1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_lpm.h>
38 #include <rte_lpm6.h>
39 #include <rte_ip.h>
40 #include <rte_string_fns.h>
41
42 #include <rte_ip_frag.h>
43
44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
45
46 /* allow max jumbo frame 9.5 KB */
47 #define JUMBO_FRAME_MAX_SIZE 0x2600
48
49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b))
50
51 /*
52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
53 * This value includes the size of IPv6 header.
54 */
55 #define IPV4_MTU_DEFAULT RTE_ETHER_MTU
56 #define IPV6_MTU_DEFAULT RTE_ETHER_MTU
57
58 /*
59 * The overhead from max frame size to MTU.
60 * We have to consider the max possible overhead.
61 */
62 #define MTU_OVERHEAD \
63 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
64 2 * sizeof(struct rte_vlan_hdr))
65
66 /*
67 * Default payload in bytes for the IPv6 packet.
68 */
69 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
70 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
71
72 /*
73 * Max number of fragments per packet expected - defined by config file.
74 */
75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
76
77 #define NB_MBUF 8192
78
79 #define MAX_PKT_BURST 32
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81
82 /* Configure how many packets ahead to prefetch, when reading packets */
83 #define PREFETCH_OFFSET 3
84
85 /*
86 * Configurable number of RX/TX ring descriptors
87 */
88 #define RTE_TEST_RX_DESC_DEFAULT 1024
89 #define RTE_TEST_TX_DESC_DEFAULT 1024
90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
92
93 /* ethernet addresses of ports */
94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
95
96 #ifndef IPv4_BYTES
97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
98 #define IPv4_BYTES(addr) \
99 (uint8_t) (((addr) >> 24) & 0xFF),\
100 (uint8_t) (((addr) >> 16) & 0xFF),\
101 (uint8_t) (((addr) >> 8) & 0xFF),\
102 (uint8_t) ((addr) & 0xFF)
103 #endif
104
105 #ifndef IPv6_BYTES
106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
107 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
108 #define IPv6_BYTES(addr) \
109 addr[0], addr[1], addr[2], addr[3], \
110 addr[4], addr[5], addr[6], addr[7], \
111 addr[8], addr[9], addr[10], addr[11],\
112 addr[12], addr[13],addr[14], addr[15]
113 #endif
114
115 #define IPV6_ADDR_LEN 16
116
117 /* mask of enabled ports */
118 static int enabled_port_mask = 0;
119
120 static int rx_queue_per_lcore = 1;
121
122 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
123
124 struct mbuf_table {
125 uint16_t len;
126 struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
127 };
128
129 struct rx_queue {
130 struct rte_mempool *direct_pool;
131 struct rte_mempool *indirect_pool;
132 struct rte_lpm *lpm;
133 struct rte_lpm6 *lpm6;
134 uint16_t portid;
135 };
136
137 #define MAX_RX_QUEUE_PER_LCORE 16
138 #define MAX_TX_QUEUE_PER_PORT 16
139 struct lcore_queue_conf {
140 uint16_t n_rx_queue;
141 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
142 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
143 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
144 } __rte_cache_aligned;
145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
146
147 static struct rte_eth_conf port_conf = {
148 .rxmode = {
149 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
150 .split_hdr_size = 0,
151 .offloads = (DEV_RX_OFFLOAD_CHECKSUM |
152 DEV_RX_OFFLOAD_SCATTER |
153 DEV_RX_OFFLOAD_JUMBO_FRAME),
154 },
155 .txmode = {
156 .mq_mode = ETH_MQ_TX_NONE,
157 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
158 DEV_TX_OFFLOAD_MULTI_SEGS),
159 },
160 };
161
162 /*
163 * IPv4 forwarding table
164 */
165 struct l3fwd_ipv4_route {
166 uint32_t ip;
167 uint8_t depth;
168 uint8_t if_out;
169 };
170
171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
172 {RTE_IPV4(100,10,0,0), 16, 0},
173 {RTE_IPV4(100,20,0,0), 16, 1},
174 {RTE_IPV4(100,30,0,0), 16, 2},
175 {RTE_IPV4(100,40,0,0), 16, 3},
176 {RTE_IPV4(100,50,0,0), 16, 4},
177 {RTE_IPV4(100,60,0,0), 16, 5},
178 {RTE_IPV4(100,70,0,0), 16, 6},
179 {RTE_IPV4(100,80,0,0), 16, 7},
180 };
181
182 /*
183 * IPv6 forwarding table
184 */
185
186 struct l3fwd_ipv6_route {
