1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <[email protected]>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66
67 /*
68 * SPA locking
69 *
70 * There are three basic locks for managing spa_t structures:
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
94 * some references in the DMU. Internally we check against spa_minref, but
95 * present the image of a zero/non-zero value to consumers.
96 *
97 * spa_config_lock[] (per-spa array of rwlocks)
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
112 * spa_refcount -> spa_config_lock[]
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
117 * spa_namespace_lock -> spa_config_lock[]
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
122 * The spa_namespace_lock can be acquired directly and is globally visible.
123 *
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233 */
234
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244
245 kmem_cache_t *spa_buffer_pool;
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247
248 #ifdef ZFS_DEBUG
249 /*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254 ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258
259 /*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266 int zfs_recover = B_FALSE;
267
268 /*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297 int zfs_free_leak_on_eio = B_FALSE;
298
299 /*
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in one of three behaviors controlled by zfs_deadman_failmode.
306 */
307 unsigned long zfs_deadman_synctime_ms = 600000UL;
308
309 /*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
314 unsigned long zfs_deadman_ziotime_ms = 300000UL;
315
316 /*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
320 unsigned long zfs_deadman_checktime_ms = 60000UL;
321
322 /*
323 * By default the deadman is enabled.
324 */
325 int zfs_deadman_enabled = 1;
326
327 /*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335 char *zfs_deadman_failmode = "wait";
336
337 /*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346 int spa_asize_inflation = 24;
347
348 /*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed. This ensures that we don't run the pool
351 * completely out of space, due to unaccounted changes (e.g. to the MOS).
352 * It also limits the worst-case time to allocate space. If we have
353 * less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC.
355 *
356 * Certain operations (e.g. file removal, most administrative actions) can
357 * use half the slop space. They will only return ENOSPC if less than half
358 * the slop space is free. Typically, once the pool has less than the slop
359 * space free, the user will use these operations to free up space in the pool.
360 * These are the operations that call dsl_pool_adjustedsize() with the netfree
361 * argument set to TRUE.
362 *
363 * Operations that are almost guaranteed to free up space in the absence of
364 * a pool checkpoint can use up to three quarters of the slop space
365 * (e.g zfs destroy).
366 *
367 * A very restricted set of operations are always permitted, regardless of
368 * the amount of free space. These are the operations that call
369 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
370 * increase in the amount of space used, it is possible to run the pool
371 * completely out of space, causing it to be permanently read-only.
372 *
373 * Note that on very small pools, the slop space will be larger than
374 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
375 * but we never allow it to be more than half the pool size.
376 *
377 * See also the comments in zfs_space_check_t.
378 */
379 int spa_slop_shift = 5;
380 uint64_t spa_min_slop = 128 * 1024 * 1024;
381 int spa_allocators = 4;
382
383
384 /*PRINTFLIKE2*/
385 void
spa_load_failed(spa_t * spa,const char * fmt,...)386 spa_load_failed(spa_t *spa, const char *fmt, ...)
387 {
388 va_list adx;
389 char buf[256];
390
391 va_start(adx, fmt);
392 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
393 va_end(adx);
394
395 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
396 spa->spa_trust_config ? "trusted" : "untrusted", buf);
397 }
398
399 /*PRINTFLIKE2*/
400 void
spa_load_note(spa_t * spa,const char * fmt,...)401 spa_load_note(spa_t *spa, const char *fmt, ...)
402 {
403 va_list adx;
404 char buf[256];
405
406 va_start(adx, fmt);
407 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
408 va_end(adx);
409
410 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
411 spa->spa_trust_config ? "trusted" : "untrusted", buf);
412 }
413
414 /*
415 * By default dedup and user data indirects land in the special class
416 */
417 int zfs_ddt_data_is_special = B_TRUE;
418 int zfs_user_indirect_is_special = B_TRUE;
419
420 /*
421 * The percentage of special class final space reserved for metadata only.
422 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
423 * let metadata into the class.
