr, pnHeight);
742     }
743   }
744 }
heightOfSelect(const Select * pSelect,int * pnHeight)745 static void heightOfSelect(const Select *pSelect, int *pnHeight){
746   const Select *p;
747   for(p=pSelect; p; p=p->pPrior){
748     heightOfExpr(p->pWhere, pnHeight);
749     heightOfExpr(p->pHaving, pnHeight);
750     heightOfExpr(p->pLimit, pnHeight);
751     heightOfExprList(p->pEList, pnHeight);
752     heightOfExprList(p->pGroupBy, pnHeight);
753     heightOfExprList(p->pOrderBy, pnHeight);
754   }
755 }
756 
757 /*
758 ** Set the Expr.nHeight variable in the structure passed as an
759 ** argument. An expression with no children, Expr.pList or
760 ** Expr.pSelect member has a height of 1. Any other expression
761 ** has a height equal to the maximum height of any other
762 ** referenced Expr plus one.
763 **
764 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
765 ** if appropriate.
766 */
exprSetHeight(Expr * p)767 static void exprSetHeight(Expr *p){
768   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
769   if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
770     nHeight = p->pRight->nHeight;
771   }
772   if( ExprUseXSelect(p) ){
773     heightOfSelect(p->x.pSelect, &nHeight);
774   }else if( p->x.pList ){
775     heightOfExprList(p->x.pList, &nHeight);
776     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
777   }
778   p->nHeight = nHeight + 1;
779 }
780 
781 /*
782 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
783 ** the height is greater than the maximum allowed expression depth,
784 ** leave an error in pParse.
785 **
786 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
787 ** Expr.flags.
788 */
sqlite3ExprSetHeightAndFlags(Parse * pParse,Expr * p)789 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
790   if( pParse->nErr ) return;
791   exprSetHeight(p);
792   sqlite3ExprCheckHeight(pParse, p->nHeight);
793 }
794 
795 /*
796 ** Return the maximum height of any expression tree referenced
797 ** by the select statement passed as an argument.
798 */
sqlite3SelectExprHeight(const Select * p)799 int sqlite3SelectExprHeight(const Select *p){
800   int nHeight = 0;
801   heightOfSelect(p, &nHeight);
802   return nHeight;
803 }
804 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
805 /*
806 ** Propagate all EP_Propagate flags from the Expr.x.pList into
807 ** Expr.flags.
808 */
sqlite3ExprSetHeightAndFlags(Parse * pParse,Expr * p)809 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
810   if( pParse->nErr ) return;
811   if( p && ExprUseXList(p) && p->x.pList ){
812     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
813   }
814 }
815 #define exprSetHeight(y)
816 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
817 
818 /*
819 ** This routine is the core allocator for Expr nodes.
820 **
821 ** Construct a new expression node and return a pointer to it.  Memory
822 ** for this node and for the pToken argument is a single allocation
823 ** obtained from sqlite3DbMalloc().  The calling function
824 ** is responsible for making sure the node eventually gets freed.
825 **
826 ** If dequote is true, then the token (if it exists) is dequoted.
827 ** If dequote is false, no dequoting is performed.  The deQuote
828 ** parameter is ignored if pToken is NULL or if the token does not
829 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
830 ** then the EP_DblQuoted flag is set on the expression node.
831 **
832 ** Special case:  If op==TK_INTEGER and pToken points to a string that
833 ** can be translated into a 32-bit integer, then the token is not
834 ** stored in u.zToken.  Instead, the integer values is written
835 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
836 ** is allocated to hold the integer text and the dequote flag is ignored.
837 */
sqlite3ExprAlloc(sqlite3 * db,int op,const Token * pToken,int dequote)838 Expr *sqlite3ExprAlloc(
839   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
840   int op,                 /* Expression opcode */
841   const Token *pToken,    /* Token argument.  Might be NULL */
842   int dequote             /* True to dequote */
843 ){
844   Expr *pNew;
845   int nExtra = 0;
846   int iValue = 0;
847 
848   assert( db!=0 );
849   if( pToken ){
850     if( op!=TK_INTEGER || pToken->z==0
851           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
852       nExtra = pToken->n+1;
853       assert( iValue>=0 );
854     }
855   }
856   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
857   if( pNew ){
858     memset(pNew, 0, sizeof(Expr));
859     pNew->op = (u8)op;
860     pNew->iAgg = -1;
861     if( pToken ){
862       if( nExtra==0 ){
863         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
864         pNew->u.iValue = iValue;
865       }else{
866         pNew->u.zToken = (char*)&pNew[1];
867         assert( pToken->z!=0 || pToken->n==0 );
868         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
869         pNew->u.zToken[pToken->n] = 0;
870         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
871           sqlite3DequoteExpr(pNew);
872         }
873       }
874     }
875 #if SQLITE_MAX_EXPR_DEPTH>0
876     pNew->nHeight = 1;
877 #endif
878   }
879   return pNew;
880 }
881 
882 /*
883 ** Allocate a new expression node from a zero-terminated token that has
884 ** already been dequoted.
885 */
sqlite3Expr(sqlite3 * db,int op,const char * zToken)886 Expr *sqlite3Expr(
887   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
888   int op,                 /* Expression opcode */
889   const char *zToken      /* Token argument.  Might be NULL */
890 ){
891   Token x;
892   x.z = zToken;
893   x.n = sqlite3Strlen30(zToken);
894   return sqlite3ExprAlloc(db, op, &x, 0);
895 }
896 
897 /*
898 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
899 **
900 ** If pRoot==NULL that means that a memory allocation error has occurred.
901 ** In that case, delete the subtrees pLeft and pRight.
902 */
sqlite3ExprAttachSubtrees(sqlite3 * db,Expr * pRoot,Expr * pLeft,Expr * pRight)903 void sqlite3ExprAttachSubtrees(
904   sqlite3 *db,
905   Expr *pRoot,
906   Expr *pLeft,
907   Expr *pRight
908 ){
909   if( pRoot==0 ){
910     assert( db->mallocFailed );
911     sqlite3ExprDelete(db, pLeft);
912     sqlite3ExprDelete(db, pRight);
913   }else{
914     assert( ExprUseXList(pRoot) );
915     assert( pRoot->x.pSelect==0 );
916     if( pRight ){
917       pRoot->pRight = pRight;
918       pRoot->flags |= EP_Propagate & pRight->flags;
919 #if SQLITE_MAX_EXPR_DEPTH>0
920       pRoot->nHeight = pRight->nHeight+1;
921     }else{
922       pRoot->nHeight = 1;
923 #endif
924     }
925     if( pLeft ){
926       pRoot->pLeft = pLeft;
927       pRoot->flags |= EP_Propagate & pLeft->flags;
928 #if SQLITE_MAX_EXPR_DEPTH>0
929       if( pLeft->nHeight>=pRoot->nHeight ){
930         pRoot->nHeight = pLeft->nHeight+1;
931       }
932 #endif
933     }
934   }
935 }
936 
937 /*
938 ** Allocate an Expr node which joins as many as two subtrees.
939 **
940 ** One or both of the subtrees can be NULL.  Return a pointer to the new
941 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
942 ** free the subtrees and return NULL.
943 */
sqlite3PExpr(Parse * pParse,int op,Expr * pLeft,Expr * pRight)944 Expr *sqlite3PExpr(
945   Parse *pParse,          /* Parsing context */
946   int op,                 /* Expression opcode */
947   Expr *pLeft,            /* Left operand */
948   Expr *pRight            /* Right operand */
949 ){
950   Expr *p;
951   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
952   if( p ){
953     memset(p, 0, sizeof(Expr));
954     p->op = op & 0xff;
955     p->iAgg = -1;
956     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
957     sqlite3ExprCheckHeight(pParse, p->nHeight);
958   }else{
959     sqlite3ExprDelete(pParse->db, pLeft);
960     sqlite3ExprDelete(pParse->db, pRight);
961   }
962   return p;
963 }
964 
965 /*
966 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
967 ** do a memory allocation failure) then delete the pSelect object.
968 */
sqlite3PExprAddSelect(Parse * pParse,Expr * pExpr,Select * pSelect)969 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
970   if( pExpr ){
971     pExpr->x.pSelect = pSelect;
972     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
973     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
974   }else{
975     assert( pParse->db->mallocFailed );
976     sqlite3SelectDelete(pParse->db, pSelect);
977   }
978 }
979 
980 /*
981 ** Expression list pEList is a list of vector values. This function
982 ** converts the contents of pEList to a VALUES(...) Select statement
983 ** returning 1 row for each element of the list. For example, the
984 ** expression list:
985 **
986 **   ( (1,2), (3,4) (5,6) )
987 **
988 ** is translated to the equivalent of:
989 **
990 **   VALUES(1,2), (3,4), (5,6)
991 **
992 ** Each of the vector values in pEList must contain exactly nElem terms.
993 ** If a list element that is not a vector or does not contain nElem terms,
994 ** an error message is left in pParse.
995 **
996 ** This is used as part of processing IN(...) expressions with a list
997 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
998 */
sqlite3ExprListToValues(Parse * pParse,int nElem,ExprList * pEList)999 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1000   int ii;
1001   Select *pRet = 0;
1002   assert( nElem>1 );
1003   for(ii=0; ii<pEList->nExpr; ii++){
1004     Select *pSel;
1005     Expr *pExpr = pEList->a[ii].pExpr;
1006     int nExprElem;
1007     if( pExpr->op==TK_VECTOR ){
1008       assert( ExprUseXList(pExpr) );
1009       nExprElem = pExpr->x.pList->nExpr;
1010     }else{
1011       nExprElem = 1;
1012     }
1013     if( nExprElem!=nElem ){
1014       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1015           nExprElem, nExprElem>1?"s":"", nElem
1016       );
1017       break;
1018     }
1019     assert( ExprUseXList(pExpr) );
1020     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1021     pExpr->x.pList = 0;
1022     if( pSel ){
1023       if( pRet ){
1024         pSel->op = TK_ALL;
1025         pSel->pPrior = pRet;
1026       }
1027       pRet = pSel;
1028     }
1029   }
1030 
1031   if( pRet && pRet->pPrior ){
1032     pRet->selFlags |= SF_MultiValue;
1033   }
1034   sqlite3ExprListDelete(pParse->db, pEList);
1035   return pRet;
1036 }
1037 
1038 /*
1039 ** Join two expressions using an AND operator.  If either expression is
1040 ** NULL, then just return the other expression.
1041 **
1042 ** If one side or the other of the AND is known to be false, then instead
1043 ** of returning an AND expression, just return a constant expression with
1044 ** a value of false.
1045 */
sqlite3ExprAnd(Parse * pParse,Expr * pLeft,Expr * pRight)1046 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1047   sqlite3 *db = pParse->db;
1048   if( pLeft==0  ){
1049     return pRight;
1050   }else if( pRight==0 ){
1051     return pLeft;
1052   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1053          && !IN_RENAME_OBJECT
1054   ){
1055     sqlite3ExprDeferredDelete(pParse, pLeft);
1056     sqlite3ExprDeferredDelete(pParse, pRight);
1057     return sqlite3Expr(db, TK_INTEGER, "0");
1058   }else{
1059     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1060   }
1061 }
1062 
1063 /*
1064 ** Construct a new expression node for a function with multiple
1065 ** arguments.
1066 */
sqlite3ExprFunction(Parse * pParse,ExprList * pList,const Token * pToken,int eDistinct)1067 Expr *sqlite3ExprFunction(
1068   Parse *pParse,        /* Parsing context */
1069   ExprList *pList,      /* Argument list */
1070   const Token *pToken,  /* Name of the function */
1071   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1072 ){
1073   Expr *pNew;
1074   sqlite3 *db = pParse->db;
1075   assert( pToken );
1076   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1077   if( pNew==0 ){
1078     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1079     return 0;
1080   }
1081   assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1082   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1083   if( pList
1084    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1085    && !pParse->nested
1086   ){
1087     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1088   }
1089   pNew->x.pList = pList;
1090   ExprSetProperty(pNew, EP_HasFunc);
1091   assert( ExprUseXList(pNew) );
1092   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1093   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1094   return pNew;
1095 }
1096 
1097 /*
1098 ** Check to see if a function is usable according to current access
1099 ** rules:
1100 **
1101 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1102 **
1103 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1104 **                                top-level SQL
1105 **
1106 ** If the function is not usable, create an error.
1107 */
sqlite3ExprFunctionUsable(Parse * pParse,const Expr * pExpr,const FuncDef * pDef)1108 void sqlite3ExprFunctionUsable(
1109   Parse *pParse,         /* Parsing and code generating context */
1110   const Expr *pExpr,     /* The function invocation */
1111   const FuncDef *pDef    /* The function being invoked */
1112 ){
1113   assert( !IN_RENAME_OBJECT );
1114   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1115   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1116     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1117      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1118     ){
1119       /* Functions prohibited in triggers and views if:
1120       **     (1) tagged with SQLITE_DIRECTONLY
1121       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1122       **         is tagged with SQLITE_FUNC_UNSAFE) and
1123       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1124       **         that the schema is possibly tainted).
1125       */
1126       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1127     }
1128   }
1129 }
1130 
1131 /*
1132 ** Assign a variable number to an expression that encodes a wildcard
1133 ** in the original SQL statement.
1134 **
1135 ** Wildcards consisting of a single "?" are assigned the next sequential
1136 ** variable number.
1137 **
1138 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1139 ** sure "nnn" is not too big to avoid a denial of service attack when
1140 ** the SQL statement comes from an external source.
1141 **
1142 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1143 ** as the previous instance of the same wildcard.  Or if this is the first
1144 ** instance of the wildcard, the next sequential variable number is
1145 ** assigned.
1146 */
sqlite3ExprAssignVarNumber(Parse * pParse,Expr * pExpr,u32 n)1147 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1148   sqlite3 *db = pParse->db;
1149   const char *z;
1150   ynVar x;
1151 
1152   if( pExpr==0 ) return;
1153   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1154   z = pExpr->u.zToken;
1155   assert( z!=0 );
1156   assert( z[0]!=0 );
1157   assert( n==(u32)sqlite3Strlen30(z) );
1158   if( z[1]==0 ){
1159     /* Wildcard of the form "?".  Assign the next variable number */
1160     assert( z[0]=='?' );
1161     x = (ynVar)(++pParse->nVar);
1162   }else{
1163     int doAdd = 0;
1164     if( z[0]=='?' ){
1165       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1166       ** use it as the variable number */
1167       i64 i;
1168       int bOk;
1169       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1170         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1171         bOk = 1;
1172       }else{
1173         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1174       }
1175       testcase( i==0 );
1176       testcase( i==1 );
1177       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1178       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1179       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1180         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1181             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1182         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1183         return;
1184       }
1185       x = (ynVar)i;
1186       if( x>pParse->nVar ){
1187         pParse->nVar = (int)x;
1188         doAdd = 1;
1189       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1190         doAdd = 1;
1191       }
1192     }else{
1193       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1194       ** number as the prior appearance of the same name, or if the name
1195       ** has never appeared before, reuse the same variable number
1196       */
1197       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1198       if( x==0 ){
1199         x = (ynVar)(++pParse->nVar);
1200         doAdd = 1;
1201       }
1202     }
1203     if( doAdd ){
1204       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1205     }
1206   }
1207   pExpr->iColumn = x;
1208   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1209     sqlite3ErrorMsg(pParse, "too many SQL variables");
1210     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1211   }
1212 }
1213 
1214 /*
1215 ** Recursively delete an expression tree.
1216 */
sqlite3ExprDeleteNN(sqlite3 * db,Expr * p)1217 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1218   assert( p!=0 );
1219   assert( db!=0 );
1220   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1221   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1222   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1223   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1224 #ifdef SQLITE_DEBUG
1225   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1226     assert( p->pLeft==0 );
1227     assert( p->pRight==0 );
1228     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1229     assert( !ExprUseXList(p) || p->x.pList==0 );
1230   }
1231 #endif
1232   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1233     /* The Expr.x union is never used at the same time as Expr.pRight */
1234     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1235     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1236     if( p->pRight ){
1237       assert( !ExprHasProperty(p, EP_WinFunc) );
1238       sqlite3ExprDeleteNN(db, p->pRight);
1239     }else if( ExprUseXSelect(p) ){
1240       assert( !ExprHasProperty(p, EP_WinFunc) );
1241       sqlite3SelectDelete(db, p->x.pSelect);
1242     }else{
1243       sqlite3ExprListDelete(db, p->x.pList);
1244 #ifndef SQLITE_OMIT_WINDOWFUNC
1245       if( ExprHasProperty(p, EP_WinFunc) ){
1246         sqlite3WindowDelete(db, p->y.pWin);
1247       }
1248 #endif
1249     }
1250   }
1251   if( !ExprHasProperty(p, EP_Static) ){
1252     sqlite3DbNNFreeNN(db, p);
1253   }
1254 }
sqlite3ExprDelete(sqlite3 * db,Expr * p)1255 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1256   if( p ) sqlite3ExprDeleteNN(db, p);
1257 }
1258 
1259 /*
1260 ** Clear both elements of an OnOrUsing object
1261 */
sqlite3ClearOnOrUsing(sqlite3 * db,OnOrUsing * p)1262 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1263   if( p==0 ){
1264     /* Nothing to clear */
1265   }else if( p->pOn ){
1266     sqlite3ExprDeleteNN(db, p->pOn);
1267   }else if( p->pUsing ){
1268     sqlite3IdListDelete(db, p->pUsing);
1269   }
1270 }
1271 
1272 /*
1273 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1274 ** This is similar to sqlite3ExprDelete() except that the delete is
1275 ** deferred untilthe pParse is deleted.
1276 **
1277 ** The pExpr might be deleted immediately on an OOM error.
1278 **
1279 ** The deferred delete is (currently) implemented by adding the
1280 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1281 */
sqlite3ExprDeferredDelete(Parse * pParse,Expr * pExpr)1282 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1283   sqlite3ParserAddCleanup(pParse,
1284     (void(*)(sqlite3*,void*))sqlite3ExprDelete,
1285     pExpr);
1286 }
1287 
1288 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1289 ** expression.
1290 */
sqlite3ExprUnmapAndDelete(Parse * pParse,Expr * p)1291 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1292   if( p ){
1293     if( IN_RENAME_OBJECT ){
1294       sqlite3RenameExprUnmap(pParse, p);
1295     }
1296     sqlite3ExprDeleteNN(pParse->db, p);
1297   }
1298 }
1299 
1300 /*
1301 ** Return the number of bytes allocated for the expression structure
1302 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1303 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1304 */
exprStructSize(const Expr * p)1305 static int exprStructSize(const Expr *p){
1306   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1307   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1308   return EXPR_FULLSIZE;
1309 }
1310 
1311 /*
1312 ** The dupedExpr*Size() routines each return the number of bytes required
1313 ** to store a copy of an expression or expression tree.  They differ in
1314 ** how much of the tree is measured.
1315 **
1316 **     dupedExprStructSize()     Size of only the Expr structure
1317 **     dupedExprNodeSize()       Size of Expr + space for token
1318 **     dupedExprSize()           Expr + token + subtree components
1319 **
1320 ***************************************************************************
1321 **
1322 ** The dupedExprStructSize() function returns two values OR-ed together:
1323 ** (1) the space required for a copy of the Expr structure only and
1324 ** (2) the EP_xxx flags that indicate what the structure size should be.
1325 ** The return values is always one of:
1326 **
1327 **      EXPR_FULLSIZE
1328 **      EXPR_REDUCEDSIZE   | EP_Reduced
1329 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1330 **
1331 ** The size of the structure can be found by masking the return value
1332 ** of this routine with 0xfff.  The flags can be found by masking the
1333 ** return value with EP_Reduced|EP_TokenOnly.
1334 **
1335 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1336 ** (unreduced) Expr objects as they or originally constructed by the parser.
1337 ** During expression analysis, extra information is computed and moved into
1338 ** later parts of the Expr object and that extra information might get chopped
1339 ** off if the expression is reduced.  Note also that it does not work to
1340 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1341 ** to reduce a pristine expression tree from the parser.  The implementation
1342 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1343 ** to enforce this constraint.
1344 */
dupedExprStructSize(const Expr * p,int flags)1345 static int dupedExprStructSize(const Expr *p, int flags){
1346   int nSize;
1347   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1348   assert( EXPR_FULLSIZE<=0xfff );
1349   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1350   if( 0==flags || p->op==TK_SELECT_COLUMN
1351 #ifndef SQLITE_OMIT_WINDOWFUNC
1352    || ExprHasProperty(p, EP_WinFunc)
1353 #endif
1354   ){
1355     nSize = EXPR_FULLSIZE;
1356   }else{
1357     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1358     assert( !ExprHasProperty(p, EP_OuterON) );
1359     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1360     if( p->pLeft || p->x.pList ){
1361       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1362     }else{
1363       assert( p->pRight==0 );
1364       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1365     }
1366   }
1367   return nSize;
1368 }
1369 
1370 /*
1371 ** This function returns the space in bytes required to store the copy
1372 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1373 ** string is defined.)
1374 */
dupedExprNodeSize(const Expr * p,int flags)1375 static int dupedExprNodeSize(const Expr *p, int flags){
1376   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1377   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1378     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1379   }
1380   return ROUND8(nByte);
1381 }
1382 
1383 /*
1384 ** Return the number of bytes required to create a duplicate of the
1385 ** expression passed as the first argument. The second argument is a
1386 ** mask containing EXPRDUP_XXX flags.
1387 **
1388 ** The value returned includes space to create a copy of the Expr struct
1389 ** itself and the buffer referred to by Expr.u.zToken, if any.
1390 **
1391 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1392 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1393 ** and Expr.pRight variables (but not for any structures pointed to or
1394 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1395 */
dupedExprSize(const Expr * p,int flags)1396 static int dupedExprSize(const Expr *p, int flags){
1397   int nByte = 0;
1398   if( p ){
1399     nByte = dupedExprNodeSize(p, flags);
1400     if( flags&EXPRDUP_REDUCE ){
1401       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1402     }
1403   }
1404   return nByte;
1405 }
1406 
1407 /*
1408 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1409 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1410 ** to store the copy of expression p, the copies of p->u.zToken
1411 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1412 ** if any. Before returning, *pzBuffer is set to the first byte past the
1413 ** portion of the buffer copied into by this function.
1414 */
exprDup(sqlite3 * db,const Expr * p,int dupFlags,u8 ** pzBuffer)1415 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1416   Expr *pNew;           /* Value to return */
1417   u8 *zAlloc;           /* Memory space from which to build Expr object */
1418   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1419 
1420   assert( db!=0 );
1421   assert( p );
1422   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1423   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1424 
1425   /* Figure out where to write the new Expr structure. */
1426   if( pzBuffer ){
1427     zAlloc = *pzBuffer;
1428     staticFlag = EP_Static;
1429     assert( zAlloc!=0 );
1430   }else{
1431     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1432     staticFlag = 0;
1433   }
1434   pNew = (Expr *)zAlloc;
1435 
1436   if( pNew ){
1437     /* Set nNewSize to the size allocated for the structure pointed to
1438     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1439     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1440     ** by the copy of the p->u.zToken string (if any).
1441     */
1442     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1443     const int nNewSize = nStructSize & 0xfff;
1444     int nToken;
1445     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1446       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1447     }else{
1448       nToken = 0;
1449     }
1450     if( dupFlags ){
1451       assert( ExprHasProperty(p, EP_Reduced)==0 );
1452       memcpy(zAlloc, p, nNewSize);
1453     }else{
1454       u32 nSize = (u32)exprStructSize(p);
1455       memcpy(zAlloc, p, nSize);
1456       if( nSize<EXPR_FULLSIZE ){
1457         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1458       }
1459     }
1460 
1461     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1462     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1463     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1464     pNew->flags |= staticFlag;
1465     ExprClearVVAProperties(pNew);
1466     if( dupFlags ){
1467       ExprSetVVAProperty(pNew, EP_Immutable);
1468     }
1469 
1470     /* Copy the p->u.zToken string, if any. */
1471     if( nToken ){
1472       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1473       memcpy(zToken, p->u.zToken, nToken);
1474     }
1475 
1476     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1477       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1478       if( ExprUseXSelect(p) ){
1479         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1480       }else{
1481         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1482       }
1483     }
1484 
1485     /* Fill in pNew->pLeft and pNew->pRight. */
1486     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1487       zAlloc += dupedExprNodeSize(p, dupFlags);
1488       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1489         pNew->pLeft = p->pLeft ?