187 uint8_t ip[IPV6_ADDR_LEN];
188 uint8_t depth;
189 uint8_t if_out;
190 };
191
192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
193 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
194 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
195 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
196 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
197 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
198 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
199 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
200 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
201 };
202
203 #define LPM_MAX_RULES 1024
204 #define LPM6_MAX_RULES 1024
205 #define LPM6_NUMBER_TBL8S (1 << 16)
206
207 struct rte_lpm6_config lpm6_config = {
208 .max_rules = LPM6_MAX_RULES,
209 .number_tbl8s = LPM6_NUMBER_TBL8S,
210 .flags = 0
211 };
212
213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
217
218 /* Send burst of packets on an output interface */
219 static inline int
send_burst(struct lcore_queue_conf * qconf,uint16_t n,uint16_t port)220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
221 {
222 struct rte_mbuf **m_table;
223 int ret;
224 uint16_t queueid;
225
226 queueid = qconf->tx_queue_id[port];
227 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
228
229 ret = rte_eth_tx_burst(port, queueid, m_table, n);
230 if (unlikely(ret < n)) {
231 do {
232 rte_pktmbuf_free(m_table[ret]);
233 } while (++ret < n);
234 }
235
236 return 0;
237 }
238
239 static inline void
l3fwd_simple_forward(struct rte_mbuf * m,struct lcore_queue_conf * qconf,uint8_t queueid,uint16_t port_in)240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
241 uint8_t queueid, uint16_t port_in)
242 {
243 struct rx_queue *rxq;
244 uint32_t i, len, next_hop;
245 uint16_t port_out, ether_type;
246 int32_t len2;
247 uint64_t ol_flags;
248 const struct rte_ether_hdr *eth;
249
250 ol_flags = 0;
251 rxq = &qconf->rx_queue_list[queueid];
252
253 /* by default, send everything back to the source port */
254 port_out = port_in;
255
256 /* save ether type of the incoming packet */
257 eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
258 ether_type = eth->ether_type;
259
260 /* Remove the Ethernet header and trailer from the input packet */
261 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
262
263 /* Build transmission burst */
264 len = qconf->tx_mbufs[port_out].len;
265
266 /* if this is an IPv4 packet */
267 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
268 struct rte_ipv4_hdr *ip_hdr;
269 uint32_t ip_dst;
270 /* Read the lookup key (i.e. ip_dst) from the input packet */
271 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
272 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
273
274 /* Find destination port */
275 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
276 (enabled_port_mask & 1 << next_hop) != 0) {
277 port_out = next_hop;
278
279 /* Build transmission burst for new port */
280 len = qconf->tx_mbufs[port_out].len;
281 }
282
283 /* if we don't need to do any fragmentation */
284 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
285 qconf->tx_mbufs[port_out].m_table[len] = m;
286 len2 = 1;
287 } else {
288 len2 = rte_ipv4_fragment_packet(m,
289 &qconf->tx_mbufs[port_out].m_table[len],
290 (uint16_t)(MBUF_TABLE_SIZE - len),
291 IPV4_MTU_DEFAULT,
292 rxq->direct_pool, rxq->indirect_pool);
293
294 /* Free input packet */
295 rte_pktmbuf_free(m);
296
297 /* request HW to regenerate IPv4 cksum */
298 ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
299
300 /* If we fail to fragment the packet */
301 if (unlikely (len2 < 0))
302 return;
303 }
304 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
305 /* if this is an IPv6 packet */
306 struct rte_ipv6_hdr *ip_hdr;
307
308 /* Read the lookup key (i.e. ip_dst) from the input packet */
309 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
310
311 /* Find destination port */
312 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
313 &next_hop) == 0 &&
314 (enabled_port_mask & 1 << next_hop) != 0) {
315 port_out = next_hop;
316
317 /* Build transmission burst for new port */
