1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
35 */
36
37 /*
38 * Comments on the socket life cycle:
39 *
40 * soalloc() sets of socket layer state for a socket, called only by
41 * socreate() and sonewconn(). Socket layer private.
42 *
43 * sodealloc() tears down socket layer state for a socket, called only by
44 * sofree() and sonewconn(). Socket layer private.
45 *
46 * pru_attach() associates protocol layer state with an allocated socket;
47 * called only once, may fail, aborting socket allocation. This is called
48 * from socreate() and sonewconn(). Socket layer private.
49 *
50 * pru_detach() disassociates protocol layer state from an attached socket,
51 * and will be called exactly once for sockets in which pru_attach() has
52 * been successfully called. If pru_attach() returned an error,
53 * pru_detach() will not be called. Socket layer private.
54 *
55 * pru_abort() and pru_close() notify the protocol layer that the last
56 * consumer of a socket is starting to tear down the socket, and that the
57 * protocol should terminate the connection. Historically, pru_abort() also
58 * detached protocol state from the socket state, but this is no longer the
59 * case.
60 *
61 * socreate() creates a socket and attaches protocol state. This is a public
62 * interface that may be used by socket layer consumers to create new
63 * sockets.
64 *
65 * sonewconn() creates a socket and attaches protocol state. This is a
66 * public interface that may be used by protocols to create new sockets when
67 * a new connection is received and will be available for accept() on a
68 * listen socket.
69 *
70 * soclose() destroys a socket after possibly waiting for it to disconnect.
71 * This is a public interface that socket consumers should use to close and
72 * release a socket when done with it.
73 *
74 * soabort() destroys a socket without waiting for it to disconnect (used
75 * only for incoming connections that are already partially or fully
76 * connected). This is used internally by the socket layer when clearing
77 * listen socket queues (due to overflow or close on the listen socket), but
78 * is also a public interface protocols may use to abort connections in
79 * their incomplete listen queues should they no longer be required. Sockets
80 * placed in completed connection listen queues should not be aborted for
81 * reasons described in the comment above the soclose() implementation. This
82 * is not a general purpose close routine, and except in the specific
83 * circumstances described here, should not be used.
84 *
85 * sofree() will free a socket and its protocol state if all references on
86 * the socket have been released, and is the public interface to attempt to
87 * free a socket when a reference is removed. This is a socket layer private
88 * interface.
89 *
90 * NOTE: In addition to socreate() and soclose(), which provide a single
91 * socket reference to the consumer to be managed as required, there are two
92 * calls to explicitly manage socket references, soref(), and sorele().
93 * Currently, these are generally required only when transitioning a socket
94 * from a listen queue to a file descriptor, in order to prevent garbage
95 * collection of the socket at an untimely moment. For a number of reasons,
96 * these interfaces are not preferred, and should be avoided.
97 *
98 * NOTE: With regard to VNETs the general rule is that callers do not set
99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101 * and sorflush(), which are usually called from a pre-set VNET context.
102 * sopoll() currently does not need a VNET context to be set.
103 */
104
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/fcntl.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/mac.h>
119 #include <sys/malloc.h>
120 #include <sys/mbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/domain.h>
123 #include <sys/file.h> /* for struct knote */
124 #include <sys/hhook.h>
125 #include <sys/kernel.h>
126 #include <sys/khelp.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/signalvar.h>
139 #include <sys/stat.h>
140 #include <sys/sx.h>
141 #include <sys/sysctl.h>
142 #include <sys/taskqueue.h>
143 #include <sys/uio.h>
144 #include <sys/un.h>
145 #include <sys/unpcb.h>
146 #include <sys/jail.h>
147 #include <sys/syslog.h>
148 #include <netinet/in.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/tcp.h>
151
152 #include <net/vnet.h>
153
154 #include <security/mac/mac_framework.h>
155
156 #include <vm/uma.h>
157
158 #ifdef COMPAT_FREEBSD32
159 #include <sys/mount.h>
160 #include <sys/sysent.h>
161 #include <compat/freebsd32/freebsd32.h>
162 #endif
163
164 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
165 int flags);
166 static void so_rdknl_lock(void *);
167 static void so_rdknl_unlock(void *);
168 static void so_rdknl_assert_lock(void *, int);
169 static void so_wrknl_lock(void *);
170 static void so_wrknl_unlock(void *);
171 static void so_wrknl_assert_lock(void *, int);
172
173 static void filt_sordetach(struct knote *kn);
174 static int filt_soread(struct knote *kn, long hint);
175 static void filt_sowdetach(struct knote *kn);
176 static int filt_sowrite(struct knote *kn, long hint);
177 static int filt_soempty(struct knote *kn, long hint);
178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
179 fo_kqfilter_t soo_kqfilter;
180
181 static struct filterops soread_filtops = {
182 .f_isfd = 1,
183 .f_detach = filt_sordetach,
184 .f_event = filt_soread,
185 };
186 static struct filterops sowrite_filtops = {
187 .f_isfd = 1,
188 .f_detach = filt_sowdetach,
189 .f_event = filt_sowrite,
190 };
191 static struct filterops soempty_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sowdetach,
194 .f_event = filt_soempty,
195 };
196
197 so_gen_t so_gencnt; /* generation count for sockets */
198
199 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
201
202 #define VNET_SO_ASSERT(so) \
203 VNET_ASSERT(curvnet != NULL, \
204 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
205
206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
207 #define V_socket_hhh VNET(socket_hhh)
208
209 /*
210 * Limit on the number of connections in the listen queue waiting
211 * for accept(2).
212 * NB: The original sysctl somaxconn is still available but hidden
213 * to prevent confusion about the actual purpose of this number.
214 */
215 static u_int somaxconn = SOMAXCONN;
216
217 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
219 {
220 int error;
221 int val;
222
223 val = somaxconn;
224 error = sysctl_handle_int(oidp, &val, 0, req);
225 if (error || !req->newptr )
226 return (error);
227
228 /*
229 * The purpose of the UINT_MAX / 3 limit, is so that the formula
230 * 3 * so_qlimit / 2
231 * below, will not overflow.
232 */
233
234 if (val < 1 || val > UINT_MAX / 3)
235 return (EINVAL);
236
237 somaxconn = val;
238 return (0);
239 }
240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
241 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
242 sysctl_somaxconn, "I",
243 "Maximum listen socket pending connection accept queue size");
244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
245 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
246 sizeof(int), sysctl_somaxconn, "I",
247 "Maximum listen socket pending connection accept queue size (compat)");
248
249 static int numopensockets;
250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
251 &numopensockets, 0, "Number of open sockets");
252
253 /*
254 * accept_mtx locks down per-socket fields relating to accept queues. See
255 * socketvar.h for an annotation of the protected fields of struct socket.
256 */
257 struct mtx accept_mtx;
258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
259
260 /*
261 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
262 * so_gencnt field.
263 */
264 static struct mtx so_global_mtx;
265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
266
267 /*
268 * General IPC sysctl name space, used by sockets and a variety of other IPC
269 * types.
270 */
271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
272 "IPC");
273
274 /*
275 * Initialize the socket subsystem and set up the socket
276 * memory allocator.
277 */
278 static uma_zone_t socket_zone;
279 int maxsockets;
280
281 static void
socket_zone_change(void * tag)282 socket_zone_change(void *tag)
283 {
284
285 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
286 }
287
288 static void
socket_hhook_register(int subtype)289 socket_hhook_register(int subtype)
290 {
291
292 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
293 &V_socket_hhh[subtype],
294 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
295 printf("%s: WARNING: unable to register hook\n", __func__);
296 }
297
298 static void
socket_hhook_deregister(int subtype)299 socket_hhook_deregister(int subtype)
300 {
301
302 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
303 printf("%s: WARNING: unable to deregister hook\n", __func__);
304 }
305
306 static void
socket_init(void * tag)307 socket_init(void *tag)
308 {
309
310 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
311 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
313 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
314 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
315 EVENTHANDLER_PRI_FIRST);
316 }
317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
318
319 static void
socket_vnet_init(const void * unused __unused)320 socket_vnet_init(const void *unused __unused)
321 {
322 int i;
323
324 /* We expect a contiguous range */
325 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
326 socket_hhook_register(i);
327 }
328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
329 socket_vnet_init, NULL);
330
331 static void
socket_vnet_uninit(const void * unused __unused)332 socket_vnet_uninit(const void *unused __unused)
333 {
334 int i;
335
336 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
337 socket_hhook_deregister(i);
338 }
339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
340 socket_vnet_uninit, NULL);
341
342 /*
343 * Initialise maxsockets. This SYSINIT must be run after
344 * tunable_mbinit().
345 */
346 static void
init_maxsockets(void * ignored)347 init_maxsockets(void *ignored)
348 {
349
350 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
351 maxsockets = imax(maxsockets, maxfiles);
352 }
353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
354
355 /*
356 * Sysctl to get and set the maximum global sockets limit. Notify protocols
357 * of the change so that they can update their dependent limits as required.
358 */
359 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
361 {
362 int error, newmaxsockets;
363
364 newmaxsockets = maxsockets;
365 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
366 if (error == 0 && req->newptr) {
367 if (newmaxsockets > maxsockets &&
368 newmaxsockets <= maxfiles) {
369 maxsockets = newmaxsockets;
370 EVENTHANDLER_INVOKE(maxsockets_change);
371 } else
372 error = EINVAL;
373 }
374 return (error);
375 }
376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
377 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
378 sysctl_maxsockets, "IU",
379 "Maximum number of sockets available");
380
381 /*
382 * Socket operation routines. These routines are called by the routines in
383 * sys_socket.c or from a system process, and implement the semantics of
384 * socket operations by switching out to the protocol specific routines.
385 */
386
387 /*
388 * Get a socket structure from our zone, and initialize it. Note that it
389 * would probably be better to allocate socket and PCB at the same time, but
390 * I'm not convinced that all the protocols can be easily modified to do
391 * this.
392 *
393 * soalloc() returns a socket with a ref count of 0.
394 */
395 static struct socket *
soalloc(struct vnet * vnet)396 soalloc(struct vnet *vnet)
397 {
398 struct socket *so;
399
400 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
401 if (so == NULL)
402 return (NULL);
403 #ifdef MAC
404 if (mac_socket_init(so, M_NOWAIT) != 0) {
405 uma_zfree(socket_zone, so);
406 return (NULL);
407 }
408 #endif
409 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
410 uma_zfree(socket_zone, so);
411 return (NULL);
412 }
413
414 /*
415 * The socket locking protocol allows to lock 2 sockets at a time,
416 * however, the first one must be a listening socket. WITNESS lacks
417 * a feature to change class of an existing lock, so we use DUPOK.
418 */
419 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
420 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
421 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
422 so->so_rcv.sb_sel = &so->so_rdsel;
423 so->so_snd.sb_sel = &so->so_wrsel;
424 sx_init(&so->so_snd.sb_sx, "so_snd_sx");
425 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
426 TAILQ_INIT(&so->so_snd.sb_aiojobq);
427 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
428 #ifndef FSTACK
429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #endif
432 #ifdef VIMAGE
433 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
434 __func__, __LINE__, so));
435 so->so_vnet = vnet;
436 #endif
437 /* We shouldn't need the so_global_mtx */
438 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
439 /* Do we need more comprehensive error returns? */
440 uma_zfree(socket_zone, so);
441 return (NULL);
442 }
443 mtx_lock(&so_global_mtx);
444 so->so_gencnt = ++so_gencnt;
445 ++numopensockets;
446 #ifdef VIMAGE
447 vnet->vnet_sockcnt++;
448 #endif
449 mtx_unlock(&so_global_mtx);
450
451 return (so);
452 }
453
454 /*
455 * Free the storage associated with a socket at the socket layer, tear down
456 * locks, labels, etc. All protocol state is assumed already to have been
457 * torn down (and possibly never set up) by the caller.
458 */
459 static void
sodealloc(struct socket * so)460 sodealloc(struct socket *so)
461 {
462
463 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
464 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
465
466 mtx_lock(&so_global_mtx);
467 so->so_gencnt = ++so_gencnt;
468 --numopensockets; /* Could be below, but faster here. */
469 #ifdef VIMAGE
470 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
471 __func__, __LINE__, so));
472 so->so_vnet->vnet_sockcnt--;
473 #endif
474 mtx_unlock(&so_global_mtx);
475 #ifdef MAC
476 mac_socket_destroy(so);
477 #endif
478 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
479
480 crfree(so->so_cred);
481 khelp_destroy_osd(&so->osd);
482 if (SOLISTENING(so)) {
483 if (so->sol_accept_filter != NULL)
484 accept_filt_setopt(so, NULL);
485 } else {
486 if (so->so_rcv.sb_hiwat)
487 (void)chgsbsize(so->so_cred->cr_uidinfo,
488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
489 if (so->so_snd.sb_hiwat)
490 (void)chgsbsize(so->so_cred->cr_uidinfo,
491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
492 sx_destroy(&so->so_snd.sb_sx);
493 sx_destroy(&so->so_rcv.sb_sx);
494 SOCKBUF_LOCK_DESTROY(&so->so_snd);
495 SOCKBUF_LOCK_DESTROY(&so->so_rcv);
496 }
497 mtx_destroy(&so->so_lock);
498 uma_zfree(socket_zone, so);
499 }
500
501 /*
502 * socreate returns a socket with a ref count of 1. The socket should be
503 * closed with soclose().
504 */
505 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)506 socreate(int dom, struct socket **aso, int type, int proto,
507 struct ucred *cred, struct thread *td)
508 {
509 struct protosw *prp;
510 struct socket *so;
511 int error;
512
513 if (proto)
514 prp = pffindproto(dom, proto, type);
515 else
516 prp = pffindtype(dom, type);
517
518 if (prp == NULL) {
519 /* No support for domain. */
520 if (pffinddomain(dom) == NULL)
521 return (EAFNOSUPPORT);
522 /* No support for socket type. */
523 if (proto == 0 && type != 0)
524 return (EPROTOTYPE);
525 return (EPROTONOSUPPORT);
526 }
527 if (prp->pr_usrreqs->pru_attach == NULL ||
528 prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
529 return (EPROTONOSUPPORT);
530
531 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
532 return (EPROTONOSUPPORT);
533
534 if (prp->pr_type != type)
535 return (EPROTOTYPE);
536 so = soalloc(CRED_TO_VNET(cred));
537 if (so == NULL)
538 return (ENOBUFS);
539
540 so->so_type = type;
541 so->so_cred = crhold(cred);
542 if ((prp->pr_domain->dom_family == PF_INET) ||
543 (prp->pr_domain->dom_family == PF_INET6) ||
544 (prp->pr_domain->dom_family == PF_ROUTE))
545 so->so_fibnum = td->td_proc->p_fibnum;
546 else
547 so->so_fibnum = 0;
548 so->so_proto = prp;
549 #ifdef MAC
550 mac_socket_create(cred, so);
551 #endif
552 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
553 so_rdknl_assert_lock);
554 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
555 so_wrknl_assert_lock);
556 /*
557 * Auto-sizing of socket buffers is managed by the protocols and
558 * the appropriate flags must be set in the pru_attach function.
559 */
560 CURVNET_SET(so->so_vnet);
561 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
562 CURVNET_RESTORE();
563 if (error) {
564 sodealloc(so);
565 return (error);
566 }
567 soref(so);
568 *aso = so;
569 return (0);
570 }
571
572 #ifdef REGRESSION
573 static int regression_sonewconn_earlytest = 1;
574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
575 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
576 #endif
577
578 static struct timeval overinterval = { 60, 0 };
579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
580 &overinterval,
581 "Delay in seconds between warnings for listen socket overflows");
582
583 /*
584 * When an attempt at a new connection is noted on a socket which accepts
585 * connections, sonewconn is called. If the connection is possible (subject
586 * to space constraints, etc.) then we allocate a new structure, properly
587 * linked into the data structure of the original socket, and return this.
588 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
589 *
590 * Note: the ref count on the socket is 0 on return.
591 */
592 struct socket *
sonewconn(struct socket * head,int connstatus)593 sonewconn(struct socket *head, int connstatus)
594 {
595 struct sbuf descrsb;
596 struct socket *so;
597 int len, overcount;
598 u_int qlen;
599 const char localprefix[] = "local:";
600 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
601 #if defined(INET6)
602 char addrbuf[INET6_ADDRSTRLEN];
603 #elif defined(INET)
604 char addrbuf[INET_ADDRSTRLEN];
605 #endif
606 bool dolog, over;
607
608 SOLISTEN_LOCK(head);
609 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
610 #ifdef REGRESSION
611 if (regression_sonewconn_earlytest && over) {
612 #else
613 if (over) {
614 #endif
615 head->sol_overcount++;
616 dolog = !!ratecheck(&head->sol_lastover, &overinterval);
617
618 /*
619 * If we're going to log, copy the overflow count and queue
620 * length from the listen socket before dropping the lock.
