xref: /sqlite-3.40.0/src/btree.c (revision da017578)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
sqlite3_enable_shared_cache(int enable)89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
sqlite3BtreeSeekCount(Btree * pBt)119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
corruptPageError(int lineno,MemPage * p)136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
hasSharedCacheTableLock(Btree * pBtree,Pgno iRoot,int isIndex,int eLockType)179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
hasReadConflicts(Btree * pBtree,Pgno iRoot)268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
querySharedCacheTableLock(Btree * p,Pgno iTab,u8 eLock)288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
setSharedCacheTableLock(Btree * p,Pgno iTable,u8 eLock)360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
clearAllSharedCacheTableLocks(Btree * p)424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
downgradeAllSharedCacheTableLocks(Btree * p)468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
cursorHoldsMutex(BtCursor * p)493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
cursorOwnsBtShared(BtCursor * p)505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
invalidateAllOverflowCache(BtShared * pBt)521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
invalidateIncrblobCursors(Btree * pBtree,Pgno pgnoRoot,i64 iRow,int isClearTable)543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
btreeSetHasContent(BtShared * pBt,Pgno pgno)603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
btreeGetHasContent(BtShared * pBt,Pgno pgno)625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
btreeClearHasContent(BtShared * pBt)634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
btreeReleaseAllCursorPages(BtCursor * pCur)642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
saveCursorKey(BtCursor * pCur)666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
saveCursorPosition(BtCursor * pCur)708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
saveAllCursors(BtShared * pBt,Pgno iRoot,BtCursor * pExcept)758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
saveCursorsOnList(BtCursor * p,Pgno iRoot,BtCursor * pExcept)775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
sqlite3BtreeClearCursor(BtCursor * pCur)800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
811 */
btreeMoveto(BtCursor * pCur,const void * pKey,i64 nKey,int bias,int * pRes)812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830     }else{
831       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
832     }
833     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834   }else{
835     pIdxKey = 0;
836     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
837   }
838   return rc;
839 }
840 
841 /*
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
847 */
btreeRestoreCursorPosition(BtCursor * pCur)848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849   int rc;
850   int skipNext = 0;
851   assert( cursorOwnsBtShared(pCur) );
852   assert( pCur->eState>=CURSOR_REQUIRESEEK );
853   if( pCur->eState==CURSOR_FAULT ){
854     return pCur->skipNext;
855   }
856   pCur->eState = CURSOR_INVALID;
857   if( sqlite3FaultSim(410) ){
858     rc = SQLITE_IOERR;
859   }else{
860     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861   }
862   if( rc==SQLITE_OK ){
863     sqlite3_free(pCur->pKey);
864     pCur->pKey = 0;
865     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866     if( skipNext ) pCur->skipNext = skipNext;
867     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868       pCur->eState = CURSOR_SKIPNEXT;
869     }
870   }
871   return rc;
872 }
873 
874 #define restoreCursorPosition(p) \
875   (p->eState>=CURSOR_REQUIRESEEK ? \
876          btreeRestoreCursorPosition(p) : \
877          SQLITE_OK)
878 
879 /*
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example.  Cursor might also move if a btree
884 ** is rebalanced.
885 **
886 ** Calling this routine with a NULL cursor pointer returns false.
887 **
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
890 */
sqlite3BtreeCursorHasMoved(BtCursor * pCur)891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892   assert( EIGHT_BYTE_ALIGNMENT(pCur)
893        || pCur==sqlite3BtreeFakeValidCursor() );
894   assert( offsetof(BtCursor, eState)==0 );
895   assert( sizeof(pCur->eState)==1 );
896   return CURSOR_VALID != *(u8*)pCur;
897 }
898 
899 /*
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
902 ** cursor returned must not be used with any other Btree interface.
903 */
sqlite3BtreeFakeValidCursor(void)904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905   static u8 fakeCursor = CURSOR_VALID;
906   assert( offsetof(BtCursor, eState)==0 );
907   return (BtCursor*)&fakeCursor;
908 }
909 
910 /*
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
914 **
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
919 **
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
922 */
sqlite3BtreeCursorRestore(BtCursor * pCur,int * pDifferentRow)923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924   int rc;
925 
926   assert( pCur!=0 );
927   assert( pCur->eState!=CURSOR_VALID );
928   rc = restoreCursorPosition(pCur);
929   if( rc ){
930     *pDifferentRow = 1;
931     return rc;
932   }
933   if( pCur->eState!=CURSOR_VALID ){
934     *pDifferentRow = 1;
935   }else{
936     *pDifferentRow = 0;
937   }
938   return SQLITE_OK;
939 }
940 
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
942 /*
943 ** Provide hints to the cursor.  The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
946 */
sqlite3BtreeCursorHint(BtCursor * pCur,int eHintType,...)947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948   /* Used only by system that substitute their own storage engine */
949 }
950 #endif
951 
952 /*
953 ** Provide flag hints to the cursor.
954 */
sqlite3BtreeCursorHintFlags(BtCursor * pCur,unsigned x)955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957   pCur->hints = x;
958 }
959 
960 
961 #ifndef SQLITE_OMIT_AUTOVACUUM
962 /*
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
966 **
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1.  The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
970 */
ptrmapPageno(BtShared * pBt,Pgno pgno)971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972   int nPagesPerMapPage;
973   Pgno iPtrMap, ret;
974   assert( sqlite3_mutex_held(pBt->mutex) );
975   if( pgno<2 ) return 0;
976   nPagesPerMapPage = (pBt->usableSize/5)+1;
977   iPtrMap = (pgno-2)/nPagesPerMapPage;
978   ret = (iPtrMap*nPagesPerMapPage) + 2;
979   if( ret==PENDING_BYTE_PAGE(pBt) ){
980     ret++;
981   }
982   return ret;
983 }
984 
985 /*
986 ** Write an entry into the pointer map.
987 **
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
990 **
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op.  If an error occurs, the appropriate error code is written
993 ** into *pRC.
994 */
ptrmapPut(BtShared * pBt,Pgno key,u8 eType,Pgno parent,int * pRC)995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996   DbPage *pDbPage;  /* The pointer map page */
997   u8 *pPtrmap;      /* The pointer map data */
998   Pgno iPtrmap;     /* The pointer map page number */
999   int offset;       /* Offset in pointer map page */
1000   int rc;           /* Return code from subfunctions */
1001 
1002   if( *pRC ) return;
1003 
1004   assert( sqlite3_mutex_held(pBt->mutex) );
1005   /* The super-journal page number must never be used as a pointer map page */
1006   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007 
1008   assert( pBt->autoVacuum );
1009   if( key==0 ){
1010     *pRC = SQLITE_CORRUPT_BKPT;
1011     return;
1012   }
1013   iPtrmap = PTRMAP_PAGENO(pBt, key);
1014   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015   if( rc!=SQLITE_OK ){
1016     *pRC = rc;
1017     return;
1018   }
1019   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020     /* The first byte of the extra data is the MemPage.isInit byte.
1021     ** If that byte is set, it means this page is also being used
1022     ** as a btree page. */
1023     *pRC = SQLITE_CORRUPT_BKPT;
1024     goto ptrmap_exit;
1025   }
1026   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027   if( offset<0 ){
1028     *pRC = SQLITE_CORRUPT_BKPT;
1029     goto ptrmap_exit;
1030   }
1031   assert( offset <= (int)pBt->usableSize-5 );
1032   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1033 
1034   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036     *pRC= rc = sqlite3PagerWrite(pDbPage);
1037     if( rc==SQLITE_OK ){
1038       pPtrmap[offset] = eType;
1039       put4byte(&pPtrmap[offset+1], parent);
1040     }
1041   }
1042 
1043 ptrmap_exit:
1044   sqlite3PagerUnref(pDbPage);
1045 }
1046 
1047 /*
1048 ** Read an entry from the pointer map.
1049 **
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1053 */
ptrmapGet(BtShared * pBt,Pgno key,u8 * pEType,Pgno * pPgno)1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055   DbPage *pDbPage;   /* The pointer map page */
1056   int iPtrmap;       /* Pointer map page index */
1057   u8 *pPtrmap;       /* Pointer map page data */
1058   int offset;        /* Offset of entry in pointer map */
1059   int rc;
1060 
1061   assert( sqlite3_mutex_held(pBt->mutex) );
1062 
1063   iPtrmap = PTRMAP_PAGENO(pBt, key);
1064   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065   if( rc!=0 ){
1066     return rc;
1067   }
1068   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1069 
1070   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071   if( offset<0 ){
1072     sqlite3PagerUnref(pDbPage);
1073     return SQLITE_CORRUPT_BKPT;
1074   }
1075   assert( offset <= (int)pBt->usableSize-5 );
1076   assert( pEType!=0 );
1077   *pEType = pPtrmap[offset];
1078   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1079 
1080   sqlite3PagerUnref(pDbPage);
1081   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082   return SQLITE_OK;
1083 }
1084 
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086   #define ptrmapPut(w,x,y,z,rc)
1087   #define ptrmapGet(w,x,y,z) SQLITE_OK
1088   #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1090 
1091 /*
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1095 **
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1098 **
1099 ** This routine works only for pages that do not contain overflow cells.
1100 */
1101 #define findCell(P,I) \
1102   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 
1106 
1107 /*
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1111 ** structure.
1112 */
btreeParseCellAdjustSizeForOverflow(MemPage * pPage,u8 * pCell,CellInfo * pInfo)1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114   MemPage *pPage,         /* Page containing the cell */
1115   u8 *pCell,              /* Pointer to the cell text. */
1116   CellInfo *pInfo         /* Fill in this structure */
1117 ){
1118   /* If the payload will not fit completely on the local page, we have
1119   ** to decide how much to store locally and how much to spill onto
1120   ** overflow pages.  The strategy is to minimize the amount of unused
1121   ** space on overflow pages while keeping the amount of local storage
1122   ** in between minLocal and maxLocal.
1123   **
1124   ** Warning:  changing the way overflow payload is distributed in any
1125   ** way will result in an incompatible file format.
1126   */
1127   int minLocal;  /* Minimum amount of payload held locally */
1128   int maxLocal;  /* Maximum amount of payload held locally */
1129   int surplus;   /* Overflow payload available for local storage */
1130 
1131   minLocal = pPage->minLocal;
1132   maxLocal = pPage->maxLocal;
1133   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134   testcase( surplus==maxLocal );
1135   testcase( surplus==maxLocal+1 );
1136   if( surplus <= maxLocal ){
1137     pInfo->nLocal = (u16)surplus;
1138   }else{
1139     pInfo->nLocal = (u16)minLocal;
1140   }
1141   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1142 }
1143 
1144 /*
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1147 */
btreePayloadToLocal(MemPage * pPage,i64 nPayload)1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149   int maxLocal;  /* Maximum amount of payload held locally */
1150   maxLocal = pPage->maxLocal;
1151   if( nPayload<=maxLocal ){
1152     return nPayload;
1153   }else{
1154     int minLocal;  /* Minimum amount of payload held locally */
1155     int surplus;   /* Overflow payload available for local storage */
1156     minLocal = pPage->minLocal;
1157     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158     return ( surplus <= maxLocal ) ? surplus : minLocal;
1159   }
1160 }
1161 
1162 /*
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1165 **
1166 ** Parse a cell content block and fill in the CellInfo structure.
1167 **
1168 ** btreeParseCellPtr()        =>   table btree leaf nodes
1169 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1170 ** btreeParseCellPtrIndex()   =>   index btree nodes
1171 **
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1175 */
btreeParseCellPtrNoPayload(MemPage * pPage,u8 * pCell,CellInfo * pInfo)1176 static void btreeParseCellPtrNoPayload(
1177   MemPage *pPage,         /* Page containing the cell */
1178   u8 *pCell,              /* Pointer to the cell text. */
1179   CellInfo *pInfo         /* Fill in this structure */
1180 ){
1181   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182   assert( pPage->leaf==0 );
1183   assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185   UNUSED_PARAMETER(pPage);
1186 #endif
1187   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188   pInfo->nPayload = 0;
1189   pInfo->nLocal = 0;
1190   pInfo->pPayload = 0;
1191   return;
1192 }
btreeParseCellPtr(MemPage * pPage,u8 * pCell,CellInfo * pInfo)1193 static void btreeParseCellPtr(
1194   MemPage *pPage,         /* Page containing the cell */
1195   u8 *pCell,              /* Pointer to the cell text. */
1196   CellInfo *pInfo         /* Fill in this structure */
1197 ){
1198   u8 *pIter;              /* For scanning through pCell */
1199   u32 nPayload;           /* Number of bytes of cell payload */
1200   u64 iKey;               /* Extracted Key value */
1201 
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( pPage->leaf==0 || pPage->leaf==1 );
1204   assert( pPage->intKeyLeaf );
1205   assert( pPage->childPtrSize==0 );
1206   pIter = pCell;
1207 
1208   /* The next block of code is equivalent to:
1209   **
1210   **     pIter += getVarint32(pIter, nPayload);
1211   **
1212   ** The code is inlined to avoid a function call.
1213   */
1214   nPayload = *pIter;
1215   if( nPayload>=0x80 ){
1216     u8 *pEnd = &pIter[8];
1217     nPayload &= 0x7f;
1218     do{
1219       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220     }while( (*pIter)>=0x80 && pIter<pEnd );
1221   }
1222   pIter++;
1223 
1224   /* The next block of code is equivalent to:
1225   **
1226   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227   **
1228   ** The code is inlined and the loop is unrolled for performance.
1229   ** This routine is a high-runner.
1230   */
1231   iKey = *pIter;
1232   if( iKey>=0x80 ){
1233     u8 x;
1234     iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235     if( x>=0x80 ){
1236       iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237       if( x>=0x80 ){
1238         iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239         if( x>=0x80 ){
1240           iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241           if( x>=0x80 ){
1242             iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243             if( x>=0x80 ){
1244               iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245               if( x>=0x80 ){
1246                 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247                 if( x>=0x80 ){
1248                   iKey = (iKey<<8) | (*++pIter);
1249                 }
1250               }
1251             }
1252           }
1253         }
1254       }
1255     }
1256   }
1257   pIter++;
1258 
1259   pInfo->nKey = *(i64*)&iKey;
1260   pInfo->nPayload = nPayload;
1261   pInfo->pPayload = pIter;
1262   testcase( nPayload==pPage->maxLocal );
1263   testcase( nPayload==(u32)pPage->maxLocal+1 );
1264   if( nPayload<=pPage->maxLocal ){
1265     /* This is the (easy) common case where the entire payload fits
1266     ** on the local page.  No overflow is required.
1267     */
1268     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1270     pInfo->nLocal = (u16)nPayload;
1271   }else{
1272     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1273   }
1274 }
btreeParseCellPtrIndex(MemPage * pPage,u8 * pCell,CellInfo * pInfo)1275 static void btreeParseCellPtrIndex(
1276   MemPage *pPage,         /* Page containing the cell */
1277   u8 *pCell,              /* Pointer to the cell text. */
1278   CellInfo *pInfo         /* Fill in this structure */
1279 ){
1280   u8 *pIter;              /* For scanning through pCell */
1281   u32 nPayload;           /* Number of bytes of cell payload */
1282 
1283   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284   assert( pPage->leaf==0 || pPage->leaf==1 );
1285   assert( pPage->intKeyLeaf==0 );
1286   pIter = pCell + pPage->childPtrSize;
1287   nPayload = *pIter;
1288   if( nPayload>=0x80 ){
1289     u8 *pEnd = &pIter[8];
1290     nPayload &= 0x7f;
1291     do{
1292       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293     }while( *(pIter)>=0x80 && pIter<pEnd );
1294   }
1295   pIter++;
1296   pInfo->nKey = nPayload;
1297   pInfo->nPayload = nPayload;
1298   pInfo->pPayload = pIter;
1299   testcase( nPayload==pPage->maxLocal );
1300   testcase( nPayload==(u32)pPage->maxLocal+1 );
1301   if( nPayload<=pPage->maxLocal ){
1302     /* This is the (easy) common case where the entire payload fits
1303     ** on the local page.  No overflow is required.
1304     */
1305     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307     pInfo->nLocal = (u16)nPayload;
1308   }else{
1309     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1310   }
1311 }
btreeParseCell(MemPage * pPage,int iCell,CellInfo * pInfo)1312 static void btreeParseCell(
1313   MemPage *pPage,         /* Page containing the cell */
1314   int iCell,              /* The cell index.  First cell is 0 */
1315   CellInfo *pInfo         /* Fill in this structure */
1316 ){
1317   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1318 }
1319 
1320 /*
1321 ** The following routines are implementations of the MemPage.xCellSize
1322 ** method.
1323 **
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page.  The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1328 **
1329 ** cellSizePtrNoPayload()    =>   table internal nodes
1330 ** cellSizePtrTableLeaf()    =>   table leaf nodes
1331 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1332 */
cellSizePtr(MemPage * pPage,u8 * pCell)1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1334   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335   u8 *pEnd;                                /* End mark for a varint */
1336   u32 nSize;                               /* Size value to return */
1337 
1338 #ifdef SQLITE_DEBUG
1339   /* The value returned by this function should always be the same as
1340   ** the (CellInfo.nSize) value found by doing a full parse of the
1341   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342   ** this function verifies that this invariant is not violated. */
1343   CellInfo debuginfo;
1344   pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #endif
1346 
1347   nSize = *pIter;
1348   if( nSize>=0x80 ){
1349     pEnd = &pIter[8];
1350     nSize &= 0x7f;
1351     do{
1352       nSize = (nSize<<7) | (*++pIter & 0x7f);
1353     }while( *(pIter)>=0x80 && pIter<pEnd );
1354   }
1355   pIter++;
1356   testcase( nSize==pPage->maxLocal );
1357   testcase( nSize==(u32)pPage->maxLocal+1 );
1358   if( nSize<=pPage->maxLocal ){
1359     nSize += (u32)(pIter - pCell);
1360     if( nSize<4 ) nSize = 4;
1361   }else{
1362     int minLocal = pPage->minLocal;
1363     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1364     testcase( nSize==pPage->maxLocal );
1365     testcase( nSize==(u32)pPage->maxLocal+1 );
1366     if( nSize>pPage->maxLocal ){
1367       nSize = minLocal;
1368     }
1369     nSize += 4 + (u16)(pIter - pCell);
1370   }
1371   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1372   return (u16)nSize;
1373 }
cellSizePtrNoPayload(MemPage * pPage,u8 * pCell)1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376   u8 *pEnd;              /* End mark for a varint */
1377 
1378 #ifdef SQLITE_DEBUG
1379   /* The value returned by this function should always be the same as
1380   ** the (CellInfo.nSize) value found by doing a full parse of the
1381   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382   ** this function verifies that this invariant is not violated. */
1383   CellInfo debuginfo;
1384   pPage->xParseCell(pPage, pCell, &debuginfo);
1385 #else
1386   UNUSED_PARAMETER(pPage);
1387 #endif
1388 
1389   assert( pPage->childPtrSize==4 );
1390   pEnd = pIter + 9;
1391   while( (*pIter++)&0x80 && pIter<pEnd );
1392   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393   return (u16)(pIter - pCell);
1394 }
cellSizePtrTableLeaf(MemPage * pPage,u8 * pCell)1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396   u8 *pIter = pCell;   /* For looping over bytes of pCell */
1397   u8 *pEnd;            /* End mark for a varint */
1398   u32 nSize;           /* Size value to return */
1399 
1400 #ifdef SQLITE_DEBUG
1401   /* The value returned by this function should always be the same as
1402   ** the (CellInfo.nSize) value found by doing a full parse of the
1403   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404   ** this function verifies that this invariant is not violated. */
1405   CellInfo debuginfo;
1406   pPage->xParseCell(pPage, pCell, &debuginfo);
1407 #endif
1408 
1409   nSize = *pIter;
1410   if( nSize>=0x80 ){
1411     pEnd = &pIter[8];
1412     nSize &= 0x7f;
1413     do{
1414       nSize = (nSize<<7) | (*++pIter & 0x7f);
1415     }while( *(pIter)>=0x80 && pIter<pEnd );
1416   }
1417   pIter++;
1418   /* pIter now points at the 64-bit integer key value, a variable length
1419   ** integer. The following block moves pIter to point at the first byte
1420   ** past the end of the key value. */
1421   if( (*pIter++)&0x80
1422    && (*pIter++)&0x80
1423    && (*pIter++)&0x80
1424    && (*pIter++)&0x80
1425    && (*pIter++)&0x80
1426    && (*pIter++)&0x80
1427    && (*pIter++)&0x80
1428    && (*pIter++)&0x80 ){ pIter++; }
1429   testcase( nSize==pPage->maxLocal );
1430   testcase( nSize==(u32)pPage->maxLocal+1 );
1431   if( nSize<=pPage->maxLocal ){
1432     nSize += (u32)(pIter - pCell);
1433     if( nSize<4 ) nSize = 4;
1434   }else{
1435     int minLocal = pPage->minLocal;
1436     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437     testcase( nSize==pPage->maxLocal );
1438     testcase( nSize==(u32)pPage->maxLocal+1 );
1439     if( nSize>pPage->maxLocal ){
1440       nSize = minLocal;
1441     }
1442     nSize += 4 + (u16)(pIter - pCell);
1443   }
1444   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445   return (u16)nSize;
1446 }
1447 
1448 
1449 #ifdef SQLITE_DEBUG
1450 /* This variation on cellSizePtr() is used inside of assert() statements
1451 ** only. */
cellSize(MemPage * pPage,int iCell)1452 static u16 cellSize(MemPage *pPage, int iCell){
1453   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1454 }
1455 #endif
1456 
1457 #ifndef SQLITE_OMIT_AUTOVACUUM
1458 /*
1459 ** The cell pCell is currently part of page pSrc but will ultimately be part
1460 ** of pPage.  (pSrc and pPage are often the same.)  If pCell contains a
1461 ** pointer to an overflow page, insert an entry into the pointer-map for
1462 ** the overflow page that will be valid after pCell has been moved to pPage.
1463 */
ptrmapPutOvflPtr(MemPage * pPage,MemPage * pSrc,u8 * pCell,int * pRC)1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1465   CellInfo info;
1466   if( *pRC ) return;
1467   assert( pCell!=0 );
1468   pPage->xParseCell(pPage, pCell, &info);
1469   if( info.nLocal<info.nPayload ){
1470     Pgno ovfl;
1471     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472       testcase( pSrc!=pPage );
1473       *pRC = SQLITE_CORRUPT_BKPT;
1474       return;
1475     }
1476     ovfl = get4byte(&pCell[info.nSize-4]);
1477     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1478   }
1479 }
1480 #endif
1481 
1482 
1483 /*
1484 ** Defragment the page given. This routine reorganizes cells within the
1485 ** page so that there are no free-blocks on the free-block list.
1486 **
1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488 ** present in the page after this routine returns.
1489 **
1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491 ** b-tree page so that there are no freeblocks or fragment bytes, all
1492 ** unused bytes are contained in the unallocated space region, and all
1493 ** cells are packed tightly at the end of the page.
1494 */
defragmentPage(MemPage * pPage,int nMaxFrag)1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1496   int i;                     /* Loop counter */
1497   int pc;                    /* Address of the i-th cell */
1498   int hdr;                   /* Offset to the page header */
1499   int size;                  /* Size of a cell */
1500   int usableSize;            /* Number of usable bytes on a page */
1501   int cellOffset;            /* Offset to the cell pointer array */
1502   int cbrk;                  /* Offset to the cell content area */
1503   int nCell;                 /* Number of cells on the page */
1504   unsigned char *data;       /* The page data */
1505   unsigned char *temp;       /* Temp area for cell content */
1506   unsigned char *src;        /* Source of content */
1507   int iCellFirst;            /* First allowable cell index */
1508   int iCellLast;             /* Last possible cell index */
1509   int iCellStart;            /* First cell offset in input */
1510 
1511   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1512   assert( pPage->pBt!=0 );
1513   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1514   assert( pPage->nOverflow==0 );
1515   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1516   data = pPage->aData;
1517   hdr = pPage->hdrOffset;
1518   cellOffset = pPage->cellOffset;
1519   nCell = pPage->nCell;
1520   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1521   iCellFirst = cellOffset + 2*nCell;
1522   usableSize = pPage->pBt->usableSize;
1523 
1524   /* This block handles pages with two or fewer free blocks and nMaxFrag
1525   ** or fewer fragmented bytes. In this case it is faster to move the
1526   ** two (or one) blocks of cells using memmove() and add the required
1527   ** offsets to each pointer in the cell-pointer array than it is to
1528   ** reconstruct the entire page.  */
1529   if( (int)data[hdr+7]<=nMaxFrag ){
1530     int iFree = get2byte(&data[hdr+1]);
1531     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1532     if( iFree ){
1533       int iFree2 = get2byte(&data[iFree]);
1534       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1535       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1536         u8 *pEnd = &data[cellOffset + nCell*2];
1537         u8 *pAddr;
1538         int sz2 = 0;
1539         int sz = get2byte(&data[iFree+2]);
1540         int top = get2byte(&data[hdr+5]);
1541         if( top>=iFree ){
1542           return SQLITE_CORRUPT_PAGE(pPage);
1543         }
1544         if( iFree2 ){
1545           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1546           sz2 = get2byte(&data[iFree2+2]);
1547           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1548           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1549           sz += sz2;
1550         }else if( iFree+sz>usableSize ){
1551           return SQLITE_CORRUPT_PAGE(pPage);
1552         }
1553 
1554         cbrk = top+sz;
1555         assert( cbrk+(iFree-top) <= usableSize );
1556         memmove(&data[cbrk], &data[top], iFree-top);
1557         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1558           pc = get2byte(pAddr);
1559           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1560           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1561         }
1562         goto defragment_out;
1563       }
1564     }
1565   }
1566 
1567   cbrk = usableSize;
1568   iCellLast = usableSize - 4;
1569   iCellStart = get2byte(&data[hdr+5]);
1570   if( nCell>0 ){
1571     temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1572     memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1573     src = temp;
1574     for(i=0; i<nCell; i++){
1575       u8 *pAddr;     /* The i-th cell pointer */
1576       pAddr = &data[cellOffset + i*2];
1577       pc = get2byte(pAddr);
1578       testcase( pc==iCellFirst );
1579       testcase( pc==iCellLast );
1580       /* These conditions have already been verified in btreeInitPage()
1581       ** if PRAGMA cell_size_check=ON.
1582       */
1583       if( pc<iCellStart || pc>iCellLast ){
1584         return SQLITE_CORRUPT_PAGE(pPage);
1585       }
1586       assert( pc>=iCellStart && pc<=iCellLast );
1587       size = pPage->xCellSize(pPage, &src[pc]);
1588       cbrk -= size;
1589       if( cbrk<iCellStart || pc+size>usableSize ){
1590         return SQLITE_CORRUPT_PAGE(pPage);
1591       }
1592       assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1593       testcase( cbrk+size==usableSize );
1594       testcase( pc+size==usableSize );
1595       put2byte(pAddr, cbrk);
1596       memcpy(&data[cbrk], &src[pc], size);
1597     }
1598   }
1599   data[hdr+7] = 0;
1600 
1601 defragment_out:
1602   assert( pPage->nFree>=0 );
1603   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1604     return SQLITE_CORRUPT_PAGE(pPage);
1605   }
1606   assert( cbrk>=iCellFirst );
1607   put2byte(&data[hdr+5], cbrk);
1608   data[hdr+1] = 0;
1609   data[hdr+2] = 0;
1610   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1611   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1612   return SQLITE_OK;
1613 }
1614 
1615 /*
1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1617 ** size. If one can be found, return a pointer to the space and remove it
1618 ** from the free-list.
1619 **
1620 ** If no suitable space can be found on the free-list, return NULL.
1621 **
1622 ** This function may detect corruption within pPg.  If corruption is
1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1624 **
1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1626 ** will be ignored if adding the extra space to the fragmentation count
1627 ** causes the fragmentation count to exceed 60.
1628 */
pageFindSlot(MemPage * pPg,int nByte,int * pRc)1629 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1630   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1631   u8 * const aData = pPg->aData;             /* Page data */
1632   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1633   u8 *pTmp = &aData[iAddr];                  /* Temporary ptr into aData[] */
1634   int pc = get2byte(pTmp);                   /* Address of a free slot */
1635   int x;                                     /* Excess size of the slot */
1636   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1637   int size;                                  /* Size of the free slot */
1638 
1639   assert( pc>0 );
1640   while( pc<=maxPC ){
1641     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1642     ** freeblock form a big-endian integer which is the size of the freeblock
1643     ** in bytes, including the 4-byte header. */
1644     pTmp = &aData[pc+2];
1645     size = get2byte(pTmp);
1646     if( (x = size - nByte)>=0 ){
1647       testcase( x==4 );
1648       testcase( x==3 );
1649       if( x<4 ){
1650         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1651         ** number of bytes in fragments may not exceed 60. */
1652         if( aData[hdr+7]>57 ) return 0;
1653 
1654         /* Remove the slot from the free-list. Update the number of
1655         ** fragmented bytes within the page. */
1656         memcpy(&aData[iAddr], &aData[pc], 2);
1657         aData[hdr+7] += (u8)x;
1658         return &aData[pc];
1659       }else if( x+pc > maxPC ){
1660         /* This slot extends off the end of the usable part of the page */
1661         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1662         return 0;
1663       }else{
1664         /* The slot remains on the free-list. Reduce its size to account
1665         ** for the portion used by the new allocation. */
1666         put2byte(&aData[pc+2], x);
1667       }
1668       return &aData[pc + x];
1669     }
1670     iAddr = pc;
1671     pTmp = &aData[pc];
1672     pc = get2byte(pTmp);
1673     if( pc<=iAddr ){
1674       if( pc ){
1675         /* The next slot in the chain comes before the current slot */
1676         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1677       }
1678       return 0;
1679     }
1680   }
1681   if( pc>maxPC+nByte-4 ){
1682     /* The free slot chain extends off the end of the page */
1683     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1684   }
1685   return 0;
1686 }
1687 
1688 /*
1689 ** Allocate nByte bytes of space from within the B-Tree page passed
1690 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1691 ** of the first byte of allocated space. Return either SQLITE_OK or
1692 ** an error code (usually SQLITE_CORRUPT).
1693 **
1694 ** The caller guarantees that there is sufficient space to make the
1695 ** allocation.  This routine might need to defragment in order to bring
1696 ** all the space together, however.  This routine will avoid using
1697 ** the first two bytes past the cell pointer area since presumably this
1698 ** allocation is being made in order to insert a new cell, so we will
1699 ** also end up needing a new cell pointer.
1700 */
allocateSpace(MemPage * pPage,int nByte,int * pIdx)1701 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1702   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1703   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1704   int top;                             /* First byte of cell content area */
1705   int rc = SQLITE_OK;                  /* Integer return code */
1706   u8 *pTmp;                            /* Temp ptr into data[] */
1707   int gap;        /* First byte of gap between cell pointers and cell content */
1708 
1709   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1710   assert( pPage->pBt );
1711   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1712   assert( nByte>=0 );  /* Minimum cell size is 4 */
1713   assert( pPage->nFree>=nByte );
1714   assert( pPage->nOverflow==0 );
1715   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1716 
1717   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1718   gap = pPage->cellOffset + 2*pPage->nCell;
1719   assert( gap<=65536 );
1720   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1721   ** and the reserved space is zero (the usual value for reserved space)
1722   ** then the cell content offset of an empty page wants to be 65536.
1723   ** However, that integer is too large to be stored in a 2-byte unsigned
1724   ** integer, so a value of 0 is used in its place. */
1725   pTmp = &data[hdr+5];
1726   top = get2byte(pTmp);
1727   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1728   if( gap>top ){
1729     if( top==0 && pPage->pBt->usableSize==65536 ){
1730       top = 65536;
1731     }else{
1732       return SQLITE_CORRUPT_PAGE(pPage);
1733     }
1734   }
1735 
1736   /* If there is enough space between gap and top for one more cell pointer,
1737   ** and if the freelist is not empty, then search the
1738   ** freelist looking for a slot big enough to satisfy the request.
1739   */
1740   testcase( gap+2==top );
1741   testcase( gap+1==top );
1742   testcase( gap==top );
1743   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1744     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1745     if( pSpace ){
1746       int g2;
1747       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1748       *pIdx = g2 = (int)(pSpace-data);
1749       if( g2<=gap ){
1750         return SQLITE_CORRUPT_PAGE(pPage);
1751       }else{
1752         return SQLITE_OK;
1753       }
1754     }else if( rc ){
1755       return rc;
1756     }
1757   }
1758 
1759   /* The request could not be fulfilled using a freelist slot.  Check
1760   ** to see if defragmentation is necessary.
1761   */
1762   testcase( gap+2+nByte==top );
1763   if( gap+2+nByte>top ){
1764     assert( pPage->nCell>0 || CORRUPT_DB );
1765     assert( pPage->nFree>=0 );
1766     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1767     if( rc ) return rc;
1768     top = get2byteNotZero(&data[hdr+5]);
1769     assert( gap+2+nByte<=top );
1770   }
1771 
1772 
1773   /* Allocate memory from the gap in between the cell pointer array
1774   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1775   ** validated the freelist.  Given that the freelist is valid, there
1776   ** is no way that the allocation can extend off the end of the page.
1777   ** The assert() below verifies the previous sentence.
1778   */
1779   top -= nByte;
1780   put2byte(&data[hdr+5], top);
1781   assert( top+nByte <= (int)pPage->pBt->usableSize );
1782   *pIdx = top;
1783   return SQLITE_OK;
1784 }
1785 
1786 /*
1787 ** Return a section of the pPage->aData to the freelist.
1788 ** The first byte of the new free block is pPage->aData[iStart]
1789 ** and the size of the block is iSize bytes.
1790 **
1791 ** Adjacent freeblocks are coalesced.
1792 **
1793 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1794 ** that routine will not detect overlap between cells or freeblocks.  Nor
1795 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1796 ** at the end of the page.  So do additional corruption checks inside this
1797 ** routine and return SQLITE_CORRUPT if any problems are found.
1798 */
freeSpace(MemPage * pPage,u16 iStart,u16 iSize)1799 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1800   u16 iPtr;                             /* Address of ptr to next freeblock */
1801   u16 iFreeBlk;                         /* Address of the next freeblock */
1802   u8 hdr;                               /* Page header size.  0 or 100 */
1803   u8 nFrag = 0;                         /* Reduction in fragmentation */
1804   u16 iOrigSize = iSize;                /* Original value of iSize */
1805   u16 x;                                /* Offset to cell content area */
1806   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1807   unsigned char *data = pPage->aData;   /* Page content */
1808   u8 *pTmp;                             /* Temporary ptr into data[] */
1809 
1810   assert( pPage->pBt!=0 );
1811   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1812   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1813   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1814   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1815   assert( iSize>=4 );   /* Minimum cell size is 4 */
1816   assert( iStart<=pPage->pBt->usableSize-4 );
1817 
1818   /* The list of freeblocks must be in ascending order.  Find the
1819   ** spot on the list where iStart should be inserted.
1820   */
1821   hdr = pPage->hdrOffset;
1822   iPtr = hdr + 1;
1823   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1824     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1825   }else{
1826     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1827       if( iFreeBlk<=iPtr ){
1828         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1829         return SQLITE_CORRUPT_PAGE(pPage);
1830       }
1831       iPtr = iFreeBlk;
1832     }
1833     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1834       return SQLITE_CORRUPT_PAGE(pPage);
1835     }
1836     assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
1837 
1838     /* At this point:
1839     **    iFreeBlk:   First freeblock after iStart, or zero if none
1840     **    iPtr:       The address of a pointer to iFreeBlk
1841     **
1842     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1843     */
1844     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1845       nFrag = iFreeBlk - iEnd;
1846       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1847       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1848       if( iEnd > pPage->pBt->usableSize ){
1849         return SQLITE_CORRUPT_PAGE(pPage);
1850       }
1851       iSize = iEnd - iStart;
1852       iFreeBlk = get2byte(&data[iFreeBlk]);
1853     }
1854 
1855     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1856     ** pointer in the page header) then check to see if iStart should be
1857     ** coalesced onto the end of iPtr.
1858     */
1859     if( iPtr>hdr+1 ){
1860       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1861       if( iPtrEnd+3>=iStart ){
1862         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1863         nFrag += iStart - iPtrEnd;
1864         iSize = iEnd - iPtr;
1865         iStart = iPtr;
1866       }
1867     }
1868     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1869     data[hdr+7] -= nFrag;
1870   }
1871   pTmp = &data[hdr+5];
1872   x = get2byte(pTmp);
1873   if( iStart<=x ){
1874     /* The new freeblock is at the beginning of the cell content area,
1875     ** so just extend the cell content area rather than create another
1876     ** freelist entry */
1877     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1878     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1879     put2byte(&data[hdr+1], iFreeBlk);
1880     put2byte(&data[hdr+5], iEnd);
1881   }else{
1882     /* Insert the new freeblock into the freelist */
1883     put2byte(&data[iPtr], iStart);
1884   }
1885   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1886     /* Overwrite deleted information with zeros when the secure_delete
1887     ** option is enabled */
1888     memset(&data[iStart], 0, iSize);
1889   }
1890   put2byte(&data[iStart], iFreeBlk);
1891   put2byte(&data[iStart+2], iSize);
1892   pPage->nFree += iOrigSize;
1893   return SQLITE_OK;
1894 }
1895 
1896 /*
1897 ** Decode the flags byte (the first byte of the header) for a page
1898 ** and initialize fields of the MemPage structure accordingly.
1899 **
1900 ** Only the following combinations are supported.  Anything different
1901 ** indicates a corrupt database files:
1902 **
1903 **         PTF_ZERODATA
1904 **         PTF_ZERODATA | PTF_LEAF
1905 **         PTF_LEAFDATA | PTF_INTKEY
1906 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1907 */
decodeFlags(MemPage * pPage,int flagByte)1908 static int decodeFlags(MemPage *pPage, int flagByte){
1909   BtShared *pBt;     /* A copy of pPage->pBt */
1910 
1911   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1912   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1913   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1914   flagByte &= ~PTF_LEAF;
1915   pPage->childPtrSize = 4-4*pPage->leaf;
1916   pBt = pPage->pBt;
1917   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1918     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1919     ** interior table b-tree page. */
1920     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1921     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1922     ** leaf table b-tree page. */
1923     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1924     pPage->intKey = 1;
1925     if( pPage->leaf ){
1926       pPage->intKeyLeaf = 1;
1927       pPage->xCellSize = cellSizePtrTableLeaf;
1928       pPage->xParseCell = btreeParseCellPtr;
1929     }else{
1930       pPage->intKeyLeaf = 0;
1931       pPage->xCellSize = cellSizePtrNoPayload;
1932       pPage->xParseCell = btreeParseCellPtrNoPayload;
1933     }
1934     pPage->maxLocal = pBt->maxLeaf;
1935     pPage->minLocal = pBt->minLeaf;
1936   }else if( flagByte==PTF_ZERODATA ){
1937     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1938     ** interior index b-tree page. */
1939     assert( (PTF_ZERODATA)==2 );
1940     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1941     ** leaf index b-tree page. */
1942     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1943     pPage->intKey = 0;
1944     pPage->intKeyLeaf = 0;
1945     pPage->xCellSize = cellSizePtr;
1946     pPage->xParseCell = btreeParseCellPtrIndex;
1947     pPage->maxLocal = pBt->maxLocal;
1948     pPage->minLocal = pBt->minLocal;
1949   }else{
1950     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1951     ** an error. */
1952     pPage->intKey = 0;
1953     pPage->intKeyLeaf = 0;
1954     pPage->xCellSize = cellSizePtr;
1955     pPage->xParseCell = btreeParseCellPtrIndex;
1956     return SQLITE_CORRUPT_PAGE(pPage);
1957   }
1958   pPage->max1bytePayload = pBt->max1bytePayload;
1959   return SQLITE_OK;
1960 }
1961 
1962 /*
1963 ** Compute the amount of freespace on the page.  In other words, fill
1964 ** in the pPage->nFree field.
1965 */
btreeComputeFreeSpace(MemPage * pPage)1966 static int btreeComputeFreeSpace(MemPage *pPage){
1967   int pc;            /* Address of a freeblock within pPage->aData[] */
1968   u8 hdr;            /* Offset to beginning of page header */
1969   u8 *data;          /* Equal to pPage->aData */
1970   int usableSize;    /* Amount of usable space on each page */
1971   int nFree;         /* Number of unused bytes on the page */
1972   int top;           /* First byte of the cell content area */
1973   int iCellFirst;    /* First allowable cell or freeblock offset */
1974   int iCellLast;     /* Last possible cell or freeblock offset */
1975 
1976   assert( pPage->pBt!=0 );
1977   assert( pPage->pBt->db!=0 );
1978   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1979   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1980   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1981   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1982   assert( pPage->isInit==1 );
1983   assert( pPage->nFree<0 );
1984 
1985   usableSize = pPage->pBt->usableSize;
1986   hdr = pPage->hdrOffset;
1987   data = pPage->aData;
1988   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1989   ** the start of the cell content area. A zero value for this integer is
1990   ** interpreted as 65536. */
1991   top = get2byteNotZero(&data[hdr+5]);
1992   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1993   iCellLast = usableSize - 4;
1994 
1995   /* Compute the total free space on the page
1996   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1997   ** start of the first freeblock on the page, or is zero if there are no
1998   ** freeblocks. */
1999   pc = get2byte(&data[hdr+1]);
2000   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
2001   if( pc>0 ){
2002     u32 next, size;
2003     if( pc<top ){
2004       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2005       ** always be at least one cell before the first freeblock.
2006       */
2007       return SQLITE_CORRUPT_PAGE(pPage);
2008     }
2009     while( 1 ){
2010       if( pc>iCellLast ){
2011         /* Freeblock off the end of the page */
2012         return SQLITE_CORRUPT_PAGE(pPage);
2013       }
2014       next = get2byte(&data[pc]);
2015       size = get2byte(&data[pc+2]);
2016       nFree = nFree + size;
2017       if( next<=pc+size+3 ) break;
2018       pc = next;
2019     }
2020     if( next>0 ){
2021       /* Freeblock not in ascending order */
2022       return SQLITE_CORRUPT_PAGE(pPage);
2023     }
2024     if( pc+size>(unsigned int)usableSize ){
2025       /* Last freeblock extends past page end */
2026       return SQLITE_CORRUPT_PAGE(pPage);
2027     }
2028   }
2029 
2030   /* At this point, nFree contains the sum of the offset to the start
2031   ** of the cell-content area plus the number of free bytes within
2032   ** the cell-content area. If this is greater than the usable-size
2033   ** of the page, then the page must be corrupted. This check also
2034   ** serves to verify that the offset to the start of the cell-content
2035   ** area, according to the page header, lies within the page.
2036   */
2037   if( nFree>usableSize || nFree<iCellFirst ){
2038     return SQLITE_CORRUPT_PAGE(pPage);
2039   }
2040   pPage->nFree = (u16)(nFree - iCellFirst);
2041   return SQLITE_OK;
2042 }
2043 
2044 /*
2045 ** Do additional sanity check after btreeInitPage() if
2046 ** PRAGMA cell_size_check=ON
2047 */
btreeCellSizeCheck(MemPage * pPage)2048 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2049   int iCellFirst;    /* First allowable cell or freeblock offset */
2050   int iCellLast;     /* Last possible cell or freeblock offset */
2051   int i;             /* Index into the cell pointer array */
2052   int sz;            /* Size of a cell */
2053   int pc;            /* Address of a freeblock within pPage->aData[] */
2054   u8 *data;          /* Equal to pPage->aData */
2055   int usableSize;    /* Maximum usable space on the page */
2056   int cellOffset;    /* Start of cell content area */
2057 
2058   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2059   usableSize = pPage->pBt->usableSize;
2060   iCellLast = usableSize - 4;
2061   data = pPage->aData;
2062   cellOffset = pPage->cellOffset;
2063   if( !pPage->leaf ) iCellLast--;
2064   for(i=0; i<pPage->nCell; i++){
2065     pc = get2byteAligned(&data[cellOffset+i*2]);
2066     testcase( pc==iCellFirst );
2067     testcase( pc==iCellLast );
2068     if( pc<iCellFirst || pc>iCellLast ){
2069       return SQLITE_CORRUPT_PAGE(pPage);
2070     }
2071     sz = pPage->xCellSize(pPage, &data[pc]);
2072     testcase( pc+sz==usableSize );
2073     if( pc+sz>usableSize ){
2074       return SQLITE_CORRUPT_PAGE(pPage);
2075     }
2076   }
2077   return SQLITE_OK;
2078 }
2079 
2080 /*
2081 ** Initialize the auxiliary information for a disk block.
2082 **
2083 ** Return SQLITE_OK on success.  If we see that the page does
2084 ** not contain a well-formed database page, then return
2085 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2086 ** guarantee that the page is well-formed.  It only shows that
2087 ** we failed to detect any corruption.