318 len = qconf->tx_mbufs[port_out].len;
319 }
320
321 /* if we don't need to do any fragmentation */
322 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
323 qconf->tx_mbufs[port_out].m_table[len] = m;
324 len2 = 1;
325 } else {
326 len2 = rte_ipv6_fragment_packet(m,
327 &qconf->tx_mbufs[port_out].m_table[len],
328 (uint16_t)(MBUF_TABLE_SIZE - len),
329 IPV6_MTU_DEFAULT,
330 rxq->direct_pool, rxq->indirect_pool);
331
332 /* Free input packet */
333 rte_pktmbuf_free(m);
334
335 /* If we fail to fragment the packet */
336 if (unlikely (len2 < 0))
337 return;
338 }
339 }
340 /* else, just forward the packet */
341 else {
342 qconf->tx_mbufs[port_out].m_table[len] = m;
343 len2 = 1;
344 }
345
346 for (i = len; i < len + len2; i ++) {
347 void *d_addr_bytes;
348
349 m = qconf->tx_mbufs[port_out].m_table[i];
350 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
351 rte_pktmbuf_prepend(m,
352 (uint16_t)sizeof(struct rte_ether_hdr));
353 if (eth_hdr == NULL) {
354 rte_panic("No headroom in mbuf.\n");
355 }
356
357 m->ol_flags |= ol_flags;
358 m->l2_len = sizeof(struct rte_ether_hdr);
359
360 /* 02:00:00:00:00:xx */
361 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
362 *((uint64_t *)d_addr_bytes) = 0x000000000002 +
363 ((uint64_t)port_out << 40);
364
365 /* src addr */
366 rte_ether_addr_copy(&ports_eth_addr[port_out],
367 ð_hdr->s_addr);
368 eth_hdr->ether_type = ether_type;
369 }
370
371 len += len2;
372
373 if (likely(len < MAX_PKT_BURST)) {
374 qconf->tx_mbufs[port_out].len = (uint16_t)len;
375 return;
376 }
377
378 /* Transmit packets */
379 send_burst(qconf, (uint16_t)len, port_out);
380 qconf->tx_mbufs[port_out].len = 0;
381 }
382
383 /* main processing loop */
384 static int
main_loop(__rte_unused void * dummy)385 main_loop(__rte_unused void *dummy)
386 {
387 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
388 unsigned lcore_id;
389 uint64_t prev_tsc, diff_tsc, cur_tsc;
390 int i, j, nb_rx;
391 uint16_t portid;
392 struct lcore_queue_conf *qconf;
393 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
394
395 prev_tsc = 0;
396
397 lcore_id = rte_lcore_id();
398 qconf = &lcore_queue_conf[lcore_id];
399
400 if (qconf->n_rx_queue == 0) {
401 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
402 return 0;
403 }
404
405 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
406
407 for (i = 0; i < qconf->n_rx_queue; i++) {
408
409 portid = qconf->rx_queue_list[i].portid;
410 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
411 portid);
412 }
413
414 while (1) {
415
416 cur_tsc = rte_rdtsc();
417
418 /*
419 * TX burst queue drain
420 */
421 diff_tsc = cur_tsc - prev_tsc;
422 if (unlikely(diff_tsc > drain_tsc)) {
423
424 /*
425 * This could be optimized (use queueid instead of
426 * portid), but it is not called so often
427 */
428 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
429 if (qconf->tx_mbufs[portid].len == 0)
430 continue;
431 send_burst(&lcore_queue_conf[lcore_id],
432 qconf->tx_mbufs[portid].len,
433 portid);
434 qconf->tx_mbufs[portid].len = 0;
435 }
436
437 prev_tsc = cur_tsc;
438 }
439
440 /*
441 * Read packet from RX queues
442 */
443 for (i = 0; i < qconf->n_rx_queue; i++) {
444
445 portid = qconf->rx_queue_list[i].portid;
446 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
447 MAX_PKT_BURST);
448
449 /* Prefetch first packets */
450 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
451 rte_prefetch0(rte_pktmbuf_mtod(
452 pkts_burst[j], void *));
453 }
454
455 /* Prefetch and forward already prefetched packets */
456 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
457 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
458 j + PREFETCH_OFFSET], void *));
459 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
460 }
461
462 /* Forward remaining prefetched packets */
463 for (; j < nb_rx; j++) {
464 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
465 }
466 }
467 }
468 }
469
470 /* display usage */
471 static void
print_usage(const char * prgname)472 print_usage(const char *prgname)
473 {
474 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
475 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
