xref: /sqlite-3.40.0/src/analyze.c (revision 4bc1cc18)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated.  The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later.  STAT4 is the only variant that is still
36 ** supported.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 #else
148 # define IsStat4     0
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
151 #endif
152 
153 /*
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
156 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
158 **
159 ** If the sqlite_statN tables do not previously exist, it is created.
160 **
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
165 */
openStatTable(Parse * pParse,int iDb,int iStatCur,const char * zWhere,const char * zWhereType)166 static void openStatTable(
167   Parse *pParse,          /* Parsing context */
168   int iDb,                /* The database we are looking in */
169   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
170   const char *zWhere,     /* Delete entries for this table or index */
171   const char *zWhereType  /* Either "tbl" or "idx" */
172 ){
173   static const struct {
174     const char *zName;
175     const char *zCols;
176   } aTable[] = {
177     { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
180 #else
181     { "sqlite_stat4", 0 },
182 #endif
183     { "sqlite_stat3", 0 },
184   };
185   int i;
186   sqlite3 *db = pParse->db;
187   Db *pDb;
188   Vdbe *v = sqlite3GetVdbe(pParse);
189   u32 aRoot[ArraySize(aTable)];
190   u8 aCreateTbl[ArraySize(aTable)];
191 #ifdef SQLITE_ENABLE_STAT4
192   const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
193 #else
194   const int nToOpen = 1;
195 #endif
196 
197   if( v==0 ) return;
198   assert( sqlite3BtreeHoldsAllMutexes(db) );
199   assert( sqlite3VdbeDb(v)==db );
200   pDb = &db->aDb[iDb];
201 
202   /* Create new statistic tables if they do not exist, or clear them
203   ** if they do already exist.
204   */
205   for(i=0; i<ArraySize(aTable); i++){
206     const char *zTab = aTable[i].zName;
207     Table *pStat;
208     aCreateTbl[i] = 0;
209     if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
210       if( i<nToOpen ){
211         /* The sqlite_statN table does not exist. Create it. Note that a
212         ** side-effect of the CREATE TABLE statement is to leave the rootpage
213         ** of the new table in register pParse->regRoot. This is important
214         ** because the OpenWrite opcode below will be needing it. */
215         sqlite3NestedParse(pParse,
216             "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
217         );
218         aRoot[i] = (u32)pParse->regRoot;
219         aCreateTbl[i] = OPFLAG_P2ISREG;
220       }
221     }else{
222       /* The table already exists. If zWhere is not NULL, delete all entries
223       ** associated with the table zWhere. If zWhere is NULL, delete the
224       ** entire contents of the table. */
225       aRoot[i] = pStat->tnum;
226       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
227       if( zWhere ){
228         sqlite3NestedParse(pParse,
229            "DELETE FROM %Q.%s WHERE %s=%Q",
230            pDb->zDbSName, zTab, zWhereType, zWhere
231         );
232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
233       }else if( db->xPreUpdateCallback ){
234         sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
235 #endif
236       }else{
237         /* The sqlite_stat[134] table already exists.  Delete all rows. */
238         sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
239       }
240     }
241   }
242 
243   /* Open the sqlite_stat[134] tables for writing. */
244   for(i=0; i<nToOpen; i++){
245     assert( i<ArraySize(aTable) );
246     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
247     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
248     VdbeComment((v, aTable[i].zName));
249   }
250 }
251 
252 /*
253 ** Recommended number of samples for sqlite_stat4
254 */
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
257 #endif
258 
259 /*
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
262 ** information.
263 */
264 typedef struct StatAccum StatAccum;
265 typedef struct StatSample StatSample;
266 struct StatSample {
267   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
268   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT4
270   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
271   union {
272     i64 iRowid;                     /* Rowid in main table of the key */
273     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
274   } u;
275   u32 nRowid;                     /* Sizeof aRowid[] */
276   u8 isPSample;                   /* True if a periodic sample */
277   int iCol;                       /* If !isPSample, the reason for inclusion */
278   u32 iHash;                      /* Tiebreaker hash */
279 #endif
280 };
281 struct StatAccum {
282   sqlite3 *db;              /* Database connection, for malloc() */
283   tRowcnt nEst;             /* Estimated number of rows */
284   tRowcnt nRow;             /* Number of rows visited so far */
285   int nLimit;               /* Analysis row-scan limit */
286   int nCol;                 /* Number of columns in index + pk/rowid */
287   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
288   u8 nSkipAhead;            /* Number of times of skip-ahead */
289   StatSample current;       /* Current row as a StatSample */
290 #ifdef SQLITE_ENABLE_STAT4
291   tRowcnt nPSample;         /* How often to do a periodic sample */
292   int mxSample;             /* Maximum number of samples to accumulate */
293   u32 iPrn;                 /* Pseudo-random number used for sampling */
294   StatSample *aBest;        /* Array of nCol best samples */
295   int iMin;                 /* Index in a[] of entry with minimum score */
296   int nSample;              /* Current number of samples */
297   int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
298   int iGet;                 /* Index of current sample accessed by stat_get() */
299   StatSample *a;            /* Array of mxSample StatSample objects */
300 #endif
301 };
302 
303 /* Reclaim memory used by a StatSample
304 */
305 #ifdef SQLITE_ENABLE_STAT4
sampleClear(sqlite3 * db,StatSample * p)306 static void sampleClear(sqlite3 *db, StatSample *p){
307   assert( db!=0 );
308   if( p->nRowid ){
309     sqlite3DbFree(db, p->u.aRowid);
310     p->nRowid = 0;
311   }
312 }
313 #endif
314 
315 /* Initialize the BLOB value of a ROWID
316 */
317 #ifdef SQLITE_ENABLE_STAT4
sampleSetRowid(sqlite3 * db,StatSample * p,int n,const u8 * pData)318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
319   assert( db!=0 );
320   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
321   p->u.aRowid = sqlite3DbMallocRawNN(db, n);
322   if( p->u.aRowid ){
323     p->nRowid = n;
324     memcpy(p->u.aRowid, pData, n);
325   }else{
326     p->nRowid = 0;
327   }
328 }
329 #endif
330 
331 /* Initialize the INTEGER value of a ROWID.
332 */
333 #ifdef SQLITE_ENABLE_STAT4
sampleSetRowidInt64(sqlite3 * db,StatSample * p,i64 iRowid)334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
335   assert( db!=0 );
336   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
337   p->nRowid = 0;
338   p->u.iRowid = iRowid;
339 }
340 #endif
341 
342 
343 /*
344 ** Copy the contents of object (*pFrom) into (*pTo).
345 */
346 #ifdef SQLITE_ENABLE_STAT4
sampleCopy(StatAccum * p,StatSample * pTo,StatSample * pFrom)347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
348   pTo->isPSample = pFrom->isPSample;
349   pTo->iCol = pFrom->iCol;
350   pTo->iHash = pFrom->iHash;
351   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
352   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
353   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
354   if( pFrom->nRowid ){
355     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
356   }else{
357     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
358   }
359 }
360 #endif
361 
362 /*
363 ** Reclaim all memory of a StatAccum structure.
364 */
statAccumDestructor(void * pOld)365 static void statAccumDestructor(void *pOld){
366   StatAccum *p = (StatAccum*)pOld;
367 #ifdef SQLITE_ENABLE_STAT4
368   if( p->mxSample ){
369     int i;
370     for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
371     for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
372     sampleClear(p->db, &p->current);
373   }
374 #endif
375   sqlite3DbFree(p->db, p);
376 }
377 
378 /*
379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
380 ** are:
381 **     N:    The number of columns in the index including the rowid/pk (note 1)
382 **     K:    The number of columns in the index excluding the rowid/pk.