621 * Also, reset the overflow count.
622 */
623 if (dolog) {
624 overcount = head->sol_overcount;
625 head->sol_overcount = 0;
626 qlen = head->sol_qlen;
627 }
628 SOLISTEN_UNLOCK(head);
629
630 if (dolog) {
631 /*
632 * Try to print something descriptive about the
633 * socket for the error message.
634 */
635 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
636 SBUF_FIXEDLEN);
637 switch (head->so_proto->pr_domain->dom_family) {
638 #if defined(INET) || defined(INET6)
639 #ifdef INET
640 case AF_INET:
641 #endif
642 #ifdef INET6
643 case AF_INET6:
644 if (head->so_proto->pr_domain->dom_family ==
645 AF_INET6 ||
646 (sotoinpcb(head)->inp_inc.inc_flags &
647 INC_ISIPV6)) {
648 ip6_sprintf(addrbuf,
649 &sotoinpcb(head)->inp_inc.inc6_laddr);
650 sbuf_printf(&descrsb, "[%s]", addrbuf);
651 } else
652 #endif
653 {
654 #ifdef INET
655 inet_ntoa_r(
656 sotoinpcb(head)->inp_inc.inc_laddr,
657 addrbuf);
658 sbuf_cat(&descrsb, addrbuf);
659 #endif
660 }
661 sbuf_printf(&descrsb, ":%hu (proto %u)",
662 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
663 head->so_proto->pr_protocol);
664 break;
665 #endif /* INET || INET6 */
666 case AF_UNIX:
667 sbuf_cat(&descrsb, localprefix);
668 if (sotounpcb(head)->unp_addr != NULL)
669 len =
670 sotounpcb(head)->unp_addr->sun_len -
671 offsetof(struct sockaddr_un,
672 sun_path);
673 else
674 len = 0;
675 if (len > 0)
676 sbuf_bcat(&descrsb,
677 sotounpcb(head)->unp_addr->sun_path,
678 len);
679 else
680 sbuf_cat(&descrsb, "(unknown)");
681 break;
682 }
683
684 /*
685 * If we can't print something more specific, at least
686 * print the domain name.
687 */
688 if (sbuf_finish(&descrsb) != 0 ||
689 sbuf_len(&descrsb) <= 0) {
690 sbuf_clear(&descrsb);
691 sbuf_cat(&descrsb,
692 head->so_proto->pr_domain->dom_name ?:
693 "unknown");
694 sbuf_finish(&descrsb);
695 }
696 KASSERT(sbuf_len(&descrsb) > 0,
697 ("%s: sbuf creation failed", __func__));
698 log(LOG_DEBUG,
699 "%s: pcb %p (%s): Listen queue overflow: "
700 "%i already in queue awaiting acceptance "
701 "(%d occurrences)\n",
702 __func__, head->so_pcb, sbuf_data(&descrsb),
703 qlen, overcount);
704 sbuf_delete(&descrsb);
705
706 overcount = 0;
707 }
708
709 return (NULL);
710 }
711 SOLISTEN_UNLOCK(head);
712 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
713 __func__, head));
714 so = soalloc(head->so_vnet);
715 if (so == NULL) {
716 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
717 "limit reached or out of memory\n",
718 __func__, head->so_pcb);
719 return (NULL);
720 }
721 so->so_listen = head;
722 so->so_type = head->so_type;
723 so->so_linger = head->so_linger;
724 so->so_state = head->so_state | SS_NOFDREF;
725 so->so_fibnum = head->so_fibnum;
726 so->so_proto = head->so_proto;
727 so->so_cred = crhold(head->so_cred);
728 #ifdef MAC
729 mac_socket_newconn(head, so);
730 #endif
731 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
732 so_rdknl_assert_lock);
733 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
734 so_wrknl_assert_lock);
735 VNET_SO_ASSERT(head);
736 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
737 sodealloc(so);
738 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
739 __func__, head->so_pcb);
740 return (NULL);
741 }
742 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
743 sodealloc(so);
744 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
745 __func__, head->so_pcb);
746 return (NULL);
747 }
748 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
749 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
750 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
751 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
752 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
753 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
754
755 SOLISTEN_LOCK(head);
756 if (head->sol_accept_filter != NULL)
757 connstatus = 0;
758 so->so_state |= connstatus;
759 so->so_options = head->so_options & ~SO_ACCEPTCONN;
760 soref(head); /* A socket on (in)complete queue refs head. */
761 if (connstatus) {
762 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
763 so->so_qstate = SQ_COMP;
764 head->sol_qlen++;
765 solisten_wakeup(head); /* unlocks */
766 } else {
767 /*
768 * Keep removing sockets from the head until there's room for
769 * us to insert on the tail. In pre-locking revisions, this
770 * was a simple if(), but as we could be racing with other
771 * threads and soabort() requires dropping locks, we must
772 * loop waiting for the condition to be true.
773 */
774 while (head->sol_incqlen > head->sol_qlimit) {
775 struct socket *sp;
776
777 sp = TAILQ_FIRST(&head->sol_incomp);
778 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
779 head->sol_incqlen--;
780 SOCK_LOCK(sp);
781 sp->so_qstate = SQ_NONE;
782 sp->so_listen = NULL;
783 SOCK_UNLOCK(sp);
784 sorele(head); /* does SOLISTEN_UNLOCK, head stays */
785 soabort(sp);
786 SOLISTEN_LOCK(head);
787 }
788 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
789 so->so_qstate = SQ_INCOMP;
790 head->sol_incqlen++;
791 SOLISTEN_UNLOCK(head);
792 }
793 return (so);
794 }
795
796 #if defined(SCTP) || defined(SCTP_SUPPORT)
797 /*
798 * Socket part of sctp_peeloff(). Detach a new socket from an
799 * association. The new socket is returned with a reference.
800 */
801 struct socket *
802 sopeeloff(struct socket *head)
803 {
804 struct socket *so;
805
806 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
807 __func__, __LINE__, head));
808 so = soalloc(head->so_vnet);
809 if (so == NULL) {
810 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
811 "limit reached or out of memory\n",
812 __func__, head->so_pcb);
813 return (NULL);
814 }
815 so->so_type = head->so_type;
816 so->so_options = head->so_options;
817 so->so_linger = head->so_linger;
818 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
819 so->so_fibnum = head->so_fibnum;
820 so->so_proto = head->so_proto;
821 so->so_cred = crhold(head->so_cred);
822 #ifdef MAC
823 mac_socket_newconn(head, so);
824 #endif
825 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
826 so_rdknl_assert_lock);
827 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
828 so_wrknl_assert_lock);
829 VNET_SO_ASSERT(head);
830 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
831 sodealloc(so);
832 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
833 __func__, head->so_pcb);
834 return (NULL);
835 }
836 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
837 sodealloc(so);
838 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
839 __func__, head->so_pcb);
840 return (NULL);
841 }
842 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
843 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
844 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
845 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
846 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
847 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
848
849 soref(so);
850
851 return (so);
852 }
853 #endif /* SCTP */
854
855 int
856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
857 {
858 int error;
859
860 CURVNET_SET(so->so_vnet);
861 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
862 CURVNET_RESTORE();
863 return (error);
864 }
865
866 int
867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
868 {
869 int error;
870
871 CURVNET_SET(so->so_vnet);
872 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
873 CURVNET_RESTORE();
874 return (error);
875 }
876
877 /*
878 * solisten() transitions a socket from a non-listening state to a listening
879 * state, but can also be used to update the listen queue depth on an
880 * existing listen socket. The protocol will call back into the sockets
881 * layer using solisten_proto_check() and solisten_proto() to check and set
882 * socket-layer listen state. Call backs are used so that the protocol can
883 * acquire both protocol and socket layer locks in whatever order is required
884 * by the protocol.
885 *
886 * Protocol implementors are advised to hold the socket lock across the
887 * socket-layer test and set to avoid races at the socket layer.
888 */
889 int
890 solisten(struct socket *so, int backlog, struct thread *td)
891 {
892 int error;
893
894 CURVNET_SET(so->so_vnet);
895 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
896 CURVNET_RESTORE();
897 return (error);
898 }
899
900 int
901 solisten_proto_check(struct socket *so)
902 {
903
904 SOCK_LOCK_ASSERT(so);
905
906 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
907 SS_ISDISCONNECTING))
908 return (EINVAL);
909 return (0);
910 }
911
912 void
913 solisten_proto(struct socket *so, int backlog)
914 {
915 int sbrcv_lowat, sbsnd_lowat;
916 u_int sbrcv_hiwat, sbsnd_hiwat;
917 short sbrcv_flags, sbsnd_flags;
918 sbintime_t sbrcv_timeo, sbsnd_timeo;
919
920 SOCK_LOCK_ASSERT(so);
921
922 if (SOLISTENING(so))
923 goto listening;
924
925 /*
926 * Change this socket to listening state.
927 */
928 sbrcv_lowat = so->so_rcv.sb_lowat;
929 sbsnd_lowat = so->so_snd.sb_lowat;
930 sbrcv_hiwat = so->so_rcv.sb_hiwat;
931 sbsnd_hiwat = so->so_snd.sb_hiwat;
932 sbrcv_flags = so->so_rcv.sb_flags;
933 sbsnd_flags = so->so_snd.sb_flags;
934 sbrcv_timeo = so->so_rcv.sb_timeo;
935 sbsnd_timeo = so->so_snd.sb_timeo;
936
937 sbdestroy(&so->so_snd, so);
938 sbdestroy(&so->so_rcv, so);
939 sx_destroy(&so->so_snd.sb_sx);
940 sx_destroy(&so->so_rcv.sb_sx);
941 SOCKBUF_LOCK_DESTROY(&so->so_snd);
942 SOCKBUF_LOCK_DESTROY(&so->so_rcv);
943
944 #ifdef INVARIANTS
945 bzero(&so->so_rcv,
946 sizeof(struct socket) - offsetof(struct socket, so_rcv));
947 #endif
948
949 so->sol_sbrcv_lowat = sbrcv_lowat;
950 so->sol_sbsnd_lowat = sbsnd_lowat;
951 so->sol_sbrcv_hiwat = sbrcv_hiwat;
952 so->sol_sbsnd_hiwat = sbsnd_hiwat;
953 so->sol_sbrcv_flags = sbrcv_flags;
954 so->sol_sbsnd_flags = sbsnd_flags;
955 so->sol_sbrcv_timeo = sbrcv_timeo;
956 so->sol_sbsnd_timeo = sbsnd_timeo;
957
958 so->sol_qlen = so->sol_incqlen = 0;
959 TAILQ_INIT(&so->sol_incomp);
960 TAILQ_INIT(&so->sol_comp);
961
962 so->sol_accept_filter = NULL;
963 so->sol_accept_filter_arg = NULL;
964 so->sol_accept_filter_str = NULL;
965
966 so->sol_upcall = NULL;
967 so->sol_upcallarg = NULL;
968
969 so->so_options |= SO_ACCEPTCONN;
970
971 listening:
972 if (backlog < 0 || backlog > somaxconn)
973 backlog = somaxconn;
974 so->sol_qlimit = backlog;
975 }
976
977 /*
978 * Wakeup listeners/subsystems once we have a complete connection.
979 * Enters with lock, returns unlocked.
980 */
981 void
982 solisten_wakeup(struct socket *sol)
983 {
984
985 if (sol->sol_upcall != NULL)
986 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
987 else {
988 selwakeuppri(&sol->so_rdsel, PSOCK);
989 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
990 }
991 SOLISTEN_UNLOCK(sol);
992 wakeup_one(&sol->sol_comp);
993 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
994 pgsigio(&sol->so_sigio, SIGIO, 0);
995 }
996
997 /*
998 * Return single connection off a listening socket queue. Main consumer of
999 * the function is kern_accept4(). Some modules, that do their own accept
1000 * management also use the function.
1001 *
1002 * Listening socket must be locked on entry and is returned unlocked on
1003 * return.
1004 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1005 */
1006 int
1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1008 {
1009 struct socket *so;
1010 int error;
1011
1012 SOLISTEN_LOCK_ASSERT(head);
1013
1014 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1015 head->so_error == 0) {
1016 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
1017 "accept", 0);
1018 if (error != 0) {
1019 SOLISTEN_UNLOCK(head);
1020 return (error);
1021 }
1022 }
1023 if (head->so_error) {
1024 error = head->so_error;
1025 head->so_error = 0;
1026 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1027 error = EWOULDBLOCK;
1028 else
1029 error = 0;
1030 if (error) {
1031 SOLISTEN_UNLOCK(head);
1032 return (error);
1033 }
1034 so = TAILQ_FIRST(&head->sol_comp);
1035 SOCK_LOCK(so);
1036 KASSERT(so->so_qstate == SQ_COMP,
1037 ("%s: so %p not SQ_COMP", __func__, so));
1038 soref(so);
1039 head->sol_qlen--;
1040 so->so_qstate = SQ_NONE;
1041 so->so_listen = NULL;
1042 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1043 if (flags & ACCEPT4_INHERIT)
1044 so->so_state |= (head->so_state & SS_NBIO);
1045 else
1046 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1047 SOCK_UNLOCK(so);
1048 sorele(head);
1049
1050 *ret = so;
1051 return (0);
1052 }
1053
1054 /*
1055 * Evaluate the reference count and named references on a socket; if no
1056 * references remain, free it. This should be called whenever a reference is
1057 * released, such as in sorele(), but also when named reference flags are
1058 * cleared in socket or protocol code.
1059 *
1060 * sofree() will free the socket if:
1061 *
1062 * - There are no outstanding file descriptor references or related consumers
1063 * (so_count == 0).
1064 *
1065 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1066 *
1067 * - The protocol does not have an outstanding strong reference on the socket
1068 * (SS_PROTOREF).
1069 *
1070 * - The socket is not in a completed connection queue, so a process has been
1071 * notified that it is present. If it is removed, the user process may
1072 * block in accept() despite select() saying the socket was ready.
1073 */
1074 void
1075 sofree(struct socket *so)
1076 {
1077 struct protosw *pr = so->so_proto;
1078
1079 SOCK_LOCK_ASSERT(so);
1080
1081 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1082 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1083 SOCK_UNLOCK(so);
1084 return;
1085 }
1086
1087 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1088 struct socket *sol;
1089
1090 sol = so->so_listen;
1091 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1092
1093 /*
1094 * To solve race between close of a listening socket and
1095 * a socket on its incomplete queue, we need to lock both.
1096 * The order is first listening socket, then regular.
1097 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1098 * function and the listening socket are the only pointers
1099 * to so. To preserve so and sol, we reference both and then
1100 * relock.
1101 * After relock the socket may not move to so_comp since it
1102 * doesn't have PCB already, but it may be removed from
1103 * so_incomp. If that happens, we share responsiblity on
1104 * freeing the socket, but soclose() has already removed
1105 * it from queue.
1106 */
1107 soref(sol);
1108 soref(so);
1109 SOCK_UNLOCK(so);
1110 SOLISTEN_LOCK(sol);
1111 SOCK_LOCK(so);
1112 if (so->so_qstate == SQ_INCOMP) {
1113 KASSERT(so->so_listen == sol,
1114 ("%s: so %p migrated out of sol %p",
1115 __func__, so, sol));
1116 TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1117 sol->sol_incqlen--;
1118 /* This is guarenteed not to be the last. */
1119 refcount_release(&sol->so_count);
1120 so->so_qstate = SQ_NONE;
1121 so->so_listen = NULL;
1122 } else
1123 KASSERT(so->so_listen == NULL,
1124 ("%s: so %p not on (in)comp with so_listen",
1125 __func__, so));
1126 sorele(sol);
1127 KASSERT(so->so_count == 1,
1128 ("%s: so %p count %u", __func__, so, so->so_count));
1129 so->so_count = 0;
1130 }
1131 if (SOLISTENING(so))
1132 so->so_error = ECONNABORTED;
1133 SOCK_UNLOCK(so);
1134
1135 if (so->so_dtor != NULL)
1136 so->so_dtor(so);
1137
1138 VNET_SO_ASSERT(so);
1139 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1140 (*pr->pr_domain->dom_dispose)(so);
1141 if (pr->pr_usrreqs->pru_detach != NULL)
1142 (*pr->pr_usrreqs->pru_detach)(so);
1143
1144 /*
1145 * From this point on, we assume that no other references to this
1146 * socket exist anywhere else in the stack. Therefore, no locks need
1147 * to be acquired or held.
1148 *
1149 * We used to do a lot of socket buffer and socket locking here, as
1150 * well as invoke sorflush() and perform wakeups. The direct call to
1151 * dom_dispose() and sbdestroy() are an inlining of what was
1152 * necessary from sorflush().