476 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
477 prgname);
478 }
479
480 static int
parse_portmask(const char * portmask)481 parse_portmask(const char *portmask)
482 {
483 char *end = NULL;
484 unsigned long pm;
485
486 /* parse hexadecimal string */
487 pm = strtoul(portmask, &end, 16);
488 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
489 return -1;
490
491 if (pm == 0)
492 return -1;
493
494 return pm;
495 }
496
497 static int
parse_nqueue(const char * q_arg)498 parse_nqueue(const char *q_arg)
499 {
500 char *end = NULL;
501 unsigned long n;
502
503 /* parse hexadecimal string */
504 n = strtoul(q_arg, &end, 10);
505 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
506 return -1;
507 if (n == 0)
508 return -1;
509 if (n >= MAX_RX_QUEUE_PER_LCORE)
510 return -1;
511
512 return n;
513 }
514
515 /* Parse the argument given in the command line of the application */
516 static int
parse_args(int argc,char ** argv)517 parse_args(int argc, char **argv)
518 {
519 int opt, ret;
520 char **argvopt;
521 int option_index;
522 char *prgname = argv[0];
523 static struct option lgopts[] = {
524 {NULL, 0, 0, 0}
525 };
526
527 argvopt = argv;
528
529 while ((opt = getopt_long(argc, argvopt, "p:q:",
530 lgopts, &option_index)) != EOF) {
531
532 switch (opt) {
533 /* portmask */
534 case 'p':
535 enabled_port_mask = parse_portmask(optarg);
536 if (enabled_port_mask < 0) {
537 printf("invalid portmask\n");
538 print_usage(prgname);
539 return -1;
540 }
541 break;
542
543 /* nqueue */
544 case 'q':
545 rx_queue_per_lcore = parse_nqueue(optarg);
546 if (rx_queue_per_lcore < 0) {
547 printf("invalid queue number\n");
548 print_usage(prgname);
549 return -1;
550 }
551 break;
552
553 /* long options */
554 case 0:
555 print_usage(prgname);
556 return -1;
557
558 default:
559 print_usage(prgname);
560 return -1;
561 }
562 }
563
564 if (enabled_port_mask == 0) {
565 printf("portmask not specified\n");
566 print_usage(prgname);
567 return -1;
568 }
569
570 if (optind >= 0)
571 argv[optind-1] = prgname;
572
573 ret = optind-1;
574 optind = 1; /* reset getopt lib */
575 return ret;
576 }
577
578 static void
print_ethaddr(const char * name,struct rte_ether_addr * eth_addr)579 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
580 {
581 char buf[RTE_ETHER_ADDR_FMT_SIZE];
582 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
583 printf("%s%s", name, buf);
584 }
585
586 /* Check the link status of all ports in up to 9s, and print them finally */
587 static void
check_all_ports_link_status(uint32_t port_mask)588 check_all_ports_link_status(uint32_t port_mask)
589 {
590 #define CHECK_INTERVAL 100 /* 100ms */
591 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
592 uint16_t portid;
593 uint8_t count, all_ports_up, print_flag = 0;
594 struct rte_eth_link link;
595 int ret;
596 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
597
598 printf("\nChecking link status");
599 fflush(stdout);
600 for (count = 0; count <= MAX_CHECK_TIME; count++) {
601 all_ports_up = 1;
602 RTE_ETH_FOREACH_DEV(portid) {
603 if ((port_mask & (1 << portid)) == 0)
604 continue;
605 memset(&link, 0, sizeof(link));
606 ret = rte_eth_link_get_nowait(portid, &link);
607 if (ret < 0) {
608 all_ports_up = 0;
609 if (print_flag == 1)
610 printf("Port %u link get failed: %s\n",
611 portid, rte_strerror(-ret));
612 continue;
613 }
614 /* print link status if flag set */
615 if (print_flag == 1) {
616 rte_eth_link_to_str(link_status_text,
617 sizeof(link_status_text), &link);
618 printf("Port %d %s\n", portid,
619 link_status_text);
620 continue;
621 }
622 /* clear all_ports_up flag if any link down */
623 if (link.link_status == ETH_LINK_DOWN) {
624 all_ports_up = 0;
625 break;
626 }
627 }
628 /* after finally printing all link status, get out */
629 if (print_flag == 1)
630 break;
631
632 if (all_ports_up == 0) {
633 printf(".");
634 fflush(stdout);
635 rte_delay_ms(CHECK_INTERVAL);
636 }
637
638 /* set the print_flag if all ports up or timeout */
639 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
640 print_flag = 1;
641 printf("\ndone\n");
642 }
643 }
644 }
645