1490                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1491         pNew->pRight = p->pRight ?
1492                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1493       }
1494 #ifndef SQLITE_OMIT_WINDOWFUNC
1495       if( ExprHasProperty(p, EP_WinFunc) ){
1496         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1497         assert( ExprHasProperty(pNew, EP_WinFunc) );
1498       }
1499 #endif /* SQLITE_OMIT_WINDOWFUNC */
1500       if( pzBuffer ){
1501         *pzBuffer = zAlloc;
1502       }
1503     }else{
1504       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1505         if( pNew->op==TK_SELECT_COLUMN ){
1506           pNew->pLeft = p->pLeft;
1507           assert( p->pRight==0  || p->pRight==p->pLeft
1508                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1509         }else{
1510           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1511         }
1512         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1513       }
1514     }
1515   }
1516   return pNew;
1517 }
1518 
1519 /*
1520 ** Create and return a deep copy of the object passed as the second
1521 ** argument. If an OOM condition is encountered, NULL is returned
1522 ** and the db->mallocFailed flag set.
1523 */
1524 #ifndef SQLITE_OMIT_CTE
sqlite3WithDup(sqlite3 * db,With * p)1525 With *sqlite3WithDup(sqlite3 *db, With *p){
1526   With *pRet = 0;
1527   if( p ){
1528     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1529     pRet = sqlite3DbMallocZero(db, nByte);
1530     if( pRet ){
1531       int i;
1532       pRet->nCte = p->nCte;
1533       for(i=0; i<p->nCte; i++){
1534         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1535         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1536         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1537         pRet->a[i].eM10d = p->a[i].eM10d;
1538       }
1539     }
1540   }
1541   return pRet;
1542 }
1543 #else
1544 # define sqlite3WithDup(x,y) 0
1545 #endif
1546 
1547 #ifndef SQLITE_OMIT_WINDOWFUNC
1548 /*
1549 ** The gatherSelectWindows() procedure and its helper routine
1550 ** gatherSelectWindowsCallback() are used to scan all the expressions
1551 ** an a newly duplicated SELECT statement and gather all of the Window
1552 ** objects found there, assembling them onto the linked list at Select->pWin.
1553 */
gatherSelectWindowsCallback(Walker * pWalker,Expr * pExpr)1554 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1555   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1556     Select *pSelect = pWalker->u.pSelect;
1557     Window *pWin = pExpr->y.pWin;
1558     assert( pWin );
1559     assert( IsWindowFunc(pExpr) );
1560     assert( pWin->ppThis==0 );
1561     sqlite3WindowLink(pSelect, pWin);
1562   }
1563   return WRC_Continue;
1564 }
gatherSelectWindowsSelectCallback(Walker * pWalker,Select * p)1565 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1566   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1567 }
gatherSelectWindows(Select * p)1568 static void gatherSelectWindows(Select *p){
1569   Walker w;
1570   w.xExprCallback = gatherSelectWindowsCallback;
1571   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1572   w.xSelectCallback2 = 0;
1573   w.pParse = 0;
1574   w.u.pSelect = p;
1575   sqlite3WalkSelect(&w, p);
1576 }
1577 #endif
1578 
1579 
1580 /*
1581 ** The following group of routines make deep copies of expressions,
1582 ** expression lists, ID lists, and select statements.  The copies can
1583 ** be deleted (by being passed to their respective ...Delete() routines)
1584 ** without effecting the originals.
1585 **
1586 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1587 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1588 ** by subsequent calls to sqlite*ListAppend() routines.
1589 **
1590 ** Any tables that the SrcList might point to are not duplicated.
1591 **
1592 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1593 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1594 ** truncated version of the usual Expr structure that will be stored as
1595 ** part of the in-memory representation of the database schema.
1596 */
sqlite3ExprDup(sqlite3 * db,const Expr * p,int flags)1597 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1598   assert( flags==0 || flags==EXPRDUP_REDUCE );
1599   return p ? exprDup(db, p, flags, 0) : 0;
1600 }
sqlite3ExprListDup(sqlite3 * db,const ExprList * p,int flags)1601 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1602   ExprList *pNew;
1603   struct ExprList_item *pItem;
1604   const struct ExprList_item *pOldItem;
1605   int i;
1606   Expr *pPriorSelectColOld = 0;
1607   Expr *pPriorSelectColNew = 0;
1608   assert( db!=0 );
1609   if( p==0 ) return 0;
1610   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1611   if( pNew==0 ) return 0;
1612   pNew->nExpr = p->nExpr;
1613   pNew->nAlloc = p->nAlloc;
1614   pItem = pNew->a;
1615   pOldItem = p->a;
1616   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1617     Expr *pOldExpr = pOldItem->pExpr;
1618     Expr *pNewExpr;
1619     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1620     if( pOldExpr
1621      && pOldExpr->op==TK_SELECT_COLUMN
1622      && (pNewExpr = pItem->pExpr)!=0
1623     ){
1624       if( pNewExpr->pRight ){
1625         pPriorSelectColOld = pOldExpr->pRight;
1626         pPriorSelectColNew = pNewExpr->pRight;
1627         pNewExpr->pLeft = pNewExpr->pRight;
1628       }else{
1629         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1630           pPriorSelectColOld = pOldExpr->pLeft;
1631           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1632           pNewExpr->pRight = pPriorSelectColNew;
1633         }
1634         pNewExpr->pLeft = pPriorSelectColNew;
1635       }
1636     }
1637     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1638     pItem->fg = pOldItem->fg;
1639     pItem->fg.done = 0;
1640     pItem->u = pOldItem->u;
1641   }
1642   return pNew;
1643 }
1644 
1645 /*
1646 ** If cursors, triggers, views and subqueries are all omitted from
1647 ** the build, then none of the following routines, except for
1648 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1649 ** called with a NULL argument.
1650 */
1651 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1652  || !defined(SQLITE_OMIT_SUBQUERY)
sqlite3SrcListDup(sqlite3 * db,const SrcList * p,int flags)1653 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1654   SrcList *pNew;
1655   int i;
1656   int nByte;
1657   assert( db!=0 );
1658   if( p==0 ) return 0;
1659   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1660   pNew = sqlite3DbMallocRawNN(db, nByte );
1661   if( pNew==0 ) return 0;
1662   pNew->nSrc = pNew->nAlloc = p->nSrc;
1663   for(i=0; i<p->nSrc; i++){
1664     SrcItem *pNewItem = &pNew->a[i];
1665     const SrcItem *pOldItem = &p->a[i];
1666     Table *pTab;
1667     pNewItem->pSchema = pOldItem->pSchema;
1668     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1669     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1670     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1671     pNewItem->fg = pOldItem->fg;
1672     pNewItem->iCursor = pOldItem->iCursor;
1673     pNewItem->addrFillSub = pOldItem->addrFillSub;
1674     pNewItem->regReturn = pOldItem->regReturn;
1675     if( pNewItem->fg.isIndexedBy ){
1676       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1677     }
1678     pNewItem->u2 = pOldItem->u2;
1679     if( pNewItem->fg.isCte ){
1680       pNewItem->u2.pCteUse->nUse++;
1681     }
1682     if( pNewItem->fg.isTabFunc ){
1683       pNewItem->u1.pFuncArg =
1684           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1685     }
1686     pTab = pNewItem->pTab = pOldItem->pTab;
1687     if( pTab ){
1688       pTab->nTabRef++;
1689     }
1690     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1691     if( pOldItem->fg.isUsing ){
1692       assert( pNewItem->fg.isUsing );
1693       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1694     }else{
1695       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1696     }
1697     pNewItem->colUsed = pOldItem->colUsed;
1698   }
1699   return pNew;
1700 }
sqlite3IdListDup(sqlite3 * db,const IdList * p)1701 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1702   IdList *pNew;
1703   int i;
1704   assert( db!=0 );
1705   if( p==0 ) return 0;
1706   assert( p->eU4!=EU4_EXPR );
1707   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1708   if( pNew==0 ) return 0;
1709   pNew->nId = p->nId;
1710   pNew->eU4 = p->eU4;
1711   for(i=0; i<p->nId; i++){
1712     struct IdList_item *pNewItem = &pNew->a[i];
1713     const struct IdList_item *pOldItem = &p->a[i];
1714     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1715     pNewItem->u4 = pOldItem->u4;
1716   }
1717   return pNew;
1718 }
sqlite3SelectDup(sqlite3 * db,const Select * pDup,int flags)1719 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1720   Select *pRet = 0;
1721   Select *pNext = 0;
1722   Select **pp = &pRet;
1723   const Select *p;
1724 
1725   assert( db!=0 );
1726   for(p=pDup; p; p=p->pPrior){
1727     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1728     if( pNew==0 ) break;
1729     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1730     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1731     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1732     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1733     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1734     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1735     pNew->op = p->op;
1736     pNew->pNext = pNext;
1737     pNew->pPrior = 0;
1738     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1739     pNew->iLimit = 0;
1740     pNew->iOffset = 0;
1741     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1742     pNew->addrOpenEphm[0] = -1;
1743     pNew->addrOpenEphm[1] = -1;
1744     pNew->nSelectRow = p->nSelectRow;
1745     pNew->pWith = sqlite3WithDup(db, p->pWith);
1746 #ifndef SQLITE_OMIT_WINDOWFUNC
1747     pNew->pWin = 0;
1748     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1749     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1750 #endif
1751     pNew->selId = p->selId;
1752     if( db->mallocFailed ){
1753       /* Any prior OOM might have left the Select object incomplete.
1754       ** Delete the whole thing rather than allow an incomplete Select
1755       ** to be used by the code generator. */
1756       pNew->pNext = 0;
1757       sqlite3SelectDelete(db, pNew);
1758       break;
1759     }
1760     *pp = pNew;
1761     pp = &pNew->pPrior;
1762     pNext = pNew;
1763   }
1764 
1765   return pRet;
1766 }
1767 #else
sqlite3SelectDup(sqlite3 * db,const Select * p,int flags)1768 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1769   assert( p==0 );
1770   return 0;
1771 }
1772 #endif
1773 
1774 
1775 /*
1776 ** Add a new element to the end of an expression list.  If pList is
1777 ** initially NULL, then create a new expression list.
1778 **
1779 ** The pList argument must be either NULL or a pointer to an ExprList
1780 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1781 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1782 ** Reason:  This routine assumes that the number of slots in pList->a[]
1783 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1784 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1785 **
1786 ** If a memory allocation error occurs, the entire list is freed and
1787 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1788 ** that the new entry was successfully appended.
1789 */
1790 static const struct ExprList_item zeroItem = {0};
sqlite3ExprListAppendNew(sqlite3 * db,Expr * pExpr)1791 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1792   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1793   Expr *pExpr             /* Expression to be appended. Might be NULL */
1794 ){
1795   struct ExprList_item *pItem;
1796   ExprList *pList;
1797 
1798   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1799   if( pList==0 ){
1800     sqlite3ExprDelete(db, pExpr);
1801     return 0;
1802   }
1803   pList->nAlloc = 4;
1804   pList->nExpr = 1;
1805   pItem = &pList->a[0];
1806   *pItem = zeroItem;
1807   pItem->pExpr = pExpr;
1808   return pList;
1809 }
sqlite3ExprListAppendGrow(sqlite3 * db,ExprList * pList,Expr * pExpr)1810 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1811   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1812   ExprList *pList,        /* List to which to append. Might be NULL */
1813   Expr *pExpr             /* Expression to be appended. Might be NULL */
1814 ){
1815   struct ExprList_item *pItem;
1816   ExprList *pNew;
1817   pList->nAlloc *= 2;
1818   pNew = sqlite3DbRealloc(db, pList,
1819        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1820   if( pNew==0 ){
1821     sqlite3ExprListDelete(db, pList);
1822     sqlite3ExprDelete(db, pExpr);
1823     return 0;
1824   }else{
1825     pList = pNew;
1826   }
1827   pItem = &pList->a[pList->nExpr++];
1828   *pItem = zeroItem;
1829   pItem->pExpr = pExpr;
1830   return pList;
1831 }
sqlite3ExprListAppend(Parse * pParse,ExprList * pList,Expr * pExpr)1832 ExprList *sqlite3ExprListAppend(
1833   Parse *pParse,          /* Parsing context */
1834   ExprList *pList,        /* List to which to append. Might be NULL */
1835   Expr *pExpr             /* Expression to be appended. Might be NULL */
1836 ){
1837   struct ExprList_item *pItem;
1838   if( pList==0 ){
1839     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1840   }
1841   if( pList->nAlloc<pList->nExpr+1 ){
1842     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1843   }
1844   pItem = &pList->a[pList->nExpr++];
1845   *pItem = zeroItem;
1846   pItem->pExpr = pExpr;
1847   return pList;
1848 }
1849 
1850 /*
1851 ** pColumns and pExpr form a vector assignment which is part of the SET
1852 ** clause of an UPDATE statement.  Like this:
1853 **
1854 **        (a,b,c) = (expr1,expr2,expr3)
1855 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1856 **
1857 ** For each term of the vector assignment, append new entries to the
1858 ** expression list pList.  In the case of a subquery on the RHS, append
1859 ** TK_SELECT_COLUMN expressions.
1860 */
sqlite3ExprListAppendVector(Parse * pParse,ExprList * pList,IdList * pColumns,Expr * pExpr)1861 ExprList *sqlite3ExprListAppendVector(
1862   Parse *pParse,         /* Parsing context */
1863   ExprList *pList,       /* List to which to append. Might be NULL */
1864   IdList *pColumns,      /* List of names of LHS of the assignment */
1865   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1866 ){
1867   sqlite3 *db = pParse->db;
1868   int n;
1869   int i;
1870   int iFirst = pList ? pList->nExpr : 0;
1871   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1872   ** exit prior to this routine being invoked */
1873   if( NEVER(pColumns==0) ) goto vector_append_error;
1874   if( pExpr==0 ) goto vector_append_error;
1875 
1876   /* If the RHS is a vector, then we can immediately check to see that
1877   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1878   ** wildcards ("*") in the result set of the SELECT must be expanded before
1879   ** we can do the size check, so defer the size check until code generation.
1880   */
1881   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1882     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1883                     pColumns->nId, n);
1884     goto vector_append_error;
1885   }
1886 
1887   for(i=0; i<pColumns->nId; i++){
1888     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1889     assert( pSubExpr!=0 || db->mallocFailed );
1890     if( pSubExpr==0 ) continue;
1891     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1892     if( pList ){
1893       assert( pList->nExpr==iFirst+i+1 );
1894       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1895       pColumns->a[i].zName = 0;
1896     }
1897   }
1898 
1899   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1900     Expr *pFirst = pList->a[iFirst].pExpr;
1901     assert( pFirst!=0 );
1902     assert( pFirst->op==TK_SELECT_COLUMN );
1903 
1904     /* Store the SELECT statement in pRight so it will be deleted when
1905     ** sqlite3ExprListDelete() is called */
1906     pFirst->pRight = pExpr;
1907     pExpr = 0;
1908 
1909     /* Remember the size of the LHS in iTable so that we can check that
1910     ** the RHS and LHS sizes match during code generation. */
1911     pFirst->iTable = pColumns->nId;
1912   }
1913 
1914 vector_append_error:
1915   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1916   sqlite3IdListDelete(db, pColumns);
1917   return pList;
1918 }
1919 
1920 /*
1921 ** Set the sort order for the last element on the given ExprList.
1922 */
sqlite3ExprListSetSortOrder(ExprList * p,int iSortOrder,int eNulls)1923 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1924   struct ExprList_item *pItem;
1925   if( p==0 ) return;
1926   assert( p->nExpr>0 );
1927 
1928   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1929   assert( iSortOrder==SQLITE_SO_UNDEFINED
1930        || iSortOrder==SQLITE_SO_ASC
1931        || iSortOrder==SQLITE_SO_DESC
1932   );
1933   assert( eNulls==SQLITE_SO_UNDEFINED
1934        || eNulls==SQLITE_SO_ASC
1935        || eNulls==SQLITE_SO_DESC
1936   );
1937 
1938   pItem = &p->a[p->nExpr-1];
1939   assert( pItem->fg.bNulls==0 );
1940   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1941     iSortOrder = SQLITE_SO_ASC;
1942   }
1943   pItem->fg.sortFlags = (u8)iSortOrder;
1944 
1945   if( eNulls!=SQLITE_SO_UNDEFINED ){
1946     pItem->fg.bNulls = 1;
1947     if( iSortOrder!=eNulls ){
1948       pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
1949     }
1950   }
1951 }
1952 
1953 /*
1954 ** Set the ExprList.a[].zEName element of the most recently added item
1955 ** on the expression list.
1956 **
1957 ** pList might be NULL following an OOM error.  But pName should never be
1958 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1959 ** is set.
1960 */
sqlite3ExprListSetName(Parse * pParse,ExprList * pList,const Token * pName,int dequote)1961 void sqlite3ExprListSetName(
1962   Parse *pParse,          /* Parsing context */
1963   ExprList *pList,        /* List to which to add the span. */
1964   const Token *pName,     /* Name to be added */
1965   int dequote             /* True to cause the name to be dequoted */
1966 ){
1967   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1968   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1969   if( pList ){
1970     struct ExprList_item *pItem;
1971     assert( pList->nExpr>0 );
1972     pItem = &pList->a[pList->nExpr-1];
1973     assert( pItem->zEName==0 );
1974     assert( pItem->fg.eEName==ENAME_NAME );
1975     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1976     if( dequote ){
1977       /* If dequote==0, then pName->z does not point to part of a DDL
1978       ** statement handled by the parser. And so no token need be added
1979       ** to the token-map.  */
1980       sqlite3Dequote(pItem->zEName);
1981       if( IN_RENAME_OBJECT ){
1982         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1983       }
1984     }
1985   }
1986 }
1987 
1988 /*
1989 ** Set the ExprList.a[].zSpan element of the most recently added item
1990 ** on the expression list.
1991 **
1992 ** pList might be NULL following an OOM error.  But pSpan should never be
1993 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1994 ** is set.
1995 */
sqlite3ExprListSetSpan(Parse * pParse,ExprList * pList,const char * zStart,const char * zEnd)1996 void sqlite3ExprListSetSpan(
1997   Parse *pParse,          /* Parsing context */
1998   ExprList *pList,        /* List to which to add the span. */
1999   const char *zStart,     /* Start of the span */
2000   const char *zEnd        /* End of the span */
2001 ){
2002   sqlite3 *db = pParse->db;
2003   assert( pList!=0 || db->mallocFailed!=0 );
2004   if( pList ){
2005     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2006     assert( pList->nExpr>0 );
2007     if( pItem->zEName==0 ){
2008       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2009       pItem->fg.eEName = ENAME_SPAN;
2010     }
2011   }
2012 }
2013 
2014 /*
2015 ** If the expression list pEList contains more than iLimit elements,
2016 ** leave an error message in pParse.
2017 */
sqlite3ExprListCheckLength(Parse * pParse,ExprList * pEList,const char * zObject)2018 void sqlite3ExprListCheckLength(
2019   Parse *pParse,
2020   ExprList *pEList,
2021   const char *zObject
2022 ){
2023   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2024   testcase( pEList && pEList->nExpr==mx );
2025   testcase( pEList && pEList->nExpr==mx+1 );
2026   if( pEList && pEList->nExpr>mx ){
2027     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2028   }
2029 }
2030 
2031 /*
2032 ** Delete an entire expression list.
2033 */
exprListDeleteNN(sqlite3 * db,ExprList * pList)2034 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2035   int i = pList->nExpr;
2036   struct ExprList_item *pItem =  pList->a;
2037   assert( pList->nExpr>0 );
2038   assert( db!=0 );
2039   do{
2040     sqlite3ExprDelete(db, pItem->pExpr);
2041     if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
2042     pItem++;
2043   }while( --i>0 );
2044   sqlite3DbNNFreeNN(db, pList);
2045 }
sqlite3ExprListDelete(sqlite3 * db,ExprList * pList)2046 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2047   if( pList ) exprListDeleteNN(db, pList);
2048 }
2049 
2050 /*
2051 ** Return the bitwise-OR of all Expr.flags fields in the given
2052 ** ExprList.
2053 */
sqlite3ExprListFlags(const ExprList * pList)2054 u32 sqlite3ExprListFlags(const ExprList *pList){
2055   int i;
2056   u32 m = 0;
2057   assert( pList!=0 );
2058   for(i=0; i<pList->nExpr; i++){
2059      Expr *pExpr = pList->a[i].pExpr;
2060      assert( pExpr!=0 );
2061      m |= pExpr->flags;
2062   }
2063   return m;
2064 }
2065 
2066 /*
2067 ** This is a SELECT-node callback for the expression walker that
2068 ** always "fails".  By "fail" in this case, we mean set
2069 ** pWalker->eCode to zero and abort.
2070 **
2071 ** This callback is used by multiple expression walkers.
2072 */
sqlite3SelectWalkFail(Walker * pWalker,Select * NotUsed)2073 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2074   UNUSED_PARAMETER(NotUsed);
2075   pWalker->eCode = 0;
2076   return WRC_Abort;
2077 }
2078 
2079 /*
2080 ** Check the input string to see if it is "true" or "false" (in any case).
2081 **
2082 **       If the string is....           Return
2083 **         "true"                         EP_IsTrue
2084 **         "false"                        EP_IsFalse
2085 **         anything else                  0
2086 */
sqlite3IsTrueOrFalse(const char * zIn)2087 u32 sqlite3IsTrueOrFalse(const char *zIn){
2088   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2089   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2090   return 0;
2091 }
2092 
2093 
2094 /*
2095 ** If the input expression is an ID with the name "true" or "false"
2096 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2097 ** the conversion happened, and zero if the expression is unaltered.
2098 */
sqlite3ExprIdToTrueFalse(Expr * pExpr)2099 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2100   u32 v;
2101   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2102   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2103    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2104   ){
2105     pExpr->op = TK_TRUEFALSE;
2106     ExprSetProperty(pExpr, v);
2107     return 1;
2108   }
2109   return 0;
2110 }
2111 
2112 /*
2113 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2114 ** and 0 if it is FALSE.
2115 */
sqlite3ExprTruthValue(const Expr * pExpr)2116 int sqlite3ExprTruthValue(const Expr *pExpr){
2117   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2118   assert( pExpr->op==TK_TRUEFALSE );
2119   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2120   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2121        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2122   return pExpr->u.zToken[4]==0;
2123 }
2124 
2125 /*
2126 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2127 ** terms that are always true or false.  Return the simplified expression.
2128 ** Or return the original expression if no simplification is possible.
2129 **
2130 ** Examples:
2131 **
2132 **     (x<10) AND true                =>   (x<10)
2133 **     (x<10) AND false               =>   false
2134 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2135 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2136 **     (y=22) OR true                 =>   true
2137 */
sqlite3ExprSimplifiedAndOr(Expr * pExpr)2138 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2139   assert( pExpr!=0 );
2140   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2141     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2142     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2143     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2144       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2145     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2146       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2147     }
2148   }
2149   return pExpr;
2150 }
2151 
2152 
2153 /*
2154 ** These routines are Walker callbacks used to check expressions to
2155 ** see if they are "constant" for some definition of constant.  The
2156 ** Walker.eCode value determines the type of "constant" we are looking
2157 ** for.
2158 **
2159 ** These callback routines are used to implement the following:
2160 **
2161 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2162 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2163 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2164 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2165 **
2166 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2167 ** is found to not be a constant.
2168 **
2169 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2170 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2171 ** when parsing an existing schema out of the sqlite_schema table and 4
2172 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2173 ** an error for new statements, but is silently converted
2174 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2175 ** contain a bound parameter because they were generated by older versions
2176 ** of SQLite to be parsed by newer versions of SQLite without raising a
2177 ** malformed schema error.