383 **     C:    Estimated number of rows in the index
384 **     L:    A limit on the number of rows to scan, or 0 for no-limit
385 **
386 ** Note 1:  In the special case of the covering index that implements a
387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
388 ** total number of columns in the table.
389 **
390 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
392 ** PRIMARY KEY of the table.  The covering index that implements the
393 ** original WITHOUT ROWID table as N==K as a special case.
394 **
395 ** This routine allocates the StatAccum object in heap memory. The return
396 ** value is a pointer to the StatAccum object.  The datatype of the
397 ** return value is BLOB, but it is really just a pointer to the StatAccum
398 ** object.
399 */
statInit(sqlite3_context * context,int argc,sqlite3_value ** argv)400 static void statInit(
401   sqlite3_context *context,
402   int argc,
403   sqlite3_value **argv
404 ){
405   StatAccum *p;
406   int nCol;                       /* Number of columns in index being sampled */
407   int nKeyCol;                    /* Number of key columns */
408   int nColUp;                     /* nCol rounded up for alignment */
409   int n;                          /* Bytes of space to allocate */
410   sqlite3 *db = sqlite3_context_db_handle(context);   /* Database connection */
411 #ifdef SQLITE_ENABLE_STAT4
412   /* Maximum number of samples.  0 if STAT4 data is not collected */
413   int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
414 #endif
415 
416   /* Decode the three function arguments */
417   UNUSED_PARAMETER(argc);
418   nCol = sqlite3_value_int(argv[0]);
419   assert( nCol>0 );
420   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
421   nKeyCol = sqlite3_value_int(argv[1]);
422   assert( nKeyCol<=nCol );
423   assert( nKeyCol>0 );
424 
425   /* Allocate the space required for the StatAccum object */
426   n = sizeof(*p)
427     + sizeof(tRowcnt)*nColUp                  /* StatAccum.anEq */
428     + sizeof(tRowcnt)*nColUp;                 /* StatAccum.anDLt */
429 #ifdef SQLITE_ENABLE_STAT4
430   if( mxSample ){
431     n += sizeof(tRowcnt)*nColUp                  /* StatAccum.anLt */
432       + sizeof(StatSample)*(nCol+mxSample)       /* StatAccum.aBest[], a[] */
433       + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
434   }
435 #endif
436   p = sqlite3DbMallocZero(db, n);
437   if( p==0 ){
438     sqlite3_result_error_nomem(context);
439     return;
440   }
441 
442   p->db = db;
443   p->nEst = sqlite3_value_int64(argv[2]);
444   p->nRow = 0;
445   p->nLimit = sqlite3_value_int64(argv[3]);
446   p->nCol = nCol;
447   p->nKeyCol = nKeyCol;
448   p->nSkipAhead = 0;
449   p->current.anDLt = (tRowcnt*)&p[1];
450   p->current.anEq = &p->current.anDLt[nColUp];
451 
452 #ifdef SQLITE_ENABLE_STAT4
453   p->mxSample = p->nLimit==0 ? mxSample : 0;
454   if( mxSample ){
455     u8 *pSpace;                     /* Allocated space not yet assigned */
456     int i;                          /* Used to iterate through p->aSample[] */
457 
458     p->iGet = -1;
459     p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
460     p->current.anLt = &p->current.anEq[nColUp];
461     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
462 
463     /* Set up the StatAccum.a[] and aBest[] arrays */
464     p->a = (struct StatSample*)&p->current.anLt[nColUp];
465     p->aBest = &p->a[mxSample];
466     pSpace = (u8*)(&p->a[mxSample+nCol]);
467     for(i=0; i<(mxSample+nCol); i++){
468       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
469       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
470       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
471     }
472     assert( (pSpace - (u8*)p)==n );
473 
474     for(i=0; i<nCol; i++){
475       p->aBest[i].iCol = i;
476     }
477   }
478 #endif
479 
480   /* Return a pointer to the allocated object to the caller.  Note that
481   ** only the pointer (the 2nd parameter) matters.  The size of the object
482   ** (given by the 3rd parameter) is never used and can be any positive
483   ** value. */
484   sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
485 }
486 static const FuncDef statInitFuncdef = {
487   4,               /* nArg */
488   SQLITE_UTF8,     /* funcFlags */
489   0,               /* pUserData */
490   0,               /* pNext */
491   statInit,        /* xSFunc */
492   0,               /* xFinalize */
493   0, 0,            /* xValue, xInverse */
494   "stat_init",     /* zName */
495   {0}
496 };
497 
498 #ifdef SQLITE_ENABLE_STAT4
499 /*
500 ** pNew and pOld are both candidate non-periodic samples selected for
501 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
502 ** considering only any trailing columns and the sample hash value, this
503 ** function returns true if sample pNew is to be preferred over pOld.
504 ** In other words, if we assume that the cardinalities of the selected
505 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
506 **
507 ** This function assumes that for each argument sample, the contents of
508 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
509 */
sampleIsBetterPost(StatAccum * pAccum,StatSample * pNew,StatSample * pOld)510 static int sampleIsBetterPost(
511   StatAccum *pAccum,
512   StatSample *pNew,
513   StatSample *pOld
514 ){
515   int nCol = pAccum->nCol;
516   int i;
517   assert( pNew->iCol==pOld->iCol );
518   for(i=pNew->iCol+1; i<nCol; i++){
519     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
520     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
521   }
522   if( pNew->iHash>pOld->iHash ) return 1;
523   return 0;
524 }
525 #endif
526 
527 #ifdef SQLITE_ENABLE_STAT4
528 /*
529 ** Return true if pNew is to be preferred over pOld.
530 **
531 ** This function assumes that for each argument sample, the contents of
532 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
533 */
sampleIsBetter(StatAccum * pAccum,StatSample * pNew,StatSample * pOld)534 static int sampleIsBetter(
535   StatAccum *pAccum,
536   StatSample *pNew,
537   StatSample *pOld
538 ){
539   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
540   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
541 
542   assert( pOld->isPSample==0 && pNew->isPSample==0 );
543   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
544 
545   if( (nEqNew>nEqOld) ) return 1;
546   if( nEqNew==nEqOld ){
547     if( pNew->iCol<pOld->iCol ) return 1;
548     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
549   }
550   return 0;
551 }
552 
553 /*
554 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
555 ** remove the least desirable sample from p->a[] to make room.