646 /* Check L3 packet type detection capability of the NIC port */
647 static int
check_ptype(int portid)648 check_ptype(int portid)
649 {
650 int i, ret;
651 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
652 uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
653
654 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
655 if (ret <= 0)
656 return 0;
657
658 uint32_t ptypes[ret];
659
660 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
661 for (i = 0; i < ret; ++i) {
662 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
663 ptype_l3_ipv4 = 1;
664 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
665 ptype_l3_ipv6 = 1;
666 }
667
668 if (ptype_l3_ipv4 == 0)
669 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
670
671 if (ptype_l3_ipv6 == 0)
672 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
673
674 if (ptype_l3_ipv4 && ptype_l3_ipv6)
675 return 1;
676
677 return 0;
678
679 }
680
681 /* Parse packet type of a packet by SW */
682 static inline void
parse_ptype(struct rte_mbuf * m)683 parse_ptype(struct rte_mbuf *m)
684 {
685 struct rte_ether_hdr *eth_hdr;
686 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
687 uint16_t ether_type;
688
689 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
690 ether_type = eth_hdr->ether_type;
691 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
692 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
693 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
694 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
695
696 m->packet_type = packet_type;
697 }
698
699 /* callback function to detect packet type for a queue of a port */
700 static uint16_t
cb_parse_ptype(uint16_t port __rte_unused,uint16_t queue __rte_unused,struct rte_mbuf * pkts[],uint16_t nb_pkts,uint16_t max_pkts __rte_unused,void * user_param __rte_unused)701 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
702 struct rte_mbuf *pkts[], uint16_t nb_pkts,
703 uint16_t max_pkts __rte_unused,
704 void *user_param __rte_unused)
705 {
706 uint16_t i;
707
708 for (i = 0; i < nb_pkts; ++i)
709 parse_ptype(pkts[i]);
710
711 return nb_pkts;
712 }
713
714 static int
init_routing_table(void)715 init_routing_table(void)
716 {
717 struct rte_lpm *lpm;
718 struct rte_lpm6 *lpm6;
719 int socket, ret;
720 unsigned i;
721
722 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
723 if (socket_lpm[socket]) {
724 lpm = socket_lpm[socket];
725 /* populate the LPM table */
726 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
727 ret = rte_lpm_add(lpm,
728 l3fwd_ipv4_route_array[i].ip,
729 l3fwd_ipv4_route_array[i].depth,
730 l3fwd_ipv4_route_array[i].if_out);
731
732 if (ret < 0) {
733 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
734 "LPM table\n", i);
735 return -1;
736 }
737
738 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
739 "/%d (port %d)\n",
740 socket,
741 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
742 l3fwd_ipv4_route_array[i].depth,
743 l3fwd_ipv4_route_array[i].if_out);
744 }
745 }
746
747 if (socket_lpm6[socket]) {
748 lpm6 = socket_lpm6[socket];
749 /* populate the LPM6 table */
750 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
751 ret = rte_lpm6_add(lpm6,
752 l3fwd_ipv6_route_array[i].ip,
753 l3fwd_ipv6_route_array[i].depth,
754 l3fwd_ipv6_route_array[i].if_out);
755
756 if (ret < 0) {
757 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
758 "LPM6 table\n", i);
759 return -1;
760 }
761
762 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
763 "/%d (port %d)\n",
764 socket,
765 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
766 l3fwd_ipv6_route_array[i].depth,
767 l3fwd_ipv6_route_array[i].if_out);
768 }
769 }
770 }
771 return 0;
772 }
773
774 static int
init_mem(void)775 init_mem(void)
776 {
777 char buf[PATH_MAX];
778 struct rte_mempool *mp;
779 struct rte_lpm *lpm;
780 struct rte_lpm6 *lpm6;
781 struct rte_lpm_config lpm_config;
782 int socket;
783 unsigned lcore_id;
784
785 /* traverse through lcores and initialize structures on each socket */
786
787 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
788
789 if (rte_lcore_is_enabled(lcore_id) == 0)
790 continue;
791