424 */
425 int zfs_special_class_metadata_reserve_pct = 25;
426
427 /*
428 * ==========================================================================
429 * SPA config locking
430 * ==========================================================================
431 */
432 static void
spa_config_lock_init(spa_t * spa)433 spa_config_lock_init(spa_t *spa)
434 {
435 for (int i = 0; i < SCL_LOCKS; i++) {
436 spa_config_lock_t *scl = &spa->spa_config_lock[i];
437 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
438 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
439 zfs_refcount_create_untracked(&scl->scl_count);
440 scl->scl_writer = NULL;
441 scl->scl_write_wanted = 0;
442 }
443 }
444
445 static void
spa_config_lock_destroy(spa_t * spa)446 spa_config_lock_destroy(spa_t *spa)
447 {
448 for (int i = 0; i < SCL_LOCKS; i++) {
449 spa_config_lock_t *scl = &spa->spa_config_lock[i];
450 mutex_destroy(&scl->scl_lock);
451 cv_destroy(&scl->scl_cv);
452 zfs_refcount_destroy(&scl->scl_count);
453 ASSERT(scl->scl_writer == NULL);
454 ASSERT(scl->scl_write_wanted == 0);
455 }
456 }
457
458 int
spa_config_tryenter(spa_t * spa,int locks,void * tag,krw_t rw)459 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
460 {
461 for (int i = 0; i < SCL_LOCKS; i++) {
462 spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 if (!(locks & (1 << i)))
464 continue;
465 mutex_enter(&scl->scl_lock);
466 if (rw == RW_READER) {
467 if (scl->scl_writer || scl->scl_write_wanted) {
468 mutex_exit(&scl->scl_lock);
469 spa_config_exit(spa, locks & ((1 << i) - 1),
470 tag);
471 return (0);
472 }
473 } else {
474 ASSERT(scl->scl_writer != curthread);
475 if (!zfs_refcount_is_zero(&scl->scl_count)) {
476 mutex_exit(&scl->scl_lock);
477 spa_config_exit(spa, locks & ((1 << i) - 1),
478 tag);
479 return (0);
480 }
481 scl->scl_writer = curthread;
482 }
483 (void) zfs_refcount_add(&scl->scl_count, tag);
484 mutex_exit(&scl->scl_lock);
485 }
486 return (1);
487 }
488
489 void
spa_config_enter(spa_t * spa,int locks,const void * tag,krw_t rw)490 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
491 {
492 int wlocks_held = 0;
493
494 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
495
496 for (int i = 0; i < SCL_LOCKS; i++) {
497 spa_config_lock_t *scl = &spa->spa_config_lock[i];
498 if (scl->scl_writer == curthread)
499 wlocks_held |= (1 << i);
500 if (!(locks & (1 << i)))
501 continue;
502 mutex_enter(&scl->scl_lock);
503 if (rw == RW_READER) {
504 while (scl->scl_writer || scl->scl_write_wanted) {
505 cv_wait(&scl->scl_cv, &scl->scl_lock);
506 }
507 } else {
508 ASSERT(scl->scl_writer != curthread);
509 while (!zfs_refcount_is_zero(&scl->scl_count)) {
510 scl->scl_write_wanted++;
511 cv_wait(&scl->scl_cv, &scl->scl_lock);
512 scl->scl_write_wanted--;
513 }
514 scl->scl_writer = curthread;
515 }
516 (void) zfs_refcount_add(&scl->scl_count, tag);
517 mutex_exit(&scl->scl_lock);
518 }
519 ASSERT3U(wlocks_held, <=, locks);
520 }
521
522 void
spa_config_exit(spa_t * spa,int locks,const void * tag)523 spa_config_exit(spa_t *spa, int locks, const void *tag)
524 {
525 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
526 spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 if (!(locks & (1 << i)))
528 continue;
529 mutex_enter(&scl->scl_lock);
530 ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
531 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
532 ASSERT(scl->scl_writer == NULL ||
533 scl->scl_writer == curthread);
534 scl->scl_writer = NULL; /* OK in either case */
535 cv_broadcast(&scl->scl_cv);
536 }
537 mutex_exit(&scl->scl_lock);
538 }
539 }
540
541 int
spa_config_held(spa_t * spa,int locks,krw_t rw)542 spa_config_held(spa_t *spa, int locks, krw_t rw)
543 {
544 int locks_held = 0;
545
546 for (int i = 0; i < SCL_LOCKS; i++) {
547 spa_config_lock_t *scl = &spa->spa_config_lock[i];
548 if (!(locks & (1 << i)))
549 continue;
550 if ((rw == RW_READER &&
551 !zfs_refcount_is_zero(&scl->scl_count)) ||
552 (rw == RW_WRITER && scl->scl_writer == curthread))
553 locks_held |= 1 << i;
554 }
555
556 return (locks_held);
557 }
558
559 /*
560 * ==========================================================================
561 * SPA namespace functions
562 * ==========================================================================
563 */
564
565 /*
566 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
567 * Returns NULL if no matching spa_t is found.