556 */
sampleInsert(StatAccum * p,StatSample * pNew,int nEqZero)557 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
558   StatSample *pSample = 0;
559   int i;
560 
561   assert( IsStat4 || nEqZero==0 );
562 
563   /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
564   ** values in the anEq[] array of any sample in StatAccum.a[]. In
565   ** other words, if nMaxEqZero is n, then it is guaranteed that there
566   ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
567   if( nEqZero>p->nMaxEqZero ){
568     p->nMaxEqZero = nEqZero;
569   }
570   if( pNew->isPSample==0 ){
571     StatSample *pUpgrade = 0;
572     assert( pNew->anEq[pNew->iCol]>0 );
573 
574     /* This sample is being added because the prefix that ends in column
575     ** iCol occurs many times in the table. However, if we have already
576     ** added a sample that shares this prefix, there is no need to add
577     ** this one. Instead, upgrade the priority of the highest priority
578     ** existing sample that shares this prefix.  */
579     for(i=p->nSample-1; i>=0; i--){
580       StatSample *pOld = &p->a[i];
581       if( pOld->anEq[pNew->iCol]==0 ){
582         if( pOld->isPSample ) return;
583         assert( pOld->iCol>pNew->iCol );
584         assert( sampleIsBetter(p, pNew, pOld) );
585         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
586           pUpgrade = pOld;
587         }
588       }
589     }
590     if( pUpgrade ){
591       pUpgrade->iCol = pNew->iCol;
592       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
593       goto find_new_min;
594     }
595   }
596 
597   /* If necessary, remove sample iMin to make room for the new sample. */
598   if( p->nSample>=p->mxSample ){
599     StatSample *pMin = &p->a[p->iMin];
600     tRowcnt *anEq = pMin->anEq;
601     tRowcnt *anLt = pMin->anLt;
602     tRowcnt *anDLt = pMin->anDLt;
603     sampleClear(p->db, pMin);
604     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
605     pSample = &p->a[p->nSample-1];
606     pSample->nRowid = 0;
607     pSample->anEq = anEq;
608     pSample->anDLt = anDLt;
609     pSample->anLt = anLt;
610     p->nSample = p->mxSample-1;
611   }
612 
613   /* The "rows less-than" for the rowid column must be greater than that
614   ** for the last sample in the p->a[] array. Otherwise, the samples would
615   ** be out of order. */
616   assert( p->nSample==0
617        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
618 
619   /* Insert the new sample */
620   pSample = &p->a[p->nSample];
621   sampleCopy(p, pSample, pNew);
622   p->nSample++;
623 
624   /* Zero the first nEqZero entries in the anEq[] array. */
625   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
626 
627 find_new_min:
628   if( p->nSample>=p->mxSample ){
629     int iMin = -1;
630     for(i=0; i<p->mxSample; i++){
631       if( p->a[i].isPSample ) continue;
632       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
633         iMin = i;
634       }
635     }
636     assert( iMin>=0 );
637     p->iMin = iMin;
638   }
639 }
640 #endif /* SQLITE_ENABLE_STAT4 */
641 
642 #ifdef SQLITE_ENABLE_STAT4
643 /*
644 ** Field iChng of the index being scanned has changed. So at this point
645 ** p->current contains a sample that reflects the previous row of the
646 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
647 ** correct at this point.
648 */
samplePushPrevious(StatAccum * p,int iChng)649 static void samplePushPrevious(StatAccum *p, int iChng){
650   int i;
651 
652   /* Check if any samples from the aBest[] array should be pushed
653   ** into IndexSample.a[] at this point.  */
654   for(i=(p->nCol-2); i>=iChng; i--){
655     StatSample *pBest = &p->aBest[i];
656     pBest->anEq[i] = p->current.anEq[i];
657     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
658       sampleInsert(p, pBest, i);
659     }
660   }
661 
662   /* Check that no sample contains an anEq[] entry with an index of
663   ** p->nMaxEqZero or greater set to zero. */
664   for(i=p->nSample-1; i>=0; i--){
665     int j;
666     for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
667   }
668 
669   /* Update the anEq[] fields of any samples already collected. */
670   if( iChng<p->nMaxEqZero ){
671     for(i=p->nSample-1; i>=0; i--){
672       int j;
673       for(j=iChng; j<p->nCol; j++){
674         if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
675       }
676     }
677     p->nMaxEqZero = iChng;
678   }
679 }
680 #endif /* SQLITE_ENABLE_STAT4 */
681 
682 /*
683 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
684 ** Arguments:
685 **
686 **    P     Pointer to the StatAccum object created by stat_init()
687 **    C     Index of left-most column to differ from previous row
688 **    R     Rowid for the current row.  Might be a key record for
689 **          WITHOUT ROWID tables.
690 **
691 ** The purpose of this routine is to collect statistical data and/or
692 ** samples from the index being analyzed into the StatAccum object.
693 ** The stat_get() SQL function will be used afterwards to
694 ** retrieve the information gathered.
695 **
696 ** This SQL function usually returns NULL, but might return an integer
697 ** if it wants the byte-code to do special processing.
698 **
699 ** The R parameter is only used for STAT4
700 */
statPush(sqlite3_context * context,int argc,sqlite3_value ** argv)701 static void statPush(
702   sqlite3_context *context,
703   int argc,
704   sqlite3_value **argv
705 ){
706   int i;
707 
708   /* The three function arguments */
709   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
710   int iChng = sqlite3_value_int(argv[1]);
711 
712   UNUSED_PARAMETER( argc );
713   UNUSED_PARAMETER( context );
714   assert( p->nCol>0 );
715   assert( iChng<p->nCol );
716 
717   if( p->nRow==0 ){
718     /* This is the first call to this function. Do initialization. */
719     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
720   }else{
721     /* Second and subsequent calls get processed here */
722 #ifdef SQLITE_ENABLE_STAT4
723     if( p->mxSample ) samplePushPrevious(p, iChng);
724 #endif
725 
726     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
727     ** to the current row of the index. */
728     for(i=0; i<iChng; i++){
729       p->current.anEq[i]++;
730     }
731     for(i=iChng; i<p->nCol; i++){
732       p->current.anDLt[i]++;
733 #ifdef SQLITE_ENABLE_STAT4
734       if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
735 #endif
736       p->current.anEq[i] = 1;
737     }
738   }
739 
740   p->nRow++;
741 #ifdef SQLITE_ENABLE_STAT4
742   if( p->mxSample ){
743     tRowcnt nLt;
744     if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
745       sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
746     }else{
747       sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
748                                          sqlite3_value_blob(argv[2]));
749     }
750     p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
751 
752     nLt = p->current.anLt[p->nCol-1];
753     /* Check if this is to be a periodic sample. If so, add it. */
754     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
755       p->current.isPSample = 1;
756       p->current.iCol = 0;
757       sampleInsert(p, &p->current, p->nCol-1);
758       p->current.isPSample = 0;
759     }
760 
761     /* Update the aBest[] array. */
762     for(i=0; i<(p->nCol-1); i++){
763       p->current.iCol = i;
764       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
765         sampleCopy(p, &p->aBest[i], &p->current);
766       }
767     }
768   }else
769 #endif
770   if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
771     p->nSkipAhead++;
772     sqlite3_result_int(context, p->current.anDLt[0]>0);
773   }
774 }
775 
776 static const FuncDef statPushFuncdef = {
777   2+IsStat4,       /* nArg */
778   SQLITE_UTF8,     /* funcFlags */
779   0,               /* pUserData */
780   0,               /* pNext */
781   statPush,        /* xSFunc */
782   0,               /* xFinalize */
783   0, 0,            /* xValue, xInverse */
784   "stat_push",     /* zName */
785   {0}
786 };
787 
788 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
789 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
790 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
791 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
792 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
793 
794 /*
795 ** Implementation of the stat_get(P,J) SQL function.  This routine is
796 ** used to query statistical information that has been gathered into
797 ** the StatAccum object by prior calls to stat_push().  The P parameter
798 ** has type BLOB but it is really just a pointer to the StatAccum object.
799 ** The content to returned is determined by the parameter J
800 ** which is one of the STAT_GET_xxxx values defined above.