792 socket = rte_lcore_to_socket_id(lcore_id);
793
794 if (socket == SOCKET_ID_ANY)
795 socket = 0;
796
797 if (socket_direct_pool[socket] == NULL) {
798 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
799 socket);
800 snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
801
802 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
803 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
804 if (mp == NULL) {
805 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
806 return -1;
807 }
808 socket_direct_pool[socket] = mp;
809 }
810
811 if (socket_indirect_pool[socket] == NULL) {
812 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
813 socket);
814 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
815
816 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
817 socket);
818 if (mp == NULL) {
819 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
820 return -1;
821 }
822 socket_indirect_pool[socket] = mp;
823 }
824
825 if (socket_lpm[socket] == NULL) {
826 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
827 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
828
829 lpm_config.max_rules = LPM_MAX_RULES;
830 lpm_config.number_tbl8s = 256;
831 lpm_config.flags = 0;
832
833 lpm = rte_lpm_create(buf, socket, &lpm_config);
834 if (lpm == NULL) {
835 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
836 return -1;
837 }
838 socket_lpm[socket] = lpm;
839 }
840
841 if (socket_lpm6[socket] == NULL) {
842 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
843 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
844
845 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
846 if (lpm6 == NULL) {
847 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
848 return -1;
849 }
850 socket_lpm6[socket] = lpm6;
851 }
852 }
853
854 return 0;
855 }
856
857 int
main(int argc,char ** argv)858 main(int argc, char **argv)
859 {
860 struct lcore_queue_conf *qconf;
861 struct rte_eth_dev_info dev_info;
862 struct rte_eth_txconf *txconf;
863 struct rx_queue *rxq;
864 int socket, ret;
865 uint16_t nb_ports;
866 uint16_t queueid = 0;
867 unsigned lcore_id = 0, rx_lcore_id = 0;
868 uint32_t n_tx_queue, nb_lcores;
869 uint16_t portid;
870
871 /* init EAL */
872 ret = rte_eal_init(argc, argv);
873 if (ret < 0)
874 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
875 argc -= ret;
876 argv += ret;
877
878 /* parse application arguments (after the EAL ones) */
879 ret = parse_args(argc, argv);
880 if (ret < 0)
881 rte_exit(EXIT_FAILURE, "Invalid arguments");
882
883 nb_ports = rte_eth_dev_count_avail();
884 if (nb_ports == 0)
885 rte_exit(EXIT_FAILURE, "No ports found!\n");
886
887 nb_lcores = rte_lcore_count();
888
889 /* initialize structures (mempools, lpm etc.) */
890 if (init_mem() < 0)
891 rte_panic("Cannot initialize memory structures!\n");
892
893 /* check if portmask has non-existent ports */
894 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
895 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
896
897 /* initialize all ports */
898 RTE_ETH_FOREACH_DEV(portid) {
899 struct rte_eth_conf local_port_conf = port_conf;
900 struct rte_eth_rxconf rxq_conf;
901
902 /* skip ports that are not enabled */
903 if ((enabled_port_mask & (1 << portid)) == 0) {
904 printf("Skipping disabled port %d\n", portid);
905 continue;
906 }
907
908 qconf = &lcore_queue_conf[rx_lcore_id];
909
910 /* limit the frame size to the maximum supported by NIC */
911 ret = rte_eth_dev_info_get(portid, &dev_info);
912 if (ret != 0)
913 rte_exit(EXIT_FAILURE,
914 "Error during getting device (port %u) info: %s\n",
915 portid, strerror(-ret));
916
917 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
918 dev_info.max_rx_pktlen,
919 local_port_conf.rxmode.max_rx_pkt_len);
920
921 /* get the lcore_id for this port */
922 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
923 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
924
925 rx_lcore_id ++;
926 if (rx_lcore_id >= RTE_MAX_LCORE)
927 rte_exit(EXIT_FAILURE, "Not enough cores\n");
928
929 qconf = &lcore_queue_conf[rx_lcore_id];
930 }
931
932 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
933 if (socket == SOCKET_ID_ANY)