1153 *
1154 * Notice that the socket buffer and kqueue state are torn down
1155 * before calling pru_detach. This means that protocols shold not
1156 * assume they can perform socket wakeups, etc, in their detach code.
1157 */
1158 if (!SOLISTENING(so)) {
1159 sbdestroy(&so->so_snd, so);
1160 sbdestroy(&so->so_rcv, so);
1161 }
1162 seldrain(&so->so_rdsel);
1163 seldrain(&so->so_wrsel);
1164 knlist_destroy(&so->so_rdsel.si_note);
1165 knlist_destroy(&so->so_wrsel.si_note);
1166 sodealloc(so);
1167 }
1168
1169 /*
1170 * Close a socket on last file table reference removal. Initiate disconnect
1171 * if connected. Free socket when disconnect complete.
1172 *
1173 * This function will sorele() the socket. Note that soclose() may be called
1174 * prior to the ref count reaching zero. The actual socket structure will
1175 * not be freed until the ref count reaches zero.
1176 */
1177 int
1178 soclose(struct socket *so)
1179 {
1180 struct accept_queue lqueue;
1181 bool listening;
1182 int error = 0;
1183
1184 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1185
1186 CURVNET_SET(so->so_vnet);
1187 funsetown(&so->so_sigio);
1188 if (so->so_state & SS_ISCONNECTED) {
1189 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1190 error = sodisconnect(so);
1191 if (error) {
1192 if (error == ENOTCONN)
1193 error = 0;
1194 goto drop;
1195 }
1196 }
1197
1198 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1199 if ((so->so_state & SS_ISDISCONNECTING) &&
1200 (so->so_state & SS_NBIO))
1201 goto drop;
1202 while (so->so_state & SS_ISCONNECTED) {
1203 error = tsleep(&so->so_timeo,
1204 PSOCK | PCATCH, "soclos",
1205 so->so_linger * hz);
1206 if (error)
1207 break;
1208 }
1209 }
1210 }
1211
1212 drop:
1213 if (so->so_proto->pr_usrreqs->pru_close != NULL)
1214 (*so->so_proto->pr_usrreqs->pru_close)(so);
1215
1216 SOCK_LOCK(so);
1217 if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1218 struct socket *sp;
1219
1220 TAILQ_INIT(&lqueue);
1221 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1222 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1223
1224 so->sol_qlen = so->sol_incqlen = 0;
1225
1226 TAILQ_FOREACH(sp, &lqueue, so_list) {
1227 SOCK_LOCK(sp);
1228 sp->so_qstate = SQ_NONE;
1229 sp->so_listen = NULL;
1230 SOCK_UNLOCK(sp);
1231 /* Guaranteed not to be the last. */
1232 refcount_release(&so->so_count);
1233 }
1234 }
1235 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1236 so->so_state |= SS_NOFDREF;
1237 sorele(so);
1238 if (listening) {
1239 struct socket *sp, *tsp;
1240
1241 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1242 SOCK_LOCK(sp);
1243 if (sp->so_count == 0) {
1244 SOCK_UNLOCK(sp);
1245 soabort(sp);
1246 } else
1247 /* sp is now in sofree() */
1248 SOCK_UNLOCK(sp);
1249 }
1250 }
1251 CURVNET_RESTORE();
1252 return (error);
1253 }
1254
1255 /*
1256 * soabort() is used to abruptly tear down a connection, such as when a
1257 * resource limit is reached (listen queue depth exceeded), or if a listen
1258 * socket is closed while there are sockets waiting to be accepted.
1259 *
1260 * This interface is tricky, because it is called on an unreferenced socket,
1261 * and must be called only by a thread that has actually removed the socket
1262 * from the listen queue it was on, or races with other threads are risked.
1263 *
1264 * This interface will call into the protocol code, so must not be called
1265 * with any socket locks held. Protocols do call it while holding their own
1266 * recursible protocol mutexes, but this is something that should be subject
1267 * to review in the future.
1268 */
1269 void
1270 soabort(struct socket *so)
1271 {
1272
1273 /*
1274 * In as much as is possible, assert that no references to this
1275 * socket are held. This is not quite the same as asserting that the
1276 * current thread is responsible for arranging for no references, but
1277 * is as close as we can get for now.
1278 */
1279 KASSERT(so->so_count == 0, ("soabort: so_count"));
1280 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1281 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1282 VNET_SO_ASSERT(so);
1283
1284 if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1285 (*so->so_proto->pr_usrreqs->pru_abort)(so);
1286 SOCK_LOCK(so);
1287 sofree(so);
1288 }
1289
1290 int
1291 soaccept(struct socket *so, struct sockaddr **nam)
1292 {
1293 int error;
1294
1295 SOCK_LOCK(so);
1296 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1297 so->so_state &= ~SS_NOFDREF;
1298 SOCK_UNLOCK(so);
1299
1300 CURVNET_SET(so->so_vnet);
1301 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1302 CURVNET_RESTORE();
1303 return (error);
1304 }
1305
1306 int
1307 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1308 {
1309
1310 return (soconnectat(AT_FDCWD, so, nam, td));
1311 }
1312
1313 int
1314 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1315 {
1316 int error;
1317
1318 if (so->so_options & SO_ACCEPTCONN)
1319 return (EOPNOTSUPP);
1320
1321 CURVNET_SET(so->so_vnet);
1322 /*
1323 * If protocol is connection-based, can only connect once.
1324 * Otherwise, if connected, try to disconnect first. This allows
1325 * user to disconnect by connecting to, e.g., a null address.
1326 */
1327 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1328 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1329 (error = sodisconnect(so)))) {
1330 error = EISCONN;
1331 } else {
1332 /*
1333 * Prevent accumulated error from previous connection from
1334 * biting us.
1335 */
1336 so->so_error = 0;
1337 if (fd == AT_FDCWD) {
1338 error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1339 nam, td);
1340 } else {
1341 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1342 so, nam, td);
1343 }
1344 }
1345 CURVNET_RESTORE();
1346
1347 return (error);
1348 }
1349
1350 int
1351 soconnect2(struct socket *so1, struct socket *so2)
1352 {
1353 int error;
1354
1355 CURVNET_SET(so1->so_vnet);
1356 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1357 CURVNET_RESTORE();
1358 return (error);
1359 }
1360
1361 int
1362 sodisconnect(struct socket *so)
1363 {
1364 int error;
1365
1366 if ((so->so_state & SS_ISCONNECTED) == 0)
1367 return (ENOTCONN);
1368 if (so->so_state & SS_ISDISCONNECTING)
1369 return (EALREADY);
1370 VNET_SO_ASSERT(so);
1371 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1372 return (error);
1373 }
1374
1375 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1376
1377 int
1378 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1379 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1380 {
1381 long space;
1382 ssize_t resid;
1383 int clen = 0, error, dontroute;
1384
1385 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1386 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1387 ("sosend_dgram: !PR_ATOMIC"));
1388
1389 if (uio != NULL)
1390 resid = uio->uio_resid;
1391 else
1392 resid = top->m_pkthdr.len;
1393 /*
1394 * In theory resid should be unsigned. However, space must be
1395 * signed, as it might be less than 0 if we over-committed, and we
1396 * must use a signed comparison of space and resid. On the other
1397 * hand, a negative resid causes us to loop sending 0-length
1398 * segments to the protocol.
1399 */
1400 if (resid < 0) {
1401 error = EINVAL;
1402 goto out;
1403 }
1404
1405 dontroute =
1406 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1407 if (td != NULL)
1408 td->td_ru.ru_msgsnd++;
1409 if (control != NULL)
1410 clen = control->m_len;
1411
1412 SOCKBUF_LOCK(&so->so_snd);
1413 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1414 SOCKBUF_UNLOCK(&so->so_snd);
1415 error = EPIPE;
1416 goto out;
1417 }
1418 if (so->so_error) {
1419 error = so->so_error;
1420 so->so_error = 0;
1421 SOCKBUF_UNLOCK(&so->so_snd);
1422 goto out;
1423 }
1424 if ((so->so_state & SS_ISCONNECTED) == 0) {
1425 /*
1426 * `sendto' and `sendmsg' is allowed on a connection-based
1427 * socket if it supports implied connect. Return ENOTCONN if
1428 * not connected and no address is supplied.
1429 */
1430 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1431 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1432 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1433 !(resid == 0 && clen != 0)) {
1434 SOCKBUF_UNLOCK(&so->so_snd);
1435 error = ENOTCONN;
1436 goto out;
1437 }
1438 } else if (addr == NULL) {
1439 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1440 error = ENOTCONN;
1441 else
1442 error = EDESTADDRREQ;
1443 SOCKBUF_UNLOCK(&so->so_snd);
1444 goto out;
1445 }
1446 }
1447
1448 /*
1449 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
1450 * problem and need fixing.
1451 */
1452 space = sbspace(&so->so_snd);
1453 if (flags & MSG_OOB)
1454 space += 1024;
1455 space -= clen;
1456 SOCKBUF_UNLOCK(&so->so_snd);
1457 if (resid > space) {
1458 error = EMSGSIZE;
1459 goto out;
1460 }
1461 if (uio == NULL) {
1462 resid = 0;
1463 if (flags & MSG_EOR)
1464 top->m_flags |= M_EOR;
1465 } else {
1466 /*
1467 * Copy the data from userland into a mbuf chain.
1468 * If no data is to be copied in, a single empty mbuf
1469 * is returned.
1470 */
1471 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1472 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1473 if (top == NULL) {
1474 error = EFAULT; /* only possible error */
1475 goto out;
1476 }
1477 space -= resid - uio->uio_resid;
1478 resid = uio->uio_resid;
1479 }
1480 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1481 /*
1482 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1483 * than with.
1484 */
1485 if (dontroute) {
1486 SOCK_LOCK(so);
1487 so->so_options |= SO_DONTROUTE;
1488 SOCK_UNLOCK(so);
1489 }
1490 /*
1491 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1492 * of date. We could have received a reset packet in an interrupt or
1493 * maybe we slept while doing page faults in uiomove() etc. We could
1494 * probably recheck again inside the locking protection here, but
1495 * there are probably other places that this also happens. We must
1496 * rethink this.
1497 */
1498 VNET_SO_ASSERT(so);
1499 error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1500 (flags & MSG_OOB) ? PRUS_OOB :
1501 /*
1502 * If the user set MSG_EOF, the protocol understands this flag and
1503 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1504 */
1505 ((flags & MSG_EOF) &&
1506 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1507 (resid <= 0)) ?
1508 PRUS_EOF :
1509 /* If there is more to send set PRUS_MORETOCOME */
1510 (flags & MSG_MORETOCOME) ||
1511 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1512 top, addr, control, td);
1513 if (dontroute) {
1514 SOCK_LOCK(so);
1515 so->so_options &= ~SO_DONTROUTE;
1516 SOCK_UNLOCK(so);
1517 }
1518 clen = 0;
1519 control = NULL;
1520 top = NULL;
1521 out:
1522 if (top != NULL)
1523 m_freem(top);
1524 if (control != NULL)
1525 m_freem(control);
1526 return (error);
1527 }
1528
1529 /*
1530 * Send on a socket. If send must go all at once and message is larger than
1531 * send buffering, then hard error. Lock against other senders. If must go
1532 * all at once and not enough room now, then inform user that this would
1533 * block and do nothing. Otherwise, if nonblocking, send as much as
1534 * possible. The data to be sent is described by "uio" if nonzero, otherwise
1535 * by the mbuf chain "top" (which must be null if uio is not). Data provided
1536 * in mbuf chain must be small enough to send all at once.
1537 *
1538 * Returns nonzero on error, timeout or signal; callers must check for short
1539 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
1540 * on return.
1541 */
1542 int
1543 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1544 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1545 {
1546 long space;
1547 ssize_t resid;
1548 int clen = 0, error, dontroute;
1549 int atomic = sosendallatonce(so) || top;
1550 int pru_flag;
1551 #ifdef KERN_TLS
1552 struct ktls_session *tls;
1553 int tls_enq_cnt, tls_pruflag;
1554 uint8_t tls_rtype;
1555
1556 tls = NULL;
1557 tls_rtype = TLS_RLTYPE_APP;
1558 #endif
1559 if (uio != NULL)
1560 resid = uio->uio_resid;
1561 else if ((top->m_flags & M_PKTHDR) != 0)
1562 resid = top->m_pkthdr.len;
1563 else
1564 resid = m_length(top, NULL);
1565 /*
1566 * In theory resid should be unsigned. However, space must be
1567 * signed, as it might be less than 0 if we over-committed, and we
1568 * must use a signed comparison of space and resid. On the other
1569 * hand, a negative resid causes us to loop sending 0-length
1570 * segments to the protocol.
1571 *
1572 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1573 * type sockets since that's an error.
1574 */
1575 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1576 error = EINVAL;
1577 goto out;
1578 }
1579
1580 dontroute =
1581 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1582 (so->so_proto->pr_flags & PR_ATOMIC);
1583 if (td != NULL)
1584 td->td_ru.ru_msgsnd++;
1585 if (control != NULL)
1586 clen = control->m_len;
1587
1588 error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1589 if (error)
1590 goto out;
1591
1592 #ifdef KERN_TLS
1593 tls_pruflag = 0;
1594 tls = ktls_hold(so->so_snd.sb_tls_info);
1595 if (tls != NULL) {
1596 if (tls->mode == TCP_TLS_MODE_SW)
1597 tls_pruflag = PRUS_NOTREADY;
1598
1599 if (control != NULL) {
1600 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1601
1602 if (clen >= sizeof(*cm) &&
1603 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1604 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1605 clen = 0;
1606 m_freem(control);
1607 control = NULL;
1608 atomic = 1;
1609 }
1610 }
1611 }
1612 #endif
1613
1614 restart:
1615 do {
1616 SOCKBUF_LOCK(&so->so_snd);
1617 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1618 SOCKBUF_UNLOCK(&so->so_snd);
1619 error = EPIPE;
1620 goto release;
1621 }
1622 if (so->so_error) {
1623 error = so->so_error;
1624 so->so_error = 0;
1625 SOCKBUF_UNLOCK(&so->so_snd);
1626 goto release;
1627 }
1628 if ((so->so_state & SS_ISCONNECTED) == 0) {
1629 /*
1630 * `sendto' and `sendmsg' is allowed on a connection-
1631 * based socket if it supports implied connect.
1632 * Return ENOTCONN if not connected and no address is
1633 * supplied.
1634 */
1635 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1636 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1637 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1638 !(resid == 0 && clen != 0)) {
1639 SOCKBUF_UNLOCK(&so->so_snd);
1640 error = ENOTCONN;
1641 goto release;
1642 }
1643 } else if (addr == NULL) {
1644 SOCKBUF_UNLOCK(&so->so_snd);
1645 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1646 error = ENOTCONN;
1647 else
1648 error = EDESTADDRREQ;
1649 goto release;
1650 }
1651 }
1652 space = sbspace(&so->so_snd);
1653 if (flags & MSG_OOB)
1654 space += 1024;
1655 if ((atomic && resid > so->so_snd.sb_hiwat) ||
1656 clen > so->so_snd.sb_hiwat) {
1657 SOCKBUF_UNLOCK(&so->so_snd);
1658 error = EMSGSIZE;
1659 goto release;
1660 }
1661 if (space < resid + clen &&
1662 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1663 if ((so->so_state & SS_NBIO) ||
1664 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1665 SOCKBUF_UNLOCK(&so->so_snd);
1666 error = EWOULDBLOCK;
1667 goto release;
1668 }
1669 error = sbwait(&so->so_snd);
1670 SOCKBUF_UNLOCK(&so->so_snd);
1671 if (error)
1672 goto release;
1673 goto restart;
1674 }
1675 SOCKBUF_UNLOCK(&so->so_snd);
1676 space -= clen;
1677 do {
1678 if (uio == NULL) {
1679 resid = 0;
1680 if (flags & MSG_EOR)
1681 top->m_flags |= M_EOR;
1682 #ifdef KERN_TLS
1683 if (tls != NULL) {
1684 ktls_frame(top, tls, &tls_enq_cnt,
1685 tls_rtype);
1686 tls_rtype = TLS_RLTYPE_APP;
1687 }
1688 #endif
1689 } else {
1690 /*
1691 * Copy the data from userland into a mbuf
1692 * chain. If resid is 0, which can happen
1693 * only if we have control to send, then
1694 * a single empty mbuf is returned. This
1695 * is a workaround to prevent protocol send
1696 * methods to panic.