2178 */
exprNodeIsConstant(Walker * pWalker,Expr * pExpr)2179 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2180 
2181   /* If pWalker->eCode is 2 then any term of the expression that comes from
2182   ** the ON or USING clauses of an outer join disqualifies the expression
2183   ** from being considered constant. */
2184   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2185     pWalker->eCode = 0;
2186     return WRC_Abort;
2187   }
2188 
2189   switch( pExpr->op ){
2190     /* Consider functions to be constant if all their arguments are constant
2191     ** and either pWalker->eCode==4 or 5 or the function has the
2192     ** SQLITE_FUNC_CONST flag. */
2193     case TK_FUNCTION:
2194       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2195        && !ExprHasProperty(pExpr, EP_WinFunc)
2196       ){
2197         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2198         return WRC_Continue;
2199       }else{
2200         pWalker->eCode = 0;
2201         return WRC_Abort;
2202       }
2203     case TK_ID:
2204       /* Convert "true" or "false" in a DEFAULT clause into the
2205       ** appropriate TK_TRUEFALSE operator */
2206       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2207         return WRC_Prune;
2208       }
2209       /* no break */ deliberate_fall_through
2210     case TK_COLUMN:
2211     case TK_AGG_FUNCTION:
2212     case TK_AGG_COLUMN:
2213       testcase( pExpr->op==TK_ID );
2214       testcase( pExpr->op==TK_COLUMN );
2215       testcase( pExpr->op==TK_AGG_FUNCTION );
2216       testcase( pExpr->op==TK_AGG_COLUMN );
2217       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2218         return WRC_Continue;
2219       }
2220       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2221         return WRC_Continue;
2222       }
2223       /* no break */ deliberate_fall_through
2224     case TK_IF_NULL_ROW:
2225     case TK_REGISTER:
2226     case TK_DOT:
2227       testcase( pExpr->op==TK_REGISTER );
2228       testcase( pExpr->op==TK_IF_NULL_ROW );
2229       testcase( pExpr->op==TK_DOT );
2230       pWalker->eCode = 0;
2231       return WRC_Abort;
2232     case TK_VARIABLE:
2233       if( pWalker->eCode==5 ){
2234         /* Silently convert bound parameters that appear inside of CREATE
2235         ** statements into a NULL when parsing the CREATE statement text out
2236         ** of the sqlite_schema table */
2237         pExpr->op = TK_NULL;
2238       }else if( pWalker->eCode==4 ){
2239         /* A bound parameter in a CREATE statement that originates from
2240         ** sqlite3_prepare() causes an error */
2241         pWalker->eCode = 0;
2242         return WRC_Abort;
2243       }
2244       /* no break */ deliberate_fall_through
2245     default:
2246       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2247       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2248       return WRC_Continue;
2249   }
2250 }
exprIsConst(Expr * p,int initFlag,int iCur)2251 static int exprIsConst(Expr *p, int initFlag, int iCur){
2252   Walker w;
2253   w.eCode = initFlag;
2254   w.xExprCallback = exprNodeIsConstant;
2255   w.xSelectCallback = sqlite3SelectWalkFail;
2256 #ifdef SQLITE_DEBUG
2257   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2258 #endif
2259   w.u.iCur = iCur;
2260   sqlite3WalkExpr(&w, p);
2261   return w.eCode;
2262 }
2263 
2264 /*
2265 ** Walk an expression tree.  Return non-zero if the expression is constant
2266 ** and 0 if it involves variables or function calls.
2267 **
2268 ** For the purposes of this function, a double-quoted string (ex: "abc")
2269 ** is considered a variable but a single-quoted string (ex: 'abc') is
2270 ** a constant.
2271 */
sqlite3ExprIsConstant(Expr * p)2272 int sqlite3ExprIsConstant(Expr *p){
2273   return exprIsConst(p, 1, 0);
2274 }
2275 
2276 /*
2277 ** Walk an expression tree.  Return non-zero if
2278 **
2279 **   (1) the expression is constant, and
2280 **   (2) the expression does originate in the ON or USING clause
2281 **       of a LEFT JOIN, and
2282 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2283 **       operands created by the constant propagation optimization.
2284 **
2285 ** When this routine returns true, it indicates that the expression
2286 ** can be added to the pParse->pConstExpr list and evaluated once when
2287 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2288 */
sqlite3ExprIsConstantNotJoin(Expr * p)2289 int sqlite3ExprIsConstantNotJoin(Expr *p){
2290   return exprIsConst(p, 2, 0);
2291 }
2292 
2293 /*
2294 ** Walk an expression tree.  Return non-zero if the expression is constant
2295 ** for any single row of the table with cursor iCur.  In other words, the
2296 ** expression must not refer to any non-deterministic function nor any
2297 ** table other than iCur.
2298 */
sqlite3ExprIsTableConstant(Expr * p,int iCur)2299 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2300   return exprIsConst(p, 3, iCur);
2301 }
2302 
2303 /*
2304 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2305 ** This is an optimization.  False negatives will perhaps cause slower
2306 ** queries, but false positives will yield incorrect answers.  So when in
2307 ** doubt, return 0.
2308 **
2309 ** To be an invariant constraint, the following must be true:
2310 **
2311 **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
2312 **
2313 **   (2)  pExpr cannot use subqueries or non-deterministic functions.
2314 **
2315 **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
2316 **        (Is there some way to relax this constraint?)
2317 **
2318 **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
2319 **         (4a)  pExpr must come from an ON clause..
2320            (4b)  and specifically the ON clause associated with the LEFT JOIN.
2321 **
2322 **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
2323 **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
2324 **        clause, not an ON clause.
2325 */
sqlite3ExprIsTableConstraint(Expr * pExpr,const SrcItem * pSrc)2326 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2327   if( pSrc->fg.jointype & JT_LTORJ ){
2328     return 0;  /* rule (3) */
2329   }
2330   if( pSrc->fg.jointype & JT_LEFT ){
2331     if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
2332     if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
2333   }else{
2334     if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
2335   }
2336   return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2337 }
2338 
2339 
2340 /*
2341 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2342 */
exprNodeIsConstantOrGroupBy(Walker * pWalker,Expr * pExpr)2343 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2344   ExprList *pGroupBy = pWalker->u.pGroupBy;
2345   int i;
2346 
2347   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2348   ** it constant.  */
2349   for(i=0; i<pGroupBy->nExpr; i++){
2350     Expr *p = pGroupBy->a[i].pExpr;
2351     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2352       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2353       if( sqlite3IsBinary(pColl) ){
2354         return WRC_Prune;
2355       }
2356     }
2357   }
2358 
2359   /* Check if pExpr is a sub-select. If so, consider it variable. */
2360   if( ExprUseXSelect(pExpr) ){
2361     pWalker->eCode = 0;
2362     return WRC_Abort;
2363   }
2364 
2365   return exprNodeIsConstant(pWalker, pExpr);
2366 }
2367 
2368 /*
2369 ** Walk the expression tree passed as the first argument. Return non-zero
2370 ** if the expression consists entirely of constants or copies of terms
2371 ** in pGroupBy that sort with the BINARY collation sequence.
2372 **
2373 ** This routine is used to determine if a term of the HAVING clause can
2374 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2375 ** the value of the HAVING clause term must be the same for all members of
2376 ** a "group".  The requirement that the GROUP BY term must be BINARY
2377 ** assumes that no other collating sequence will have a finer-grained
2378 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2379 ** A=B in every other collating sequence.  The requirement that the
2380 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2381 ** to promote HAVING clauses that use the same alternative collating
2382 ** sequence as the GROUP BY term, but that is much harder to check,
2383 ** alternative collating sequences are uncommon, and this is only an
2384 ** optimization, so we take the easy way out and simply require the
2385 ** GROUP BY to use the BINARY collating sequence.
2386 */
sqlite3ExprIsConstantOrGroupBy(Parse * pParse,Expr * p,ExprList * pGroupBy)2387 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2388   Walker w;
2389   w.eCode = 1;
2390   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2391   w.xSelectCallback = 0;
2392   w.u.pGroupBy = pGroupBy;
2393   w.pParse = pParse;
2394   sqlite3WalkExpr(&w, p);
2395   return w.eCode;
2396 }
2397 
2398 /*
2399 ** Walk an expression tree for the DEFAULT field of a column definition
2400 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2401 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2402 ** the expression is constant or a function call with constant arguments.
2403 ** Return and 0 if there are any variables.
2404 **
2405 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2406 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2407 ** (such as ? or $abc) in the expression are converted into NULL.  When
2408 ** isInit is false, parameters raise an error.  Parameters should not be
2409 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2410 ** allowed it, so we need to support it when reading sqlite_schema for
2411 ** backwards compatibility.
2412 **
2413 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2414 **
2415 ** For the purposes of this function, a double-quoted string (ex: "abc")
2416 ** is considered a variable but a single-quoted string (ex: 'abc') is
2417 ** a constant.
2418 */
sqlite3ExprIsConstantOrFunction(Expr * p,u8 isInit)2419 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2420   assert( isInit==0 || isInit==1 );
2421   return exprIsConst(p, 4+isInit, 0);
2422 }
2423 
2424 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2425 /*
2426 ** Walk an expression tree.  Return 1 if the expression contains a
2427 ** subquery of some kind.  Return 0 if there are no subqueries.
2428 */
sqlite3ExprContainsSubquery(Expr * p)2429 int sqlite3ExprContainsSubquery(Expr *p){
2430   Walker w;
2431   w.eCode = 1;
2432   w.xExprCallback = sqlite3ExprWalkNoop;
2433   w.xSelectCallback = sqlite3SelectWalkFail;
2434 #ifdef SQLITE_DEBUG
2435   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2436 #endif
2437   sqlite3WalkExpr(&w, p);
2438   return w.eCode==0;
2439 }
2440 #endif
2441 
2442 /*
2443 ** If the expression p codes a constant integer that is small enough
2444 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2445 ** in *pValue.  If the expression is not an integer or if it is too big
2446 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2447 */
sqlite3ExprIsInteger(const Expr * p,int * pValue)2448 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2449   int rc = 0;
2450   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2451 
2452   /* If an expression is an integer literal that fits in a signed 32-bit
2453   ** integer, then the EP_IntValue flag will have already been set */
2454   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2455            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2456 
2457   if( p->flags & EP_IntValue ){
2458     *pValue = p->u.iValue;
2459     return 1;
2460   }
2461   switch( p->op ){
2462     case TK_UPLUS: {
2463       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2464       break;
2465     }
2466     case TK_UMINUS: {
2467       int v = 0;
2468       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2469         assert( ((unsigned int)v)!=0x80000000 );
2470         *pValue = -v;
2471         rc = 1;
2472       }
2473       break;
2474     }
2475     default: break;
2476   }
2477   return rc;
2478 }
2479 
2480 /*
2481 ** Return FALSE if there is no chance that the expression can be NULL.
2482 **
2483 ** If the expression might be NULL or if the expression is too complex
2484 ** to tell return TRUE.
2485 **
2486 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2487 ** when we know that a value cannot be NULL.  Hence, a false positive
2488 ** (returning TRUE when in fact the expression can never be NULL) might
2489 ** be a small performance hit but is otherwise harmless.  On the other
2490 ** hand, a false negative (returning FALSE when the result could be NULL)
2491 ** will likely result in an incorrect answer.  So when in doubt, return
2492 ** TRUE.
2493 */
sqlite3ExprCanBeNull(const Expr * p)2494 int sqlite3ExprCanBeNull(const Expr *p){
2495   u8 op;
2496   assert( p!=0 );
2497   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2498     p = p->pLeft;
2499     assert( p!=0 );
2500   }
2501   op = p->op;
2502   if( op==TK_REGISTER ) op = p->op2;
2503   switch( op ){
2504     case TK_INTEGER:
2505     case TK_STRING:
2506     case TK_FLOAT:
2507     case TK_BLOB:
2508       return 0;
2509     case TK_COLUMN:
2510       assert( ExprUseYTab(p) );
2511       return ExprHasProperty(p, EP_CanBeNull) ||
2512              p->y.pTab==0 ||  /* Reference to column of index on expression */
2513              (p->iColumn>=0
2514               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2515               && p->y.pTab->aCol[p->iColumn].notNull==0);
2516     default:
2517       return 1;
2518   }
2519 }
2520 
2521 /*
2522 ** Return TRUE if the given expression is a constant which would be
2523 ** unchanged by OP_Affinity with the affinity given in the second
2524 ** argument.
2525 **
2526 ** This routine is used to determine if the OP_Affinity operation
2527 ** can be omitted.  When in doubt return FALSE.  A false negative
2528 ** is harmless.  A false positive, however, can result in the wrong
2529 ** answer.
2530 */
sqlite3ExprNeedsNoAffinityChange(const Expr * p,char aff)2531 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2532   u8 op;
2533   int unaryMinus = 0;
2534   if( aff==SQLITE_AFF_BLOB ) return 1;
2535   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2536     if( p->op==TK_UMINUS ) unaryMinus = 1;
2537     p = p->pLeft;
2538   }
2539   op = p->op;
2540   if( op==TK_REGISTER ) op = p->op2;
2541   switch( op ){
2542     case TK_INTEGER: {
2543       return aff>=SQLITE_AFF_NUMERIC;
2544     }
2545     case TK_FLOAT: {
2546       return aff>=SQLITE_AFF_NUMERIC;
2547     }
2548     case TK_STRING: {
2549       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2550     }
2551     case TK_BLOB: {
2552       return !unaryMinus;
2553     }
2554     case TK_COLUMN: {
2555       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2556       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2557     }
2558     default: {
2559       return 0;
2560     }
2561   }
2562 }
2563 
2564 /*
2565 ** Return TRUE if the given string is a row-id column name.
2566 */
sqlite3IsRowid(const char * z)2567 int sqlite3IsRowid(const char *z){
2568   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2569   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2570   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2571   return 0;
2572 }
2573 
2574 /*
2575 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2576 ** that can be simplified to a direct table access, then return
2577 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2578 ** or if the SELECT statement needs to be manifested into a transient
2579 ** table, then return NULL.
2580 */
2581 #ifndef SQLITE_OMIT_SUBQUERY
isCandidateForInOpt(const Expr * pX)2582 static Select *isCandidateForInOpt(const Expr *pX){
2583   Select *p;
2584   SrcList *pSrc;
2585   ExprList *pEList;
2586   Table *pTab;
2587   int i;
2588   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2589   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2590   p = pX->x.pSelect;
2591   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2592   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2593     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2594     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2595     return 0; /* No DISTINCT keyword and no aggregate functions */
2596   }
2597   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2598   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2599   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2600   pSrc = p->pSrc;
2601   assert( pSrc!=0 );
2602   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2603   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2604   pTab = pSrc->a[0].pTab;
2605   assert( pTab!=0 );
2606   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2607   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2608   pEList = p->pEList;
2609   assert( pEList!=0 );
2610   /* All SELECT results must be columns. */
2611   for(i=0; i<pEList->nExpr; i++){
2612     Expr *pRes = pEList->a[i].pExpr;
2613     if( pRes->op!=TK_COLUMN ) return 0;
2614     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2615   }
2616   return p;
2617 }
2618 #endif /* SQLITE_OMIT_SUBQUERY */
2619 
2620 #ifndef SQLITE_OMIT_SUBQUERY
2621 /*
2622 ** Generate code that checks the left-most column of index table iCur to see if
2623 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2624 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2625 ** to be set to NULL if iCur contains one or more NULL values.
2626 */
sqlite3SetHasNullFlag(Vdbe * v,int iCur,int regHasNull)2627 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2628   int addr1;
2629   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2630   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2631   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2632   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2633   VdbeComment((v, "first_entry_in(%d)", iCur));
2634   sqlite3VdbeJumpHere(v, addr1);
2635 }
2636 #endif
2637 
2638 
2639 #ifndef SQLITE_OMIT_SUBQUERY
2640 /*
2641 ** The argument is an IN operator with a list (not a subquery) on the
2642 ** right-hand side.  Return TRUE if that list is constant.
2643 */
sqlite3InRhsIsConstant(Expr * pIn)2644 static int sqlite3InRhsIsConstant(Expr *pIn){
2645   Expr *pLHS;
2646   int res;
2647   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2648   pLHS = pIn->pLeft;
2649   pIn->pLeft = 0;
2650   res = sqlite3ExprIsConstant(pIn);
2651   pIn->pLeft = pLHS;
2652   return res;
2653 }
2654 #endif
2655 
2656 /*
2657 ** This function is used by the implementation of the IN (...) operator.
2658 ** The pX parameter is the expression on the RHS of the IN operator, which
2659 ** might be either a list of expressions or a subquery.
2660 **
2661 ** The job of this routine is to find or create a b-tree object that can
2662 ** be used either to test for membership in the RHS set or to iterate through
2663 ** all members of the RHS set, skipping duplicates.
2664 **
2665 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2666 ** and the *piTab parameter is set to the index of that cursor.
2667 **
2668 ** The returned value of this function indicates the b-tree type, as follows:
2669 **
2670 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2671 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2672 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2673 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2674 **                         populated epheremal table.
2675 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2676 **                         implemented as a sequence of comparisons.
2677 **
2678 ** An existing b-tree might be used if the RHS expression pX is a simple
2679 ** subquery such as:
2680 **
2681 **     SELECT <column1>, <column2>... FROM <table>
2682 **
2683 ** If the RHS of the IN operator is a list or a more complex subquery, then
2684 ** an ephemeral table might need to be generated from the RHS and then
2685 ** pX->iTable made to point to the ephemeral table instead of an
2686 ** existing table.  In this case, the creation and initialization of the
2687 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2688 ** will be set on pX and the pX->y.sub fields will be set to show where
2689 ** the subroutine is coded.
2690 **
2691 ** The inFlags parameter must contain, at a minimum, one of the bits
2692 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2693 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2694 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2695 ** be used to loop over all values of the RHS of the IN operator.
2696 **
2697 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2698 ** through the set members) then the b-tree must not contain duplicates.
2699 ** An epheremal table will be created unless the selected columns are guaranteed
2700 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2701 ** a UNIQUE constraint or index.
2702 **
2703 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2704 ** for fast set membership tests) then an epheremal table must
2705 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2706 ** index can be found with the specified <columns> as its left-most.
2707 **
2708 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2709 ** if the RHS of the IN operator is a list (not a subquery) then this
2710 ** routine might decide that creating an ephemeral b-tree for membership
2711 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2712 ** calling routine should implement the IN operator using a sequence
2713 ** of Eq or Ne comparison operations.
2714 **
2715 ** When the b-tree is being used for membership tests, the calling function
2716 ** might need to know whether or not the RHS side of the IN operator
2717 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2718 ** if there is any chance that the (...) might contain a NULL value at
2719 ** runtime, then a register is allocated and the register number written
2720 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2721 ** NULL value, then *prRhsHasNull is left unchanged.
2722 **
2723 ** If a register is allocated and its location stored in *prRhsHasNull, then
2724 ** the value in that register will be NULL if the b-tree contains one or more
2725 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2726 ** NULL values.
2727 **
2728 ** If the aiMap parameter is not NULL, it must point to an array containing
2729 ** one element for each column returned by the SELECT statement on the RHS
2730 ** of the IN(...) operator. The i'th entry of the array is populated with the
2731 ** offset of the index column that matches the i'th column returned by the
2732 ** SELECT. For example, if the expression and selected index are:
2733 **
2734 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2735 **   CREATE INDEX i1 ON t1(b, c, a);
2736 **
2737 ** then aiMap[] is populated with {2, 0, 1}.
2738 */
2739 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3FindInIndex(Parse * pParse,Expr * pX,u32 inFlags,int * prRhsHasNull,int * aiMap,int * piTab)2740 int sqlite3FindInIndex(
2741   Parse *pParse,             /* Parsing context */
2742   Expr *pX,                  /* The IN expression */
2743   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2744   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2745   int *aiMap,                /* Mapping from Index fields to RHS fields */
2746   int *piTab                 /* OUT: index to use */
2747 ){
2748   Select *p;                            /* SELECT to the right of IN operator */
2749   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2750   int iTab;                             /* Cursor of the RHS table */
2751   int mustBeUnique;                     /* True if RHS must be unique */
2752   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2753 
2754   assert( pX->op==TK_IN );
2755   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2756   iTab = pParse->nTab++;
2757 
2758   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2759   ** whether or not the SELECT result contains NULL values, check whether
2760   ** or not NULL is actually possible (it may not be, for example, due
2761   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2762   ** set prRhsHasNull to 0 before continuing.  */
2763   if( prRhsHasNull && ExprUseXSelect(pX) ){
2764     int i;
2765     ExprList *pEList = pX->x.pSelect->pEList;
2766     for(i=0; i<pEList->nExpr; i++){
2767       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2768     }
2769     if( i==pEList->nExpr ){
2770       prRhsHasNull = 0;
2771     }
2772   }
2773 
2774   /* Check to see if an existing table or index can be used to
2775   ** satisfy the query.  This is preferable to generating a new
2776   ** ephemeral table.  */
2777   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2778     sqlite3 *db = pParse->db;              /* Database connection */
2779     Table *pTab;                           /* Table <table>. */
2780     int iDb;                               /* Database idx for pTab */
2781     ExprList *pEList = p->pEList;
2782     int nExpr = pEList->nExpr;
2783 
2784     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2785     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2786     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2787     pTab = p->pSrc->a[0].pTab;
2788 
2789     /* Code an OP_Transaction and OP_TableLock for <table>. */
2790     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2791     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2792     sqlite3CodeVerifySchema(pParse, iDb);
2793     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2794 
2795     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2796     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2797       /* The "x IN (SELECT rowid FROM table)" case */
2798       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2799       VdbeCoverage(v);
2800 
2801       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2802       eType = IN_INDEX_ROWID;
2803       ExplainQueryPlan((pParse, 0,
2804             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2805       sqlite3VdbeJumpHere(v, iAddr);
2806     }else{
2807       Index *pIdx;                         /* Iterator variable */
2808       int affinity_ok = 1;
2809       int i;
2810 
2811       /* Check that the affinity that will be used to perform each
2812       ** comparison is the same as the affinity of each column in table
2813       ** on the RHS of the IN operator.  If it not, it is not possible to
2814       ** use any index of the RHS table.  */
2815       for(i=0; i<nExpr && affinity_ok; i++){
2816         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2817         int iCol = pEList->a[i].pExpr->iColumn;
2818         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2819         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2820         testcase( cmpaff==SQLITE_AFF_BLOB );
2821         testcase( cmpaff==SQLITE_AFF_TEXT );
2822         switch( cmpaff ){
2823           case SQLITE_AFF_BLOB:
2824             break;
2825           case SQLITE_AFF_TEXT:
2826             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2827             ** other has no affinity and the other side is TEXT.  Hence,
2828             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2829             ** and for the term on the LHS of the IN to have no affinity. */
2830             assert( idxaff==SQLITE_AFF_TEXT );
2831             break;
2832           default:
2833             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2834         }
2835       }
2836 
2837       if( affinity_ok ){
2838         /* Search for an existing index that will work for this IN operator */
2839         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2840           Bitmask colUsed;      /* Columns of the index used */
2841           Bitmask mCol;         /* Mask for the current column */
2842           if( pIdx->nColumn<nExpr ) continue;
2843           if( pIdx->pPartIdxWhere!=0 ) continue;
2844           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2845           ** BITMASK(nExpr) without overflowing */
2846           testcase( pIdx->nColumn==BMS-2 );
2847           testcase( pIdx->nColumn==BMS-1 );
2848           if( pIdx->nColumn>=BMS-1 ) continue;
2849           if( mustBeUnique ){
2850             if( pIdx->nKeyCol>nExpr
2851              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2852             ){
2853               continue;  /* This index is not unique over the IN RHS columns */
2854             }
2855           }
2856 
2857           colUsed = 0;   /* Columns of index used so far */
2858           for(i=0; i<nExpr; i++){
2859             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2860             Expr *pRhs = pEList->a[i].pExpr;
2861             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2862             int j;
2863 
2864             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2865             for(j=0; j<nExpr; j++){
2866               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2867               assert( pIdx->azColl[j] );
2868               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2869                 continue;
2870               }
2871               break;
2872             }
2873             if( j==nExpr ) break;
2874             mCol = MASKBIT(j);
2875             if( mCol & colUsed ) break; /* Each column used only once */
2876             colUsed |= mCol;
2877             if( aiMap ) aiMap[i] = j;
2878           }
2879 
2880           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2881           if( colUsed==(MASKBIT(nExpr)-1) ){
2882             /* If we reach this point, that means the index pIdx is usable */
2883             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2884             ExplainQueryPlan((pParse, 0,
2885                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2886             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2887             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2888             VdbeComment((v, "%s", pIdx->zName));
2889             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2890             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2891 
2892             if( prRhsHasNull ){
2893 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2894               i64 mask = (1<<nExpr)-1;
2895               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2896                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2897 #endif
2898               *prRhsHasNull = ++pParse->nMem;
2899               if( nExpr==1 ){
2900                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2901               }
2902             }
2903             sqlite3VdbeJumpHere(v, iAddr);
2904           }
2905         } /* End loop over indexes */
2906       } /* End if( affinity_ok ) */
2907     } /* End if not an rowid index */
2908   } /* End attempt to optimize using an index */
2909 
2910   /* If no preexisting index is available for the IN clause
2911   ** and IN_INDEX_NOOP is an allowed reply
2912   ** and the RHS of the IN operator is a list, not a subquery
2913   ** and the RHS is not constant or has two or fewer terms,
2914   ** then it is not worth creating an ephemeral table to evaluate
2915   ** the IN operator so return IN_INDEX_NOOP.