568 */
569 spa_t *
spa_lookup(const char * name)570 spa_lookup(const char *name)
571 {
572 static spa_t search; /* spa_t is large; don't allocate on stack */
573 spa_t *spa;
574 avl_index_t where;
575 char *cp;
576
577 ASSERT(MUTEX_HELD(&spa_namespace_lock));
578
579 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
580
581 /*
582 * If it's a full dataset name, figure out the pool name and
583 * just use that.
584 */
585 cp = strpbrk(search.spa_name, "/@#");
586 if (cp != NULL)
587 *cp = '\0';
588
589 spa = avl_find(&spa_namespace_avl, &search, &where);
590
591 return (spa);
592 }
593
594 /*
595 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
596 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
597 * looking for potentially hung I/Os.
598 */
599 void
spa_deadman(void * arg)600 spa_deadman(void *arg)
601 {
602 spa_t *spa = arg;
603
604 /* Disable the deadman if the pool is suspended. */
605 if (spa_suspended(spa))
606 return;
607
608 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
609 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
610 ++spa->spa_deadman_calls);
611 if (zfs_deadman_enabled)
612 vdev_deadman(spa->spa_root_vdev, FTAG);
613
614 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
615 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
616 MSEC_TO_TICK(zfs_deadman_checktime_ms));
617 }
618
619 static int
spa_log_sm_sort_by_txg(const void * va,const void * vb)620 spa_log_sm_sort_by_txg(const void *va, const void *vb)
621 {
622 const spa_log_sm_t *a = va;
623 const spa_log_sm_t *b = vb;
624
625 return (TREE_CMP(a->sls_txg, b->sls_txg));
626 }
627
628 /*
629 * Create an uninitialized spa_t with the given name. Requires
630 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
631 * exist by calling spa_lookup() first.
632 */
633 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)634 spa_add(const char *name, nvlist_t *config, const char *altroot)
635 {
636 spa_t *spa;
637 spa_config_dirent_t *dp;
638
639 ASSERT(MUTEX_HELD(&spa_namespace_lock));
640
641 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
642
643 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
644 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
645 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
646 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
647 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
648 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
649 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
650 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
657
658 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
659 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
660 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
661 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
662 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
663 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
664 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
665
666 for (int t = 0; t < TXG_SIZE; t++)
667 bplist_create(&spa->spa_free_bplist[t]);
668
669 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
670 spa->spa_state = POOL_STATE_UNINITIALIZED;
671 spa->spa_freeze_txg = UINT64_MAX;
672 spa->spa_final_txg = UINT64_MAX;
673 spa->spa_load_max_txg = UINT64_MAX;
674 spa->spa_proc = &p0;
675 spa->spa_proc_state = SPA_PROC_NONE;
676 spa->spa_trust_config = B_TRUE;
677 spa->spa_hostid = zone_get_hostid(NULL);
678
679 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
680 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
681 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
682
683 zfs_refcount_create(&spa->spa_refcount);
684 spa_config_lock_init(spa);
685 spa_stats_init(spa);
686
687 avl_add(&spa_namespace_avl, spa);
688
689 /*
690 * Set the alternate root, if there is one.