1697 */
1698 #ifdef KERN_TLS
1699 if (tls != NULL) {
1700 top = m_uiotombuf(uio, M_WAITOK, space,
1701 tls->params.max_frame_len,
1702 M_EXTPG |
1703 ((flags & MSG_EOR) ? M_EOR : 0));
1704 if (top != NULL) {
1705 ktls_frame(top, tls,
1706 &tls_enq_cnt, tls_rtype);
1707 }
1708 tls_rtype = TLS_RLTYPE_APP;
1709 } else
1710 #endif
1711 top = m_uiotombuf(uio, M_WAITOK, space,
1712 (atomic ? max_hdr : 0),
1713 (atomic ? M_PKTHDR : 0) |
1714 ((flags & MSG_EOR) ? M_EOR : 0));
1715 if (top == NULL) {
1716 error = EFAULT; /* only possible error */
1717 goto release;
1718 }
1719 space -= resid - uio->uio_resid;
1720 resid = uio->uio_resid;
1721 }
1722 if (dontroute) {
1723 SOCK_LOCK(so);
1724 so->so_options |= SO_DONTROUTE;
1725 SOCK_UNLOCK(so);
1726 }
1727 /*
1728 * XXX all the SBS_CANTSENDMORE checks previously
1729 * done could be out of date. We could have received
1730 * a reset packet in an interrupt or maybe we slept
1731 * while doing page faults in uiomove() etc. We
1732 * could probably recheck again inside the locking
1733 * protection here, but there are probably other
1734 * places that this also happens. We must rethink
1735 * this.
1736 */
1737 VNET_SO_ASSERT(so);
1738
1739 pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1740 /*
1741 * If the user set MSG_EOF, the protocol understands
1742 * this flag and nothing left to send then use
1743 * PRU_SEND_EOF instead of PRU_SEND.
1744 */
1745 ((flags & MSG_EOF) &&
1746 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1747 (resid <= 0)) ?
1748 PRUS_EOF :
1749 /* If there is more to send set PRUS_MORETOCOME. */
1750 (flags & MSG_MORETOCOME) ||
1751 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1752
1753 #ifdef KERN_TLS
1754 pru_flag |= tls_pruflag;
1755 #endif
1756
1757 error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1758 pru_flag, top, addr, control, td);
1759
1760 if (dontroute) {
1761 SOCK_LOCK(so);
1762 so->so_options &= ~SO_DONTROUTE;
1763 SOCK_UNLOCK(so);
1764 }
1765
1766 #ifdef KERN_TLS
1767 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1768 /*
1769 * Note that error is intentionally
1770 * ignored.
1771 *
1772 * Like sendfile(), we rely on the
1773 * completion routine (pru_ready())
1774 * to free the mbufs in the event that
1775 * pru_send() encountered an error and
1776 * did not append them to the sockbuf.
1777 */
1778 soref(so);
1779 ktls_enqueue(top, so, tls_enq_cnt);
1780 }
1781 #endif
1782 clen = 0;
1783 control = NULL;
1784 top = NULL;
1785 if (error)
1786 goto release;
1787 } while (resid && space > 0);
1788 } while (resid);
1789
1790 release:
1791 sbunlock(&so->so_snd);
1792 out:
1793 #ifdef KERN_TLS
1794 if (tls != NULL)
1795 ktls_free(tls);
1796 #endif
1797 if (top != NULL)
1798 m_freem(top);
1799 if (control != NULL)
1800 m_freem(control);
1801 return (error);
1802 }
1803
1804 int
1805 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1806 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1807 {
1808 int error;
1809
1810 CURVNET_SET(so->so_vnet);
1811 if (!SOLISTENING(so))
1812 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1813 top, control, flags, td);
1814 else {
1815 m_freem(top);
1816 m_freem(control);
1817 error = ENOTCONN;
1818 }
1819 CURVNET_RESTORE();
1820 return (error);
1821 }
1822
1823 /*
1824 * The part of soreceive() that implements reading non-inline out-of-band
1825 * data from a socket. For more complete comments, see soreceive(), from
1826 * which this code originated.
1827 *
1828 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1829 * unable to return an mbuf chain to the caller.
1830 */
1831 static int
1832 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1833 {
1834 struct protosw *pr = so->so_proto;
1835 struct mbuf *m;
1836 int error;
1837
1838 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1839 VNET_SO_ASSERT(so);
1840
1841 m = m_get(M_WAITOK, MT_DATA);
1842 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1843 if (error)
1844 goto bad;
1845 do {
1846 error = uiomove(mtod(m, void *),
1847 (int) min(uio->uio_resid, m->m_len), uio);
1848 m = m_free(m);
1849 } while (uio->uio_resid && error == 0 && m);
1850 bad:
1851 if (m != NULL)
1852 m_freem(m);
1853 return (error);
1854 }
1855
1856 /*
1857 * Following replacement or removal of the first mbuf on the first mbuf chain
1858 * of a socket buffer, push necessary state changes back into the socket
1859 * buffer so that other consumers see the values consistently. 'nextrecord'
1860 * is the callers locally stored value of the original value of
1861 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1862 * NOTE: 'nextrecord' may be NULL.
1863 */
1864 static __inline void
1865 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1866 {
1867
1868 SOCKBUF_LOCK_ASSERT(sb);
1869 /*
1870 * First, update for the new value of nextrecord. If necessary, make
1871 * it the first record.
1872 */
1873 if (sb->sb_mb != NULL)
1874 sb->sb_mb->m_nextpkt = nextrecord;
1875 else
1876 sb->sb_mb = nextrecord;
1877
1878 /*
1879 * Now update any dependent socket buffer fields to reflect the new
1880 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
1881 * addition of a second clause that takes care of the case where
1882 * sb_mb has been updated, but remains the last record.
1883 */
1884 if (sb->sb_mb == NULL) {
1885 sb->sb_mbtail = NULL;
1886 sb->sb_lastrecord = NULL;
1887 } else if (sb->sb_mb->m_nextpkt == NULL)
1888 sb->sb_lastrecord = sb->sb_mb;
1889 }
1890
1891 /*
1892 * Implement receive operations on a socket. We depend on the way that
1893 * records are added to the sockbuf by sbappend. In particular, each record
1894 * (mbufs linked through m_next) must begin with an address if the protocol
1895 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1896 * data, and then zero or more mbufs of data. In order to allow parallelism
1897 * between network receive and copying to user space, as well as avoid
1898 * sleeping with a mutex held, we release the socket buffer mutex during the
1899 * user space copy. Although the sockbuf is locked, new data may still be
1900 * appended, and thus we must maintain consistency of the sockbuf during that
1901 * time.
1902 *
1903 * The caller may receive the data as a single mbuf chain by supplying an
1904 * mbuf **mp0 for use in returning the chain. The uio is then used only for
1905 * the count in uio_resid.
1906 */
1907 int
1908 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1909 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1910 {
1911 struct mbuf *m, **mp;
1912 int flags, error, offset;
1913 ssize_t len;
1914 struct protosw *pr = so->so_proto;
1915 struct mbuf *nextrecord;
1916 int moff, type = 0;
1917 ssize_t orig_resid = uio->uio_resid;
1918
1919 mp = mp0;
1920 if (psa != NULL)
1921 *psa = NULL;
1922 if (controlp != NULL)
1923 *controlp = NULL;
1924 if (flagsp != NULL)
1925 flags = *flagsp &~ MSG_EOR;
1926 else
1927 flags = 0;
1928 if (flags & MSG_OOB)
1929 return (soreceive_rcvoob(so, uio, flags));
1930 if (mp != NULL)
1931 *mp = NULL;
1932 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1933 && uio->uio_resid) {
1934 VNET_SO_ASSERT(so);
1935 (*pr->pr_usrreqs->pru_rcvd)(so, 0);
1936 }
1937
1938 error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1939 if (error)
1940 return (error);
1941
1942 restart:
1943 SOCKBUF_LOCK(&so->so_rcv);
1944 m = so->so_rcv.sb_mb;
1945 /*
1946 * If we have less data than requested, block awaiting more (subject
1947 * to any timeout) if:
1948 * 1. the current count is less than the low water mark, or
1949 * 2. MSG_DONTWAIT is not set
1950 */
1951 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1952 sbavail(&so->so_rcv) < uio->uio_resid) &&
1953 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1954 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1955 KASSERT(m != NULL || !sbavail(&so->so_rcv),
1956 ("receive: m == %p sbavail == %u",
1957 m, sbavail(&so->so_rcv)));
1958 if (so->so_error) {
1959 if (m != NULL)
1960 goto dontblock;
1961 error = so->so_error;
1962 if ((flags & MSG_PEEK) == 0)
1963 so->so_error = 0;
1964 SOCKBUF_UNLOCK(&so->so_rcv);
1965 goto release;
1966 }
1967 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1968 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1969 if (m != NULL)
1970 goto dontblock;
1971 #ifdef KERN_TLS
1972 else if (so->so_rcv.sb_tlsdcc == 0 &&
1973 so->so_rcv.sb_tlscc == 0) {
1974 #else
1975 else {
1976 #endif
1977 SOCKBUF_UNLOCK(&so->so_rcv);
1978 goto release;
1979 }
1980 }
1981 for (; m != NULL; m = m->m_next)
1982 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1983 m = so->so_rcv.sb_mb;
1984 goto dontblock;
1985 }
1986 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
1987 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
1988 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1989 SOCKBUF_UNLOCK(&so->so_rcv);
1990 error = ENOTCONN;
1991 goto release;
1992 }
1993 if (uio->uio_resid == 0) {
1994 SOCKBUF_UNLOCK(&so->so_rcv);
1995 goto release;
1996 }
1997 if ((so->so_state & SS_NBIO) ||
1998 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1999 SOCKBUF_UNLOCK(&so->so_rcv);
2000 error = EWOULDBLOCK;
2001 goto release;
2002 }
2003 SBLASTRECORDCHK(&so->so_rcv);
2004 SBLASTMBUFCHK(&so->so_rcv);
2005 error = sbwait(&so->so_rcv);
2006 SOCKBUF_UNLOCK(&so->so_rcv);
2007 if (error)
2008 goto release;
2009 goto restart;
2010 }
2011 dontblock:
2012 /*
2013 * From this point onward, we maintain 'nextrecord' as a cache of the
2014 * pointer to the next record in the socket buffer. We must keep the
2015 * various socket buffer pointers and local stack versions of the
2016 * pointers in sync, pushing out modifications before dropping the
2017 * socket buffer mutex, and re-reading them when picking it up.
2018 *
2019 * Otherwise, we will race with the network stack appending new data
2020 * or records onto the socket buffer by using inconsistent/stale
2021 * versions of the field, possibly resulting in socket buffer
2022 * corruption.
2023 *
2024 * By holding the high-level sblock(), we prevent simultaneous
2025 * readers from pulling off the front of the socket buffer.
2026 */
2027 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2028 if (uio->uio_td)
2029 uio->uio_td->td_ru.ru_msgrcv++;
2030 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2031 SBLASTRECORDCHK(&so->so_rcv);
2032 SBLASTMBUFCHK(&so->so_rcv);
2033 nextrecord = m->m_nextpkt;
2034 if (pr->pr_flags & PR_ADDR) {
2035 KASSERT(m->m_type == MT_SONAME,
2036 ("m->m_type == %d", m->m_type));
2037 orig_resid = 0;
2038 if (psa != NULL)
2039 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2040 M_NOWAIT);
2041 if (flags & MSG_PEEK) {
2042 m = m->m_next;
2043 } else {
2044 sbfree(&so->so_rcv, m);
2045 so->so_rcv.sb_mb = m_free(m);
2046 m = so->so_rcv.sb_mb;
2047 sockbuf_pushsync(&so->so_rcv, nextrecord);
2048 }
2049 }
2050
2051 /*
2052 * Process one or more MT_CONTROL mbufs present before any data mbufs
2053 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2054 * just copy the data; if !MSG_PEEK, we call into the protocol to
2055 * perform externalization (or freeing if controlp == NULL).
2056 */
2057 if (m != NULL && m->m_type == MT_CONTROL) {
2058 struct mbuf *cm = NULL, *cmn;
2059 struct mbuf **cme = &cm;
2060 #ifdef KERN_TLS
2061 struct cmsghdr *cmsg;
2062 struct tls_get_record tgr;
2063
2064 /*
2065 * For MSG_TLSAPPDATA, check for a non-application data
2066 * record. If found, return ENXIO without removing
2067 * it from the receive queue. This allows a subsequent
2068 * call without MSG_TLSAPPDATA to receive it.
2069 * Note that, for TLS, there should only be a single
2070 * control mbuf with the TLS_GET_RECORD message in it.
2071 */
2072 if (flags & MSG_TLSAPPDATA) {
2073 cmsg = mtod(m, struct cmsghdr *);
2074 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2075 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2076 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2077 /* This will need to change for TLS 1.3. */
2078 if (tgr.tls_type != TLS_RLTYPE_APP) {
2079 SOCKBUF_UNLOCK(&so->so_rcv);
2080 error = ENXIO;
2081 goto release;
2082 }
2083 }
2084 }
2085 #endif
2086
2087 do {
2088 if (flags & MSG_PEEK) {
2089 if (controlp != NULL) {
2090 *controlp = m_copym(m, 0, m->m_len,
2091 M_NOWAIT);
2092 controlp = &(*controlp)->m_next;
2093 }
2094 m = m->m_next;
2095 } else {
2096 sbfree(&so->so_rcv, m);
2097 so->so_rcv.sb_mb = m->m_next;
2098 m->m_next = NULL;
2099 *cme = m;
2100 cme = &(*cme)->m_next;
2101 m = so->so_rcv.sb_mb;
2102 }
2103 } while (m != NULL && m->m_type == MT_CONTROL);
2104 if ((flags & MSG_PEEK) == 0)
2105 sockbuf_pushsync(&so->so_rcv, nextrecord);
2106 while (cm != NULL) {
2107 cmn = cm->m_next;
2108 cm->m_next = NULL;
2109 if (pr->pr_domain->dom_externalize != NULL) {
2110 SOCKBUF_UNLOCK(&so->so_rcv);
2111 VNET_SO_ASSERT(so);
2112 error = (*pr->pr_domain->dom_externalize)
2113 (cm, controlp, flags);
2114 SOCKBUF_LOCK(&so->so_rcv);
2115 } else if (controlp != NULL)
2116 *controlp = cm;
2117 else
2118 m_freem(cm);
2119 if (controlp != NULL) {
2120 orig_resid = 0;
2121 while (*controlp != NULL)
2122 controlp = &(*controlp)->m_next;
2123 }
2124 cm = cmn;
2125 }
2126 if (m != NULL)
2127 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2128 else
2129 nextrecord = so->so_rcv.sb_mb;
2130 orig_resid = 0;
2131 }
2132 if (m != NULL) {
2133 if ((flags & MSG_PEEK) == 0) {
2134 KASSERT(m->m_nextpkt == nextrecord,
2135 ("soreceive: post-control, nextrecord !sync"));
2136 if (nextrecord == NULL) {
2137 KASSERT(so->so_rcv.sb_mb == m,
2138 ("soreceive: post-control, sb_mb!=m"));
2139 KASSERT(so->so_rcv.sb_lastrecord == m,
2140 ("soreceive: post-control, lastrecord!=m"));
2141 }
2142 }
2143 type = m->m_type;
2144 if (type == MT_OOBDATA)
2145 flags |= MSG_OOB;
2146 } else {
2147 if ((flags & MSG_PEEK) == 0) {
2148 KASSERT(so->so_rcv.sb_mb == nextrecord,
2149 ("soreceive: sb_mb != nextrecord"));
2150 if (so->so_rcv.sb_mb == NULL) {
2151 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2152 ("soreceive: sb_lastercord != NULL"));
2153 }
2154 }
2155 }
2156 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2157 SBLASTRECORDCHK(&so->so_rcv);
2158 SBLASTMBUFCHK(&so->so_rcv);
2159
2160 /*
2161 * Now continue to read any data mbufs off of the head of the socket
2162 * buffer until the read request is satisfied. Note that 'type' is
2163 * used to store the type of any mbuf reads that have happened so far
2164 * such that soreceive() can stop reading if the type changes, which
2165 * causes soreceive() to return only one of regular data and inline
2166 * out-of-band data in a single socket receive operation.
2167 */
2168 moff = 0;
2169 offset = 0;
2170 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2171 && error == 0) {
2172 /*
2173 * If the type of mbuf has changed since the last mbuf
2174 * examined ('type'), end the receive operation.
2175 */
2176 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2177 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2178 if (type != m->m_type)
2179 break;
2180 } else if (type == MT_OOBDATA)
2181 break;
2182 else
2183 KASSERT(m->m_type == MT_DATA,
2184 ("m->m_type == %d", m->m_type));
2185 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2186 len = uio->uio_resid;
2187 if (so->so_oobmark && len > so->so_oobmark - offset)
2188 len = so->so_oobmark - offset;
2189 if (len > m->m_len - moff)
2190 len = m->m_len - moff;
2191 /*
2192 * If mp is set, just pass back the mbufs. Otherwise copy
2193 * them out via the uio, then free. Sockbuf must be
2194 * consistent here (points to current mbuf, it points to next
2195 * record) when we drop priority; we must note any additions
2196 * to the sockbuf when we block interrupts again.