2088 */
btreeInitPage(MemPage * pPage)2089 static int btreeInitPage(MemPage *pPage){
2090   u8 *data;          /* Equal to pPage->aData */
2091   BtShared *pBt;        /* The main btree structure */
2092 
2093   assert( pPage->pBt!=0 );
2094   assert( pPage->pBt->db!=0 );
2095   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2096   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2097   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2098   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2099   assert( pPage->isInit==0 );
2100 
2101   pBt = pPage->pBt;
2102   data = pPage->aData + pPage->hdrOffset;
2103   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2104   ** the b-tree page type. */
2105   if( decodeFlags(pPage, data[0]) ){
2106     return SQLITE_CORRUPT_PAGE(pPage);
2107   }
2108   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2109   pPage->maskPage = (u16)(pBt->pageSize - 1);
2110   pPage->nOverflow = 0;
2111   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2112   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2113   pPage->aDataEnd = pPage->aData + pBt->pageSize;
2114   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2115   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2116   ** number of cells on the page. */
2117   pPage->nCell = get2byte(&data[3]);
2118   if( pPage->nCell>MX_CELL(pBt) ){
2119     /* To many cells for a single page.  The page must be corrupt */
2120     return SQLITE_CORRUPT_PAGE(pPage);
2121   }
2122   testcase( pPage->nCell==MX_CELL(pBt) );
2123   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2124   ** possible for a root page of a table that contains no rows) then the
2125   ** offset to the cell content area will equal the page size minus the
2126   ** bytes of reserved space. */
2127   assert( pPage->nCell>0
2128        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2129        || CORRUPT_DB );
2130   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2131   pPage->isInit = 1;
2132   if( pBt->db->flags & SQLITE_CellSizeCk ){
2133     return btreeCellSizeCheck(pPage);
2134   }
2135   return SQLITE_OK;
2136 }
2137 
2138 /*
2139 ** Set up a raw page so that it looks like a database page holding
2140 ** no entries.
2141 */
zeroPage(MemPage * pPage,int flags)2142 static void zeroPage(MemPage *pPage, int flags){
2143   unsigned char *data = pPage->aData;
2144   BtShared *pBt = pPage->pBt;
2145   u8 hdr = pPage->hdrOffset;
2146   u16 first;
2147 
2148   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
2149   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2150   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2151   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2152   assert( sqlite3_mutex_held(pBt->mutex) );
2153   if( pBt->btsFlags & BTS_FAST_SECURE ){
2154     memset(&data[hdr], 0, pBt->usableSize - hdr);
2155   }
2156   data[hdr] = (char)flags;
2157   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2158   memset(&data[hdr+1], 0, 4);
2159   data[hdr+7] = 0;
2160   put2byte(&data[hdr+5], pBt->usableSize);
2161   pPage->nFree = (u16)(pBt->usableSize - first);
2162   decodeFlags(pPage, flags);
2163   pPage->cellOffset = first;
2164   pPage->aDataEnd = &data[pBt->pageSize];
2165   pPage->aCellIdx = &data[first];
2166   pPage->aDataOfst = &data[pPage->childPtrSize];
2167   pPage->nOverflow = 0;
2168   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2169   pPage->maskPage = (u16)(pBt->pageSize - 1);
2170   pPage->nCell = 0;
2171   pPage->isInit = 1;
2172 }
2173 
2174 
2175 /*
2176 ** Convert a DbPage obtained from the pager into a MemPage used by
2177 ** the btree layer.
2178 */
btreePageFromDbPage(DbPage * pDbPage,Pgno pgno,BtShared * pBt)2179 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2180   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2181   if( pgno!=pPage->pgno ){
2182     pPage->aData = sqlite3PagerGetData(pDbPage);
2183     pPage->pDbPage = pDbPage;
2184     pPage->pBt = pBt;
2185     pPage->pgno = pgno;
2186     pPage->hdrOffset = pgno==1 ? 100 : 0;
2187   }
2188   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2189   return pPage;
2190 }
2191 
2192 /*
2193 ** Get a page from the pager.  Initialize the MemPage.pBt and
2194 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2195 **
2196 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2197 ** about the content of the page at this time.  So do not go to the disk
2198 ** to fetch the content.  Just fill in the content with zeros for now.
2199 ** If in the future we call sqlite3PagerWrite() on this page, that
2200 ** means we have started to be concerned about content and the disk
2201 ** read should occur at that point.
2202 */
btreeGetPage(BtShared * pBt,Pgno pgno,MemPage ** ppPage,int flags)2203 static int btreeGetPage(
2204   BtShared *pBt,       /* The btree */
2205   Pgno pgno,           /* Number of the page to fetch */
2206   MemPage **ppPage,    /* Return the page in this parameter */
2207   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2208 ){
2209   int rc;
2210   DbPage *pDbPage;
2211 
2212   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2213   assert( sqlite3_mutex_held(pBt->mutex) );
2214   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2215   if( rc ) return rc;
2216   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2217   return SQLITE_OK;
2218 }
2219 
2220 /*
2221 ** Retrieve a page from the pager cache. If the requested page is not
2222 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2223 ** MemPage.aData elements if needed.
2224 */
btreePageLookup(BtShared * pBt,Pgno pgno)2225 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2226   DbPage *pDbPage;
2227   assert( sqlite3_mutex_held(pBt->mutex) );
2228   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2229   if( pDbPage ){
2230     return btreePageFromDbPage(pDbPage, pgno, pBt);
2231   }
2232   return 0;
2233 }
2234 
2235 /*
2236 ** Return the size of the database file in pages. If there is any kind of
2237 ** error, return ((unsigned int)-1).
2238 */
btreePagecount(BtShared * pBt)2239 static Pgno btreePagecount(BtShared *pBt){
2240   return pBt->nPage;
2241 }
sqlite3BtreeLastPage(Btree * p)2242 Pgno sqlite3BtreeLastPage(Btree *p){
2243   assert( sqlite3BtreeHoldsMutex(p) );
2244   return btreePagecount(p->pBt);
2245 }
2246 
2247 /*
2248 ** Get a page from the pager and initialize it.
2249 **
2250 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2251 ** call.  Do additional sanity checking on the page in this case.
2252 ** And if the fetch fails, this routine must decrement pCur->iPage.
2253 **
2254 ** The page is fetched as read-write unless pCur is not NULL and is
2255 ** a read-only cursor.
2256 **
2257 ** If an error occurs, then *ppPage is undefined. It
2258 ** may remain unchanged, or it may be set to an invalid value.
2259 */
getAndInitPage(BtShared * pBt,Pgno pgno,MemPage ** ppPage,BtCursor * pCur,int bReadOnly)2260 static int getAndInitPage(
2261   BtShared *pBt,                  /* The database file */
2262   Pgno pgno,                      /* Number of the page to get */
2263   MemPage **ppPage,               /* Write the page pointer here */
2264   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2265   int bReadOnly                   /* True for a read-only page */
2266 ){
2267   int rc;
2268   DbPage *pDbPage;
2269   assert( sqlite3_mutex_held(pBt->mutex) );
2270   assert( pCur==0 || ppPage==&pCur->pPage );
2271   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2272   assert( pCur==0 || pCur->iPage>0 );
2273 
2274   if( pgno>btreePagecount(pBt) ){
2275     rc = SQLITE_CORRUPT_BKPT;
2276     goto getAndInitPage_error1;
2277   }
2278   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2279   if( rc ){
2280     goto getAndInitPage_error1;
2281   }
2282   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2283   if( (*ppPage)->isInit==0 ){
2284     btreePageFromDbPage(pDbPage, pgno, pBt);
2285     rc = btreeInitPage(*ppPage);
2286     if( rc!=SQLITE_OK ){
2287       goto getAndInitPage_error2;
2288     }
2289   }
2290   assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
2291   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2292 
2293   /* If obtaining a child page for a cursor, we must verify that the page is
2294   ** compatible with the root page. */
2295   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2296     rc = SQLITE_CORRUPT_PGNO(pgno);
2297     goto getAndInitPage_error2;
2298   }
2299   return SQLITE_OK;
2300 
2301 getAndInitPage_error2:
2302   releasePage(*ppPage);
2303 getAndInitPage_error1:
2304   if( pCur ){
2305     pCur->iPage--;
2306     pCur->pPage = pCur->apPage[pCur->iPage];
2307   }
2308   testcase( pgno==0 );
2309   assert( pgno!=0 || rc!=SQLITE_OK );
2310   return rc;
2311 }
2312 
2313 /*
2314 ** Release a MemPage.  This should be called once for each prior
2315 ** call to btreeGetPage.
2316 **
2317 ** Page1 is a special case and must be released using releasePageOne().
2318 */
releasePageNotNull(MemPage * pPage)2319 static void releasePageNotNull(MemPage *pPage){
2320   assert( pPage->aData );
2321   assert( pPage->pBt );
2322   assert( pPage->pDbPage!=0 );
2323   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2324   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2325   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2326   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2327 }
releasePage(MemPage * pPage)2328 static void releasePage(MemPage *pPage){
2329   if( pPage ) releasePageNotNull(pPage);
2330 }
releasePageOne(MemPage * pPage)2331 static void releasePageOne(MemPage *pPage){
2332   assert( pPage!=0 );
2333   assert( pPage->aData );
2334   assert( pPage->pBt );
2335   assert( pPage->pDbPage!=0 );
2336   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2337   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2338   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2339   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2340 }
2341 
2342 /*
2343 ** Get an unused page.
2344 **
2345 ** This works just like btreeGetPage() with the addition:
2346 **
2347 **   *  If the page is already in use for some other purpose, immediately
2348 **      release it and return an SQLITE_CURRUPT error.
2349 **   *  Make sure the isInit flag is clear
2350 */
btreeGetUnusedPage(BtShared * pBt,Pgno pgno,MemPage ** ppPage,int flags)2351 static int btreeGetUnusedPage(
2352   BtShared *pBt,       /* The btree */
2353   Pgno pgno,           /* Number of the page to fetch */
2354   MemPage **ppPage,    /* Return the page in this parameter */
2355   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2356 ){
2357   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2358   if( rc==SQLITE_OK ){
2359     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2360       releasePage(*ppPage);
2361       *ppPage = 0;
2362       return SQLITE_CORRUPT_BKPT;
2363     }
2364     (*ppPage)->isInit = 0;
2365   }else{
2366     *ppPage = 0;
2367   }
2368   return rc;
2369 }
2370 
2371 
2372 /*
2373 ** During a rollback, when the pager reloads information into the cache
2374 ** so that the cache is restored to its original state at the start of
2375 ** the transaction, for each page restored this routine is called.
2376 **
2377 ** This routine needs to reset the extra data section at the end of the
2378 ** page to agree with the restored data.
2379 */
pageReinit(DbPage * pData)2380 static void pageReinit(DbPage *pData){
2381   MemPage *pPage;
2382   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2383   assert( sqlite3PagerPageRefcount(pData)>0 );
2384   if( pPage->isInit ){
2385     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2386     pPage->isInit = 0;
2387     if( sqlite3PagerPageRefcount(pData)>1 ){
2388       /* pPage might not be a btree page;  it might be an overflow page
2389       ** or ptrmap page or a free page.  In those cases, the following
2390       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2391       ** But no harm is done by this.  And it is very important that
2392       ** btreeInitPage() be called on every btree page so we make
2393       ** the call for every page that comes in for re-initing. */
2394       btreeInitPage(pPage);
2395     }
2396   }
2397 }
2398 
2399 /*
2400 ** Invoke the busy handler for a btree.
2401 */
btreeInvokeBusyHandler(void * pArg)2402 static int btreeInvokeBusyHandler(void *pArg){
2403   BtShared *pBt = (BtShared*)pArg;
2404   assert( pBt->db );
2405   assert( sqlite3_mutex_held(pBt->db->mutex) );
2406   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2407 }
2408 
2409 /*
2410 ** Open a database file.
2411 **
2412 ** zFilename is the name of the database file.  If zFilename is NULL
2413 ** then an ephemeral database is created.  The ephemeral database might
2414 ** be exclusively in memory, or it might use a disk-based memory cache.
2415 ** Either way, the ephemeral database will be automatically deleted
2416 ** when sqlite3BtreeClose() is called.
2417 **
2418 ** If zFilename is ":memory:" then an in-memory database is created
2419 ** that is automatically destroyed when it is closed.
2420 **
2421 ** The "flags" parameter is a bitmask that might contain bits like
2422 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2423 **
2424 ** If the database is already opened in the same database connection
2425 ** and we are in shared cache mode, then the open will fail with an
2426 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2427 ** objects in the same database connection since doing so will lead
2428 ** to problems with locking.
2429 */
sqlite3BtreeOpen(sqlite3_vfs * pVfs,const char * zFilename,sqlite3 * db,Btree ** ppBtree,int flags,int vfsFlags)2430 int sqlite3BtreeOpen(
2431   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2432   const char *zFilename,  /* Name of the file containing the BTree database */
2433   sqlite3 *db,            /* Associated database handle */
2434   Btree **ppBtree,        /* Pointer to new Btree object written here */
2435   int flags,              /* Options */
2436   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2437 ){
2438   BtShared *pBt = 0;             /* Shared part of btree structure */
2439   Btree *p;                      /* Handle to return */
2440   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2441   int rc = SQLITE_OK;            /* Result code from this function */
2442   u8 nReserve;                   /* Byte of unused space on each page */
2443   unsigned char zDbHeader[100];  /* Database header content */
2444 
2445   /* True if opening an ephemeral, temporary database */
2446   const int isTempDb = zFilename==0 || zFilename[0]==0;
2447 
2448   /* Set the variable isMemdb to true for an in-memory database, or
2449   ** false for a file-based database.
2450   */
2451 #ifdef SQLITE_OMIT_MEMORYDB
2452   const int isMemdb = 0;
2453 #else
2454   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2455                        || (isTempDb && sqlite3TempInMemory(db))
2456                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2457 #endif
2458 
2459   assert( db!=0 );
2460   assert( pVfs!=0 );
2461   assert( sqlite3_mutex_held(db->mutex) );
2462   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2463 
2464   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2465   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2466 
2467   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2468   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2469 
2470   if( isMemdb ){
2471     flags |= BTREE_MEMORY;
2472   }
2473   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2474     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2475   }
2476   p = sqlite3MallocZero(sizeof(Btree));
2477   if( !p ){
2478     return SQLITE_NOMEM_BKPT;
2479   }
2480   p->inTrans = TRANS_NONE;
2481   p->db = db;
2482 #ifndef SQLITE_OMIT_SHARED_CACHE
2483   p->lock.pBtree = p;
2484   p->lock.iTable = 1;
2485 #endif
2486 
2487 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2488   /*
2489   ** If this Btree is a candidate for shared cache, try to find an
2490   ** existing BtShared object that we can share with
2491   */
2492   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2493     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2494       int nFilename = sqlite3Strlen30(zFilename)+1;
2495       int nFullPathname = pVfs->mxPathname+1;
2496       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2497       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2498 
2499       p->sharable = 1;
2500       if( !zFullPathname ){
2501         sqlite3_free(p);
2502         return SQLITE_NOMEM_BKPT;
2503       }
2504       if( isMemdb ){
2505         memcpy(zFullPathname, zFilename, nFilename);
2506       }else{
2507         rc = sqlite3OsFullPathname(pVfs, zFilename,
2508                                    nFullPathname, zFullPathname);
2509         if( rc ){
2510           if( rc==SQLITE_OK_SYMLINK ){
2511             rc = SQLITE_OK;
2512           }else{
2513             sqlite3_free(zFullPathname);
2514             sqlite3_free(p);
2515             return rc;
2516           }
2517         }
2518       }
2519 #if SQLITE_THREADSAFE
2520       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2521       sqlite3_mutex_enter(mutexOpen);
2522       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2523       sqlite3_mutex_enter(mutexShared);
2524 #endif
2525       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2526         assert( pBt->nRef>0 );
2527         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2528                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2529           int iDb;
2530           for(iDb=db->nDb-1; iDb>=0; iDb--){
2531             Btree *pExisting = db->aDb[iDb].pBt;
2532             if( pExisting && pExisting->pBt==pBt ){
2533               sqlite3_mutex_leave(mutexShared);
2534               sqlite3_mutex_leave(mutexOpen);
2535               sqlite3_free(zFullPathname);
2536               sqlite3_free(p);
2537               return SQLITE_CONSTRAINT;
2538             }
2539           }
2540           p->pBt = pBt;
2541           pBt->nRef++;
2542           break;
2543         }
2544       }
2545       sqlite3_mutex_leave(mutexShared);
2546       sqlite3_free(zFullPathname);
2547     }
2548 #ifdef SQLITE_DEBUG
2549     else{
2550       /* In debug mode, we mark all persistent databases as sharable
2551       ** even when they are not.  This exercises the locking code and
2552       ** gives more opportunity for asserts(sqlite3_mutex_held())
2553       ** statements to find locking problems.
2554       */
2555       p->sharable = 1;
2556     }
2557 #endif
2558   }
2559 #endif
2560   if( pBt==0 ){
2561     /*
2562     ** The following asserts make sure that structures used by the btree are
2563     ** the right size.  This is to guard against size changes that result
2564     ** when compiling on a different architecture.
2565     */
2566     assert( sizeof(i64)==8 );
2567     assert( sizeof(u64)==8 );
2568     assert( sizeof(u32)==4 );
2569     assert( sizeof(u16)==2 );
2570     assert( sizeof(Pgno)==4 );
2571 
2572     pBt = sqlite3MallocZero( sizeof(*pBt) );
2573     if( pBt==0 ){
2574       rc = SQLITE_NOMEM_BKPT;
2575       goto btree_open_out;
2576     }
2577     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2578                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2579     if( rc==SQLITE_OK ){
2580       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2581       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2582     }
2583     if( rc!=SQLITE_OK ){
2584       goto btree_open_out;
2585     }
2586     pBt->openFlags = (u8)flags;
2587     pBt->db = db;
2588     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2589     p->pBt = pBt;
2590 
2591     pBt->pCursor = 0;
2592     pBt->pPage1 = 0;
2593     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2594 #if defined(SQLITE_SECURE_DELETE)
2595     pBt->btsFlags |= BTS_SECURE_DELETE;
2596 #elif defined(SQLITE_FAST_SECURE_DELETE)
2597     pBt->btsFlags |= BTS_OVERWRITE;
2598 #endif
2599     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2600     ** determined by the 2-byte integer located at an offset of 16 bytes from
2601     ** the beginning of the database file. */
2602     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2603     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2604          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2605       pBt->pageSize = 0;
2606 #ifndef SQLITE_OMIT_AUTOVACUUM
2607       /* If the magic name ":memory:" will create an in-memory database, then
2608       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2609       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2610       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2611       ** regular file-name. In this case the auto-vacuum applies as per normal.
2612       */
2613       if( zFilename && !isMemdb ){
2614         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2615         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2616       }
2617 #endif
2618       nReserve = 0;
2619     }else{
2620       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2621       ** determined by the one-byte unsigned integer found at an offset of 20
2622       ** into the database file header. */
2623       nReserve = zDbHeader[20];
2624       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2625 #ifndef SQLITE_OMIT_AUTOVACUUM
2626       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2627       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2628 #endif
2629     }
2630     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2631     if( rc ) goto btree_open_out;
2632     pBt->usableSize = pBt->pageSize - nReserve;
2633     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2634 
2635 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2636     /* Add the new BtShared object to the linked list sharable BtShareds.
2637     */
2638     pBt->nRef = 1;
2639     if( p->sharable ){
2640       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2641       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2642       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2643         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2644         if( pBt->mutex==0 ){
2645           rc = SQLITE_NOMEM_BKPT;
2646           goto btree_open_out;
2647         }
2648       }
2649       sqlite3_mutex_enter(mutexShared);
2650       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2651       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2652       sqlite3_mutex_leave(mutexShared);
2653     }
2654 #endif
2655   }
2656 
2657 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2658   /* If the new Btree uses a sharable pBtShared, then link the new
2659   ** Btree into the list of all sharable Btrees for the same connection.
2660   ** The list is kept in ascending order by pBt address.
2661   */
2662   if( p->sharable ){
2663     int i;
2664     Btree *pSib;
2665     for(i=0; i<db->nDb; i++){
2666       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2667         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2668         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2669           p->pNext = pSib;
2670           p->pPrev = 0;
2671           pSib->pPrev = p;
2672         }else{
2673           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2674             pSib = pSib->pNext;
2675           }
2676           p->pNext = pSib->pNext;
2677           p->pPrev = pSib;
2678           if( p->pNext ){
2679             p->pNext->pPrev = p;
2680           }
2681           pSib->pNext = p;
2682         }
2683         break;
2684       }
2685     }
2686   }
2687 #endif
2688   *ppBtree = p;
2689 
2690 btree_open_out:
2691   if( rc!=SQLITE_OK ){
2692     if( pBt && pBt->pPager ){
2693       sqlite3PagerClose(pBt->pPager, 0);
2694     }
2695     sqlite3_free(pBt);
2696     sqlite3_free(p);
2697     *ppBtree = 0;
2698   }else{
2699     sqlite3_file *pFile;
2700 
2701     /* If the B-Tree was successfully opened, set the pager-cache size to the
2702     ** default value. Except, when opening on an existing shared pager-cache,
2703     ** do not change the pager-cache size.
2704     */
2705     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2706       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2707     }
2708 
2709     pFile = sqlite3PagerFile(pBt->pPager);
2710     if( pFile->pMethods ){
2711       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2712     }
2713   }
2714   if( mutexOpen ){
2715     assert( sqlite3_mutex_held(mutexOpen) );
2716     sqlite3_mutex_leave(mutexOpen);
2717   }
2718   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2719   return rc;
2720 }
2721 
2722 /*
2723 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2724 ** remove the BtShared structure from the sharing list.  Return
2725 ** true if the BtShared.nRef counter reaches zero and return
2726 ** false if it is still positive.
2727 */
removeFromSharingList(BtShared * pBt)2728 static int removeFromSharingList(BtShared *pBt){
2729 #ifndef SQLITE_OMIT_SHARED_CACHE
2730   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2731   BtShared *pList;
2732   int removed = 0;
2733 
2734   assert( sqlite3_mutex_notheld(pBt->mutex) );
2735   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2736   sqlite3_mutex_enter(pMainMtx);
2737   pBt->nRef--;
2738   if( pBt->nRef<=0 ){
2739     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2740       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2741     }else{
2742       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2743       while( ALWAYS(pList) && pList->pNext!=pBt ){
2744         pList=pList->pNext;
2745       }
2746       if( ALWAYS(pList) ){
2747         pList->pNext = pBt->pNext;
2748       }
2749     }
2750     if( SQLITE_THREADSAFE ){
2751       sqlite3_mutex_free(pBt->mutex);
2752     }
2753     removed = 1;
2754   }
2755   sqlite3_mutex_leave(pMainMtx);
2756   return removed;
2757 #else
2758   return 1;
2759 #endif
2760 }
2761 
2762 /*
2763 ** Make sure pBt->pTmpSpace points to an allocation of
2764 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2765 ** pointer.
2766 */
allocateTempSpace(BtShared * pBt)2767 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2768   assert( pBt!=0 );
2769   assert( pBt->pTmpSpace==0 );
2770   /* This routine is called only by btreeCursor() when allocating the
2771   ** first write cursor for the BtShared object */
2772   assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2773   pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2774   if( pBt->pTmpSpace==0 ){
2775     BtCursor *pCur = pBt->pCursor;
2776     pBt->pCursor = pCur->pNext;  /* Unlink the cursor */
2777     memset(pCur, 0, sizeof(*pCur));
2778     return SQLITE_NOMEM_BKPT;
2779   }
2780 
2781   /* One of the uses of pBt->pTmpSpace is to format cells before
2782   ** inserting them into a leaf page (function fillInCell()). If
2783   ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2784   ** by the various routines that manipulate binary cells. Which
2785   ** can mean that fillInCell() only initializes the first 2 or 3
2786   ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2787   ** it into a database page. This is not actually a problem, but it
2788   ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2789   ** data is passed to system call write(). So to avoid this error,
2790   ** zero the first 4 bytes of temp space here.
2791   **
2792   ** Also:  Provide four bytes of initialized space before the
2793   ** beginning of pTmpSpace as an area available to prepend the
2794   ** left-child pointer to the beginning of a cell.
2795   */
2796   memset(pBt->pTmpSpace, 0, 8);
2797   pBt->pTmpSpace += 4;
2798   return SQLITE_OK;
2799 }
2800 
2801 /*
2802 ** Free the pBt->pTmpSpace allocation
2803 */
freeTempSpace(BtShared * pBt)2804 static void freeTempSpace(BtShared *pBt){
2805   if( pBt->pTmpSpace ){
2806     pBt->pTmpSpace -= 4;
2807     sqlite3PageFree(pBt->pTmpSpace);
2808     pBt->pTmpSpace = 0;
2809   }
2810 }
2811 
2812 /*
2813 ** Close an open database and invalidate all cursors.
2814 */
sqlite3BtreeClose(Btree * p)2815 int sqlite3BtreeClose(Btree *p){
2816   BtShared *pBt = p->pBt;
2817 
2818   /* Close all cursors opened via this handle.  */
2819   assert( sqlite3_mutex_held(p->db->mutex) );
2820   sqlite3BtreeEnter(p);
2821 
2822   /* Verify that no other cursors have this Btree open */
2823 #ifdef SQLITE_DEBUG
2824   {
2825     BtCursor *pCur = pBt->pCursor;
2826     while( pCur ){
2827       BtCursor *pTmp = pCur;
2828       pCur = pCur->pNext;
2829       assert( pTmp->pBtree!=p );
2830 
2831     }
2832   }
2833 #endif
2834 
2835   /* Rollback any active transaction and free the handle structure.
2836   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2837   ** this handle.
2838   */
2839   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2840   sqlite3BtreeLeave(p);
2841 
2842   /* If there are still other outstanding references to the shared-btree
2843   ** structure, return now. The remainder of this procedure cleans
2844   ** up the shared-btree.
2845   */
2846   assert( p->wantToLock==0 && p->locked==0 );
2847   if( !p->sharable || removeFromSharingList(pBt) ){
2848     /* The pBt is no longer on the sharing list, so we can access
2849     ** it without having to hold the mutex.
2850     **
2851     ** Clean out and delete the BtShared object.
2852     */
2853     assert( !pBt->pCursor );
2854     sqlite3PagerClose(pBt->pPager, p->db);
2855     if( pBt->xFreeSchema && pBt->pSchema ){
2856       pBt->xFreeSchema(pBt->pSchema);
2857     }
2858     sqlite3DbFree(0, pBt->pSchema);
2859     freeTempSpace(pBt);
2860     sqlite3_free(pBt);
2861   }
2862 
2863 #ifndef SQLITE_OMIT_SHARED_CACHE
2864   assert( p->wantToLock==0 );
2865   assert( p->locked==0 );
2866   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2867   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2868 #endif
2869 
2870   sqlite3_free(p);
2871   return SQLITE_OK;
2872 }
2873 
2874 /*
2875 ** Change the "soft" limit on the number of pages in the cache.
2876 ** Unused and unmodified pages will be recycled when the number of
2877 ** pages in the cache exceeds this soft limit.  But the size of the
2878 ** cache is allowed to grow larger than this limit if it contains
2879 ** dirty pages or pages still in active use.
2880 */
sqlite3BtreeSetCacheSize(Btree * p,int mxPage)2881 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2882   BtShared *pBt = p->pBt;
2883   assert( sqlite3_mutex_held(p->db->mutex) );
2884   sqlite3BtreeEnter(p);
2885   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2886   sqlite3BtreeLeave(p);
2887   return SQLITE_OK;
2888 }
2889 
2890 /*
2891 ** Change the "spill" limit on the number of pages in the cache.
2892 ** If the number of pages exceeds this limit during a write transaction,
2893 ** the pager might attempt to "spill" pages to the journal early in
2894 ** order to free up memory.
2895 **
2896 ** The value returned is the current spill size.  If zero is passed
2897 ** as an argument, no changes are made to the spill size setting, so
2898 ** using mxPage of 0 is a way to query the current spill size.
2899 */
sqlite3BtreeSetSpillSize(Btree * p,int mxPage)2900 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2901   BtShared *pBt = p->pBt;
2902   int res;
2903   assert( sqlite3_mutex_held(p->db->mutex) );
2904   sqlite3BtreeEnter(p);
2905   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2906   sqlite3BtreeLeave(p);
2907   return res;
2908 }
2909 
2910 #if SQLITE_MAX_MMAP_SIZE>0
2911 /*
2912 ** Change the limit on the amount of the database file that may be
2913 ** memory mapped.
2914 */
sqlite3BtreeSetMmapLimit(Btree * p,sqlite3_int64 szMmap)2915 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2916   BtShared *pBt = p->pBt;
2917   assert( sqlite3_mutex_held(p->db->mutex) );
2918   sqlite3BtreeEnter(p);
2919   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2920   sqlite3BtreeLeave(p);
2921   return SQLITE_OK;
2922 }
2923 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2924 
2925 /*
2926 ** Change the way data is synced to disk in order to increase or decrease
2927 ** how well the database resists damage due to OS crashes and power
2928 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2929 ** there is a high probability of damage)  Level 2 is the default.  There
2930 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2931 ** probability of damage to near zero but with a write performance reduction.
2932 */
2933 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
sqlite3BtreeSetPagerFlags(Btree * p,unsigned pgFlags)2934 int sqlite3BtreeSetPagerFlags(
2935   Btree *p,              /* The btree to set the safety level on */
2936   unsigned pgFlags       /* Various PAGER_* flags */
2937 ){
2938   BtShared *pBt = p->pBt;
2939   assert( sqlite3_mutex_held(p->db->mutex) );
2940   sqlite3BtreeEnter(p);
2941   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2942   sqlite3BtreeLeave(p);
2943   return SQLITE_OK;
2944 }
2945 #endif
2946 
2947 /*
2948 ** Change the default pages size and the number of reserved bytes per page.
2949 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2950 ** without changing anything.
2951 **
2952 ** The page size must be a power of 2 between 512 and 65536.  If the page
2953 ** size supplied does not meet this constraint then the page size is not
2954 ** changed.
2955 **
2956 ** Page sizes are constrained to be a power of two so that the region
2957 ** of the database file used for locking (beginning at PENDING_BYTE,
2958 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2959 ** at the beginning of a page.
2960 **
2961 ** If parameter nReserve is less than zero, then the number of reserved
2962 ** bytes per page is left unchanged.
2963 **
2964 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2965 ** and autovacuum mode can no longer be changed.
2966 */
sqlite3BtreeSetPageSize(Btree * p,int pageSize,int nReserve,int iFix)2967 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2968   int rc = SQLITE_OK;
2969   int x;
2970   BtShared *pBt = p->pBt;
2971   assert( nReserve>=0 && nReserve<=255 );
2972   sqlite3BtreeEnter(p);
2973   pBt->nReserveWanted = nReserve;
2974   x = pBt->pageSize - pBt->usableSize;
2975   if( nReserve<x ) nReserve = x;
2976   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2977     sqlite3BtreeLeave(p);
2978     return SQLITE_READONLY;
2979   }
2980   assert( nReserve>=0 && nReserve<=255 );
2981   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2982         ((pageSize-1)&pageSize)==0 ){
2983     assert( (pageSize & 7)==0 );
2984     assert( !pBt->pCursor );
2985     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2986     pBt->pageSize = (u32)pageSize;
2987     freeTempSpace(pBt);
2988   }
2989   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2990   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2991   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2992   sqlite3BtreeLeave(p);
2993   return rc;
2994 }
2995 
2996 /*
2997 ** Return the currently defined page size
2998 */
sqlite3BtreeGetPageSize(Btree * p)2999 int sqlite3BtreeGetPageSize(Btree *p){
3000   return p->pBt->pageSize;
3001 }
3002 
3003 /*
3004 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3005 ** may only be called if it is guaranteed that the b-tree mutex is already
3006 ** held.
3007 **
3008 ** This is useful in one special case in the backup API code where it is
3009 ** known that the shared b-tree mutex is held, but the mutex on the
3010 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3011 ** were to be called, it might collide with some other operation on the
3012 ** database handle that owns *p, causing undefined behavior.
3013 */
sqlite3BtreeGetReserveNoMutex(Btree * p)3014 int sqlite3BtreeGetReserveNoMutex(Btree *p){
3015   int n;
3016   assert( sqlite3_mutex_held(p->pBt->mutex) );
3017   n = p->pBt->pageSize - p->pBt->usableSize;
3018   return n;
3019 }
3020 
3021 /*
3022 ** Return the number of bytes of space at the end of every page that
3023 ** are intentually left unused.  This is the "reserved" space that is
3024 ** sometimes used by extensions.
3025 **
3026 ** The value returned is the larger of the current reserve size and
3027 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3028 ** The amount of reserve can only grow - never shrink.
3029 */
sqlite3BtreeGetRequestedReserve(Btree * p)3030 int sqlite3BtreeGetRequestedReserve(Btree *p){
3031   int n1, n2;
3032   sqlite3BtreeEnter(p);
3033   n1 = (int)p->pBt->nReserveWanted;
3034   n2 = sqlite3BtreeGetReserveNoMutex(p);
3035   sqlite3BtreeLeave(p);
3036   return n1>n2 ? n1 : n2;
3037 }
3038 
3039 
3040 /*
3041 ** Set the maximum page count for a database if mxPage is positive.
3042 ** No changes are made if mxPage is 0 or negative.
3043 ** Regardless of the value of mxPage, return the maximum page count.
3044 */
sqlite3BtreeMaxPageCount(Btree * p,Pgno mxPage)3045 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3046   Pgno n;
3047   sqlite3BtreeEnter(p);
3048   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3049   sqlite3BtreeLeave(p);
3050   return n;
3051 }
3052 
3053 /*
3054 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3055 **
3056 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3057 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3058 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3059 **    newFlag==(-1)    No changes
3060 **
3061 ** This routine acts as a query if newFlag is less than zero
3062 **
3063 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3064 ** freelist leaf pages are not written back to the database.  Thus in-page
3065 ** deleted content is cleared, but freelist deleted content is not.
3066 **
3067 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3068 ** that freelist leaf pages are written back into the database, increasing
3069 ** the amount of disk I/O.
3070 */
sqlite3BtreeSecureDelete(Btree * p,int newFlag)3071 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3072   int b;
3073   if( p==0 ) return 0;
3074   sqlite3BtreeEnter(p);
3075   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3076   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3077   if( newFlag>=0 ){
3078     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3079     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3080   }
3081   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3082   sqlite3BtreeLeave(p);
3083   return b;
3084 }
3085 
3086 /*
3087 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3088 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3089 ** is disabled. The default value for the auto-vacuum property is
3090 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3091 */
sqlite3BtreeSetAutoVacuum(Btree * p,int autoVacuum)3092 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3093 #ifdef SQLITE_OMIT_AUTOVACUUM
3094   return SQLITE_READONLY;
3095 #else
3096   BtShared *pBt = p->pBt;
3097   int rc = SQLITE_OK;
3098   u8 av = (u8)autoVacuum;
3099 
3100   sqlite3BtreeEnter(p);
3101   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3102     rc = SQLITE_READONLY;
3103   }else{
3104     pBt->autoVacuum = av ?1:0;
3105     pBt->incrVacuum = av==2 ?1:0;
3106   }
3107   sqlite3BtreeLeave(p);
3108   return rc;
3109 #endif
3110 }
3111 
3112 /*
3113 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3114 ** enabled 1 is returned. Otherwise 0.
3115 */
sqlite3BtreeGetAutoVacuum(Btree * p)3116 int sqlite3BtreeGetAutoVacuum(Btree *p){
3117 #ifdef SQLITE_OMIT_AUTOVACUUM
3118   return BTREE_AUTOVACUUM_NONE;
3119 #else
3120   int rc;
3121   sqlite3BtreeEnter(p);
3122   rc = (
3123     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3124     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3125     BTREE_AUTOVACUUM_INCR
3126   );
3127   sqlite3BtreeLeave(p);
3128   return rc;
3129 #endif
3130 }
3131 
3132 /*
3133 ** If the user has not set the safety-level for this database connection
3134 ** using "PRAGMA synchronous", and if the safety-level is not already
3135 ** set to the value passed to this function as the second parameter,
3136 ** set it so.
3137 */
3138 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3139     && !defined(SQLITE_OMIT_WAL)
setDefaultSyncFlag(BtShared * pBt,u8 safety_level)3140 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3141   sqlite3 *db;
3142   Db *pDb;
3143   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3144     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3145     if( pDb->bSyncSet==0
3146      && pDb->safety_level!=safety_level
3147      && pDb!=&db->aDb[1]
3148     ){
3149       pDb->safety_level = safety_level;
3150       sqlite3PagerSetFlags(pBt->pPager,
3151           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3152     }
3153   }
3154 }
3155 #else
3156 # define setDefaultSyncFlag(pBt,safety_level)
3157 #endif
3158 
3159 /* Forward declaration */
3160 static int newDatabase(BtShared*);
3161 
3162 
3163 /*
3164 ** Get a reference to pPage1 of the database file.  This will
3165 ** also acquire a readlock on that file.
3166 **
3167 ** SQLITE_OK is returned on success.  If the file is not a
3168 ** well-formed database file, then SQLITE_CORRUPT is returned.
3169 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3170 ** is returned if we run out of memory.
3171 */
lockBtree(BtShared * pBt)3172 static int lockBtree(BtShared *pBt){
3173   int rc;              /* Result code from subfunctions */
3174   MemPage *pPage1;     /* Page 1 of the database file */
3175   u32 nPage;           /* Number of pages in the database */
3176   u32 nPageFile = 0;   /* Number of pages in the database file */
3177 
3178   assert( sqlite3_mutex_held(pBt->mutex) );
3179   assert( pBt->pPage1==0 );
3180   rc = sqlite3PagerSharedLock(pBt->pPager);
3181   if( rc!=SQLITE_OK ) return rc;
3182   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3183   if( rc!=SQLITE_OK ) return rc;
3184 
3185   /* Do some checking to help insure the file we opened really is
3186   ** a valid database file.
3187   */
3188   nPage = get4byte(28+(u8*)pPage1->aData);
3189   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3190   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3191     nPage = nPageFile;
3192   }
3193   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3194     nPage = 0;
3195   }
3196   if( nPage>0 ){
3197     u32 pageSize;
3198     u32 usableSize;
3199     u8 *page1 = pPage1->aData;
3200     rc = SQLITE_NOTADB;
3201     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3202     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3203     ** 61 74 20 33 00. */
3204     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3205       goto page1_init_failed;
3206     }
3207 
3208 #ifdef SQLITE_OMIT_WAL
3209     if( page1[18]>1 ){
3210       pBt->btsFlags |= BTS_READ_ONLY;
3211     }
3212     if( page1[19]>1 ){
3213       goto page1_init_failed;
3214     }
3215 #else
3216     if( page1[18]>2 ){
3217       pBt->btsFlags |= BTS_READ_ONLY;
3218     }
3219     if( page1[19]>2 ){
3220       goto page1_init_failed;
3221     }
3222 
3223     /* If the read version is set to 2, this database should be accessed
3224     ** in WAL mode. If the log is not already open, open it now. Then
3225     ** return SQLITE_OK and return without populating BtShared.pPage1.
3226     ** The caller detects this and calls this function again. This is
3227     ** required as the version of page 1 currently in the page1 buffer
3228     ** may not be the latest version - there may be a newer one in the log
3229     ** file.
3230     */
3231     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3232       int isOpen = 0;
3233       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3234       if( rc!=SQLITE_OK ){
3235         goto page1_init_failed;
3236       }else{
3237         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3238         if( isOpen==0 ){
3239           releasePageOne(pPage1);
3240           return SQLITE_OK;
3241         }
3242       }
3243       rc = SQLITE_NOTADB;
3244     }else{
3245       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3246     }
3247 #endif
3248 
3249     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3250     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3251     **
3252     ** The original design allowed these amounts to vary, but as of
3253     ** version 3.6.0, we require them to be fixed.
3254     */
3255     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3256       goto page1_init_failed;
3257     }
3258     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3259     ** determined by the 2-byte integer located at an offset of 16 bytes from
3260     ** the beginning of the database file. */
3261     pageSize = (page1[16]<<8) | (page1[17]<<16);
3262     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3263     ** between 512 and 65536 inclusive. */
3264     if( ((pageSize-1)&pageSize)!=0
3265      || pageSize>SQLITE_MAX_PAGE_SIZE
3266      || pageSize<=256
3267     ){
3268       goto page1_init_failed;
3269     }
3270     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3271     assert( (pageSize & 7)==0 );
3272     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3273     ** integer at offset 20 is the number of bytes of space at the end of
3274     ** each page to reserve for extensions.
3275     **
3276     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3277     ** determined by the one-byte unsigned integer found at an offset of 20
3278     ** into the database file header. */
3279     usableSize = pageSize - page1[20];
3280     if( (u32)pageSize!=pBt->pageSize ){
3281       /* After reading the first page of the database assuming a page size
3282       ** of BtShared.pageSize, we have discovered that the page-size is
3283       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3284       ** zero and return SQLITE_OK. The caller will call this function
3285       ** again with the correct page-size.
3286       */
3287       releasePageOne(pPage1);
3288       pBt->usableSize = usableSize;
3289       pBt->pageSize = pageSize;
3290       freeTempSpace(pBt);
3291       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3292                                    pageSize-usableSize);
3293       return rc;
3294     }
3295     if( nPage>nPageFile ){
3296       if( sqlite3WritableSchema(pBt->db)==0 ){
3297         rc = SQLITE_CORRUPT_BKPT;
3298         goto page1_init_failed;
3299       }else{
3300         nPage = nPageFile;
3301       }
3302     }
3303     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3304     ** be less than 480. In other words, if the page size is 512, then the
3305     ** reserved space size cannot exceed 32. */
3306     if( usableSize<480 ){
3307       goto page1_init_failed;
3308     }
3309     pBt->pageSize = pageSize;
3310     pBt->usableSize = usableSize;
3311 #ifndef SQLITE_OMIT_AUTOVACUUM
3312     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3313     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3314 #endif
3315   }
3316 
3317   /* maxLocal is the maximum amount of payload to store locally for
3318   ** a cell.  Make sure it is small enough so that at least minFanout
3319   ** cells can will fit on one page.  We assume a 10-byte page header.
3320   ** Besides the payload, the cell must store:
3321   **     2-byte pointer to the cell
3322   **     4-byte child pointer
3323   **     9-byte nKey value
3324   **     4-byte nData value
3325   **     4-byte overflow page pointer
3326   ** So a cell consists of a 2-byte pointer, a header which is as much as
3327   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3328   ** page pointer.
3329   */
3330   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3331   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3332   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3333   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3334   if( pBt->maxLocal>127 ){
3335     pBt->max1bytePayload = 127;
3336   }else{
3337     pBt->max1bytePayload = (u8)pBt->maxLocal;
3338   }
3339   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3340   pBt->pPage1 = pPage1;
3341   pBt->nPage = nPage;
3342   return SQLITE_OK;
3343 
3344 page1_init_failed:
3345   releasePageOne(pPage1);
3346   pBt->pPage1 = 0;
3347   return rc;
3348 }
3349 
3350 #ifndef NDEBUG
3351 /*
3352 ** Return the number of cursors open on pBt. This is for use
3353 ** in assert() expressions, so it is only compiled if NDEBUG is not
3354 ** defined.
3355 **
3356 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3357 ** false then all cursors are counted.
3358 **
3359 ** For the purposes of this routine, a cursor is any cursor that
3360 ** is capable of reading or writing to the database.  Cursors that
3361 ** have been tripped into the CURSOR_FAULT state are not counted.
3362 */
countValidCursors(BtShared * pBt,int wrOnly)3363 static int countValidCursors(BtShared *pBt, int wrOnly){
3364   BtCursor *pCur;
3365   int r = 0;
3366   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3367     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3368      && pCur->eState!=CURSOR_FAULT ) r++;
3369   }
3370   return r;
3371 }
3372 #endif
3373 
3374 /*
3375 ** If there are no outstanding cursors and we are not in the middle
3376 ** of a transaction but there is a read lock on the database, then
3377 ** this routine unrefs the first page of the database file which
3378 ** has the effect of releasing the read lock.
3379 **
3380 ** If there is a transaction in progress, this routine is a no-op.
3381 */
unlockBtreeIfUnused(BtShared * pBt)3382 static void unlockBtreeIfUnused(BtShared *pBt){
3383   assert( sqlite3_mutex_held(pBt->mutex) );
3384   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3385   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3386     MemPage *pPage1 = pBt->pPage1;
3387     assert( pPage1->aData );
3388     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3389     pBt->pPage1 = 0;
3390     releasePageOne(pPage1);
3391   }
3392 }
3393 
3394 /*
3395 ** If pBt points to an empty file then convert that empty file
3396 ** into a new empty database by initializing the first page of
3397 ** the database.
3398 */
newDatabase(BtShared * pBt)3399 static int newDatabase(BtShared *pBt){
3400   MemPage *pP1;
3401   unsigned char *data;
3402   int rc;
3403 
3404   assert( sqlite3_mutex_held(pBt->mutex) );
3405   if( pBt->nPage>0 ){
3406     return SQLITE_OK;
3407   }
3408   pP1 = pBt->pPage1;
3409   assert( pP1!=0 );
3410   data = pP1->aData;
3411   rc = sqlite3PagerWrite(pP1->pDbPage);
3412   if( rc ) return rc;
3413   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3414   assert( sizeof(zMagicHeader)==16 );
3415   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3416   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3417   data[18] = 1;
3418   data[19] = 1;
3419   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3420   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3421   data[21] = 64;
3422   data[22] = 32;
3423   data[23] = 32;
3424   memset(&data[24], 0, 100-24);
3425   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3426   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3427 #ifndef SQLITE_OMIT_AUTOVACUUM
3428   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3429   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3430   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3431   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3432 #endif
3433   pBt->nPage = 1;
3434   data[31] = 1;
3435   return SQLITE_OK;
3436 }
3437 
3438 /*
3439 ** Initialize the first page of the database file (creating a database
3440 ** consisting of a single page and no schema objects). Return SQLITE_OK
3441 ** if successful, or an SQLite error code otherwise.