2916   */
2917   if( eType==0
2918    && (inFlags & IN_INDEX_NOOP_OK)
2919    && ExprUseXList(pX)
2920    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2921   ){
2922     pParse->nTab--;  /* Back out the allocation of the unused cursor */
2923     iTab = -1;       /* Cursor is not allocated */
2924     eType = IN_INDEX_NOOP;
2925   }
2926 
2927   if( eType==0 ){
2928     /* Could not find an existing table or index to use as the RHS b-tree.
2929     ** We will have to generate an ephemeral table to do the job.
2930     */
2931     u32 savedNQueryLoop = pParse->nQueryLoop;
2932     int rMayHaveNull = 0;
2933     eType = IN_INDEX_EPH;
2934     if( inFlags & IN_INDEX_LOOP ){
2935       pParse->nQueryLoop = 0;
2936     }else if( prRhsHasNull ){
2937       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2938     }
2939     assert( pX->op==TK_IN );
2940     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2941     if( rMayHaveNull ){
2942       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2943     }
2944     pParse->nQueryLoop = savedNQueryLoop;
2945   }
2946 
2947   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2948     int i, n;
2949     n = sqlite3ExprVectorSize(pX->pLeft);
2950     for(i=0; i<n; i++) aiMap[i] = i;
2951   }
2952   *piTab = iTab;
2953   return eType;
2954 }
2955 #endif
2956 
2957 #ifndef SQLITE_OMIT_SUBQUERY
2958 /*
2959 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2960 ** function allocates and returns a nul-terminated string containing
2961 ** the affinities to be used for each column of the comparison.
2962 **
2963 ** It is the responsibility of the caller to ensure that the returned
2964 ** string is eventually freed using sqlite3DbFree().
2965 */
exprINAffinity(Parse * pParse,const Expr * pExpr)2966 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2967   Expr *pLeft = pExpr->pLeft;
2968   int nVal = sqlite3ExprVectorSize(pLeft);
2969   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2970   char *zRet;
2971 
2972   assert( pExpr->op==TK_IN );
2973   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2974   if( zRet ){
2975     int i;
2976     for(i=0; i<nVal; i++){
2977       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2978       char a = sqlite3ExprAffinity(pA);
2979       if( pSelect ){
2980         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2981       }else{
2982         zRet[i] = a;
2983       }
2984     }
2985     zRet[nVal] = '\0';
2986   }
2987   return zRet;
2988 }
2989 #endif
2990 
2991 #ifndef SQLITE_OMIT_SUBQUERY
2992 /*
2993 ** Load the Parse object passed as the first argument with an error
2994 ** message of the form:
2995 **
2996 **   "sub-select returns N columns - expected M"
2997 */
sqlite3SubselectError(Parse * pParse,int nActual,int nExpect)2998 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2999   if( pParse->nErr==0 ){
3000     const char *zFmt = "sub-select returns %d columns - expected %d";
3001     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3002   }
3003 }
3004 #endif
3005 
3006 /*
3007 ** Expression pExpr is a vector that has been used in a context where
3008 ** it is not permitted. If pExpr is a sub-select vector, this routine
3009 ** loads the Parse object with a message of the form:
3010 **
3011 **   "sub-select returns N columns - expected 1"
3012 **
3013 ** Or, if it is a regular scalar vector:
3014 **
3015 **   "row value misused"
3016 */
sqlite3VectorErrorMsg(Parse * pParse,Expr * pExpr)3017 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3018 #ifndef SQLITE_OMIT_SUBQUERY
3019   if( ExprUseXSelect(pExpr) ){
3020     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3021   }else
3022 #endif
3023   {
3024     sqlite3ErrorMsg(pParse, "row value misused");
3025   }
3026 }
3027 
3028 #ifndef SQLITE_OMIT_SUBQUERY
3029 /*
3030 ** Generate code that will construct an ephemeral table containing all terms
3031 ** in the RHS of an IN operator.  The IN operator can be in either of two
3032 ** forms:
3033 **
3034 **     x IN (4,5,11)              -- IN operator with list on right-hand side
3035 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
3036 **
3037 ** The pExpr parameter is the IN operator.  The cursor number for the
3038 ** constructed ephermeral table is returned.  The first time the ephemeral
3039 ** table is computed, the cursor number is also stored in pExpr->iTable,
3040 ** however the cursor number returned might not be the same, as it might
3041 ** have been duplicated using OP_OpenDup.
3042 **
3043 ** If the LHS expression ("x" in the examples) is a column value, or
3044 ** the SELECT statement returns a column value, then the affinity of that
3045 ** column is used to build the index keys. If both 'x' and the
3046 ** SELECT... statement are columns, then numeric affinity is used
3047 ** if either column has NUMERIC or INTEGER affinity. If neither
3048 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3049 ** is used.
3050 */
sqlite3CodeRhsOfIN(Parse * pParse,Expr * pExpr,int iTab)3051 void sqlite3CodeRhsOfIN(
3052   Parse *pParse,          /* Parsing context */
3053   Expr *pExpr,            /* The IN operator */
3054   int iTab                /* Use this cursor number */
3055 ){
3056   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3057   int addr;                   /* Address of OP_OpenEphemeral instruction */
3058   Expr *pLeft;                /* the LHS of the IN operator */
3059   KeyInfo *pKeyInfo = 0;      /* Key information */
3060   int nVal;                   /* Size of vector pLeft */
3061   Vdbe *v;                    /* The prepared statement under construction */
3062 
3063   v = pParse->pVdbe;
3064   assert( v!=0 );
3065 
3066   /* The evaluation of the IN must be repeated every time it
3067   ** is encountered if any of the following is true:
3068   **
3069   **    *  The right-hand side is a correlated subquery
3070   **    *  The right-hand side is an expression list containing variables
3071   **    *  We are inside a trigger
3072   **
3073   ** If all of the above are false, then we can compute the RHS just once
3074   ** and reuse it many names.
3075   */
3076   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3077     /* Reuse of the RHS is allowed */
3078     /* If this routine has already been coded, but the previous code
3079     ** might not have been invoked yet, so invoke it now as a subroutine.
3080     */
3081     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3082       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3083       if( ExprUseXSelect(pExpr) ){
3084         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3085               pExpr->x.pSelect->selId));
3086       }
3087       assert( ExprUseYSub(pExpr) );
3088       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3089                         pExpr->y.sub.iAddr);
3090       assert( iTab!=pExpr->iTable );
3091       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3092       sqlite3VdbeJumpHere(v, addrOnce);
3093       return;
3094     }
3095 
3096     /* Begin coding the subroutine */
3097     assert( !ExprUseYWin(pExpr) );
3098     ExprSetProperty(pExpr, EP_Subrtn);
3099     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3100     pExpr->y.sub.regReturn = ++pParse->nMem;
3101     pExpr->y.sub.iAddr =
3102       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3103 
3104     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3105   }
3106 
3107   /* Check to see if this is a vector IN operator */
3108   pLeft = pExpr->pLeft;
3109   nVal = sqlite3ExprVectorSize(pLeft);
3110 
3111   /* Construct the ephemeral table that will contain the content of
3112   ** RHS of the IN operator.
3113   */
3114   pExpr->iTable = iTab;
3115   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3116 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3117   if( ExprUseXSelect(pExpr) ){
3118     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3119   }else{
3120     VdbeComment((v, "RHS of IN operator"));
3121   }
3122 #endif
3123   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3124 
3125   if( ExprUseXSelect(pExpr) ){
3126     /* Case 1:     expr IN (SELECT ...)
3127     **
3128     ** Generate code to write the results of the select into the temporary
3129     ** table allocated and opened above.
3130     */
3131     Select *pSelect = pExpr->x.pSelect;
3132     ExprList *pEList = pSelect->pEList;
3133 
3134     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3135         addrOnce?"":"CORRELATED ", pSelect->selId
3136     ));
3137     /* If the LHS and RHS of the IN operator do not match, that
3138     ** error will have been caught long before we reach this point. */
3139     if( ALWAYS(pEList->nExpr==nVal) ){
3140       Select *pCopy;
3141       SelectDest dest;
3142       int i;
3143       int rc;
3144       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3145       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3146       pSelect->iLimit = 0;
3147       testcase( pSelect->selFlags & SF_Distinct );
3148       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3149       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3150       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3151       sqlite3SelectDelete(pParse->db, pCopy);
3152       sqlite3DbFree(pParse->db, dest.zAffSdst);
3153       if( rc ){
3154         sqlite3KeyInfoUnref(pKeyInfo);
3155         return;
3156       }
3157       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3158       assert( pEList!=0 );
3159       assert( pEList->nExpr>0 );
3160       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3161       for(i=0; i<nVal; i++){
3162         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3163         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3164             pParse, p, pEList->a[i].pExpr
3165         );
3166       }
3167     }
3168   }else if( ALWAYS(pExpr->x.pList!=0) ){
3169     /* Case 2:     expr IN (exprlist)
3170     **
3171     ** For each expression, build an index key from the evaluation and
3172     ** store it in the temporary table. If <expr> is a column, then use
3173     ** that columns affinity when building index keys. If <expr> is not
3174     ** a column, use numeric affinity.
3175     */
3176     char affinity;            /* Affinity of the LHS of the IN */
3177     int i;
3178     ExprList *pList = pExpr->x.pList;
3179     struct ExprList_item *pItem;
3180     int r1, r2;
3181     affinity = sqlite3ExprAffinity(pLeft);
3182     if( affinity<=SQLITE_AFF_NONE ){
3183       affinity = SQLITE_AFF_BLOB;
3184     }else if( affinity==SQLITE_AFF_REAL ){
3185       affinity = SQLITE_AFF_NUMERIC;
3186     }
3187     if( pKeyInfo ){
3188       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3189       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3190     }
3191 
3192     /* Loop through each expression in <exprlist>. */
3193     r1 = sqlite3GetTempReg(pParse);
3194     r2 = sqlite3GetTempReg(pParse);
3195     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3196       Expr *pE2 = pItem->pExpr;
3197 
3198       /* If the expression is not constant then we will need to
3199       ** disable the test that was generated above that makes sure
3200       ** this code only executes once.  Because for a non-constant
3201       ** expression we need to rerun this code each time.
3202       */
3203       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3204         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3205         sqlite3VdbeChangeToNoop(v, addrOnce);
3206         ExprClearProperty(pExpr, EP_Subrtn);
3207         addrOnce = 0;
3208       }
3209 
3210       /* Evaluate the expression and insert it into the temp table */
3211       sqlite3ExprCode(pParse, pE2, r1);
3212       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3213       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3214     }
3215     sqlite3ReleaseTempReg(pParse, r1);
3216     sqlite3ReleaseTempReg(pParse, r2);
3217   }
3218   if( pKeyInfo ){
3219     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3220   }
3221   if( addrOnce ){
3222     sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
3223     sqlite3VdbeJumpHere(v, addrOnce);
3224     /* Subroutine return */
3225     assert( ExprUseYSub(pExpr) );
3226     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3227             || pParse->nErr );
3228     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3229                       pExpr->y.sub.iAddr, 1);
3230     VdbeCoverage(v);
3231     sqlite3ClearTempRegCache(pParse);
3232   }
3233 }
3234 #endif /* SQLITE_OMIT_SUBQUERY */
3235 
3236 /*
3237 ** Generate code for scalar subqueries used as a subquery expression
3238 ** or EXISTS operator:
3239 **
3240 **     (SELECT a FROM b)          -- subquery
3241 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3242 **
3243 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3244 **
3245 ** Return the register that holds the result.  For a multi-column SELECT,
3246 ** the result is stored in a contiguous array of registers and the
3247 ** return value is the register of the left-most result column.
3248 ** Return 0 if an error occurs.
3249 */
3250 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3CodeSubselect(Parse * pParse,Expr * pExpr)3251 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3252   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3253   int rReg = 0;               /* Register storing resulting */
3254   Select *pSel;               /* SELECT statement to encode */
3255   SelectDest dest;            /* How to deal with SELECT result */
3256   int nReg;                   /* Registers to allocate */
3257   Expr *pLimit;               /* New limit expression */
3258 
3259   Vdbe *v = pParse->pVdbe;
3260   assert( v!=0 );
3261   if( pParse->nErr ) return 0;
3262   testcase( pExpr->op==TK_EXISTS );
3263   testcase( pExpr->op==TK_SELECT );
3264   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3265   assert( ExprUseXSelect(pExpr) );
3266   pSel = pExpr->x.pSelect;
3267 
3268   /* If this routine has already been coded, then invoke it as a
3269   ** subroutine. */
3270   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3271     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3272     assert( ExprUseYSub(pExpr) );
3273     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3274                       pExpr->y.sub.iAddr);
3275     return pExpr->iTable;
3276   }
3277 
3278   /* Begin coding the subroutine */
3279   assert( !ExprUseYWin(pExpr) );
3280   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3281   ExprSetProperty(pExpr, EP_Subrtn);
3282   pExpr->y.sub.regReturn = ++pParse->nMem;
3283   pExpr->y.sub.iAddr =
3284     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3285 
3286   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3287   ** is encountered if any of the following is true:
3288   **
3289   **    *  The right-hand side is a correlated subquery
3290   **    *  The right-hand side is an expression list containing variables
3291   **    *  We are inside a trigger
3292   **
3293   ** If all of the above are false, then we can run this code just once
3294   ** save the results, and reuse the same result on subsequent invocations.
3295   */
3296   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3297     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3298   }
3299 
3300   /* For a SELECT, generate code to put the values for all columns of
3301   ** the first row into an array of registers and return the index of
3302   ** the first register.
3303   **
3304   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3305   ** into a register and return that register number.
3306   **
3307   ** In both cases, the query is augmented with "LIMIT 1".  Any
3308   ** preexisting limit is discarded in place of the new LIMIT 1.
3309   */
3310   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3311         addrOnce?"":"CORRELATED ", pSel->selId));
3312   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3313   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3314   pParse->nMem += nReg;
3315   if( pExpr->op==TK_SELECT ){
3316     dest.eDest = SRT_Mem;
3317     dest.iSdst = dest.iSDParm;
3318     dest.nSdst = nReg;
3319     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3320     VdbeComment((v, "Init subquery result"));
3321   }else{
3322     dest.eDest = SRT_Exists;
3323     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3324     VdbeComment((v, "Init EXISTS result"));
3325   }
3326   if( pSel->pLimit ){
3327     /* The subquery already has a limit.  If the pre-existing limit is X
3328     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3329     sqlite3 *db = pParse->db;
3330     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3331     if( pLimit ){
3332       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3333       pLimit = sqlite3PExpr(pParse, TK_NE,
3334                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3335     }
3336     sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3337     pSel->pLimit->pLeft = pLimit;
3338   }else{
3339     /* If there is no pre-existing limit add a limit of 1 */
3340     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3341     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3342   }
3343   pSel->iLimit = 0;
3344   if( sqlite3Select(pParse, pSel, &dest) ){
3345     pExpr->op2 = pExpr->op;
3346     pExpr->op = TK_ERROR;
3347     return 0;
3348   }
3349   pExpr->iTable = rReg = dest.iSDParm;
3350   ExprSetVVAProperty(pExpr, EP_NoReduce);
3351   if( addrOnce ){
3352     sqlite3VdbeJumpHere(v, addrOnce);
3353   }
3354 
3355   /* Subroutine return */
3356   assert( ExprUseYSub(pExpr) );
3357   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3358           || pParse->nErr );
3359   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3360                     pExpr->y.sub.iAddr, 1);
3361   VdbeCoverage(v);
3362   sqlite3ClearTempRegCache(pParse);
3363   return rReg;
3364 }
3365 #endif /* SQLITE_OMIT_SUBQUERY */
3366 
3367 #ifndef SQLITE_OMIT_SUBQUERY
3368 /*
3369 ** Expr pIn is an IN(...) expression. This function checks that the
3370 ** sub-select on the RHS of the IN() operator has the same number of
3371 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3372 ** a sub-query, that the LHS is a vector of size 1.
3373 */
sqlite3ExprCheckIN(Parse * pParse,Expr * pIn)3374 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3375   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3376   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3377     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3378       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3379       return 1;
3380     }
3381   }else if( nVector!=1 ){
3382     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3383     return 1;
3384   }
3385   return 0;
3386 }
3387 #endif
3388 
3389 #ifndef SQLITE_OMIT_SUBQUERY
3390 /*
3391 ** Generate code for an IN expression.
3392 **
3393 **      x IN (SELECT ...)
3394 **      x IN (value, value, ...)
3395 **
3396 ** The left-hand side (LHS) is a scalar or vector expression.  The
3397 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3398 ** subquery.  If the RHS is a subquery, the number of result columns must
3399 ** match the number of columns in the vector on the LHS.  If the RHS is
3400 ** a list of values, the LHS must be a scalar.
3401 **
3402 ** The IN operator is true if the LHS value is contained within the RHS.
3403 ** The result is false if the LHS is definitely not in the RHS.  The
3404 ** result is NULL if the presence of the LHS in the RHS cannot be
3405 ** determined due to NULLs.
3406 **
3407 ** This routine generates code that jumps to destIfFalse if the LHS is not
3408 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3409 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3410 ** within the RHS then fall through.
3411 **
3412 ** See the separate in-operator.md documentation file in the canonical
3413 ** SQLite source tree for additional information.
3414 */
sqlite3ExprCodeIN(Parse * pParse,Expr * pExpr,int destIfFalse,int destIfNull)3415 static void sqlite3ExprCodeIN(
3416   Parse *pParse,        /* Parsing and code generating context */
3417   Expr *pExpr,          /* The IN expression */
3418   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3419   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3420 ){
3421   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3422   int eType;            /* Type of the RHS */
3423   int rLhs;             /* Register(s) holding the LHS values */
3424   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3425   Vdbe *v;              /* Statement under construction */
3426   int *aiMap = 0;       /* Map from vector field to index column */
3427   char *zAff = 0;       /* Affinity string for comparisons */
3428   int nVector;          /* Size of vectors for this IN operator */
3429   int iDummy;           /* Dummy parameter to exprCodeVector() */
3430   Expr *pLeft;          /* The LHS of the IN operator */
3431   int i;                /* loop counter */
3432   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3433   int destStep6 = 0;    /* Start of code for Step 6 */
3434   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3435   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3436   int addrTop;          /* Top of the step-6 loop */
3437   int iTab = 0;         /* Index to use */
3438   u8 okConstFactor = pParse->okConstFactor;
3439 
3440   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3441   pLeft = pExpr->pLeft;
3442   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3443   zAff = exprINAffinity(pParse, pExpr);
3444   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3445   aiMap = (int*)sqlite3DbMallocZero(
3446       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3447   );
3448   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3449 
3450   /* Attempt to compute the RHS. After this step, if anything other than
3451   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3452   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3453   ** the RHS has not yet been coded.  */
3454   v = pParse->pVdbe;
3455   assert( v!=0 );       /* OOM detected prior to this routine */
3456   VdbeNoopComment((v, "begin IN expr"));
3457   eType = sqlite3FindInIndex(pParse, pExpr,
3458                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3459                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3460                              aiMap, &iTab);
3461 
3462   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3463        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3464   );
3465 #ifdef SQLITE_DEBUG
3466   /* Confirm that aiMap[] contains nVector integer values between 0 and
3467   ** nVector-1. */
3468   for(i=0; i<nVector; i++){
3469     int j, cnt;
3470     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3471     assert( cnt==1 );
3472   }
3473 #endif
3474 
3475   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3476   ** vector, then it is stored in an array of nVector registers starting
3477   ** at r1.
3478   **
3479   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3480   ** so that the fields are in the same order as an existing index.   The
3481   ** aiMap[] array contains a mapping from the original LHS field order to
3482   ** the field order that matches the RHS index.
3483   **
3484   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3485   ** even if it is constant, as OP_Affinity may be used on the register
3486   ** by code generated below.  */
3487   assert( pParse->okConstFactor==okConstFactor );
3488   pParse->okConstFactor = 0;
3489   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3490   pParse->okConstFactor = okConstFactor;
3491   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3492   if( i==nVector ){
3493     /* LHS fields are not reordered */
3494     rLhs = rLhsOrig;
3495   }else{
3496     /* Need to reorder the LHS fields according to aiMap */
3497     rLhs = sqlite3GetTempRange(pParse, nVector);
3498     for(i=0; i<nVector; i++){
3499       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3500     }
3501   }
3502 
3503   /* If sqlite3FindInIndex() did not find or create an index that is
3504   ** suitable for evaluating the IN operator, then evaluate using a
3505   ** sequence of comparisons.
3506   **
3507   ** This is step (1) in the in-operator.md optimized algorithm.
3508   */
3509   if( eType==IN_INDEX_NOOP ){
3510     ExprList *pList;
3511     CollSeq *pColl;
3512     int labelOk = sqlite3VdbeMakeLabel(pParse);
3513     int r2, regToFree;
3514     int regCkNull = 0;
3515     int ii;
3516     assert( ExprUseXList(pExpr) );
3517     pList = pExpr->x.pList;
3518     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3519     if( destIfNull!=destIfFalse ){
3520       regCkNull = sqlite3GetTempReg(pParse);
3521       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3522     }
3523     for(ii=0; ii<pList->nExpr; ii++){
3524       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3525       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3526         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3527       }
3528       sqlite3ReleaseTempReg(pParse, regToFree);
3529       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3530         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3531         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3532                           (void*)pColl, P4_COLLSEQ);
3533         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3534         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3535         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3536         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3537         sqlite3VdbeChangeP5(v, zAff[0]);
3538       }else{
3539         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3540         assert( destIfNull==destIfFalse );
3541         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3542                           (void*)pColl, P4_COLLSEQ);
3543         VdbeCoverageIf(v, op==OP_Ne);
3544         VdbeCoverageIf(v, op==OP_IsNull);
3545         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3546       }
3547     }
3548     if( regCkNull ){
3549       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3550       sqlite3VdbeGoto(v, destIfFalse);
3551     }
3552     sqlite3VdbeResolveLabel(v, labelOk);
3553     sqlite3ReleaseTempReg(pParse, regCkNull);
3554     goto sqlite3ExprCodeIN_finished;
3555   }
3556 
3557   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3558   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3559   ** We will then skip the binary search of the RHS.