801 **
802 ** The stat_get(P,J) function is not available to generic SQL.  It is
803 ** inserted as part of a manually constructed bytecode program.  (See
804 ** the callStatGet() routine below.)  It is guaranteed that the P
805 ** parameter will always be a pointer to a StatAccum object, never a
806 ** NULL.
807 **
808 ** If STAT4 is not enabled, then J is always
809 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
810 ** a one-parameter function, stat_get(P), that always returns the
811 ** stat1 table entry information.
812 */
statGet(sqlite3_context * context,int argc,sqlite3_value ** argv)813 static void statGet(
814   sqlite3_context *context,
815   int argc,
816   sqlite3_value **argv
817 ){
818   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
819 #ifdef SQLITE_ENABLE_STAT4
820   /* STAT4 has a parameter on this routine. */
821   int eCall = sqlite3_value_int(argv[1]);
822   assert( argc==2 );
823   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
824        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
825        || eCall==STAT_GET_NDLT
826   );
827   assert( eCall==STAT_GET_STAT1 || p->mxSample );
828   if( eCall==STAT_GET_STAT1 )
829 #else
830   assert( argc==1 );
831 #endif
832   {
833     /* Return the value to store in the "stat" column of the sqlite_stat1
834     ** table for this index.
835     **
836     ** The value is a string composed of a list of integers describing
837     ** the index. The first integer in the list is the total number of
838     ** entries in the index. There is one additional integer in the list
839     ** for each indexed column. This additional integer is an estimate of
840     ** the number of rows matched by a equality query on the index using
841     ** a key with the corresponding number of fields. In other words,
842     ** if the index is on columns (a,b) and the sqlite_stat1 value is
843     ** "100 10 2", then SQLite estimates that:
844     **
845     **   * the index contains 100 rows,
846     **   * "WHERE a=?" matches 10 rows, and
847     **   * "WHERE a=? AND b=?" matches 2 rows.
848     **
849     ** If D is the count of distinct values and K is the total number of
850     ** rows, then each estimate is usually computed as:
851     **
852     **        I = (K+D-1)/D
853     **
854     ** In other words, I is K/D rounded up to the next whole integer.
855     ** However, if I is between 1.0 and 1.1 (in other words if I is
856     ** close to 1.0 but just a little larger) then do not round up but
857     ** instead keep the I value at 1.0.
858     */
859     sqlite3_str sStat;   /* Text of the constructed "stat" line */
860     int i;               /* Loop counter */
861 
862     sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
863     sqlite3_str_appendf(&sStat, "%llu",
864         p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
865     for(i=0; i<p->nKeyCol; i++){
866       u64 nDistinct = p->current.anDLt[i] + 1;
867       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
868       if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
869       sqlite3_str_appendf(&sStat, " %llu", iVal);
870       assert( p->current.anEq[i] );
871     }
872     sqlite3ResultStrAccum(context, &sStat);
873   }
874 #ifdef SQLITE_ENABLE_STAT4
875   else if( eCall==STAT_GET_ROWID ){
876     if( p->iGet<0 ){
877       samplePushPrevious(p, 0);
878       p->iGet = 0;
879     }
880     if( p->iGet<p->nSample ){
881       StatSample *pS = p->a + p->iGet;
882       if( pS->nRowid==0 ){
883         sqlite3_result_int64(context, pS->u.iRowid);
884       }else{
885         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
886                             SQLITE_TRANSIENT);
887       }
888     }
889   }else{
890     tRowcnt *aCnt = 0;
891     sqlite3_str sStat;
892     int i;
893 
894     assert( p->iGet<p->nSample );
895     switch( eCall ){
896       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
897       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
898       default: {
899         aCnt = p->a[p->iGet].anDLt;
900         p->iGet++;
901         break;
902       }
903     }
904     sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
905     for(i=0; i<p->nCol; i++){
906       sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
907     }
908     if( sStat.nChar ) sStat.nChar--;
909     sqlite3ResultStrAccum(context, &sStat);
910   }
911 #endif /* SQLITE_ENABLE_STAT4 */
912 #ifndef SQLITE_DEBUG
913   UNUSED_PARAMETER( argc );
914 #endif
915 }
916 static const FuncDef statGetFuncdef = {
917   1+IsStat4,       /* nArg */
918   SQLITE_UTF8,     /* funcFlags */
919   0,               /* pUserData */
920   0,               /* pNext */
921   statGet,         /* xSFunc */
922   0,               /* xFinalize */
923   0, 0,            /* xValue, xInverse */
924   "stat_get",      /* zName */
925   {0}
926 };
927 
callStatGet(Parse * pParse,int regStat,int iParam,int regOut)928 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
929 #ifdef SQLITE_ENABLE_STAT4
930   sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
931 #elif SQLITE_DEBUG
932   assert( iParam==STAT_GET_STAT1 );
933 #else
934   UNUSED_PARAMETER( iParam );
935 #endif
936   assert( regOut!=regStat && regOut!=regStat+1 );
937   sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
938                              &statGetFuncdef, 0);
939 }
940 
941 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
942 /* Add a comment to the most recent VDBE opcode that is the name
943 ** of the k-th column of the pIdx index.
944 */
analyzeVdbeCommentIndexWithColumnName(Vdbe * v,Index * pIdx,int k)945 static void analyzeVdbeCommentIndexWithColumnName(
946   Vdbe *v,         /* Prepared statement under construction */
947   Index *pIdx,     /* Index whose column is being loaded */
948   int k            /* Which column index */
949 ){
950   int i;           /* Index of column in the table */
951   assert( k>=0 && k<pIdx->nColumn );
952   i = pIdx->aiColumn[k];
953   if( NEVER(i==XN_ROWID) ){
954     VdbeComment((v,"%s.rowid",pIdx->zName));
955   }else if( i==XN_EXPR ){
956     assert( pIdx->bHasExpr );
957     VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
958   }else{
959     VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
960   }
961 }
962 #else
963 # define analyzeVdbeCommentIndexWithColumnName(a,b,c)
964 #endif /* SQLITE_DEBUG */
965 
966 /*
967 ** Generate code to do an analysis of all indices associated with
968 ** a single table.