3442 */
sqlite3BtreeNewDb(Btree * p)3443 int sqlite3BtreeNewDb(Btree *p){
3444   int rc;
3445   sqlite3BtreeEnter(p);
3446   p->pBt->nPage = 0;
3447   rc = newDatabase(p->pBt);
3448   sqlite3BtreeLeave(p);
3449   return rc;
3450 }
3451 
3452 /*
3453 ** Attempt to start a new transaction. A write-transaction
3454 ** is started if the second argument is nonzero, otherwise a read-
3455 ** transaction.  If the second argument is 2 or more and exclusive
3456 ** transaction is started, meaning that no other process is allowed
3457 ** to access the database.  A preexisting transaction may not be
3458 ** upgraded to exclusive by calling this routine a second time - the
3459 ** exclusivity flag only works for a new transaction.
3460 **
3461 ** A write-transaction must be started before attempting any
3462 ** changes to the database.  None of the following routines
3463 ** will work unless a transaction is started first:
3464 **
3465 **      sqlite3BtreeCreateTable()
3466 **      sqlite3BtreeCreateIndex()
3467 **      sqlite3BtreeClearTable()
3468 **      sqlite3BtreeDropTable()
3469 **      sqlite3BtreeInsert()
3470 **      sqlite3BtreeDelete()
3471 **      sqlite3BtreeUpdateMeta()
3472 **
3473 ** If an initial attempt to acquire the lock fails because of lock contention
3474 ** and the database was previously unlocked, then invoke the busy handler
3475 ** if there is one.  But if there was previously a read-lock, do not
3476 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3477 ** returned when there is already a read-lock in order to avoid a deadlock.
3478 **
3479 ** Suppose there are two processes A and B.  A has a read lock and B has
3480 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3481 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3482 ** One or the other of the two processes must give way or there can be
3483 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3484 ** when A already has a read lock, we encourage A to give up and let B
3485 ** proceed.
3486 */
sqlite3BtreeBeginTrans(Btree * p,int wrflag,int * pSchemaVersion)3487 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3488   BtShared *pBt = p->pBt;
3489   Pager *pPager = pBt->pPager;
3490   int rc = SQLITE_OK;
3491 
3492   sqlite3BtreeEnter(p);
3493   btreeIntegrity(p);
3494 
3495   /* If the btree is already in a write-transaction, or it
3496   ** is already in a read-transaction and a read-transaction
3497   ** is requested, this is a no-op.
3498   */
3499   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3500     goto trans_begun;
3501   }
3502   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3503 
3504   if( (p->db->flags & SQLITE_ResetDatabase)
3505    && sqlite3PagerIsreadonly(pPager)==0
3506   ){
3507     pBt->btsFlags &= ~BTS_READ_ONLY;
3508   }
3509 
3510   /* Write transactions are not possible on a read-only database */
3511   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3512     rc = SQLITE_READONLY;
3513     goto trans_begun;
3514   }
3515 
3516 #ifndef SQLITE_OMIT_SHARED_CACHE
3517   {
3518     sqlite3 *pBlock = 0;
3519     /* If another database handle has already opened a write transaction
3520     ** on this shared-btree structure and a second write transaction is
3521     ** requested, return SQLITE_LOCKED.
3522     */
3523     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3524      || (pBt->btsFlags & BTS_PENDING)!=0
3525     ){
3526       pBlock = pBt->pWriter->db;
3527     }else if( wrflag>1 ){
3528       BtLock *pIter;
3529       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3530         if( pIter->pBtree!=p ){
3531           pBlock = pIter->pBtree->db;
3532           break;
3533         }
3534       }
3535     }
3536     if( pBlock ){
3537       sqlite3ConnectionBlocked(p->db, pBlock);
3538       rc = SQLITE_LOCKED_SHAREDCACHE;
3539       goto trans_begun;
3540     }
3541   }
3542 #endif
3543 
3544   /* Any read-only or read-write transaction implies a read-lock on
3545   ** page 1. So if some other shared-cache client already has a write-lock
3546   ** on page 1, the transaction cannot be opened. */
3547   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3548   if( SQLITE_OK!=rc ) goto trans_begun;
3549 
3550   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3551   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3552   do {
3553     sqlite3PagerWalDb(pPager, p->db);
3554 
3555 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3556     /* If transitioning from no transaction directly to a write transaction,
3557     ** block for the WRITER lock first if possible. */
3558     if( pBt->pPage1==0 && wrflag ){
3559       assert( pBt->inTransaction==TRANS_NONE );
3560       rc = sqlite3PagerWalWriteLock(pPager, 1);
3561       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3562     }
3563 #endif
3564 
3565     /* Call lockBtree() until either pBt->pPage1 is populated or
3566     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3567     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3568     ** reading page 1 it discovers that the page-size of the database
3569     ** file is not pBt->pageSize. In this case lockBtree() will update
3570     ** pBt->pageSize to the page-size of the file on disk.
3571     */
3572     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3573 
3574     if( rc==SQLITE_OK && wrflag ){
3575       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3576         rc = SQLITE_READONLY;
3577       }else{
3578         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3579         if( rc==SQLITE_OK ){
3580           rc = newDatabase(pBt);
3581         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3582           /* if there was no transaction opened when this function was
3583           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3584           ** code to SQLITE_BUSY. */
3585           rc = SQLITE_BUSY;
3586         }
3587       }
3588     }
3589 
3590     if( rc!=SQLITE_OK ){
3591       (void)sqlite3PagerWalWriteLock(pPager, 0);
3592       unlockBtreeIfUnused(pBt);
3593     }
3594   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3595           btreeInvokeBusyHandler(pBt) );
3596   sqlite3PagerWalDb(pPager, 0);
3597 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3598   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3599 #endif
3600 
3601   if( rc==SQLITE_OK ){
3602     if( p->inTrans==TRANS_NONE ){
3603       pBt->nTransaction++;
3604 #ifndef SQLITE_OMIT_SHARED_CACHE
3605       if( p->sharable ){
3606         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3607         p->lock.eLock = READ_LOCK;
3608         p->lock.pNext = pBt->pLock;
3609         pBt->pLock = &p->lock;
3610       }
3611 #endif
3612     }
3613     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3614     if( p->inTrans>pBt->inTransaction ){
3615       pBt->inTransaction = p->inTrans;
3616     }
3617     if( wrflag ){
3618       MemPage *pPage1 = pBt->pPage1;
3619 #ifndef SQLITE_OMIT_SHARED_CACHE
3620       assert( !pBt->pWriter );
3621       pBt->pWriter = p;
3622       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3623       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3624 #endif
3625 
3626       /* If the db-size header field is incorrect (as it may be if an old
3627       ** client has been writing the database file), update it now. Doing
3628       ** this sooner rather than later means the database size can safely
3629       ** re-read the database size from page 1 if a savepoint or transaction
3630       ** rollback occurs within the transaction.
3631       */
3632       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3633         rc = sqlite3PagerWrite(pPage1->pDbPage);
3634         if( rc==SQLITE_OK ){
3635           put4byte(&pPage1->aData[28], pBt->nPage);
3636         }
3637       }
3638     }
3639   }
3640 
3641 trans_begun:
3642   if( rc==SQLITE_OK ){
3643     if( pSchemaVersion ){
3644       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3645     }
3646     if( wrflag ){
3647       /* This call makes sure that the pager has the correct number of
3648       ** open savepoints. If the second parameter is greater than 0 and
3649       ** the sub-journal is not already open, then it will be opened here.
3650       */
3651       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3652     }
3653   }
3654 
3655   btreeIntegrity(p);
3656   sqlite3BtreeLeave(p);
3657   return rc;
3658 }
3659 
3660 #ifndef SQLITE_OMIT_AUTOVACUUM
3661 
3662 /*
3663 ** Set the pointer-map entries for all children of page pPage. Also, if
3664 ** pPage contains cells that point to overflow pages, set the pointer
3665 ** map entries for the overflow pages as well.
3666 */
setChildPtrmaps(MemPage * pPage)3667 static int setChildPtrmaps(MemPage *pPage){
3668   int i;                             /* Counter variable */
3669   int nCell;                         /* Number of cells in page pPage */
3670   int rc;                            /* Return code */
3671   BtShared *pBt = pPage->pBt;
3672   Pgno pgno = pPage->pgno;
3673 
3674   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3675   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3676   if( rc!=SQLITE_OK ) return rc;
3677   nCell = pPage->nCell;
3678 
3679   for(i=0; i<nCell; i++){
3680     u8 *pCell = findCell(pPage, i);
3681 
3682     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3683 
3684     if( !pPage->leaf ){
3685       Pgno childPgno = get4byte(pCell);
3686       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3687     }
3688   }
3689 
3690   if( !pPage->leaf ){
3691     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3692     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3693   }
3694 
3695   return rc;
3696 }
3697 
3698 /*
3699 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3700 ** that it points to iTo. Parameter eType describes the type of pointer to
3701 ** be modified, as  follows:
3702 **
3703 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3704 **                   page of pPage.
3705 **
3706 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3707 **                   page pointed to by one of the cells on pPage.
3708 **
3709 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3710 **                   overflow page in the list.
3711 */
modifyPagePointer(MemPage * pPage,Pgno iFrom,Pgno iTo,u8 eType)3712 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3713   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3714   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3715   if( eType==PTRMAP_OVERFLOW2 ){
3716     /* The pointer is always the first 4 bytes of the page in this case.  */
3717     if( get4byte(pPage->aData)!=iFrom ){
3718       return SQLITE_CORRUPT_PAGE(pPage);
3719     }
3720     put4byte(pPage->aData, iTo);
3721   }else{
3722     int i;
3723     int nCell;
3724     int rc;
3725 
3726     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3727     if( rc ) return rc;
3728     nCell = pPage->nCell;
3729 
3730     for(i=0; i<nCell; i++){
3731       u8 *pCell = findCell(pPage, i);
3732       if( eType==PTRMAP_OVERFLOW1 ){
3733         CellInfo info;
3734         pPage->xParseCell(pPage, pCell, &info);
3735         if( info.nLocal<info.nPayload ){
3736           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3737             return SQLITE_CORRUPT_PAGE(pPage);
3738           }
3739           if( iFrom==get4byte(pCell+info.nSize-4) ){
3740             put4byte(pCell+info.nSize-4, iTo);
3741             break;
3742           }
3743         }
3744       }else{
3745         if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){
3746           return SQLITE_CORRUPT_PAGE(pPage);
3747         }
3748         if( get4byte(pCell)==iFrom ){
3749           put4byte(pCell, iTo);
3750           break;
3751         }
3752       }
3753     }
3754 
3755     if( i==nCell ){
3756       if( eType!=PTRMAP_BTREE ||
3757           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3758         return SQLITE_CORRUPT_PAGE(pPage);
3759       }
3760       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3761     }
3762   }
3763   return SQLITE_OK;
3764 }
3765 
3766 
3767 /*
3768 ** Move the open database page pDbPage to location iFreePage in the
3769 ** database. The pDbPage reference remains valid.
3770 **
3771 ** The isCommit flag indicates that there is no need to remember that
3772 ** the journal needs to be sync()ed before database page pDbPage->pgno
3773 ** can be written to. The caller has already promised not to write to that
3774 ** page.
3775 */
relocatePage(BtShared * pBt,MemPage * pDbPage,u8 eType,Pgno iPtrPage,Pgno iFreePage,int isCommit)3776 static int relocatePage(
3777   BtShared *pBt,           /* Btree */
3778   MemPage *pDbPage,        /* Open page to move */
3779   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3780   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3781   Pgno iFreePage,          /* The location to move pDbPage to */
3782   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3783 ){
3784   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3785   Pgno iDbPage = pDbPage->pgno;
3786   Pager *pPager = pBt->pPager;
3787   int rc;
3788 
3789   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3790       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3791   assert( sqlite3_mutex_held(pBt->mutex) );
3792   assert( pDbPage->pBt==pBt );
3793   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3794 
3795   /* Move page iDbPage from its current location to page number iFreePage */
3796   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3797       iDbPage, iFreePage, iPtrPage, eType));
3798   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3799   if( rc!=SQLITE_OK ){
3800     return rc;
3801   }
3802   pDbPage->pgno = iFreePage;
3803 
3804   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3805   ** that point to overflow pages. The pointer map entries for all these
3806   ** pages need to be changed.
3807   **
3808   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3809   ** pointer to a subsequent overflow page. If this is the case, then
3810   ** the pointer map needs to be updated for the subsequent overflow page.
3811   */
3812   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3813     rc = setChildPtrmaps(pDbPage);
3814     if( rc!=SQLITE_OK ){
3815       return rc;
3816     }
3817   }else{
3818     Pgno nextOvfl = get4byte(pDbPage->aData);
3819     if( nextOvfl!=0 ){
3820       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3821       if( rc!=SQLITE_OK ){
3822         return rc;
3823       }
3824     }
3825   }
3826 
3827   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3828   ** that it points at iFreePage. Also fix the pointer map entry for
3829   ** iPtrPage.
3830   */
3831   if( eType!=PTRMAP_ROOTPAGE ){
3832     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3833     if( rc!=SQLITE_OK ){
3834       return rc;
3835     }
3836     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3837     if( rc!=SQLITE_OK ){
3838       releasePage(pPtrPage);
3839       return rc;
3840     }
3841     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3842     releasePage(pPtrPage);
3843     if( rc==SQLITE_OK ){
3844       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3845     }
3846   }
3847   return rc;
3848 }
3849 
3850 /* Forward declaration required by incrVacuumStep(). */
3851 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3852 
3853 /*
3854 ** Perform a single step of an incremental-vacuum. If successful, return
3855 ** SQLITE_OK. If there is no work to do (and therefore no point in
3856 ** calling this function again), return SQLITE_DONE. Or, if an error
3857 ** occurs, return some other error code.
3858 **
3859 ** More specifically, this function attempts to re-organize the database so
3860 ** that the last page of the file currently in use is no longer in use.
3861 **
3862 ** Parameter nFin is the number of pages that this database would contain
3863 ** were this function called until it returns SQLITE_DONE.
3864 **
3865 ** If the bCommit parameter is non-zero, this function assumes that the
3866 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3867 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3868 ** operation, or false for an incremental vacuum.
3869 */
incrVacuumStep(BtShared * pBt,Pgno nFin,Pgno iLastPg,int bCommit)3870 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3871   Pgno nFreeList;           /* Number of pages still on the free-list */
3872   int rc;
3873 
3874   assert( sqlite3_mutex_held(pBt->mutex) );
3875   assert( iLastPg>nFin );
3876 
3877   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3878     u8 eType;
3879     Pgno iPtrPage;
3880 
3881     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3882     if( nFreeList==0 ){
3883       return SQLITE_DONE;
3884     }
3885 
3886     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3887     if( rc!=SQLITE_OK ){
3888       return rc;
3889     }
3890     if( eType==PTRMAP_ROOTPAGE ){
3891       return SQLITE_CORRUPT_BKPT;
3892     }
3893 
3894     if( eType==PTRMAP_FREEPAGE ){
3895       if( bCommit==0 ){
3896         /* Remove the page from the files free-list. This is not required
3897         ** if bCommit is non-zero. In that case, the free-list will be
3898         ** truncated to zero after this function returns, so it doesn't
3899         ** matter if it still contains some garbage entries.
3900         */
3901         Pgno iFreePg;
3902         MemPage *pFreePg;
3903         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3904         if( rc!=SQLITE_OK ){
3905           return rc;
3906         }
3907         assert( iFreePg==iLastPg );
3908         releasePage(pFreePg);
3909       }
3910     } else {
3911       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3912       MemPage *pLastPg;
3913       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3914       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3915 
3916       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3917       if( rc!=SQLITE_OK ){
3918         return rc;
3919       }
3920 
3921       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3922       ** is swapped with the first free page pulled off the free list.
3923       **
3924       ** On the other hand, if bCommit is greater than zero, then keep
3925       ** looping until a free-page located within the first nFin pages
3926       ** of the file is found.
3927       */
3928       if( bCommit==0 ){
3929         eMode = BTALLOC_LE;
3930         iNear = nFin;
3931       }
3932       do {
3933         MemPage *pFreePg;
3934         Pgno dbSize = btreePagecount(pBt);
3935         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3936         if( rc!=SQLITE_OK ){
3937           releasePage(pLastPg);
3938           return rc;
3939         }
3940         releasePage(pFreePg);
3941         if( iFreePg>dbSize ){
3942           releasePage(pLastPg);
3943           return SQLITE_CORRUPT_BKPT;
3944         }
3945       }while( bCommit && iFreePg>nFin );
3946       assert( iFreePg<iLastPg );
3947 
3948       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3949       releasePage(pLastPg);
3950       if( rc!=SQLITE_OK ){
3951         return rc;
3952       }
3953     }
3954   }
3955 
3956   if( bCommit==0 ){
3957     do {
3958       iLastPg--;
3959     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3960     pBt->bDoTruncate = 1;
3961     pBt->nPage = iLastPg;
3962   }
3963   return SQLITE_OK;
3964 }
3965 
3966 /*
3967 ** The database opened by the first argument is an auto-vacuum database
3968 ** nOrig pages in size containing nFree free pages. Return the expected
3969 ** size of the database in pages following an auto-vacuum operation.
3970 */
finalDbSize(BtShared * pBt,Pgno nOrig,Pgno nFree)3971 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3972   int nEntry;                     /* Number of entries on one ptrmap page */
3973   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3974   Pgno nFin;                      /* Return value */
3975 
3976   nEntry = pBt->usableSize/5;
3977   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3978   nFin = nOrig - nFree - nPtrmap;
3979   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3980     nFin--;
3981   }
3982   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3983     nFin--;
3984   }
3985 
3986   return nFin;
3987 }
3988 
3989 /*
3990 ** A write-transaction must be opened before calling this function.
3991 ** It performs a single unit of work towards an incremental vacuum.
3992 **
3993 ** If the incremental vacuum is finished after this function has run,
3994 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3995 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3996 */
sqlite3BtreeIncrVacuum(Btree * p)3997 int sqlite3BtreeIncrVacuum(Btree *p){
3998   int rc;
3999   BtShared *pBt = p->pBt;
4000 
4001   sqlite3BtreeEnter(p);
4002   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
4003   if( !pBt->autoVacuum ){
4004     rc = SQLITE_DONE;
4005   }else{
4006     Pgno nOrig = btreePagecount(pBt);
4007     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4008     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4009 
4010     if( nOrig<nFin || nFree>=nOrig ){
4011       rc = SQLITE_CORRUPT_BKPT;
4012     }else if( nFree>0 ){
4013       rc = saveAllCursors(pBt, 0, 0);
4014       if( rc==SQLITE_OK ){
4015         invalidateAllOverflowCache(pBt);
4016         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4017       }
4018       if( rc==SQLITE_OK ){
4019         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4020         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4021       }
4022     }else{
4023       rc = SQLITE_DONE;
4024     }
4025   }
4026   sqlite3BtreeLeave(p);
4027   return rc;
4028 }
4029 
4030 /*
4031 ** This routine is called prior to sqlite3PagerCommit when a transaction
4032 ** is committed for an auto-vacuum database.
4033 */
autoVacuumCommit(Btree * p)4034 static int autoVacuumCommit(Btree *p){
4035   int rc = SQLITE_OK;
4036   Pager *pPager;
4037   BtShared *pBt;
4038   sqlite3 *db;
4039   VVA_ONLY( int nRef );
4040 
4041   assert( p!=0 );
4042   pBt = p->pBt;
4043   pPager = pBt->pPager;
4044   VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
4045 
4046   assert( sqlite3_mutex_held(pBt->mutex) );
4047   invalidateAllOverflowCache(pBt);
4048   assert(pBt->autoVacuum);
4049   if( !pBt->incrVacuum ){
4050     Pgno nFin;         /* Number of pages in database after autovacuuming */
4051     Pgno nFree;        /* Number of pages on the freelist initially */
4052     Pgno nVac;         /* Number of pages to vacuum */
4053     Pgno iFree;        /* The next page to be freed */
4054     Pgno nOrig;        /* Database size before freeing */
4055 
4056     nOrig = btreePagecount(pBt);
4057     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4058       /* It is not possible to create a database for which the final page
4059       ** is either a pointer-map page or the pending-byte page. If one
4060       ** is encountered, this indicates corruption.
4061       */
4062       return SQLITE_CORRUPT_BKPT;
4063     }
4064 
4065     nFree = get4byte(&pBt->pPage1->aData[36]);
4066     db = p->db;
4067     if( db->xAutovacPages ){
4068       int iDb;
4069       for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4070         if( db->aDb[iDb].pBt==p ) break;
4071       }
4072       nVac = db->xAutovacPages(
4073         db->pAutovacPagesArg,
4074         db->aDb[iDb].zDbSName,
4075         nOrig,
4076         nFree,
4077         pBt->pageSize
4078       );
4079       if( nVac>nFree ){
4080         nVac = nFree;
4081       }
4082       if( nVac==0 ){
4083         return SQLITE_OK;
4084       }
4085     }else{
4086       nVac = nFree;
4087     }
4088     nFin = finalDbSize(pBt, nOrig, nVac);
4089     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4090     if( nFin<nOrig ){
4091       rc = saveAllCursors(pBt, 0, 0);
4092     }
4093     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4094       rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4095     }
4096     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4097       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4098       if( nVac==nFree ){
4099         put4byte(&pBt->pPage1->aData[32], 0);
4100         put4byte(&pBt->pPage1->aData[36], 0);
4101       }
4102       put4byte(&pBt->pPage1->aData[28], nFin);
4103       pBt->bDoTruncate = 1;
4104       pBt->nPage = nFin;
4105     }
4106     if( rc!=SQLITE_OK ){
4107       sqlite3PagerRollback(pPager);
4108     }
4109   }
4110 
4111   assert( nRef>=sqlite3PagerRefcount(pPager) );
4112   return rc;
4113 }
4114 
4115 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4116 # define setChildPtrmaps(x) SQLITE_OK
4117 #endif
4118 
4119 /*
4120 ** This routine does the first phase of a two-phase commit.  This routine
4121 ** causes a rollback journal to be created (if it does not already exist)
4122 ** and populated with enough information so that if a power loss occurs
4123 ** the database can be restored to its original state by playing back
4124 ** the journal.  Then the contents of the journal are flushed out to
4125 ** the disk.  After the journal is safely on oxide, the changes to the
4126 ** database are written into the database file and flushed to oxide.
4127 ** At the end of this call, the rollback journal still exists on the
4128 ** disk and we are still holding all locks, so the transaction has not
4129 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4130 ** commit process.
4131 **
4132 ** This call is a no-op if no write-transaction is currently active on pBt.
4133 **
4134 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4135 ** the name of a super-journal file that should be written into the
4136 ** individual journal file, or is NULL, indicating no super-journal file
4137 ** (single database transaction).
4138 **
4139 ** When this is called, the super-journal should already have been
4140 ** created, populated with this journal pointer and synced to disk.
4141 **
4142 ** Once this is routine has returned, the only thing required to commit
4143 ** the write-transaction for this database file is to delete the journal.
4144 */
sqlite3BtreeCommitPhaseOne(Btree * p,const char * zSuperJrnl)4145 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4146   int rc = SQLITE_OK;
4147   if( p->inTrans==TRANS_WRITE ){
4148     BtShared *pBt = p->pBt;
4149     sqlite3BtreeEnter(p);
4150 #ifndef SQLITE_OMIT_AUTOVACUUM
4151     if( pBt->autoVacuum ){
4152       rc = autoVacuumCommit(p);
4153       if( rc!=SQLITE_OK ){
4154         sqlite3BtreeLeave(p);
4155         return rc;
4156       }
4157     }
4158     if( pBt->bDoTruncate ){
4159       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4160     }
4161 #endif
4162     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4163     sqlite3BtreeLeave(p);
4164   }
4165   return rc;
4166 }
4167 
4168 /*
4169 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4170 ** at the conclusion of a transaction.
4171 */
btreeEndTransaction(Btree * p)4172 static void btreeEndTransaction(Btree *p){
4173   BtShared *pBt = p->pBt;
4174   sqlite3 *db = p->db;
4175   assert( sqlite3BtreeHoldsMutex(p) );
4176 
4177 #ifndef SQLITE_OMIT_AUTOVACUUM
4178   pBt->bDoTruncate = 0;
4179 #endif
4180   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4181     /* If there are other active statements that belong to this database
4182     ** handle, downgrade to a read-only transaction. The other statements
4183     ** may still be reading from the database.  */
4184     downgradeAllSharedCacheTableLocks(p);
4185     p->inTrans = TRANS_READ;
4186   }else{
4187     /* If the handle had any kind of transaction open, decrement the
4188     ** transaction count of the shared btree. If the transaction count
4189     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4190     ** call below will unlock the pager.  */
4191     if( p->inTrans!=TRANS_NONE ){
4192       clearAllSharedCacheTableLocks(p);
4193       pBt->nTransaction--;
4194       if( 0==pBt->nTransaction ){
4195         pBt->inTransaction = TRANS_NONE;
4196       }
4197     }
4198 
4199     /* Set the current transaction state to TRANS_NONE and unlock the
4200     ** pager if this call closed the only read or write transaction.  */
4201     p->inTrans = TRANS_NONE;
4202     unlockBtreeIfUnused(pBt);
4203   }
4204 
4205   btreeIntegrity(p);
4206 }
4207 
4208 /*
4209 ** Commit the transaction currently in progress.
4210 **
4211 ** This routine implements the second phase of a 2-phase commit.  The
4212 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4213 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4214 ** routine did all the work of writing information out to disk and flushing the
4215 ** contents so that they are written onto the disk platter.  All this
4216 ** routine has to do is delete or truncate or zero the header in the
4217 ** the rollback journal (which causes the transaction to commit) and
4218 ** drop locks.
4219 **
4220 ** Normally, if an error occurs while the pager layer is attempting to
4221 ** finalize the underlying journal file, this function returns an error and
4222 ** the upper layer will attempt a rollback. However, if the second argument
4223 ** is non-zero then this b-tree transaction is part of a multi-file
4224 ** transaction. In this case, the transaction has already been committed
4225 ** (by deleting a super-journal file) and the caller will ignore this
4226 ** functions return code. So, even if an error occurs in the pager layer,
4227 ** reset the b-tree objects internal state to indicate that the write
4228 ** transaction has been closed. This is quite safe, as the pager will have
4229 ** transitioned to the error state.
4230 **
4231 ** This will release the write lock on the database file.  If there
4232 ** are no active cursors, it also releases the read lock.
4233 */
sqlite3BtreeCommitPhaseTwo(Btree * p,int bCleanup)4234 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4235 
4236   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4237   sqlite3BtreeEnter(p);
4238   btreeIntegrity(p);
4239 
4240   /* If the handle has a write-transaction open, commit the shared-btrees
4241   ** transaction and set the shared state to TRANS_READ.
4242   */
4243   if( p->inTrans==TRANS_WRITE ){
4244     int rc;
4245     BtShared *pBt = p->pBt;
4246     assert( pBt->inTransaction==TRANS_WRITE );
4247     assert( pBt->nTransaction>0 );
4248     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4249     if( rc!=SQLITE_OK && bCleanup==0 ){
4250       sqlite3BtreeLeave(p);
4251       return rc;
4252     }
4253     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4254     pBt->inTransaction = TRANS_READ;
4255     btreeClearHasContent(pBt);
4256   }
4257 
4258   btreeEndTransaction(p);
4259   sqlite3BtreeLeave(p);
4260   return SQLITE_OK;
4261 }
4262 
4263 /*
4264 ** Do both phases of a commit.
4265 */
sqlite3BtreeCommit(Btree * p)4266 int sqlite3BtreeCommit(Btree *p){
4267   int rc;
4268   sqlite3BtreeEnter(p);
4269   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4270   if( rc==SQLITE_OK ){
4271     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4272   }
4273   sqlite3BtreeLeave(p);
4274   return rc;
4275 }
4276 
4277 /*
4278 ** This routine sets the state to CURSOR_FAULT and the error
4279 ** code to errCode for every cursor on any BtShared that pBtree
4280 ** references.  Or if the writeOnly flag is set to 1, then only
4281 ** trip write cursors and leave read cursors unchanged.
4282 **
4283 ** Every cursor is a candidate to be tripped, including cursors
4284 ** that belong to other database connections that happen to be
4285 ** sharing the cache with pBtree.
4286 **
4287 ** This routine gets called when a rollback occurs. If the writeOnly
4288 ** flag is true, then only write-cursors need be tripped - read-only
4289 ** cursors save their current positions so that they may continue
4290 ** following the rollback. Or, if writeOnly is false, all cursors are
4291 ** tripped. In general, writeOnly is false if the transaction being
4292 ** rolled back modified the database schema. In this case b-tree root
4293 ** pages may be moved or deleted from the database altogether, making
4294 ** it unsafe for read cursors to continue.
4295 **
4296 ** If the writeOnly flag is true and an error is encountered while
4297 ** saving the current position of a read-only cursor, all cursors,
4298 ** including all read-cursors are tripped.
4299 **
4300 ** SQLITE_OK is returned if successful, or if an error occurs while
4301 ** saving a cursor position, an SQLite error code.
4302 */
sqlite3BtreeTripAllCursors(Btree * pBtree,int errCode,int writeOnly)4303 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4304   BtCursor *p;
4305   int rc = SQLITE_OK;
4306 
4307   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4308   if( pBtree ){
4309     sqlite3BtreeEnter(pBtree);
4310     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4311       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4312         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4313           rc = saveCursorPosition(p);
4314           if( rc!=SQLITE_OK ){
4315             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4316             break;
4317           }
4318         }
4319       }else{
4320         sqlite3BtreeClearCursor(p);
4321         p->eState = CURSOR_FAULT;
4322         p->skipNext = errCode;
4323       }
4324       btreeReleaseAllCursorPages(p);
4325     }
4326     sqlite3BtreeLeave(pBtree);
4327   }
4328   return rc;
4329 }
4330 
4331 /*
4332 ** Set the pBt->nPage field correctly, according to the current
4333 ** state of the database.  Assume pBt->pPage1 is valid.
4334 */
btreeSetNPage(BtShared * pBt,MemPage * pPage1)4335 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4336   int nPage = get4byte(&pPage1->aData[28]);
4337   testcase( nPage==0 );
4338   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4339   testcase( pBt->nPage!=(u32)nPage );
4340   pBt->nPage = nPage;
4341 }
4342 
4343 /*
4344 ** Rollback the transaction in progress.
4345 **
4346 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4347 ** Only write cursors are tripped if writeOnly is true but all cursors are
4348 ** tripped if writeOnly is false.  Any attempt to use
4349 ** a tripped cursor will result in an error.
4350 **
4351 ** This will release the write lock on the database file.  If there
4352 ** are no active cursors, it also releases the read lock.
4353 */
sqlite3BtreeRollback(Btree * p,int tripCode,int writeOnly)4354 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4355   int rc;
4356   BtShared *pBt = p->pBt;
4357   MemPage *pPage1;
4358 
4359   assert( writeOnly==1 || writeOnly==0 );
4360   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4361   sqlite3BtreeEnter(p);
4362   if( tripCode==SQLITE_OK ){
4363     rc = tripCode = saveAllCursors(pBt, 0, 0);
4364     if( rc ) writeOnly = 0;
4365   }else{
4366     rc = SQLITE_OK;
4367   }
4368   if( tripCode ){
4369     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4370     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4371     if( rc2!=SQLITE_OK ) rc = rc2;
4372   }
4373   btreeIntegrity(p);
4374 
4375   if( p->inTrans==TRANS_WRITE ){
4376     int rc2;
4377 
4378     assert( TRANS_WRITE==pBt->inTransaction );
4379     rc2 = sqlite3PagerRollback(pBt->pPager);
4380     if( rc2!=SQLITE_OK ){
4381       rc = rc2;
4382     }
4383 
4384     /* The rollback may have destroyed the pPage1->aData value.  So
4385     ** call btreeGetPage() on page 1 again to make
4386     ** sure pPage1->aData is set correctly. */
4387     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4388       btreeSetNPage(pBt, pPage1);
4389       releasePageOne(pPage1);
4390     }
4391     assert( countValidCursors(pBt, 1)==0 );
4392     pBt->inTransaction = TRANS_READ;
4393     btreeClearHasContent(pBt);
4394   }
4395 
4396   btreeEndTransaction(p);
4397   sqlite3BtreeLeave(p);
4398   return rc;
4399 }
4400 
4401 /*
4402 ** Start a statement subtransaction. The subtransaction can be rolled
4403 ** back independently of the main transaction. You must start a transaction
4404 ** before starting a subtransaction. The subtransaction is ended automatically
4405 ** if the main transaction commits or rolls back.
4406 **
4407 ** Statement subtransactions are used around individual SQL statements
4408 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4409 ** error occurs within the statement, the effect of that one statement
4410 ** can be rolled back without having to rollback the entire transaction.
4411 **
4412 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4413 ** value passed as the second parameter is the total number of savepoints,
4414 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4415 ** are no active savepoints and no other statement-transactions open,
4416 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4417 ** using the sqlite3BtreeSavepoint() function.
4418 */
sqlite3BtreeBeginStmt(Btree * p,int iStatement)4419 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4420   int rc;
4421   BtShared *pBt = p->pBt;
4422   sqlite3BtreeEnter(p);
4423   assert( p->inTrans==TRANS_WRITE );
4424   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4425   assert( iStatement>0 );
4426   assert( iStatement>p->db->nSavepoint );
4427   assert( pBt->inTransaction==TRANS_WRITE );
4428   /* At the pager level, a statement transaction is a savepoint with
4429   ** an index greater than all savepoints created explicitly using
4430   ** SQL statements. It is illegal to open, release or rollback any
4431   ** such savepoints while the statement transaction savepoint is active.
4432   */
4433   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4434   sqlite3BtreeLeave(p);
4435   return rc;
4436 }
4437 
4438 /*
4439 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4440 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4441 ** savepoint identified by parameter iSavepoint, depending on the value
4442 ** of op.
4443 **
4444 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4445 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4446 ** contents of the entire transaction are rolled back. This is different
4447 ** from a normal transaction rollback, as no locks are released and the
4448 ** transaction remains open.
4449 */
sqlite3BtreeSavepoint(Btree * p,int op,int iSavepoint)4450 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4451   int rc = SQLITE_OK;
4452   if( p && p->inTrans==TRANS_WRITE ){
4453     BtShared *pBt = p->pBt;
4454     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4455     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4456     sqlite3BtreeEnter(p);
4457     if( op==SAVEPOINT_ROLLBACK ){
4458       rc = saveAllCursors(pBt, 0, 0);
4459     }
4460     if( rc==SQLITE_OK ){
4461       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4462     }
4463     if( rc==SQLITE_OK ){
4464       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4465         pBt->nPage = 0;
4466       }
4467       rc = newDatabase(pBt);
4468       btreeSetNPage(pBt, pBt->pPage1);
4469 
4470       /* pBt->nPage might be zero if the database was corrupt when
4471       ** the transaction was started. Otherwise, it must be at least 1.  */
4472       assert( CORRUPT_DB || pBt->nPage>0 );
4473     }
4474     sqlite3BtreeLeave(p);
4475   }
4476   return rc;
4477 }
4478 
4479 /*
4480 ** Create a new cursor for the BTree whose root is on the page
4481 ** iTable. If a read-only cursor is requested, it is assumed that
4482 ** the caller already has at least a read-only transaction open
4483 ** on the database already. If a write-cursor is requested, then
4484 ** the caller is assumed to have an open write transaction.
4485 **
4486 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4487 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4488 ** can be used for reading or for writing if other conditions for writing
4489 ** are also met.  These are the conditions that must be met in order
4490 ** for writing to be allowed:
4491 **
4492 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4493 **
4494 ** 2:  Other database connections that share the same pager cache
4495 **     but which are not in the READ_UNCOMMITTED state may not have
4496 **     cursors open with wrFlag==0 on the same table.  Otherwise
4497 **     the changes made by this write cursor would be visible to
4498 **     the read cursors in the other database connection.
4499 **
4500 ** 3:  The database must be writable (not on read-only media)
4501 **
4502 ** 4:  There must be an active transaction.
4503 **
4504 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4505 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4506 ** this cursor will only be used to seek to and delete entries of an index
4507 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4508 ** this implementation.  But in a hypothetical alternative storage engine
4509 ** in which index entries are automatically deleted when corresponding table
4510 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4511 ** operations on this cursor can be no-ops and all READ operations can
4512 ** return a null row (2-bytes: 0x01 0x00).
4513 **
4514 ** No checking is done to make sure that page iTable really is the
4515 ** root page of a b-tree.  If it is not, then the cursor acquired
4516 ** will not work correctly.
4517 **
4518 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4519 ** on pCur to initialize the memory space prior to invoking this routine.
4520 */
btreeCursor(Btree * p,Pgno iTable,int wrFlag,struct KeyInfo * pKeyInfo,BtCursor * pCur)4521 static int btreeCursor(
4522   Btree *p,                              /* The btree */
4523   Pgno iTable,                           /* Root page of table to open */
4524   int wrFlag,                            /* 1 to write. 0 read-only */
4525   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4526   BtCursor *pCur                         /* Space for new cursor */
4527 ){
4528   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4529   BtCursor *pX;                          /* Looping over other all cursors */
4530 
4531   assert( sqlite3BtreeHoldsMutex(p) );
4532   assert( wrFlag==0
4533        || wrFlag==BTREE_WRCSR
4534        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4535   );
4536 
4537   /* The following assert statements verify that if this is a sharable
4538   ** b-tree database, the connection is holding the required table locks,
4539   ** and that no other connection has any open cursor that conflicts with
4540   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4541   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4542           || iTable<1 );
4543   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4544 
4545   /* Assert that the caller has opened the required transaction. */
4546   assert( p->inTrans>TRANS_NONE );
4547   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4548   assert( pBt->pPage1 && pBt->pPage1->aData );
4549   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4550 
4551   if( iTable<=1 ){
4552     if( iTable<1 ){
4553       return SQLITE_CORRUPT_BKPT;
4554     }else if( btreePagecount(pBt)==0 ){
4555       assert( wrFlag==0 );
4556       iTable = 0;
4557     }
4558   }
4559 
4560   /* Now that no other errors can occur, finish filling in the BtCursor
4561   ** variables and link the cursor into the BtShared list.  */
4562   pCur->pgnoRoot = iTable;
4563   pCur->iPage = -1;
4564   pCur->pKeyInfo = pKeyInfo;
4565   pCur->pBtree = p;
4566   pCur->pBt = pBt;
4567   pCur->curFlags = 0;
4568   /* If there are two or more cursors on the same btree, then all such
4569   ** cursors *must* have the BTCF_Multiple flag set. */
4570   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4571     if( pX->pgnoRoot==iTable ){
4572       pX->curFlags |= BTCF_Multiple;
4573       pCur->curFlags = BTCF_Multiple;
4574     }
4575   }
4576   pCur->eState = CURSOR_INVALID;
4577   pCur->pNext = pBt->pCursor;
4578   pBt->pCursor = pCur;
4579   if( wrFlag ){
4580     pCur->curFlags |= BTCF_WriteFlag;
4581     pCur->curPagerFlags = 0;
4582     if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4583   }else{
4584     pCur->curPagerFlags = PAGER_GET_READONLY;
4585   }
4586   return SQLITE_OK;
4587 }
btreeCursorWithLock(Btree * p,Pgno iTable,int wrFlag,struct KeyInfo * pKeyInfo,BtCursor * pCur)4588 static int btreeCursorWithLock(
4589   Btree *p,                              /* The btree */
4590   Pgno iTable,                           /* Root page of table to open */
4591   int wrFlag,                            /* 1 to write. 0 read-only */
4592   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4593   BtCursor *pCur                         /* Space for new cursor */
4594 ){
4595   int rc;
4596   sqlite3BtreeEnter(p);
4597   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4598   sqlite3BtreeLeave(p);
4599   return rc;
4600 }
sqlite3BtreeCursor(Btree * p,Pgno iTable,int wrFlag,struct KeyInfo * pKeyInfo,BtCursor * pCur)4601 int sqlite3BtreeCursor(
4602   Btree *p,                                   /* The btree */
4603   Pgno iTable,                                /* Root page of table to open */
4604   int wrFlag,                                 /* 1 to write. 0 read-only */
4605   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4606   BtCursor *pCur                              /* Write new cursor here */
4607 ){
4608   if( p->sharable ){
4609     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4610   }else{
4611     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4612   }
4613 }
4614 
4615 /*
4616 ** Return the size of a BtCursor object in bytes.
4617 **
4618 ** This interfaces is needed so that users of cursors can preallocate
4619 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4620 ** to users so they cannot do the sizeof() themselves - they must call
4621 ** this routine.
4622 */
sqlite3BtreeCursorSize(void)4623 int sqlite3BtreeCursorSize(void){
4624   return ROUND8(sizeof(BtCursor));
4625 }
4626 
4627 /*
4628 ** Initialize memory that will be converted into a BtCursor object.
4629 **
4630 ** The simple approach here would be to memset() the entire object
4631 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4632 ** do not need to be zeroed and they are large, so we can save a lot
4633 ** of run-time by skipping the initialization of those elements.
4634 */
sqlite3BtreeCursorZero(BtCursor * p)4635 void sqlite3BtreeCursorZero(BtCursor *p){
4636   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4637 }
4638 
4639 /*
4640 ** Close a cursor.  The read lock on the database file is released
4641 ** when the last cursor is closed.
4642 */
sqlite3BtreeCloseCursor(BtCursor * pCur)4643 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4644   Btree *pBtree = pCur->pBtree;
4645   if( pBtree ){
4646     BtShared *pBt = pCur->pBt;
4647     sqlite3BtreeEnter(pBtree);
4648     assert( pBt->pCursor!=0 );
4649     if( pBt->pCursor==pCur ){
4650       pBt->pCursor = pCur->pNext;
4651     }else{
4652       BtCursor *pPrev = pBt->pCursor;
4653       do{
4654         if( pPrev->pNext==pCur ){
4655           pPrev->pNext = pCur->pNext;
4656           break;
4657         }
4658         pPrev = pPrev->pNext;
4659       }while( ALWAYS(pPrev) );
4660     }
4661     btreeReleaseAllCursorPages(pCur);
4662     unlockBtreeIfUnused(pBt);
4663     sqlite3_free(pCur->aOverflow);
4664     sqlite3_free(pCur->pKey);
4665     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4666       /* Since the BtShared is not sharable, there is no need to
4667       ** worry about the missing sqlite3BtreeLeave() call here.  */
4668       assert( pBtree->sharable==0 );
4669       sqlite3BtreeClose(pBtree);
4670     }else{
4671       sqlite3BtreeLeave(pBtree);
4672     }
4673     pCur->pBtree = 0;
4674   }
4675   return SQLITE_OK;
4676 }
4677 
4678 /*
4679 ** Make sure the BtCursor* given in the argument has a valid
4680 ** BtCursor.info structure.  If it is not already valid, call
4681 ** btreeParseCell() to fill it in.
4682 **
4683 ** BtCursor.info is a cache of the information in the current cell.
4684 ** Using this cache reduces the number of calls to btreeParseCell().
4685 */
4686 #ifndef NDEBUG
cellInfoEqual(CellInfo * a,CellInfo * b)4687   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4688     if( a->nKey!=b->nKey ) return 0;
4689     if( a->pPayload!=b->pPayload ) return 0;
4690     if( a->nPayload!=b->nPayload ) return 0;
4691     if( a->nLocal!=b->nLocal ) return 0;
4692     if( a->nSize!=b->nSize ) return 0;
4693     return 1;
4694   }
assertCellInfo(BtCursor * pCur)4695   static void assertCellInfo(BtCursor *pCur){
4696     CellInfo info;
4697     memset(&info, 0, sizeof(info));
4698     btreeParseCell(pCur->pPage, pCur->ix, &info);
4699     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4700   }
4701 #else
4702   #define assertCellInfo(x)
4703 #endif
getCellInfo(BtCursor * pCur)4704 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4705   if( pCur->info.nSize==0 ){
4706     pCur->curFlags |= BTCF_ValidNKey;
4707     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4708   }else{
4709     assertCellInfo(pCur);
4710   }
4711 }
4712 
4713 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4714 /*
4715 ** Return true if the given BtCursor is valid.  A valid cursor is one
4716 ** that is currently pointing to a row in a (non-empty) table.
4717 ** This is a verification routine is used only within assert() statements.
4718 */
sqlite3BtreeCursorIsValid(BtCursor * pCur)4719 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4720   return pCur && pCur->eState==CURSOR_VALID;
4721 }
4722 #endif /* NDEBUG */
sqlite3BtreeCursorIsValidNN(BtCursor * pCur)4723 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4724   assert( pCur!=0 );
4725   return pCur->eState==CURSOR_VALID;
4726 }
4727 
4728 /*
4729 ** Return the value of the integer key or "rowid" for a table btree.
4730 ** This routine is only valid for a cursor that is pointing into a
4731 ** ordinary table btree.  If the cursor points to an index btree or
4732 ** is invalid, the result of this routine is undefined.