3560   */
3561   if( destIfNull==destIfFalse ){
3562     destStep2 = destIfFalse;
3563   }else{
3564     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3565   }
3566   for(i=0; i<nVector; i++){
3567     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3568     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3569     if( sqlite3ExprCanBeNull(p) ){
3570       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3571       VdbeCoverage(v);
3572     }
3573   }
3574 
3575   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3576   ** of the RHS using the LHS as a probe.  If found, the result is
3577   ** true.
3578   */
3579   if( eType==IN_INDEX_ROWID ){
3580     /* In this case, the RHS is the ROWID of table b-tree and so we also
3581     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3582     ** into a single opcode. */
3583     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3584     VdbeCoverage(v);
3585     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3586   }else{
3587     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3588     if( destIfFalse==destIfNull ){
3589       /* Combine Step 3 and Step 5 into a single opcode */
3590       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3591                            rLhs, nVector); VdbeCoverage(v);
3592       goto sqlite3ExprCodeIN_finished;
3593     }
3594     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3595     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3596                                       rLhs, nVector); VdbeCoverage(v);
3597   }
3598 
3599   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3600   ** an match on the search above, then the result must be FALSE.
3601   */
3602   if( rRhsHasNull && nVector==1 ){
3603     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3604     VdbeCoverage(v);
3605   }
3606 
3607   /* Step 5.  If we do not care about the difference between NULL and
3608   ** FALSE, then just return false.
3609   */
3610   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3611 
3612   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3613   ** If any comparison is NULL, then the result is NULL.  If all
3614   ** comparisons are FALSE then the final result is FALSE.
3615   **
3616   ** For a scalar LHS, it is sufficient to check just the first row
3617   ** of the RHS.
3618   */
3619   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3620   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3621   VdbeCoverage(v);
3622   if( nVector>1 ){
3623     destNotNull = sqlite3VdbeMakeLabel(pParse);
3624   }else{
3625     /* For nVector==1, combine steps 6 and 7 by immediately returning
3626     ** FALSE if the first comparison is not NULL */
3627     destNotNull = destIfFalse;
3628   }
3629   for(i=0; i<nVector; i++){
3630     Expr *p;
3631     CollSeq *pColl;
3632     int r3 = sqlite3GetTempReg(pParse);
3633     p = sqlite3VectorFieldSubexpr(pLeft, i);
3634     pColl = sqlite3ExprCollSeq(pParse, p);
3635     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3636     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3637                       (void*)pColl, P4_COLLSEQ);
3638     VdbeCoverage(v);
3639     sqlite3ReleaseTempReg(pParse, r3);
3640   }
3641   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3642   if( nVector>1 ){
3643     sqlite3VdbeResolveLabel(v, destNotNull);
3644     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3645     VdbeCoverage(v);
3646 
3647     /* Step 7:  If we reach this point, we know that the result must
3648     ** be false. */
3649     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3650   }
3651 
3652   /* Jumps here in order to return true. */
3653   sqlite3VdbeJumpHere(v, addrTruthOp);
3654 
3655 sqlite3ExprCodeIN_finished:
3656   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3657   VdbeComment((v, "end IN expr"));
3658 sqlite3ExprCodeIN_oom_error:
3659   sqlite3DbFree(pParse->db, aiMap);
3660   sqlite3DbFree(pParse->db, zAff);
3661 }
3662 #endif /* SQLITE_OMIT_SUBQUERY */
3663 
3664 #ifndef SQLITE_OMIT_FLOATING_POINT
3665 /*
3666 ** Generate an instruction that will put the floating point
3667 ** value described by z[0..n-1] into register iMem.
3668 **
3669 ** The z[] string will probably not be zero-terminated.  But the
3670 ** z[n] character is guaranteed to be something that does not look
3671 ** like the continuation of the number.
3672 */
codeReal(Vdbe * v,const char * z,int negateFlag,int iMem)3673 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3674   if( ALWAYS(z!=0) ){
3675     double value;
3676     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3677     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3678     if( negateFlag ) value = -value;
3679     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3680   }
3681 }
3682 #endif
3683 
3684 
3685 /*
3686 ** Generate an instruction that will put the integer describe by
3687 ** text z[0..n-1] into register iMem.
3688 **
3689 ** Expr.u.zToken is always UTF8 and zero-terminated.
3690 */
codeInteger(Parse * pParse,Expr * pExpr,int negFlag,int iMem)3691 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3692   Vdbe *v = pParse->pVdbe;
3693   if( pExpr->flags & EP_IntValue ){
3694     int i = pExpr->u.iValue;
3695     assert( i>=0 );
3696     if( negFlag ) i = -i;
3697     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3698   }else{
3699     int c;
3700     i64 value;
3701     const char *z = pExpr->u.zToken;
3702     assert( z!=0 );
3703     c = sqlite3DecOrHexToI64(z, &value);
3704     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3705 #ifdef SQLITE_OMIT_FLOATING_POINT
3706       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3707 #else
3708 #ifndef SQLITE_OMIT_HEX_INTEGER
3709       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3710         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3711                         negFlag?"-":"",pExpr);
3712       }else
3713 #endif
3714       {
3715         codeReal(v, z, negFlag, iMem);
3716       }
3717 #endif
3718     }else{
3719       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3720       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3721     }
3722   }
3723 }
3724 
3725 
3726 /* Generate code that will load into register regOut a value that is
3727 ** appropriate for the iIdxCol-th column of index pIdx.
3728 */
sqlite3ExprCodeLoadIndexColumn(Parse * pParse,Index * pIdx,int iTabCur,int iIdxCol,int regOut)3729 void sqlite3ExprCodeLoadIndexColumn(
3730   Parse *pParse,  /* The parsing context */
3731   Index *pIdx,    /* The index whose column is to be loaded */
3732   int iTabCur,    /* Cursor pointing to a table row */
3733   int iIdxCol,    /* The column of the index to be loaded */
3734   int regOut      /* Store the index column value in this register */
3735 ){
3736   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3737   if( iTabCol==XN_EXPR ){
3738     assert( pIdx->aColExpr );
3739     assert( pIdx->aColExpr->nExpr>iIdxCol );
3740     pParse->iSelfTab = iTabCur + 1;
3741     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3742     pParse->iSelfTab = 0;
3743   }else{
3744     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3745                                     iTabCol, regOut);
3746   }
3747 }
3748 
3749 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3750 /*
3751 ** Generate code that will compute the value of generated column pCol
3752 ** and store the result in register regOut
3753 */
sqlite3ExprCodeGeneratedColumn(Parse * pParse,Table * pTab,Column * pCol,int regOut)3754 void sqlite3ExprCodeGeneratedColumn(
3755   Parse *pParse,     /* Parsing context */
3756   Table *pTab,       /* Table containing the generated column */
3757   Column *pCol,      /* The generated column */
3758   int regOut         /* Put the result in this register */
3759 ){
3760   int iAddr;
3761   Vdbe *v = pParse->pVdbe;
3762   assert( v!=0 );
3763   assert( pParse->iSelfTab!=0 );
3764   if( pParse->iSelfTab>0 ){
3765     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3766   }else{
3767     iAddr = 0;
3768   }
3769   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3770   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3771     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3772   }
3773   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3774 }
3775 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3776 
3777 /*
3778 ** Generate code to extract the value of the iCol-th column of a table.
3779 */
sqlite3ExprCodeGetColumnOfTable(Vdbe * v,Table * pTab,int iTabCur,int iCol,int regOut)3780 void sqlite3ExprCodeGetColumnOfTable(
3781   Vdbe *v,        /* Parsing context */
3782   Table *pTab,    /* The table containing the value */
3783   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3784   int iCol,       /* Index of the column to extract */
3785   int regOut      /* Extract the value into this register */
3786 ){
3787   Column *pCol;
3788   assert( v!=0 );
3789   assert( pTab!=0 );
3790   if( iCol<0 || iCol==pTab->iPKey ){
3791     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3792     VdbeComment((v, "%s.rowid", pTab->zName));
3793   }else{
3794     int op;
3795     int x;
3796     if( IsVirtual(pTab) ){
3797       op = OP_VColumn;
3798       x = iCol;
3799 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3800     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3801       Parse *pParse = sqlite3VdbeParser(v);
3802       if( pCol->colFlags & COLFLAG_BUSY ){
3803         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3804                         pCol->zCnName);
3805       }else{
3806         int savedSelfTab = pParse->iSelfTab;
3807         pCol->colFlags |= COLFLAG_BUSY;
3808         pParse->iSelfTab = iTabCur+1;
3809         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3810         pParse->iSelfTab = savedSelfTab;
3811         pCol->colFlags &= ~COLFLAG_BUSY;
3812       }
3813       return;
3814 #endif
3815     }else if( !HasRowid(pTab) ){
3816       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3817       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3818       op = OP_Column;
3819     }else{
3820       x = sqlite3TableColumnToStorage(pTab,iCol);
3821       testcase( x!=iCol );
3822       op = OP_Column;
3823     }
3824     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3825     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3826   }
3827 }
3828 
3829 /*
3830 ** Generate code that will extract the iColumn-th column from
3831 ** table pTab and store the column value in register iReg.
3832 **
3833 ** There must be an open cursor to pTab in iTable when this routine
3834 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3835 */
sqlite3ExprCodeGetColumn(Parse * pParse,Table * pTab,int iColumn,int iTable,int iReg,u8 p5)3836 int sqlite3ExprCodeGetColumn(
3837   Parse *pParse,   /* Parsing and code generating context */
3838   Table *pTab,     /* Description of the table we are reading from */
3839   int iColumn,     /* Index of the table column */
3840   int iTable,      /* The cursor pointing to the table */
3841   int iReg,        /* Store results here */
3842   u8 p5            /* P5 value for OP_Column + FLAGS */
3843 ){
3844   assert( pParse->pVdbe!=0 );
3845   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3846   if( p5 ){
3847     VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
3848     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3849   }
3850   return iReg;
3851 }
3852 
3853 /*
3854 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3855 ** over to iTo..iTo+nReg-1.
3856 */
sqlite3ExprCodeMove(Parse * pParse,int iFrom,int iTo,int nReg)3857 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3858   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3859 }
3860 
3861 /*
3862 ** Convert a scalar expression node to a TK_REGISTER referencing
3863 ** register iReg.  The caller must ensure that iReg already contains
3864 ** the correct value for the expression.
3865 */
exprToRegister(Expr * pExpr,int iReg)3866 static void exprToRegister(Expr *pExpr, int iReg){
3867   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3868   if( NEVER(p==0) ) return;
3869   p->op2 = p->op;
3870   p->op = TK_REGISTER;
3871   p->iTable = iReg;
3872   ExprClearProperty(p, EP_Skip);
3873 }
3874 
3875 /*
3876 ** Evaluate an expression (either a vector or a scalar expression) and store
3877 ** the result in continguous temporary registers.  Return the index of
3878 ** the first register used to store the result.
3879 **
3880 ** If the returned result register is a temporary scalar, then also write
3881 ** that register number into *piFreeable.  If the returned result register
3882 ** is not a temporary or if the expression is a vector set *piFreeable
3883 ** to 0.
3884 */
exprCodeVector(Parse * pParse,Expr * p,int * piFreeable)3885 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3886   int iResult;
3887   int nResult = sqlite3ExprVectorSize(p);
3888   if( nResult==1 ){
3889     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3890   }else{
3891     *piFreeable = 0;
3892     if( p->op==TK_SELECT ){
3893 #if SQLITE_OMIT_SUBQUERY
3894       iResult = 0;
3895 #else
3896       iResult = sqlite3CodeSubselect(pParse, p);
3897 #endif
3898     }else{
3899       int i;
3900       iResult = pParse->nMem+1;
3901       pParse->nMem += nResult;
3902       assert( ExprUseXList(p) );
3903       for(i=0; i<nResult; i++){
3904         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3905       }
3906     }
3907   }
3908   return iResult;
3909 }
3910 
3911 /*
3912 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3913 ** so that a subsequent copy will not be merged into this one.
3914 */
setDoNotMergeFlagOnCopy(Vdbe * v)3915 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3916   if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
3917     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3918   }
3919 }
3920 
3921 /*
3922 ** Generate code to implement special SQL functions that are implemented
3923 ** in-line rather than by using the usual callbacks.
3924 */
exprCodeInlineFunction(Parse * pParse,ExprList * pFarg,int iFuncId,int target)3925 static int exprCodeInlineFunction(
3926   Parse *pParse,        /* Parsing context */
3927   ExprList *pFarg,      /* List of function arguments */
3928   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3929   int target            /* Store function result in this register */
3930 ){
3931   int nFarg;
3932   Vdbe *v = pParse->pVdbe;
3933   assert( v!=0 );
3934   assert( pFarg!=0 );
3935   nFarg = pFarg->nExpr;
3936   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3937   switch( iFuncId ){
3938     case INLINEFUNC_coalesce: {
3939       /* Attempt a direct implementation of the built-in COALESCE() and
3940       ** IFNULL() functions.  This avoids unnecessary evaluation of
3941       ** arguments past the first non-NULL argument.
3942       */
3943       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3944       int i;
3945       assert( nFarg>=2 );
3946       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3947       for(i=1; i<nFarg; i++){
3948         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3949         VdbeCoverage(v);
3950         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3951       }
3952       setDoNotMergeFlagOnCopy(v);
3953       sqlite3VdbeResolveLabel(v, endCoalesce);
3954       break;
3955     }
3956     case INLINEFUNC_iif: {
3957       Expr caseExpr;
3958       memset(&caseExpr, 0, sizeof(caseExpr));
3959       caseExpr.op = TK_CASE;
3960       caseExpr.x.pList = pFarg;
3961       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3962     }
3963 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3964     case INLINEFUNC_sqlite_offset: {
3965       Expr *pArg = pFarg->a[0].pExpr;
3966       if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
3967         sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3968       }else{
3969         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3970       }
3971       break;
3972     }
3973 #endif
3974     default: {
3975       /* The UNLIKELY() function is a no-op.  The result is the value
3976       ** of the first argument.
3977       */
3978       assert( nFarg==1 || nFarg==2 );
3979       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3980       break;
3981     }
3982 
3983   /***********************************************************************
3984   ** Test-only SQL functions that are only usable if enabled
3985   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3986   */
3987 #if !defined(SQLITE_UNTESTABLE)
3988     case INLINEFUNC_expr_compare: {
3989       /* Compare two expressions using sqlite3ExprCompare() */
3990       assert( nFarg==2 );
3991       sqlite3VdbeAddOp2(v, OP_Integer,
3992          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3993          target);
3994       break;
3995     }
3996 
3997     case INLINEFUNC_expr_implies_expr: {
3998       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3999       assert( nFarg==2 );
4000       sqlite3VdbeAddOp2(v, OP_Integer,
4001          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4002          target);
4003       break;
4004     }
4005 
4006     case INLINEFUNC_implies_nonnull_row: {
4007       /* REsult of sqlite3ExprImpliesNonNullRow() */
4008       Expr *pA1;
4009       assert( nFarg==2 );
4010       pA1 = pFarg->a[1].pExpr;
4011       if( pA1->op==TK_COLUMN ){
4012         sqlite3VdbeAddOp2(v, OP_Integer,
4013            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4014            target);
4015       }else{
4016         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4017       }
4018       break;
4019     }
4020 
4021     case INLINEFUNC_affinity: {
4022       /* The AFFINITY() function evaluates to a string that describes
4023       ** the type affinity of the argument.  This is used for testing of
4024       ** the SQLite type logic.
4025       */
4026       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
4027       char aff;
4028       assert( nFarg==1 );
4029       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4030       sqlite3VdbeLoadString(v, target,
4031               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4032       break;
4033     }
4034 #endif /* !defined(SQLITE_UNTESTABLE) */
4035   }
4036   return target;
4037 }
4038 
4039 /*
4040 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxExpr.
4041 ** If it is, then resolve the expression by reading from the index and
4042 ** return the register into which the value has been read.  If pExpr is
4043 ** not an indexed expression, then return negative.
4044 */
sqlite3IndexedExprLookup(Parse * pParse,Expr * pExpr,int target)4045 static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
4046   Parse *pParse,   /* The parsing context */
4047   Expr *pExpr,     /* The expression to potentially bypass */
4048   int target       /* Where to store the result of the expression */
4049 ){
4050   IndexedExpr *p;
4051   Vdbe *v;
4052   for(p=pParse->pIdxExpr; p; p=p->pIENext){
4053     int iDataCur = p->iDataCur;
4054     if( iDataCur<0 ) continue;
4055     if( pParse->iSelfTab ){
4056       if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
4057       iDataCur = -1;
4058     }
4059     if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
4060     v = pParse->pVdbe;
4061     assert( v!=0 );
4062     if( p->bMaybeNullRow ){
4063       /* If the index is on a NULL row due to an outer join, then we
4064       ** cannot extract the value from the index.  The value must be
4065       ** computed using the original expression. */
4066       int addr = sqlite3VdbeCurrentAddr(v);
4067       sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
4068       VdbeCoverage(v);
4069       sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4070       VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4071       sqlite3VdbeGoto(v, 0);
4072       p = pParse->pIdxExpr;
4073       pParse->pIdxExpr = 0;
4074       sqlite3ExprCode(pParse, pExpr, target);
4075       pParse->pIdxExpr = p;
4076       sqlite3VdbeJumpHere(v, addr+2);
4077     }else{
4078       sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4079       VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4080     }
4081     return target;
4082   }
4083   return -1;  /* Not found */
4084 }
4085 
4086 
4087 /*
4088 ** Generate code into the current Vdbe to evaluate the given
4089 ** expression.  Attempt to store the results in register "target".
4090 ** Return the register where results are stored.
4091 **
4092 ** With this routine, there is no guarantee that results will
4093 ** be stored in target.  The result might be stored in some other
4094 ** register if it is convenient to do so.  The calling function
4095 ** must check the return code and move the results to the desired
4096 ** register.
4097 */
sqlite3ExprCodeTarget(Parse * pParse,Expr * pExpr,int target)4098 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4099   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4100   int op;                   /* The opcode being coded */
4101   int inReg = target;       /* Results stored in register inReg */
4102   int regFree1 = 0;         /* If non-zero free this temporary register */
4103   int regFree2 = 0;         /* If non-zero free this temporary register */
4104   int r1, r2;               /* Various register numbers */
4105   Expr tempX;               /* Temporary expression node */
4106   int p5 = 0;
4107 
4108   assert( target>0 && target<=pParse->nMem );
4109   assert( v!=0 );
4110 
4111 expr_code_doover:
4112   if( pExpr==0 ){
4113     op = TK_NULL;
4114   }else if( pParse->pIdxExpr!=0
4115    && !ExprHasProperty(pExpr, EP_Leaf)
4116    && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
4117   ){
4118     return r1;
4119   }else{
4120     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4121     op = pExpr->op;
4122   }
4123   switch( op ){
4124     case TK_AGG_COLUMN: {
4125       AggInfo *pAggInfo = pExpr->pAggInfo;
4126       struct AggInfo_col *pCol;
4127       assert( pAggInfo!=0 );
4128       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4129       pCol = &pAggInfo->aCol[pExpr->iAgg];
4130       if( !pAggInfo->directMode ){
4131         assert( pCol->iMem>0 );
4132         return pCol->iMem;
4133       }else if( pAggInfo->useSortingIdx ){
4134         Table *pTab = pCol->pTab;
4135         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4136                               pCol->iSorterColumn, target);
4137         if( pCol->iColumn<0 ){
4138           VdbeComment((v,"%s.rowid",pTab->zName));
4139         }else if( ALWAYS(pTab!=0) ){
4140           VdbeComment((v,"%s.%s",
4141               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4142           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4143             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4144           }
4145         }
4146         return target;
4147       }
4148       /* Otherwise, fall thru into the TK_COLUMN case */
4149       /* no break */ deliberate_fall_through
4150     }
4151     case TK_COLUMN: {
4152       int iTab = pExpr->iTable;
4153       int iReg;
4154       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4155         /* This COLUMN expression is really a constant due to WHERE clause
4156         ** constraints, and that constant is coded by the pExpr->pLeft
4157         ** expresssion.  However, make sure the constant has the correct
4158         ** datatype by applying the Affinity of the table column to the
4159         ** constant.
4160         */
4161         int aff;
4162         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4163         assert( ExprUseYTab(pExpr) );
4164         assert( pExpr->y.pTab!=0 );
4165         aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4166         if( aff>SQLITE_AFF_BLOB ){
4167           static const char zAff[] = "B\000C\000D\000E";
4168           assert( SQLITE_AFF_BLOB=='A' );
4169           assert( SQLITE_AFF_TEXT=='B' );
4170           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4171                             &zAff[(aff-'B')*2], P4_STATIC);
4172         }
4173         return iReg;
4174       }
4175       if( iTab<0 ){
4176         if( pParse->iSelfTab<0 ){
4177           /* Other columns in the same row for CHECK constraints or
4178           ** generated columns or for inserting into partial index.
4179           ** The row is unpacked into registers beginning at
4180           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4181           ** immediately prior to the first column.