969 */
analyzeOneTable(Parse * pParse,Table * pTab,Index * pOnlyIdx,int iStatCur,int iMem,int iTab)970 static void analyzeOneTable(
971   Parse *pParse,   /* Parser context */
972   Table *pTab,     /* Table whose indices are to be analyzed */
973   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
974   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
975   int iMem,        /* Available memory locations begin here */
976   int iTab         /* Next available cursor */
977 ){
978   sqlite3 *db = pParse->db;    /* Database handle */
979   Index *pIdx;                 /* An index to being analyzed */
980   int iIdxCur;                 /* Cursor open on index being analyzed */
981   int iTabCur;                 /* Table cursor */
982   Vdbe *v;                     /* The virtual machine being built up */
983   int i;                       /* Loop counter */
984   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
985   int iDb;                     /* Index of database containing pTab */
986   u8 needTableCnt = 1;         /* True to count the table */
987   int regNewRowid = iMem++;    /* Rowid for the inserted record */
988   int regStat = iMem++;        /* Register to hold StatAccum object */
989   int regChng = iMem++;        /* Index of changed index field */
990   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
991   int regTemp = iMem++;        /* Temporary use register */
992   int regTemp2 = iMem++;       /* Second temporary use register */
993   int regTabname = iMem++;     /* Register containing table name */
994   int regIdxname = iMem++;     /* Register containing index name */
995   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
996   int regPrev = iMem;          /* MUST BE LAST (see below) */
997 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
998   Table *pStat1 = 0;
999 #endif
1000 
1001   pParse->nMem = MAX(pParse->nMem, iMem);
1002   v = sqlite3GetVdbe(pParse);
1003   if( v==0 || NEVER(pTab==0) ){
1004     return;
1005   }
1006   if( !IsOrdinaryTable(pTab) ){
1007     /* Do not gather statistics on views or virtual tables */
1008     return;
1009   }
1010   if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
1011     /* Do not gather statistics on system tables */
1012     return;
1013   }
1014   assert( sqlite3BtreeHoldsAllMutexes(db) );
1015   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1016   assert( iDb>=0 );
1017   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1018 #ifndef SQLITE_OMIT_AUTHORIZATION
1019   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1020       db->aDb[iDb].zDbSName ) ){
1021     return;
1022   }
1023 #endif
1024 
1025 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1026   if( db->xPreUpdateCallback ){
1027     pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
1028     if( pStat1==0 ) return;
1029     pStat1->zName = (char*)&pStat1[1];
1030     memcpy(pStat1->zName, "sqlite_stat1", 13);
1031     pStat1->nCol = 3;
1032     pStat1->iPKey = -1;
1033     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
1034   }
1035 #endif
1036 
1037   /* Establish a read-lock on the table at the shared-cache level.
1038   ** Open a read-only cursor on the table. Also allocate a cursor number
1039   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1040   ** this time though.  */
1041   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1042   iTabCur = iTab++;
1043   iIdxCur = iTab++;
1044   pParse->nTab = MAX(pParse->nTab, iTab);
1045   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1046   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1047 
1048   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1049     int nCol;                     /* Number of columns in pIdx. "N" */
1050     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1051     int addrNextRow;              /* Address of "next_row:" */
1052     const char *zIdxName;         /* Name of the index */
1053     int nColTest;                 /* Number of columns to test for changes */
1054 
1055     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1056     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1057     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1058       nCol = pIdx->nKeyCol;
1059       zIdxName = pTab->zName;
1060       nColTest = nCol - 1;
1061     }else{
1062       nCol = pIdx->nColumn;
1063       zIdxName = pIdx->zName;
1064       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1065     }
1066 
1067     /* Populate the register containing the index name. */
1068     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1069     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1070 
1071     /*
1072     ** Pseudo-code for loop that calls stat_push():
1073     **
1074     **   Rewind csr
1075     **   if eof(csr) goto end_of_scan;
1076     **   regChng = 0
1077     **   goto chng_addr_0;
1078     **
1079     **  next_row:
1080     **   regChng = 0
1081     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1082     **   regChng = 1
1083     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1084     **   ...
1085     **   regChng = N
1086     **   goto chng_addr_N
1087     **
1088     **  chng_addr_0:
1089     **   regPrev(0) = idx(0)
1090     **  chng_addr_1:
1091     **   regPrev(1) = idx(1)
1092     **  ...
1093     **
1094     **  endDistinctTest:
1095     **   regRowid = idx(rowid)
1096     **   stat_push(P, regChng, regRowid)
1097     **   Next csr
1098     **   if !eof(csr) goto next_row;
1099     **
1100     **  end_of_scan:
1101     */
1102 
1103     /* Make sure there are enough memory cells allocated to accommodate
1104     ** the regPrev array and a trailing rowid (the rowid slot is required
1105     ** when building a record to insert into the sample column of
1106     ** the sqlite_stat4 table.  */
1107     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1108 
1109     /* Open a read-only cursor on the index being analyzed. */
1110     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1111     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1112     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1113     VdbeComment((v, "%s", pIdx->zName));
1114 
1115     /* Invoke the stat_init() function. The arguments are:
1116     **
1117     **    (1) the number of columns in the index including the rowid
1118     **        (or for a WITHOUT ROWID table, the number of PK columns),
1119     **    (2) the number of columns in the key without the rowid/pk
1120     **    (3) estimated number of rows in the index,
1121     */
1122     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
1123     assert( regRowid==regStat+2 );
1124     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
1125 #ifdef SQLITE_ENABLE_STAT4
1126     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1127       sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
1128       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1129       VdbeCoverage(v);
1130     }else
1131 #endif
1132     {
1133       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1134       VdbeCoverage(v);
1135       sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
1136     }
1137     assert( regTemp2==regStat+4 );
1138     sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
1139     sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
1140                                &statInitFuncdef, 0);
1141 
1142     /* Implementation of the following:
1143     **
1144     **   Rewind csr
1145     **   if eof(csr) goto end_of_scan;
1146     **   regChng = 0
1147     **   goto next_push_0;
1148     **
1149     */
1150     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1151     addrNextRow = sqlite3VdbeCurrentAddr(v);
1152 
1153     if( nColTest>0 ){
1154       int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
1155       int *aGotoChng;               /* Array of jump instruction addresses */
1156       aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1157       if( aGotoChng==0 ) continue;
1158 
1159       /*
1160       **  next_row:
1161       **   regChng = 0
1162       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1163       **   regChng = 1
1164       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1165       **   ...
1166       **   regChng = N
1167       **   goto endDistinctTest
1168       */
1169       sqlite3VdbeAddOp0(v, OP_Goto);
1170       addrNextRow = sqlite3VdbeCurrentAddr(v);
1171       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1172         /* For a single-column UNIQUE index, once we have found a non-NULL
1173         ** row, we know that all the rest will be distinct, so skip
1174         ** subsequent distinctness tests. */
1175         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1176         VdbeCoverage(v);
1177       }
1178       for(i=0; i<nColTest; i++){
1179         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1180         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1181         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1182         analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1183         aGotoChng[i] =
1184         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1185         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1186         VdbeCoverage(v);
1187       }
1188       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1189       sqlite3VdbeGoto(v, endDistinctTest);
1190 
1191 
1192       /*
1193       **  chng_addr_0:
1194       **   regPrev(0) = idx(0)
1195       **  chng_addr_1:
1196       **   regPrev(1) = idx(1)
1197       **  ...