934 socket = 0;
935
936 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
937 rxq->portid = portid;
938 rxq->direct_pool = socket_direct_pool[socket];
939 rxq->indirect_pool = socket_indirect_pool[socket];
940 rxq->lpm = socket_lpm[socket];
941 rxq->lpm6 = socket_lpm6[socket];
942 qconf->n_rx_queue++;
943
944 /* init port */
945 printf("Initializing port %d on lcore %u...", portid,
946 rx_lcore_id);
947 fflush(stdout);
948
949 n_tx_queue = nb_lcores;
950 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
951 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
952 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
953 &local_port_conf);
954 if (ret < 0) {
955 printf("\n");
956 rte_exit(EXIT_FAILURE, "Cannot configure device: "
957 "err=%d, port=%d\n",
958 ret, portid);
959 }
960
961 /* set the mtu to the maximum received packet size */
962 ret = rte_eth_dev_set_mtu(portid,
963 local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD);
964 if (ret < 0) {
965 printf("\n");
966 rte_exit(EXIT_FAILURE, "Set MTU failed: "
967 "err=%d, port=%d\n",
968 ret, portid);
969 }
970
971 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
972 &nb_txd);
973 if (ret < 0) {
974 printf("\n");
975 rte_exit(EXIT_FAILURE, "Cannot adjust number of "
976 "descriptors: err=%d, port=%d\n", ret, portid);
977 }
978
979 /* init one RX queue */
980 rxq_conf = dev_info.default_rxconf;
981 rxq_conf.offloads = local_port_conf.rxmode.offloads;
982 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
983 socket, &rxq_conf,
984 socket_direct_pool[socket]);
985 if (ret < 0) {
986 printf("\n");
987 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
988 "err=%d, port=%d\n",
989 ret, portid);
990 }
991
992 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
993 if (ret < 0) {
994 printf("\n");
995 rte_exit(EXIT_FAILURE,
996 "rte_eth_macaddr_get: err=%d, port=%d\n",
997 ret, portid);
998 }
999
1000 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1001 printf("\n");
1002
1003 /* init one TX queue per couple (lcore,port) */
1004 ret = rte_eth_dev_info_get(portid, &dev_info);
1005 if (ret != 0)
1006 rte_exit(EXIT_FAILURE,
1007 "Error during getting device (port %u) info: %s\n",
1008 portid, strerror(-ret));
1009
1010 queueid = 0;
1011 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1012 if (rte_lcore_is_enabled(lcore_id) == 0)
1013 continue;
1014
1015 if (queueid >= dev_info.nb_tx_queues)
1016 break;
1017
1018 socket = (int) rte_lcore_to_socket_id(lcore_id);
1019 printf("txq=%u,%d ", lcore_id, queueid);
1020 fflush(stdout);
1021
1022 txconf = &dev_info.default_txconf;
1023 txconf->offloads = local_port_conf.txmode.offloads;
1024 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1025 socket, txconf);
1026 if (ret < 0) {
1027 printf("\n");
1028 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1029 "err=%d, port=%d\n", ret, portid);
1030 }
1031
1032 qconf = &lcore_queue_conf[lcore_id];
1033 qconf->tx_queue_id[portid] = queueid;
1034 queueid++;
1035 }
1036
1037 printf("\n");
1038 }
1039
1040 printf("\n");
1041
1042 /* start ports */
1043 RTE_ETH_FOREACH_DEV(portid) {
1044 if ((enabled_port_mask & (1 << portid)) == 0) {
1045 continue;
1046 }
1047 /* Start device */
1048 ret = rte_eth_dev_start(portid);
1049 if (ret < 0)
1050 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1051 ret, portid);
1052
1053 ret = rte_eth_promiscuous_enable(portid);
1054 if (ret != 0)
1055 rte_exit(EXIT_FAILURE,
1056 "rte_eth_promiscuous_enable: err=%s, port=%d\n",
1057 rte_strerror(-ret), portid);
1058
1059 if (check_ptype(portid) == 0) {
1060 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1061 printf("Add Rx callback function to detect L3 packet type by SW :"
1062 " port = %d\n", portid);
1063 }
1064 }
1065
1066 if (init_routing_table() < 0)
1067 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1068
1069 check_all_ports_link_status(enabled_port_mask);
1070
1071 /* launch per-lcore init on every lcore */
1072 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1073 RTE_LCORE_FOREACH_WORKER(lcore_id) {
1074 if (rte_eal_wait_lcore(lcore_id) < 0)
1075 return -1;
1076 }
1077
1078 return 0;
1079 }
1080