4182           */
4183           Column *pCol;
4184           Table *pTab;
4185           int iSrc;
4186           int iCol = pExpr->iColumn;
4187           assert( ExprUseYTab(pExpr) );
4188           pTab = pExpr->y.pTab;
4189           assert( pTab!=0 );
4190           assert( iCol>=XN_ROWID );
4191           assert( iCol<pTab->nCol );
4192           if( iCol<0 ){
4193             return -1-pParse->iSelfTab;
4194           }
4195           pCol = pTab->aCol + iCol;
4196           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4197           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4198 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4199           if( pCol->colFlags & COLFLAG_GENERATED ){
4200             if( pCol->colFlags & COLFLAG_BUSY ){
4201               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4202                               pCol->zCnName);
4203               return 0;
4204             }
4205             pCol->colFlags |= COLFLAG_BUSY;
4206             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4207               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4208             }
4209             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4210             return iSrc;
4211           }else
4212 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4213           if( pCol->affinity==SQLITE_AFF_REAL ){
4214             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4215             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4216             return target;
4217           }else{
4218             return iSrc;
4219           }
4220         }else{
4221           /* Coding an expression that is part of an index where column names
4222           ** in the index refer to the table to which the index belongs */
4223           iTab = pParse->iSelfTab - 1;
4224         }
4225       }
4226       assert( ExprUseYTab(pExpr) );
4227       assert( pExpr->y.pTab!=0 );
4228       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4229                                pExpr->iColumn, iTab, target,
4230                                pExpr->op2);
4231       return iReg;
4232     }
4233     case TK_INTEGER: {
4234       codeInteger(pParse, pExpr, 0, target);
4235       return target;
4236     }
4237     case TK_TRUEFALSE: {
4238       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4239       return target;
4240     }
4241 #ifndef SQLITE_OMIT_FLOATING_POINT
4242     case TK_FLOAT: {
4243       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4244       codeReal(v, pExpr->u.zToken, 0, target);
4245       return target;
4246     }
4247 #endif
4248     case TK_STRING: {
4249       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4250       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4251       return target;
4252     }
4253     default: {
4254       /* Make NULL the default case so that if a bug causes an illegal
4255       ** Expr node to be passed into this function, it will be handled
4256       ** sanely and not crash.  But keep the assert() to bring the problem
4257       ** to the attention of the developers. */
4258       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4259       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4260       return target;
4261     }
4262 #ifndef SQLITE_OMIT_BLOB_LITERAL
4263     case TK_BLOB: {
4264       int n;
4265       const char *z;
4266       char *zBlob;
4267       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4268       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4269       assert( pExpr->u.zToken[1]=='\'' );
4270       z = &pExpr->u.zToken[2];
4271       n = sqlite3Strlen30(z) - 1;
4272       assert( z[n]=='\'' );
4273       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4274       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4275       return target;
4276     }
4277 #endif
4278     case TK_VARIABLE: {
4279       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4280       assert( pExpr->u.zToken!=0 );
4281       assert( pExpr->u.zToken[0]!=0 );
4282       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4283       if( pExpr->u.zToken[1]!=0 ){
4284         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4285         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4286         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4287         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4288       }
4289       return target;
4290     }
4291     case TK_REGISTER: {
4292       return pExpr->iTable;
4293     }
4294 #ifndef SQLITE_OMIT_CAST
4295     case TK_CAST: {
4296       /* Expressions of the form:   CAST(pLeft AS token) */
4297       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4298       if( inReg!=target ){
4299         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4300         inReg = target;
4301       }
4302       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4303       sqlite3VdbeAddOp2(v, OP_Cast, target,
4304                         sqlite3AffinityType(pExpr->u.zToken, 0));
4305       return inReg;
4306     }
4307 #endif /* SQLITE_OMIT_CAST */
4308     case TK_IS:
4309     case TK_ISNOT:
4310       op = (op==TK_IS) ? TK_EQ : TK_NE;
4311       p5 = SQLITE_NULLEQ;
4312       /* fall-through */
4313     case TK_LT:
4314     case TK_LE:
4315     case TK_GT:
4316     case TK_GE:
4317     case TK_NE:
4318     case TK_EQ: {
4319       Expr *pLeft = pExpr->pLeft;
4320       if( sqlite3ExprIsVector(pLeft) ){
4321         codeVectorCompare(pParse, pExpr, target, op, p5);
4322       }else{
4323         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4324         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4325         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4326         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4327             sqlite3VdbeCurrentAddr(v)+2, p5,
4328             ExprHasProperty(pExpr,EP_Commuted));
4329         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4330         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4331         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4332         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4333         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4334         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4335         if( p5==SQLITE_NULLEQ ){
4336           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4337         }else{
4338           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4339         }
4340         testcase( regFree1==0 );
4341         testcase( regFree2==0 );
4342       }
4343       break;
4344     }
4345     case TK_AND:
4346     case TK_OR:
4347     case TK_PLUS:
4348     case TK_STAR:
4349     case TK_MINUS:
4350     case TK_REM:
4351     case TK_BITAND:
4352     case TK_BITOR:
4353     case TK_SLASH:
4354     case TK_LSHIFT:
4355     case TK_RSHIFT:
4356     case TK_CONCAT: {
4357       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4358       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4359       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4360       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4361       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4362       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4363       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4364       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4365       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4366       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4367       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4368       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4369       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4370       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4371       testcase( regFree1==0 );
4372       testcase( regFree2==0 );
4373       break;
4374     }
4375     case TK_UMINUS: {
4376       Expr *pLeft = pExpr->pLeft;
4377       assert( pLeft );
4378       if( pLeft->op==TK_INTEGER ){
4379         codeInteger(pParse, pLeft, 1, target);
4380         return target;
4381 #ifndef SQLITE_OMIT_FLOATING_POINT
4382       }else if( pLeft->op==TK_FLOAT ){
4383         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4384         codeReal(v, pLeft->u.zToken, 1, target);
4385         return target;
4386 #endif
4387       }else{
4388         tempX.op = TK_INTEGER;
4389         tempX.flags = EP_IntValue|EP_TokenOnly;
4390         tempX.u.iValue = 0;
4391         ExprClearVVAProperties(&tempX);
4392         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4393         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4394         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4395         testcase( regFree2==0 );
4396       }
4397       break;
4398     }
4399     case TK_BITNOT:
4400     case TK_NOT: {
4401       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4402       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4403       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4404       testcase( regFree1==0 );
4405       sqlite3VdbeAddOp2(v, op, r1, inReg);
4406       break;
4407     }
4408     case TK_TRUTH: {
4409       int isTrue;    /* IS TRUE or IS NOT TRUE */
4410       int bNormal;   /* IS TRUE or IS FALSE */
4411       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4412       testcase( regFree1==0 );
4413       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4414       bNormal = pExpr->op2==TK_IS;
4415       testcase( isTrue && bNormal);
4416       testcase( !isTrue && bNormal);
4417       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4418       break;
4419     }
4420     case TK_ISNULL:
4421     case TK_NOTNULL: {
4422       int addr;
4423       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4424       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4425       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4426       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4427       testcase( regFree1==0 );
4428       addr = sqlite3VdbeAddOp1(v, op, r1);
4429       VdbeCoverageIf(v, op==TK_ISNULL);
4430       VdbeCoverageIf(v, op==TK_NOTNULL);
4431       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4432       sqlite3VdbeJumpHere(v, addr);
4433       break;
4434     }
4435     case TK_AGG_FUNCTION: {
4436       AggInfo *pInfo = pExpr->pAggInfo;
4437       if( pInfo==0
4438        || NEVER(pExpr->iAgg<0)
4439        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4440       ){
4441         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4442         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4443       }else{
4444         return pInfo->aFunc[pExpr->iAgg].iMem;
4445       }
4446       break;
4447     }
4448     case TK_FUNCTION: {
4449       ExprList *pFarg;       /* List of function arguments */
4450       int nFarg;             /* Number of function arguments */
4451       FuncDef *pDef;         /* The function definition object */
4452       const char *zId;       /* The function name */
4453       u32 constMask = 0;     /* Mask of function arguments that are constant */
4454       int i;                 /* Loop counter */
4455       sqlite3 *db = pParse->db;  /* The database connection */
4456       u8 enc = ENC(db);      /* The text encoding used by this database */
4457       CollSeq *pColl = 0;    /* A collating sequence */
4458 
4459 #ifndef SQLITE_OMIT_WINDOWFUNC
4460       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4461         return pExpr->y.pWin->regResult;
4462       }
4463 #endif
4464 
4465       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4466         /* SQL functions can be expensive. So try to avoid running them
4467         ** multiple times if we know they always give the same result */
4468         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4469       }
4470       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4471       assert( ExprUseXList(pExpr) );
4472       pFarg = pExpr->x.pList;
4473       nFarg = pFarg ? pFarg->nExpr : 0;
4474       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4475       zId = pExpr->u.zToken;
4476       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4477 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4478       if( pDef==0 && pParse->explain ){
4479         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4480       }
4481 #endif
4482       if( pDef==0 || pDef->xFinalize!=0 ){
4483         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4484         break;
4485       }
4486       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4487         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4488         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4489         return exprCodeInlineFunction(pParse, pFarg,
4490              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4491       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4492         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4493       }
4494 
4495       for(i=0; i<nFarg; i++){
4496         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4497           testcase( i==31 );
4498           constMask |= MASKBIT32(i);
4499         }
4500         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4501           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4502         }
4503       }
4504       if( pFarg ){
4505         if( constMask ){
4506           r1 = pParse->nMem+1;
4507           pParse->nMem += nFarg;
4508         }else{
4509           r1 = sqlite3GetTempRange(pParse, nFarg);
4510         }
4511 
4512         /* For length() and typeof() functions with a column argument,
4513         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4514         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4515         ** loading.
4516         */
4517         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4518           u8 exprOp;
4519           assert( nFarg==1 );
4520           assert( pFarg->a[0].pExpr!=0 );
4521           exprOp = pFarg->a[0].pExpr->op;
4522           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4523             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4524             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4525             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4526             pFarg->a[0].pExpr->op2 =
4527                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4528           }
4529         }
4530 
4531         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4532                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4533       }else{
4534         r1 = 0;
4535       }
4536 #ifndef SQLITE_OMIT_VIRTUALTABLE
4537       /* Possibly overload the function if the first argument is
4538       ** a virtual table column.
4539       **
4540       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4541       ** second argument, not the first, as the argument to test to
4542       ** see if it is a column in a virtual table.  This is done because
4543       ** the left operand of infix functions (the operand we want to
4544       ** control overloading) ends up as the second argument to the
4545       ** function.  The expression "A glob B" is equivalent to
4546       ** "glob(B,A).  We want to use the A in "A glob B" to test
4547       ** for function overloading.  But we use the B term in "glob(B,A)".
4548       */
4549       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4550         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4551       }else if( nFarg>0 ){
4552         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4553       }
4554 #endif
4555       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4556         if( !pColl ) pColl = db->pDfltColl;
4557         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4558       }
4559       sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4560                                  pDef, pExpr->op2);
4561       if( nFarg ){
4562         if( constMask==0 ){
4563           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4564         }else{
4565           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4566         }
4567       }
4568       return target;
4569     }
4570 #ifndef SQLITE_OMIT_SUBQUERY
4571     case TK_EXISTS:
4572     case TK_SELECT: {
4573       int nCol;
4574       testcase( op==TK_EXISTS );
4575       testcase( op==TK_SELECT );
4576       if( pParse->db->mallocFailed ){
4577         return 0;
4578       }else if( op==TK_SELECT
4579              && ALWAYS( ExprUseXSelect(pExpr) )
4580              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4581       ){
4582         sqlite3SubselectError(pParse, nCol, 1);
4583       }else{
4584         return sqlite3CodeSubselect(pParse, pExpr);
4585       }
4586       break;
4587     }
4588     case TK_SELECT_COLUMN: {
4589       int n;
4590       Expr *pLeft = pExpr->pLeft;
4591       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4592         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4593         pLeft->op2 = pParse->withinRJSubrtn;
4594       }
4595       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4596       n = sqlite3ExprVectorSize(pLeft);
4597       if( pExpr->iTable!=n ){
4598         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4599                                 pExpr->iTable, n);
4600       }
4601       return pLeft->iTable + pExpr->iColumn;
4602     }
4603     case TK_IN: {
4604       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4605       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4606       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4607       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4608       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4609       sqlite3VdbeResolveLabel(v, destIfFalse);
4610       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4611       sqlite3VdbeResolveLabel(v, destIfNull);
4612       return target;
4613     }
4614 #endif /* SQLITE_OMIT_SUBQUERY */
4615 
4616 
4617     /*
4618     **    x BETWEEN y AND z
4619     **
4620     ** This is equivalent to
4621     **
4622     **    x>=y AND x<=z
4623     **
4624     ** X is stored in pExpr->pLeft.
4625     ** Y is stored in pExpr->pList->a[0].pExpr.
4626     ** Z is stored in pExpr->pList->a[1].pExpr.
4627     */
4628     case TK_BETWEEN: {
4629       exprCodeBetween(pParse, pExpr, target, 0, 0);
4630       return target;
4631     }
4632     case TK_COLLATE: {
4633       if( !ExprHasProperty(pExpr, EP_Collate)
4634        && ALWAYS(pExpr->pLeft)
4635        && pExpr->pLeft->op==TK_FUNCTION
4636       ){
4637         inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4638         if( inReg!=target ){
4639           sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4640           inReg = target;
4641         }
4642         sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4643         return inReg;
4644       }else{
4645         pExpr = pExpr->pLeft;
4646         goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4647       }
4648     }
4649     case TK_SPAN:
4650     case TK_UPLUS: {
4651       pExpr = pExpr->pLeft;
4652       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4653     }
4654 
4655     case TK_TRIGGER: {
4656       /* If the opcode is TK_TRIGGER, then the expression is a reference
4657       ** to a column in the new.* or old.* pseudo-tables available to
4658       ** trigger programs. In this case Expr.iTable is set to 1 for the
4659       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4660       ** is set to the column of the pseudo-table to read, or to -1 to
4661       ** read the rowid field.
4662       **
4663       ** The expression is implemented using an OP_Param opcode. The p1
4664       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4665       ** to reference another column of the old.* pseudo-table, where
4666       ** i is the index of the column. For a new.rowid reference, p1 is
4667       ** set to (n+1), where n is the number of columns in each pseudo-table.
4668       ** For a reference to any other column in the new.* pseudo-table, p1
4669       ** is set to (n+2+i), where n and i are as defined previously. For
4670       ** example, if the table on which triggers are being fired is
4671       ** declared as:
4672       **
4673       **   CREATE TABLE t1(a, b);
4674       **
4675       ** Then p1 is interpreted as follows:
4676       **
4677       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4678       **   p1==1   ->    old.a         p1==4   ->    new.a
4679       **   p1==2   ->    old.b         p1==5   ->    new.b
4680       */
4681       Table *pTab;
4682       int iCol;
4683       int p1;
4684 
4685       assert( ExprUseYTab(pExpr) );
4686       pTab = pExpr->y.pTab;
4687       iCol = pExpr->iColumn;
4688       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4689                      + sqlite3TableColumnToStorage(pTab, iCol);
4690 
4691       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4692       assert( iCol>=-1 && iCol<pTab->nCol );
4693       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4694       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4695 
4696       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4697       VdbeComment((v, "r[%d]=%s.%s", target,
4698         (pExpr->iTable ? "new" : "old"),
4699         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4700       ));
4701 
4702 #ifndef SQLITE_OMIT_FLOATING_POINT
4703       /* If the column has REAL affinity, it may currently be stored as an
4704       ** integer. Use OP_RealAffinity to make sure it is really real.
4705       **
4706       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4707       ** floating point when extracting it from the record.  */
4708       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4709         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4710       }
4711 #endif
4712       break;
4713     }
4714 
4715     case TK_VECTOR: {
4716       sqlite3ErrorMsg(pParse, "row value misused");
4717       break;
4718     }
4719 
4720     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4721     ** that derive from the right-hand table of a LEFT JOIN.  The
4722     ** Expr.iTable value is the table number for the right-hand table.
4723     ** The expression is only evaluated if that table is not currently
4724     ** on a LEFT JOIN NULL row.
4725     */
4726     case TK_IF_NULL_ROW: {
4727       int addrINR;
4728       u8 okConstFactor = pParse->okConstFactor;
4729       AggInfo *pAggInfo = pExpr->pAggInfo;
4730       if( pAggInfo ){
4731         assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4732         if( !pAggInfo->directMode ){
4733           inReg = pAggInfo->aCol[pExpr->iAgg].iMem;
4734           break;
4735         }
4736         if( pExpr->pAggInfo->useSortingIdx ){
4737           sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4738                             pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
4739                             target);
4740           inReg = target;
4741           break;
4742         }
4743       }
4744       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4745       /* Temporarily disable factoring of constant expressions, since
4746       ** even though expressions may appear to be constant, they are not
4747       ** really constant because they originate from the right-hand side
4748       ** of a LEFT JOIN. */
4749       pParse->okConstFactor = 0;
4750       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4751       pParse->okConstFactor = okConstFactor;
4752       sqlite3VdbeJumpHere(v, addrINR);
4753       sqlite3VdbeChangeP3(v, addrINR, inReg);
4754       break;
4755     }
4756 
4757     /*
4758     ** Form A:
4759     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4760     **
4761     ** Form B:
4762     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4763     **
4764     ** Form A is can be transformed into the equivalent form B as follows:
4765     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4766     **        WHEN x=eN THEN rN ELSE y END
4767     **
4768     ** X (if it exists) is in pExpr->pLeft.
4769     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4770     ** odd.  The Y is also optional.  If the number of elements in x.pList
4771     ** is even, then Y is omitted and the "otherwise" result is NULL.
4772     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4773     **
4774     ** The result of the expression is the Ri for the first matching Ei,
4775     ** or if there is no matching Ei, the ELSE term Y, or if there is
4776     ** no ELSE term, NULL.
4777     */
4778     case TK_CASE: {
4779       int endLabel;                     /* GOTO label for end of CASE stmt */
4780       int nextCase;                     /* GOTO label for next WHEN clause */
4781       int nExpr;                        /* 2x number of WHEN terms */
4782       int i;                            /* Loop counter */
4783       ExprList *pEList;                 /* List of WHEN terms */
4784       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4785       Expr opCompare;                   /* The X==Ei expression */
4786       Expr *pX;                         /* The X expression */
4787       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4788       Expr *pDel = 0;
4789       sqlite3 *db = pParse->db;
4790 
4791       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4792       assert(pExpr->x.pList->nExpr > 0);
4793       pEList = pExpr->x.pList;
4794       aListelem = pEList->a;
4795       nExpr = pEList->nExpr;
4796       endLabel = sqlite3VdbeMakeLabel(pParse);
4797       if( (pX = pExpr->pLeft)!=0 ){
4798         pDel = sqlite3ExprDup(db, pX, 0);
4799         if( db->mallocFailed ){
4800           sqlite3ExprDelete(db, pDel);
4801           break;
4802         }
4803         testcase( pX->op==TK_COLUMN );
4804         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4805         testcase( regFree1==0 );
4806         memset(&opCompare, 0, sizeof(opCompare));
4807         opCompare.op = TK_EQ;
4808         opCompare.pLeft = pDel;
4809         pTest = &opCompare;
4810         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4811         ** The value in regFree1 might get SCopy-ed into the file result.
4812         ** So make sure that the regFree1 register is not reused for other
4813         ** purposes and possibly overwritten.  */
4814         regFree1 = 0;
4815       }
4816       for(i=0; i<nExpr-1; i=i+2){
4817         if( pX ){
4818           assert( pTest!=0 );
4819           opCompare.pRight = aListelem[i].pExpr;
4820         }else{
4821           pTest = aListelem[i].pExpr;
4822         }
4823         nextCase = sqlite3VdbeMakeLabel(pParse);
4824         testcase( pTest->op==TK_COLUMN );
4825         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4826         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4827         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4828         sqlite3VdbeGoto(v, endLabel);
4829         sqlite3VdbeResolveLabel(v, nextCase);
4830       }
4831       if( (nExpr&1)!=0 ){
4832         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4833       }else{
4834         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4835       }
4836       sqlite3ExprDelete(db, pDel);
4837       setDoNotMergeFlagOnCopy(v);
4838       sqlite3VdbeResolveLabel(v, endLabel);
4839       break;
4840     }
4841 #ifndef SQLITE_OMIT_TRIGGER
4842     case TK_RAISE: {
4843       assert( pExpr->affExpr==OE_Rollback
4844            || pExpr->affExpr==OE_Abort
4845            || pExpr->affExpr==OE_Fail
4846            || pExpr->affExpr==OE_Ignore
4847       );
4848       if( !pParse->pTriggerTab && !pParse->nested ){
4849         sqlite3ErrorMsg(pParse,
4850                        "RAISE() may only be used within a trigger-program");
4851         return 0;
4852       }
4853       if( pExpr->affExpr==OE_Abort ){
4854         sqlite3MayAbort(pParse);
4855       }
4856       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4857       if( pExpr->affExpr==OE_Ignore ){
4858         sqlite3VdbeAddOp4(
4859             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4860         VdbeCoverage(v);
4861       }else{
4862         sqlite3HaltConstraint(pParse,
4863              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4864              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4865       }
4866 
4867       break;
4868     }
4869 #endif
4870   }
4871   sqlite3ReleaseTempReg(pParse, regFree1);
4872   sqlite3ReleaseTempReg(pParse, regFree2);
4873   return inReg;
4874 }
4875 
4876 /*
4877 ** Generate code that will evaluate expression pExpr just one time
4878 ** per prepared statement execution.
4879 **
4880 ** If the expression uses functions (that might throw an exception) then
4881 ** guard them with an OP_Once opcode to ensure that the code is only executed
4882 ** once. If no functions are involved, then factor the code out and put it at
4883 ** the end of the prepared statement in the initialization section.
4884 **
4885 ** If regDest>=0 then the result is always stored in that register and the
4886 ** result is not reusable.  If regDest<0 then this routine is free to
4887 ** store the value whereever it wants.  The register where the expression
4888 ** is stored is returned.  When regDest<0, two identical expressions might
4889 ** code to the same register, if they do not contain function calls and hence
4890 ** are factored out into the initialization section at the end of the
4891 ** prepared statement.
4892 */
sqlite3ExprCodeRunJustOnce(Parse * pParse,Expr * pExpr,int regDest)4893 int sqlite3ExprCodeRunJustOnce(
4894   Parse *pParse,    /* Parsing context */
4895   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4896   int regDest       /* Store the value in this register */
4897 ){
4898   ExprList *p;
4899   assert( ConstFactorOk(pParse) );
4900   p = pParse->pConstExpr;
4901   if( regDest<0 && p ){
4902     struct ExprList_item *pItem;
4903     int i;
4904     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4905       if( pItem->fg.reusable
4906        && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
4907       ){
4908         return pItem->u.iConstExprReg;
4909       }
4910     }
4911   }
4912   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4913   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4914     Vdbe *v = pParse->pVdbe;
4915     int addr;
4916     assert( v );
4917     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4918     pParse->okConstFactor = 0;
4919     if( !pParse->db->mallocFailed ){
4920       if( regDest<0 ) regDest = ++pParse->nMem;
4921       sqlite3ExprCode(pParse, pExpr, regDest);
4922     }
4923     pParse->okConstFactor = 1;
4924     sqlite3ExprDelete(pParse->db, pExpr);
4925     sqlite3VdbeJumpHere(v, addr);
4926   }else{
4927     p = sqlite3ExprListAppend(pParse, p, pExpr);
4928     if( p ){
4929        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4930        pItem->fg.reusable = regDest<0;
4931        if( regDest<0 ) regDest = ++pParse->nMem;
4932        pItem->u.iConstExprReg = regDest;
4933     }
4934     pParse->pConstExpr = p;
4935   }
4936   return regDest;
4937 }
4938 
4939 /*
4940 ** Generate code to evaluate an expression and store the results
4941 ** into a register.  Return the register number where the results
4942 ** are stored.
4943 **
4944 ** If the register is a temporary register that can be deallocated,
4945 ** then write its number into *pReg.  If the result register is not
4946 ** a temporary, then set *pReg to zero.
4947 **
4948 ** If pExpr is a constant, then this routine might generate this
4949 ** code to fill the register in the initialization section of the
4950 ** VDBE program, in order to factor it out of the evaluation loop.
4951 */
sqlite3ExprCodeTemp(Parse * pParse,Expr * pExpr,int * pReg)4952 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4953   int r2;
4954   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4955   if( ConstFactorOk(pParse)
4956    && ALWAYS(pExpr!=0)
4957    && pExpr->op!=TK_REGISTER
4958    && sqlite3ExprIsConstantNotJoin(pExpr)
4959   ){
4960     *pReg  = 0;
4961     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4962   }else{
4963     int r1 = sqlite3GetTempReg(pParse);
4964     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4965     if( r2==r1 ){
4966       *pReg = r1;
4967     }else{
4968       sqlite3ReleaseTempReg(pParse, r1);
4969       *pReg = 0;
4970     }
4971   }
4972   return r2;
4973 }
4974 
4975 /*
4976 ** Generate code that will evaluate expression pExpr and store the
4977 ** results in register target.  The results are guaranteed to appear
4978 ** in register target.
4979 */
sqlite3ExprCode(Parse * pParse,Expr * pExpr,int target)4980 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4981   int inReg;
4982 
4983   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4984   assert( target>0 && target<=pParse->nMem );
4985   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4986   if( pParse->pVdbe==0 ) return;
4987   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4988   if( inReg!=target ){
4989     u8 op;
4990     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4991       op = OP_Copy;
4992     }else{
4993       op = OP_SCopy;
4994     }
4995     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4996   }
4997 }
4998 
4999 /*
5000 ** Make a transient copy of expression pExpr and then code it using
5001 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
5002 ** except that the input expression is guaranteed to be unchanged.
5003 */
sqlite3ExprCodeCopy(Parse * pParse,Expr * pExpr,int target)5004 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
5005   sqlite3 *db = pParse->db;
5006   pExpr = sqlite3ExprDup(db, pExpr, 0);
5007   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
5008   sqlite3ExprDelete(db, pExpr);
5009 }
5010 
5011 /*
5012 ** Generate code that will evaluate expression pExpr and store the
5013 ** results in register target.  The results are guaranteed to appear
5014 ** in register target.  If the expression is constant, then this routine
5015 ** might choose to code the expression at initialization time.
5016 */
sqlite3ExprCodeFactorable(Parse * pParse,Expr * pExpr,int target)5017 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
5018   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
5019     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
5020   }else{
5021     sqlite3ExprCodeCopy(pParse, pExpr, target);
5022   }
5023 }
5024 
5025 /*
5026 ** Generate code that pushes the value of every element of the given
5027 ** expression list into a sequence of registers beginning at target.
5028 **
5029 ** Return the number of elements evaluated.  The number returned will
5030 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5031 ** is defined.
5032 **
5033 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5034 ** filled using OP_SCopy.  OP_Copy must be used instead.
5035 **
5036 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5037 ** factored out into initialization code.
5038 **
5039 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5040 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5041 ** in registers at srcReg, and so the value can be copied from there.