4733 */
sqlite3BtreeIntegerKey(BtCursor * pCur)4734 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4735   assert( cursorHoldsMutex(pCur) );
4736   assert( pCur->eState==CURSOR_VALID );
4737   assert( pCur->curIntKey );
4738   getCellInfo(pCur);
4739   return pCur->info.nKey;
4740 }
4741 
4742 /*
4743 ** Pin or unpin a cursor.
4744 */
sqlite3BtreeCursorPin(BtCursor * pCur)4745 void sqlite3BtreeCursorPin(BtCursor *pCur){
4746   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4747   pCur->curFlags |= BTCF_Pinned;
4748 }
sqlite3BtreeCursorUnpin(BtCursor * pCur)4749 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4750   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4751   pCur->curFlags &= ~BTCF_Pinned;
4752 }
4753 
4754 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4755 /*
4756 ** Return the offset into the database file for the start of the
4757 ** payload to which the cursor is pointing.
4758 */
sqlite3BtreeOffset(BtCursor * pCur)4759 i64 sqlite3BtreeOffset(BtCursor *pCur){
4760   assert( cursorHoldsMutex(pCur) );
4761   assert( pCur->eState==CURSOR_VALID );
4762   getCellInfo(pCur);
4763   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4764          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4765 }
4766 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4767 
4768 /*
4769 ** Return the number of bytes of payload for the entry that pCur is
4770 ** currently pointing to.  For table btrees, this will be the amount
4771 ** of data.  For index btrees, this will be the size of the key.
4772 **
4773 ** The caller must guarantee that the cursor is pointing to a non-NULL
4774 ** valid entry.  In other words, the calling procedure must guarantee
4775 ** that the cursor has Cursor.eState==CURSOR_VALID.
4776 */
sqlite3BtreePayloadSize(BtCursor * pCur)4777 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4778   assert( cursorHoldsMutex(pCur) );
4779   assert( pCur->eState==CURSOR_VALID );
4780   getCellInfo(pCur);
4781   return pCur->info.nPayload;
4782 }
4783 
4784 /*
4785 ** Return an upper bound on the size of any record for the table
4786 ** that the cursor is pointing into.
4787 **
4788 ** This is an optimization.  Everything will still work if this
4789 ** routine always returns 2147483647 (which is the largest record
4790 ** that SQLite can handle) or more.  But returning a smaller value might
4791 ** prevent large memory allocations when trying to interpret a
4792 ** corrupt datrabase.
4793 **
4794 ** The current implementation merely returns the size of the underlying
4795 ** database file.
4796 */
sqlite3BtreeMaxRecordSize(BtCursor * pCur)4797 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4798   assert( cursorHoldsMutex(pCur) );
4799   assert( pCur->eState==CURSOR_VALID );
4800   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4801 }
4802 
4803 /*
4804 ** Given the page number of an overflow page in the database (parameter
4805 ** ovfl), this function finds the page number of the next page in the
4806 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4807 ** pointer-map data instead of reading the content of page ovfl to do so.
4808 **
4809 ** If an error occurs an SQLite error code is returned. Otherwise:
4810 **
4811 ** The page number of the next overflow page in the linked list is
4812 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4813 ** list, *pPgnoNext is set to zero.
4814 **
4815 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4816 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4817 ** reference. It is the responsibility of the caller to call releasePage()
4818 ** on *ppPage to free the reference. In no reference was obtained (because
4819 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4820 ** *ppPage is set to zero.
4821 */
getOverflowPage(BtShared * pBt,Pgno ovfl,MemPage ** ppPage,Pgno * pPgnoNext)4822 static int getOverflowPage(
4823   BtShared *pBt,               /* The database file */
4824   Pgno ovfl,                   /* Current overflow page number */
4825   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4826   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4827 ){
4828   Pgno next = 0;
4829   MemPage *pPage = 0;
4830   int rc = SQLITE_OK;
4831 
4832   assert( sqlite3_mutex_held(pBt->mutex) );
4833   assert(pPgnoNext);
4834 
4835 #ifndef SQLITE_OMIT_AUTOVACUUM
4836   /* Try to find the next page in the overflow list using the
4837   ** autovacuum pointer-map pages. Guess that the next page in
4838   ** the overflow list is page number (ovfl+1). If that guess turns
4839   ** out to be wrong, fall back to loading the data of page
4840   ** number ovfl to determine the next page number.
4841   */
4842   if( pBt->autoVacuum ){
4843     Pgno pgno;
4844     Pgno iGuess = ovfl+1;
4845     u8 eType;
4846 
4847     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4848       iGuess++;
4849     }
4850 
4851     if( iGuess<=btreePagecount(pBt) ){
4852       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4853       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4854         next = iGuess;
4855         rc = SQLITE_DONE;
4856       }
4857     }
4858   }
4859 #endif
4860 
4861   assert( next==0 || rc==SQLITE_DONE );
4862   if( rc==SQLITE_OK ){
4863     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4864     assert( rc==SQLITE_OK || pPage==0 );
4865     if( rc==SQLITE_OK ){
4866       next = get4byte(pPage->aData);
4867     }
4868   }
4869 
4870   *pPgnoNext = next;
4871   if( ppPage ){
4872     *ppPage = pPage;
4873   }else{
4874     releasePage(pPage);
4875   }
4876   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4877 }
4878 
4879 /*
4880 ** Copy data from a buffer to a page, or from a page to a buffer.
4881 **
4882 ** pPayload is a pointer to data stored on database page pDbPage.
4883 ** If argument eOp is false, then nByte bytes of data are copied
4884 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4885 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4886 ** of data are copied from the buffer pBuf to pPayload.
4887 **
4888 ** SQLITE_OK is returned on success, otherwise an error code.
4889 */
copyPayload(void * pPayload,void * pBuf,int nByte,int eOp,DbPage * pDbPage)4890 static int copyPayload(
4891   void *pPayload,           /* Pointer to page data */
4892   void *pBuf,               /* Pointer to buffer */
4893   int nByte,                /* Number of bytes to copy */
4894   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4895   DbPage *pDbPage           /* Page containing pPayload */
4896 ){
4897   if( eOp ){
4898     /* Copy data from buffer to page (a write operation) */
4899     int rc = sqlite3PagerWrite(pDbPage);
4900     if( rc!=SQLITE_OK ){
4901       return rc;
4902     }
4903     memcpy(pPayload, pBuf, nByte);
4904   }else{
4905     /* Copy data from page to buffer (a read operation) */
4906     memcpy(pBuf, pPayload, nByte);
4907   }
4908   return SQLITE_OK;
4909 }
4910 
4911 /*
4912 ** This function is used to read or overwrite payload information
4913 ** for the entry that the pCur cursor is pointing to. The eOp
4914 ** argument is interpreted as follows:
4915 **
4916 **   0: The operation is a read. Populate the overflow cache.
4917 **   1: The operation is a write. Populate the overflow cache.
4918 **
4919 ** A total of "amt" bytes are read or written beginning at "offset".
4920 ** Data is read to or from the buffer pBuf.
4921 **
4922 ** The content being read or written might appear on the main page
4923 ** or be scattered out on multiple overflow pages.
4924 **
4925 ** If the current cursor entry uses one or more overflow pages
4926 ** this function may allocate space for and lazily populate
4927 ** the overflow page-list cache array (BtCursor.aOverflow).
4928 ** Subsequent calls use this cache to make seeking to the supplied offset
4929 ** more efficient.
4930 **
4931 ** Once an overflow page-list cache has been allocated, it must be
4932 ** invalidated if some other cursor writes to the same table, or if
4933 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4934 ** mode, the following events may invalidate an overflow page-list cache.
4935 **
4936 **   * An incremental vacuum,
4937 **   * A commit in auto_vacuum="full" mode,
4938 **   * Creating a table (may require moving an overflow page).
4939 */
accessPayload(BtCursor * pCur,u32 offset,u32 amt,unsigned char * pBuf,int eOp)4940 static int accessPayload(
4941   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4942   u32 offset,          /* Begin reading this far into payload */
4943   u32 amt,             /* Read this many bytes */
4944   unsigned char *pBuf, /* Write the bytes into this buffer */
4945   int eOp              /* zero to read. non-zero to write. */
4946 ){
4947   unsigned char *aPayload;
4948   int rc = SQLITE_OK;
4949   int iIdx = 0;
4950   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4951   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4952 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4953   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4954 #endif
4955 
4956   assert( pPage );
4957   assert( eOp==0 || eOp==1 );
4958   assert( pCur->eState==CURSOR_VALID );
4959   if( pCur->ix>=pPage->nCell ){
4960     return SQLITE_CORRUPT_PAGE(pPage);
4961   }
4962   assert( cursorHoldsMutex(pCur) );
4963 
4964   getCellInfo(pCur);
4965   aPayload = pCur->info.pPayload;
4966   assert( offset+amt <= pCur->info.nPayload );
4967 
4968   assert( aPayload > pPage->aData );
4969   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4970     /* Trying to read or write past the end of the data is an error.  The
4971     ** conditional above is really:
4972     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4973     ** but is recast into its current form to avoid integer overflow problems
4974     */
4975     return SQLITE_CORRUPT_PAGE(pPage);
4976   }
4977 
4978   /* Check if data must be read/written to/from the btree page itself. */
4979   if( offset<pCur->info.nLocal ){
4980     int a = amt;
4981     if( a+offset>pCur->info.nLocal ){
4982       a = pCur->info.nLocal - offset;
4983     }
4984     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4985     offset = 0;
4986     pBuf += a;
4987     amt -= a;
4988   }else{
4989     offset -= pCur->info.nLocal;
4990   }
4991 
4992 
4993   if( rc==SQLITE_OK && amt>0 ){
4994     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4995     Pgno nextPage;
4996 
4997     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4998 
4999     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5000     **
5001     ** The aOverflow[] array is sized at one entry for each overflow page
5002     ** in the overflow chain. The page number of the first overflow page is
5003     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5004     ** means "not yet known" (the cache is lazily populated).
5005     */
5006     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
5007       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
5008       if( pCur->aOverflow==0
5009        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
5010       ){
5011         Pgno *aNew = (Pgno*)sqlite3Realloc(
5012             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
5013         );
5014         if( aNew==0 ){
5015           return SQLITE_NOMEM_BKPT;
5016         }else{
5017           pCur->aOverflow = aNew;
5018         }
5019       }
5020       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5021       pCur->curFlags |= BTCF_ValidOvfl;
5022     }else{
5023       /* If the overflow page-list cache has been allocated and the
5024       ** entry for the first required overflow page is valid, skip
5025       ** directly to it.
5026       */
5027       if( pCur->aOverflow[offset/ovflSize] ){
5028         iIdx = (offset/ovflSize);
5029         nextPage = pCur->aOverflow[iIdx];
5030         offset = (offset%ovflSize);
5031       }
5032     }
5033 
5034     assert( rc==SQLITE_OK && amt>0 );
5035     while( nextPage ){
5036       /* If required, populate the overflow page-list cache. */
5037       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
5038       assert( pCur->aOverflow[iIdx]==0
5039               || pCur->aOverflow[iIdx]==nextPage
5040               || CORRUPT_DB );
5041       pCur->aOverflow[iIdx] = nextPage;
5042 
5043       if( offset>=ovflSize ){
5044         /* The only reason to read this page is to obtain the page
5045         ** number for the next page in the overflow chain. The page
5046         ** data is not required. So first try to lookup the overflow
5047         ** page-list cache, if any, then fall back to the getOverflowPage()
5048         ** function.
5049         */
5050         assert( pCur->curFlags & BTCF_ValidOvfl );
5051         assert( pCur->pBtree->db==pBt->db );
5052         if( pCur->aOverflow[iIdx+1] ){
5053           nextPage = pCur->aOverflow[iIdx+1];
5054         }else{
5055           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
5056         }
5057         offset -= ovflSize;
5058       }else{
5059         /* Need to read this page properly. It contains some of the
5060         ** range of data that is being read (eOp==0) or written (eOp!=0).
5061         */
5062         int a = amt;
5063         if( a + offset > ovflSize ){
5064           a = ovflSize - offset;
5065         }
5066 
5067 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5068         /* If all the following are true:
5069         **
5070         **   1) this is a read operation, and
5071         **   2) data is required from the start of this overflow page, and
5072         **   3) there are no dirty pages in the page-cache
5073         **   4) the database is file-backed, and
5074         **   5) the page is not in the WAL file
5075         **   6) at least 4 bytes have already been read into the output buffer
5076         **
5077         ** then data can be read directly from the database file into the
5078         ** output buffer, bypassing the page-cache altogether. This speeds
5079         ** up loading large records that span many overflow pages.
5080         */
5081         if( eOp==0                                             /* (1) */
5082          && offset==0                                          /* (2) */
5083          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
5084          && &pBuf[-4]>=pBufStart                               /* (6) */
5085         ){
5086           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5087           u8 aSave[4];
5088           u8 *aWrite = &pBuf[-4];
5089           assert( aWrite>=pBufStart );                         /* due to (6) */
5090           memcpy(aSave, aWrite, 4);
5091           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5092           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5093           nextPage = get4byte(aWrite);
5094           memcpy(aWrite, aSave, 4);
5095         }else
5096 #endif
5097 
5098         {
5099           DbPage *pDbPage;
5100           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5101               (eOp==0 ? PAGER_GET_READONLY : 0)
5102           );
5103           if( rc==SQLITE_OK ){
5104             aPayload = sqlite3PagerGetData(pDbPage);
5105             nextPage = get4byte(aPayload);
5106             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5107             sqlite3PagerUnref(pDbPage);
5108             offset = 0;
5109           }
5110         }
5111         amt -= a;
5112         if( amt==0 ) return rc;
5113         pBuf += a;
5114       }
5115       if( rc ) break;
5116       iIdx++;
5117     }
5118   }
5119 
5120   if( rc==SQLITE_OK && amt>0 ){
5121     /* Overflow chain ends prematurely */
5122     return SQLITE_CORRUPT_PAGE(pPage);
5123   }
5124   return rc;
5125 }
5126 
5127 /*
5128 ** Read part of the payload for the row at which that cursor pCur is currently
5129 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5130 ** begins at "offset".
5131 **
5132 ** pCur can be pointing to either a table or an index b-tree.
5133 ** If pointing to a table btree, then the content section is read.  If
5134 ** pCur is pointing to an index b-tree then the key section is read.
5135 **
5136 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5137 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5138 ** cursor might be invalid or might need to be restored before being read.
5139 **
5140 ** Return SQLITE_OK on success or an error code if anything goes
5141 ** wrong.  An error is returned if "offset+amt" is larger than
5142 ** the available payload.
5143 */
sqlite3BtreePayload(BtCursor * pCur,u32 offset,u32 amt,void * pBuf)5144 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5145   assert( cursorHoldsMutex(pCur) );
5146   assert( pCur->eState==CURSOR_VALID );
5147   assert( pCur->iPage>=0 && pCur->pPage );
5148   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5149 }
5150 
5151 /*
5152 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5153 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5154 ** interface.
5155 */
5156 #ifndef SQLITE_OMIT_INCRBLOB
accessPayloadChecked(BtCursor * pCur,u32 offset,u32 amt,void * pBuf)5157 static SQLITE_NOINLINE int accessPayloadChecked(
5158   BtCursor *pCur,
5159   u32 offset,
5160   u32 amt,
5161   void *pBuf
5162 ){
5163   int rc;
5164   if ( pCur->eState==CURSOR_INVALID ){
5165     return SQLITE_ABORT;
5166   }
5167   assert( cursorOwnsBtShared(pCur) );
5168   rc = btreeRestoreCursorPosition(pCur);
5169   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5170 }
sqlite3BtreePayloadChecked(BtCursor * pCur,u32 offset,u32 amt,void * pBuf)5171 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5172   if( pCur->eState==CURSOR_VALID ){
5173     assert( cursorOwnsBtShared(pCur) );
5174     return accessPayload(pCur, offset, amt, pBuf, 0);
5175   }else{
5176     return accessPayloadChecked(pCur, offset, amt, pBuf);
5177   }
5178 }
5179 #endif /* SQLITE_OMIT_INCRBLOB */
5180 
5181 /*
5182 ** Return a pointer to payload information from the entry that the
5183 ** pCur cursor is pointing to.  The pointer is to the beginning of
5184 ** the key if index btrees (pPage->intKey==0) and is the data for
5185 ** table btrees (pPage->intKey==1). The number of bytes of available
5186 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5187 ** returned will not be a valid pointer.
5188 **
5189 ** This routine is an optimization.  It is common for the entire key
5190 ** and data to fit on the local page and for there to be no overflow
5191 ** pages.  When that is so, this routine can be used to access the
5192 ** key and data without making a copy.  If the key and/or data spills
5193 ** onto overflow pages, then accessPayload() must be used to reassemble
5194 ** the key/data and copy it into a preallocated buffer.
5195 **
5196 ** The pointer returned by this routine looks directly into the cached
5197 ** page of the database.  The data might change or move the next time
5198 ** any btree routine is called.
5199 */
fetchPayload(BtCursor * pCur,u32 * pAmt)5200 static const void *fetchPayload(
5201   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5202   u32 *pAmt            /* Write the number of available bytes here */
5203 ){
5204   int amt;
5205   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5206   assert( pCur->eState==CURSOR_VALID );
5207   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5208   assert( cursorOwnsBtShared(pCur) );
5209   assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5210   assert( pCur->info.nSize>0 );
5211   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5212   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5213   amt = pCur->info.nLocal;
5214   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5215     /* There is too little space on the page for the expected amount
5216     ** of local content. Database must be corrupt. */
5217     assert( CORRUPT_DB );
5218     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5219   }
5220   *pAmt = (u32)amt;
5221   return (void*)pCur->info.pPayload;
5222 }
5223 
5224 
5225 /*
5226 ** For the entry that cursor pCur is point to, return as
5227 ** many bytes of the key or data as are available on the local
5228 ** b-tree page.  Write the number of available bytes into *pAmt.
5229 **
5230 ** The pointer returned is ephemeral.  The key/data may move
5231 ** or be destroyed on the next call to any Btree routine,
5232 ** including calls from other threads against the same cache.
5233 ** Hence, a mutex on the BtShared should be held prior to calling
5234 ** this routine.
5235 **
5236 ** These routines is used to get quick access to key and data
5237 ** in the common case where no overflow pages are used.
5238 */
sqlite3BtreePayloadFetch(BtCursor * pCur,u32 * pAmt)5239 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5240   return fetchPayload(pCur, pAmt);
5241 }
5242 
5243 
5244 /*
5245 ** Move the cursor down to a new child page.  The newPgno argument is the
5246 ** page number of the child page to move to.
5247 **
5248 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5249 ** the new child page does not match the flags field of the parent (i.e.
5250 ** if an intkey page appears to be the parent of a non-intkey page, or
5251 ** vice-versa).
5252 */
moveToChild(BtCursor * pCur,u32 newPgno)5253 static int moveToChild(BtCursor *pCur, u32 newPgno){
5254   assert( cursorOwnsBtShared(pCur) );
5255   assert( pCur->eState==CURSOR_VALID );
5256   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5257   assert( pCur->iPage>=0 );
5258   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5259     return SQLITE_CORRUPT_BKPT;
5260   }
5261   pCur->info.nSize = 0;
5262   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5263   pCur->aiIdx[pCur->iPage] = pCur->ix;
5264   pCur->apPage[pCur->iPage] = pCur->pPage;
5265   pCur->ix = 0;
5266   pCur->iPage++;
5267   return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur,
5268                         pCur->curPagerFlags);
5269 }
5270 
5271 #ifdef SQLITE_DEBUG
5272 /*
5273 ** Page pParent is an internal (non-leaf) tree page. This function
5274 ** asserts that page number iChild is the left-child if the iIdx'th
5275 ** cell in page pParent. Or, if iIdx is equal to the total number of
5276 ** cells in pParent, that page number iChild is the right-child of
5277 ** the page.
5278 */
assertParentIndex(MemPage * pParent,int iIdx,Pgno iChild)5279 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5280   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5281                             ** in a corrupt database */
5282   assert( iIdx<=pParent->nCell );
5283   if( iIdx==pParent->nCell ){
5284     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5285   }else{
5286     assert( get4byte(findCell(pParent, iIdx))==iChild );
5287   }
5288 }
5289 #else
5290 #  define assertParentIndex(x,y,z)
5291 #endif
5292 
5293 /*
5294 ** Move the cursor up to the parent page.
5295 **
5296 ** pCur->idx is set to the cell index that contains the pointer
5297 ** to the page we are coming from.  If we are coming from the
5298 ** right-most child page then pCur->idx is set to one more than
5299 ** the largest cell index.
5300 */
moveToParent(BtCursor * pCur)5301 static void moveToParent(BtCursor *pCur){
5302   MemPage *pLeaf;
5303   assert( cursorOwnsBtShared(pCur) );
5304   assert( pCur->eState==CURSOR_VALID );
5305   assert( pCur->iPage>0 );
5306   assert( pCur->pPage );
5307   assertParentIndex(
5308     pCur->apPage[pCur->iPage-1],
5309     pCur->aiIdx[pCur->iPage-1],
5310     pCur->pPage->pgno
5311   );
5312   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5313   pCur->info.nSize = 0;
5314   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5315   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5316   pLeaf = pCur->pPage;
5317   pCur->pPage = pCur->apPage[--pCur->iPage];
5318   releasePageNotNull(pLeaf);
5319 }
5320 
5321 /*
5322 ** Move the cursor to point to the root page of its b-tree structure.
5323 **
5324 ** If the table has a virtual root page, then the cursor is moved to point
5325 ** to the virtual root page instead of the actual root page. A table has a
5326 ** virtual root page when the actual root page contains no cells and a
5327 ** single child page. This can only happen with the table rooted at page 1.
5328 **
5329 ** If the b-tree structure is empty, the cursor state is set to
5330 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5331 ** the cursor is set to point to the first cell located on the root
5332 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5333 **
5334 ** If this function returns successfully, it may be assumed that the
5335 ** page-header flags indicate that the [virtual] root-page is the expected
5336 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5337 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5338 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5339 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5340 ** b-tree).
5341 */
moveToRoot(BtCursor * pCur)5342 static int moveToRoot(BtCursor *pCur){
5343   MemPage *pRoot;
5344   int rc = SQLITE_OK;
5345 
5346   assert( cursorOwnsBtShared(pCur) );
5347   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5348   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5349   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5350   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5351   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5352 
5353   if( pCur->iPage>=0 ){
5354     if( pCur->iPage ){
5355       releasePageNotNull(pCur->pPage);
5356       while( --pCur->iPage ){
5357         releasePageNotNull(pCur->apPage[pCur->iPage]);
5358       }
5359       pRoot = pCur->pPage = pCur->apPage[0];
5360       goto skip_init;
5361     }
5362   }else if( pCur->pgnoRoot==0 ){
5363     pCur->eState = CURSOR_INVALID;
5364     return SQLITE_EMPTY;
5365   }else{
5366     assert( pCur->iPage==(-1) );
5367     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5368       if( pCur->eState==CURSOR_FAULT ){
5369         assert( pCur->skipNext!=SQLITE_OK );
5370         return pCur->skipNext;
5371       }
5372       sqlite3BtreeClearCursor(pCur);
5373     }
5374     rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage,
5375                         0, pCur->curPagerFlags);
5376     if( rc!=SQLITE_OK ){
5377       pCur->eState = CURSOR_INVALID;
5378       return rc;
5379     }
5380     pCur->iPage = 0;
5381     pCur->curIntKey = pCur->pPage->intKey;
5382   }
5383   pRoot = pCur->pPage;
5384   assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
5385 
5386   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5387   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5388   ** NULL, the caller expects a table b-tree. If this is not the case,
5389   ** return an SQLITE_CORRUPT error.
5390   **
5391   ** Earlier versions of SQLite assumed that this test could not fail
5392   ** if the root page was already loaded when this function was called (i.e.
5393   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5394   ** in such a way that page pRoot is linked into a second b-tree table
5395   ** (or the freelist).  */
5396   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5397   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5398     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5399   }
5400 
5401 skip_init:
5402   pCur->ix = 0;
5403   pCur->info.nSize = 0;
5404   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5405 
5406   if( pRoot->nCell>0 ){
5407     pCur->eState = CURSOR_VALID;
5408   }else if( !pRoot->leaf ){
5409     Pgno subpage;
5410     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5411     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5412     pCur->eState = CURSOR_VALID;
5413     rc = moveToChild(pCur, subpage);
5414   }else{
5415     pCur->eState = CURSOR_INVALID;
5416     rc = SQLITE_EMPTY;
5417   }
5418   return rc;
5419 }
5420 
5421 /*
5422 ** Move the cursor down to the left-most leaf entry beneath the
5423 ** entry to which it is currently pointing.
5424 **
5425 ** The left-most leaf is the one with the smallest key - the first
5426 ** in ascending order.
5427 */
moveToLeftmost(BtCursor * pCur)5428 static int moveToLeftmost(BtCursor *pCur){
5429   Pgno pgno;
5430   int rc = SQLITE_OK;
5431   MemPage *pPage;
5432 
5433   assert( cursorOwnsBtShared(pCur) );
5434   assert( pCur->eState==CURSOR_VALID );
5435   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5436     assert( pCur->ix<pPage->nCell );
5437     pgno = get4byte(findCell(pPage, pCur->ix));
5438     rc = moveToChild(pCur, pgno);
5439   }
5440   return rc;
5441 }
5442 
5443 /*
5444 ** Move the cursor down to the right-most leaf entry beneath the
5445 ** page to which it is currently pointing.  Notice the difference
5446 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5447 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5448 ** finds the right-most entry beneath the *page*.
5449 **
5450 ** The right-most entry is the one with the largest key - the last
5451 ** key in ascending order.
5452 */
moveToRightmost(BtCursor * pCur)5453 static int moveToRightmost(BtCursor *pCur){
5454   Pgno pgno;
5455   int rc = SQLITE_OK;
5456   MemPage *pPage = 0;
5457 
5458   assert( cursorOwnsBtShared(pCur) );
5459   assert( pCur->eState==CURSOR_VALID );
5460   while( !(pPage = pCur->pPage)->leaf ){
5461     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5462     pCur->ix = pPage->nCell;
5463     rc = moveToChild(pCur, pgno);
5464     if( rc ) return rc;
5465   }
5466   pCur->ix = pPage->nCell-1;
5467   assert( pCur->info.nSize==0 );
5468   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5469   return SQLITE_OK;
5470 }
5471 
5472 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5473 ** on success.  Set *pRes to 0 if the cursor actually points to something
5474 ** or set *pRes to 1 if the table is empty.
5475 */
sqlite3BtreeFirst(BtCursor * pCur,int * pRes)5476 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5477   int rc;
5478 
5479   assert( cursorOwnsBtShared(pCur) );
5480   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5481   rc = moveToRoot(pCur);
5482   if( rc==SQLITE_OK ){
5483     assert( pCur->pPage->nCell>0 );
5484     *pRes = 0;
5485     rc = moveToLeftmost(pCur);
5486   }else if( rc==SQLITE_EMPTY ){
5487     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5488     *pRes = 1;
5489     rc = SQLITE_OK;
5490   }
5491   return rc;
5492 }
5493 
5494 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5495 ** on success.  Set *pRes to 0 if the cursor actually points to something
5496 ** or set *pRes to 1 if the table is empty.
5497 */
sqlite3BtreeLast(BtCursor * pCur,int * pRes)5498 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5499   int rc;
5500 
5501   assert( cursorOwnsBtShared(pCur) );
5502   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5503 
5504   /* If the cursor already points to the last entry, this is a no-op. */
5505   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5506 #ifdef SQLITE_DEBUG
5507     /* This block serves to assert() that the cursor really does point
5508     ** to the last entry in the b-tree. */
5509     int ii;
5510     for(ii=0; ii<pCur->iPage; ii++){
5511       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5512     }
5513     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5514     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5515     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5516     assert( pCur->pPage->leaf );
5517 #endif
5518     *pRes = 0;
5519     return SQLITE_OK;
5520   }
5521 
5522   rc = moveToRoot(pCur);
5523   if( rc==SQLITE_OK ){
5524     assert( pCur->eState==CURSOR_VALID );
5525     *pRes = 0;
5526     rc = moveToRightmost(pCur);
5527     if( rc==SQLITE_OK ){
5528       pCur->curFlags |= BTCF_AtLast;
5529     }else{
5530       pCur->curFlags &= ~BTCF_AtLast;
5531     }
5532   }else if( rc==SQLITE_EMPTY ){
5533     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5534     *pRes = 1;
5535     rc = SQLITE_OK;
5536   }
5537   return rc;
5538 }
5539 
5540 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5541 ** table near the key intKey.   Return a success code.
5542 **
5543 ** If an exact match is not found, then the cursor is always
5544 ** left pointing at a leaf page which would hold the entry if it
5545 ** were present.  The cursor might point to an entry that comes
5546 ** before or after the key.
5547 **
5548 ** An integer is written into *pRes which is the result of
5549 ** comparing the key with the entry to which the cursor is
5550 ** pointing.  The meaning of the integer written into
5551 ** *pRes is as follows:
5552 **
5553 **     *pRes<0      The cursor is left pointing at an entry that
5554 **                  is smaller than intKey or if the table is empty
5555 **                  and the cursor is therefore left point to nothing.
5556 **
5557 **     *pRes==0     The cursor is left pointing at an entry that
5558 **                  exactly matches intKey.
5559 **
5560 **     *pRes>0      The cursor is left pointing at an entry that
5561 **                  is larger than intKey.
5562 */
sqlite3BtreeTableMoveto(BtCursor * pCur,i64 intKey,int biasRight,int * pRes)5563 int sqlite3BtreeTableMoveto(
5564   BtCursor *pCur,          /* The cursor to be moved */
5565   i64 intKey,              /* The table key */
5566   int biasRight,           /* If true, bias the search to the high end */
5567   int *pRes                /* Write search results here */
5568 ){
5569   int rc;
5570 
5571   assert( cursorOwnsBtShared(pCur) );
5572   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5573   assert( pRes );
5574   assert( pCur->pKeyInfo==0 );
5575   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5576 
5577   /* If the cursor is already positioned at the point we are trying
5578   ** to move to, then just return without doing any work */
5579   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5580     if( pCur->info.nKey==intKey ){
5581       *pRes = 0;
5582       return SQLITE_OK;
5583     }
5584     if( pCur->info.nKey<intKey ){
5585       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5586         *pRes = -1;
5587         return SQLITE_OK;
5588       }
5589       /* If the requested key is one more than the previous key, then
5590       ** try to get there using sqlite3BtreeNext() rather than a full
5591       ** binary search.  This is an optimization only.  The correct answer
5592       ** is still obtained without this case, only a little more slowely */
5593       if( pCur->info.nKey+1==intKey ){
5594         *pRes = 0;
5595         rc = sqlite3BtreeNext(pCur, 0);
5596         if( rc==SQLITE_OK ){
5597           getCellInfo(pCur);
5598           if( pCur->info.nKey==intKey ){
5599             return SQLITE_OK;
5600           }
5601         }else if( rc!=SQLITE_DONE ){
5602           return rc;
5603         }
5604       }
5605     }
5606   }
5607 
5608 #ifdef SQLITE_DEBUG
5609   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5610 #endif
5611 
5612   rc = moveToRoot(pCur);
5613   if( rc ){
5614     if( rc==SQLITE_EMPTY ){
5615       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5616       *pRes = -1;
5617       return SQLITE_OK;
5618     }
5619     return rc;
5620   }
5621   assert( pCur->pPage );
5622   assert( pCur->pPage->isInit );
5623   assert( pCur->eState==CURSOR_VALID );
5624   assert( pCur->pPage->nCell > 0 );
5625   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5626   assert( pCur->curIntKey );
5627 
5628   for(;;){
5629     int lwr, upr, idx, c;
5630     Pgno chldPg;
5631     MemPage *pPage = pCur->pPage;
5632     u8 *pCell;                          /* Pointer to current cell in pPage */
5633 
5634     /* pPage->nCell must be greater than zero. If this is the root-page
5635     ** the cursor would have been INVALID above and this for(;;) loop
5636     ** not run. If this is not the root-page, then the moveToChild() routine
5637     ** would have already detected db corruption. Similarly, pPage must
5638     ** be the right kind (index or table) of b-tree page. Otherwise
5639     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5640     assert( pPage->nCell>0 );
5641     assert( pPage->intKey );
5642     lwr = 0;
5643     upr = pPage->nCell-1;
5644     assert( biasRight==0 || biasRight==1 );
5645     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5646     for(;;){
5647       i64 nCellKey;
5648       pCell = findCellPastPtr(pPage, idx);
5649       if( pPage->intKeyLeaf ){
5650         while( 0x80 <= *(pCell++) ){
5651           if( pCell>=pPage->aDataEnd ){
5652             return SQLITE_CORRUPT_PAGE(pPage);
5653           }
5654         }
5655       }
5656       getVarint(pCell, (u64*)&nCellKey);
5657       if( nCellKey<intKey ){
5658         lwr = idx+1;
5659         if( lwr>upr ){ c = -1; break; }
5660       }else if( nCellKey>intKey ){
5661         upr = idx-1;
5662         if( lwr>upr ){ c = +1; break; }
5663       }else{
5664         assert( nCellKey==intKey );
5665         pCur->ix = (u16)idx;
5666         if( !pPage->leaf ){
5667           lwr = idx;
5668           goto moveto_table_next_layer;
5669         }else{
5670           pCur->curFlags |= BTCF_ValidNKey;
5671           pCur->info.nKey = nCellKey;
5672           pCur->info.nSize = 0;
5673           *pRes = 0;
5674           return SQLITE_OK;
5675         }
5676       }
5677       assert( lwr+upr>=0 );
5678       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5679     }
5680     assert( lwr==upr+1 || !pPage->leaf );
5681     assert( pPage->isInit );
5682     if( pPage->leaf ){
5683       assert( pCur->ix<pCur->pPage->nCell );
5684       pCur->ix = (u16)idx;
5685       *pRes = c;
5686       rc = SQLITE_OK;
5687       goto moveto_table_finish;
5688     }
5689 moveto_table_next_layer:
5690     if( lwr>=pPage->nCell ){
5691       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5692     }else{
5693       chldPg = get4byte(findCell(pPage, lwr));
5694     }
5695     pCur->ix = (u16)lwr;
5696     rc = moveToChild(pCur, chldPg);
5697     if( rc ) break;
5698   }
5699 moveto_table_finish:
5700   pCur->info.nSize = 0;
5701   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5702   return rc;
5703 }
5704 
5705 /*
5706 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5707 ** pointing to to pIdxKey using xRecordCompare.  Return negative or
5708 ** zero if the cell is less than or equal pIdxKey.  Return positive
5709 ** if unknown.
5710 **
5711 **    Return value negative:     Cell at pCur[idx] less than pIdxKey
5712 **
5713 **    Return value is zero:      Cell at pCur[idx] equals pIdxKey
5714 **
5715 **    Return value positive:     Nothing is known about the relationship
5716 **                               of the cell at pCur[idx] and pIdxKey.
5717 **
5718 ** This routine is part of an optimization.  It is always safe to return
5719 ** a positive value as that will cause the optimization to be skipped.
5720 */
indexCellCompare(BtCursor * pCur,int idx,UnpackedRecord * pIdxKey,RecordCompare xRecordCompare)5721 static int indexCellCompare(
5722   BtCursor *pCur,
5723   int idx,
5724   UnpackedRecord *pIdxKey,
5725   RecordCompare xRecordCompare
5726 ){
5727   MemPage *pPage = pCur->pPage;
5728   int c;
5729   int nCell;  /* Size of the pCell cell in bytes */
5730   u8 *pCell = findCellPastPtr(pPage, idx);
5731 
5732   nCell = pCell[0];
5733   if( nCell<=pPage->max1bytePayload ){
5734     /* This branch runs if the record-size field of the cell is a
5735     ** single byte varint and the record fits entirely on the main
5736     ** b-tree page.  */
5737     testcase( pCell+nCell+1==pPage->aDataEnd );
5738     c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5739   }else if( !(pCell[1] & 0x80)
5740     && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5741   ){
5742     /* The record-size field is a 2 byte varint and the record
5743     ** fits entirely on the main b-tree page.  */
5744     testcase( pCell+nCell+2==pPage->aDataEnd );
5745     c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5746   }else{
5747     /* If the record extends into overflow pages, do not attempt
5748     ** the optimization. */
5749     c = 99;
5750   }
5751   return c;
5752 }
5753 
5754 /*
5755 ** Return true (non-zero) if pCur is current pointing to the last
5756 ** page of a table.
5757 */
cursorOnLastPage(BtCursor * pCur)5758 static int cursorOnLastPage(BtCursor *pCur){
5759   int i;
5760   assert( pCur->eState==CURSOR_VALID );
5761   for(i=0; i<pCur->iPage; i++){
5762     MemPage *pPage = pCur->apPage[i];
5763     if( pCur->aiIdx[i]<pPage->nCell ) return 0;
5764   }
5765   return 1;
5766 }
5767 
5768 /* Move the cursor so that it points to an entry in an index table
5769 ** near the key pIdxKey.   Return a success code.
5770 **
5771 ** If an exact match is not found, then the cursor is always
5772 ** left pointing at a leaf page which would hold the entry if it
5773 ** were present.  The cursor might point to an entry that comes
5774 ** before or after the key.
5775 **
5776 ** An integer is written into *pRes which is the result of
5777 ** comparing the key with the entry to which the cursor is
5778 ** pointing.  The meaning of the integer written into
5779 ** *pRes is as follows:
5780 **
5781 **     *pRes<0      The cursor is left pointing at an entry that
5782 **                  is smaller than pIdxKey or if the table is empty
5783 **                  and the cursor is therefore left point to nothing.
5784 **
5785 **     *pRes==0     The cursor is left pointing at an entry that
5786 **                  exactly matches pIdxKey.
5787 **
5788 **     *pRes>0      The cursor is left pointing at an entry that
5789 **                  is larger than pIdxKey.
5790 **
5791 ** The pIdxKey->eqSeen field is set to 1 if there
5792 ** exists an entry in the table that exactly matches pIdxKey.
5793 */
sqlite3BtreeIndexMoveto(BtCursor * pCur,UnpackedRecord * pIdxKey,int * pRes)5794 int sqlite3BtreeIndexMoveto(
5795   BtCursor *pCur,          /* The cursor to be moved */
5796   UnpackedRecord *pIdxKey, /* Unpacked index key */
5797   int *pRes                /* Write search results here */
5798 ){
5799   int rc;
5800   RecordCompare xRecordCompare;
5801 
5802   assert( cursorOwnsBtShared(pCur) );
5803   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5804   assert( pRes );
5805   assert( pCur->pKeyInfo!=0 );
5806 
5807 #ifdef SQLITE_DEBUG
5808   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5809 #endif
5810 
5811   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5812   pIdxKey->errCode = 0;
5813   assert( pIdxKey->default_rc==1
5814        || pIdxKey->default_rc==0
5815        || pIdxKey->default_rc==-1
5816   );
5817 
5818 
5819   /* Check to see if we can skip a lot of work.  Two cases:
5820   **
5821   **    (1) If the cursor is already pointing to the very last cell
5822   **        in the table and the pIdxKey search key is greater than or
5823   **        equal to that last cell, then no movement is required.
5824   **
5825   **    (2) If the cursor is on the last page of the table and the first
5826   **        cell on that last page is less than or equal to the pIdxKey
5827   **        search key, then we can start the search on the current page
5828   **        without needing to go back to root.
5829   */
5830   if( pCur->eState==CURSOR_VALID
5831    && pCur->pPage->leaf
5832    && cursorOnLastPage(pCur)
5833   ){
5834     int c;
5835     if( pCur->ix==pCur->pPage->nCell-1
5836      && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
5837      && pIdxKey->errCode==SQLITE_OK
5838     ){
5839       *pRes = c;
5840       return SQLITE_OK;  /* Cursor already pointing at the correct spot */
5841     }
5842     if( pCur->iPage>0
5843      && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
5844      && pIdxKey->errCode==SQLITE_OK
5845     ){
5846       pCur->curFlags &= ~BTCF_ValidOvfl;
5847       if( !pCur->pPage->isInit ){
5848         return SQLITE_CORRUPT_BKPT;
5849       }
5850       goto bypass_moveto_root;  /* Start search on the current page */
5851     }
5852     pIdxKey->errCode = SQLITE_OK;
5853   }
5854 
5855   rc = moveToRoot(pCur);
5856   if( rc ){
5857     if( rc==SQLITE_EMPTY ){
5858       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5859       *pRes = -1;
5860       return SQLITE_OK;
5861     }
5862     return rc;
5863   }
5864 
5865 bypass_moveto_root:
5866   assert( pCur->pPage );
5867   assert( pCur->pPage->isInit );
5868   assert( pCur->eState==CURSOR_VALID );
5869   assert( pCur->pPage->nCell > 0 );
5870   assert( pCur->curIntKey==0 );
5871   assert( pIdxKey!=0 );
5872   for(;;){
5873     int lwr, upr, idx, c;
5874     Pgno chldPg;
5875     MemPage *pPage = pCur->pPage;
5876     u8 *pCell;                          /* Pointer to current cell in pPage */
5877 
5878     /* pPage->nCell must be greater than zero. If this is the root-page
5879     ** the cursor would have been INVALID above and this for(;;) loop
5880     ** not run. If this is not the root-page, then the moveToChild() routine
5881     ** would have already detected db corruption. Similarly, pPage must
5882     ** be the right kind (index or table) of b-tree page. Otherwise
5883     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5884     assert( pPage->nCell>0 );
5885     assert( pPage->intKey==0 );
5886     lwr = 0;
5887     upr = pPage->nCell-1;
5888     idx = upr>>1; /* idx = (lwr+upr)/2; */
5889     for(;;){
5890       int nCell;  /* Size of the pCell cell in bytes */
5891       pCell = findCellPastPtr(pPage, idx);
5892 
5893       /* The maximum supported page-size is 65536 bytes. This means that
5894       ** the maximum number of record bytes stored on an index B-Tree
5895       ** page is less than 16384 bytes and may be stored as a 2-byte
5896       ** varint. This information is used to attempt to avoid parsing
5897       ** the entire cell by checking for the cases where the record is
5898       ** stored entirely within the b-tree page by inspecting the first
5899       ** 2 bytes of the cell.
5900       */
5901       nCell = pCell[0];
5902       if( nCell<=pPage->max1bytePayload ){
5903         /* This branch runs if the record-size field of the cell is a
5904         ** single byte varint and the record fits entirely on the main
5905         ** b-tree page.  */
5906         testcase( pCell+nCell+1==pPage->aDataEnd );
5907         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5908       }else if( !(pCell[1] & 0x80)
5909         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5910       ){
5911         /* The record-size field is a 2 byte varint and the record
5912         ** fits entirely on the main b-tree page.  */
5913         testcase( pCell+nCell+2==pPage->aDataEnd );
5914         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5915       }else{
5916         /* The record flows over onto one or more overflow pages. In
5917         ** this case the whole cell needs to be parsed, a buffer allocated
5918         ** and accessPayload() used to retrieve the record into the
5919         ** buffer before VdbeRecordCompare() can be called.
5920         **
5921         ** If the record is corrupt, the xRecordCompare routine may read
5922         ** up to two varints past the end of the buffer. An extra 18
5923         ** bytes of padding is allocated at the end of the buffer in
5924         ** case this happens.  */
5925         void *pCellKey;
5926         u8 * const pCellBody = pCell - pPage->childPtrSize;
5927         const int nOverrun = 18;  /* Size of the overrun padding */
5928         pPage->xParseCell(pPage, pCellBody, &pCur->info);
5929         nCell = (int)pCur->info.nKey;
5930         testcase( nCell<0 );   /* True if key size is 2^32 or more */
5931         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5932         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5933         testcase( nCell==2 );  /* Minimum legal index key size */
5934         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5935           rc = SQLITE_CORRUPT_PAGE(pPage);
5936           goto moveto_index_finish;
5937         }
5938         pCellKey = sqlite3Malloc( nCell+nOverrun );
5939         if( pCellKey==0 ){
5940           rc = SQLITE_NOMEM_BKPT;
5941           goto moveto_index_finish;
5942         }
5943         pCur->ix = (u16)idx;
5944         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5945         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5946         pCur->curFlags &= ~BTCF_ValidOvfl;
5947         if( rc ){
5948           sqlite3_free(pCellKey);
5949           goto moveto_index_finish;
5950         }
5951         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5952         sqlite3_free(pCellKey);
5953       }
5954       assert(
5955           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5956        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5957       );
5958       if( c<0 ){
5959         lwr = idx+1;
5960       }else if( c>0 ){
5961         upr = idx-1;
5962       }else{
5963         assert( c==0 );
5964         *pRes = 0;
5965         rc = SQLITE_OK;
5966         pCur->ix = (u16)idx;
5967         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5968         goto moveto_index_finish;
5969       }
5970       if( lwr>upr ) break;
5971       assert( lwr+upr>=0 );
5972       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5973     }
5974     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5975     assert( pPage->isInit );
5976     if( pPage->leaf ){
5977       assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5978       pCur->ix = (u16)idx;
5979       *pRes = c;
5980       rc = SQLITE_OK;
5981       goto moveto_index_finish;
5982     }
5983     if( lwr>=pPage->nCell ){
5984       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5985     }else{
5986       chldPg = get4byte(findCell(pPage, lwr));
5987     }
5988     pCur->ix = (u16)lwr;
5989     rc = moveToChild(pCur, chldPg);
5990     if( rc ) break;
5991   }
5992 moveto_index_finish:
5993   pCur->info.nSize = 0;
5994   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5995   return rc;
5996 }
5997 
5998 
5999 /*
6000 ** Return TRUE if the cursor is not pointing at an entry of the table.