2197 */
2198 if (mp == NULL) {
2199 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2200 SBLASTRECORDCHK(&so->so_rcv);
2201 SBLASTMBUFCHK(&so->so_rcv);
2202 SOCKBUF_UNLOCK(&so->so_rcv);
2203 if ((m->m_flags & M_EXTPG) != 0)
2204 error = m_unmappedtouio(m, moff, uio, (int)len);
2205 else
2206 error = uiomove(mtod(m, char *) + moff,
2207 (int)len, uio);
2208 SOCKBUF_LOCK(&so->so_rcv);
2209 if (error) {
2210 /*
2211 * The MT_SONAME mbuf has already been removed
2212 * from the record, so it is necessary to
2213 * remove the data mbufs, if any, to preserve
2214 * the invariant in the case of PR_ADDR that
2215 * requires MT_SONAME mbufs at the head of
2216 * each record.
2217 */
2218 if (pr->pr_flags & PR_ATOMIC &&
2219 ((flags & MSG_PEEK) == 0))
2220 (void)sbdroprecord_locked(&so->so_rcv);
2221 SOCKBUF_UNLOCK(&so->so_rcv);
2222 goto release;
2223 }
2224 } else
2225 uio->uio_resid -= len;
2226 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2227 if (len == m->m_len - moff) {
2228 if (m->m_flags & M_EOR)
2229 flags |= MSG_EOR;
2230 if (flags & MSG_PEEK) {
2231 m = m->m_next;
2232 moff = 0;
2233 } else {
2234 nextrecord = m->m_nextpkt;
2235 sbfree(&so->so_rcv, m);
2236 if (mp != NULL) {
2237 m->m_nextpkt = NULL;
2238 *mp = m;
2239 mp = &m->m_next;
2240 so->so_rcv.sb_mb = m = m->m_next;
2241 *mp = NULL;
2242 } else {
2243 so->so_rcv.sb_mb = m_free(m);
2244 m = so->so_rcv.sb_mb;
2245 }
2246 sockbuf_pushsync(&so->so_rcv, nextrecord);
2247 SBLASTRECORDCHK(&so->so_rcv);
2248 SBLASTMBUFCHK(&so->so_rcv);
2249 }
2250 } else {
2251 if (flags & MSG_PEEK)
2252 moff += len;
2253 else {
2254 if (mp != NULL) {
2255 if (flags & MSG_DONTWAIT) {
2256 *mp = m_copym(m, 0, len,
2257 M_NOWAIT);
2258 if (*mp == NULL) {
2259 /*
2260 * m_copym() couldn't
2261 * allocate an mbuf.
2262 * Adjust uio_resid back
2263 * (it was adjusted
2264 * down by len bytes,
2265 * which we didn't end
2266 * up "copying" over).
2267 */
2268 uio->uio_resid += len;
2269 break;
2270 }
2271 } else {
2272 SOCKBUF_UNLOCK(&so->so_rcv);
2273 *mp = m_copym(m, 0, len,
2274 M_WAITOK);
2275 SOCKBUF_LOCK(&so->so_rcv);
2276 }
2277 }
2278 sbcut_locked(&so->so_rcv, len);
2279 }
2280 }
2281 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2282 if (so->so_oobmark) {
2283 if ((flags & MSG_PEEK) == 0) {
2284 so->so_oobmark -= len;
2285 if (so->so_oobmark == 0) {
2286 so->so_rcv.sb_state |= SBS_RCVATMARK;
2287 break;
2288 }
2289 } else {
2290 offset += len;
2291 if (offset == so->so_oobmark)
2292 break;
2293 }
2294 }
2295 if (flags & MSG_EOR)
2296 break;
2297 /*
2298 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2299 * must not quit until "uio->uio_resid == 0" or an error
2300 * termination. If a signal/timeout occurs, return with a
2301 * short count but without error. Keep sockbuf locked
2302 * against other readers.
2303 */
2304 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2305 !sosendallatonce(so) && nextrecord == NULL) {
2306 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2307 if (so->so_error ||
2308 so->so_rcv.sb_state & SBS_CANTRCVMORE)
2309 break;
2310 /*
2311 * Notify the protocol that some data has been
2312 * drained before blocking.
2313 */
2314 if (pr->pr_flags & PR_WANTRCVD) {
2315 SOCKBUF_UNLOCK(&so->so_rcv);
2316 VNET_SO_ASSERT(so);
2317 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
2318 SOCKBUF_LOCK(&so->so_rcv);
2319 }
2320 SBLASTRECORDCHK(&so->so_rcv);
2321 SBLASTMBUFCHK(&so->so_rcv);
2322 /*
2323 * We could receive some data while was notifying
2324 * the protocol. Skip blocking in this case.
2325 */
2326 if (so->so_rcv.sb_mb == NULL) {
2327 error = sbwait(&so->so_rcv);
2328 if (error) {
2329 SOCKBUF_UNLOCK(&so->so_rcv);
2330 goto release;
2331 }
2332 }
2333 m = so->so_rcv.sb_mb;
2334 if (m != NULL)
2335 nextrecord = m->m_nextpkt;
2336 }
2337 }
2338
2339 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2340 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2341 flags |= MSG_TRUNC;
2342 if ((flags & MSG_PEEK) == 0)
2343 (void) sbdroprecord_locked(&so->so_rcv);
2344 }
2345 if ((flags & MSG_PEEK) == 0) {
2346 if (m == NULL) {
2347 /*
2348 * First part is an inline SB_EMPTY_FIXUP(). Second
2349 * part makes sure sb_lastrecord is up-to-date if
2350 * there is still data in the socket buffer.
2351 */
2352 so->so_rcv.sb_mb = nextrecord;
2353 if (so->so_rcv.sb_mb == NULL) {
2354 so->so_rcv.sb_mbtail = NULL;
2355 so->so_rcv.sb_lastrecord = NULL;
2356 } else if (nextrecord->m_nextpkt == NULL)
2357 so->so_rcv.sb_lastrecord = nextrecord;
2358 }
2359 SBLASTRECORDCHK(&so->so_rcv);
2360 SBLASTMBUFCHK(&so->so_rcv);
2361 /*
2362 * If soreceive() is being done from the socket callback,
2363 * then don't need to generate ACK to peer to update window,
2364 * since ACK will be generated on return to TCP.
2365 */
2366 if (!(flags & MSG_SOCALLBCK) &&
2367 (pr->pr_flags & PR_WANTRCVD)) {
2368 SOCKBUF_UNLOCK(&so->so_rcv);
2369 VNET_SO_ASSERT(so);
2370 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
2371 SOCKBUF_LOCK(&so->so_rcv);
2372 }
2373 }
2374 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2375 if (orig_resid == uio->uio_resid && orig_resid &&
2376 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2377 SOCKBUF_UNLOCK(&so->so_rcv);
2378 goto restart;
2379 }
2380 SOCKBUF_UNLOCK(&so->so_rcv);
2381
2382 if (flagsp != NULL)
2383 *flagsp |= flags;
2384 release:
2385 sbunlock(&so->so_rcv);
2386 return (error);
2387 }
2388
2389 /*
2390 * Optimized version of soreceive() for stream (TCP) sockets.
2391 */
2392 int
2393 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2394 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2395 {
2396 int len = 0, error = 0, flags, oresid;
2397 struct sockbuf *sb;
2398 struct mbuf *m, *n = NULL;
2399
2400 /* We only do stream sockets. */
2401 if (so->so_type != SOCK_STREAM)
2402 return (EINVAL);
2403 if (psa != NULL)
2404 *psa = NULL;
2405 if (flagsp != NULL)
2406 flags = *flagsp &~ MSG_EOR;
2407 else
2408 flags = 0;
2409 if (controlp != NULL)
2410 *controlp = NULL;
2411 if (flags & MSG_OOB)
2412 return (soreceive_rcvoob(so, uio, flags));
2413 if (mp0 != NULL)
2414 *mp0 = NULL;
2415
2416 sb = &so->so_rcv;
2417
2418 #ifdef KERN_TLS
2419 /*
2420 * KTLS store TLS records as records with a control message to
2421 * describe the framing.
2422 *
2423 * We check once here before acquiring locks to optimize the
2424 * common case.
2425 */
2426 if (sb->sb_tls_info != NULL)
2427 return (soreceive_generic(so, psa, uio, mp0, controlp,
2428 flagsp));
2429 #endif
2430
2431 /* Prevent other readers from entering the socket. */
2432 error = sblock(sb, SBLOCKWAIT(flags));
2433 if (error)
2434 return (error);
2435 SOCKBUF_LOCK(sb);
2436
2437 #ifdef KERN_TLS
2438 if (sb->sb_tls_info != NULL) {
2439 SOCKBUF_UNLOCK(sb);
2440 sbunlock(sb);
2441 return (soreceive_generic(so, psa, uio, mp0, controlp,
2442 flagsp));
2443 }
2444 #endif
2445
2446 /* Easy one, no space to copyout anything. */
2447 if (uio->uio_resid == 0) {
2448 error = EINVAL;
2449 goto out;
2450 }
2451 oresid = uio->uio_resid;
2452
2453 /* We will never ever get anything unless we are or were connected. */
2454 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2455 error = ENOTCONN;
2456 goto out;
2457 }
2458
2459 restart:
2460 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2461
2462 /* Abort if socket has reported problems. */
2463 if (so->so_error) {
2464 if (sbavail(sb) > 0)
2465 goto deliver;
2466 if (oresid > uio->uio_resid)
2467 goto out;
2468 error = so->so_error;
2469 if (!(flags & MSG_PEEK))
2470 so->so_error = 0;
2471 goto out;
2472 }
2473
2474 /* Door is closed. Deliver what is left, if any. */
2475 if (sb->sb_state & SBS_CANTRCVMORE) {
2476 if (sbavail(sb) > 0)
2477 goto deliver;
2478 else
2479 goto out;
2480 }
2481
2482 /* Socket buffer is empty and we shall not block. */
2483 if (sbavail(sb) == 0 &&
2484 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2485 error = EAGAIN;
2486 goto out;
2487 }
2488
2489 /* Socket buffer got some data that we shall deliver now. */
2490 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2491 ((so->so_state & SS_NBIO) ||
2492 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2493 sbavail(sb) >= sb->sb_lowat ||
2494 sbavail(sb) >= uio->uio_resid ||
2495 sbavail(sb) >= sb->sb_hiwat) ) {
2496 goto deliver;
2497 }
2498
2499 /* On MSG_WAITALL we must wait until all data or error arrives. */
2500 if ((flags & MSG_WAITALL) &&
2501 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2502 goto deliver;
2503
2504 /*
2505 * Wait and block until (more) data comes in.
2506 * NB: Drops the sockbuf lock during wait.
2507 */
2508 error = sbwait(sb);
2509 if (error)
2510 goto out;
2511 goto restart;
2512
2513 deliver:
2514 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2515 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2516 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2517
2518 /* Statistics. */
2519 if (uio->uio_td)
2520 uio->uio_td->td_ru.ru_msgrcv++;
2521
2522 /* Fill uio until full or current end of socket buffer is reached. */
2523 len = min(uio->uio_resid, sbavail(sb));
2524 if (mp0 != NULL) {
2525 /* Dequeue as many mbufs as possible. */
2526 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2527 if (*mp0 == NULL)
2528 *mp0 = sb->sb_mb;
2529 else
2530 m_cat(*mp0, sb->sb_mb);
2531 for (m = sb->sb_mb;
2532 m != NULL && m->m_len <= len;
2533 m = m->m_next) {
2534 KASSERT(!(m->m_flags & M_NOTAVAIL),
2535 ("%s: m %p not available", __func__, m));
2536 len -= m->m_len;
2537 uio->uio_resid -= m->m_len;
2538 sbfree(sb, m);
2539 n = m;
2540 }
2541 n->m_next = NULL;
2542 sb->sb_mb = m;
2543 sb->sb_lastrecord = sb->sb_mb;
2544 if (sb->sb_mb == NULL)
2545 SB_EMPTY_FIXUP(sb);
2546 }
2547 /* Copy the remainder. */
2548 if (len > 0) {
2549 KASSERT(sb->sb_mb != NULL,
2550 ("%s: len > 0 && sb->sb_mb empty", __func__));
2551
2552 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2553 if (m == NULL)
2554 len = 0; /* Don't flush data from sockbuf. */
2555 else
2556 uio->uio_resid -= len;
2557 if (*mp0 != NULL)
2558 m_cat(*mp0, m);
2559 else
2560 *mp0 = m;
2561 if (*mp0 == NULL) {
2562 error = ENOBUFS;
2563 goto out;
2564 }
2565 }
2566 } else {
2567 /* NB: Must unlock socket buffer as uiomove may sleep. */
2568 SOCKBUF_UNLOCK(sb);
2569 error = m_mbuftouio(uio, sb->sb_mb, len);
2570 SOCKBUF_LOCK(sb);
2571 if (error)
2572 goto out;
2573 }
2574 SBLASTRECORDCHK(sb);
2575 SBLASTMBUFCHK(sb);
2576
2577 /*
2578 * Remove the delivered data from the socket buffer unless we
2579 * were only peeking.
2580 */
2581 if (!(flags & MSG_PEEK)) {
2582 if (len > 0)
2583 sbdrop_locked(sb, len);
2584
2585 /* Notify protocol that we drained some data. */
2586 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2587 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2588 !(flags & MSG_SOCALLBCK))) {
2589 SOCKBUF_UNLOCK(sb);
2590 VNET_SO_ASSERT(so);
2591 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2592 SOCKBUF_LOCK(sb);
2593 }
2594 }
2595
2596 /*
2597 * For MSG_WAITALL we may have to loop again and wait for
2598 * more data to come in.
2599 */
2600 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2601 goto restart;
2602 out:
2603 SOCKBUF_LOCK_ASSERT(sb);
2604 SBLASTRECORDCHK(sb);
2605 SBLASTMBUFCHK(sb);
2606 SOCKBUF_UNLOCK(sb);
2607 sbunlock(sb);
2608 return (error);
2609 }
2610
2611 /*
2612 * Optimized version of soreceive() for simple datagram cases from userspace.
2613 * Unlike in the stream case, we're able to drop a datagram if copyout()
2614 * fails, and because we handle datagrams atomically, we don't need to use a
2615 * sleep lock to prevent I/O interlacing.
2616 */
2617 int
2618 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2619 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2620 {
2621 struct mbuf *m, *m2;
2622 int flags, error;
2623 ssize_t len;
2624 struct protosw *pr = so->so_proto;
2625 struct mbuf *nextrecord;
2626
2627 if (psa != NULL)
2628 *psa = NULL;
2629 if (controlp != NULL)
2630 *controlp = NULL;
2631 if (flagsp != NULL)
2632 flags = *flagsp &~ MSG_EOR;
2633 else
2634 flags = 0;
2635
2636 /*
2637 * For any complicated cases, fall back to the full
2638 * soreceive_generic().
2639 */
2640 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2641 return (soreceive_generic(so, psa, uio, mp0, controlp,
2642 flagsp));
2643
2644 /*
2645 * Enforce restrictions on use.
2646 */
2647 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2648 ("soreceive_dgram: wantrcvd"));
2649 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2650 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2651 ("soreceive_dgram: SBS_RCVATMARK"));
2652 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2653 ("soreceive_dgram: P_CONNREQUIRED"));
2654
2655 /*
2656 * Loop blocking while waiting for a datagram.
2657 */
2658 SOCKBUF_LOCK(&so->so_rcv);
2659 while ((m = so->so_rcv.sb_mb) == NULL) {
2660 KASSERT(sbavail(&so->so_rcv) == 0,
2661 ("soreceive_dgram: sb_mb NULL but sbavail %u",
2662 sbavail(&so->so_rcv)));
2663 if (so->so_error) {
2664 error = so->so_error;
2665 so->so_error = 0;
2666 SOCKBUF_UNLOCK(&so->so_rcv);
2667 return (error);
2668 }
2669 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2670 uio->uio_resid == 0) {
2671 SOCKBUF_UNLOCK(&so->so_rcv);
2672 return (0);
2673 }
2674 if ((so->so_state & SS_NBIO) ||
2675 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2676 SOCKBUF_UNLOCK(&so->so_rcv);
2677 return (EWOULDBLOCK);
2678 }
2679 SBLASTRECORDCHK(&so->so_rcv);
2680 SBLASTMBUFCHK(&so->so_rcv);
2681 error = sbwait(&so->so_rcv);
2682 if (error) {
2683 SOCKBUF_UNLOCK(&so->so_rcv);
2684 return (error);
2685 }
2686 }
2687 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2688
2689 if (uio->uio_td)
2690 uio->uio_td->td_ru.ru_msgrcv++;
2691 SBLASTRECORDCHK(&so->so_rcv);
2692 SBLASTMBUFCHK(&so->so_rcv);
2693 nextrecord = m->m_nextpkt;
2694 if (nextrecord == NULL) {
2695 KASSERT(so->so_rcv.sb_lastrecord == m,
2696 ("soreceive_dgram: lastrecord != m"));
2697 }
2698
2699 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2700 ("soreceive_dgram: m_nextpkt != nextrecord"));
2701
2702 /*
2703 * Pull 'm' and its chain off the front of the packet queue.