5042 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5043 ** are simply omitted rather than being copied from srcReg.
5044 */
sqlite3ExprCodeExprList(Parse * pParse,ExprList * pList,int target,int srcReg,u8 flags)5045 int sqlite3ExprCodeExprList(
5046   Parse *pParse,     /* Parsing context */
5047   ExprList *pList,   /* The expression list to be coded */
5048   int target,        /* Where to write results */
5049   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
5050   u8 flags           /* SQLITE_ECEL_* flags */
5051 ){
5052   struct ExprList_item *pItem;
5053   int i, j, n;
5054   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5055   Vdbe *v = pParse->pVdbe;
5056   assert( pList!=0 );
5057   assert( target>0 );
5058   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
5059   n = pList->nExpr;
5060   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5061   for(pItem=pList->a, i=0; i<n; i++, pItem++){
5062     Expr *pExpr = pItem->pExpr;
5063 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5064     if( pItem->fg.bSorterRef ){
5065       i--;
5066       n--;
5067     }else
5068 #endif
5069     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5070       if( flags & SQLITE_ECEL_OMITREF ){
5071         i--;
5072         n--;
5073       }else{
5074         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5075       }
5076     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5077            && sqlite3ExprIsConstantNotJoin(pExpr)
5078     ){
5079       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5080     }else{
5081       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5082       if( inReg!=target+i ){
5083         VdbeOp *pOp;
5084         if( copyOp==OP_Copy
5085          && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5086          && pOp->p1+pOp->p3+1==inReg
5087          && pOp->p2+pOp->p3+1==target+i
5088          && pOp->p5==0  /* The do-not-merge flag must be clear */
5089         ){
5090           pOp->p3++;
5091         }else{
5092           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5093         }
5094       }
5095     }
5096   }
5097   return n;
5098 }
5099 
5100 /*
5101 ** Generate code for a BETWEEN operator.
5102 **
5103 **    x BETWEEN y AND z
5104 **
5105 ** The above is equivalent to
5106 **
5107 **    x>=y AND x<=z
5108 **
5109 ** Code it as such, taking care to do the common subexpression
5110 ** elimination of x.
5111 **
5112 ** The xJumpIf parameter determines details:
5113 **
5114 **    NULL:                   Store the boolean result in reg[dest]
5115 **    sqlite3ExprIfTrue:      Jump to dest if true
5116 **    sqlite3ExprIfFalse:     Jump to dest if false
5117 **
5118 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5119 */
exprCodeBetween(Parse * pParse,Expr * pExpr,int dest,void (* xJump)(Parse *,Expr *,int,int),int jumpIfNull)5120 static void exprCodeBetween(
5121   Parse *pParse,    /* Parsing and code generating context */
5122   Expr *pExpr,      /* The BETWEEN expression */
5123   int dest,         /* Jump destination or storage location */
5124   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5125   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5126 ){
5127   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5128   Expr compLeft;    /* The  x>=y  term */
5129   Expr compRight;   /* The  x<=z  term */
5130   int regFree1 = 0; /* Temporary use register */
5131   Expr *pDel = 0;
5132   sqlite3 *db = pParse->db;
5133 
5134   memset(&compLeft, 0, sizeof(Expr));
5135   memset(&compRight, 0, sizeof(Expr));
5136   memset(&exprAnd, 0, sizeof(Expr));
5137 
5138   assert( ExprUseXList(pExpr) );
5139   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5140   if( db->mallocFailed==0 ){
5141     exprAnd.op = TK_AND;
5142     exprAnd.pLeft = &compLeft;
5143     exprAnd.pRight = &compRight;
5144     compLeft.op = TK_GE;
5145     compLeft.pLeft = pDel;
5146     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5147     compRight.op = TK_LE;
5148     compRight.pLeft = pDel;
5149     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5150     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5151     if( xJump ){
5152       xJump(pParse, &exprAnd, dest, jumpIfNull);
5153     }else{
5154       /* Mark the expression is being from the ON or USING clause of a join
5155       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5156       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5157       ** for clarity, but we are out of bits in the Expr.flags field so we
5158       ** have to reuse the EP_OuterON bit.  Bummer. */
5159       pDel->flags |= EP_OuterON;
5160       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5161     }
5162     sqlite3ReleaseTempReg(pParse, regFree1);
5163   }
5164   sqlite3ExprDelete(db, pDel);
5165 
5166   /* Ensure adequate test coverage */
5167   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5168   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5169   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5170   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5171   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5172   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5173   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5174   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5175   testcase( xJump==0 );
5176 }
5177 
5178 /*
5179 ** Generate code for a boolean expression such that a jump is made
5180 ** to the label "dest" if the expression is true but execution
5181 ** continues straight thru if the expression is false.
5182 **
5183 ** If the expression evaluates to NULL (neither true nor false), then
5184 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5185 **
5186 ** This code depends on the fact that certain token values (ex: TK_EQ)
5187 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5188 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5189 ** the make process cause these values to align.  Assert()s in the code
5190 ** below verify that the numbers are aligned correctly.
5191 */
sqlite3ExprIfTrue(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)5192 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5193   Vdbe *v = pParse->pVdbe;
5194   int op = 0;
5195   int regFree1 = 0;
5196   int regFree2 = 0;
5197   int r1, r2;
5198 
5199   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5200   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5201   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5202   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5203   op = pExpr->op;
5204   switch( op ){
5205     case TK_AND:
5206     case TK_OR: {
5207       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5208       if( pAlt!=pExpr ){
5209         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5210       }else if( op==TK_AND ){
5211         int d2 = sqlite3VdbeMakeLabel(pParse);
5212         testcase( jumpIfNull==0 );
5213         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5214                            jumpIfNull^SQLITE_JUMPIFNULL);
5215         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5216         sqlite3VdbeResolveLabel(v, d2);
5217       }else{
5218         testcase( jumpIfNull==0 );
5219         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5220         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5221       }
5222       break;
5223     }
5224     case TK_NOT: {
5225       testcase( jumpIfNull==0 );
5226       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5227       break;
5228     }
5229     case TK_TRUTH: {
5230       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5231       int isTrue;     /* IS TRUE or IS NOT TRUE */
5232       testcase( jumpIfNull==0 );
5233       isNot = pExpr->op2==TK_ISNOT;
5234       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5235       testcase( isTrue && isNot );
5236       testcase( !isTrue && isNot );
5237       if( isTrue ^ isNot ){
5238         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5239                           isNot ? SQLITE_JUMPIFNULL : 0);
5240       }else{
5241         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5242                            isNot ? SQLITE_JUMPIFNULL : 0);
5243       }
5244       break;
5245     }
5246     case TK_IS:
5247     case TK_ISNOT:
5248       testcase( op==TK_IS );
5249       testcase( op==TK_ISNOT );
5250       op = (op==TK_IS) ? TK_EQ : TK_NE;
5251       jumpIfNull = SQLITE_NULLEQ;
5252       /* no break */ deliberate_fall_through
5253     case TK_LT:
5254     case TK_LE:
5255     case TK_GT:
5256     case TK_GE:
5257     case TK_NE:
5258     case TK_EQ: {
5259       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5260       testcase( jumpIfNull==0 );
5261       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5262       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5263       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5264                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5265       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5266       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5267       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5268       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5269       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5270       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5271       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5272       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5273       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5274       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5275       testcase( regFree1==0 );
5276       testcase( regFree2==0 );
5277       break;
5278     }
5279     case TK_ISNULL:
5280     case TK_NOTNULL: {
5281       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5282       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5283       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5284       sqlite3VdbeTypeofColumn(v, r1);
5285       sqlite3VdbeAddOp2(v, op, r1, dest);
5286       VdbeCoverageIf(v, op==TK_ISNULL);
5287       VdbeCoverageIf(v, op==TK_NOTNULL);
5288       testcase( regFree1==0 );
5289       break;
5290     }
5291     case TK_BETWEEN: {
5292       testcase( jumpIfNull==0 );
5293       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5294       break;
5295     }
5296 #ifndef SQLITE_OMIT_SUBQUERY
5297     case TK_IN: {
5298       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5299       int destIfNull = jumpIfNull ? dest : destIfFalse;
5300       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5301       sqlite3VdbeGoto(v, dest);
5302       sqlite3VdbeResolveLabel(v, destIfFalse);
5303       break;
5304     }
5305 #endif
5306     default: {
5307     default_expr:
5308       if( ExprAlwaysTrue(pExpr) ){
5309         sqlite3VdbeGoto(v, dest);
5310       }else if( ExprAlwaysFalse(pExpr) ){
5311         /* No-op */
5312       }else{
5313         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5314         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5315         VdbeCoverage(v);
5316         testcase( regFree1==0 );
5317         testcase( jumpIfNull==0 );
5318       }
5319       break;
5320     }
5321   }
5322   sqlite3ReleaseTempReg(pParse, regFree1);
5323   sqlite3ReleaseTempReg(pParse, regFree2);
5324 }
5325 
5326 /*
5327 ** Generate code for a boolean expression such that a jump is made
5328 ** to the label "dest" if the expression is false but execution
5329 ** continues straight thru if the expression is true.
5330 **
5331 ** If the expression evaluates to NULL (neither true nor false) then
5332 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5333 ** is 0.
5334 */
sqlite3ExprIfFalse(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)5335 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5336   Vdbe *v = pParse->pVdbe;
5337   int op = 0;
5338   int regFree1 = 0;
5339   int regFree2 = 0;
5340   int r1, r2;
5341 
5342   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5343   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5344   if( pExpr==0 )    return;
5345   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5346 
5347   /* The value of pExpr->op and op are related as follows:
5348   **
5349   **       pExpr->op            op
5350   **       ---------          ----------
5351   **       TK_ISNULL          OP_NotNull
5352   **       TK_NOTNULL         OP_IsNull
5353   **       TK_NE              OP_Eq
5354   **       TK_EQ              OP_Ne
5355   **       TK_GT              OP_Le
5356   **       TK_LE              OP_Gt
5357   **       TK_GE              OP_Lt
5358   **       TK_LT              OP_Ge
5359   **
5360   ** For other values of pExpr->op, op is undefined and unused.
5361   ** The value of TK_ and OP_ constants are arranged such that we
5362   ** can compute the mapping above using the following expression.
5363   ** Assert()s verify that the computation is correct.
5364   */
5365   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5366 
5367   /* Verify correct alignment of TK_ and OP_ constants
5368   */
5369   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5370   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5371   assert( pExpr->op!=TK_NE || op==OP_Eq );
5372   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5373   assert( pExpr->op!=TK_LT || op==OP_Ge );
5374   assert( pExpr->op!=TK_LE || op==OP_Gt );
5375   assert( pExpr->op!=TK_GT || op==OP_Le );
5376   assert( pExpr->op!=TK_GE || op==OP_Lt );
5377 
5378   switch( pExpr->op ){
5379     case TK_AND:
5380     case TK_OR: {
5381       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5382       if( pAlt!=pExpr ){
5383         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5384       }else if( pExpr->op==TK_AND ){
5385         testcase( jumpIfNull==0 );
5386         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5387         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5388       }else{
5389         int d2 = sqlite3VdbeMakeLabel(pParse);
5390         testcase( jumpIfNull==0 );
5391         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5392                           jumpIfNull^SQLITE_JUMPIFNULL);
5393         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5394         sqlite3VdbeResolveLabel(v, d2);
5395       }
5396       break;
5397     }
5398     case TK_NOT: {
5399       testcase( jumpIfNull==0 );
5400       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5401       break;
5402     }
5403     case TK_TRUTH: {
5404       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5405       int isTrue;  /* IS TRUE or IS NOT TRUE */
5406       testcase( jumpIfNull==0 );
5407       isNot = pExpr->op2==TK_ISNOT;
5408       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5409       testcase( isTrue && isNot );
5410       testcase( !isTrue && isNot );
5411       if( isTrue ^ isNot ){
5412         /* IS TRUE and IS NOT FALSE */
5413         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5414                            isNot ? 0 : SQLITE_JUMPIFNULL);
5415 
5416       }else{
5417         /* IS FALSE and IS NOT TRUE */
5418         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5419                           isNot ? 0 : SQLITE_JUMPIFNULL);
5420       }
5421       break;
5422     }
5423     case TK_IS:
5424     case TK_ISNOT:
5425       testcase( pExpr->op==TK_IS );
5426       testcase( pExpr->op==TK_ISNOT );
5427       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5428       jumpIfNull = SQLITE_NULLEQ;
5429       /* no break */ deliberate_fall_through
5430     case TK_LT:
5431     case TK_LE:
5432     case TK_GT:
5433     case TK_GE:
5434     case TK_NE:
5435     case TK_EQ: {
5436       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5437       testcase( jumpIfNull==0 );
5438       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5439       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5440       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5441                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5442       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5443       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5444       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5445       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5446       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5447       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5448       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5449       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5450       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5451       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5452       testcase( regFree1==0 );
5453       testcase( regFree2==0 );
5454       break;
5455     }
5456     case TK_ISNULL:
5457     case TK_NOTNULL: {
5458       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5459       sqlite3VdbeTypeofColumn(v, r1);
5460       sqlite3VdbeAddOp2(v, op, r1, dest);
5461       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5462       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5463       testcase( regFree1==0 );
5464       break;
5465     }
5466     case TK_BETWEEN: {
5467       testcase( jumpIfNull==0 );
5468       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5469       break;
5470     }
5471 #ifndef SQLITE_OMIT_SUBQUERY
5472     case TK_IN: {
5473       if( jumpIfNull ){
5474         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5475       }else{
5476         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5477         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5478         sqlite3VdbeResolveLabel(v, destIfNull);
5479       }
5480       break;
5481     }
5482 #endif
5483     default: {
5484     default_expr:
5485       if( ExprAlwaysFalse(pExpr) ){
5486         sqlite3VdbeGoto(v, dest);
5487       }else if( ExprAlwaysTrue(pExpr) ){
5488         /* no-op */
5489       }else{
5490         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5491         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5492         VdbeCoverage(v);
5493         testcase( regFree1==0 );
5494         testcase( jumpIfNull==0 );
5495       }
5496       break;
5497     }
5498   }
5499   sqlite3ReleaseTempReg(pParse, regFree1);
5500   sqlite3ReleaseTempReg(pParse, regFree2);
5501 }
5502 
5503 /*
5504 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5505 ** code generation, and that copy is deleted after code generation. This
5506 ** ensures that the original pExpr is unchanged.
5507 */
sqlite3ExprIfFalseDup(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)5508 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5509   sqlite3 *db = pParse->db;
5510   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5511   if( db->mallocFailed==0 ){
5512     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5513   }
5514   sqlite3ExprDelete(db, pCopy);
5515 }
5516 
5517 /*
5518 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5519 ** type of expression.
5520 **
5521 ** If pExpr is a simple SQL value - an integer, real, string, blob
5522 ** or NULL value - then the VDBE currently being prepared is configured
5523 ** to re-prepare each time a new value is bound to variable pVar.
5524 **
5525 ** Additionally, if pExpr is a simple SQL value and the value is the
5526 ** same as that currently bound to variable pVar, non-zero is returned.
5527 ** Otherwise, if the values are not the same or if pExpr is not a simple
5528 ** SQL value, zero is returned.
5529 */
exprCompareVariable(const Parse * pParse,const Expr * pVar,const Expr * pExpr)5530 static int exprCompareVariable(
5531   const Parse *pParse,
5532   const Expr *pVar,
5533   const Expr *pExpr
5534 ){
5535   int res = 0;
5536   int iVar;
5537   sqlite3_value *pL, *pR = 0;
5538 
5539   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5540   if( pR ){
5541     iVar = pVar->iColumn;
5542     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5543     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5544     if( pL ){
5545       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5546         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5547       }
5548       res =  0==sqlite3MemCompare(pL, pR, 0);
5549     }
5550     sqlite3ValueFree(pR);
5551     sqlite3ValueFree(pL);
5552   }
5553 
5554   return res;
5555 }
5556 
5557 /*
5558 ** Do a deep comparison of two expression trees.  Return 0 if the two
5559 ** expressions are completely identical.  Return 1 if they differ only
5560 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5561 ** other than the top-level COLLATE operator.
5562 **
5563 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5564 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5565 **
5566 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5567 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5568 **
5569 ** Sometimes this routine will return 2 even if the two expressions
5570 ** really are equivalent.  If we cannot prove that the expressions are
5571 ** identical, we return 2 just to be safe.  So if this routine
5572 ** returns 2, then you do not really know for certain if the two
5573 ** expressions are the same.  But if you get a 0 or 1 return, then you
5574 ** can be sure the expressions are the same.  In the places where
5575 ** this routine is used, it does not hurt to get an extra 2 - that
5576 ** just might result in some slightly slower code.  But returning
5577 ** an incorrect 0 or 1 could lead to a malfunction.
5578 **
5579 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5580 ** pParse->pReprepare can be matched against literals in pB.  The
5581 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5582 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5583 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5584 ** pB causes a return value of 2.
5585 */
sqlite3ExprCompare(const Parse * pParse,const Expr * pA,const Expr * pB,int iTab)5586 int sqlite3ExprCompare(
5587   const Parse *pParse,
5588   const Expr *pA,
5589   const Expr *pB,
5590   int iTab
5591 ){
5592   u32 combinedFlags;
5593   if( pA==0 || pB==0 ){
5594     return pB==pA ? 0 : 2;
5595   }
5596   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5597     return 0;
5598   }
5599   combinedFlags = pA->flags | pB->flags;
5600   if( combinedFlags & EP_IntValue ){
5601     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5602       return 0;
5603     }
5604     return 2;
5605   }
5606   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5607     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5608       return 1;
5609     }
5610     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5611       return 1;
5612     }
5613     if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
5614      && pB->iTable<0 && pA->iTable==iTab
5615     ){
5616       /* fall through */
5617     }else{
5618       return 2;
5619     }
5620   }
5621   assert( !ExprHasProperty(pA, EP_IntValue) );
5622   assert( !ExprHasProperty(pB, EP_IntValue) );
5623   if( pA->u.zToken ){
5624     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5625       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5626 #ifndef SQLITE_OMIT_WINDOWFUNC
5627       assert( pA->op==pB->op );
5628       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5629         return 2;
5630       }
5631       if( ExprHasProperty(pA,EP_WinFunc) ){
5632         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5633           return 2;
5634         }
5635       }
5636 #endif
5637     }else if( pA->op==TK_NULL ){
5638       return 0;
5639     }else if( pA->op==TK_COLLATE ){
5640       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5641     }else
5642     if( pB->u.zToken!=0
5643      && pA->op!=TK_COLUMN
5644      && pA->op!=TK_AGG_COLUMN
5645      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5646     ){
5647       return 2;
5648     }
5649   }
5650   if( (pA->flags & (EP_Distinct|EP_Commuted))
5651      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5652   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5653     if( combinedFlags & EP_xIsSelect ) return 2;
5654     if( (combinedFlags & EP_FixedCol)==0
5655      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5656     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5657     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5658     if( pA->op!=TK_STRING
5659      && pA->op!=TK_TRUEFALSE
5660      && ALWAYS((combinedFlags & EP_Reduced)==0)
5661     ){
5662       if( pA->iColumn!=pB->iColumn ) return 2;
5663       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5664       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5665         return 2;
5666       }
5667     }
5668   }
5669   return 0;
5670 }
5671 
5672 /*
5673 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5674 ** if they are certainly different, or 2 if it is not possible to
5675 ** determine if they are identical or not.
5676 **
5677 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5678 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5679 **
5680 ** This routine might return non-zero for equivalent ExprLists.  The
5681 ** only consequence will be disabled optimizations.  But this routine
5682 ** must never return 0 if the two ExprList objects are different, or
5683 ** a malfunction will result.
5684 **
5685 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5686 ** always differs from a non-NULL pointer.
5687 */
sqlite3ExprListCompare(const ExprList * pA,const ExprList * pB,int iTab)5688 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5689   int i;
5690   if( pA==0 && pB==0 ) return 0;
5691   if( pA==0 || pB==0 ) return 1;
5692   if( pA->nExpr!=pB->nExpr ) return 1;
5693   for(i=0; i<pA->nExpr; i++){
5694     int res;
5695     Expr *pExprA = pA->a[i].pExpr;
5696     Expr *pExprB = pB->a[i].pExpr;
5697     if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5698     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5699   }
5700   return 0;
5701 }
5702 
5703 /*
5704 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5705 ** are ignored.
5706 */
sqlite3ExprCompareSkip(Expr * pA,Expr * pB,int iTab)5707 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5708   return sqlite3ExprCompare(0,
5709              sqlite3ExprSkipCollateAndLikely(pA),
5710              sqlite3ExprSkipCollateAndLikely(pB),
5711              iTab);
5712 }
5713 
5714 /*
5715 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5716 **
5717 ** Or if seenNot is true, return non-zero if Expr p can only be
5718 ** non-NULL if pNN is not NULL
5719 */
exprImpliesNotNull(const Parse * pParse,const Expr * p,const Expr * pNN,int iTab,int seenNot)5720 static int exprImpliesNotNull(
5721   const Parse *pParse,/* Parsing context */
5722   const Expr *p,      /* The expression to be checked */
5723   const Expr *pNN,    /* The expression that is NOT NULL */
5724   int iTab,           /* Table being evaluated */
5725   int seenNot         /* Return true only if p can be any non-NULL value */
5726 ){
5727   assert( p );
5728   assert( pNN );
5729   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5730     return pNN->op!=TK_NULL;
5731   }
5732   switch( p->op ){
5733     case TK_IN: {
5734       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5735       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5736       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5737     }
5738     case TK_BETWEEN: {
5739       ExprList *pList;
5740       assert( ExprUseXList(p) );
5741       pList = p->x.pList;
5742       assert( pList!=0 );
5743       assert( pList->nExpr==2 );
5744       if( seenNot ) return 0;
5745       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5746        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5747       ){
5748         return 1;
5749       }
5750       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5751     }
5752     case TK_EQ:
5753     case TK_NE:
5754     case TK_LT:
5755     case TK_LE:
5756     case TK_GT:
5757     case TK_GE:
5758     case TK_PLUS:
5759     case TK_MINUS:
5760     case TK_BITOR:
5761     case TK_LSHIFT:
5762     case TK_RSHIFT:
5763     case TK_CONCAT:
5764       seenNot = 1;
5765       /* no break */ deliberate_fall_through
5766     case TK_STAR:
5767     case TK_REM:
5768     case TK_BITAND:
5769     case TK_SLASH: {
5770       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5771       /* no break */ deliberate_fall_through
5772     }
5773     case TK_SPAN:
5774     case TK_COLLATE:
5775     case TK_UPLUS:
5776     case TK_UMINUS: {
5777       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5778     }
5779     case TK_TRUTH: {
5780       if( seenNot ) return 0;
5781       if( p->op2!=TK_IS ) return 0;
5782       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5783     }
5784     case TK_BITNOT:
5785     case TK_NOT: {
5786       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5787     }
5788   }
5789   return 0;
5790 }
5791 
5792 /*
5793 ** Return true if we can prove the pE2 will always be true if pE1 is
5794 ** true.  Return false if we cannot complete the proof or if pE2 might
5795 ** be false.  Examples:
5796 **
5797 **     pE1: x==5       pE2: x==5             Result: true
5798 **     pE1: x>0        pE2: x==5             Result: false
5799 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5800 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5801 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5802 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5803 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5804 **
5805 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5806 ** Expr.iTable<0 then assume a table number given by iTab.
5807 **
5808 ** If pParse is not NULL, then the values of bound variables in pE1 are
5809 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5810 ** modified to record which bound variables are referenced.  If pParse
5811 ** is NULL, then false will be returned if pE1 contains any bound variables.
5812 **
5813 ** When in doubt, return false.  Returning true might give a performance
5814 ** improvement.  Returning false might cause a performance reduction, but
5815 ** it will always give the correct answer and is hence always safe.