6001 **
6002 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6003 ** past the last entry in the table or sqlite3BtreePrev() moves past
6004 ** the first entry.  TRUE is also returned if the table is empty.
6005 */
sqlite3BtreeEof(BtCursor * pCur)6006 int sqlite3BtreeEof(BtCursor *pCur){
6007   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6008   ** have been deleted? This API will need to change to return an error code
6009   ** as well as the boolean result value.
6010   */
6011   return (CURSOR_VALID!=pCur->eState);
6012 }
6013 
6014 /*
6015 ** Return an estimate for the number of rows in the table that pCur is
6016 ** pointing to.  Return a negative number if no estimate is currently
6017 ** available.
6018 */
sqlite3BtreeRowCountEst(BtCursor * pCur)6019 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6020   i64 n;
6021   u8 i;
6022 
6023   assert( cursorOwnsBtShared(pCur) );
6024   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
6025 
6026   /* Currently this interface is only called by the OP_IfSmaller
6027   ** opcode, and it that case the cursor will always be valid and
6028   ** will always point to a leaf node. */
6029   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
6030   if( NEVER(pCur->pPage->leaf==0) ) return -1;
6031 
6032   n = pCur->pPage->nCell;
6033   for(i=0; i<pCur->iPage; i++){
6034     n *= pCur->apPage[i]->nCell;
6035   }
6036   return n;
6037 }
6038 
6039 /*
6040 ** Advance the cursor to the next entry in the database.
6041 ** Return value:
6042 **
6043 **    SQLITE_OK        success
6044 **    SQLITE_DONE      cursor is already pointing at the last element
6045 **    otherwise        some kind of error occurred
6046 **
6047 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
6048 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6049 ** to the next cell on the current page.  The (slower) btreeNext() helper
6050 ** routine is called when it is necessary to move to a different page or
6051 ** to restore the cursor.
6052 **
6053 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6054 ** cursor corresponds to an SQL index and this routine could have been
6055 ** skipped if the SQL index had been a unique index.  The F argument
6056 ** is a hint to the implement.  SQLite btree implementation does not use
6057 ** this hint, but COMDB2 does.
6058 */
btreeNext(BtCursor * pCur)6059 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
6060   int rc;
6061   int idx;
6062   MemPage *pPage;
6063 
6064   assert( cursorOwnsBtShared(pCur) );
6065   if( pCur->eState!=CURSOR_VALID ){
6066     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
6067     rc = restoreCursorPosition(pCur);
6068     if( rc!=SQLITE_OK ){
6069       return rc;
6070     }
6071     if( CURSOR_INVALID==pCur->eState ){
6072       return SQLITE_DONE;
6073     }
6074     if( pCur->eState==CURSOR_SKIPNEXT ){
6075       pCur->eState = CURSOR_VALID;
6076       if( pCur->skipNext>0 ) return SQLITE_OK;
6077     }
6078   }
6079 
6080   pPage = pCur->pPage;
6081   idx = ++pCur->ix;
6082   if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){
6083     return SQLITE_CORRUPT_BKPT;
6084   }
6085 
6086   if( idx>=pPage->nCell ){
6087     if( !pPage->leaf ){
6088       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
6089       if( rc ) return rc;
6090       return moveToLeftmost(pCur);
6091     }
6092     do{
6093       if( pCur->iPage==0 ){
6094         pCur->eState = CURSOR_INVALID;
6095         return SQLITE_DONE;
6096       }
6097       moveToParent(pCur);
6098       pPage = pCur->pPage;
6099     }while( pCur->ix>=pPage->nCell );
6100     if( pPage->intKey ){
6101       return sqlite3BtreeNext(pCur, 0);
6102     }else{
6103       return SQLITE_OK;
6104     }
6105   }
6106   if( pPage->leaf ){
6107     return SQLITE_OK;
6108   }else{
6109     return moveToLeftmost(pCur);
6110   }
6111 }
sqlite3BtreeNext(BtCursor * pCur,int flags)6112 int sqlite3BtreeNext(BtCursor *pCur, int flags){
6113   MemPage *pPage;
6114   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6115   assert( cursorOwnsBtShared(pCur) );
6116   assert( flags==0 || flags==1 );
6117   pCur->info.nSize = 0;
6118   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
6119   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
6120   pPage = pCur->pPage;
6121   if( (++pCur->ix)>=pPage->nCell ){
6122     pCur->ix--;
6123     return btreeNext(pCur);
6124   }
6125   if( pPage->leaf ){
6126     return SQLITE_OK;
6127   }else{
6128     return moveToLeftmost(pCur);
6129   }
6130 }
6131 
6132 /*
6133 ** Step the cursor to the back to the previous entry in the database.
6134 ** Return values:
6135 **
6136 **     SQLITE_OK     success
6137 **     SQLITE_DONE   the cursor is already on the first element of the table
6138 **     otherwise     some kind of error occurred
6139 **
6140 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
6141 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6142 ** to the previous cell on the current page.  The (slower) btreePrevious()
6143 ** helper routine is called when it is necessary to move to a different page
6144 ** or to restore the cursor.
6145 **
6146 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6147 ** the cursor corresponds to an SQL index and this routine could have been
6148 ** skipped if the SQL index had been a unique index.  The F argument is a
6149 ** hint to the implement.  The native SQLite btree implementation does not
6150 ** use this hint, but COMDB2 does.
6151 */
btreePrevious(BtCursor * pCur)6152 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
6153   int rc;
6154   MemPage *pPage;
6155 
6156   assert( cursorOwnsBtShared(pCur) );
6157   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6158   assert( pCur->info.nSize==0 );
6159   if( pCur->eState!=CURSOR_VALID ){
6160     rc = restoreCursorPosition(pCur);
6161     if( rc!=SQLITE_OK ){
6162       return rc;
6163     }
6164     if( CURSOR_INVALID==pCur->eState ){
6165       return SQLITE_DONE;
6166     }
6167     if( CURSOR_SKIPNEXT==pCur->eState ){
6168       pCur->eState = CURSOR_VALID;
6169       if( pCur->skipNext<0 ) return SQLITE_OK;
6170     }
6171   }
6172 
6173   pPage = pCur->pPage;
6174   assert( pPage->isInit );
6175   if( !pPage->leaf ){
6176     int idx = pCur->ix;
6177     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6178     if( rc ) return rc;
6179     rc = moveToRightmost(pCur);
6180   }else{
6181     while( pCur->ix==0 ){
6182       if( pCur->iPage==0 ){
6183         pCur->eState = CURSOR_INVALID;
6184         return SQLITE_DONE;
6185       }
6186       moveToParent(pCur);
6187     }
6188     assert( pCur->info.nSize==0 );
6189     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6190 
6191     pCur->ix--;
6192     pPage = pCur->pPage;
6193     if( pPage->intKey && !pPage->leaf ){
6194       rc = sqlite3BtreePrevious(pCur, 0);
6195     }else{
6196       rc = SQLITE_OK;
6197     }
6198   }
6199   return rc;
6200 }
sqlite3BtreePrevious(BtCursor * pCur,int flags)6201 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6202   assert( cursorOwnsBtShared(pCur) );
6203   assert( flags==0 || flags==1 );
6204   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6205   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6206   pCur->info.nSize = 0;
6207   if( pCur->eState!=CURSOR_VALID
6208    || pCur->ix==0
6209    || pCur->pPage->leaf==0
6210   ){
6211     return btreePrevious(pCur);
6212   }
6213   pCur->ix--;
6214   return SQLITE_OK;
6215 }
6216 
6217 /*
6218 ** Allocate a new page from the database file.
6219 **
6220 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
6221 ** has already been called on the new page.)  The new page has also
6222 ** been referenced and the calling routine is responsible for calling
6223 ** sqlite3PagerUnref() on the new page when it is done.
6224 **
6225 ** SQLITE_OK is returned on success.  Any other return value indicates
6226 ** an error.  *ppPage is set to NULL in the event of an error.
6227 **
6228 ** If the "nearby" parameter is not 0, then an effort is made to
6229 ** locate a page close to the page number "nearby".  This can be used in an
6230 ** attempt to keep related pages close to each other in the database file,
6231 ** which in turn can make database access faster.
6232 **
6233 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6234 ** anywhere on the free-list, then it is guaranteed to be returned.  If
6235 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6236 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
6237 ** are no restrictions on which page is returned.
6238 */
allocateBtreePage(BtShared * pBt,MemPage ** ppPage,Pgno * pPgno,Pgno nearby,u8 eMode)6239 static int allocateBtreePage(
6240   BtShared *pBt,         /* The btree */
6241   MemPage **ppPage,      /* Store pointer to the allocated page here */
6242   Pgno *pPgno,           /* Store the page number here */
6243   Pgno nearby,           /* Search for a page near this one */
6244   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6245 ){
6246   MemPage *pPage1;
6247   int rc;
6248   u32 n;     /* Number of pages on the freelist */
6249   u32 k;     /* Number of leaves on the trunk of the freelist */
6250   MemPage *pTrunk = 0;
6251   MemPage *pPrevTrunk = 0;
6252   Pgno mxPage;     /* Total size of the database file */
6253 
6254   assert( sqlite3_mutex_held(pBt->mutex) );
6255   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6256   pPage1 = pBt->pPage1;
6257   mxPage = btreePagecount(pBt);
6258   /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
6259   ** stores the total number of pages on the freelist. */
6260   n = get4byte(&pPage1->aData[36]);
6261   testcase( n==mxPage-1 );
6262   if( n>=mxPage ){
6263     return SQLITE_CORRUPT_BKPT;
6264   }
6265   if( n>0 ){
6266     /* There are pages on the freelist.  Reuse one of those pages. */
6267     Pgno iTrunk;
6268     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6269     u32 nSearch = 0;   /* Count of the number of search attempts */
6270 
6271     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6272     ** shows that the page 'nearby' is somewhere on the free-list, then
6273     ** the entire-list will be searched for that page.
6274     */
6275 #ifndef SQLITE_OMIT_AUTOVACUUM
6276     if( eMode==BTALLOC_EXACT ){
6277       if( nearby<=mxPage ){
6278         u8 eType;
6279         assert( nearby>0 );
6280         assert( pBt->autoVacuum );
6281         rc = ptrmapGet(pBt, nearby, &eType, 0);
6282         if( rc ) return rc;
6283         if( eType==PTRMAP_FREEPAGE ){
6284           searchList = 1;
6285         }
6286       }
6287     }else if( eMode==BTALLOC_LE ){
6288       searchList = 1;
6289     }
6290 #endif
6291 
6292     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6293     ** first free-list trunk page. iPrevTrunk is initially 1.
6294     */
6295     rc = sqlite3PagerWrite(pPage1->pDbPage);
6296     if( rc ) return rc;
6297     put4byte(&pPage1->aData[36], n-1);
6298 
6299     /* The code within this loop is run only once if the 'searchList' variable
6300     ** is not true. Otherwise, it runs once for each trunk-page on the
6301     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6302     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6303     */
6304     do {
6305       pPrevTrunk = pTrunk;
6306       if( pPrevTrunk ){
6307         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6308         ** is the page number of the next freelist trunk page in the list or
6309         ** zero if this is the last freelist trunk page. */
6310         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6311       }else{
6312         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6313         ** stores the page number of the first page of the freelist, or zero if
6314         ** the freelist is empty. */
6315         iTrunk = get4byte(&pPage1->aData[32]);
6316       }
6317       testcase( iTrunk==mxPage );
6318       if( iTrunk>mxPage || nSearch++ > n ){
6319         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6320       }else{
6321         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6322       }
6323       if( rc ){
6324         pTrunk = 0;
6325         goto end_allocate_page;
6326       }
6327       assert( pTrunk!=0 );
6328       assert( pTrunk->aData!=0 );
6329       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6330       ** is the number of leaf page pointers to follow. */
6331       k = get4byte(&pTrunk->aData[4]);
6332       if( k==0 && !searchList ){
6333         /* The trunk has no leaves and the list is not being searched.
6334         ** So extract the trunk page itself and use it as the newly
6335         ** allocated page */
6336         assert( pPrevTrunk==0 );
6337         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6338         if( rc ){
6339           goto end_allocate_page;
6340         }
6341         *pPgno = iTrunk;
6342         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6343         *ppPage = pTrunk;
6344         pTrunk = 0;
6345         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6346       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6347         /* Value of k is out of range.  Database corruption */
6348         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6349         goto end_allocate_page;
6350 #ifndef SQLITE_OMIT_AUTOVACUUM
6351       }else if( searchList
6352             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6353       ){
6354         /* The list is being searched and this trunk page is the page
6355         ** to allocate, regardless of whether it has leaves.
6356         */
6357         *pPgno = iTrunk;
6358         *ppPage = pTrunk;
6359         searchList = 0;
6360         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6361         if( rc ){
6362           goto end_allocate_page;
6363         }
6364         if( k==0 ){
6365           if( !pPrevTrunk ){
6366             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6367           }else{
6368             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6369             if( rc!=SQLITE_OK ){
6370               goto end_allocate_page;
6371             }
6372             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6373           }
6374         }else{
6375           /* The trunk page is required by the caller but it contains
6376           ** pointers to free-list leaves. The first leaf becomes a trunk
6377           ** page in this case.
6378           */
6379           MemPage *pNewTrunk;
6380           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6381           if( iNewTrunk>mxPage ){
6382             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6383             goto end_allocate_page;
6384           }
6385           testcase( iNewTrunk==mxPage );
6386           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6387           if( rc!=SQLITE_OK ){
6388             goto end_allocate_page;
6389           }
6390           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6391           if( rc!=SQLITE_OK ){
6392             releasePage(pNewTrunk);
6393             goto end_allocate_page;
6394           }
6395           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6396           put4byte(&pNewTrunk->aData[4], k-1);
6397           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6398           releasePage(pNewTrunk);
6399           if( !pPrevTrunk ){
6400             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6401             put4byte(&pPage1->aData[32], iNewTrunk);
6402           }else{
6403             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6404             if( rc ){
6405               goto end_allocate_page;
6406             }
6407             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6408           }
6409         }
6410         pTrunk = 0;
6411         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6412 #endif
6413       }else if( k>0 ){
6414         /* Extract a leaf from the trunk */
6415         u32 closest;
6416         Pgno iPage;
6417         unsigned char *aData = pTrunk->aData;
6418         if( nearby>0 ){
6419           u32 i;
6420           closest = 0;
6421           if( eMode==BTALLOC_LE ){
6422             for(i=0; i<k; i++){
6423               iPage = get4byte(&aData[8+i*4]);
6424               if( iPage<=nearby ){
6425                 closest = i;
6426                 break;
6427               }
6428             }
6429           }else{
6430             int dist;
6431             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6432             for(i=1; i<k; i++){
6433               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6434               if( d2<dist ){
6435                 closest = i;
6436                 dist = d2;
6437               }
6438             }
6439           }
6440         }else{
6441           closest = 0;
6442         }
6443 
6444         iPage = get4byte(&aData[8+closest*4]);
6445         testcase( iPage==mxPage );
6446         if( iPage>mxPage || iPage<2 ){
6447           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6448           goto end_allocate_page;
6449         }
6450         testcase( iPage==mxPage );
6451         if( !searchList
6452          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6453         ){
6454           int noContent;
6455           *pPgno = iPage;
6456           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6457                  ": %d more free pages\n",
6458                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6459           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6460           if( rc ) goto end_allocate_page;
6461           if( closest<k-1 ){
6462             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6463           }
6464           put4byte(&aData[4], k-1);
6465           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6466           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6467           if( rc==SQLITE_OK ){
6468             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6469             if( rc!=SQLITE_OK ){
6470               releasePage(*ppPage);
6471               *ppPage = 0;
6472             }
6473           }
6474           searchList = 0;
6475         }
6476       }
6477       releasePage(pPrevTrunk);
6478       pPrevTrunk = 0;
6479     }while( searchList );
6480   }else{
6481     /* There are no pages on the freelist, so append a new page to the
6482     ** database image.
6483     **
6484     ** Normally, new pages allocated by this block can be requested from the
6485     ** pager layer with the 'no-content' flag set. This prevents the pager
6486     ** from trying to read the pages content from disk. However, if the
6487     ** current transaction has already run one or more incremental-vacuum
6488     ** steps, then the page we are about to allocate may contain content
6489     ** that is required in the event of a rollback. In this case, do
6490     ** not set the no-content flag. This causes the pager to load and journal
6491     ** the current page content before overwriting it.
6492     **
6493     ** Note that the pager will not actually attempt to load or journal
6494     ** content for any page that really does lie past the end of the database
6495     ** file on disk. So the effects of disabling the no-content optimization
6496     ** here are confined to those pages that lie between the end of the
6497     ** database image and the end of the database file.
6498     */
6499     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6500 
6501     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6502     if( rc ) return rc;
6503     pBt->nPage++;
6504     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6505 
6506 #ifndef SQLITE_OMIT_AUTOVACUUM
6507     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6508       /* If *pPgno refers to a pointer-map page, allocate two new pages
6509       ** at the end of the file instead of one. The first allocated page
6510       ** becomes a new pointer-map page, the second is used by the caller.
6511       */
6512       MemPage *pPg = 0;
6513       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6514       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6515       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6516       if( rc==SQLITE_OK ){
6517         rc = sqlite3PagerWrite(pPg->pDbPage);
6518         releasePage(pPg);
6519       }
6520       if( rc ) return rc;
6521       pBt->nPage++;
6522       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6523     }
6524 #endif
6525     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6526     *pPgno = pBt->nPage;
6527 
6528     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6529     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6530     if( rc ) return rc;
6531     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6532     if( rc!=SQLITE_OK ){
6533       releasePage(*ppPage);
6534       *ppPage = 0;
6535     }
6536     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6537   }
6538 
6539   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6540 
6541 end_allocate_page:
6542   releasePage(pTrunk);
6543   releasePage(pPrevTrunk);
6544   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6545   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6546   return rc;
6547 }
6548 
6549 /*
6550 ** This function is used to add page iPage to the database file free-list.
6551 ** It is assumed that the page is not already a part of the free-list.
6552 **
6553 ** The value passed as the second argument to this function is optional.
6554 ** If the caller happens to have a pointer to the MemPage object
6555 ** corresponding to page iPage handy, it may pass it as the second value.
6556 ** Otherwise, it may pass NULL.
6557 **
6558 ** If a pointer to a MemPage object is passed as the second argument,
6559 ** its reference count is not altered by this function.
6560 */
freePage2(BtShared * pBt,MemPage * pMemPage,Pgno iPage)6561 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6562   MemPage *pTrunk = 0;                /* Free-list trunk page */
6563   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6564   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6565   MemPage *pPage;                     /* Page being freed. May be NULL. */
6566   int rc;                             /* Return Code */
6567   u32 nFree;                          /* Initial number of pages on free-list */
6568 
6569   assert( sqlite3_mutex_held(pBt->mutex) );
6570   assert( CORRUPT_DB || iPage>1 );
6571   assert( !pMemPage || pMemPage->pgno==iPage );
6572 
6573   if( iPage<2 || iPage>pBt->nPage ){
6574     return SQLITE_CORRUPT_BKPT;
6575   }
6576   if( pMemPage ){
6577     pPage = pMemPage;
6578     sqlite3PagerRef(pPage->pDbPage);
6579   }else{
6580     pPage = btreePageLookup(pBt, iPage);
6581   }
6582 
6583   /* Increment the free page count on pPage1 */
6584   rc = sqlite3PagerWrite(pPage1->pDbPage);
6585   if( rc ) goto freepage_out;
6586   nFree = get4byte(&pPage1->aData[36]);
6587   put4byte(&pPage1->aData[36], nFree+1);
6588 
6589   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6590     /* If the secure_delete option is enabled, then
6591     ** always fully overwrite deleted information with zeros.
6592     */
6593     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6594      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6595     ){
6596       goto freepage_out;
6597     }
6598     memset(pPage->aData, 0, pPage->pBt->pageSize);
6599   }
6600 
6601   /* If the database supports auto-vacuum, write an entry in the pointer-map
6602   ** to indicate that the page is free.
6603   */
6604   if( ISAUTOVACUUM ){
6605     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6606     if( rc ) goto freepage_out;
6607   }
6608 
6609   /* Now manipulate the actual database free-list structure. There are two
6610   ** possibilities. If the free-list is currently empty, or if the first
6611   ** trunk page in the free-list is full, then this page will become a
6612   ** new free-list trunk page. Otherwise, it will become a leaf of the
6613   ** first trunk page in the current free-list. This block tests if it
6614   ** is possible to add the page as a new free-list leaf.
6615   */
6616   if( nFree!=0 ){
6617     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6618 
6619     iTrunk = get4byte(&pPage1->aData[32]);
6620     if( iTrunk>btreePagecount(pBt) ){
6621       rc = SQLITE_CORRUPT_BKPT;
6622       goto freepage_out;
6623     }
6624     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6625     if( rc!=SQLITE_OK ){
6626       goto freepage_out;
6627     }
6628 
6629     nLeaf = get4byte(&pTrunk->aData[4]);
6630     assert( pBt->usableSize>32 );
6631     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6632       rc = SQLITE_CORRUPT_BKPT;
6633       goto freepage_out;
6634     }
6635     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6636       /* In this case there is room on the trunk page to insert the page
6637       ** being freed as a new leaf.
6638       **
6639       ** Note that the trunk page is not really full until it contains
6640       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6641       ** coded.  But due to a coding error in versions of SQLite prior to
6642       ** 3.6.0, databases with freelist trunk pages holding more than
6643       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6644       ** to maintain backwards compatibility with older versions of SQLite,
6645       ** we will continue to restrict the number of entries to usableSize/4 - 8
6646       ** for now.  At some point in the future (once everyone has upgraded
6647       ** to 3.6.0 or later) we should consider fixing the conditional above
6648       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6649       **
6650       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6651       ** avoid using the last six entries in the freelist trunk page array in
6652       ** order that database files created by newer versions of SQLite can be
6653       ** read by older versions of SQLite.
6654       */
6655       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6656       if( rc==SQLITE_OK ){
6657         put4byte(&pTrunk->aData[4], nLeaf+1);
6658         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6659         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6660           sqlite3PagerDontWrite(pPage->pDbPage);
6661         }
6662         rc = btreeSetHasContent(pBt, iPage);
6663       }
6664       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6665       goto freepage_out;
6666     }
6667   }
6668 
6669   /* If control flows to this point, then it was not possible to add the
6670   ** the page being freed as a leaf page of the first trunk in the free-list.
6671   ** Possibly because the free-list is empty, or possibly because the
6672   ** first trunk in the free-list is full. Either way, the page being freed
6673   ** will become the new first trunk page in the free-list.
6674   */
6675   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6676     goto freepage_out;
6677   }
6678   rc = sqlite3PagerWrite(pPage->pDbPage);
6679   if( rc!=SQLITE_OK ){
6680     goto freepage_out;
6681   }
6682   put4byte(pPage->aData, iTrunk);
6683   put4byte(&pPage->aData[4], 0);
6684   put4byte(&pPage1->aData[32], iPage);
6685   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6686 
6687 freepage_out:
6688   if( pPage ){
6689     pPage->isInit = 0;
6690   }
6691   releasePage(pPage);
6692   releasePage(pTrunk);
6693   return rc;
6694 }
freePage(MemPage * pPage,int * pRC)6695 static void freePage(MemPage *pPage, int *pRC){
6696   if( (*pRC)==SQLITE_OK ){
6697     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6698   }
6699 }
6700 
6701 /*
6702 ** Free the overflow pages associated with the given Cell.
6703 */
clearCellOverflow(MemPage * pPage,unsigned char * pCell,CellInfo * pInfo)6704 static SQLITE_NOINLINE int clearCellOverflow(
6705   MemPage *pPage,          /* The page that contains the Cell */
6706   unsigned char *pCell,    /* First byte of the Cell */
6707   CellInfo *pInfo          /* Size information about the cell */
6708 ){
6709   BtShared *pBt;
6710   Pgno ovflPgno;
6711   int rc;
6712   int nOvfl;
6713   u32 ovflPageSize;
6714 
6715   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6716   assert( pInfo->nLocal!=pInfo->nPayload );
6717   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6718   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6719   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6720     /* Cell extends past end of page */
6721     return SQLITE_CORRUPT_PAGE(pPage);
6722   }
6723   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6724   pBt = pPage->pBt;
6725   assert( pBt->usableSize > 4 );
6726   ovflPageSize = pBt->usableSize - 4;
6727   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6728   assert( nOvfl>0 ||
6729     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6730   );
6731   while( nOvfl-- ){
6732     Pgno iNext = 0;
6733     MemPage *pOvfl = 0;
6734     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6735       /* 0 is not a legal page number and page 1 cannot be an
6736       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6737       ** file the database must be corrupt. */
6738       return SQLITE_CORRUPT_BKPT;
6739     }
6740     if( nOvfl ){
6741       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6742       if( rc ) return rc;
6743     }
6744 
6745     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6746      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6747     ){
6748       /* There is no reason any cursor should have an outstanding reference
6749       ** to an overflow page belonging to a cell that is being deleted/updated.
6750       ** So if there exists more than one reference to this page, then it
6751       ** must not really be an overflow page and the database must be corrupt.
6752       ** It is helpful to detect this before calling freePage2(), as
6753       ** freePage2() may zero the page contents if secure-delete mode is
6754       ** enabled. If this 'overflow' page happens to be a page that the
6755       ** caller is iterating through or using in some other way, this
6756       ** can be problematic.
6757       */
6758       rc = SQLITE_CORRUPT_BKPT;
6759     }else{
6760       rc = freePage2(pBt, pOvfl, ovflPgno);
6761     }
6762 
6763     if( pOvfl ){
6764       sqlite3PagerUnref(pOvfl->pDbPage);
6765     }
6766     if( rc ) return rc;
6767     ovflPgno = iNext;
6768   }
6769   return SQLITE_OK;
6770 }
6771 
6772 /* Call xParseCell to compute the size of a cell.  If the cell contains
6773 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6774 ** STore the result code (SQLITE_OK or some error code) in rc.
6775 **
6776 ** Implemented as macro to force inlining for performance.
6777 */
6778 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6779   pPage->xParseCell(pPage, pCell, &sInfo);          \
6780   if( sInfo.nLocal!=sInfo.nPayload ){               \
6781     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6782   }else{                                            \
6783     rc = SQLITE_OK;                                 \
6784   }
6785 
6786 
6787 /*
6788 ** Create the byte sequence used to represent a cell on page pPage
6789 ** and write that byte sequence into pCell[].  Overflow pages are
6790 ** allocated and filled in as necessary.  The calling procedure
6791 ** is responsible for making sure sufficient space has been allocated
6792 ** for pCell[].
6793 **
6794 ** Note that pCell does not necessary need to point to the pPage->aData
6795 ** area.  pCell might point to some temporary storage.  The cell will
6796 ** be constructed in this temporary area then copied into pPage->aData
6797 ** later.
6798 */
fillInCell(MemPage * pPage,unsigned char * pCell,const BtreePayload * pX,int * pnSize)6799 static int fillInCell(
6800   MemPage *pPage,                /* The page that contains the cell */
6801   unsigned char *pCell,          /* Complete text of the cell */
6802   const BtreePayload *pX,        /* Payload with which to construct the cell */
6803   int *pnSize                    /* Write cell size here */
6804 ){
6805   int nPayload;
6806   const u8 *pSrc;
6807   int nSrc, n, rc, mn;
6808   int spaceLeft;
6809   MemPage *pToRelease;
6810   unsigned char *pPrior;
6811   unsigned char *pPayload;
6812   BtShared *pBt;
6813   Pgno pgnoOvfl;
6814   int nHeader;
6815 
6816   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6817 
6818   /* pPage is not necessarily writeable since pCell might be auxiliary
6819   ** buffer space that is separate from the pPage buffer area */
6820   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6821             || sqlite3PagerIswriteable(pPage->pDbPage) );
6822 
6823   /* Fill in the header. */
6824   nHeader = pPage->childPtrSize;
6825   if( pPage->intKey ){
6826     nPayload = pX->nData + pX->nZero;
6827     pSrc = pX->pData;
6828     nSrc = pX->nData;
6829     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6830     nHeader += putVarint32(&pCell[nHeader], nPayload);
6831     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6832   }else{
6833     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6834     nSrc = nPayload = (int)pX->nKey;
6835     pSrc = pX->pKey;
6836     nHeader += putVarint32(&pCell[nHeader], nPayload);
6837   }
6838 
6839   /* Fill in the payload */
6840   pPayload = &pCell[nHeader];
6841   if( nPayload<=pPage->maxLocal ){
6842     /* This is the common case where everything fits on the btree page
6843     ** and no overflow pages are required. */
6844     n = nHeader + nPayload;
6845     testcase( n==3 );
6846     testcase( n==4 );
6847     if( n<4 ) n = 4;
6848     *pnSize = n;
6849     assert( nSrc<=nPayload );
6850     testcase( nSrc<nPayload );
6851     memcpy(pPayload, pSrc, nSrc);
6852     memset(pPayload+nSrc, 0, nPayload-nSrc);
6853     return SQLITE_OK;
6854   }
6855 
6856   /* If we reach this point, it means that some of the content will need
6857   ** to spill onto overflow pages.
6858   */
6859   mn = pPage->minLocal;
6860   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6861   testcase( n==pPage->maxLocal );
6862   testcase( n==pPage->maxLocal+1 );
6863   if( n > pPage->maxLocal ) n = mn;
6864   spaceLeft = n;
6865   *pnSize = n + nHeader + 4;
6866   pPrior = &pCell[nHeader+n];
6867   pToRelease = 0;
6868   pgnoOvfl = 0;
6869   pBt = pPage->pBt;
6870 
6871   /* At this point variables should be set as follows:
6872   **
6873   **   nPayload           Total payload size in bytes
6874   **   pPayload           Begin writing payload here
6875   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6876   **                      that means content must spill into overflow pages.
6877   **   *pnSize            Size of the local cell (not counting overflow pages)
6878   **   pPrior             Where to write the pgno of the first overflow page
6879   **
6880   ** Use a call to btreeParseCellPtr() to verify that the values above
6881   ** were computed correctly.
6882   */
6883 #ifdef SQLITE_DEBUG
6884   {
6885     CellInfo info;
6886     pPage->xParseCell(pPage, pCell, &info);
6887     assert( nHeader==(int)(info.pPayload - pCell) );
6888     assert( info.nKey==pX->nKey );
6889     assert( *pnSize == info.nSize );
6890     assert( spaceLeft == info.nLocal );
6891   }
6892 #endif
6893 
6894   /* Write the payload into the local Cell and any extra into overflow pages */
6895   while( 1 ){
6896     n = nPayload;
6897     if( n>spaceLeft ) n = spaceLeft;
6898 
6899     /* If pToRelease is not zero than pPayload points into the data area
6900     ** of pToRelease.  Make sure pToRelease is still writeable. */
6901     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6902 
6903     /* If pPayload is part of the data area of pPage, then make sure pPage
6904     ** is still writeable */
6905     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6906             || sqlite3PagerIswriteable(pPage->pDbPage) );
6907 
6908     if( nSrc>=n ){
6909       memcpy(pPayload, pSrc, n);
6910     }else if( nSrc>0 ){
6911       n = nSrc;
6912       memcpy(pPayload, pSrc, n);
6913     }else{
6914       memset(pPayload, 0, n);
6915     }
6916     nPayload -= n;
6917     if( nPayload<=0 ) break;
6918     pPayload += n;
6919     pSrc += n;
6920     nSrc -= n;
6921     spaceLeft -= n;
6922     if( spaceLeft==0 ){
6923       MemPage *pOvfl = 0;
6924 #ifndef SQLITE_OMIT_AUTOVACUUM
6925       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6926       if( pBt->autoVacuum ){
6927         do{
6928           pgnoOvfl++;
6929         } while(
6930           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6931         );
6932       }
6933 #endif
6934       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6935 #ifndef SQLITE_OMIT_AUTOVACUUM
6936       /* If the database supports auto-vacuum, and the second or subsequent
6937       ** overflow page is being allocated, add an entry to the pointer-map
6938       ** for that page now.
6939       **
6940       ** If this is the first overflow page, then write a partial entry
6941       ** to the pointer-map. If we write nothing to this pointer-map slot,
6942       ** then the optimistic overflow chain processing in clearCell()
6943       ** may misinterpret the uninitialized values and delete the
6944       ** wrong pages from the database.
6945       */
6946       if( pBt->autoVacuum && rc==SQLITE_OK ){
6947         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6948         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6949         if( rc ){
6950           releasePage(pOvfl);
6951         }
6952       }
6953 #endif
6954       if( rc ){
6955         releasePage(pToRelease);
6956         return rc;
6957       }
6958 
6959       /* If pToRelease is not zero than pPrior points into the data area
6960       ** of pToRelease.  Make sure pToRelease is still writeable. */
6961       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6962 
6963       /* If pPrior is part of the data area of pPage, then make sure pPage
6964       ** is still writeable */
6965       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6966             || sqlite3PagerIswriteable(pPage->pDbPage) );
6967 
6968       put4byte(pPrior, pgnoOvfl);
6969       releasePage(pToRelease);
6970       pToRelease = pOvfl;
6971       pPrior = pOvfl->aData;
6972       put4byte(pPrior, 0);
6973       pPayload = &pOvfl->aData[4];
6974       spaceLeft = pBt->usableSize - 4;
6975     }
6976   }
6977   releasePage(pToRelease);
6978   return SQLITE_OK;
6979 }
6980 
6981 /*
6982 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6983 ** The cell content is not freed or deallocated.  It is assumed that
6984 ** the cell content has been copied someplace else.  This routine just
6985 ** removes the reference to the cell from pPage.
6986 **
6987 ** "sz" must be the number of bytes in the cell.
6988 */
dropCell(MemPage * pPage,int idx,int sz,int * pRC)6989 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6990   u32 pc;         /* Offset to cell content of cell being deleted */
6991   u8 *data;       /* pPage->aData */
6992   u8 *ptr;        /* Used to move bytes around within data[] */
6993   int rc;         /* The return code */
6994   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6995 
6996   if( *pRC ) return;
6997   assert( idx>=0 );
6998   assert( idx<pPage->nCell );
6999   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
7000   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7001   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7002   assert( pPage->nFree>=0 );
7003   data = pPage->aData;
7004   ptr = &pPage->aCellIdx[2*idx];
7005   assert( pPage->pBt->usableSize > (u32)(ptr-data) );
7006   pc = get2byte(ptr);
7007   hdr = pPage->hdrOffset;
7008   testcase( pc==(u32)get2byte(&data[hdr+5]) );
7009   testcase( pc+sz==pPage->pBt->usableSize );
7010   if( pc+sz > pPage->pBt->usableSize ){
7011     *pRC = SQLITE_CORRUPT_BKPT;
7012     return;
7013   }
7014   rc = freeSpace(pPage, pc, sz);
7015   if( rc ){
7016     *pRC = rc;
7017     return;
7018   }
7019   pPage->nCell--;
7020   if( pPage->nCell==0 ){
7021     memset(&data[hdr+1], 0, 4);
7022     data[hdr+7] = 0;
7023     put2byte(&data[hdr+5], pPage->pBt->usableSize);
7024     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7025                        - pPage->childPtrSize - 8;
7026   }else{
7027     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7028     put2byte(&data[hdr+3], pPage->nCell);
7029     pPage->nFree += 2;
7030   }
7031 }
7032 
7033 /*
7034 ** Insert a new cell on pPage at cell index "i".  pCell points to the
7035 ** content of the cell.
7036 **
7037 ** If the cell content will fit on the page, then put it there.  If it
7038 ** will not fit, then make a copy of the cell content into pTemp if
7039 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
7040 ** in pPage->apOvfl[] and make it point to the cell content (either
7041 ** in pTemp or the original pCell) and also record its index.
7042 ** Allocating a new entry in pPage->aCell[] implies that
7043 ** pPage->nOverflow is incremented.
7044 **
7045 ** *pRC must be SQLITE_OK when this routine is called.
7046 */
insertCell(MemPage * pPage,int i,u8 * pCell,int sz,u8 * pTemp,Pgno iChild,int * pRC)7047 static void insertCell(
7048   MemPage *pPage,   /* Page into which we are copying */
7049   int i,            /* New cell becomes the i-th cell of the page */
7050   u8 *pCell,        /* Content of the new cell */
7051   int sz,           /* Bytes of content in pCell */
7052   u8 *pTemp,        /* Temp storage space for pCell, if needed */
7053   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
7054   int *pRC          /* Read and write return code from here */
7055 ){
7056   int idx = 0;      /* Where to write new cell content in data[] */
7057   int j;            /* Loop counter */
7058   u8 *data;         /* The content of the whole page */
7059   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
7060 
7061   assert( *pRC==SQLITE_OK );
7062   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
7063   assert( MX_CELL(pPage->pBt)<=10921 );
7064   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
7065   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7066   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
7067   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7068   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
7069   assert( pPage->nFree>=0 );
7070   if( pPage->nOverflow || sz+2>pPage->nFree ){
7071     if( pTemp ){
7072       memcpy(pTemp, pCell, sz);
7073       pCell = pTemp;
7074     }
7075     if( iChild ){
7076       put4byte(pCell, iChild);
7077     }
7078     j = pPage->nOverflow++;
7079     /* Comparison against ArraySize-1 since we hold back one extra slot
7080     ** as a contingency.  In other words, never need more than 3 overflow
7081     ** slots but 4 are allocated, just to be safe. */
7082     assert( j < ArraySize(pPage->apOvfl)-1 );
7083     pPage->apOvfl[j] = pCell;
7084     pPage->aiOvfl[j] = (u16)i;
7085 
7086     /* When multiple overflows occur, they are always sequential and in
7087     ** sorted order.  This invariants arise because multiple overflows can
7088     ** only occur when inserting divider cells into the parent page during
7089     ** balancing, and the dividers are adjacent and sorted.
7090     */
7091     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7092     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
7093   }else{
7094     int rc = sqlite3PagerWrite(pPage->pDbPage);
7095     if( rc!=SQLITE_OK ){
7096       *pRC = rc;
7097       return;
7098     }
7099     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7100     data = pPage->aData;
7101     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
7102     rc = allocateSpace(pPage, sz, &idx);
7103     if( rc ){ *pRC = rc; return; }
7104     /* The allocateSpace() routine guarantees the following properties
7105     ** if it returns successfully */
7106     assert( idx >= 0 );
7107     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
7108     assert( idx+sz <= (int)pPage->pBt->usableSize );
7109     pPage->nFree -= (u16)(2 + sz);
7110     if( iChild ){
7111       /* In a corrupt database where an entry in the cell index section of
7112       ** a btree page has a value of 3 or less, the pCell value might point
7113       ** as many as 4 bytes in front of the start of the aData buffer for
7114       ** the source page.  Make sure this does not cause problems by not
7115       ** reading the first 4 bytes */
7116       memcpy(&data[idx+4], pCell+4, sz-4);
7117       put4byte(&data[idx], iChild);
7118     }else{
7119       memcpy(&data[idx], pCell, sz);
7120     }
7121     pIns = pPage->aCellIdx + i*2;
7122     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7123     put2byte(pIns, idx);
7124     pPage->nCell++;
7125     /* increment the cell count */
7126     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
7127     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
7128 #ifndef SQLITE_OMIT_AUTOVACUUM
7129     if( pPage->pBt->autoVacuum ){
7130       /* The cell may contain a pointer to an overflow page. If so, write
7131       ** the entry for the overflow page into the pointer map.
7132       */
7133       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
7134     }
7135 #endif
7136   }
7137 }
7138 
7139 /*
7140 ** The following parameters determine how many adjacent pages get involved
7141 ** in a balancing operation.  NN is the number of neighbors on either side
7142 ** of the page that participate in the balancing operation.  NB is the
7143 ** total number of pages that participate, including the target page and
7144 ** NN neighbors on either side.
7145 **
7146 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
7147 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7148 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7149 ** The value of NN appears to give the best results overall.
7150 **
7151 ** (Later:) The description above makes it seem as if these values are
7152 ** tunable - as if you could change them and recompile and it would all work.
7153 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
7154 ** we have never tested any other value.
7155 */
7156 #define NN 1             /* Number of neighbors on either side of pPage */
7157 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
7158 
7159 /*
7160 ** A CellArray object contains a cache of pointers and sizes for a
7161 ** consecutive sequence of cells that might be held on multiple pages.
7162 **
7163 ** The cells in this array are the divider cell or cells from the pParent
7164 ** page plus up to three child pages.  There are a total of nCell cells.
7165 **
7166 ** pRef is a pointer to one of the pages that contributes cells.  This is
7167 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7168 ** which should be common to all pages that contribute cells to this array.
7169 **
7170 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7171 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
7172 ** to overflow cells.  In other words, some apCel[] pointers might not point
7173 ** to content area of the pages.
7174 **
7175 ** A szCell[] of zero means the size of that cell has not yet been computed.
7176 **
7177 ** The cells come from as many as four different pages:
7178 **
7179 **             -----------
7180 **             | Parent  |
7181 **             -----------
7182 **            /     |     \
7183 **           /      |      \
7184 **  ---------   ---------   ---------
7185 **  |Child-1|   |Child-2|   |Child-3|
7186 **  ---------   ---------   ---------
7187 **
7188 ** The order of cells is in the array is for an index btree is:
7189 **
7190 **       1.  All cells from Child-1 in order
7191 **       2.  The first divider cell from Parent
7192 **       3.  All cells from Child-2 in order
7193 **       4.  The second divider cell from Parent
7194 **       5.  All cells from Child-3 in order
7195 **
7196 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7197 ** content exists only in leaves and there are no divider cells.
7198 **
7199 ** For an index btree, the apEnd[] array holds pointer to the end of page
7200 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7201 ** respectively. The ixNx[] array holds the number of cells contained in
7202 ** each of these 5 stages, and all stages to the left.  Hence:
7203 **
7204 **    ixNx[0] = Number of cells in Child-1.
7205 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7206 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7207 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7208 **    ixNx[4] = Total number of cells.
7209 **
7210 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7211 ** are used and they point to the leaf pages only, and the ixNx value are:
7212 **
7213 **    ixNx[0] = Number of cells in Child-1.
7214 **    ixNx[1] = Number of cells in Child-1 and Child-2.
7215 **    ixNx[2] = Total number of cells.
7216 **
7217 ** Sometimes when deleting, a child page can have zero cells.  In those
7218 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7219 ** entries, shift down.  The end result is that each ixNx[] entry should
7220 ** be larger than the previous
7221 */
7222 typedef struct CellArray CellArray;
7223 struct CellArray {
7224   int nCell;              /* Number of cells in apCell[] */
7225   MemPage *pRef;          /* Reference page */
7226   u8 **apCell;            /* All cells begin balanced */
7227   u16 *szCell;            /* Local size of all cells in apCell[] */
7228   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
7229   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
7230 };
7231 
7232 /*
7233 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7234 ** computed.
7235 */
populateCellCache(CellArray * p,int idx,int N)7236 static void populateCellCache(CellArray *p, int idx, int N){
7237   assert( idx>=0 && idx+N<=p->nCell );
7238   while( N>0 ){
7239     assert( p->apCell[idx]!=0 );
7240     if( p->szCell[idx]==0 ){
7241       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7242     }else{
7243       assert( CORRUPT_DB ||
7244               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7245     }
7246     idx++;
7247     N--;
7248   }
7249 }
7250 
7251 /*
7252 ** Return the size of the Nth element of the cell array
7253 */
computeCellSize(CellArray * p,int N)7254 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7255   assert( N>=0 && N<p->nCell );
7256   assert( p->szCell[N]==0 );
7257   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7258   return p->szCell[N];
7259 }
cachedCellSize(CellArray * p,int N)7260 static u16 cachedCellSize(CellArray *p, int N){
7261   assert( N>=0 && N<p->nCell );
7262   if( p->szCell[N] ) return p->szCell[N];
7263   return computeCellSize(p, N);
7264 }
7265 
7266 /*
7267 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7268 ** szCell[] array contains the size in bytes of each cell. This function
7269 ** replaces the current contents of page pPg with the contents of the cell
7270 ** array.
7271 **
7272 ** Some of the cells in apCell[] may currently be stored in pPg. This
7273 ** function works around problems caused by this by making a copy of any
7274 ** such cells before overwriting the page data.
7275 **
7276 ** The MemPage.nFree field is invalidated by this function. It is the
7277 ** responsibility of the caller to set it correctly.