2704 */
2705 so->so_rcv.sb_mb = NULL;
2706 sockbuf_pushsync(&so->so_rcv, nextrecord);
2707
2708 /*
2709 * Walk 'm's chain and free that many bytes from the socket buffer.
2710 */
2711 for (m2 = m; m2 != NULL; m2 = m2->m_next)
2712 sbfree(&so->so_rcv, m2);
2713
2714 /*
2715 * Do a few last checks before we let go of the lock.
2716 */
2717 SBLASTRECORDCHK(&so->so_rcv);
2718 SBLASTMBUFCHK(&so->so_rcv);
2719 SOCKBUF_UNLOCK(&so->so_rcv);
2720
2721 if (pr->pr_flags & PR_ADDR) {
2722 KASSERT(m->m_type == MT_SONAME,
2723 ("m->m_type == %d", m->m_type));
2724 if (psa != NULL)
2725 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2726 M_NOWAIT);
2727 m = m_free(m);
2728 }
2729 if (m == NULL) {
2730 /* XXXRW: Can this happen? */
2731 return (0);
2732 }
2733
2734 /*
2735 * Packet to copyout() is now in 'm' and it is disconnected from the
2736 * queue.
2737 *
2738 * Process one or more MT_CONTROL mbufs present before any data mbufs
2739 * in the first mbuf chain on the socket buffer. We call into the
2740 * protocol to perform externalization (or freeing if controlp ==
2741 * NULL). In some cases there can be only MT_CONTROL mbufs without
2742 * MT_DATA mbufs.
2743 */
2744 if (m->m_type == MT_CONTROL) {
2745 struct mbuf *cm = NULL, *cmn;
2746 struct mbuf **cme = &cm;
2747
2748 do {
2749 m2 = m->m_next;
2750 m->m_next = NULL;
2751 *cme = m;
2752 cme = &(*cme)->m_next;
2753 m = m2;
2754 } while (m != NULL && m->m_type == MT_CONTROL);
2755 while (cm != NULL) {
2756 cmn = cm->m_next;
2757 cm->m_next = NULL;
2758 if (pr->pr_domain->dom_externalize != NULL) {
2759 error = (*pr->pr_domain->dom_externalize)
2760 (cm, controlp, flags);
2761 } else if (controlp != NULL)
2762 *controlp = cm;
2763 else
2764 m_freem(cm);
2765 if (controlp != NULL) {
2766 while (*controlp != NULL)
2767 controlp = &(*controlp)->m_next;
2768 }
2769 cm = cmn;
2770 }
2771 }
2772 KASSERT(m == NULL || m->m_type == MT_DATA,
2773 ("soreceive_dgram: !data"));
2774 while (m != NULL && uio->uio_resid > 0) {
2775 len = uio->uio_resid;
2776 if (len > m->m_len)
2777 len = m->m_len;
2778 error = uiomove(mtod(m, char *), (int)len, uio);
2779 if (error) {
2780 m_freem(m);
2781 return (error);
2782 }
2783 if (len == m->m_len)
2784 m = m_free(m);
2785 else {
2786 m->m_data += len;
2787 m->m_len -= len;
2788 }
2789 }
2790 if (m != NULL) {
2791 flags |= MSG_TRUNC;
2792 m_freem(m);
2793 }
2794 if (flagsp != NULL)
2795 *flagsp |= flags;
2796 return (0);
2797 }
2798
2799 int
2800 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2801 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2802 {
2803 int error;
2804
2805 CURVNET_SET(so->so_vnet);
2806 if (!SOLISTENING(so))
2807 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2808 mp0, controlp, flagsp));
2809 else
2810 error = ENOTCONN;
2811 CURVNET_RESTORE();
2812 return (error);
2813 }
2814
2815 int
2816 soshutdown(struct socket *so, int how)
2817 {
2818 struct protosw *pr = so->so_proto;
2819 int error, soerror_enotconn;
2820
2821 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2822 return (EINVAL);
2823
2824 soerror_enotconn = 0;
2825 if ((so->so_state &
2826 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2827 /*
2828 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2829 * invoked on a datagram sockets, however historically we would
2830 * actually tear socket down. This is known to be leveraged by
2831 * some applications to unblock process waiting in recvXXX(2)
2832 * by other process that it shares that socket with. Try to meet
2833 * both backward-compatibility and POSIX requirements by forcing
2834 * ENOTCONN but still asking protocol to perform pru_shutdown().
2835 */
2836 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2837 return (ENOTCONN);
2838 soerror_enotconn = 1;
2839 }
2840
2841 if (SOLISTENING(so)) {
2842 if (how != SHUT_WR) {
2843 SOLISTEN_LOCK(so);
2844 so->so_error = ECONNABORTED;
2845 solisten_wakeup(so); /* unlocks so */
2846 }
2847 goto done;
2848 }
2849
2850 CURVNET_SET(so->so_vnet);
2851 if (pr->pr_usrreqs->pru_flush != NULL)
2852 (*pr->pr_usrreqs->pru_flush)(so, how);
2853 if (how != SHUT_WR)
2854 sorflush(so);
2855 if (how != SHUT_RD) {
2856 error = (*pr->pr_usrreqs->pru_shutdown)(so);
2857 wakeup(&so->so_timeo);
2858 CURVNET_RESTORE();
2859 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2860 }
2861 wakeup(&so->so_timeo);
2862 CURVNET_RESTORE();
2863
2864 done:
2865 return (soerror_enotconn ? ENOTCONN : 0);
2866 }
2867
2868 void
2869 sorflush(struct socket *so)
2870 {
2871 struct sockbuf *sb = &so->so_rcv;
2872 struct protosw *pr = so->so_proto;
2873 struct socket aso;
2874
2875 VNET_SO_ASSERT(so);
2876
2877 /*
2878 * In order to avoid calling dom_dispose with the socket buffer mutex
2879 * held, and in order to generally avoid holding the lock for a long
2880 * time, we make a copy of the socket buffer and clear the original
2881 * (except locks, state). The new socket buffer copy won't have
2882 * initialized locks so we can only call routines that won't use or
2883 * assert those locks.
2884 *
2885 * Dislodge threads currently blocked in receive and wait to acquire
2886 * a lock against other simultaneous readers before clearing the
2887 * socket buffer. Don't let our acquire be interrupted by a signal
2888 * despite any existing socket disposition on interruptable waiting.
2889 */
2890 socantrcvmore(so);
2891 (void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2892
2893 /*
2894 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2895 * and mutex data unchanged.
2896 */
2897 SOCKBUF_LOCK(sb);
2898 bzero(&aso, sizeof(aso));
2899 aso.so_pcb = so->so_pcb;
2900 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2901 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2902 bzero(&sb->sb_startzero,
2903 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2904 SOCKBUF_UNLOCK(sb);
2905 sbunlock(sb);
2906
2907 /*
2908 * Dispose of special rights and flush the copied socket. Don't call
2909 * any unsafe routines (that rely on locks being initialized) on aso.
2910 */
2911 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2912 (*pr->pr_domain->dom_dispose)(&aso);
2913 sbrelease_internal(&aso.so_rcv, so);
2914 }
2915
2916 /*
2917 * Wrapper for Socket established helper hook.
2918 * Parameters: socket, context of the hook point, hook id.
2919 */
2920 static int inline
2921 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2922 {
2923 struct socket_hhook_data hhook_data = {
2924 .so = so,
2925 .hctx = hctx,
2926 .m = NULL,
2927 .status = 0
2928 };
2929
2930 CURVNET_SET(so->so_vnet);
2931 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2932 CURVNET_RESTORE();
2933
2934 /* Ugly but needed, since hhooks return void for now */
2935 return (hhook_data.status);
2936 }
2937
2938 /*
2939 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2940 * additional variant to handle the case where the option value needs to be
2941 * some kind of integer, but not a specific size. In addition to their use
2942 * here, these functions are also called by the protocol-level pr_ctloutput()
2943 * routines.
2944 */
2945 int
2946 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2947 {
2948 size_t valsize;
2949
2950 /*
2951 * If the user gives us more than we wanted, we ignore it, but if we
2952 * don't get the minimum length the caller wants, we return EINVAL.
2953 * On success, sopt->sopt_valsize is set to however much we actually
2954 * retrieved.
2955 */
2956 if ((valsize = sopt->sopt_valsize) < minlen)
2957 return EINVAL;
2958 if (valsize > len)
2959 sopt->sopt_valsize = valsize = len;
2960
2961 if (sopt->sopt_td != NULL)
2962 return (copyin(sopt->sopt_val, buf, valsize));
2963
2964 bcopy(sopt->sopt_val, buf, valsize);
2965 return (0);
2966 }
2967
2968 /*
2969 * Kernel version of setsockopt(2).
2970 *
2971 * XXX: optlen is size_t, not socklen_t
2972 */
2973 int
2974 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2975 size_t optlen)
2976 {
2977 struct sockopt sopt;
2978
2979 sopt.sopt_level = level;
2980 sopt.sopt_name = optname;
2981 sopt.sopt_dir = SOPT_SET;
2982 sopt.sopt_val = optval;
2983 sopt.sopt_valsize = optlen;
2984 sopt.sopt_td = NULL;
2985 return (sosetopt(so, &sopt));
2986 }
2987
2988 int
2989 sosetopt(struct socket *so, struct sockopt *sopt)
2990 {
2991 int error, optval;
2992 struct linger l;
2993 struct timeval tv;
2994 sbintime_t val;
2995 uint32_t val32;
2996 #ifdef MAC
2997 struct mac extmac;
2998 #endif
2999
3000 CURVNET_SET(so->so_vnet);
3001 error = 0;
3002 if (sopt->sopt_level != SOL_SOCKET) {
3003 if (so->so_proto->pr_ctloutput != NULL)
3004 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3005 else
3006 error = ENOPROTOOPT;
3007 } else {
3008 switch (sopt->sopt_name) {
3009 case SO_ACCEPTFILTER:
3010 error = accept_filt_setopt(so, sopt);
3011 if (error)
3012 goto bad;
3013 break;
3014
3015 case SO_LINGER:
3016 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3017 if (error)
3018 goto bad;
3019 if (l.l_linger < 0 ||
3020 l.l_linger > USHRT_MAX ||
3021 l.l_linger > (INT_MAX / hz)) {
3022 error = EDOM;
3023 goto bad;
3024 }
3025 SOCK_LOCK(so);
3026 so->so_linger = l.l_linger;
3027 if (l.l_onoff)
3028 so->so_options |= SO_LINGER;
3029 else
3030 so->so_options &= ~SO_LINGER;
3031 SOCK_UNLOCK(so);
3032 break;
3033
3034 case SO_DEBUG:
3035 case SO_KEEPALIVE:
3036 case SO_DONTROUTE:
3037 case SO_USELOOPBACK:
3038 case SO_BROADCAST:
3039 case SO_REUSEADDR:
3040 case SO_REUSEPORT:
3041 case SO_REUSEPORT_LB:
3042 case SO_OOBINLINE:
3043 case SO_TIMESTAMP:
3044 case SO_BINTIME:
3045 case SO_NOSIGPIPE:
3046 case SO_NO_DDP:
3047 case SO_NO_OFFLOAD:
3048 error = sooptcopyin(sopt, &optval, sizeof optval,
3049 sizeof optval);
3050 if (error)
3051 goto bad;
3052 SOCK_LOCK(so);
3053 if (optval)
3054 so->so_options |= sopt->sopt_name;
3055 else
3056 so->so_options &= ~sopt->sopt_name;
3057 SOCK_UNLOCK(so);
3058 break;
3059
3060 case SO_SETFIB:
3061 error = sooptcopyin(sopt, &optval, sizeof optval,
3062 sizeof optval);
3063 if (error)
3064 goto bad;
3065
3066 if (optval < 0 || optval >= rt_numfibs) {
3067 error = EINVAL;
3068 goto bad;
3069 }
3070 if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3071 (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3072 (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3073 so->so_fibnum = optval;
3074 else
3075 so->so_fibnum = 0;
3076 break;
3077
3078 case SO_USER_COOKIE:
3079 error = sooptcopyin(sopt, &val32, sizeof val32,
3080 sizeof val32);
3081 if (error)
3082 goto bad;
3083 so->so_user_cookie = val32;
3084 break;
3085
3086 case SO_SNDBUF:
3087 case SO_RCVBUF:
3088 case SO_SNDLOWAT:
3089 case SO_RCVLOWAT:
3090 error = sooptcopyin(sopt, &optval, sizeof optval,
3091 sizeof optval);
3092 if (error)
3093 goto bad;
3094
3095 /*
3096 * Values < 1 make no sense for any of these options,
3097 * so disallow them.
3098 */
3099 if (optval < 1) {
3100 error = EINVAL;
3101 goto bad;
3102 }
3103
3104 error = sbsetopt(so, sopt->sopt_name, optval);
3105 break;
3106
3107 case SO_SNDTIMEO:
3108 case SO_RCVTIMEO:
3109 #ifdef COMPAT_FREEBSD32
3110 if (SV_CURPROC_FLAG(SV_ILP32)) {
3111 struct timeval32 tv32;
3112
3113 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3114 sizeof tv32);
3115 CP(tv32, tv, tv_sec);
3116 CP(tv32, tv, tv_usec);
3117 } else
3118 #endif
3119 error = sooptcopyin(sopt, &tv, sizeof tv,
3120 sizeof tv);
3121 if (error)
3122 goto bad;
3123 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3124 tv.tv_usec >= 1000000) {
3125 error = EDOM;
3126 goto bad;
3127 }
3128 if (tv.tv_sec > INT32_MAX)
3129 val = SBT_MAX;
3130 else
3131 val = tvtosbt(tv);
3132 switch (sopt->sopt_name) {
3133 case SO_SNDTIMEO:
3134 so->so_snd.sb_timeo = val;
3135 break;
3136 case SO_RCVTIMEO:
3137 so->so_rcv.sb_timeo = val;
3138 break;
3139 }
3140 break;
3141
3142 case SO_LABEL:
3143 #ifdef MAC
3144 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3145 sizeof extmac);
3146 if (error)
3147 goto bad;
3148 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3149 so, &extmac);
3150 #else
3151 error = EOPNOTSUPP;
3152 #endif
3153 break;
3154
3155 case SO_TS_CLOCK:
3156 error = sooptcopyin(sopt, &optval, sizeof optval,
3157 sizeof optval);
3158 if (error)
3159 goto bad;
3160 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3161 error = EINVAL;
3162 goto bad;
3163 }
3164 so->so_ts_clock = optval;
3165 break;
3166
3167 case SO_MAX_PACING_RATE:
3168 error = sooptcopyin(sopt, &val32, sizeof(val32),
3169 sizeof(val32));
3170 if (error)
3171 goto bad;
3172 so->so_max_pacing_rate = val32;
3173 break;
3174
3175 default:
3176 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3177 error = hhook_run_socket(so, sopt,
3178 HHOOK_SOCKET_OPT);
3179 else
3180 error = ENOPROTOOPT;
3181 break;
3182 }
3183 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3184 (void)(*so->so_proto->pr_ctloutput)(so, sopt);
3185 }
3186 bad:
3187 CURVNET_RESTORE();
3188 return (error);
3189 }
3190
3191 /*
3192 * Helper routine for getsockopt.
3193 */
3194 int
3195 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3196 {
3197 int error;
3198 size_t valsize;
3199
3200 error = 0;
3201
3202 /*
3203 * Documented get behavior is that we always return a value, possibly
3204 * truncated to fit in the user's buffer. Traditional behavior is
3205 * that we always tell the user precisely how much we copied, rather
3206 * than something useful like the total amount we had available for
3207 * her. Note that this interface is not idempotent; the entire
3208 * answer must be generated ahead of time.