5816 */
sqlite3ExprImpliesExpr(const Parse * pParse,const Expr * pE1,const Expr * pE2,int iTab)5817 int sqlite3ExprImpliesExpr(
5818   const Parse *pParse,
5819   const Expr *pE1,
5820   const Expr *pE2,
5821   int iTab
5822 ){
5823   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5824     return 1;
5825   }
5826   if( pE2->op==TK_OR
5827    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5828              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5829   ){
5830     return 1;
5831   }
5832   if( pE2->op==TK_NOTNULL
5833    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5834   ){
5835     return 1;
5836   }
5837   return 0;
5838 }
5839 
5840 /*
5841 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5842 ** If the expression node requires that the table at pWalker->iCur
5843 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5844 **
5845 ** This routine controls an optimization.  False positives (setting
5846 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5847 ** (never setting pWalker->eCode) is a harmless missed optimization.
5848 */
impliesNotNullRow(Walker * pWalker,Expr * pExpr)5849 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5850   testcase( pExpr->op==TK_AGG_COLUMN );
5851   testcase( pExpr->op==TK_AGG_FUNCTION );
5852   if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5853   switch( pExpr->op ){
5854     case TK_ISNOT:
5855     case TK_ISNULL:
5856     case TK_NOTNULL:
5857     case TK_IS:
5858     case TK_OR:
5859     case TK_VECTOR:
5860     case TK_CASE:
5861     case TK_IN:
5862     case TK_FUNCTION:
5863     case TK_TRUTH:
5864       testcase( pExpr->op==TK_ISNOT );
5865       testcase( pExpr->op==TK_ISNULL );
5866       testcase( pExpr->op==TK_NOTNULL );
5867       testcase( pExpr->op==TK_IS );
5868       testcase( pExpr->op==TK_OR );
5869       testcase( pExpr->op==TK_VECTOR );
5870       testcase( pExpr->op==TK_CASE );
5871       testcase( pExpr->op==TK_IN );
5872       testcase( pExpr->op==TK_FUNCTION );
5873       testcase( pExpr->op==TK_TRUTH );
5874       return WRC_Prune;
5875     case TK_COLUMN:
5876       if( pWalker->u.iCur==pExpr->iTable ){
5877         pWalker->eCode = 1;
5878         return WRC_Abort;
5879       }
5880       return WRC_Prune;
5881 
5882     case TK_AND:
5883       if( pWalker->eCode==0 ){
5884         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5885         if( pWalker->eCode ){
5886           pWalker->eCode = 0;
5887           sqlite3WalkExpr(pWalker, pExpr->pRight);
5888         }
5889       }
5890       return WRC_Prune;
5891 
5892     case TK_BETWEEN:
5893       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5894         assert( pWalker->eCode );
5895         return WRC_Abort;
5896       }
5897       return WRC_Prune;
5898 
5899     /* Virtual tables are allowed to use constraints like x=NULL.  So
5900     ** a term of the form x=y does not prove that y is not null if x
5901     ** is the column of a virtual table */
5902     case TK_EQ:
5903     case TK_NE:
5904     case TK_LT:
5905     case TK_LE:
5906     case TK_GT:
5907     case TK_GE: {
5908       Expr *pLeft = pExpr->pLeft;
5909       Expr *pRight = pExpr->pRight;
5910       testcase( pExpr->op==TK_EQ );
5911       testcase( pExpr->op==TK_NE );
5912       testcase( pExpr->op==TK_LT );
5913       testcase( pExpr->op==TK_LE );
5914       testcase( pExpr->op==TK_GT );
5915       testcase( pExpr->op==TK_GE );
5916       /* The y.pTab=0 assignment in wherecode.c always happens after the
5917       ** impliesNotNullRow() test */
5918       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5919       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5920       if( (pLeft->op==TK_COLUMN
5921            && ALWAYS(pLeft->y.pTab!=0)
5922            && IsVirtual(pLeft->y.pTab))
5923        || (pRight->op==TK_COLUMN
5924            && ALWAYS(pRight->y.pTab!=0)
5925            && IsVirtual(pRight->y.pTab))
5926       ){
5927         return WRC_Prune;
5928       }
5929       /* no break */ deliberate_fall_through
5930     }
5931     default:
5932       return WRC_Continue;
5933   }
5934 }
5935 
5936 /*
5937 ** Return true (non-zero) if expression p can only be true if at least
5938 ** one column of table iTab is non-null.  In other words, return true
5939 ** if expression p will always be NULL or false if every column of iTab
5940 ** is NULL.
5941 **
5942 ** False negatives are acceptable.  In other words, it is ok to return
5943 ** zero even if expression p will never be true of every column of iTab
5944 ** is NULL.  A false negative is merely a missed optimization opportunity.
5945 **
5946 ** False positives are not allowed, however.  A false positive may result
5947 ** in an incorrect answer.
5948 **
5949 ** Terms of p that are marked with EP_OuterON (and hence that come from
5950 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5951 **
5952 ** This routine is used to check if a LEFT JOIN can be converted into
5953 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5954 ** clause requires that some column of the right table of the LEFT JOIN
5955 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5956 ** ordinary join.
5957 */
sqlite3ExprImpliesNonNullRow(Expr * p,int iTab)5958 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5959   Walker w;
5960   p = sqlite3ExprSkipCollateAndLikely(p);
5961   if( p==0 ) return 0;
5962   if( p->op==TK_NOTNULL ){
5963     p = p->pLeft;
5964   }else{
5965     while( p->op==TK_AND ){
5966       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5967       p = p->pRight;
5968     }
5969   }
5970   w.xExprCallback = impliesNotNullRow;
5971   w.xSelectCallback = 0;
5972   w.xSelectCallback2 = 0;
5973   w.eCode = 0;
5974   w.u.iCur = iTab;
5975   sqlite3WalkExpr(&w, p);
5976   return w.eCode;
5977 }
5978 
5979 /*
5980 ** An instance of the following structure is used by the tree walker
5981 ** to determine if an expression can be evaluated by reference to the
5982 ** index only, without having to do a search for the corresponding
5983 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5984 ** is the cursor for the table.
5985 */
5986 struct IdxCover {
5987   Index *pIdx;     /* The index to be tested for coverage */
5988   int iCur;        /* Cursor number for the table corresponding to the index */
5989 };
5990 
5991 /*
5992 ** Check to see if there are references to columns in table
5993 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5994 ** pWalker->u.pIdxCover->pIdx.
5995 */
exprIdxCover(Walker * pWalker,Expr * pExpr)5996 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5997   if( pExpr->op==TK_COLUMN
5998    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5999    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
6000   ){
6001     pWalker->eCode = 1;
6002     return WRC_Abort;
6003   }
6004   return WRC_Continue;
6005 }
6006 
6007 /*
6008 ** Determine if an index pIdx on table with cursor iCur contains will
6009 ** the expression pExpr.  Return true if the index does cover the
6010 ** expression and false if the pExpr expression references table columns
6011 ** that are not found in the index pIdx.
6012 **
6013 ** An index covering an expression means that the expression can be
6014 ** evaluated using only the index and without having to lookup the
6015 ** corresponding table entry.
6016 */
sqlite3ExprCoveredByIndex(Expr * pExpr,int iCur,Index * pIdx)6017 int sqlite3ExprCoveredByIndex(
6018   Expr *pExpr,        /* The index to be tested */
6019   int iCur,           /* The cursor number for the corresponding table */
6020   Index *pIdx         /* The index that might be used for coverage */
6021 ){
6022   Walker w;
6023   struct IdxCover xcov;
6024   memset(&w, 0, sizeof(w));
6025   xcov.iCur = iCur;
6026   xcov.pIdx = pIdx;
6027   w.xExprCallback = exprIdxCover;
6028   w.u.pIdxCover = &xcov;
6029   sqlite3WalkExpr(&w, pExpr);
6030   return !w.eCode;
6031 }
6032 
6033 
6034 /* Structure used to pass information throught the Walker in order to
6035 ** implement sqlite3ReferencesSrcList().
6036 */
6037 struct RefSrcList {
6038   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
6039   SrcList *pRef;       /* Looking for references to these tables */
6040   i64 nExclude;        /* Number of tables to exclude from the search */
6041   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
6042 };
6043 
6044 /*
6045 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6046 **
6047 ** When entering a new subquery on the pExpr argument, add all FROM clause
6048 ** entries for that subquery to the exclude list.
6049 **
6050 ** When leaving the subquery, remove those entries from the exclude list.
6051 */
selectRefEnter(Walker * pWalker,Select * pSelect)6052 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6053   struct RefSrcList *p = pWalker->u.pRefSrcList;
6054   SrcList *pSrc = pSelect->pSrc;
6055   i64 i, j;
6056   int *piNew;
6057   if( pSrc->nSrc==0 ) return WRC_Continue;
6058   j = p->nExclude;
6059   p->nExclude += pSrc->nSrc;
6060   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6061   if( piNew==0 ){
6062     p->nExclude = 0;
6063     return WRC_Abort;
6064   }else{
6065     p->aiExclude = piNew;
6066   }
6067   for(i=0; i<pSrc->nSrc; i++, j++){
6068      p->aiExclude[j] = pSrc->a[i].iCursor;
6069   }
6070   return WRC_Continue;
6071 }
selectRefLeave(Walker * pWalker,Select * pSelect)6072 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6073   struct RefSrcList *p = pWalker->u.pRefSrcList;
6074   SrcList *pSrc = pSelect->pSrc;
6075   if( p->nExclude ){
6076     assert( p->nExclude>=pSrc->nSrc );
6077     p->nExclude -= pSrc->nSrc;
6078   }
6079 }
6080 
6081 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6082 **
6083 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6084 ** of the tables shown in RefSrcList.pRef.
6085 **
6086 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6087 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6088 */
exprRefToSrcList(Walker * pWalker,Expr * pExpr)6089 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6090   if( pExpr->op==TK_COLUMN
6091    || pExpr->op==TK_AGG_COLUMN
6092   ){
6093     int i;
6094     struct RefSrcList *p = pWalker->u.pRefSrcList;
6095     SrcList *pSrc = p->pRef;
6096     int nSrc = pSrc ? pSrc->nSrc : 0;
6097     for(i=0; i<nSrc; i++){
6098       if( pExpr->iTable==pSrc->a[i].iCursor ){
6099         pWalker->eCode |= 1;
6100         return WRC_Continue;
6101       }
6102     }
6103     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6104     if( i>=p->nExclude ){
6105       pWalker->eCode |= 2;
6106     }
6107   }
6108   return WRC_Continue;
6109 }
6110 
6111 /*
6112 ** Check to see if pExpr references any tables in pSrcList.
6113 ** Possible return values:
6114 **
6115 **    1         pExpr does references a table in pSrcList.
6116 **
6117 **    0         pExpr references some table that is not defined in either
6118 **              pSrcList or in subqueries of pExpr itself.
6119 **
6120 **   -1         pExpr only references no tables at all, or it only
6121 **              references tables defined in subqueries of pExpr itself.
6122 **
6123 ** As currently used, pExpr is always an aggregate function call.  That
6124 ** fact is exploited for efficiency.
6125 */
sqlite3ReferencesSrcList(Parse * pParse,Expr * pExpr,SrcList * pSrcList)6126 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6127   Walker w;
6128   struct RefSrcList x;
6129   assert( pParse->db!=0 );
6130   memset(&w, 0, sizeof(w));
6131   memset(&x, 0, sizeof(x));
6132   w.xExprCallback = exprRefToSrcList;
6133   w.xSelectCallback = selectRefEnter;
6134   w.xSelectCallback2 = selectRefLeave;
6135   w.u.pRefSrcList = &x;
6136   x.db = pParse->db;
6137   x.pRef = pSrcList;
6138   assert( pExpr->op==TK_AGG_FUNCTION );
6139   assert( ExprUseXList(pExpr) );
6140   sqlite3WalkExprList(&w, pExpr->x.pList);
6141 #ifndef SQLITE_OMIT_WINDOWFUNC
6142   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6143     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6144   }
6145 #endif
6146   if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
6147   if( w.eCode & 0x01 ){
6148     return 1;
6149   }else if( w.eCode ){
6150     return 0;
6151   }else{
6152     return -1;
6153   }
6154 }
6155 
6156 /*
6157 ** This is a Walker expression node callback.
6158 **
6159 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6160 ** object that is referenced does not refer directly to the Expr.  If
6161 ** it does, make a copy.  This is done because the pExpr argument is
6162 ** subject to change.
6163 **
6164 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6165 ** This will cause the expression to be deleted automatically when the
6166 ** Parse object is destroyed, but the zero register number means that it
6167 ** will not generate any code in the preamble.
6168 */
agginfoPersistExprCb(Walker * pWalker,Expr * pExpr)6169 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6170   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6171    && pExpr->pAggInfo!=0
6172   ){
6173     AggInfo *pAggInfo = pExpr->pAggInfo;
6174     int iAgg = pExpr->iAgg;
6175     Parse *pParse = pWalker->pParse;
6176     sqlite3 *db = pParse->db;
6177     if( pExpr->op!=TK_AGG_FUNCTION ){
6178       assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW );
6179       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6180       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6181         pExpr = sqlite3ExprDup(db, pExpr, 0);
6182         if( pExpr ){
6183           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6184           sqlite3ExprDeferredDelete(pParse, pExpr);
6185         }
6186       }
6187     }else{
6188       assert( pExpr->op==TK_AGG_FUNCTION );
6189       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6190       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6191         pExpr = sqlite3ExprDup(db, pExpr, 0);
6192         if( pExpr ){
6193           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6194           sqlite3ExprDeferredDelete(pParse, pExpr);
6195         }
6196       }
6197     }
6198   }
6199   return WRC_Continue;
6200 }
6201 
6202 /*
6203 ** Initialize a Walker object so that will persist AggInfo entries referenced
6204 ** by the tree that is walked.
6205 */
sqlite3AggInfoPersistWalkerInit(Walker * pWalker,Parse * pParse)6206 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6207   memset(pWalker, 0, sizeof(*pWalker));
6208   pWalker->pParse = pParse;
6209   pWalker->xExprCallback = agginfoPersistExprCb;
6210   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6211 }
6212 
6213 /*
6214 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6215 ** the new element.  Return a negative number if malloc fails.
6216 */
addAggInfoColumn(sqlite3 * db,AggInfo * pInfo)6217 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6218   int i;
6219   pInfo->aCol = sqlite3ArrayAllocate(
6220        db,
6221        pInfo->aCol,
6222        sizeof(pInfo->aCol[0]),
6223        &pInfo->nColumn,
6224        &i
6225   );
6226   return i;
6227 }
6228 
6229 /*
6230 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6231 ** the new element.  Return a negative number if malloc fails.
6232 */
addAggInfoFunc(sqlite3 * db,AggInfo * pInfo)6233 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6234   int i;
6235   pInfo->aFunc = sqlite3ArrayAllocate(
6236        db,
6237        pInfo->aFunc,
6238        sizeof(pInfo->aFunc[0]),
6239        &pInfo->nFunc,
6240        &i
6241   );
6242   return i;
6243 }
6244 
6245 /*
6246 ** This is the xExprCallback for a tree walker.  It is used to
6247 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6248 ** for additional information.
6249 */
analyzeAggregate(Walker * pWalker,Expr * pExpr)6250 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6251   int i;
6252   NameContext *pNC = pWalker->u.pNC;
6253   Parse *pParse = pNC->pParse;
6254   SrcList *pSrcList = pNC->pSrcList;
6255   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6256 
6257   assert( pNC->ncFlags & NC_UAggInfo );
6258   switch( pExpr->op ){
6259     case TK_IF_NULL_ROW:
6260     case TK_AGG_COLUMN:
6261     case TK_COLUMN: {
6262       testcase( pExpr->op==TK_AGG_COLUMN );
6263       testcase( pExpr->op==TK_COLUMN );
6264       testcase( pExpr->op==TK_IF_NULL_ROW );
6265       /* Check to see if the column is in one of the tables in the FROM
6266       ** clause of the aggregate query */
6267       if( ALWAYS(pSrcList!=0) ){
6268         SrcItem *pItem = pSrcList->a;
6269         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6270           struct AggInfo_col *pCol;
6271           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6272           if( pExpr->iTable==pItem->iCursor ){
6273             /* If we reach this point, it means that pExpr refers to a table
6274             ** that is in the FROM clause of the aggregate query.
6275             **
6276             ** Make an entry for the column in pAggInfo->aCol[] if there
6277             ** is not an entry there already.
6278             */
6279             int k;
6280             pCol = pAggInfo->aCol;
6281             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6282               if( pCol->iTable==pExpr->iTable
6283                && pCol->iColumn==pExpr->iColumn
6284                && pExpr->op!=TK_IF_NULL_ROW
6285               ){
6286                 break;
6287               }
6288             }
6289             if( (k>=pAggInfo->nColumn)
6290              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6291             ){
6292               pCol = &pAggInfo->aCol[k];
6293               assert( ExprUseYTab(pExpr) );
6294               pCol->pTab = pExpr->y.pTab;
6295               pCol->iTable = pExpr->iTable;
6296               pCol->iColumn = pExpr->iColumn;
6297               pCol->iMem = ++pParse->nMem;
6298               pCol->iSorterColumn = -1;
6299               pCol->pCExpr = pExpr;
6300               if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
6301                 int j, n;
6302                 ExprList *pGB = pAggInfo->pGroupBy;
6303                 struct ExprList_item *pTerm = pGB->a;
6304                 n = pGB->nExpr;
6305                 for(j=0; j<n; j++, pTerm++){
6306                   Expr *pE = pTerm->pExpr;
6307                   if( pE->op==TK_COLUMN
6308                    && pE->iTable==pExpr->iTable
6309                    && pE->iColumn==pExpr->iColumn
6310                   ){
6311                     pCol->iSorterColumn = j;
6312                     break;
6313                   }
6314                 }
6315               }
6316               if( pCol->iSorterColumn<0 ){
6317                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6318               }
6319             }
6320             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6321             ** because it was there before or because we just created it).
6322             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6323             ** pAggInfo->aCol[] entry.
6324             */
6325             ExprSetVVAProperty(pExpr, EP_NoReduce);
6326             pExpr->pAggInfo = pAggInfo;
6327             if( pExpr->op==TK_COLUMN ){
6328               pExpr->op = TK_AGG_COLUMN;
6329             }
6330             pExpr->iAgg = (i16)k;
6331             break;
6332           } /* endif pExpr->iTable==pItem->iCursor */
6333         } /* end loop over pSrcList */
6334       }
6335       return WRC_Prune;
6336     }
6337     case TK_AGG_FUNCTION: {
6338       if( (pNC->ncFlags & NC_InAggFunc)==0
6339        && pWalker->walkerDepth==pExpr->op2
6340       ){
6341         /* Check to see if pExpr is a duplicate of another aggregate
6342         ** function that is already in the pAggInfo structure
6343         */
6344         struct AggInfo_func *pItem = pAggInfo->aFunc;
6345         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6346           if( pItem->pFExpr==pExpr ) break;
6347           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6348             break;
6349           }
6350         }
6351         if( i>=pAggInfo->nFunc ){
6352           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6353           */
6354           u8 enc = ENC(pParse->db);
6355           i = addAggInfoFunc(pParse->db, pAggInfo);
6356           if( i>=0 ){
6357             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6358             pItem = &pAggInfo->aFunc[i];
6359             pItem->pFExpr = pExpr;
6360             pItem->iMem = ++pParse->nMem;
6361             assert( ExprUseUToken(pExpr) );
6362             pItem->pFunc = sqlite3FindFunction(pParse->db,
6363                    pExpr->u.zToken,
6364                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6365             if( pExpr->flags & EP_Distinct ){
6366               pItem->iDistinct = pParse->nTab++;
6367             }else{
6368               pItem->iDistinct = -1;
6369             }
6370           }
6371         }
6372         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6373         */
6374         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6375         ExprSetVVAProperty(pExpr, EP_NoReduce);
6376         pExpr->iAgg = (i16)i;
6377         pExpr->pAggInfo = pAggInfo;
6378         return WRC_Prune;
6379       }else{
6380         return WRC_Continue;
6381       }
6382     }
6383   }
6384   return WRC_Continue;
6385 }
6386 
6387 /*
6388 ** Analyze the pExpr expression looking for aggregate functions and
6389 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6390 ** points to.  Additional entries are made on the AggInfo object as
6391 ** necessary.
6392 **
6393 ** This routine should only be called after the expression has been
6394 ** analyzed by sqlite3ResolveExprNames().
6395 */
sqlite3ExprAnalyzeAggregates(NameContext * pNC,Expr * pExpr)6396 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6397   Walker w;
6398   w.xExprCallback = analyzeAggregate;
6399   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6400   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6401   w.walkerDepth = 0;
6402   w.u.pNC = pNC;
6403   w.pParse = 0;
6404   assert( pNC->pSrcList!=0 );
6405   sqlite3WalkExpr(&w, pExpr);
6406 }
6407 
6408 /*
6409 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6410 ** expression list.  Return the number of errors.
6411 **
6412 ** If an error is found, the analysis is cut short.
6413 */
sqlite3ExprAnalyzeAggList(NameContext * pNC,ExprList * pList)6414 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6415   struct ExprList_item *pItem;
6416   int i;
6417   if( pList ){
6418     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6419       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6420     }
6421   }
6422 }
6423 
6424 /*
6425 ** Allocate a single new register for use to hold some intermediate result.
6426 */
sqlite3GetTempReg(Parse * pParse)6427 int sqlite3GetTempReg(Parse *pParse){
6428   if( pParse->nTempReg==0 ){
6429     return ++pParse->nMem;
6430   }
6431   return pParse->aTempReg[--pParse->nTempReg];
6432 }
6433 
6434 /*
6435 ** Deallocate a register, making available for reuse for some other
6436 ** purpose.
6437 */
sqlite3ReleaseTempReg(Parse * pParse,int iReg)6438 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6439   if( iReg ){
6440     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6441     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6442       pParse->aTempReg[pParse->nTempReg++] = iReg;
6443     }
6444   }
6445 }
6446 
6447 /*
6448 ** Allocate or deallocate a block of nReg consecutive registers.
6449 */
sqlite3GetTempRange(Parse * pParse,int nReg)6450 int sqlite3GetTempRange(Parse *pParse, int nReg){
6451   int i, n;
6452   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6453   i = pParse->iRangeReg;
6454   n = pParse->nRangeReg;
6455   if( nReg<=n ){
6456     pParse->iRangeReg += nReg;
6457     pParse->nRangeReg -= nReg;
6458   }else{
6459     i = pParse->nMem+1;
6460     pParse->nMem += nReg;
6461   }
6462   return i;
6463 }
sqlite3ReleaseTempRange(Parse * pParse,int iReg,int nReg)6464 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6465   if( nReg==1 ){
6466     sqlite3ReleaseTempReg(pParse, iReg);
6467     return;
6468   }
6469   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6470   if( nReg>pParse->nRangeReg ){
6471     pParse->nRangeReg = nReg;
6472     pParse->iRangeReg = iReg;
6473   }
6474 }
6475 
6476 /*
6477 ** Mark all temporary registers as being unavailable for reuse.
6478 **
6479 ** Always invoke this procedure after coding a subroutine or co-routine
6480 ** that might be invoked from other parts of the code, to ensure that
6481 ** the sub/co-routine does not use registers in common with the code that
6482 ** invokes the sub/co-routine.
6483 */
sqlite3ClearTempRegCache(Parse * pParse)6484 void sqlite3ClearTempRegCache(Parse *pParse){
6485   pParse->nTempReg = 0;
6486   pParse->nRangeReg = 0;
6487 }
6488 
6489 /*
6490 ** Validate that no temporary register falls within the range of
6491 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6492 ** statements.
6493 */
6494 #ifdef SQLITE_DEBUG
sqlite3NoTempsInRange(Parse * pParse,int iFirst,int iLast)6495 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6496   int i;
6497   if( pParse->nRangeReg>0
6498    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6499    && pParse->iRangeReg <= iLast
6500   ){
6501      return 0;
6502   }
6503   for(i=0; i<pParse->nTempReg; i++){
6504     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6505       return 0;
6506     }
6507   }
6508   return 1;
6509 }
6510 #endif /* SQLITE_DEBUG */
6511