7278 */
rebuildPage(CellArray * pCArray,int iFirst,int nCell,MemPage * pPg)7279 static int rebuildPage(
7280   CellArray *pCArray,             /* Content to be added to page pPg */
7281   int iFirst,                     /* First cell in pCArray to use */
7282   int nCell,                      /* Final number of cells on page */
7283   MemPage *pPg                    /* The page to be reconstructed */
7284 ){
7285   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7286   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7287   const int usableSize = pPg->pBt->usableSize;
7288   u8 * const pEnd = &aData[usableSize];
7289   int i = iFirst;                 /* Which cell to copy from pCArray*/
7290   u32 j;                          /* Start of cell content area */
7291   int iEnd = i+nCell;             /* Loop terminator */
7292   u8 *pCellptr = pPg->aCellIdx;
7293   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7294   u8 *pData;
7295   int k;                          /* Current slot in pCArray->apEnd[] */
7296   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7297 
7298   assert( i<iEnd );
7299   j = get2byte(&aData[hdr+5]);
7300   if( j>(u32)usableSize ){ j = 0; }
7301   memcpy(&pTmp[j], &aData[j], usableSize - j);
7302 
7303   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7304   pSrcEnd = pCArray->apEnd[k];
7305 
7306   pData = pEnd;
7307   while( 1/*exit by break*/ ){
7308     u8 *pCell = pCArray->apCell[i];
7309     u16 sz = pCArray->szCell[i];
7310     assert( sz>0 );
7311     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7312       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7313       pCell = &pTmp[pCell - aData];
7314     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7315            && (uptr)(pCell)<(uptr)pSrcEnd
7316     ){
7317       return SQLITE_CORRUPT_BKPT;
7318     }
7319 
7320     pData -= sz;
7321     put2byte(pCellptr, (pData - aData));
7322     pCellptr += 2;
7323     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7324     memmove(pData, pCell, sz);
7325     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7326     i++;
7327     if( i>=iEnd ) break;
7328     if( pCArray->ixNx[k]<=i ){
7329       k++;
7330       pSrcEnd = pCArray->apEnd[k];
7331     }
7332   }
7333 
7334   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7335   pPg->nCell = nCell;
7336   pPg->nOverflow = 0;
7337 
7338   put2byte(&aData[hdr+1], 0);
7339   put2byte(&aData[hdr+3], pPg->nCell);
7340   put2byte(&aData[hdr+5], pData - aData);
7341   aData[hdr+7] = 0x00;
7342   return SQLITE_OK;
7343 }
7344 
7345 /*
7346 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7347 ** This function attempts to add the cells stored in the array to page pPg.
7348 ** If it cannot (because the page needs to be defragmented before the cells
7349 ** will fit), non-zero is returned. Otherwise, if the cells are added
7350 ** successfully, zero is returned.
7351 **
7352 ** Argument pCellptr points to the first entry in the cell-pointer array
7353 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7354 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7355 ** cell in the array. It is the responsibility of the caller to ensure
7356 ** that it is safe to overwrite this part of the cell-pointer array.
7357 **
7358 ** When this function is called, *ppData points to the start of the
7359 ** content area on page pPg. If the size of the content area is extended,
7360 ** *ppData is updated to point to the new start of the content area
7361 ** before returning.
7362 **
7363 ** Finally, argument pBegin points to the byte immediately following the
7364 ** end of the space required by this page for the cell-pointer area (for
7365 ** all cells - not just those inserted by the current call). If the content
7366 ** area must be extended to before this point in order to accomodate all
7367 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7368 */
pageInsertArray(MemPage * pPg,u8 * pBegin,u8 ** ppData,u8 * pCellptr,int iFirst,int nCell,CellArray * pCArray)7369 static int pageInsertArray(
7370   MemPage *pPg,                   /* Page to add cells to */
7371   u8 *pBegin,                     /* End of cell-pointer array */
7372   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7373   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7374   int iFirst,                     /* Index of first cell to add */
7375   int nCell,                      /* Number of cells to add to pPg */
7376   CellArray *pCArray              /* Array of cells */
7377 ){
7378   int i = iFirst;                 /* Loop counter - cell index to insert */
7379   u8 *aData = pPg->aData;         /* Complete page */
7380   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7381   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7382   int k;                          /* Current slot in pCArray->apEnd[] */
7383   u8 *pEnd;                       /* Maximum extent of cell data */
7384   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7385   if( iEnd<=iFirst ) return 0;
7386   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7387   pEnd = pCArray->apEnd[k];
7388   while( 1 /*Exit by break*/ ){
7389     int sz, rc;
7390     u8 *pSlot;
7391     assert( pCArray->szCell[i]!=0 );
7392     sz = pCArray->szCell[i];
7393     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7394       if( (pData - pBegin)<sz ) return 1;
7395       pData -= sz;
7396       pSlot = pData;
7397     }
7398     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7399     ** database.  But they might for a corrupt database.  Hence use memmove()
7400     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7401     assert( (pSlot+sz)<=pCArray->apCell[i]
7402          || pSlot>=(pCArray->apCell[i]+sz)
7403          || CORRUPT_DB );
7404     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7405      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7406     ){
7407       assert( CORRUPT_DB );
7408       (void)SQLITE_CORRUPT_BKPT;
7409       return 1;
7410     }
7411     memmove(pSlot, pCArray->apCell[i], sz);
7412     put2byte(pCellptr, (pSlot - aData));
7413     pCellptr += 2;
7414     i++;
7415     if( i>=iEnd ) break;
7416     if( pCArray->ixNx[k]<=i ){
7417       k++;
7418       pEnd = pCArray->apEnd[k];
7419     }
7420   }
7421   *ppData = pData;
7422   return 0;
7423 }
7424 
7425 /*
7426 ** The pCArray object contains pointers to b-tree cells and their sizes.
7427 **
7428 ** This function adds the space associated with each cell in the array
7429 ** that is currently stored within the body of pPg to the pPg free-list.
7430 ** The cell-pointers and other fields of the page are not updated.
7431 **
7432 ** This function returns the total number of cells added to the free-list.
7433 */
pageFreeArray(MemPage * pPg,int iFirst,int nCell,CellArray * pCArray)7434 static int pageFreeArray(
7435   MemPage *pPg,                   /* Page to edit */
7436   int iFirst,                     /* First cell to delete */
7437   int nCell,                      /* Cells to delete */
7438   CellArray *pCArray              /* Array of cells */
7439 ){
7440   u8 * const aData = pPg->aData;
7441   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7442   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7443   int nRet = 0;
7444   int i;
7445   int iEnd = iFirst + nCell;
7446   u8 *pFree = 0;
7447   int szFree = 0;
7448 
7449   for(i=iFirst; i<iEnd; i++){
7450     u8 *pCell = pCArray->apCell[i];
7451     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7452       int sz;
7453       /* No need to use cachedCellSize() here.  The sizes of all cells that
7454       ** are to be freed have already been computing while deciding which
7455       ** cells need freeing */
7456       sz = pCArray->szCell[i];  assert( sz>0 );
7457       if( pFree!=(pCell + sz) ){
7458         if( pFree ){
7459           assert( pFree>aData && (pFree - aData)<65536 );
7460           freeSpace(pPg, (u16)(pFree - aData), szFree);
7461         }
7462         pFree = pCell;
7463         szFree = sz;
7464         if( pFree+sz>pEnd ){
7465           return 0;
7466         }
7467       }else{
7468         pFree = pCell;
7469         szFree += sz;
7470       }
7471       nRet++;
7472     }
7473   }
7474   if( pFree ){
7475     assert( pFree>aData && (pFree - aData)<65536 );
7476     freeSpace(pPg, (u16)(pFree - aData), szFree);
7477   }
7478   return nRet;
7479 }
7480 
7481 /*
7482 ** pCArray contains pointers to and sizes of all cells in the page being
7483 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7484 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7485 ** starting at apCell[iNew].
7486 **
7487 ** This routine makes the necessary adjustments to pPg so that it contains
7488 ** the correct cells after being balanced.
7489 **
7490 ** The pPg->nFree field is invalid when this function returns. It is the
7491 ** responsibility of the caller to set it correctly.
7492 */
editPage(MemPage * pPg,int iOld,int iNew,int nNew,CellArray * pCArray)7493 static int editPage(
7494   MemPage *pPg,                   /* Edit this page */
7495   int iOld,                       /* Index of first cell currently on page */
7496   int iNew,                       /* Index of new first cell on page */
7497   int nNew,                       /* Final number of cells on page */
7498   CellArray *pCArray              /* Array of cells and sizes */
7499 ){
7500   u8 * const aData = pPg->aData;
7501   const int hdr = pPg->hdrOffset;
7502   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7503   int nCell = pPg->nCell;       /* Cells stored on pPg */
7504   u8 *pData;
7505   u8 *pCellptr;
7506   int i;
7507   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7508   int iNewEnd = iNew + nNew;
7509 
7510 #ifdef SQLITE_DEBUG
7511   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7512   memcpy(pTmp, aData, pPg->pBt->usableSize);
7513 #endif
7514 
7515   /* Remove cells from the start and end of the page */
7516   assert( nCell>=0 );
7517   if( iOld<iNew ){
7518     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7519     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7520     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7521     nCell -= nShift;
7522   }
7523   if( iNewEnd < iOldEnd ){
7524     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7525     assert( nCell>=nTail );
7526     nCell -= nTail;
7527   }
7528 
7529   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7530   if( pData<pBegin ) goto editpage_fail;
7531   if( pData>pPg->aDataEnd ) goto editpage_fail;
7532 
7533   /* Add cells to the start of the page */
7534   if( iNew<iOld ){
7535     int nAdd = MIN(nNew,iOld-iNew);
7536     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7537     assert( nAdd>=0 );
7538     pCellptr = pPg->aCellIdx;
7539     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7540     if( pageInsertArray(
7541           pPg, pBegin, &pData, pCellptr,
7542           iNew, nAdd, pCArray
7543     ) ) goto editpage_fail;
7544     nCell += nAdd;
7545   }
7546 
7547   /* Add any overflow cells */
7548   for(i=0; i<pPg->nOverflow; i++){
7549     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7550     if( iCell>=0 && iCell<nNew ){
7551       pCellptr = &pPg->aCellIdx[iCell * 2];
7552       if( nCell>iCell ){
7553         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7554       }
7555       nCell++;
7556       cachedCellSize(pCArray, iCell+iNew);
7557       if( pageInsertArray(
7558             pPg, pBegin, &pData, pCellptr,
7559             iCell+iNew, 1, pCArray
7560       ) ) goto editpage_fail;
7561     }
7562   }
7563 
7564   /* Append cells to the end of the page */
7565   assert( nCell>=0 );
7566   pCellptr = &pPg->aCellIdx[nCell*2];
7567   if( pageInsertArray(
7568         pPg, pBegin, &pData, pCellptr,
7569         iNew+nCell, nNew-nCell, pCArray
7570   ) ) goto editpage_fail;
7571 
7572   pPg->nCell = nNew;
7573   pPg->nOverflow = 0;
7574 
7575   put2byte(&aData[hdr+3], pPg->nCell);
7576   put2byte(&aData[hdr+5], pData - aData);
7577 
7578 #ifdef SQLITE_DEBUG
7579   for(i=0; i<nNew && !CORRUPT_DB; i++){
7580     u8 *pCell = pCArray->apCell[i+iNew];
7581     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7582     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7583       pCell = &pTmp[pCell - aData];
7584     }
7585     assert( 0==memcmp(pCell, &aData[iOff],
7586             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7587   }
7588 #endif
7589 
7590   return SQLITE_OK;
7591  editpage_fail:
7592   /* Unable to edit this page. Rebuild it from scratch instead. */
7593   populateCellCache(pCArray, iNew, nNew);
7594   return rebuildPage(pCArray, iNew, nNew, pPg);
7595 }
7596 
7597 
7598 #ifndef SQLITE_OMIT_QUICKBALANCE
7599 /*
7600 ** This version of balance() handles the common special case where
7601 ** a new entry is being inserted on the extreme right-end of the
7602 ** tree, in other words, when the new entry will become the largest
7603 ** entry in the tree.
7604 **
7605 ** Instead of trying to balance the 3 right-most leaf pages, just add
7606 ** a new page to the right-hand side and put the one new entry in
7607 ** that page.  This leaves the right side of the tree somewhat
7608 ** unbalanced.  But odds are that we will be inserting new entries
7609 ** at the end soon afterwards so the nearly empty page will quickly
7610 ** fill up.  On average.
7611 **
7612 ** pPage is the leaf page which is the right-most page in the tree.
7613 ** pParent is its parent.  pPage must have a single overflow entry
7614 ** which is also the right-most entry on the page.
7615 **
7616 ** The pSpace buffer is used to store a temporary copy of the divider
7617 ** cell that will be inserted into pParent. Such a cell consists of a 4
7618 ** byte page number followed by a variable length integer. In other
7619 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7620 ** least 13 bytes in size.
7621 */
balance_quick(MemPage * pParent,MemPage * pPage,u8 * pSpace)7622 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7623   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7624   MemPage *pNew;                       /* Newly allocated page */
7625   int rc;                              /* Return Code */
7626   Pgno pgnoNew;                        /* Page number of pNew */
7627 
7628   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7629   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7630   assert( pPage->nOverflow==1 );
7631 
7632   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7633   assert( pPage->nFree>=0 );
7634   assert( pParent->nFree>=0 );
7635 
7636   /* Allocate a new page. This page will become the right-sibling of
7637   ** pPage. Make the parent page writable, so that the new divider cell
7638   ** may be inserted. If both these operations are successful, proceed.
7639   */
7640   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7641 
7642   if( rc==SQLITE_OK ){
7643 
7644     u8 *pOut = &pSpace[4];
7645     u8 *pCell = pPage->apOvfl[0];
7646     u16 szCell = pPage->xCellSize(pPage, pCell);
7647     u8 *pStop;
7648     CellArray b;
7649 
7650     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7651     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7652     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7653     b.nCell = 1;
7654     b.pRef = pPage;
7655     b.apCell = &pCell;
7656     b.szCell = &szCell;
7657     b.apEnd[0] = pPage->aDataEnd;
7658     b.ixNx[0] = 2;
7659     rc = rebuildPage(&b, 0, 1, pNew);
7660     if( NEVER(rc) ){
7661       releasePage(pNew);
7662       return rc;
7663     }
7664     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7665 
7666     /* If this is an auto-vacuum database, update the pointer map
7667     ** with entries for the new page, and any pointer from the
7668     ** cell on the page to an overflow page. If either of these
7669     ** operations fails, the return code is set, but the contents
7670     ** of the parent page are still manipulated by thh code below.
7671     ** That is Ok, at this point the parent page is guaranteed to
7672     ** be marked as dirty. Returning an error code will cause a
7673     ** rollback, undoing any changes made to the parent page.
7674     */
7675     if( ISAUTOVACUUM ){
7676       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7677       if( szCell>pNew->minLocal ){
7678         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7679       }
7680     }
7681 
7682     /* Create a divider cell to insert into pParent. The divider cell
7683     ** consists of a 4-byte page number (the page number of pPage) and
7684     ** a variable length key value (which must be the same value as the
7685     ** largest key on pPage).
7686     **
7687     ** To find the largest key value on pPage, first find the right-most
7688     ** cell on pPage. The first two fields of this cell are the
7689     ** record-length (a variable length integer at most 32-bits in size)
7690     ** and the key value (a variable length integer, may have any value).
7691     ** The first of the while(...) loops below skips over the record-length
7692     ** field. The second while(...) loop copies the key value from the
7693     ** cell on pPage into the pSpace buffer.
7694     */
7695     pCell = findCell(pPage, pPage->nCell-1);
7696     pStop = &pCell[9];
7697     while( (*(pCell++)&0x80) && pCell<pStop );
7698     pStop = &pCell[9];
7699     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7700 
7701     /* Insert the new divider cell into pParent. */
7702     if( rc==SQLITE_OK ){
7703       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7704                    0, pPage->pgno, &rc);
7705     }
7706 
7707     /* Set the right-child pointer of pParent to point to the new page. */
7708     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7709 
7710     /* Release the reference to the new page. */
7711     releasePage(pNew);
7712   }
7713 
7714   return rc;
7715 }
7716 #endif /* SQLITE_OMIT_QUICKBALANCE */
7717 
7718 #if 0
7719 /*
7720 ** This function does not contribute anything to the operation of SQLite.
7721 ** it is sometimes activated temporarily while debugging code responsible
7722 ** for setting pointer-map entries.
7723 */
7724 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7725   int i, j;
7726   for(i=0; i<nPage; i++){
7727     Pgno n;
7728     u8 e;
7729     MemPage *pPage = apPage[i];
7730     BtShared *pBt = pPage->pBt;
7731     assert( pPage->isInit );
7732 
7733     for(j=0; j<pPage->nCell; j++){
7734       CellInfo info;
7735       u8 *z;
7736 
7737       z = findCell(pPage, j);
7738       pPage->xParseCell(pPage, z, &info);
7739       if( info.nLocal<info.nPayload ){
7740         Pgno ovfl = get4byte(&z[info.nSize-4]);
7741         ptrmapGet(pBt, ovfl, &e, &n);
7742         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7743       }
7744       if( !pPage->leaf ){
7745         Pgno child = get4byte(z);
7746         ptrmapGet(pBt, child, &e, &n);
7747         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7748       }
7749     }
7750     if( !pPage->leaf ){
7751       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7752       ptrmapGet(pBt, child, &e, &n);
7753       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7754     }
7755   }
7756   return 1;
7757 }
7758 #endif
7759 
7760 /*
7761 ** This function is used to copy the contents of the b-tree node stored
7762 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7763 ** the pointer-map entries for each child page are updated so that the
7764 ** parent page stored in the pointer map is page pTo. If pFrom contained
7765 ** any cells with overflow page pointers, then the corresponding pointer
7766 ** map entries are also updated so that the parent page is page pTo.
7767 **
7768 ** If pFrom is currently carrying any overflow cells (entries in the
7769 ** MemPage.apOvfl[] array), they are not copied to pTo.
7770 **
7771 ** Before returning, page pTo is reinitialized using btreeInitPage().
7772 **
7773 ** The performance of this function is not critical. It is only used by
7774 ** the balance_shallower() and balance_deeper() procedures, neither of
7775 ** which are called often under normal circumstances.
7776 */
copyNodeContent(MemPage * pFrom,MemPage * pTo,int * pRC)7777 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7778   if( (*pRC)==SQLITE_OK ){
7779     BtShared * const pBt = pFrom->pBt;
7780     u8 * const aFrom = pFrom->aData;
7781     u8 * const aTo = pTo->aData;
7782     int const iFromHdr = pFrom->hdrOffset;
7783     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7784     int rc;
7785     int iData;
7786 
7787 
7788     assert( pFrom->isInit );
7789     assert( pFrom->nFree>=iToHdr );
7790     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7791 
7792     /* Copy the b-tree node content from page pFrom to page pTo. */
7793     iData = get2byte(&aFrom[iFromHdr+5]);
7794     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7795     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7796 
7797     /* Reinitialize page pTo so that the contents of the MemPage structure
7798     ** match the new data. The initialization of pTo can actually fail under
7799     ** fairly obscure circumstances, even though it is a copy of initialized
7800     ** page pFrom.
7801     */
7802     pTo->isInit = 0;
7803     rc = btreeInitPage(pTo);
7804     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7805     if( rc!=SQLITE_OK ){
7806       *pRC = rc;
7807       return;
7808     }
7809 
7810     /* If this is an auto-vacuum database, update the pointer-map entries
7811     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7812     */
7813     if( ISAUTOVACUUM ){
7814       *pRC = setChildPtrmaps(pTo);
7815     }
7816   }
7817 }
7818 
7819 /*
7820 ** This routine redistributes cells on the iParentIdx'th child of pParent
7821 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7822 ** same amount of free space. Usually a single sibling on either side of the
7823 ** page are used in the balancing, though both siblings might come from one
7824 ** side if the page is the first or last child of its parent. If the page
7825 ** has fewer than 2 siblings (something which can only happen if the page
7826 ** is a root page or a child of a root page) then all available siblings
7827 ** participate in the balancing.
7828 **
7829 ** The number of siblings of the page might be increased or decreased by
7830 ** one or two in an effort to keep pages nearly full but not over full.
7831 **
7832 ** Note that when this routine is called, some of the cells on the page
7833 ** might not actually be stored in MemPage.aData[]. This can happen
7834 ** if the page is overfull. This routine ensures that all cells allocated
7835 ** to the page and its siblings fit into MemPage.aData[] before returning.
7836 **
7837 ** In the course of balancing the page and its siblings, cells may be
7838 ** inserted into or removed from the parent page (pParent). Doing so
7839 ** may cause the parent page to become overfull or underfull. If this
7840 ** happens, it is the responsibility of the caller to invoke the correct
7841 ** balancing routine to fix this problem (see the balance() routine).
7842 **
7843 ** If this routine fails for any reason, it might leave the database
7844 ** in a corrupted state. So if this routine fails, the database should
7845 ** be rolled back.
7846 **
7847 ** The third argument to this function, aOvflSpace, is a pointer to a
7848 ** buffer big enough to hold one page. If while inserting cells into the parent
7849 ** page (pParent) the parent page becomes overfull, this buffer is
7850 ** used to store the parent's overflow cells. Because this function inserts
7851 ** a maximum of four divider cells into the parent page, and the maximum
7852 ** size of a cell stored within an internal node is always less than 1/4
7853 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7854 ** enough for all overflow cells.
7855 **
7856 ** If aOvflSpace is set to a null pointer, this function returns
7857 ** SQLITE_NOMEM.
7858 */
balance_nonroot(MemPage * pParent,int iParentIdx,u8 * aOvflSpace,int isRoot,int bBulk)7859 static int balance_nonroot(
7860   MemPage *pParent,               /* Parent page of siblings being balanced */
7861   int iParentIdx,                 /* Index of "the page" in pParent */
7862   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7863   int isRoot,                     /* True if pParent is a root-page */
7864   int bBulk                       /* True if this call is part of a bulk load */
7865 ){
7866   BtShared *pBt;               /* The whole database */
7867   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7868   int nNew = 0;                /* Number of pages in apNew[] */
7869   int nOld;                    /* Number of pages in apOld[] */
7870   int i, j, k;                 /* Loop counters */
7871   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7872   int rc = SQLITE_OK;          /* The return code */
7873   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7874   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7875   int usableSpace;             /* Bytes in pPage beyond the header */
7876   int pageFlags;               /* Value of pPage->aData[0] */
7877   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7878   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7879   int szScratch;               /* Size of scratch memory requested */
7880   MemPage *apOld[NB];          /* pPage and up to two siblings */
7881   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7882   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7883   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7884   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7885   int cntOld[NB+2];            /* Old index in b.apCell[] */
7886   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7887   u8 *aSpace1;                 /* Space for copies of dividers cells */
7888   Pgno pgno;                   /* Temp var to store a page number in */
7889   u8 abDone[NB+2];             /* True after i'th new page is populated */
7890   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7891   CellArray b;                 /* Parsed information on cells being balanced */
7892 
7893   memset(abDone, 0, sizeof(abDone));
7894   memset(&b, 0, sizeof(b));
7895   pBt = pParent->pBt;
7896   assert( sqlite3_mutex_held(pBt->mutex) );
7897   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7898 
7899   /* At this point pParent may have at most one overflow cell. And if
7900   ** this overflow cell is present, it must be the cell with
7901   ** index iParentIdx. This scenario comes about when this function
7902   ** is called (indirectly) from sqlite3BtreeDelete().
7903   */
7904   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7905   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7906 
7907   if( !aOvflSpace ){
7908     return SQLITE_NOMEM_BKPT;
7909   }
7910   assert( pParent->nFree>=0 );
7911 
7912   /* Find the sibling pages to balance. Also locate the cells in pParent
7913   ** that divide the siblings. An attempt is made to find NN siblings on
7914   ** either side of pPage. More siblings are taken from one side, however,
7915   ** if there are fewer than NN siblings on the other side. If pParent
7916   ** has NB or fewer children then all children of pParent are taken.
7917   **
7918   ** This loop also drops the divider cells from the parent page. This
7919   ** way, the remainder of the function does not have to deal with any
7920   ** overflow cells in the parent page, since if any existed they will
7921   ** have already been removed.
7922   */
7923   i = pParent->nOverflow + pParent->nCell;
7924   if( i<2 ){
7925     nxDiv = 0;
7926   }else{
7927     assert( bBulk==0 || bBulk==1 );
7928     if( iParentIdx==0 ){
7929       nxDiv = 0;
7930     }else if( iParentIdx==i ){
7931       nxDiv = i-2+bBulk;
7932     }else{
7933       nxDiv = iParentIdx-1;
7934     }
7935     i = 2-bBulk;
7936   }
7937   nOld = i+1;
7938   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7939     pRight = &pParent->aData[pParent->hdrOffset+8];
7940   }else{
7941     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7942   }
7943   pgno = get4byte(pRight);
7944   while( 1 ){
7945     if( rc==SQLITE_OK ){
7946       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7947     }
7948     if( rc ){
7949       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7950       goto balance_cleanup;
7951     }
7952     if( apOld[i]->nFree<0 ){
7953       rc = btreeComputeFreeSpace(apOld[i]);
7954       if( rc ){
7955         memset(apOld, 0, (i)*sizeof(MemPage*));
7956         goto balance_cleanup;
7957       }
7958     }
7959     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7960     if( (i--)==0 ) break;
7961 
7962     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7963       apDiv[i] = pParent->apOvfl[0];
7964       pgno = get4byte(apDiv[i]);
7965       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7966       pParent->nOverflow = 0;
7967     }else{
7968       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7969       pgno = get4byte(apDiv[i]);
7970       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7971 
7972       /* Drop the cell from the parent page. apDiv[i] still points to
7973       ** the cell within the parent, even though it has been dropped.
7974       ** This is safe because dropping a cell only overwrites the first
7975       ** four bytes of it, and this function does not need the first
7976       ** four bytes of the divider cell. So the pointer is safe to use
7977       ** later on.
7978       **
7979       ** But not if we are in secure-delete mode. In secure-delete mode,
7980       ** the dropCell() routine will overwrite the entire cell with zeroes.
7981       ** In this case, temporarily copy the cell into the aOvflSpace[]
7982       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7983       ** is allocated.  */
7984       if( pBt->btsFlags & BTS_FAST_SECURE ){
7985         int iOff;
7986 
7987         /* If the following if() condition is not true, the db is corrupted.
7988         ** The call to dropCell() below will detect this.  */
7989         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7990         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7991           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7992           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7993         }
7994       }
7995       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7996     }
7997   }
7998 
7999   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8000   ** alignment */
8001   nMaxCells = (nMaxCells + 3)&~3;
8002 
8003   /*
8004   ** Allocate space for memory structures
8005   */
8006   szScratch =
8007        nMaxCells*sizeof(u8*)                       /* b.apCell */
8008      + nMaxCells*sizeof(u16)                       /* b.szCell */
8009      + pBt->pageSize;                              /* aSpace1 */
8010 
8011   assert( szScratch<=7*(int)pBt->pageSize );
8012   b.apCell = sqlite3StackAllocRaw(0, szScratch );
8013   if( b.apCell==0 ){
8014     rc = SQLITE_NOMEM_BKPT;
8015     goto balance_cleanup;
8016   }
8017   b.szCell = (u16*)&b.apCell[nMaxCells];
8018   aSpace1 = (u8*)&b.szCell[nMaxCells];
8019   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
8020 
8021   /*
8022   ** Load pointers to all cells on sibling pages and the divider cells
8023   ** into the local b.apCell[] array.  Make copies of the divider cells
8024   ** into space obtained from aSpace1[]. The divider cells have already
8025   ** been removed from pParent.
8026   **
8027   ** If the siblings are on leaf pages, then the child pointers of the
8028   ** divider cells are stripped from the cells before they are copied
8029   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
8030   ** child pointers.  If siblings are not leaves, then all cell in
8031   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
8032   ** are alike.
8033   **
8034   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
8035   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
8036   */
8037   b.pRef = apOld[0];
8038   leafCorrection = b.pRef->leaf*4;
8039   leafData = b.pRef->intKeyLeaf;
8040   for(i=0; i<nOld; i++){
8041     MemPage *pOld = apOld[i];
8042     int limit = pOld->nCell;
8043     u8 *aData = pOld->aData;
8044     u16 maskPage = pOld->maskPage;
8045     u8 *piCell = aData + pOld->cellOffset;
8046     u8 *piEnd;
8047     VVA_ONLY( int nCellAtStart = b.nCell; )
8048 
8049     /* Verify that all sibling pages are of the same "type" (table-leaf,
8050     ** table-interior, index-leaf, or index-interior).
8051     */
8052     if( pOld->aData[0]!=apOld[0]->aData[0] ){
8053       rc = SQLITE_CORRUPT_BKPT;
8054       goto balance_cleanup;
8055     }
8056 
8057     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
8058     ** contains overflow cells, include them in the b.apCell[] array
8059     ** in the correct spot.
8060     **
8061     ** Note that when there are multiple overflow cells, it is always the
8062     ** case that they are sequential and adjacent.  This invariant arises
8063     ** because multiple overflows can only occurs when inserting divider
8064     ** cells into a parent on a prior balance, and divider cells are always
8065     ** adjacent and are inserted in order.  There is an assert() tagged
8066     ** with "NOTE 1" in the overflow cell insertion loop to prove this
8067     ** invariant.
8068     **
8069     ** This must be done in advance.  Once the balance starts, the cell
8070     ** offset section of the btree page will be overwritten and we will no
8071     ** long be able to find the cells if a pointer to each cell is not saved
8072     ** first.
8073     */
8074     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
8075     if( pOld->nOverflow>0 ){
8076       if( NEVER(limit<pOld->aiOvfl[0]) ){
8077         rc = SQLITE_CORRUPT_BKPT;
8078         goto balance_cleanup;
8079       }
8080       limit = pOld->aiOvfl[0];
8081       for(j=0; j<limit; j++){
8082         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8083         piCell += 2;
8084         b.nCell++;
8085       }
8086       for(k=0; k<pOld->nOverflow; k++){
8087         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
8088         b.apCell[b.nCell] = pOld->apOvfl[k];
8089         b.nCell++;
8090       }
8091     }
8092     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8093     while( piCell<piEnd ){
8094       assert( b.nCell<nMaxCells );
8095       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8096       piCell += 2;
8097       b.nCell++;
8098     }
8099     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
8100 
8101     cntOld[i] = b.nCell;
8102     if( i<nOld-1 && !leafData){
8103       u16 sz = (u16)szNew[i];
8104       u8 *pTemp;
8105       assert( b.nCell<nMaxCells );
8106       b.szCell[b.nCell] = sz;
8107       pTemp = &aSpace1[iSpace1];
8108       iSpace1 += sz;
8109       assert( sz<=pBt->maxLocal+23 );
8110       assert( iSpace1 <= (int)pBt->pageSize );
8111       memcpy(pTemp, apDiv[i], sz);
8112       b.apCell[b.nCell] = pTemp+leafCorrection;
8113       assert( leafCorrection==0 || leafCorrection==4 );
8114       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
8115       if( !pOld->leaf ){
8116         assert( leafCorrection==0 );
8117         assert( pOld->hdrOffset==0 || CORRUPT_DB );
8118         /* The right pointer of the child page pOld becomes the left
8119         ** pointer of the divider cell */
8120         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
8121       }else{
8122         assert( leafCorrection==4 );
8123         while( b.szCell[b.nCell]<4 ){
8124           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8125           ** does exist, pad it with 0x00 bytes. */
8126           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8127           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
8128           aSpace1[iSpace1++] = 0x00;
8129           b.szCell[b.nCell]++;
8130         }
8131       }
8132       b.nCell++;
8133     }
8134   }
8135 
8136   /*
8137   ** Figure out the number of pages needed to hold all b.nCell cells.
8138   ** Store this number in "k".  Also compute szNew[] which is the total
8139   ** size of all cells on the i-th page and cntNew[] which is the index
8140   ** in b.apCell[] of the cell that divides page i from page i+1.
8141   ** cntNew[k] should equal b.nCell.
8142   **
8143   ** Values computed by this block:
8144   **
8145   **           k: The total number of sibling pages
8146   **    szNew[i]: Spaced used on the i-th sibling page.
8147   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8148   **              the right of the i-th sibling page.
8149   ** usableSpace: Number of bytes of space available on each sibling.
8150   **
8151   */
8152   usableSpace = pBt->usableSize - 12 + leafCorrection;
8153   for(i=k=0; i<nOld; i++, k++){
8154     MemPage *p = apOld[i];
8155     b.apEnd[k] = p->aDataEnd;
8156     b.ixNx[k] = cntOld[i];
8157     if( k && b.ixNx[k]==b.ixNx[k-1] ){
8158       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
8159     }
8160     if( !leafData ){
8161       k++;
8162       b.apEnd[k] = pParent->aDataEnd;
8163       b.ixNx[k] = cntOld[i]+1;
8164     }
8165     assert( p->nFree>=0 );
8166     szNew[i] = usableSpace - p->nFree;
8167     for(j=0; j<p->nOverflow; j++){
8168       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8169     }
8170     cntNew[i] = cntOld[i];
8171   }
8172   k = nOld;
8173   for(i=0; i<k; i++){
8174     int sz;
8175     while( szNew[i]>usableSpace ){
8176       if( i+1>=k ){
8177         k = i+2;
8178         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8179         szNew[k-1] = 0;
8180         cntNew[k-1] = b.nCell;
8181       }
8182       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8183       szNew[i] -= sz;
8184       if( !leafData ){
8185         if( cntNew[i]<b.nCell ){
8186           sz = 2 + cachedCellSize(&b, cntNew[i]);
8187         }else{
8188           sz = 0;
8189         }
8190       }
8191       szNew[i+1] += sz;
8192       cntNew[i]--;
8193     }
8194     while( cntNew[i]<b.nCell ){
8195       sz = 2 + cachedCellSize(&b, cntNew[i]);
8196       if( szNew[i]+sz>usableSpace ) break;
8197       szNew[i] += sz;
8198       cntNew[i]++;
8199       if( !leafData ){
8200         if( cntNew[i]<b.nCell ){
8201           sz = 2 + cachedCellSize(&b, cntNew[i]);
8202         }else{
8203           sz = 0;
8204         }
8205       }
8206       szNew[i+1] -= sz;
8207     }
8208     if( cntNew[i]>=b.nCell ){
8209       k = i+1;
8210     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8211       rc = SQLITE_CORRUPT_BKPT;
8212       goto balance_cleanup;
8213     }
8214   }
8215 
8216   /*
8217   ** The packing computed by the previous block is biased toward the siblings
8218   ** on the left side (siblings with smaller keys). The left siblings are
8219   ** always nearly full, while the right-most sibling might be nearly empty.
8220   ** The next block of code attempts to adjust the packing of siblings to
8221   ** get a better balance.
8222   **
8223   ** This adjustment is more than an optimization.  The packing above might
8224   ** be so out of balance as to be illegal.  For example, the right-most
8225   ** sibling might be completely empty.  This adjustment is not optional.
8226   */
8227   for(i=k-1; i>0; i--){
8228     int szRight = szNew[i];  /* Size of sibling on the right */
8229     int szLeft = szNew[i-1]; /* Size of sibling on the left */
8230     int r;              /* Index of right-most cell in left sibling */
8231     int d;              /* Index of first cell to the left of right sibling */
8232 
8233     r = cntNew[i-1] - 1;
8234     d = r + 1 - leafData;
8235     (void)cachedCellSize(&b, d);
8236     do{
8237       assert( d<nMaxCells );
8238       assert( r<nMaxCells );
8239       (void)cachedCellSize(&b, r);
8240       if( szRight!=0
8241        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8242         break;
8243       }
8244       szRight += b.szCell[d] + 2;
8245       szLeft -= b.szCell[r] + 2;
8246       cntNew[i-1] = r;
8247       r--;
8248       d--;
8249     }while( r>=0 );
8250     szNew[i] = szRight;
8251     szNew[i-1] = szLeft;
8252     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8253       rc = SQLITE_CORRUPT_BKPT;
8254       goto balance_cleanup;
8255     }
8256   }
8257 
8258   /* Sanity check:  For a non-corrupt database file one of the follwing
8259   ** must be true:
8260   **    (1) We found one or more cells (cntNew[0])>0), or
8261   **    (2) pPage is a virtual root page.  A virtual root page is when
8262   **        the real root page is page 1 and we are the only child of
8263   **        that page.
8264   */
8265   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8266   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8267     apOld[0]->pgno, apOld[0]->nCell,
8268     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8269     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8270   ));
8271 
8272   /*
8273   ** Allocate k new pages.  Reuse old pages where possible.
8274   */
8275   pageFlags = apOld[0]->aData[0];
8276   for(i=0; i<k; i++){
8277     MemPage *pNew;
8278     if( i<nOld ){
8279       pNew = apNew[i] = apOld[i];
8280       apOld[i] = 0;
8281       rc = sqlite3PagerWrite(pNew->pDbPage);
8282       nNew++;
8283       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8284        && rc==SQLITE_OK
8285       ){
8286         rc = SQLITE_CORRUPT_BKPT;
8287       }
8288       if( rc ) goto balance_cleanup;
8289     }else{
8290       assert( i>0 );
8291       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8292       if( rc ) goto balance_cleanup;
8293       zeroPage(pNew, pageFlags);
8294       apNew[i] = pNew;
8295       nNew++;
8296       cntOld[i] = b.nCell;
8297 
8298       /* Set the pointer-map entry for the new sibling page. */
8299       if( ISAUTOVACUUM ){
8300         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8301         if( rc!=SQLITE_OK ){
8302           goto balance_cleanup;
8303         }
8304       }
8305     }
8306   }
8307 
8308   /*
8309   ** Reassign page numbers so that the new pages are in ascending order.
8310   ** This helps to keep entries in the disk file in order so that a scan
8311   ** of the table is closer to a linear scan through the file. That in turn
8312   ** helps the operating system to deliver pages from the disk more rapidly.
8313   **
8314   ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
8315   ** (5), that is not a performance concern.
8316   **
8317   ** When NB==3, this one optimization makes the database about 25% faster
8318   ** for large insertions and deletions.
8319   */
8320   for(i=0; i<nNew; i++){
8321     aPgno[i] = apNew[i]->pgno;
8322     assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
8323     assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
8324   }
8325   for(i=0; i<nNew-1; i++){
8326     int iB = i;
8327     for(j=i+1; j<nNew; j++){
8328       if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
8329     }
8330 
8331     /* If apNew[i] has a page number that is bigger than any of the
8332     ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
8333     ** entry that has the smallest page number (which we know to be
8334     ** entry apNew[iB]).
8335     */
8336     if( iB!=i ){
8337       Pgno pgnoA = apNew[i]->pgno;
8338       Pgno pgnoB = apNew[iB]->pgno;
8339       Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
8340       u16 fgA = apNew[i]->pDbPage->flags;
8341       u16 fgB = apNew[iB]->pDbPage->flags;
8342       sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
8343       sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
8344       sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
8345       apNew[i]->pgno = pgnoB;
8346       apNew[iB]->pgno = pgnoA;
8347     }
8348   }
8349 
8350   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8351          "%d(%d nc=%d) %d(%d nc=%d)\n",
8352     apNew[0]->pgno, szNew[0], cntNew[0],
8353     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8354     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8355     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8356     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8357     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8358     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8359     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8360     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8361   ));
8362 
8363   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8364   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8365   assert( apNew[nNew-1]!=0 );
8366   put4byte(pRight, apNew[nNew-1]->pgno);
8367 
8368   /* If the sibling pages are not leaves, ensure that the right-child pointer
8369   ** of the right-most new sibling page is set to the value that was
8370   ** originally in the same field of the right-most old sibling page. */
8371   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8372     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8373     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8374   }
8375 
8376   /* Make any required updates to pointer map entries associated with
8377   ** cells stored on sibling pages following the balance operation. Pointer
8378   ** map entries associated with divider cells are set by the insertCell()
8379   ** routine. The associated pointer map entries are:
8380   **
8381   **   a) if the cell contains a reference to an overflow chain, the
8382   **      entry associated with the first page in the overflow chain, and
8383   **
8384   **   b) if the sibling pages are not leaves, the child page associated
8385   **      with the cell.
8386   **
8387   ** If the sibling pages are not leaves, then the pointer map entry
8388   ** associated with the right-child of each sibling may also need to be
8389   ** updated. This happens below, after the sibling pages have been
8390   ** populated, not here.
8391   */
8392   if( ISAUTOVACUUM ){
8393     MemPage *pOld;
8394     MemPage *pNew = pOld = apNew[0];
8395     int cntOldNext = pNew->nCell + pNew->nOverflow;
8396     int iNew = 0;
8397     int iOld = 0;
8398 
8399     for(i=0; i<b.nCell; i++){
8400       u8 *pCell = b.apCell[i];
8401       while( i==cntOldNext ){
8402         iOld++;
8403         assert( iOld<nNew || iOld<nOld );
8404         assert( iOld>=0 && iOld<NB );
8405         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8406         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8407       }
8408       if( i==cntNew[iNew] ){
8409         pNew = apNew[++iNew];
8410         if( !leafData ) continue;
8411       }
8412 
8413       /* Cell pCell is destined for new sibling page pNew. Originally, it
8414       ** was either part of sibling page iOld (possibly an overflow cell),
8415       ** or else the divider cell to the left of sibling page iOld. So,
8416       ** if sibling page iOld had the same page number as pNew, and if
8417       ** pCell really was a part of sibling page iOld (not a divider or
8418       ** overflow cell), we can skip updating the pointer map entries.  */
8419       if( iOld>=nNew
8420        || pNew->pgno!=aPgno[iOld]
8421        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8422       ){
8423         if( !leafCorrection ){
8424           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8425         }
8426         if( cachedCellSize(&b,i)>pNew->minLocal ){
8427           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8428         }
8429         if( rc ) goto balance_cleanup;
8430       }
8431     }
8432   }
8433 
8434   /* Insert new divider cells into pParent. */
8435   for(i=0; i<nNew-1; i++){
8436     u8 *pCell;
8437     u8 *pTemp;
8438     int sz;
8439     u8 *pSrcEnd;
8440     MemPage *pNew = apNew[i];
8441     j = cntNew[i];
8442 
8443     assert( j<nMaxCells );
8444     assert( b.apCell[j]!=0 );
8445     pCell = b.apCell[j];
8446     sz = b.szCell[j] + leafCorrection;
8447     pTemp = &aOvflSpace[iOvflSpace];
8448     if( !pNew->leaf ){
8449       memcpy(&pNew->aData[8], pCell, 4);
8450     }else if( leafData ){
8451       /* If the tree is a leaf-data tree, and the siblings are leaves,
8452       ** then there is no divider cell in b.apCell[]. Instead, the divider
8453       ** cell consists of the integer key for the right-most cell of
8454       ** the sibling-page assembled above only.
8455       */
8456       CellInfo info;
8457       j--;
8458       pNew->xParseCell(pNew, b.apCell[j], &info);
8459       pCell = pTemp;
8460       sz = 4 + putVarint(&pCell[4], info.nKey);
8461       pTemp = 0;
8462     }else{
8463       pCell -= 4;
8464       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8465       ** previously stored on a leaf node, and its reported size was 4
8466       ** bytes, then it may actually be smaller than this
8467       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8468       ** any cell). But it is important to pass the correct size to
8469       ** insertCell(), so reparse the cell now.
8470       **
8471       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8472       ** and WITHOUT ROWID tables with exactly one column which is the
8473       ** primary key.
8474       */
8475       if( b.szCell[j]==4 ){
8476         assert(leafCorrection==4);
8477         sz = pParent->xCellSize(pParent, pCell);
8478       }
8479     }
8480     iOvflSpace += sz;
8481     assert( sz<=pBt->maxLocal+23 );
8482     assert( iOvflSpace <= (int)pBt->pageSize );
8483     for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){}
8484     pSrcEnd = b.apEnd[k];
8485     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8486       rc = SQLITE_CORRUPT_BKPT;
8487       goto balance_cleanup;
8488     }
8489     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8490     if( rc!=SQLITE_OK ) goto balance_cleanup;
8491     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8492   }
8493 
8494   /* Now update the actual sibling pages. The order in which they are updated
8495   ** is important, as this code needs to avoid disrupting any page from which
8496   ** cells may still to be read. In practice, this means:
8497   **
8498   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8499   **      then it is not safe to update page apNew[iPg] until after
8500   **      the left-hand sibling apNew[iPg-1] has been updated.
8501   **
8502   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8503   **      then it is not safe to update page apNew[iPg] until after
8504   **      the right-hand sibling apNew[iPg+1] has been updated.
8505   **
8506   ** If neither of the above apply, the page is safe to update.
8507   **
8508   ** The iPg value in the following loop starts at nNew-1 goes down
8509   ** to 0, then back up to nNew-1 again, thus making two passes over
8510   ** the pages.  On the initial downward pass, only condition (1) above
8511   ** needs to be tested because (2) will always be true from the previous
8512   ** step.  On the upward pass, both conditions are always true, so the
8513   ** upwards pass simply processes pages that were missed on the downward
8514   ** pass.