3209 */
3210 valsize = min(len, sopt->sopt_valsize);
3211 sopt->sopt_valsize = valsize;
3212 if (sopt->sopt_val != NULL) {
3213 if (sopt->sopt_td != NULL)
3214 error = copyout(buf, sopt->sopt_val, valsize);
3215 else
3216 bcopy(buf, sopt->sopt_val, valsize);
3217 }
3218 return (error);
3219 }
3220
3221 int
3222 sogetopt(struct socket *so, struct sockopt *sopt)
3223 {
3224 int error, optval;
3225 struct linger l;
3226 struct timeval tv;
3227 #ifdef MAC
3228 struct mac extmac;
3229 #endif
3230
3231 CURVNET_SET(so->so_vnet);
3232 error = 0;
3233 if (sopt->sopt_level != SOL_SOCKET) {
3234 if (so->so_proto->pr_ctloutput != NULL)
3235 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3236 else
3237 error = ENOPROTOOPT;
3238 CURVNET_RESTORE();
3239 return (error);
3240 } else {
3241 switch (sopt->sopt_name) {
3242 case SO_ACCEPTFILTER:
3243 error = accept_filt_getopt(so, sopt);
3244 break;
3245
3246 case SO_LINGER:
3247 SOCK_LOCK(so);
3248 l.l_onoff = so->so_options & SO_LINGER;
3249 l.l_linger = so->so_linger;
3250 SOCK_UNLOCK(so);
3251 error = sooptcopyout(sopt, &l, sizeof l);
3252 break;
3253
3254 case SO_USELOOPBACK:
3255 case SO_DONTROUTE:
3256 case SO_DEBUG:
3257 case SO_KEEPALIVE:
3258 case SO_REUSEADDR:
3259 case SO_REUSEPORT:
3260 case SO_REUSEPORT_LB:
3261 case SO_BROADCAST:
3262 case SO_OOBINLINE:
3263 case SO_ACCEPTCONN:
3264 case SO_TIMESTAMP:
3265 case SO_BINTIME:
3266 case SO_NOSIGPIPE:
3267 case SO_NO_DDP:
3268 case SO_NO_OFFLOAD:
3269 optval = so->so_options & sopt->sopt_name;
3270 integer:
3271 error = sooptcopyout(sopt, &optval, sizeof optval);
3272 break;
3273
3274 case SO_DOMAIN:
3275 optval = so->so_proto->pr_domain->dom_family;
3276 goto integer;
3277
3278 case SO_TYPE:
3279 optval = so->so_type;
3280 goto integer;
3281
3282 case SO_PROTOCOL:
3283 optval = so->so_proto->pr_protocol;
3284 goto integer;
3285
3286 case SO_ERROR:
3287 SOCK_LOCK(so);
3288 optval = so->so_error;
3289 so->so_error = 0;
3290 SOCK_UNLOCK(so);
3291 goto integer;
3292
3293 case SO_SNDBUF:
3294 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3295 so->so_snd.sb_hiwat;
3296 goto integer;
3297
3298 case SO_RCVBUF:
3299 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3300 so->so_rcv.sb_hiwat;
3301 goto integer;
3302
3303 case SO_SNDLOWAT:
3304 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3305 so->so_snd.sb_lowat;
3306 goto integer;
3307
3308 case SO_RCVLOWAT:
3309 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3310 so->so_rcv.sb_lowat;
3311 goto integer;
3312
3313 case SO_SNDTIMEO:
3314 case SO_RCVTIMEO:
3315 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3316 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3317 #ifdef COMPAT_FREEBSD32
3318 if (SV_CURPROC_FLAG(SV_ILP32)) {
3319 struct timeval32 tv32;
3320
3321 CP(tv, tv32, tv_sec);
3322 CP(tv, tv32, tv_usec);
3323 error = sooptcopyout(sopt, &tv32, sizeof tv32);
3324 } else
3325 #endif
3326 error = sooptcopyout(sopt, &tv, sizeof tv);
3327 break;
3328
3329 case SO_LABEL:
3330 #ifdef MAC
3331 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3332 sizeof(extmac));
3333 if (error)
3334 goto bad;
3335 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3336 so, &extmac);
3337 if (error)
3338 goto bad;
3339 error = sooptcopyout(sopt, &extmac, sizeof extmac);
3340 #else
3341 error = EOPNOTSUPP;
3342 #endif
3343 break;
3344
3345 case SO_PEERLABEL:
3346 #ifdef MAC
3347 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3348 sizeof(extmac));
3349 if (error)
3350 goto bad;
3351 error = mac_getsockopt_peerlabel(
3352 sopt->sopt_td->td_ucred, so, &extmac);
3353 if (error)
3354 goto bad;
3355 error = sooptcopyout(sopt, &extmac, sizeof extmac);
3356 #else
3357 error = EOPNOTSUPP;
3358 #endif
3359 break;
3360
3361 case SO_LISTENQLIMIT:
3362 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3363 goto integer;
3364
3365 case SO_LISTENQLEN:
3366 optval = SOLISTENING(so) ? so->sol_qlen : 0;
3367 goto integer;
3368
3369 case SO_LISTENINCQLEN:
3370 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3371 goto integer;
3372
3373 case SO_TS_CLOCK:
3374 optval = so->so_ts_clock;
3375 goto integer;
3376
3377 case SO_MAX_PACING_RATE:
3378 optval = so->so_max_pacing_rate;
3379 goto integer;
3380
3381 default:
3382 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3383 error = hhook_run_socket(so, sopt,
3384 HHOOK_SOCKET_OPT);
3385 else
3386 error = ENOPROTOOPT;
3387 break;
3388 }
3389 }
3390 #ifdef MAC
3391 bad:
3392 #endif
3393 CURVNET_RESTORE();
3394 return (error);
3395 }
3396
3397 int
3398 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3399 {
3400 struct mbuf *m, *m_prev;
3401 int sopt_size = sopt->sopt_valsize;
3402
3403 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3404 if (m == NULL)
3405 return ENOBUFS;
3406 if (sopt_size > MLEN) {
3407 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3408 if ((m->m_flags & M_EXT) == 0) {
3409 m_free(m);
3410 return ENOBUFS;
3411 }
3412 m->m_len = min(MCLBYTES, sopt_size);
3413 } else {
3414 m->m_len = min(MLEN, sopt_size);
3415 }
3416 sopt_size -= m->m_len;
3417 *mp = m;
3418 m_prev = m;
3419
3420 while (sopt_size) {
3421 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3422 if (m == NULL) {
3423 m_freem(*mp);
3424 return ENOBUFS;
3425 }
3426 if (sopt_size > MLEN) {
3427 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3428 M_NOWAIT);
3429 if ((m->m_flags & M_EXT) == 0) {
3430 m_freem(m);
3431 m_freem(*mp);
3432 return ENOBUFS;
3433 }
3434 m->m_len = min(MCLBYTES, sopt_size);
3435 } else {
3436 m->m_len = min(MLEN, sopt_size);
3437 }
3438 sopt_size -= m->m_len;
3439 m_prev->m_next = m;
3440 m_prev = m;
3441 }
3442 return (0);
3443 }
3444
3445 int
3446 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3447 {
3448 struct mbuf *m0 = m;
3449
3450 if (sopt->sopt_val == NULL)
3451 return (0);
3452 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3453 if (sopt->sopt_td != NULL) {
3454 int error;
3455
3456 error = copyin(sopt->sopt_val, mtod(m, char *),
3457 m->m_len);
3458 if (error != 0) {
3459 m_freem(m0);
3460 return(error);
3461 }
3462 } else
3463 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3464 sopt->sopt_valsize -= m->m_len;
3465 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3466 m = m->m_next;
3467 }
3468 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3469 panic("ip6_sooptmcopyin");
3470 return (0);
3471 }
3472
3473 int
3474 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3475 {
3476 struct mbuf *m0 = m;
3477 size_t valsize = 0;
3478
3479 if (sopt->sopt_val == NULL)
3480 return (0);
3481 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3482 if (sopt->sopt_td != NULL) {
3483 int error;
3484
3485 error = copyout(mtod(m, char *), sopt->sopt_val,
3486 m->m_len);
3487 if (error != 0) {
3488 m_freem(m0);
3489 return(error);
3490 }
3491 } else
3492 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3493 sopt->sopt_valsize -= m->m_len;
3494 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3495 valsize += m->m_len;
3496 m = m->m_next;
3497 }
3498 if (m != NULL) {
3499 /* enough soopt buffer should be given from user-land */
3500 m_freem(m0);
3501 return(EINVAL);
3502 }
3503 sopt->sopt_valsize = valsize;
3504 return (0);
3505 }
3506
3507 /*
3508 * sohasoutofband(): protocol notifies socket layer of the arrival of new
3509 * out-of-band data, which will then notify socket consumers.
3510 */
3511 void
3512 sohasoutofband(struct socket *so)
3513 {
3514
3515 if (so->so_sigio != NULL)
3516 pgsigio(&so->so_sigio, SIGURG, 0);
3517 selwakeuppri(&so->so_rdsel, PSOCK);
3518 }
3519
3520 int
3521 sopoll(struct socket *so, int events, struct ucred *active_cred,
3522 struct thread *td)
3523 {
3524
3525 /*
3526 * We do not need to set or assert curvnet as long as everyone uses
3527 * sopoll_generic().
3528 */
3529 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3530 td));
3531 }
3532
3533 int
3534 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3535 struct thread *td)
3536 {
3537 int revents;
3538
3539 SOCK_LOCK(so);
3540 if (SOLISTENING(so)) {
3541 if (!(events & (POLLIN | POLLRDNORM)))
3542 revents = 0;
3543 else if (!TAILQ_EMPTY(&so->sol_comp))
3544 revents = events & (POLLIN | POLLRDNORM);
3545 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3546 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3547 else {
3548 selrecord(td, &so->so_rdsel);
3549 revents = 0;
3550 }
3551 } else {
3552 revents = 0;
3553 SOCKBUF_LOCK(&so->so_snd);
3554 SOCKBUF_LOCK(&so->so_rcv);
3555 if (events & (POLLIN | POLLRDNORM))
3556 if (soreadabledata(so))
3557 revents |= events & (POLLIN | POLLRDNORM);
3558 if (events & (POLLOUT | POLLWRNORM))
3559 if (sowriteable(so))
3560 revents |= events & (POLLOUT | POLLWRNORM);
3561 if (events & (POLLPRI | POLLRDBAND))
3562 if (so->so_oobmark ||
3563 (so->so_rcv.sb_state & SBS_RCVATMARK))
3564 revents |= events & (POLLPRI | POLLRDBAND);
3565 if ((events & POLLINIGNEOF) == 0) {
3566 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3567 revents |= events & (POLLIN | POLLRDNORM);
3568 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3569 revents |= POLLHUP;
3570 }
3571 }
3572 if (revents == 0) {
3573 if (events &
3574 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3575 selrecord(td, &so->so_rdsel);
3576 so->so_rcv.sb_flags |= SB_SEL;
3577 }
3578 if (events & (POLLOUT | POLLWRNORM)) {
3579 selrecord(td, &so->so_wrsel);
3580 so->so_snd.sb_flags |= SB_SEL;
3581 }
3582 }
3583 SOCKBUF_UNLOCK(&so->so_rcv);
3584 SOCKBUF_UNLOCK(&so->so_snd);
3585 }
3586 SOCK_UNLOCK(so);
3587 return (revents);
3588 }
3589
3590 int
3591 soo_kqfilter(struct file *fp, struct knote *kn)
3592 {
3593 struct socket *so = kn->kn_fp->f_data;
3594 struct sockbuf *sb;
3595 struct knlist *knl;
3596
3597 switch (kn->kn_filter) {
3598 case EVFILT_READ:
3599 kn->kn_fop = &soread_filtops;
3600 knl = &so->so_rdsel.si_note;
3601 sb = &so->so_rcv;
3602 break;
3603 case EVFILT_WRITE:
3604 kn->kn_fop = &sowrite_filtops;
3605 knl = &so->so_wrsel.si_note;
3606 sb = &so->so_snd;
3607 break;
3608 case EVFILT_EMPTY:
3609 kn->kn_fop = &soempty_filtops;
3610 knl = &so->so_wrsel.si_note;
3611 sb = &so->so_snd;
3612 break;
3613 default:
3614 return (EINVAL);
3615 }
3616
3617 SOCK_LOCK(so);
3618 if (SOLISTENING(so)) {
3619 knlist_add(knl, kn, 1);
3620 } else {
3621 SOCKBUF_LOCK(sb);
3622 knlist_add(knl, kn, 1);
3623 sb->sb_flags |= SB_KNOTE;
3624 SOCKBUF_UNLOCK(sb);
3625 }
3626 SOCK_UNLOCK(so);
3627 return (0);
3628 }
3629
3630 /*
3631 * Some routines that return EOPNOTSUPP for entry points that are not
3632 * supported by a protocol. Fill in as needed.
3633 */
3634 int
3635 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3636 {
3637
3638 return EOPNOTSUPP;
3639 }
3640
3641 int
3642 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3643 {
3644
3645 return EOPNOTSUPP;
3646 }
3647
3648 int
3649 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3650 {
3651
3652 return EOPNOTSUPP;
3653 }
3654
3655 int
3656 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3657 {
3658
3659 return EOPNOTSUPP;
3660 }
3661
3662 int
3663 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3664 struct thread *td)
3665 {
3666
3667 return EOPNOTSUPP;
3668 }
3669
3670 int
3671 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3672 {
3673
3674 return EOPNOTSUPP;
3675 }
3676
3677 int
3678 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3679 struct thread *td)
3680 {
3681
3682 return EOPNOTSUPP;
3683 }
3684
3685 int
3686 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3687 {
3688
3689 return EOPNOTSUPP;
3690 }
3691
3692 int
3693 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3694 struct ifnet *ifp, struct thread *td)
3695 {
3696
3697 return EOPNOTSUPP;
3698 }
3699
3700 int
3701 pru_disconnect_notsupp(struct socket *so)
3702 {
3703
3704 return EOPNOTSUPP;
3705 }
3706
3707 int
3708 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3709 {
3710
3711 return EOPNOTSUPP;
3712 }
3713
3714 int
3715 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3716 {
3717
3718 return EOPNOTSUPP;
3719 }
3720
3721 int
3722 pru_rcvd_notsupp(struct socket *so, int flags)
3723 {
3724
3725 return EOPNOTSUPP;
3726 }
3727
3728 int
3729 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3730 {
3731
3732 return EOPNOTSUPP;
3733 }
3734
3735 int
3736 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3737 struct sockaddr *addr, struct mbuf *control, struct thread *td)
3738 {
3739
3740 return EOPNOTSUPP;
3741 }
3742
3743 int
3744 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3745 {
3746
3747 return (EOPNOTSUPP);
3748 }
3749
3750 /*
3751 * This isn't really a ``null'' operation, but it's the default one and
3752 * doesn't do anything destructive.