1198       */
1199       sqlite3VdbeJumpHere(v, addrNextRow-1);
1200       for(i=0; i<nColTest; i++){
1201         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1202         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1203         analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1204       }
1205       sqlite3VdbeResolveLabel(v, endDistinctTest);
1206       sqlite3DbFree(db, aGotoChng);
1207     }
1208 
1209     /*
1210     **  chng_addr_N:
1211     **   regRowid = idx(rowid)            // STAT4 only
1212     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT4 only
1213     **   Next csr
1214     **   if !eof(csr) goto next_row;
1215     */
1216 #ifdef SQLITE_ENABLE_STAT4
1217     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1218       assert( regRowid==(regStat+2) );
1219       if( HasRowid(pTab) ){
1220         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1221       }else{
1222         Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1223         int j, k, regKey;
1224         regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1225         for(j=0; j<pPk->nKeyCol; j++){
1226           k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1227           assert( k>=0 && k<pIdx->nColumn );
1228           sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1229           analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
1230         }
1231         sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1232         sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1233       }
1234     }
1235 #endif
1236     assert( regChng==(regStat+1) );
1237     {
1238       sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
1239                                  &statPushFuncdef, 0);
1240       if( db->nAnalysisLimit ){
1241         int j1, j2, j3;
1242         j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
1243         j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
1244         j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
1245         VdbeCoverage(v);
1246         sqlite3VdbeJumpHere(v, j1);
1247         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1248         sqlite3VdbeJumpHere(v, j2);
1249         sqlite3VdbeJumpHere(v, j3);
1250       }else{
1251         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1252       }
1253     }
1254 
1255     /* Add the entry to the stat1 table. */
1256     callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
1257     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1258     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1259     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1260     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1261 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1262     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1263 #endif
1264     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1265 
1266     /* Add the entries to the stat4 table. */
1267 #ifdef SQLITE_ENABLE_STAT4
1268     if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
1269       int regEq = regStat1;
1270       int regLt = regStat1+1;
1271       int regDLt = regStat1+2;
1272       int regSample = regStat1+3;
1273       int regCol = regStat1+4;
1274       int regSampleRowid = regCol + nCol;
1275       int addrNext;
1276       int addrIsNull;
1277       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1278 
1279       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1280 
1281       addrNext = sqlite3VdbeCurrentAddr(v);
1282       callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
1283       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1284       VdbeCoverage(v);
1285       callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
1286       callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
1287       callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
1288       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1289       VdbeCoverage(v);
1290       for(i=0; i<nCol; i++){
1291         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1292       }
1293       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1294       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1295       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1296       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1297       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1298       sqlite3VdbeJumpHere(v, addrIsNull);
1299     }
1300 #endif /* SQLITE_ENABLE_STAT4 */
1301 
1302     /* End of analysis */
1303     sqlite3VdbeJumpHere(v, addrRewind);
1304   }
1305 
1306 
1307   /* Create a single sqlite_stat1 entry containing NULL as the index
1308   ** name and the row count as the content.
1309   */
1310   if( pOnlyIdx==0 && needTableCnt ){
1311     VdbeComment((v, "%s", pTab->zName));
1312     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1313     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1314     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1315     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1316     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1317     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1318     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1319     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1320 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1321     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1322 #endif
1323     sqlite3VdbeJumpHere(v, jZeroRows);
1324   }
1325 }
1326 
1327 
1328 /*
1329 ** Generate code that will cause the most recent index analysis to
1330 ** be loaded into internal hash tables where is can be used.
1331 */
loadAnalysis(Parse * pParse,int iDb)1332 static void loadAnalysis(Parse *pParse, int iDb){
1333   Vdbe *v = sqlite3GetVdbe(pParse);
1334   if( v ){
1335     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1336   }
1337 }
1338 
1339 /*
1340 ** Generate code that will do an analysis of an entire database
1341 */
analyzeDatabase(Parse * pParse,int iDb)1342 static void analyzeDatabase(Parse *pParse, int iDb){
1343   sqlite3 *db = pParse->db;
1344   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1345   HashElem *k;
1346   int iStatCur;
1347   int iMem;
1348   int iTab;
1349 
1350   sqlite3BeginWriteOperation(pParse, 0, iDb);
1351   iStatCur = pParse->nTab;
1352   pParse->nTab += 3;
1353   openStatTable(pParse, iDb, iStatCur, 0, 0);
1354   iMem = pParse->nMem+1;
1355   iTab = pParse->nTab;
1356   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1357   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1358     Table *pTab = (Table*)sqliteHashData(k);
1359     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1360   }
1361   loadAnalysis(pParse, iDb);
1362 }
1363 
1364 /*
1365 ** Generate code that will do an analysis of a single table in
1366 ** a database.  If pOnlyIdx is not NULL then it is a single index
1367 ** in pTab that should be analyzed.
1368 */
analyzeTable(Parse * pParse,Table * pTab,Index * pOnlyIdx)1369 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1370   int iDb;
1371   int iStatCur;
1372 
1373   assert( pTab!=0 );
1374   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1375   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1376   sqlite3BeginWriteOperation(pParse, 0, iDb);
1377   iStatCur = pParse->nTab;
1378   pParse->nTab += 3;
1379   if( pOnlyIdx ){
1380     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1381   }else{
1382     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1383   }
1384   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1385   loadAnalysis(pParse, iDb);
1386 }
1387 
1388 /*
1389 ** Generate code for the ANALYZE command.  The parser calls this routine
1390 ** when it recognizes an ANALYZE command.
1391 **
1392 **        ANALYZE                            -- 1
1393 **        ANALYZE  <database>                -- 2
1394 **        ANALYZE  ?<database>.?<tablename>  -- 3
1395 **
1396 ** Form 1 causes all indices in all attached databases to be analyzed.
1397 ** Form 2 analyzes all indices the single database named.
1398 ** Form 3 analyzes all indices associated with the named table.
1399 */
sqlite3Analyze(Parse * pParse,Token * pName1,Token * pName2)1400 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1401   sqlite3 *db = pParse->db;
1402   int iDb;
1403   int i;
1404   char *z, *zDb;
1405   Table *pTab;
1406   Index *pIdx;
1407   Token *pTableName;
1408   Vdbe *v;
1409 
1410   /* Read the database schema. If an error occurs, leave an error message
1411   ** and code in pParse and return NULL. */
1412   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1413   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1414     return;
1415   }
1416 
1417   assert( pName2!=0 || pName1==0 );
1418   if( pName1==0 ){
1419     /* Form 1:  Analyze everything */
1420     for(i=0; i<db->nDb; i++){
1421       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1422       analyzeDatabase(pParse, i);
1423     }
1424   }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1425     /* Analyze the schema named as the argument */
1426     analyzeDatabase(pParse, iDb);
1427   }else{
1428     /* Form 3: Analyze the table or index named as an argument */
1429     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1430     if( iDb>=0 ){
1431       zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1432       z = sqlite3NameFromToken(db, pTableName);
1433       if( z ){
1434         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1435           analyzeTable(pParse, pIdx->pTable, pIdx);
1436         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1437           analyzeTable(pParse, pTab, 0);
1438         }
1439         sqlite3DbFree(db, z);
1440       }
1441     }
1442   }
1443   if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1444     sqlite3VdbeAddOp0(v, OP_Expire);
1445   }
1446 }
1447 
1448 /*
1449 ** Used to pass information from the analyzer reader through to the
1450 ** callback routine.
1451 */
1452 typedef struct analysisInfo analysisInfo;
1453 struct analysisInfo {
1454   sqlite3 *db;
1455   const char *zDatabase;
1456 };
1457 
1458 /*
1459 ** The first argument points to a nul-terminated string containing a
1460 ** list of space separated integers. Read the first nOut of these into
1461 ** the array aOut[].