8515   */
8516   for(i=1-nNew; i<nNew; i++){
8517     int iPg = i<0 ? -i : i;
8518     assert( iPg>=0 && iPg<nNew );
8519     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8520     if( i>=0                            /* On the upwards pass, or... */
8521      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8522     ){
8523       int iNew;
8524       int iOld;
8525       int nNewCell;
8526 
8527       /* Verify condition (1):  If cells are moving left, update iPg
8528       ** only after iPg-1 has already been updated. */
8529       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8530 
8531       /* Verify condition (2):  If cells are moving right, update iPg
8532       ** only after iPg+1 has already been updated. */
8533       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8534 
8535       if( iPg==0 ){
8536         iNew = iOld = 0;
8537         nNewCell = cntNew[0];
8538       }else{
8539         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8540         iNew = cntNew[iPg-1] + !leafData;
8541         nNewCell = cntNew[iPg] - iNew;
8542       }
8543 
8544       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8545       if( rc ) goto balance_cleanup;
8546       abDone[iPg]++;
8547       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8548       assert( apNew[iPg]->nOverflow==0 );
8549       assert( apNew[iPg]->nCell==nNewCell );
8550     }
8551   }
8552 
8553   /* All pages have been processed exactly once */
8554   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8555 
8556   assert( nOld>0 );
8557   assert( nNew>0 );
8558 
8559   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8560     /* The root page of the b-tree now contains no cells. The only sibling
8561     ** page is the right-child of the parent. Copy the contents of the
8562     ** child page into the parent, decreasing the overall height of the
8563     ** b-tree structure by one. This is described as the "balance-shallower"
8564     ** sub-algorithm in some documentation.
8565     **
8566     ** If this is an auto-vacuum database, the call to copyNodeContent()
8567     ** sets all pointer-map entries corresponding to database image pages
8568     ** for which the pointer is stored within the content being copied.
8569     **
8570     ** It is critical that the child page be defragmented before being
8571     ** copied into the parent, because if the parent is page 1 then it will
8572     ** by smaller than the child due to the database header, and so all the
8573     ** free space needs to be up front.
8574     */
8575     assert( nNew==1 || CORRUPT_DB );
8576     rc = defragmentPage(apNew[0], -1);
8577     testcase( rc!=SQLITE_OK );
8578     assert( apNew[0]->nFree ==
8579         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8580           - apNew[0]->nCell*2)
8581       || rc!=SQLITE_OK
8582     );
8583     copyNodeContent(apNew[0], pParent, &rc);
8584     freePage(apNew[0], &rc);
8585   }else if( ISAUTOVACUUM && !leafCorrection ){
8586     /* Fix the pointer map entries associated with the right-child of each
8587     ** sibling page. All other pointer map entries have already been taken
8588     ** care of.  */
8589     for(i=0; i<nNew; i++){
8590       u32 key = get4byte(&apNew[i]->aData[8]);
8591       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8592     }
8593   }
8594 
8595   assert( pParent->isInit );
8596   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8597           nOld, nNew, b.nCell));
8598 
8599   /* Free any old pages that were not reused as new pages.
8600   */
8601   for(i=nNew; i<nOld; i++){
8602     freePage(apOld[i], &rc);
8603   }
8604 
8605 #if 0
8606   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8607     /* The ptrmapCheckPages() contains assert() statements that verify that
8608     ** all pointer map pages are set correctly. This is helpful while
8609     ** debugging. This is usually disabled because a corrupt database may
8610     ** cause an assert() statement to fail.  */
8611     ptrmapCheckPages(apNew, nNew);
8612     ptrmapCheckPages(&pParent, 1);
8613   }
8614 #endif
8615 
8616   /*
8617   ** Cleanup before returning.
8618   */
8619 balance_cleanup:
8620   sqlite3StackFree(0, b.apCell);
8621   for(i=0; i<nOld; i++){
8622     releasePage(apOld[i]);
8623   }
8624   for(i=0; i<nNew; i++){
8625     releasePage(apNew[i]);
8626   }
8627 
8628   return rc;
8629 }
8630 
8631 
8632 /*
8633 ** This function is called when the root page of a b-tree structure is
8634 ** overfull (has one or more overflow pages).
8635 **
8636 ** A new child page is allocated and the contents of the current root
8637 ** page, including overflow cells, are copied into the child. The root
8638 ** page is then overwritten to make it an empty page with the right-child
8639 ** pointer pointing to the new page.
8640 **
8641 ** Before returning, all pointer-map entries corresponding to pages
8642 ** that the new child-page now contains pointers to are updated. The
8643 ** entry corresponding to the new right-child pointer of the root
8644 ** page is also updated.
8645 **
8646 ** If successful, *ppChild is set to contain a reference to the child
8647 ** page and SQLITE_OK is returned. In this case the caller is required
8648 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8649 ** an error code is returned and *ppChild is set to 0.
8650 */
balance_deeper(MemPage * pRoot,MemPage ** ppChild)8651 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8652   int rc;                        /* Return value from subprocedures */
8653   MemPage *pChild = 0;           /* Pointer to a new child page */
8654   Pgno pgnoChild = 0;            /* Page number of the new child page */
8655   BtShared *pBt = pRoot->pBt;    /* The BTree */
8656 
8657   assert( pRoot->nOverflow>0 );
8658   assert( sqlite3_mutex_held(pBt->mutex) );
8659 
8660   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8661   ** page that will become the new right-child of pPage. Copy the contents
8662   ** of the node stored on pRoot into the new child page.
8663   */
8664   rc = sqlite3PagerWrite(pRoot->pDbPage);
8665   if( rc==SQLITE_OK ){
8666     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8667     copyNodeContent(pRoot, pChild, &rc);
8668     if( ISAUTOVACUUM ){
8669       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8670     }
8671   }
8672   if( rc ){
8673     *ppChild = 0;
8674     releasePage(pChild);
8675     return rc;
8676   }
8677   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8678   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8679   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8680 
8681   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8682 
8683   /* Copy the overflow cells from pRoot to pChild */
8684   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8685          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8686   memcpy(pChild->apOvfl, pRoot->apOvfl,
8687          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8688   pChild->nOverflow = pRoot->nOverflow;
8689 
8690   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8691   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8692   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8693 
8694   *ppChild = pChild;
8695   return SQLITE_OK;
8696 }
8697 
8698 /*
8699 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8700 ** on the same B-tree as pCur.
8701 **
8702 ** This can occur if a database is corrupt with two or more SQL tables
8703 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8704 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8705 ** table linked to the same b-tree.  If the secondary insert causes a
8706 ** rebalance, that can change content out from under the cursor on the
8707 ** first SQL table, violating invariants on the first insert.
8708 */
anotherValidCursor(BtCursor * pCur)8709 static int anotherValidCursor(BtCursor *pCur){
8710   BtCursor *pOther;
8711   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8712     if( pOther!=pCur
8713      && pOther->eState==CURSOR_VALID
8714      && pOther->pPage==pCur->pPage
8715     ){
8716       return SQLITE_CORRUPT_BKPT;
8717     }
8718   }
8719   return SQLITE_OK;
8720 }
8721 
8722 /*
8723 ** The page that pCur currently points to has just been modified in
8724 ** some way. This function figures out if this modification means the
8725 ** tree needs to be balanced, and if so calls the appropriate balancing
8726 ** routine. Balancing routines are:
8727 **
8728 **   balance_quick()
8729 **   balance_deeper()
8730 **   balance_nonroot()
8731 */
balance(BtCursor * pCur)8732 static int balance(BtCursor *pCur){
8733   int rc = SQLITE_OK;
8734   u8 aBalanceQuickSpace[13];
8735   u8 *pFree = 0;
8736 
8737   VVA_ONLY( int balance_quick_called = 0 );
8738   VVA_ONLY( int balance_deeper_called = 0 );
8739 
8740   do {
8741     int iPage;
8742     MemPage *pPage = pCur->pPage;
8743 
8744     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8745     if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
8746       /* No rebalance required as long as:
8747       **   (1) There are no overflow cells
8748       **   (2) The amount of free space on the page is less than 2/3rds of
8749       **       the total usable space on the page. */
8750       break;
8751     }else if( (iPage = pCur->iPage)==0 ){
8752       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8753         /* The root page of the b-tree is overfull. In this case call the
8754         ** balance_deeper() function to create a new child for the root-page
8755         ** and copy the current contents of the root-page to it. The
8756         ** next iteration of the do-loop will balance the child page.
8757         */
8758         assert( balance_deeper_called==0 );
8759         VVA_ONLY( balance_deeper_called++ );
8760         rc = balance_deeper(pPage, &pCur->apPage[1]);
8761         if( rc==SQLITE_OK ){
8762           pCur->iPage = 1;
8763           pCur->ix = 0;
8764           pCur->aiIdx[0] = 0;
8765           pCur->apPage[0] = pPage;
8766           pCur->pPage = pCur->apPage[1];
8767           assert( pCur->pPage->nOverflow );
8768         }
8769       }else{
8770         break;
8771       }
8772     }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
8773       /* The page being written is not a root page, and there is currently
8774       ** more than one reference to it. This only happens if the page is one
8775       ** of its own ancestor pages. Corruption. */
8776       rc = SQLITE_CORRUPT_BKPT;
8777     }else{
8778       MemPage * const pParent = pCur->apPage[iPage-1];
8779       int const iIdx = pCur->aiIdx[iPage-1];
8780 
8781       rc = sqlite3PagerWrite(pParent->pDbPage);
8782       if( rc==SQLITE_OK && pParent->nFree<0 ){
8783         rc = btreeComputeFreeSpace(pParent);
8784       }
8785       if( rc==SQLITE_OK ){
8786 #ifndef SQLITE_OMIT_QUICKBALANCE
8787         if( pPage->intKeyLeaf
8788          && pPage->nOverflow==1
8789          && pPage->aiOvfl[0]==pPage->nCell
8790          && pParent->pgno!=1
8791          && pParent->nCell==iIdx
8792         ){
8793           /* Call balance_quick() to create a new sibling of pPage on which
8794           ** to store the overflow cell. balance_quick() inserts a new cell
8795           ** into pParent, which may cause pParent overflow. If this
8796           ** happens, the next iteration of the do-loop will balance pParent
8797           ** use either balance_nonroot() or balance_deeper(). Until this
8798           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8799           ** buffer.
8800           **
8801           ** The purpose of the following assert() is to check that only a
8802           ** single call to balance_quick() is made for each call to this
8803           ** function. If this were not verified, a subtle bug involving reuse
8804           ** of the aBalanceQuickSpace[] might sneak in.
8805           */
8806           assert( balance_quick_called==0 );
8807           VVA_ONLY( balance_quick_called++ );
8808           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8809         }else
8810 #endif
8811         {
8812           /* In this case, call balance_nonroot() to redistribute cells
8813           ** between pPage and up to 2 of its sibling pages. This involves
8814           ** modifying the contents of pParent, which may cause pParent to
8815           ** become overfull or underfull. The next iteration of the do-loop
8816           ** will balance the parent page to correct this.
8817           **
8818           ** If the parent page becomes overfull, the overflow cell or cells
8819           ** are stored in the pSpace buffer allocated immediately below.
8820           ** A subsequent iteration of the do-loop will deal with this by
8821           ** calling balance_nonroot() (balance_deeper() may be called first,
8822           ** but it doesn't deal with overflow cells - just moves them to a
8823           ** different page). Once this subsequent call to balance_nonroot()
8824           ** has completed, it is safe to release the pSpace buffer used by
8825           ** the previous call, as the overflow cell data will have been
8826           ** copied either into the body of a database page or into the new
8827           ** pSpace buffer passed to the latter call to balance_nonroot().
8828           */
8829           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8830           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8831                                pCur->hints&BTREE_BULKLOAD);
8832           if( pFree ){
8833             /* If pFree is not NULL, it points to the pSpace buffer used
8834             ** by a previous call to balance_nonroot(). Its contents are
8835             ** now stored either on real database pages or within the
8836             ** new pSpace buffer, so it may be safely freed here. */
8837             sqlite3PageFree(pFree);
8838           }
8839 
8840           /* The pSpace buffer will be freed after the next call to
8841           ** balance_nonroot(), or just before this function returns, whichever
8842           ** comes first. */
8843           pFree = pSpace;
8844         }
8845       }
8846 
8847       pPage->nOverflow = 0;
8848 
8849       /* The next iteration of the do-loop balances the parent page. */
8850       releasePage(pPage);
8851       pCur->iPage--;
8852       assert( pCur->iPage>=0 );
8853       pCur->pPage = pCur->apPage[pCur->iPage];
8854     }
8855   }while( rc==SQLITE_OK );
8856 
8857   if( pFree ){
8858     sqlite3PageFree(pFree);
8859   }
8860   return rc;
8861 }
8862 
8863 /* Overwrite content from pX into pDest.  Only do the write if the
8864 ** content is different from what is already there.
8865 */
btreeOverwriteContent(MemPage * pPage,u8 * pDest,const BtreePayload * pX,int iOffset,int iAmt)8866 static int btreeOverwriteContent(
8867   MemPage *pPage,           /* MemPage on which writing will occur */
8868   u8 *pDest,                /* Pointer to the place to start writing */
8869   const BtreePayload *pX,   /* Source of data to write */
8870   int iOffset,              /* Offset of first byte to write */
8871   int iAmt                  /* Number of bytes to be written */
8872 ){
8873   int nData = pX->nData - iOffset;
8874   if( nData<=0 ){
8875     /* Overwritting with zeros */
8876     int i;
8877     for(i=0; i<iAmt && pDest[i]==0; i++){}
8878     if( i<iAmt ){
8879       int rc = sqlite3PagerWrite(pPage->pDbPage);
8880       if( rc ) return rc;
8881       memset(pDest + i, 0, iAmt - i);
8882     }
8883   }else{
8884     if( nData<iAmt ){
8885       /* Mixed read data and zeros at the end.  Make a recursive call
8886       ** to write the zeros then fall through to write the real data */
8887       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8888                                  iAmt-nData);
8889       if( rc ) return rc;
8890       iAmt = nData;
8891     }
8892     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8893       int rc = sqlite3PagerWrite(pPage->pDbPage);
8894       if( rc ) return rc;
8895       /* In a corrupt database, it is possible for the source and destination
8896       ** buffers to overlap.  This is harmless since the database is already
8897       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8898       ** memmove(). */
8899       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8900     }
8901   }
8902   return SQLITE_OK;
8903 }
8904 
8905 /*
8906 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8907 ** contained in pX.
8908 */
btreeOverwriteCell(BtCursor * pCur,const BtreePayload * pX)8909 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8910   int iOffset;                        /* Next byte of pX->pData to write */
8911   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8912   int rc;                             /* Return code */
8913   MemPage *pPage = pCur->pPage;       /* Page being written */
8914   BtShared *pBt;                      /* Btree */
8915   Pgno ovflPgno;                      /* Next overflow page to write */
8916   u32 ovflPageSize;                   /* Size to write on overflow page */
8917 
8918   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8919    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8920   ){
8921     return SQLITE_CORRUPT_BKPT;
8922   }
8923   /* Overwrite the local portion first */
8924   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8925                              0, pCur->info.nLocal);
8926   if( rc ) return rc;
8927   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8928 
8929   /* Now overwrite the overflow pages */
8930   iOffset = pCur->info.nLocal;
8931   assert( nTotal>=0 );
8932   assert( iOffset>=0 );
8933   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8934   pBt = pPage->pBt;
8935   ovflPageSize = pBt->usableSize - 4;
8936   do{
8937     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8938     if( rc ) return rc;
8939     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8940       rc = SQLITE_CORRUPT_BKPT;
8941     }else{
8942       if( iOffset+ovflPageSize<(u32)nTotal ){
8943         ovflPgno = get4byte(pPage->aData);
8944       }else{
8945         ovflPageSize = nTotal - iOffset;
8946       }
8947       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8948                                  iOffset, ovflPageSize);
8949     }
8950     sqlite3PagerUnref(pPage->pDbPage);
8951     if( rc ) return rc;
8952     iOffset += ovflPageSize;
8953   }while( iOffset<nTotal );
8954   return SQLITE_OK;
8955 }
8956 
8957 
8958 /*
8959 ** Insert a new record into the BTree.  The content of the new record
8960 ** is described by the pX object.  The pCur cursor is used only to
8961 ** define what table the record should be inserted into, and is left
8962 ** pointing at a random location.
8963 **
8964 ** For a table btree (used for rowid tables), only the pX.nKey value of
8965 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8966 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8967 ** hold the content of the row.
8968 **
8969 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8970 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8971 ** pX.pData,nData,nZero fields must be zero.
8972 **
8973 ** If the seekResult parameter is non-zero, then a successful call to
8974 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
8975 ** been performed.  In other words, if seekResult!=0 then the cursor
8976 ** is currently pointing to a cell that will be adjacent to the cell
8977 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8978 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8979 ** that is larger than (pKey,nKey).
8980 **
8981 ** If seekResult==0, that means pCur is pointing at some unknown location.
8982 ** In that case, this routine must seek the cursor to the correct insertion
8983 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8984 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8985 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8986 ** to decode the key.
8987 */
sqlite3BtreeInsert(BtCursor * pCur,const BtreePayload * pX,int flags,int seekResult)8988 int sqlite3BtreeInsert(
8989   BtCursor *pCur,                /* Insert data into the table of this cursor */
8990   const BtreePayload *pX,        /* Content of the row to be inserted */
8991   int flags,                     /* True if this is likely an append */
8992   int seekResult                 /* Result of prior IndexMoveto() call */
8993 ){
8994   int rc;
8995   int loc = seekResult;          /* -1: before desired location  +1: after */
8996   int szNew = 0;
8997   int idx;
8998   MemPage *pPage;
8999   Btree *p = pCur->pBtree;
9000   BtShared *pBt = p->pBt;
9001   unsigned char *oldCell;
9002   unsigned char *newCell = 0;
9003 
9004   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
9005   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
9006 
9007   /* Save the positions of any other cursors open on this table.
9008   **
9009   ** In some cases, the call to btreeMoveto() below is a no-op. For
9010   ** example, when inserting data into a table with auto-generated integer
9011   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9012   ** integer key to use. It then calls this function to actually insert the
9013   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9014   ** that the cursor is already where it needs to be and returns without
9015   ** doing any work. To avoid thwarting these optimizations, it is important
9016   ** not to clear the cursor here.
9017   */
9018   if( pCur->curFlags & BTCF_Multiple ){
9019     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9020     if( rc ) return rc;
9021     if( loc && pCur->iPage<0 ){
9022       /* This can only happen if the schema is corrupt such that there is more
9023       ** than one table or index with the same root page as used by the cursor.
9024       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9025       ** the schema was loaded. This cannot be asserted though, as a user might
9026       ** set the flag, load the schema, and then unset the flag.  */
9027       return SQLITE_CORRUPT_BKPT;
9028     }
9029   }
9030 
9031   /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9032   ** points to a valid cell.
9033   */
9034   if( pCur->eState>=CURSOR_REQUIRESEEK ){
9035     testcase( pCur->eState==CURSOR_REQUIRESEEK );
9036     testcase( pCur->eState==CURSOR_FAULT );
9037     rc = moveToRoot(pCur);
9038     if( rc && rc!=SQLITE_EMPTY ) return rc;
9039   }
9040 
9041   assert( cursorOwnsBtShared(pCur) );
9042   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9043               && pBt->inTransaction==TRANS_WRITE
9044               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
9045   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9046 
9047   /* Assert that the caller has been consistent. If this cursor was opened
9048   ** expecting an index b-tree, then the caller should be inserting blob
9049   ** keys with no associated data. If the cursor was opened expecting an
9050   ** intkey table, the caller should be inserting integer keys with a
9051   ** blob of associated data.  */
9052   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
9053 
9054   if( pCur->pKeyInfo==0 ){
9055     assert( pX->pKey==0 );
9056     /* If this is an insert into a table b-tree, invalidate any incrblob
9057     ** cursors open on the row being replaced */
9058     if( p->hasIncrblobCur ){
9059       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9060     }
9061 
9062     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9063     ** to a row with the same key as the new entry being inserted.
9064     */
9065 #ifdef SQLITE_DEBUG
9066     if( flags & BTREE_SAVEPOSITION ){
9067       assert( pCur->curFlags & BTCF_ValidNKey );
9068       assert( pX->nKey==pCur->info.nKey );
9069       assert( loc==0 );
9070     }
9071 #endif
9072 
9073     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9074     ** that the cursor is not pointing to a row to be overwritten.
9075     ** So do a complete check.
9076     */
9077     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
9078       /* The cursor is pointing to the entry that is to be
9079       ** overwritten */
9080       assert( pX->nData>=0 && pX->nZero>=0 );
9081       if( pCur->info.nSize!=0
9082        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9083       ){
9084         /* New entry is the same size as the old.  Do an overwrite */
9085         return btreeOverwriteCell(pCur, pX);
9086       }
9087       assert( loc==0 );
9088     }else if( loc==0 ){
9089       /* The cursor is *not* pointing to the cell to be overwritten, nor
9090       ** to an adjacent cell.  Move the cursor so that it is pointing either
9091       ** to the cell to be overwritten or an adjacent cell.
9092       */
9093       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9094                (flags & BTREE_APPEND)!=0, &loc);
9095       if( rc ) return rc;
9096     }
9097   }else{
9098     /* This is an index or a WITHOUT ROWID table */
9099 
9100     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9101     ** to a row with the same key as the new entry being inserted.
9102     */
9103     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9104 
9105     /* If the cursor is not already pointing either to the cell to be
9106     ** overwritten, or if a new cell is being inserted, if the cursor is
9107     ** not pointing to an immediately adjacent cell, then move the cursor
9108     ** so that it does.
9109     */
9110     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9111       if( pX->nMem ){
9112         UnpackedRecord r;
9113         r.pKeyInfo = pCur->pKeyInfo;
9114         r.aMem = pX->aMem;
9115         r.nField = pX->nMem;
9116         r.default_rc = 0;
9117         r.eqSeen = 0;
9118         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
9119       }else{
9120         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9121                     (flags & BTREE_APPEND)!=0, &loc);
9122       }
9123       if( rc ) return rc;
9124     }
9125 
9126     /* If the cursor is currently pointing to an entry to be overwritten
9127     ** and the new content is the same as as the old, then use the
9128     ** overwrite optimization.
9129     */
9130     if( loc==0 ){
9131       getCellInfo(pCur);
9132       if( pCur->info.nKey==pX->nKey ){
9133         BtreePayload x2;
9134         x2.pData = pX->pKey;
9135         x2.nData = pX->nKey;
9136         x2.nZero = 0;
9137         return btreeOverwriteCell(pCur, &x2);
9138       }
9139     }
9140   }
9141   assert( pCur->eState==CURSOR_VALID
9142        || (pCur->eState==CURSOR_INVALID && loc) );
9143 
9144   pPage = pCur->pPage;
9145   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
9146   assert( pPage->leaf || !pPage->intKey );
9147   if( pPage->nFree<0 ){
9148     if( NEVER(pCur->eState>CURSOR_INVALID) ){
9149      /* ^^^^^--- due to the moveToRoot() call above */
9150       rc = SQLITE_CORRUPT_BKPT;
9151     }else{
9152       rc = btreeComputeFreeSpace(pPage);
9153     }
9154     if( rc ) return rc;
9155   }
9156 
9157   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
9158           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
9159           loc==0 ? "overwrite" : "new entry"));
9160   assert( pPage->isInit || CORRUPT_DB );
9161   newCell = pBt->pTmpSpace;
9162   assert( newCell!=0 );
9163   if( flags & BTREE_PREFORMAT ){
9164     rc = SQLITE_OK;
9165     szNew = pBt->nPreformatSize;
9166     if( szNew<4 ) szNew = 4;
9167     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9168       CellInfo info;
9169       pPage->xParseCell(pPage, newCell, &info);
9170       if( info.nPayload!=info.nLocal ){
9171         Pgno ovfl = get4byte(&newCell[szNew-4]);
9172         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9173       }
9174     }
9175   }else{
9176     rc = fillInCell(pPage, newCell, pX, &szNew);
9177   }
9178   if( rc ) goto end_insert;
9179   assert( szNew==pPage->xCellSize(pPage, newCell) );
9180   assert( szNew <= MX_CELL_SIZE(pBt) );
9181   idx = pCur->ix;
9182   if( loc==0 ){
9183     CellInfo info;
9184     assert( idx>=0 );
9185     if( idx>=pPage->nCell ){
9186       return SQLITE_CORRUPT_BKPT;
9187     }
9188     rc = sqlite3PagerWrite(pPage->pDbPage);
9189     if( rc ){
9190       goto end_insert;
9191     }
9192     oldCell = findCell(pPage, idx);
9193     if( !pPage->leaf ){
9194       memcpy(newCell, oldCell, 4);
9195     }
9196     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9197     testcase( pCur->curFlags & BTCF_ValidOvfl );
9198     invalidateOverflowCache(pCur);
9199     if( info.nSize==szNew && info.nLocal==info.nPayload
9200      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9201     ){
9202       /* Overwrite the old cell with the new if they are the same size.
9203       ** We could also try to do this if the old cell is smaller, then add
9204       ** the leftover space to the free list.  But experiments show that
9205       ** doing that is no faster then skipping this optimization and just
9206       ** calling dropCell() and insertCell().
9207       **
9208       ** This optimization cannot be used on an autovacuum database if the
9209       ** new entry uses overflow pages, as the insertCell() call below is
9210       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
9211       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9212       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9213         return SQLITE_CORRUPT_BKPT;
9214       }
9215       if( oldCell+szNew > pPage->aDataEnd ){
9216         return SQLITE_CORRUPT_BKPT;
9217       }
9218       memcpy(oldCell, newCell, szNew);
9219       return SQLITE_OK;
9220     }
9221     dropCell(pPage, idx, info.nSize, &rc);
9222     if( rc ) goto end_insert;
9223   }else if( loc<0 && pPage->nCell>0 ){
9224     assert( pPage->leaf );
9225     idx = ++pCur->ix;
9226     pCur->curFlags &= ~BTCF_ValidNKey;
9227   }else{
9228     assert( pPage->leaf );
9229   }
9230   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9231   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9232   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9233 
9234   /* If no error has occurred and pPage has an overflow cell, call balance()
9235   ** to redistribute the cells within the tree. Since balance() may move
9236   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9237   ** variables.
9238   **
9239   ** Previous versions of SQLite called moveToRoot() to move the cursor
9240   ** back to the root page as balance() used to invalidate the contents
9241   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9242   ** set the cursor state to "invalid". This makes common insert operations
9243   ** slightly faster.
9244   **
9245   ** There is a subtle but important optimization here too. When inserting
9246   ** multiple records into an intkey b-tree using a single cursor (as can
9247   ** happen while processing an "INSERT INTO ... SELECT" statement), it
9248   ** is advantageous to leave the cursor pointing to the last entry in
9249   ** the b-tree if possible. If the cursor is left pointing to the last
9250   ** entry in the table, and the next row inserted has an integer key
9251   ** larger than the largest existing key, it is possible to insert the
9252   ** row without seeking the cursor. This can be a big performance boost.
9253   */
9254   pCur->info.nSize = 0;
9255   if( pPage->nOverflow ){
9256     assert( rc==SQLITE_OK );
9257     pCur->curFlags &= ~(BTCF_ValidNKey);
9258     rc = balance(pCur);
9259 
9260     /* Must make sure nOverflow is reset to zero even if the balance()
9261     ** fails. Internal data structure corruption will result otherwise.
9262     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9263     ** from trying to save the current position of the cursor.  */
9264     pCur->pPage->nOverflow = 0;
9265     pCur->eState = CURSOR_INVALID;
9266     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9267       btreeReleaseAllCursorPages(pCur);
9268       if( pCur->pKeyInfo ){
9269         assert( pCur->pKey==0 );
9270         pCur->pKey = sqlite3Malloc( pX->nKey );
9271         if( pCur->pKey==0 ){
9272           rc = SQLITE_NOMEM;
9273         }else{
9274           memcpy(pCur->pKey, pX->pKey, pX->nKey);
9275         }
9276       }
9277       pCur->eState = CURSOR_REQUIRESEEK;
9278       pCur->nKey = pX->nKey;
9279     }
9280   }
9281   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9282 
9283 end_insert:
9284   return rc;
9285 }
9286 
9287 /*
9288 ** This function is used as part of copying the current row from cursor
9289 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9290 ** parameter iKey is used as the rowid value when the record is copied
9291 ** into pDest. Otherwise, the record is copied verbatim.
9292 **
9293 ** This function does not actually write the new value to cursor pDest.
9294 ** Instead, it creates and populates any required overflow pages and
9295 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9296 ** for the destination database. The size of the cell, in bytes, is left
9297 ** in BtShared.nPreformatSize. The caller completes the insertion by
9298 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9299 **
9300 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9301 */
sqlite3BtreeTransferRow(BtCursor * pDest,BtCursor * pSrc,i64 iKey)9302 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9303   int rc = SQLITE_OK;
9304   BtShared *pBt = pDest->pBt;
9305   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9306   const u8 *aIn;                /* Pointer to next input buffer */
9307   u32 nIn;                      /* Size of input buffer aIn[] */
9308   u32 nRem;                     /* Bytes of data still to copy */
9309 
9310   getCellInfo(pSrc);
9311   if( pSrc->info.nPayload<0x80 ){
9312     *(aOut++) = pSrc->info.nPayload;
9313   }else{
9314     aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
9315   }
9316   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9317   nIn = pSrc->info.nLocal;
9318   aIn = pSrc->info.pPayload;
9319   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9320     return SQLITE_CORRUPT_BKPT;
9321   }
9322   nRem = pSrc->info.nPayload;
9323   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9324     memcpy(aOut, aIn, nIn);
9325     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9326   }else{
9327     Pager *pSrcPager = pSrc->pBt->pPager;
9328     u8 *pPgnoOut = 0;
9329     Pgno ovflIn = 0;
9330     DbPage *pPageIn = 0;
9331     MemPage *pPageOut = 0;
9332     u32 nOut;                     /* Size of output buffer aOut[] */
9333 
9334     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9335     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9336     if( nOut<pSrc->info.nPayload ){
9337       pPgnoOut = &aOut[nOut];
9338       pBt->nPreformatSize += 4;
9339     }
9340 
9341     if( nRem>nIn ){
9342       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9343         return SQLITE_CORRUPT_BKPT;
9344       }
9345       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9346     }
9347 
9348     do {
9349       nRem -= nOut;
9350       do{
9351         assert( nOut>0 );
9352         if( nIn>0 ){
9353           int nCopy = MIN(nOut, nIn);
9354           memcpy(aOut, aIn, nCopy);
9355           nOut -= nCopy;
9356           nIn -= nCopy;
9357           aOut += nCopy;
9358           aIn += nCopy;
9359         }
9360         if( nOut>0 ){
9361           sqlite3PagerUnref(pPageIn);
9362           pPageIn = 0;
9363           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9364           if( rc==SQLITE_OK ){
9365             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9366             ovflIn = get4byte(aIn);
9367             aIn += 4;
9368             nIn = pSrc->pBt->usableSize - 4;
9369           }
9370         }
9371       }while( rc==SQLITE_OK && nOut>0 );
9372 
9373       if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9374         Pgno pgnoNew;
9375         MemPage *pNew = 0;
9376         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9377         put4byte(pPgnoOut, pgnoNew);
9378         if( ISAUTOVACUUM && pPageOut ){
9379           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9380         }
9381         releasePage(pPageOut);
9382         pPageOut = pNew;
9383         if( pPageOut ){
9384           pPgnoOut = pPageOut->aData;
9385           put4byte(pPgnoOut, 0);
9386           aOut = &pPgnoOut[4];
9387           nOut = MIN(pBt->usableSize - 4, nRem);
9388         }
9389       }
9390     }while( nRem>0 && rc==SQLITE_OK );
9391 
9392     releasePage(pPageOut);
9393     sqlite3PagerUnref(pPageIn);
9394   }
9395 
9396   return rc;
9397 }
9398 
9399 /*
9400 ** Delete the entry that the cursor is pointing to.
9401 **
9402 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9403 ** the cursor is left pointing at an arbitrary location after the delete.
9404 ** But if that bit is set, then the cursor is left in a state such that
9405 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9406 ** as it would have been on if the call to BtreeDelete() had been omitted.
9407 **
9408 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9409 ** associated with a single table entry and its indexes.  Only one of those
9410 ** deletes is considered the "primary" delete.  The primary delete occurs
9411 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9412 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9413 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9414 ** but which might be used by alternative storage engines.
9415 */
sqlite3BtreeDelete(BtCursor * pCur,u8 flags)9416 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9417   Btree *p = pCur->pBtree;
9418   BtShared *pBt = p->pBt;
9419   int rc;                    /* Return code */
9420   MemPage *pPage;            /* Page to delete cell from */
9421   unsigned char *pCell;      /* Pointer to cell to delete */
9422   int iCellIdx;              /* Index of cell to delete */
9423   int iCellDepth;            /* Depth of node containing pCell */
9424   CellInfo info;             /* Size of the cell being deleted */
9425   u8 bPreserve;              /* Keep cursor valid.  2 for CURSOR_SKIPNEXT */
9426 
9427   assert( cursorOwnsBtShared(pCur) );
9428   assert( pBt->inTransaction==TRANS_WRITE );
9429   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9430   assert( pCur->curFlags & BTCF_WriteFlag );
9431   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9432   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9433   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9434   if( pCur->eState!=CURSOR_VALID ){
9435     if( pCur->eState>=CURSOR_REQUIRESEEK ){
9436       rc = btreeRestoreCursorPosition(pCur);
9437       assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9438       if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9439     }else{
9440       return SQLITE_CORRUPT_BKPT;
9441     }
9442   }
9443   assert( pCur->eState==CURSOR_VALID );
9444 
9445   iCellDepth = pCur->iPage;
9446   iCellIdx = pCur->ix;
9447   pPage = pCur->pPage;
9448   if( pPage->nCell<=iCellIdx ){
9449     return SQLITE_CORRUPT_BKPT;
9450   }
9451   pCell = findCell(pPage, iCellIdx);
9452   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9453     return SQLITE_CORRUPT_BKPT;
9454   }
9455 
9456   /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9457   ** be preserved following this delete operation. If the current delete
9458   ** will cause a b-tree rebalance, then this is done by saving the cursor
9459   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9460   ** returning.
9461   **
9462   ** If the current delete will not cause a rebalance, then the cursor
9463   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9464   ** before or after the deleted entry.
9465   **
9466   ** The bPreserve value records which path is required:
9467   **
9468   **    bPreserve==0         Not necessary to save the cursor position
9469   **    bPreserve==1         Use CURSOR_REQUIRESEEK to save the cursor position
9470   **    bPreserve==2         Cursor won't move.  Set CURSOR_SKIPNEXT.
9471   */
9472   bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
9473   if( bPreserve ){
9474     if( !pPage->leaf
9475      || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
9476                                                    (int)(pBt->usableSize*2/3)
9477      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9478     ){
9479       /* A b-tree rebalance will be required after deleting this entry.
9480       ** Save the cursor key.  */
9481       rc = saveCursorKey(pCur);
9482       if( rc ) return rc;
9483     }else{
9484       bPreserve = 2;
9485     }
9486   }
9487 
9488   /* If the page containing the entry to delete is not a leaf page, move
9489   ** the cursor to the largest entry in the tree that is smaller than
9490   ** the entry being deleted. This cell will replace the cell being deleted
9491   ** from the internal node. The 'previous' entry is used for this instead
9492   ** of the 'next' entry, as the previous entry is always a part of the
9493   ** sub-tree headed by the child page of the cell being deleted. This makes
9494   ** balancing the tree following the delete operation easier.  */
9495   if( !pPage->leaf ){
9496     rc = sqlite3BtreePrevious(pCur, 0);
9497     assert( rc!=SQLITE_DONE );
9498     if( rc ) return rc;
9499   }
9500 
9501   /* Save the positions of any other cursors open on this table before
9502   ** making any modifications.  */
9503   if( pCur->curFlags & BTCF_Multiple ){
9504     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9505     if( rc ) return rc;
9506   }
9507 
9508   /* If this is a delete operation to remove a row from a table b-tree,
9509   ** invalidate any incrblob cursors open on the row being deleted.  */
9510   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9511     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9512   }
9513 
9514   /* Make the page containing the entry to be deleted writable. Then free any
9515   ** overflow pages associated with the entry and finally remove the cell
9516   ** itself from within the page.  */
9517   rc = sqlite3PagerWrite(pPage->pDbPage);
9518   if( rc ) return rc;
9519   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9520   dropCell(pPage, iCellIdx, info.nSize, &rc);
9521   if( rc ) return rc;
9522 
9523   /* If the cell deleted was not located on a leaf page, then the cursor
9524   ** is currently pointing to the largest entry in the sub-tree headed
9525   ** by the child-page of the cell that was just deleted from an internal
9526   ** node. The cell from the leaf node needs to be moved to the internal
9527   ** node to replace the deleted cell.  */
9528   if( !pPage->leaf ){
9529     MemPage *pLeaf = pCur->pPage;
9530     int nCell;
9531     Pgno n;
9532     unsigned char *pTmp;
9533 
9534     if( pLeaf->nFree<0 ){
9535       rc = btreeComputeFreeSpace(pLeaf);
9536       if( rc ) return rc;
9537     }
9538     if( iCellDepth<pCur->iPage-1 ){
9539       n = pCur->apPage[iCellDepth+1]->pgno;
9540     }else{
9541       n = pCur->pPage->pgno;
9542     }
9543     pCell = findCell(pLeaf, pLeaf->nCell-1);
9544     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9545     nCell = pLeaf->xCellSize(pLeaf, pCell);
9546     assert( MX_CELL_SIZE(pBt) >= nCell );
9547     pTmp = pBt->pTmpSpace;
9548     assert( pTmp!=0 );
9549     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9550     if( rc==SQLITE_OK ){
9551       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9552     }
9553     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9554     if( rc ) return rc;
9555   }
9556 
9557   /* Balance the tree. If the entry deleted was located on a leaf page,
9558   ** then the cursor still points to that page. In this case the first
9559   ** call to balance() repairs the tree, and the if(...) condition is
9560   ** never true.
9561   **
9562   ** Otherwise, if the entry deleted was on an internal node page, then
9563   ** pCur is pointing to the leaf page from which a cell was removed to
9564   ** replace the cell deleted from the internal node. This is slightly
9565   ** tricky as the leaf node may be underfull, and the internal node may
9566   ** be either under or overfull. In this case run the balancing algorithm
9567   ** on the leaf node first. If the balance proceeds far enough up the
9568   ** tree that we can be sure that any problem in the internal node has
9569   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9570   ** walk the cursor up the tree to the internal node and balance it as
9571   ** well.  */
9572   assert( pCur->pPage->nOverflow==0 );
9573   assert( pCur->pPage->nFree>=0 );
9574   if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
9575     /* Optimization: If the free space is less than 2/3rds of the page,
9576     ** then balance() will always be a no-op.  No need to invoke it. */
9577     rc = SQLITE_OK;
9578   }else{
9579     rc = balance(pCur);
9580   }
9581   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9582     releasePageNotNull(pCur->pPage);
9583     pCur->iPage--;
9584     while( pCur->iPage>iCellDepth ){
9585       releasePage(pCur->apPage[pCur->iPage--]);
9586     }
9587     pCur->pPage = pCur->apPage[pCur->iPage];
9588     rc = balance(pCur);
9589   }
9590 
9591   if( rc==SQLITE_OK ){
9592     if( bPreserve>1 ){
9593       assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
9594       assert( pPage==pCur->pPage || CORRUPT_DB );
9595       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9596       pCur->eState = CURSOR_SKIPNEXT;
9597       if( iCellIdx>=pPage->nCell ){
9598         pCur->skipNext = -1;
9599         pCur->ix = pPage->nCell-1;
9600       }else{
9601         pCur->skipNext = 1;
9602       }
9603     }else{
9604       rc = moveToRoot(pCur);
9605       if( bPreserve ){
9606         btreeReleaseAllCursorPages(pCur);
9607         pCur->eState = CURSOR_REQUIRESEEK;
9608       }
9609       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9610     }
9611   }
9612   return rc;
9613 }
9614 
9615 /*
9616 ** Create a new BTree table.  Write into *piTable the page
9617 ** number for the root page of the new table.
9618 **
9619 ** The type of type is determined by the flags parameter.  Only the
9620 ** following values of flags are currently in use.  Other values for
9621 ** flags might not work:
9622 **
9623 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9624 **     BTREE_ZERODATA                  Used for SQL indices
9625 */
btreeCreateTable(Btree * p,Pgno * piTable,int createTabFlags)9626 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9627   BtShared *pBt = p->pBt;
9628   MemPage *pRoot;
9629   Pgno pgnoRoot;
9630   int rc;
9631   int ptfFlags;          /* Page-type flage for the root page of new table */
9632 
9633   assert( sqlite3BtreeHoldsMutex(p) );
9634   assert( pBt->inTransaction==TRANS_WRITE );
9635   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9636 
9637 #ifdef SQLITE_OMIT_AUTOVACUUM
9638   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9639   if( rc ){
9640     return rc;
9641   }
9642 #else
9643   if( pBt->autoVacuum ){
9644     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9645     MemPage *pPageMove; /* The page to move to. */
9646 
9647     /* Creating a new table may probably require moving an existing database
9648     ** to make room for the new tables root page. In case this page turns
9649     ** out to be an overflow page, delete all overflow page-map caches
9650     ** held by open cursors.
9651     */
9652     invalidateAllOverflowCache(pBt);
9653 
9654     /* Read the value of meta[3] from the database to determine where the
9655     ** root page of the new table should go. meta[3] is the largest root-page
9656     ** created so far, so the new root-page is (meta[3]+1).
9657     */
9658     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9659     if( pgnoRoot>btreePagecount(pBt) ){
9660       return SQLITE_CORRUPT_BKPT;
9661     }
9662     pgnoRoot++;
9663 
9664     /* The new root-page may not be allocated on a pointer-map page, or the
9665     ** PENDING_BYTE page.
9666     */
9667     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9668         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9669       pgnoRoot++;
9670     }
9671     assert( pgnoRoot>=3 );
9672 
9673     /* Allocate a page. The page that currently resides at pgnoRoot will
9674     ** be moved to the allocated page (unless the allocated page happens
9675     ** to reside at pgnoRoot).
9676     */
9677     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9678     if( rc!=SQLITE_OK ){
9679       return rc;
9680     }
9681 
9682     if( pgnoMove!=pgnoRoot ){
9683       /* pgnoRoot is the page that will be used for the root-page of
9684       ** the new table (assuming an error did not occur). But we were
9685       ** allocated pgnoMove. If required (i.e. if it was not allocated
9686       ** by extending the file), the current page at position pgnoMove
9687       ** is already journaled.
9688       */
9689       u8 eType = 0;
9690       Pgno iPtrPage = 0;
9691 
9692       /* Save the positions of any open cursors. This is required in
9693       ** case they are holding a reference to an xFetch reference
9694       ** corresponding to page pgnoRoot.  */
9695       rc = saveAllCursors(pBt, 0, 0);
9696       releasePage(pPageMove);
9697       if( rc!=SQLITE_OK ){
9698         return rc;
9699       }
9700 
9701       /* Move the page currently at pgnoRoot to pgnoMove. */
9702       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9703       if( rc!=SQLITE_OK ){
9704         return rc;
9705       }
9706       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9707       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9708         rc = SQLITE_CORRUPT_BKPT;
9709       }
9710       if( rc!=SQLITE_OK ){
9711         releasePage(pRoot);
9712         return rc;
9713       }
9714       assert( eType!=PTRMAP_ROOTPAGE );
9715       assert( eType!=PTRMAP_FREEPAGE );
9716       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9717       releasePage(pRoot);
9718 
9719       /* Obtain the page at pgnoRoot */
9720       if( rc!=SQLITE_OK ){
9721         return rc;
9722       }
9723       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9724       if( rc!=SQLITE_OK ){
9725         return rc;
9726       }
9727       rc = sqlite3PagerWrite(pRoot->pDbPage);
9728       if( rc!=SQLITE_OK ){
9729         releasePage(pRoot);
9730         return rc;
9731       }
9732     }else{
9733       pRoot = pPageMove;
9734     }
9735 
9736     /* Update the pointer-map and meta-data with the new root-page number. */
9737     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9738     if( rc ){
9739       releasePage(pRoot);
9740       return rc;
9741     }
9742 
9743     /* When the new root page was allocated, page 1 was made writable in
9744     ** order either to increase the database filesize, or to decrement the
9745     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9746     */
9747     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9748     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9749     if( NEVER(rc) ){
9750       releasePage(pRoot);
9751       return rc;
9752     }
9753 
9754   }else{
9755     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9756     if( rc ) return rc;
9757   }
9758 #endif
9759   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9760   if( createTabFlags & BTREE_INTKEY ){
9761     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9762   }else{
9763     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9764   }
9765   zeroPage(pRoot, ptfFlags);
9766   sqlite3PagerUnref(pRoot->pDbPage);
9767   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9768   *piTable = pgnoRoot;
9769   return SQLITE_OK;
9770 }
sqlite3BtreeCreateTable(Btree * p,Pgno * piTable,int flags)9771 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9772   int rc;
9773   sqlite3BtreeEnter(p);
9774   rc = btreeCreateTable(p, piTable, flags);
9775   sqlite3BtreeLeave(p);
9776   return rc;
9777 }
9778 
9779 /*
9780 ** Erase the given database page and all its children.  Return
9781 ** the page to the freelist.