3753 */
3754 int
3755 pru_sense_null(struct socket *so, struct stat *sb)
3756 {
3757
3758 sb->st_blksize = so->so_snd.sb_hiwat;
3759 return 0;
3760 }
3761
3762 int
3763 pru_shutdown_notsupp(struct socket *so)
3764 {
3765
3766 return EOPNOTSUPP;
3767 }
3768
3769 int
3770 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3771 {
3772
3773 return EOPNOTSUPP;
3774 }
3775
3776 int
3777 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3778 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3779 {
3780
3781 return EOPNOTSUPP;
3782 }
3783
3784 int
3785 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3786 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3787 {
3788
3789 return EOPNOTSUPP;
3790 }
3791
3792 int
3793 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3794 struct thread *td)
3795 {
3796
3797 return EOPNOTSUPP;
3798 }
3799
3800 static void
3801 filt_sordetach(struct knote *kn)
3802 {
3803 struct socket *so = kn->kn_fp->f_data;
3804
3805 so_rdknl_lock(so);
3806 knlist_remove(&so->so_rdsel.si_note, kn, 1);
3807 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3808 so->so_rcv.sb_flags &= ~SB_KNOTE;
3809 so_rdknl_unlock(so);
3810 }
3811
3812 /*ARGSUSED*/
3813 static int
3814 filt_soread(struct knote *kn, long hint)
3815 {
3816 struct socket *so;
3817
3818 so = kn->kn_fp->f_data;
3819
3820 if (SOLISTENING(so)) {
3821 SOCK_LOCK_ASSERT(so);
3822 kn->kn_data = so->sol_qlen;
3823 if (so->so_error) {
3824 kn->kn_flags |= EV_EOF;
3825 kn->kn_fflags = so->so_error;
3826 return (1);
3827 }
3828 return (!TAILQ_EMPTY(&so->sol_comp));
3829 }
3830
3831 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3832
3833 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3834 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3835 kn->kn_flags |= EV_EOF;
3836 kn->kn_fflags = so->so_error;
3837 return (1);
3838 } else if (so->so_error) /* temporary udp error */
3839 return (1);
3840
3841 if (kn->kn_sfflags & NOTE_LOWAT) {
3842 if (kn->kn_data >= kn->kn_sdata)
3843 return (1);
3844 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3845 return (1);
3846
3847 /* This hook returning non-zero indicates an event, not error */
3848 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3849 }
3850
3851 static void
3852 filt_sowdetach(struct knote *kn)
3853 {
3854 struct socket *so = kn->kn_fp->f_data;
3855
3856 so_wrknl_lock(so);
3857 knlist_remove(&so->so_wrsel.si_note, kn, 1);
3858 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3859 so->so_snd.sb_flags &= ~SB_KNOTE;
3860 so_wrknl_unlock(so);
3861 }
3862
3863 /*ARGSUSED*/
3864 static int
3865 filt_sowrite(struct knote *kn, long hint)
3866 {
3867 struct socket *so;
3868
3869 so = kn->kn_fp->f_data;
3870
3871 if (SOLISTENING(so))
3872 return (0);
3873
3874 SOCKBUF_LOCK_ASSERT(&so->so_snd);
3875 kn->kn_data = sbspace(&so->so_snd);
3876
3877 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3878
3879 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3880 kn->kn_flags |= EV_EOF;
3881 kn->kn_fflags = so->so_error;
3882 return (1);
3883 } else if (so->so_error) /* temporary udp error */
3884 return (1);
3885 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3886 (so->so_proto->pr_flags & PR_CONNREQUIRED))
3887 return (0);
3888 else if (kn->kn_sfflags & NOTE_LOWAT)
3889 return (kn->kn_data >= kn->kn_sdata);
3890 else
3891 return (kn->kn_data >= so->so_snd.sb_lowat);
3892 }
3893
3894 static int
3895 filt_soempty(struct knote *kn, long hint)
3896 {
3897 struct socket *so;
3898
3899 so = kn->kn_fp->f_data;
3900
3901 if (SOLISTENING(so))
3902 return (1);
3903
3904 SOCKBUF_LOCK_ASSERT(&so->so_snd);
3905 kn->kn_data = sbused(&so->so_snd);
3906
3907 if (kn->kn_data == 0)
3908 return (1);
3909 else
3910 return (0);
3911 }
3912
3913 int
3914 socheckuid(struct socket *so, uid_t uid)
3915 {
3916
3917 if (so == NULL)
3918 return (EPERM);
3919 if (so->so_cred->cr_uid != uid)
3920 return (EPERM);
3921 return (0);
3922 }
3923
3924 /*
3925 * These functions are used by protocols to notify the socket layer (and its
3926 * consumers) of state changes in the sockets driven by protocol-side events.
3927 */
3928
3929 /*
3930 * Procedures to manipulate state flags of socket and do appropriate wakeups.
3931 *
3932 * Normal sequence from the active (originating) side is that
3933 * soisconnecting() is called during processing of connect() call, resulting
3934 * in an eventual call to soisconnected() if/when the connection is
3935 * established. When the connection is torn down soisdisconnecting() is
3936 * called during processing of disconnect() call, and soisdisconnected() is
3937 * called when the connection to the peer is totally severed. The semantics
3938 * of these routines are such that connectionless protocols can call
3939 * soisconnected() and soisdisconnected() only, bypassing the in-progress
3940 * calls when setting up a ``connection'' takes no time.
3941 *
3942 * From the passive side, a socket is created with two queues of sockets:
3943 * so_incomp for connections in progress and so_comp for connections already
3944 * made and awaiting user acceptance. As a protocol is preparing incoming
3945 * connections, it creates a socket structure queued on so_incomp by calling
3946 * sonewconn(). When the connection is established, soisconnected() is
3947 * called, and transfers the socket structure to so_comp, making it available
3948 * to accept().
3949 *
3950 * If a socket is closed with sockets on either so_incomp or so_comp, these
3951 * sockets are dropped.
3952 *
3953 * If higher-level protocols are implemented in the kernel, the wakeups done
3954 * here will sometimes cause software-interrupt process scheduling.
3955 */
3956 void
3957 soisconnecting(struct socket *so)
3958 {
3959
3960 SOCK_LOCK(so);
3961 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3962 so->so_state |= SS_ISCONNECTING;
3963 SOCK_UNLOCK(so);
3964 }
3965
3966 void
3967 soisconnected(struct socket *so)
3968 {
3969
3970 SOCK_LOCK(so);
3971 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3972 so->so_state |= SS_ISCONNECTED;
3973
3974 if (so->so_qstate == SQ_INCOMP) {
3975 struct socket *head = so->so_listen;
3976 int ret;
3977
3978 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3979 /*
3980 * Promoting a socket from incomplete queue to complete, we
3981 * need to go through reverse order of locking. We first do
3982 * trylock, and if that doesn't succeed, we go the hard way
3983 * leaving a reference and rechecking consistency after proper
3984 * locking.
3985 */
3986 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3987 soref(head);
3988 SOCK_UNLOCK(so);
3989 SOLISTEN_LOCK(head);
3990 SOCK_LOCK(so);
3991 if (__predict_false(head != so->so_listen)) {
3992 /*
3993 * The socket went off the listen queue,
3994 * should be lost race to close(2) of sol.
3995 * The socket is about to soabort().
3996 */
3997 SOCK_UNLOCK(so);
3998 sorele(head);
3999 return;
4000 }
4001 /* Not the last one, as so holds a ref. */
4002 refcount_release(&head->so_count);
4003 }
4004 again:
4005 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4006 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4007 head->sol_incqlen--;
4008 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4009 head->sol_qlen++;
4010 so->so_qstate = SQ_COMP;
4011 SOCK_UNLOCK(so);
4012 solisten_wakeup(head); /* unlocks */
4013 } else {
4014 SOCKBUF_LOCK(&so->so_rcv);
4015 soupcall_set(so, SO_RCV,
4016 head->sol_accept_filter->accf_callback,
4017 head->sol_accept_filter_arg);
4018 so->so_options &= ~SO_ACCEPTFILTER;
4019 ret = head->sol_accept_filter->accf_callback(so,
4020 head->sol_accept_filter_arg, M_NOWAIT);
4021 if (ret == SU_ISCONNECTED) {
4022 soupcall_clear(so, SO_RCV);
4023 SOCKBUF_UNLOCK(&so->so_rcv);
4024 goto again;
4025 }
4026 SOCKBUF_UNLOCK(&so->so_rcv);
4027 SOCK_UNLOCK(so);
4028 SOLISTEN_UNLOCK(head);
4029 }
4030 return;
4031 }
4032 SOCK_UNLOCK(so);
4033 wakeup(&so->so_timeo);
4034 sorwakeup(so);
4035 sowwakeup(so);
4036 }
4037
4038 void
4039 soisdisconnecting(struct socket *so)
4040 {
4041
4042 SOCK_LOCK(so);
4043 so->so_state &= ~SS_ISCONNECTING;
4044 so->so_state |= SS_ISDISCONNECTING;
4045
4046 if (!SOLISTENING(so)) {
4047 SOCKBUF_LOCK(&so->so_rcv);
4048 socantrcvmore_locked(so);
4049 SOCKBUF_LOCK(&so->so_snd);
4050 socantsendmore_locked(so);
4051 }
4052 SOCK_UNLOCK(so);
4053 wakeup(&so->so_timeo);
4054 }
4055
4056 void
4057 soisdisconnected(struct socket *so)
4058 {
4059
4060 SOCK_LOCK(so);
4061
4062 /*
4063 * There is at least one reader of so_state that does not
4064 * acquire socket lock, namely soreceive_generic(). Ensure
4065 * that it never sees all flags that track connection status
4066 * cleared, by ordering the update with a barrier semantic of
4067 * our release thread fence.
4068 */
4069 so->so_state |= SS_ISDISCONNECTED;
4070 atomic_thread_fence_rel();
4071 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4072
4073 if (!SOLISTENING(so)) {
4074 SOCK_UNLOCK(so);
4075 SOCKBUF_LOCK(&so->so_rcv);
4076 socantrcvmore_locked(so);
4077 SOCKBUF_LOCK(&so->so_snd);
4078 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4079 socantsendmore_locked(so);
4080 } else
4081 SOCK_UNLOCK(so);
4082 wakeup(&so->so_timeo);
4083 }
4084
4085 /*
4086 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4087 */
4088 struct sockaddr *
4089 sodupsockaddr(const struct sockaddr *sa, int mflags)
4090 {
4091 struct sockaddr *sa2;
4092
4093 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4094 if (sa2)
4095 bcopy(sa, sa2, sa->sa_len);
4096 return sa2;
4097 }
4098
4099 /*
4100 * Register per-socket destructor.
4101 */
4102 void
4103 sodtor_set(struct socket *so, so_dtor_t *func)
4104 {
4105
4106 SOCK_LOCK_ASSERT(so);
4107 so->so_dtor = func;
4108 }
4109
4110 /*
4111 * Register per-socket buffer upcalls.
4112 */
4113 void
4114 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4115 {
4116 struct sockbuf *sb;
4117
4118 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4119
4120 switch (which) {
4121 case SO_RCV:
4122 sb = &so->so_rcv;
4123 break;
4124 case SO_SND:
4125 sb = &so->so_snd;
4126 break;
4127 default:
4128 panic("soupcall_set: bad which");
4129 }
4130 SOCKBUF_LOCK_ASSERT(sb);
4131 sb->sb_upcall = func;
4132 sb->sb_upcallarg = arg;
4133 sb->sb_flags |= SB_UPCALL;
4134 }
4135
4136 void
4137 soupcall_clear(struct socket *so, int which)
4138 {
4139 struct sockbuf *sb;
4140
4141 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4142
4143 switch (which) {
4144 case SO_RCV:
4145 sb = &so->so_rcv;
4146 break;
4147 case SO_SND:
4148 sb = &so->so_snd;
4149 break;
4150 default:
4151 panic("soupcall_clear: bad which");
4152 }
4153 SOCKBUF_LOCK_ASSERT(sb);
4154 KASSERT(sb->sb_upcall != NULL,
4155 ("%s: so %p no upcall to clear", __func__, so));
4156 sb->sb_upcall = NULL;
4157 sb->sb_upcallarg = NULL;
4158 sb->sb_flags &= ~SB_UPCALL;
4159 }
4160
4161 void
4162 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4163 {
4164
4165 SOLISTEN_LOCK_ASSERT(so);
4166 so->sol_upcall = func;
4167 so->sol_upcallarg = arg;
4168 }
4169
4170 static void
4171 so_rdknl_lock(void *arg)
4172 {
4173 struct socket *so = arg;
4174
4175 if (SOLISTENING(so))
4176 SOCK_LOCK(so);
4177 else
4178 SOCKBUF_LOCK(&so->so_rcv);
4179 }
4180
4181 static void
4182 so_rdknl_unlock(void *arg)
4183 {
4184 struct socket *so = arg;
4185
4186 if (SOLISTENING(so))
4187 SOCK_UNLOCK(so);
4188 else
4189 SOCKBUF_UNLOCK(&so->so_rcv);
4190 }
4191
4192 static void
4193 so_rdknl_assert_lock(void *arg, int what)
4194 {
4195 struct socket *so = arg;
4196
4197 if (what == LA_LOCKED) {
4198 if (SOLISTENING(so))
4199 SOCK_LOCK_ASSERT(so);
4200 else
4201 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4202 } else {
4203 if (SOLISTENING(so))
4204 SOCK_UNLOCK_ASSERT(so);
4205 else
4206 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4207 }
4208 }
4209
4210 static void
4211 so_wrknl_lock(void *arg)
4212 {
4213 struct socket *so = arg;
4214
4215 if (SOLISTENING(so))
4216 SOCK_LOCK(so);
4217 else
4218 SOCKBUF_LOCK(&so->so_snd);
4219 }
4220
4221 static void
4222 so_wrknl_unlock(void *arg)
4223 {
4224 struct socket *so = arg;
4225
4226 if (SOLISTENING(so))
4227 SOCK_UNLOCK(so);
4228 else
4229 SOCKBUF_UNLOCK(&so->so_snd);
4230 }
4231
4232 static void
4233 so_wrknl_assert_lock(void *arg, int what)
4234 {
4235 struct socket *so = arg;
4236
4237 if (what == LA_LOCKED) {
4238 if (SOLISTENING(so))
4239 SOCK_LOCK_ASSERT(so);
4240 else
4241 SOCKBUF_LOCK_ASSERT(&so->so_snd);
4242 } else {
4243 if (SOLISTENING(so))
4244 SOCK_UNLOCK_ASSERT(so);
4245 else
4246 SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4247 }
4248 }
4249
4250 /*
4251 * Create an external-format (``xsocket'') structure using the information in
4252 * the kernel-format socket structure pointed to by so. This is done to
4253 * reduce the spew of irrelevant information over this interface, to isolate
4254 * user code from changes in the kernel structure, and potentially to provide
4255 * information-hiding if we decide that some of this information should be
4256 * hidden from users.
4257 */
4258 void
4259 sotoxsocket(struct socket *so, struct xsocket *xso)
4260 {
4261
4262 bzero(xso, sizeof(*xso));
4263 xso->xso_len = sizeof *xso;
4264 xso->xso_so = (uintptr_t)so;
4265 xso->so_type = so->so_type;
4266 xso->so_options = so->so_options;
4267 xso->so_linger = so->so_linger;
4268 xso->so_state = so->so_state;
4269 xso->so_pcb = (uintptr_t)so->so_pcb;
4270 xso->xso_protocol = so->so_proto->pr_protocol;
4271 xso->xso_family = so->so_proto->pr_domain->dom_family;
4272 xso->so_timeo = so->so_timeo;
4273 xso->so_error = so->so_error;
4274 xso->so_uid = so->so_cred->cr_uid;
4275 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4276 if (SOLISTENING(so)) {
4277 xso->so_qlen = so->sol_qlen;
4278 xso->so_incqlen = so->sol_incqlen;
4279 xso->so_qlimit = so->sol_qlimit;
4280 xso->so_oobmark = 0;
4281 } else {
4282 xso->so_state |= so->so_qstate;
4283 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4284 xso->so_oobmark = so->so_oobmark;
4285 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4286 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4287 }
4288 }
4289
4290 struct sockbuf *
4291 so_sockbuf_rcv(struct socket *so)
4292 {
4293
4294 return (&so->so_rcv);
4295 }
4296
4297 struct sockbuf *
4298 so_sockbuf_snd(struct socket *so)
4299 {
4300
4301 return (&so->so_snd);
4302 }
4303
4304 int
4305 so_state_get(const struct socket *so)
4306 {
4307
4308 return (so->so_state);
4309 }
4310
4311 void
4312 so_state_set(struct socket *so, int val)
4313 {
4314
4315 so->so_state = val;
4316 }
4317
4318 int
4319 so_options_get(const struct socket *so)
4320 {
4321
4322 return (so->so_options);
4323 }
4324
4325 void
4326 so_options_set(struct socket *so, int val)
4327 {
4328
4329 so->so_options = val;
4330 }
4331
4332 int
4333 so_error_get(const struct socket *so)
4334 {
4335
4336 return (so->so_error);
4337 }
4338
4339 void
4340 so_error_set(struct socket *so, int val)
4341 {
4342
4343 so->so_error = val;
4344 }
4345
4346 int
4347 so_linger_get(const struct socket *so)
4348 {
4349
4350 return (so->so_linger);
4351 }
4352
4353 void
4354 so_linger_set(struct socket *so, int val)
4355 {
4356
4357 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4358 ("%s: val %d out of range", __func__, val));
4359
4360 so->so_linger = val;
4361 }
4362
4363 struct protosw *
4364 so_protosw_get(const struct socket *so)
4365 {
4366
4367 return (so->so_proto);
4368 }
4369
4370 void
4371 so_protosw_set(struct socket *so, struct protosw *val)
4372 {
4373
4374 so->so_proto = val;
4375 }
4376
4377 void
4378 so_sorwakeup(struct socket *so)
4379 {
4380
4381 sorwakeup(so);
4382 }
4383
4384 void
4385 so_sowwakeup(struct socket *so)
4386 {
4387
4388 sowwakeup(so);
4389 }
4390
4391 void
4392 so_sorwakeup_locked(struct socket *so)
4393 {
4394
4395 sorwakeup_locked(so);
4396 }
4397
4398 void
4399 so_sowwakeup_locked(struct socket *so)
4400 {
4401
4402 sowwakeup_locked(so);
4403 }
4404
4405 void
4406 so_lock(struct socket *so)
4407 {
4408
4409 SOCK_LOCK(so);
4410 }
4411
4412 void
4413 so_unlock(struct socket *so)
4414 {
4415
4416 SOCK_UNLOCK(so);
4417 }
4418