1462 */
decodeIntArray(char * zIntArray,int nOut,tRowcnt * aOut,LogEst * aLog,Index * pIndex)1463 static void decodeIntArray(
1464   char *zIntArray,       /* String containing int array to decode */
1465   int nOut,              /* Number of slots in aOut[] */
1466   tRowcnt *aOut,         /* Store integers here */
1467   LogEst *aLog,          /* Or, if aOut==0, here */
1468   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1469 ){
1470   char *z = zIntArray;
1471   int c;
1472   int i;
1473   tRowcnt v;
1474 
1475 #ifdef SQLITE_ENABLE_STAT4
1476   if( z==0 ) z = "";
1477 #else
1478   assert( z!=0 );
1479 #endif
1480   for(i=0; *z && i<nOut; i++){
1481     v = 0;
1482     while( (c=z[0])>='0' && c<='9' ){
1483       v = v*10 + c - '0';
1484       z++;
1485     }
1486 #ifdef SQLITE_ENABLE_STAT4
1487     if( aOut ) aOut[i] = v;
1488     if( aLog ) aLog[i] = sqlite3LogEst(v);
1489 #else
1490     assert( aOut==0 );
1491     UNUSED_PARAMETER(aOut);
1492     assert( aLog!=0 );
1493     aLog[i] = sqlite3LogEst(v);
1494 #endif
1495     if( *z==' ' ) z++;
1496   }
1497 #ifndef SQLITE_ENABLE_STAT4
1498   assert( pIndex!=0 ); {
1499 #else
1500   if( pIndex ){
1501 #endif
1502     pIndex->bUnordered = 0;
1503     pIndex->noSkipScan = 0;
1504     while( z[0] ){
1505       if( sqlite3_strglob("unordered*", z)==0 ){
1506         pIndex->bUnordered = 1;
1507       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1508         int sz = sqlite3Atoi(z+3);
1509         if( sz<2 ) sz = 2;
1510         pIndex->szIdxRow = sqlite3LogEst(sz);
1511       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1512         pIndex->noSkipScan = 1;
1513       }
1514 #ifdef SQLITE_ENABLE_COSTMULT
1515       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1516         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1517       }
1518 #endif
1519       while( z[0]!=0 && z[0]!=' ' ) z++;
1520       while( z[0]==' ' ) z++;
1521     }
1522   }
1523 }
1524 
1525 /*
1526 ** This callback is invoked once for each index when reading the
1527 ** sqlite_stat1 table.
1528 **
1529 **     argv[0] = name of the table
1530 **     argv[1] = name of the index (might be NULL)
1531 **     argv[2] = results of analysis - on integer for each column
1532 **
1533 ** Entries for which argv[1]==NULL simply record the number of rows in
1534 ** the table.
1535 */
1536 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1537   analysisInfo *pInfo = (analysisInfo*)pData;
1538   Index *pIndex;
1539   Table *pTable;
1540   const char *z;
1541 
1542   assert( argc==3 );
1543   UNUSED_PARAMETER2(NotUsed, argc);
1544 
1545   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1546     return 0;
1547   }
1548   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1549   if( pTable==0 ){
1550     return 0;
1551   }
1552   if( argv[1]==0 ){
1553     pIndex = 0;
1554   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1555     pIndex = sqlite3PrimaryKeyIndex(pTable);
1556   }else{
1557     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1558   }
1559   z = argv[2];
1560 
1561   if( pIndex ){
1562     tRowcnt *aiRowEst = 0;
1563     int nCol = pIndex->nKeyCol+1;
1564 #ifdef SQLITE_ENABLE_STAT4
1565     /* Index.aiRowEst may already be set here if there are duplicate
1566     ** sqlite_stat1 entries for this index. In that case just clobber
1567     ** the old data with the new instead of allocating a new array.  */
1568     if( pIndex->aiRowEst==0 ){
1569       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1570       if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1571     }
1572     aiRowEst = pIndex->aiRowEst;
1573 #endif
1574     pIndex->bUnordered = 0;
1575     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1576     pIndex->hasStat1 = 1;
1577     if( pIndex->pPartIdxWhere==0 ){
1578       pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1579       pTable->tabFlags |= TF_HasStat1;
1580     }
1581   }else{
1582     Index fakeIdx;
1583     fakeIdx.szIdxRow = pTable->szTabRow;
1584 #ifdef SQLITE_ENABLE_COSTMULT
1585     fakeIdx.pTable = pTable;
1586 #endif
1587     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1588     pTable->szTabRow = fakeIdx.szIdxRow;
1589     pTable->tabFlags |= TF_HasStat1;
1590   }
1591 
1592   return 0;
1593 }
1594 
1595 /*
1596 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1597 ** and its contents.
1598 */
1599 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1600 #ifdef SQLITE_ENABLE_STAT4
1601   if( pIdx->aSample ){
1602     int j;
1603     for(j=0; j<pIdx->nSample; j++){
1604       IndexSample *p = &pIdx->aSample[j];
1605       sqlite3DbFree(db, p->p);
1606     }
1607     sqlite3DbFree(db, pIdx->aSample);
1608   }
1609   if( db && db->pnBytesFreed==0 ){
1610     pIdx->nSample = 0;
1611     pIdx->aSample = 0;
1612   }
1613 #else
1614   UNUSED_PARAMETER(db);
1615   UNUSED_PARAMETER(pIdx);
1616 #endif /* SQLITE_ENABLE_STAT4 */
1617 }
1618 
1619 #ifdef SQLITE_ENABLE_STAT4
1620 /*
1621 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1622 ** stored in pIdx->aSample[].
1623 */
1624 static void initAvgEq(Index *pIdx){
1625   if( pIdx ){
1626     IndexSample *aSample = pIdx->aSample;
1627     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1628     int iCol;
1629     int nCol = 1;
1630     if( pIdx->nSampleCol>1 ){
1631       /* If this is stat4 data, then calculate aAvgEq[] values for all
1632       ** sample columns except the last. The last is always set to 1, as
1633       ** once the trailing PK fields are considered all index keys are
1634       ** unique.  */
1635       nCol = pIdx->nSampleCol-1;
1636       pIdx->aAvgEq[nCol] = 1;
1637     }
1638     for(iCol=0; iCol<nCol; iCol++){
1639       int nSample = pIdx->nSample;
1640       int i;                    /* Used to iterate through samples */
1641       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1642       tRowcnt avgEq = 0;
1643       tRowcnt nRow;             /* Number of rows in index */
1644       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1645       i64 nDist100;             /* Number of distinct values in index */
1646 
1647       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1648         nRow = pFinal->anLt[iCol];
1649         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1650         nSample--;
1651       }else{
1652         nRow = pIdx->aiRowEst[0];
1653         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1654       }
1655       pIdx->nRowEst0 = nRow;
1656 
1657       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1658       ** occur in the stat4 table for this index. Set sumEq to the sum of
1659       ** the nEq values for column iCol for the same set (adding the value
1660       ** only once where there exist duplicate prefixes).  */
1661       for(i=0; i<nSample; i++){
1662         if( i==(pIdx->nSample-1)
1663          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1664         ){
1665           sumEq += aSample[i].anEq[iCol];
1666           nSum100 += 100;
1667         }
1668       }
1669 
1670       if( nDist100>nSum100 && sumEq<nRow ){
1671         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1672       }
1673       if( avgEq==0 ) avgEq = 1;
1674       pIdx->aAvgEq[iCol] = avgEq;
1675     }
1676   }
1677 }
1678 
1679 /*
1680 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1681 ** is supplied instead, find the PRIMARY KEY index for that table.
1682 */
1683 static Index *findIndexOrPrimaryKey(
1684   sqlite3 *db,
1685   const char *zName,
1686   const char *zDb
1687 ){
1688   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1689   if( pIdx==0 ){
1690     Table *pTab = sqlite3FindTable(db, zName, zDb);
1691     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1692   }
1693   return pIdx;
1694 }
1695 
1696 /*
1697 ** Load the content from either the sqlite_stat4
1698 ** into the relevant Index.aSample[] arrays.
1699 **
1700 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1701 ** data equivalent to the following:
1702 **
1703 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1704 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1705 **
1706 ** where %Q is replaced with the database name before the SQL is executed.