9782 */
clearDatabasePage(BtShared * pBt,Pgno pgno,int freePageFlag,i64 * pnChange)9783 static int clearDatabasePage(
9784   BtShared *pBt,           /* The BTree that contains the table */
9785   Pgno pgno,               /* Page number to clear */
9786   int freePageFlag,        /* Deallocate page if true */
9787   i64 *pnChange            /* Add number of Cells freed to this counter */
9788 ){
9789   MemPage *pPage;
9790   int rc;
9791   unsigned char *pCell;
9792   int i;
9793   int hdr;
9794   CellInfo info;
9795 
9796   assert( sqlite3_mutex_held(pBt->mutex) );
9797   if( pgno>btreePagecount(pBt) ){
9798     return SQLITE_CORRUPT_BKPT;
9799   }
9800   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9801   if( rc ) return rc;
9802   if( (pBt->openFlags & BTREE_SINGLE)==0
9803    && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
9804   ){
9805     rc = SQLITE_CORRUPT_BKPT;
9806     goto cleardatabasepage_out;
9807   }
9808   hdr = pPage->hdrOffset;
9809   for(i=0; i<pPage->nCell; i++){
9810     pCell = findCell(pPage, i);
9811     if( !pPage->leaf ){
9812       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9813       if( rc ) goto cleardatabasepage_out;
9814     }
9815     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9816     if( rc ) goto cleardatabasepage_out;
9817   }
9818   if( !pPage->leaf ){
9819     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9820     if( rc ) goto cleardatabasepage_out;
9821     if( pPage->intKey ) pnChange = 0;
9822   }
9823   if( pnChange ){
9824     testcase( !pPage->intKey );
9825     *pnChange += pPage->nCell;
9826   }
9827   if( freePageFlag ){
9828     freePage(pPage, &rc);
9829   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9830     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9831   }
9832 
9833 cleardatabasepage_out:
9834   releasePage(pPage);
9835   return rc;
9836 }
9837 
9838 /*
9839 ** Delete all information from a single table in the database.  iTable is
9840 ** the page number of the root of the table.  After this routine returns,
9841 ** the root page is empty, but still exists.
9842 **
9843 ** This routine will fail with SQLITE_LOCKED if there are any open
9844 ** read cursors on the table.  Open write cursors are moved to the
9845 ** root of the table.
9846 **
9847 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9848 ** is incremented by the number of entries in the table.
9849 */
sqlite3BtreeClearTable(Btree * p,int iTable,i64 * pnChange)9850 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9851   int rc;
9852   BtShared *pBt = p->pBt;
9853   sqlite3BtreeEnter(p);
9854   assert( p->inTrans==TRANS_WRITE );
9855 
9856   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9857 
9858   if( SQLITE_OK==rc ){
9859     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9860     ** is the root of a table b-tree - if it is not, the following call is
9861     ** a no-op).  */
9862     if( p->hasIncrblobCur ){
9863       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9864     }
9865     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9866   }
9867   sqlite3BtreeLeave(p);
9868   return rc;
9869 }
9870 
9871 /*
9872 ** Delete all information from the single table that pCur is open on.
9873 **
9874 ** This routine only work for pCur on an ephemeral table.
9875 */
sqlite3BtreeClearTableOfCursor(BtCursor * pCur)9876 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9877   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9878 }
9879 
9880 /*
9881 ** Erase all information in a table and add the root of the table to
9882 ** the freelist.  Except, the root of the principle table (the one on
9883 ** page 1) is never added to the freelist.
9884 **
9885 ** This routine will fail with SQLITE_LOCKED if there are any open
9886 ** cursors on the table.
9887 **
9888 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9889 ** root page in the database file, then the last root page
9890 ** in the database file is moved into the slot formerly occupied by
9891 ** iTable and that last slot formerly occupied by the last root page
9892 ** is added to the freelist instead of iTable.  In this say, all
9893 ** root pages are kept at the beginning of the database file, which
9894 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9895 ** page number that used to be the last root page in the file before
9896 ** the move.  If no page gets moved, *piMoved is set to 0.
9897 ** The last root page is recorded in meta[3] and the value of
9898 ** meta[3] is updated by this procedure.
9899 */
btreeDropTable(Btree * p,Pgno iTable,int * piMoved)9900 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9901   int rc;
9902   MemPage *pPage = 0;
9903   BtShared *pBt = p->pBt;
9904 
9905   assert( sqlite3BtreeHoldsMutex(p) );
9906   assert( p->inTrans==TRANS_WRITE );
9907   assert( iTable>=2 );
9908   if( iTable>btreePagecount(pBt) ){
9909     return SQLITE_CORRUPT_BKPT;
9910   }
9911 
9912   rc = sqlite3BtreeClearTable(p, iTable, 0);
9913   if( rc ) return rc;
9914   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9915   if( NEVER(rc) ){
9916     releasePage(pPage);
9917     return rc;
9918   }
9919 
9920   *piMoved = 0;
9921 
9922 #ifdef SQLITE_OMIT_AUTOVACUUM
9923   freePage(pPage, &rc);
9924   releasePage(pPage);
9925 #else
9926   if( pBt->autoVacuum ){
9927     Pgno maxRootPgno;
9928     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9929 
9930     if( iTable==maxRootPgno ){
9931       /* If the table being dropped is the table with the largest root-page
9932       ** number in the database, put the root page on the free list.
9933       */
9934       freePage(pPage, &rc);
9935       releasePage(pPage);
9936       if( rc!=SQLITE_OK ){
9937         return rc;
9938       }
9939     }else{
9940       /* The table being dropped does not have the largest root-page
9941       ** number in the database. So move the page that does into the
9942       ** gap left by the deleted root-page.
9943       */
9944       MemPage *pMove;
9945       releasePage(pPage);
9946       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9947       if( rc!=SQLITE_OK ){
9948         return rc;
9949       }
9950       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9951       releasePage(pMove);
9952       if( rc!=SQLITE_OK ){
9953         return rc;
9954       }
9955       pMove = 0;
9956       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9957       freePage(pMove, &rc);
9958       releasePage(pMove);
9959       if( rc!=SQLITE_OK ){
9960         return rc;
9961       }
9962       *piMoved = maxRootPgno;
9963     }
9964 
9965     /* Set the new 'max-root-page' value in the database header. This
9966     ** is the old value less one, less one more if that happens to
9967     ** be a root-page number, less one again if that is the
9968     ** PENDING_BYTE_PAGE.
9969     */
9970     maxRootPgno--;
9971     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9972            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9973       maxRootPgno--;
9974     }
9975     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9976 
9977     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9978   }else{
9979     freePage(pPage, &rc);
9980     releasePage(pPage);
9981   }
9982 #endif
9983   return rc;
9984 }
sqlite3BtreeDropTable(Btree * p,int iTable,int * piMoved)9985 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9986   int rc;
9987   sqlite3BtreeEnter(p);
9988   rc = btreeDropTable(p, iTable, piMoved);
9989   sqlite3BtreeLeave(p);
9990   return rc;
9991 }
9992 
9993 
9994 /*
9995 ** This function may only be called if the b-tree connection already
9996 ** has a read or write transaction open on the database.
9997 **
9998 ** Read the meta-information out of a database file.  Meta[0]
9999 ** is the number of free pages currently in the database.  Meta[1]
10000 ** through meta[15] are available for use by higher layers.  Meta[0]
10001 ** is read-only, the others are read/write.
10002 **
10003 ** The schema layer numbers meta values differently.  At the schema
10004 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10005 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
10006 **
10007 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
10008 ** of reading the value out of the header, it instead loads the "DataVersion"
10009 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
10010 ** database file.  It is a number computed by the pager.  But its access
10011 ** pattern is the same as header meta values, and so it is convenient to
10012 ** read it from this routine.
10013 */
sqlite3BtreeGetMeta(Btree * p,int idx,u32 * pMeta)10014 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
10015   BtShared *pBt = p->pBt;
10016 
10017   sqlite3BtreeEnter(p);
10018   assert( p->inTrans>TRANS_NONE );
10019   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
10020   assert( pBt->pPage1 );
10021   assert( idx>=0 && idx<=15 );
10022 
10023   if( idx==BTREE_DATA_VERSION ){
10024     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
10025   }else{
10026     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10027   }
10028 
10029   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10030   ** database, mark the database as read-only.  */
10031 #ifdef SQLITE_OMIT_AUTOVACUUM
10032   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10033     pBt->btsFlags |= BTS_READ_ONLY;
10034   }
10035 #endif
10036 
10037   sqlite3BtreeLeave(p);
10038 }
10039 
10040 /*
10041 ** Write meta-information back into the database.  Meta[0] is
10042 ** read-only and may not be written.
10043 */
sqlite3BtreeUpdateMeta(Btree * p,int idx,u32 iMeta)10044 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10045   BtShared *pBt = p->pBt;
10046   unsigned char *pP1;
10047   int rc;
10048   assert( idx>=1 && idx<=15 );
10049   sqlite3BtreeEnter(p);
10050   assert( p->inTrans==TRANS_WRITE );
10051   assert( pBt->pPage1!=0 );
10052   pP1 = pBt->pPage1->aData;
10053   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10054   if( rc==SQLITE_OK ){
10055     put4byte(&pP1[36 + idx*4], iMeta);
10056 #ifndef SQLITE_OMIT_AUTOVACUUM
10057     if( idx==BTREE_INCR_VACUUM ){
10058       assert( pBt->autoVacuum || iMeta==0 );
10059       assert( iMeta==0 || iMeta==1 );
10060       pBt->incrVacuum = (u8)iMeta;
10061     }
10062 #endif
10063   }
10064   sqlite3BtreeLeave(p);
10065   return rc;
10066 }
10067 
10068 /*
10069 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10070 ** number of entries in the b-tree and write the result to *pnEntry.
10071 **
10072 ** SQLITE_OK is returned if the operation is successfully executed.
10073 ** Otherwise, if an error is encountered (i.e. an IO error or database
10074 ** corruption) an SQLite error code is returned.
10075 */
sqlite3BtreeCount(sqlite3 * db,BtCursor * pCur,i64 * pnEntry)10076 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
10077   i64 nEntry = 0;                      /* Value to return in *pnEntry */
10078   int rc;                              /* Return code */
10079 
10080   rc = moveToRoot(pCur);
10081   if( rc==SQLITE_EMPTY ){
10082     *pnEntry = 0;
10083     return SQLITE_OK;
10084   }
10085 
10086   /* Unless an error occurs, the following loop runs one iteration for each
10087   ** page in the B-Tree structure (not including overflow pages).
10088   */
10089   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
10090     int iIdx;                          /* Index of child node in parent */
10091     MemPage *pPage;                    /* Current page of the b-tree */
10092 
10093     /* If this is a leaf page or the tree is not an int-key tree, then
10094     ** this page contains countable entries. Increment the entry counter
10095     ** accordingly.
10096     */
10097     pPage = pCur->pPage;
10098     if( pPage->leaf || !pPage->intKey ){
10099       nEntry += pPage->nCell;
10100     }
10101 
10102     /* pPage is a leaf node. This loop navigates the cursor so that it
10103     ** points to the first interior cell that it points to the parent of
10104     ** the next page in the tree that has not yet been visited. The
10105     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10106     ** of the page, or to the number of cells in the page if the next page
10107     ** to visit is the right-child of its parent.
10108     **
10109     ** If all pages in the tree have been visited, return SQLITE_OK to the
10110     ** caller.
10111     */
10112     if( pPage->leaf ){
10113       do {
10114         if( pCur->iPage==0 ){
10115           /* All pages of the b-tree have been visited. Return successfully. */
10116           *pnEntry = nEntry;
10117           return moveToRoot(pCur);
10118         }
10119         moveToParent(pCur);
10120       }while ( pCur->ix>=pCur->pPage->nCell );
10121 
10122       pCur->ix++;
10123       pPage = pCur->pPage;
10124     }
10125 
10126     /* Descend to the child node of the cell that the cursor currently
10127     ** points at. This is the right-child if (iIdx==pPage->nCell).
10128     */
10129     iIdx = pCur->ix;
10130     if( iIdx==pPage->nCell ){
10131       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10132     }else{
10133       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10134     }
10135   }
10136 
10137   /* An error has occurred. Return an error code. */
10138   return rc;
10139 }
10140 
10141 /*
10142 ** Return the pager associated with a BTree.  This routine is used for
10143 ** testing and debugging only.
10144 */
sqlite3BtreePager(Btree * p)10145 Pager *sqlite3BtreePager(Btree *p){
10146   return p->pBt->pPager;
10147 }
10148 
10149 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10150 /*
10151 ** Append a message to the error message string.
10152 */
checkAppendMsg(IntegrityCk * pCheck,const char * zFormat,...)10153 static void checkAppendMsg(
10154   IntegrityCk *pCheck,
10155   const char *zFormat,
10156   ...
10157 ){
10158   va_list ap;
10159   if( !pCheck->mxErr ) return;
10160   pCheck->mxErr--;
10161   pCheck->nErr++;
10162   va_start(ap, zFormat);
10163   if( pCheck->errMsg.nChar ){
10164     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
10165   }
10166   if( pCheck->zPfx ){
10167     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
10168   }
10169   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
10170   va_end(ap);
10171   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
10172     pCheck->bOomFault = 1;
10173   }
10174 }
10175 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10176 
10177 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10178 
10179 /*
10180 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10181 ** corresponds to page iPg is already set.
10182 */
getPageReferenced(IntegrityCk * pCheck,Pgno iPg)10183 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10184   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10185   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10186 }
10187 
10188 /*
10189 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10190 */
setPageReferenced(IntegrityCk * pCheck,Pgno iPg)10191 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10192   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10193   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10194 }
10195 
10196 
10197 /*
10198 ** Add 1 to the reference count for page iPage.  If this is the second
10199 ** reference to the page, add an error message to pCheck->zErrMsg.
10200 ** Return 1 if there are 2 or more references to the page and 0 if
10201 ** if this is the first reference to the page.
10202 **
10203 ** Also check that the page number is in bounds.
10204 */
checkRef(IntegrityCk * pCheck,Pgno iPage)10205 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
10206   if( iPage>pCheck->nPage || iPage==0 ){
10207     checkAppendMsg(pCheck, "invalid page number %d", iPage);
10208     return 1;
10209   }
10210   if( getPageReferenced(pCheck, iPage) ){
10211     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
10212     return 1;
10213   }
10214   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
10215   setPageReferenced(pCheck, iPage);
10216   return 0;
10217 }
10218 
10219 #ifndef SQLITE_OMIT_AUTOVACUUM
10220 /*
10221 ** Check that the entry in the pointer-map for page iChild maps to
10222 ** page iParent, pointer type ptrType. If not, append an error message
10223 ** to pCheck.
10224 */
checkPtrmap(IntegrityCk * pCheck,Pgno iChild,u8 eType,Pgno iParent)10225 static void checkPtrmap(
10226   IntegrityCk *pCheck,   /* Integrity check context */
10227   Pgno iChild,           /* Child page number */
10228   u8 eType,              /* Expected pointer map type */
10229   Pgno iParent           /* Expected pointer map parent page number */
10230 ){
10231   int rc;
10232   u8 ePtrmapType;
10233   Pgno iPtrmapParent;
10234 
10235   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10236   if( rc!=SQLITE_OK ){
10237     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
10238     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10239     return;
10240   }
10241 
10242   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10243     checkAppendMsg(pCheck,
10244       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10245       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10246   }
10247 }
10248 #endif
10249 
10250 /*
10251 ** Check the integrity of the freelist or of an overflow page list.
10252 ** Verify that the number of pages on the list is N.
10253 */
checkList(IntegrityCk * pCheck,int isFreeList,Pgno iPage,u32 N)10254 static void checkList(
10255   IntegrityCk *pCheck,  /* Integrity checking context */
10256   int isFreeList,       /* True for a freelist.  False for overflow page list */
10257   Pgno iPage,           /* Page number for first page in the list */
10258   u32 N                 /* Expected number of pages in the list */
10259 ){
10260   int i;
10261   u32 expected = N;
10262   int nErrAtStart = pCheck->nErr;
10263   while( iPage!=0 && pCheck->mxErr ){
10264     DbPage *pOvflPage;
10265     unsigned char *pOvflData;
10266     if( checkRef(pCheck, iPage) ) break;
10267     N--;
10268     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10269       checkAppendMsg(pCheck, "failed to get page %d", iPage);
10270       break;
10271     }
10272     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10273     if( isFreeList ){
10274       u32 n = (u32)get4byte(&pOvflData[4]);
10275 #ifndef SQLITE_OMIT_AUTOVACUUM
10276       if( pCheck->pBt->autoVacuum ){
10277         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10278       }
10279 #endif
10280       if( n>pCheck->pBt->usableSize/4-2 ){
10281         checkAppendMsg(pCheck,
10282            "freelist leaf count too big on page %d", iPage);
10283         N--;
10284       }else{
10285         for(i=0; i<(int)n; i++){
10286           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10287 #ifndef SQLITE_OMIT_AUTOVACUUM
10288           if( pCheck->pBt->autoVacuum ){
10289             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10290           }
10291 #endif
10292           checkRef(pCheck, iFreePage);
10293         }
10294         N -= n;
10295       }
10296     }
10297 #ifndef SQLITE_OMIT_AUTOVACUUM
10298     else{
10299       /* If this database supports auto-vacuum and iPage is not the last
10300       ** page in this overflow list, check that the pointer-map entry for
10301       ** the following page matches iPage.
10302       */
10303       if( pCheck->pBt->autoVacuum && N>0 ){
10304         i = get4byte(pOvflData);
10305         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10306       }
10307     }
10308 #endif
10309     iPage = get4byte(pOvflData);
10310     sqlite3PagerUnref(pOvflPage);
10311   }
10312   if( N && nErrAtStart==pCheck->nErr ){
10313     checkAppendMsg(pCheck,
10314       "%s is %d but should be %d",
10315       isFreeList ? "size" : "overflow list length",
10316       expected-N, expected);
10317   }
10318 }
10319 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10320 
10321 /*
10322 ** An implementation of a min-heap.
10323 **
10324 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10325 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10326 ** and aHeap[N*2+1].
10327 **
10328 ** The heap property is this:  Every node is less than or equal to both
10329 ** of its daughter nodes.  A consequence of the heap property is that the
10330 ** root node aHeap[1] is always the minimum value currently in the heap.
10331 **
10332 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10333 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10334 ** removes the root element from the heap (the minimum value in the heap)
10335 ** and then moves other nodes around as necessary to preserve the heap
10336 ** property.
10337 **
10338 ** This heap is used for cell overlap and coverage testing.  Each u32
10339 ** entry represents the span of a cell or freeblock on a btree page.
10340 ** The upper 16 bits are the index of the first byte of a range and the
10341 ** lower 16 bits are the index of the last byte of that range.
10342 */
btreeHeapInsert(u32 * aHeap,u32 x)10343 static void btreeHeapInsert(u32 *aHeap, u32 x){
10344   u32 j, i = ++aHeap[0];
10345   aHeap[i] = x;
10346   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10347     x = aHeap[j];
10348     aHeap[j] = aHeap[i];
10349     aHeap[i] = x;
10350     i = j;
10351   }
10352 }
btreeHeapPull(u32 * aHeap,u32 * pOut)10353 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10354   u32 j, i, x;
10355   if( (x = aHeap[0])==0 ) return 0;
10356   *pOut = aHeap[1];
10357   aHeap[1] = aHeap[x];
10358   aHeap[x] = 0xffffffff;
10359   aHeap[0]--;
10360   i = 1;
10361   while( (j = i*2)<=aHeap[0] ){
10362     if( aHeap[j]>aHeap[j+1] ) j++;
10363     if( aHeap[i]<aHeap[j] ) break;
10364     x = aHeap[i];
10365     aHeap[i] = aHeap[j];
10366     aHeap[j] = x;
10367     i = j;
10368   }
10369   return 1;
10370 }
10371 
10372 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10373 /*
10374 ** Do various sanity checks on a single page of a tree.  Return
10375 ** the tree depth.  Root pages return 0.  Parents of root pages
10376 ** return 1, and so forth.
10377 **
10378 ** These checks are done:
10379 **
10380 **      1.  Make sure that cells and freeblocks do not overlap
10381 **          but combine to completely cover the page.
10382 **      2.  Make sure integer cell keys are in order.
10383 **      3.  Check the integrity of overflow pages.
10384 **      4.  Recursively call checkTreePage on all children.
10385 **      5.  Verify that the depth of all children is the same.
10386 */
checkTreePage(IntegrityCk * pCheck,Pgno iPage,i64 * piMinKey,i64 maxKey)10387 static int checkTreePage(
10388   IntegrityCk *pCheck,  /* Context for the sanity check */
10389   Pgno iPage,           /* Page number of the page to check */
10390   i64 *piMinKey,        /* Write minimum integer primary key here */
10391   i64 maxKey            /* Error if integer primary key greater than this */
10392 ){
10393   MemPage *pPage = 0;      /* The page being analyzed */
10394   int i;                   /* Loop counter */
10395   int rc;                  /* Result code from subroutine call */
10396   int depth = -1, d2;      /* Depth of a subtree */
10397   int pgno;                /* Page number */
10398   int nFrag;               /* Number of fragmented bytes on the page */
10399   int hdr;                 /* Offset to the page header */
10400   int cellStart;           /* Offset to the start of the cell pointer array */
10401   int nCell;               /* Number of cells */
10402   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10403   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10404                            ** False if IPK must be strictly less than maxKey */
10405   u8 *data;                /* Page content */
10406   u8 *pCell;               /* Cell content */
10407   u8 *pCellIdx;            /* Next element of the cell pointer array */
10408   BtShared *pBt;           /* The BtShared object that owns pPage */
10409   u32 pc;                  /* Address of a cell */
10410   u32 usableSize;          /* Usable size of the page */
10411   u32 contentOffset;       /* Offset to the start of the cell content area */
10412   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10413   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10414   const char *saved_zPfx = pCheck->zPfx;
10415   int saved_v1 = pCheck->v1;
10416   int saved_v2 = pCheck->v2;
10417   u8 savedIsInit = 0;
10418 
10419   /* Check that the page exists
10420   */
10421   pBt = pCheck->pBt;
10422   usableSize = pBt->usableSize;
10423   if( iPage==0 ) return 0;
10424   if( checkRef(pCheck, iPage) ) return 0;
10425   pCheck->zPfx = "Page %u: ";
10426   pCheck->v1 = iPage;
10427   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10428     checkAppendMsg(pCheck,
10429        "unable to get the page. error code=%d", rc);
10430     goto end_of_check;
10431   }
10432 
10433   /* Clear MemPage.isInit to make sure the corruption detection code in
10434   ** btreeInitPage() is executed.  */
10435   savedIsInit = pPage->isInit;
10436   pPage->isInit = 0;
10437   if( (rc = btreeInitPage(pPage))!=0 ){
10438     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10439     checkAppendMsg(pCheck,
10440                    "btreeInitPage() returns error code %d", rc);
10441     goto end_of_check;
10442   }
10443   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10444     assert( rc==SQLITE_CORRUPT );
10445     checkAppendMsg(pCheck, "free space corruption", rc);
10446     goto end_of_check;
10447   }
10448   data = pPage->aData;
10449   hdr = pPage->hdrOffset;
10450 
10451   /* Set up for cell analysis */
10452   pCheck->zPfx = "On tree page %u cell %d: ";
10453   contentOffset = get2byteNotZero(&data[hdr+5]);
10454   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10455 
10456   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10457   ** number of cells on the page. */
10458   nCell = get2byte(&data[hdr+3]);
10459   assert( pPage->nCell==nCell );
10460 
10461   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10462   ** immediately follows the b-tree page header. */
10463   cellStart = hdr + 12 - 4*pPage->leaf;
10464   assert( pPage->aCellIdx==&data[cellStart] );
10465   pCellIdx = &data[cellStart + 2*(nCell-1)];
10466 
10467   if( !pPage->leaf ){
10468     /* Analyze the right-child page of internal pages */
10469     pgno = get4byte(&data[hdr+8]);
10470 #ifndef SQLITE_OMIT_AUTOVACUUM
10471     if( pBt->autoVacuum ){
10472       pCheck->zPfx = "On page %u at right child: ";
10473       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10474     }
10475 #endif
10476     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10477     keyCanBeEqual = 0;
10478   }else{
10479     /* For leaf pages, the coverage check will occur in the same loop
10480     ** as the other cell checks, so initialize the heap.  */
10481     heap = pCheck->heap;
10482     heap[0] = 0;
10483   }
10484 
10485   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10486   ** integer offsets to the cell contents. */
10487   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10488     CellInfo info;
10489 
10490     /* Check cell size */
10491     pCheck->v2 = i;
10492     assert( pCellIdx==&data[cellStart + i*2] );
10493     pc = get2byteAligned(pCellIdx);
10494     pCellIdx -= 2;
10495     if( pc<contentOffset || pc>usableSize-4 ){
10496       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10497                              pc, contentOffset, usableSize-4);
10498       doCoverageCheck = 0;
10499       continue;
10500     }
10501     pCell = &data[pc];
10502     pPage->xParseCell(pPage, pCell, &info);
10503     if( pc+info.nSize>usableSize ){
10504       checkAppendMsg(pCheck, "Extends off end of page");
10505       doCoverageCheck = 0;
10506       continue;
10507     }
10508 
10509     /* Check for integer primary key out of range */
10510     if( pPage->intKey ){
10511       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10512         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10513       }
10514       maxKey = info.nKey;
10515       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10516     }
10517 
10518     /* Check the content overflow list */
10519     if( info.nPayload>info.nLocal ){
10520       u32 nPage;       /* Number of pages on the overflow chain */
10521       Pgno pgnoOvfl;   /* First page of the overflow chain */
10522       assert( pc + info.nSize - 4 <= usableSize );
10523       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10524       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10525 #ifndef SQLITE_OMIT_AUTOVACUUM
10526       if( pBt->autoVacuum ){
10527         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10528       }
10529 #endif
10530       checkList(pCheck, 0, pgnoOvfl, nPage);
10531     }
10532 
10533     if( !pPage->leaf ){
10534       /* Check sanity of left child page for internal pages */
10535       pgno = get4byte(pCell);
10536 #ifndef SQLITE_OMIT_AUTOVACUUM
10537       if( pBt->autoVacuum ){
10538         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10539       }
10540 #endif
10541       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10542       keyCanBeEqual = 0;
10543       if( d2!=depth ){
10544         checkAppendMsg(pCheck, "Child page depth differs");
10545         depth = d2;
10546       }
10547     }else{
10548       /* Populate the coverage-checking heap for leaf pages */
10549       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10550     }
10551   }
10552   *piMinKey = maxKey;
10553 
10554   /* Check for complete coverage of the page
10555   */
10556   pCheck->zPfx = 0;
10557   if( doCoverageCheck && pCheck->mxErr>0 ){
10558     /* For leaf pages, the min-heap has already been initialized and the
10559     ** cells have already been inserted.  But for internal pages, that has
10560     ** not yet been done, so do it now */
10561     if( !pPage->leaf ){
10562       heap = pCheck->heap;
10563       heap[0] = 0;
10564       for(i=nCell-1; i>=0; i--){
10565         u32 size;
10566         pc = get2byteAligned(&data[cellStart+i*2]);
10567         size = pPage->xCellSize(pPage, &data[pc]);
10568         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10569       }
10570     }
10571     /* Add the freeblocks to the min-heap
10572     **
10573     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10574     ** is the offset of the first freeblock, or zero if there are no
10575     ** freeblocks on the page.
10576     */
10577     i = get2byte(&data[hdr+1]);
10578     while( i>0 ){
10579       int size, j;
10580       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10581       size = get2byte(&data[i+2]);
10582       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10583       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10584       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10585       ** big-endian integer which is the offset in the b-tree page of the next
10586       ** freeblock in the chain, or zero if the freeblock is the last on the
10587       ** chain. */
10588       j = get2byte(&data[i]);
10589       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10590       ** increasing offset. */
10591       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10592       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10593       i = j;
10594     }
10595     /* Analyze the min-heap looking for overlap between cells and/or
10596     ** freeblocks, and counting the number of untracked bytes in nFrag.
10597     **
10598     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10599     ** There is an implied first entry the covers the page header, the cell
10600     ** pointer index, and the gap between the cell pointer index and the start
10601     ** of cell content.
10602     **
10603     ** The loop below pulls entries from the min-heap in order and compares
10604     ** the start_address against the previous end_address.  If there is an
10605     ** overlap, that means bytes are used multiple times.  If there is a gap,
10606     ** that gap is added to the fragmentation count.
10607     */
10608     nFrag = 0;
10609     prev = contentOffset - 1;   /* Implied first min-heap entry */
10610     while( btreeHeapPull(heap,&x) ){
10611       if( (prev&0xffff)>=(x>>16) ){
10612         checkAppendMsg(pCheck,
10613           "Multiple uses for byte %u of page %u", x>>16, iPage);
10614         break;
10615       }else{
10616         nFrag += (x>>16) - (prev&0xffff) - 1;
10617         prev = x;
10618       }
10619     }
10620     nFrag += usableSize - (prev&0xffff) - 1;
10621     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10622     ** is stored in the fifth field of the b-tree page header.
10623     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10624     ** number of fragmented free bytes within the cell content area.
10625     */
10626     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10627       checkAppendMsg(pCheck,
10628           "Fragmentation of %d bytes reported as %d on page %u",
10629           nFrag, data[hdr+7], iPage);
10630     }
10631   }
10632 
10633 end_of_check:
10634   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10635   releasePage(pPage);
10636   pCheck->zPfx = saved_zPfx;
10637   pCheck->v1 = saved_v1;
10638   pCheck->v2 = saved_v2;
10639   return depth+1;
10640 }
10641 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10642 
10643 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10644 /*
10645 ** This routine does a complete check of the given BTree file.  aRoot[] is
10646 ** an array of pages numbers were each page number is the root page of
10647 ** a table.  nRoot is the number of entries in aRoot.
10648 **
10649 ** A read-only or read-write transaction must be opened before calling
10650 ** this function.
10651 **
10652 ** Write the number of error seen in *pnErr.  Except for some memory
10653 ** allocation errors,  an error message held in memory obtained from
10654 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10655 ** returned.  If a memory allocation error occurs, NULL is returned.
10656 **
10657 ** If the first entry in aRoot[] is 0, that indicates that the list of
10658 ** root pages is incomplete.  This is a "partial integrity-check".  This
10659 ** happens when performing an integrity check on a single table.  The
10660 ** zero is skipped, of course.  But in addition, the freelist checks
10661 ** and the checks to make sure every page is referenced are also skipped,
10662 ** since obviously it is not possible to know which pages are covered by
10663 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10664 ** checks are still performed.
10665 */
sqlite3BtreeIntegrityCheck(sqlite3 * db,Btree * p,Pgno * aRoot,int nRoot,int mxErr,int * pnErr)10666 char *sqlite3BtreeIntegrityCheck(
10667   sqlite3 *db,  /* Database connection that is running the check */
10668   Btree *p,     /* The btree to be checked */
10669   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10670   int nRoot,    /* Number of entries in aRoot[] */
10671   int mxErr,    /* Stop reporting errors after this many */
10672   int *pnErr    /* Write number of errors seen to this variable */
10673 ){
10674   Pgno i;
10675   IntegrityCk sCheck;
10676   BtShared *pBt = p->pBt;
10677   u64 savedDbFlags = pBt->db->flags;
10678   char zErr[100];
10679   int bPartial = 0;            /* True if not checking all btrees */
10680   int bCkFreelist = 1;         /* True to scan the freelist */
10681   VVA_ONLY( int nRef );
10682   assert( nRoot>0 );
10683 
10684   /* aRoot[0]==0 means this is a partial check */
10685   if( aRoot[0]==0 ){
10686     assert( nRoot>1 );
10687     bPartial = 1;
10688     if( aRoot[1]!=1 ) bCkFreelist = 0;
10689   }
10690 
10691   sqlite3BtreeEnter(p);
10692   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10693   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10694   assert( nRef>=0 );
10695   sCheck.db = db;
10696   sCheck.pBt = pBt;
10697   sCheck.pPager = pBt->pPager;
10698   sCheck.nPage = btreePagecount(sCheck.pBt);
10699   sCheck.mxErr = mxErr;
10700   sCheck.nErr = 0;
10701   sCheck.bOomFault = 0;
10702   sCheck.zPfx = 0;
10703   sCheck.v1 = 0;
10704   sCheck.v2 = 0;
10705   sCheck.aPgRef = 0;
10706   sCheck.heap = 0;
10707   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10708   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10709   if( sCheck.nPage==0 ){
10710     goto integrity_ck_cleanup;
10711   }
10712 
10713   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10714   if( !sCheck.aPgRef ){
10715     sCheck.bOomFault = 1;
10716     goto integrity_ck_cleanup;
10717   }
10718   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10719   if( sCheck.heap==0 ){
10720     sCheck.bOomFault = 1;
10721     goto integrity_ck_cleanup;
10722   }
10723 
10724   i = PENDING_BYTE_PAGE(pBt);
10725   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10726 
10727   /* Check the integrity of the freelist
10728   */
10729   if( bCkFreelist ){
10730     sCheck.zPfx = "Main freelist: ";
10731     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10732               get4byte(&pBt->pPage1->aData[36]));
10733     sCheck.zPfx = 0;
10734   }
10735 
10736   /* Check all the tables.
10737   */
10738 #ifndef SQLITE_OMIT_AUTOVACUUM
10739   if( !bPartial ){
10740     if( pBt->autoVacuum ){
10741       Pgno mx = 0;
10742       Pgno mxInHdr;
10743       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10744       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10745       if( mx!=mxInHdr ){
10746         checkAppendMsg(&sCheck,
10747           "max rootpage (%d) disagrees with header (%d)",
10748           mx, mxInHdr
10749         );
10750       }
10751     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10752       checkAppendMsg(&sCheck,
10753         "incremental_vacuum enabled with a max rootpage of zero"
10754       );
10755     }
10756   }
10757 #endif
10758   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10759   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10760   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10761     i64 notUsed;
10762     if( aRoot[i]==0 ) continue;
10763 #ifndef SQLITE_OMIT_AUTOVACUUM
10764     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10765       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10766     }
10767 #endif
10768     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10769   }
10770   pBt->db->flags = savedDbFlags;
10771 
10772   /* Make sure every page in the file is referenced
10773   */
10774   if( !bPartial ){
10775     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10776 #ifdef SQLITE_OMIT_AUTOVACUUM
10777       if( getPageReferenced(&sCheck, i)==0 ){
10778         checkAppendMsg(&sCheck, "Page %d is never used", i);
10779       }
10780 #else
10781       /* If the database supports auto-vacuum, make sure no tables contain
10782       ** references to pointer-map pages.
10783       */
10784       if( getPageReferenced(&sCheck, i)==0 &&
10785          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10786         checkAppendMsg(&sCheck, "Page %d is never used", i);
10787       }
10788       if( getPageReferenced(&sCheck, i)!=0 &&
10789          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10790         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10791       }
10792 #endif
10793     }
10794   }
10795 
10796   /* Clean  up and report errors.
10797   */
10798 integrity_ck_cleanup:
10799   sqlite3PageFree(sCheck.heap);
10800   sqlite3_free(sCheck.aPgRef);
10801   if( sCheck.bOomFault ){
10802     sqlite3_str_reset(&sCheck.errMsg);
10803     sCheck.nErr++;
10804   }
10805   *pnErr = sCheck.nErr;
10806   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10807   /* Make sure this analysis did not leave any unref() pages. */
10808   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10809   sqlite3BtreeLeave(p);
10810   return sqlite3StrAccumFinish(&sCheck.errMsg);
10811 }
10812 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10813 
10814 /*
10815 ** Return the full pathname of the underlying database file.  Return
10816 ** an empty string if the database is in-memory or a TEMP database.
10817 **
10818 ** The pager filename is invariant as long as the pager is
10819 ** open so it is safe to access without the BtShared mutex.
10820 */
sqlite3BtreeGetFilename(Btree * p)10821 const char *sqlite3BtreeGetFilename(Btree *p){
10822   assert( p->pBt->pPager!=0 );
10823   return sqlite3PagerFilename(p->pBt->pPager, 1);
10824 }
10825 
10826 /*
10827 ** Return the pathname of the journal file for this database. The return
10828 ** value of this routine is the same regardless of whether the journal file
10829 ** has been created or not.
10830 **
10831 ** The pager journal filename is invariant as long as the pager is
10832 ** open so it is safe to access without the BtShared mutex.
10833 */
sqlite3BtreeGetJournalname(Btree * p)10834 const char *sqlite3BtreeGetJournalname(Btree *p){
10835   assert( p->pBt->pPager!=0 );
10836   return sqlite3PagerJournalname(p->pBt->pPager);
10837 }
10838 
10839 /*
10840 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10841 ** to describe the current transaction state of Btree p.
10842 */
sqlite3BtreeTxnState(Btree * p)10843 int sqlite3BtreeTxnState(Btree *p){
10844   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10845   return p ? p->inTrans : 0;
10846 }
10847 
10848 #ifndef SQLITE_OMIT_WAL
10849 /*
10850 ** Run a checkpoint on the Btree passed as the first argument.
10851 **
10852 ** Return SQLITE_LOCKED if this or any other connection has an open
10853 ** transaction on the shared-cache the argument Btree is connected to.
10854 **
10855 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10856 */
sqlite3BtreeCheckpoint(Btree * p,int eMode,int * pnLog,int * pnCkpt)10857 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10858   int rc = SQLITE_OK;
10859   if( p ){
10860     BtShared *pBt = p->pBt;
10861     sqlite3BtreeEnter(p);
10862     if( pBt->inTransaction!=TRANS_NONE ){
10863       rc = SQLITE_LOCKED;
10864     }else{
10865       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10866     }
10867     sqlite3BtreeLeave(p);
10868   }
10869   return rc;
10870 }
10871 #endif
10872 
10873 /*
10874 ** Return true if there is currently a backup running on Btree p.
10875 */
sqlite3BtreeIsInBackup(Btree * p)10876 int sqlite3BtreeIsInBackup(Btree *p){
10877   assert( p );
10878   assert( sqlite3_mutex_held(p->db->mutex) );
10879   return p->nBackup!=0;
10880 }
10881 
10882 /*
10883 ** This function returns a pointer to a blob of memory associated with
10884 ** a single shared-btree. The memory is used by client code for its own
10885 ** purposes (for example, to store a high-level schema associated with
10886 ** the shared-btree). The btree layer manages reference counting issues.
10887 **
10888 ** The first time this is called on a shared-btree, nBytes bytes of memory
10889 ** are allocated, zeroed, and returned to the caller. For each subsequent
10890 ** call the nBytes parameter is ignored and a pointer to the same blob
10891 ** of memory returned.
10892 **
10893 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10894 ** allocated, a null pointer is returned. If the blob has already been
10895 ** allocated, it is returned as normal.
10896 **
10897 ** Just before the shared-btree is closed, the function passed as the
10898 ** xFree argument when the memory allocation was made is invoked on the
10899 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10900 ** on the memory, the btree layer does that.
10901 */
sqlite3BtreeSchema(Btree * p,int nBytes,void (* xFree)(void *))10902 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10903   BtShared *pBt = p->pBt;
10904   sqlite3BtreeEnter(p);
10905   if( !pBt->pSchema && nBytes ){
10906     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10907     pBt->xFreeSchema = xFree;
10908   }
10909   sqlite3BtreeLeave(p);
10910   return pBt->pSchema;
10911 }
10912 
10913 /*
10914 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10915 ** btree as the argument handle holds an exclusive lock on the
10916 ** sqlite_schema table. Otherwise SQLITE_OK.
10917 */
sqlite3BtreeSchemaLocked(Btree * p)10918 int sqlite3BtreeSchemaLocked(Btree *p){
10919   int rc;
10920   assert( sqlite3_mutex_held(p->db->mutex) );
10921   sqlite3BtreeEnter(p);
10922   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10923   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10924   sqlite3BtreeLeave(p);
10925   return rc;
10926 }
10927 
10928 
10929 #ifndef SQLITE_OMIT_SHARED_CACHE
10930 /*
10931 ** Obtain a lock on the table whose root page is iTab.  The
10932 ** lock is a write lock if isWritelock is true or a read lock
10933 ** if it is false.
10934 */
sqlite3BtreeLockTable(Btree * p,int iTab,u8 isWriteLock)10935 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10936   int rc = SQLITE_OK;
10937   assert( p->inTrans!=TRANS_NONE );
10938   if( p->sharable ){
10939     u8 lockType = READ_LOCK + isWriteLock;
10940     assert( READ_LOCK+1==WRITE_LOCK );
10941     assert( isWriteLock==0 || isWriteLock==1 );
10942 
10943     sqlite3BtreeEnter(p);
10944     rc = querySharedCacheTableLock(p, iTab, lockType);
10945     if( rc==SQLITE_OK ){
10946       rc = setSharedCacheTableLock(p, iTab, lockType);
10947     }
10948     sqlite3BtreeLeave(p);
10949   }
10950   return rc;
10951 }
10952 #endif
10953 
10954 #ifndef SQLITE_OMIT_INCRBLOB
10955 /*
10956 ** Argument pCsr must be a cursor opened for writing on an
10957 ** INTKEY table currently pointing at a valid table entry.
10958 ** This function modifies the data stored as part of that entry.
10959 **
10960 ** Only the data content may only be modified, it is not possible to
10961 ** change the length of the data stored. If this function is called with
10962 ** parameters that attempt to write past the end of the existing data,
10963 ** no modifications are made and SQLITE_CORRUPT is returned.
10964 */
sqlite3BtreePutData(BtCursor * pCsr,u32 offset,u32 amt,void * z)10965 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10966   int rc;
10967   assert( cursorOwnsBtShared(pCsr) );
10968   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10969   assert( pCsr->curFlags & BTCF_Incrblob );
10970 
10971   rc = restoreCursorPosition(pCsr);
10972   if( rc!=SQLITE_OK ){
10973     return rc;
10974   }
10975   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10976   if( pCsr->eState!=CURSOR_VALID ){
10977     return SQLITE_ABORT;
10978   }
10979 
10980   /* Save the positions of all other cursors open on this table. This is
10981   ** required in case any of them are holding references to an xFetch
10982   ** version of the b-tree page modified by the accessPayload call below.
10983   **
10984   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10985   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10986   ** saveAllCursors can only return SQLITE_OK.
10987   */
10988   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10989   assert( rc==SQLITE_OK );
10990 
10991   /* Check some assumptions:
10992   **   (a) the cursor is open for writing,
10993   **   (b) there is a read/write transaction open,
10994   **   (c) the connection holds a write-lock on the table (if required),
10995   **   (d) there are no conflicting read-locks, and
10996   **   (e) the cursor points at a valid row of an intKey table.
10997   */
10998   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10999     return SQLITE_READONLY;
11000   }
11001   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11002               && pCsr->pBt->inTransaction==TRANS_WRITE );
11003   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11004   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
11005   assert( pCsr->pPage->intKey );
11006 
11007   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
11008 }
11009 
11010 /*
11011 ** Mark this cursor as an incremental blob cursor.
11012 */
sqlite3BtreeIncrblobCursor(BtCursor * pCur)11013 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
11014   pCur->curFlags |= BTCF_Incrblob;
11015   pCur->pBtree->hasIncrblobCur = 1;
11016 }
11017 #endif
11018 
11019 /*
11020 ** Set both the "read version" (single byte at byte offset 18) and
11021 ** "write version" (single byte at byte offset 19) fields in the database
11022 ** header to iVersion.
11023 */
sqlite3BtreeSetVersion(Btree * pBtree,int iVersion)11024 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11025   BtShared *pBt = pBtree->pBt;
11026   int rc;                         /* Return code */
11027 
11028   assert( iVersion==1 || iVersion==2 );
11029 
11030   /* If setting the version fields to 1, do not automatically open the
11031   ** WAL connection, even if the version fields are currently set to 2.
11032   */
11033   pBt->btsFlags &= ~BTS_NO_WAL;
11034   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
11035 
11036   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
11037   if( rc==SQLITE_OK ){
11038     u8 *aData = pBt->pPage1->aData;
11039     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
11040       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
11041       if( rc==SQLITE_OK ){
11042         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11043         if( rc==SQLITE_OK ){
11044           aData[18] = (u8)iVersion;
11045           aData[19] = (u8)iVersion;
11046         }
11047       }
11048     }
11049   }
11050 
11051   pBt->btsFlags &= ~BTS_NO_WAL;
11052   return rc;
11053 }
11054 
11055 /*
11056 ** Return true if the cursor has a hint specified.  This routine is
11057 ** only used from within assert() statements
11058 */
sqlite3BtreeCursorHasHint(BtCursor * pCsr,unsigned int mask)11059 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11060   return (pCsr->hints & mask)!=0;
11061 }
11062 
11063 /*
11064 ** Return true if the given Btree is read-only.
11065 */
sqlite3BtreeIsReadonly(Btree * p)11066 int sqlite3BtreeIsReadonly(Btree *p){
11067   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11068 }
11069 
11070 /*
11071 ** Return the size of the header added to each page by this module.
11072 */
sqlite3HeaderSizeBtree(void)11073 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
11074 
11075 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11076 /*
11077 ** Return true if the Btree passed as the only argument is sharable.
11078 */
sqlite3BtreeSharable(Btree * p)11079 int sqlite3BtreeSharable(Btree *p){
11080   return p->sharable;
11081 }
11082 
11083 /*
11084 ** Return the number of connections to the BtShared object accessed by
11085 ** the Btree handle passed as the only argument. For private caches
11086 ** this is always 1. For shared caches it may be 1 or greater.
11087 */
sqlite3BtreeConnectionCount(Btree * p)11088 int sqlite3BtreeConnectionCount(Btree *p){
11089   testcase( p->sharable );
11090   return p->pBt->nRef;
11091 }
11092 #endif
11093