1707 */
1708 static int loadStatTbl(
1709   sqlite3 *db,                  /* Database handle */
1710   const char *zSql1,            /* SQL statement 1 (see above) */
1711   const char *zSql2,            /* SQL statement 2 (see above) */
1712   const char *zDb               /* Database name (e.g. "main") */
1713 ){
1714   int rc;                       /* Result codes from subroutines */
1715   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1716   char *zSql;                   /* Text of the SQL statement */
1717   Index *pPrevIdx = 0;          /* Previous index in the loop */
1718   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1719 
1720   assert( db->lookaside.bDisable );
1721   zSql = sqlite3MPrintf(db, zSql1, zDb);
1722   if( !zSql ){
1723     return SQLITE_NOMEM_BKPT;
1724   }
1725   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1726   sqlite3DbFree(db, zSql);
1727   if( rc ) return rc;
1728 
1729   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1730     int nIdxCol = 1;              /* Number of columns in stat4 records */
1731 
1732     char *zIndex;   /* Index name */
1733     Index *pIdx;    /* Pointer to the index object */
1734     int nSample;    /* Number of samples */
1735     int nByte;      /* Bytes of space required */
1736     int i;          /* Bytes of space required */
1737     tRowcnt *pSpace;
1738 
1739     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1740     if( zIndex==0 ) continue;
1741     nSample = sqlite3_column_int(pStmt, 1);
1742     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1743     assert( pIdx==0 || pIdx->nSample==0 );
1744     if( pIdx==0 ) continue;
1745     assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1746     if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1747       nIdxCol = pIdx->nKeyCol;
1748     }else{
1749       nIdxCol = pIdx->nColumn;
1750     }
1751     pIdx->nSampleCol = nIdxCol;
1752     nByte = sizeof(IndexSample) * nSample;
1753     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1754     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1755 
1756     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1757     if( pIdx->aSample==0 ){
1758       sqlite3_finalize(pStmt);
1759       return SQLITE_NOMEM_BKPT;
1760     }
1761     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1762     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1763     pIdx->pTable->tabFlags |= TF_HasStat4;
1764     for(i=0; i<nSample; i++){
1765       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1766       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1767       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1768     }
1769     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1770   }
1771   rc = sqlite3_finalize(pStmt);
1772   if( rc ) return rc;
1773 
1774   zSql = sqlite3MPrintf(db, zSql2, zDb);
1775   if( !zSql ){
1776     return SQLITE_NOMEM_BKPT;
1777   }
1778   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1779   sqlite3DbFree(db, zSql);
1780   if( rc ) return rc;
1781 
1782   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1783     char *zIndex;                 /* Index name */
1784     Index *pIdx;                  /* Pointer to the index object */
1785     int nCol = 1;                 /* Number of columns in index */
1786 
1787     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1788     if( zIndex==0 ) continue;
1789     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1790     if( pIdx==0 ) continue;
1791     /* This next condition is true if data has already been loaded from
1792     ** the sqlite_stat4 table. */
1793     nCol = pIdx->nSampleCol;
1794     if( pIdx!=pPrevIdx ){
1795       initAvgEq(pPrevIdx);
1796       pPrevIdx = pIdx;
1797     }
1798     pSample = &pIdx->aSample[pIdx->nSample];
1799     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1800     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1801     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1802 
1803     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1804     ** This is in case the sample record is corrupted. In that case, the
1805     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1806     ** end of the allocated buffer before it realizes it is dealing with
1807     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1808     ** a buffer overread.  */
1809     pSample->n = sqlite3_column_bytes(pStmt, 4);
1810     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1811     if( pSample->p==0 ){
1812       sqlite3_finalize(pStmt);
1813       return SQLITE_NOMEM_BKPT;
1814     }
1815     if( pSample->n ){
1816       memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1817     }
1818     pIdx->nSample++;
1819   }
1820   rc = sqlite3_finalize(pStmt);
1821   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1822   return rc;
1823 }
1824 
1825 /*
1826 ** Load content from the sqlite_stat4 table into
1827 ** the Index.aSample[] arrays of all indices.
1828 */
1829 static int loadStat4(sqlite3 *db, const char *zDb){
1830   int rc = SQLITE_OK;             /* Result codes from subroutines */
1831   const Table *pStat4;
1832 
1833   assert( db->lookaside.bDisable );
1834   if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
1835    && IsOrdinaryTable(pStat4)
1836   ){
1837     rc = loadStatTbl(db,
1838       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1839       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1840       zDb
1841     );
1842   }
1843   return rc;
1844 }
1845 #endif /* SQLITE_ENABLE_STAT4 */
1846 
1847 /*
1848 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1849 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1850 ** arrays. The contents of sqlite_stat4 are used to populate the
1851 ** Index.aSample[] arrays.
1852 **
1853 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1854 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1855 ** during compilation and the sqlite_stat4 table is present, no data is
1856 ** read from it.
1857 **
1858 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1859 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1860 ** returned. However, in this case, data is read from the sqlite_stat1
1861 ** table (if it is present) before returning.
1862 **
1863 ** If an OOM error occurs, this function always sets db->mallocFailed.
1864 ** This means if the caller does not care about other errors, the return
1865 ** code may be ignored.
1866 */
1867 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1868   analysisInfo sInfo;
1869   HashElem *i;
1870   char *zSql;
1871   int rc = SQLITE_OK;
1872   Schema *pSchema = db->aDb[iDb].pSchema;
1873   const Table *pStat1;
1874 
1875   assert( iDb>=0 && iDb<db->nDb );
1876   assert( db->aDb[iDb].pBt!=0 );
1877 
1878   /* Clear any prior statistics */
1879   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1880   for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1881     Table *pTab = sqliteHashData(i);
1882     pTab->tabFlags &= ~TF_HasStat1;
1883   }
1884   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1885     Index *pIdx = sqliteHashData(i);
1886     pIdx->hasStat1 = 0;
1887 #ifdef SQLITE_ENABLE_STAT4
1888     sqlite3DeleteIndexSamples(db, pIdx);
1889     pIdx->aSample = 0;
1890 #endif
1891   }
1892 
1893   /* Load new statistics out of the sqlite_stat1 table */
1894   sInfo.db = db;
1895   sInfo.zDatabase = db->aDb[iDb].zDbSName;
1896   if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
1897    && IsOrdinaryTable(pStat1)
1898   ){
1899     zSql = sqlite3MPrintf(db,
1900         "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1901     if( zSql==0 ){
1902       rc = SQLITE_NOMEM_BKPT;
1903     }else{
1904       rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1905       sqlite3DbFree(db, zSql);
1906     }
1907   }
1908 
1909   /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1910   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1911   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1912     Index *pIdx = sqliteHashData(i);
1913     if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1914   }
1915 
1916   /* Load the statistics from the sqlite_stat4 table. */
1917 #ifdef SQLITE_ENABLE_STAT4
1918   if( rc==SQLITE_OK ){
1919     DisableLookaside;
1920     rc = loadStat4(db, sInfo.zDatabase);
1921     EnableLookaside;
1922   }
1923   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1924     Index *pIdx = sqliteHashData(i);
1925     sqlite3_free(pIdx->aiRowEst);
1926     pIdx->aiRowEst = 0;
1927   }
1928 #endif
1929 
1930   if( rc==SQLITE_NOMEM ){
1931     sqlite3OomFault(db);
1932   }
1933   return rc;
1934 }
1935 
1936 
1937 #endif /* SQLITE_OMIT_ANALYZE */
1938