691 */
692 if (altroot)
693 spa->spa_root = spa_strdup(altroot);
694
695 spa->spa_alloc_count = spa_allocators;
696 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
697 sizeof (kmutex_t), KM_SLEEP);
698 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
699 sizeof (avl_tree_t), KM_SLEEP);
700 for (int i = 0; i < spa->spa_alloc_count; i++) {
701 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
702 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
703 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
704 }
705 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
706 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
707 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
708 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
709 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
710 offsetof(log_summary_entry_t, lse_node));
711
712 /*
713 * Every pool starts with the default cachefile
714 */
715 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
716 offsetof(spa_config_dirent_t, scd_link));
717
718 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
719 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
720 list_insert_head(&spa->spa_config_list, dp);
721
722 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
723 KM_SLEEP) == 0);
724
725 if (config != NULL) {
726 nvlist_t *features;
727
728 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
729 &features) == 0) {
730 VERIFY(nvlist_dup(features, &spa->spa_label_features,
731 0) == 0);
732 }
733
734 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
735 }
736
737 if (spa->spa_label_features == NULL) {
738 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
739 KM_SLEEP) == 0);
740 }
741
742 spa->spa_min_ashift = INT_MAX;
743 spa->spa_max_ashift = 0;
744 spa->spa_min_alloc = INT_MAX;
745
746 /* Reset cached value */
747 spa->spa_dedup_dspace = ~0ULL;
748
749 /*
750 * As a pool is being created, treat all features as disabled by
751 * setting SPA_FEATURE_DISABLED for all entries in the feature
752 * refcount cache.
753 */
754 for (int i = 0; i < SPA_FEATURES; i++) {
755 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
756 }
757
758 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
759 offsetof(vdev_t, vdev_leaf_node));
760
761 return (spa);
762 }
763
764 /*
765 * Removes a spa_t from the namespace, freeing up any memory used. Requires
766 * spa_namespace_lock. This is called only after the spa_t has been closed and
767 * deactivated.
768 */
769 void
spa_remove(spa_t * spa)770 spa_remove(spa_t *spa)
771 {
772 spa_config_dirent_t *dp;
773
774 ASSERT(MUTEX_HELD(&spa_namespace_lock));
775 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
776 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
777 ASSERT0(spa->spa_waiters);
778
779 nvlist_free(spa->spa_config_splitting);
780
781 avl_remove(&spa_namespace_avl, spa);
782 cv_broadcast(&spa_namespace_cv);
783
784 if (spa->spa_root)
785 spa_strfree(spa->spa_root);
786
787 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
788 list_remove(&spa->spa_config_list, dp);
789 if (dp->scd_path != NULL)
790 spa_strfree(dp->scd_path);
791 kmem_free(dp, sizeof (spa_config_dirent_t));
792 }
793
794 for (int i = 0; i < spa->spa_alloc_count; i++) {
795 avl_destroy(&spa->spa_alloc_trees[i]);
796 mutex_destroy(&spa->spa_alloc_locks[i]);
797 }
798 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
799 sizeof (kmutex_t));
800 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
801 sizeof (avl_tree_t));
802
803 avl_destroy(&spa->spa_metaslabs_by_flushed);
804 avl_destroy(&spa->spa_sm_logs_by_txg);
805 list_destroy(&spa->spa_log_summary);
806 list_destroy(&spa->spa_config_list);
807 list_destroy(&spa->spa_leaf_list);
808
809 nvlist_free(spa->spa_label_features);
810 nvlist_free(spa->spa_load_info);
811 nvlist_free(spa->spa_feat_stats);
812 spa_config_set(spa, NULL);
813
814 zfs_refcount_destroy(&spa->spa_refcount);
815
816 spa_stats_destroy(spa);
817 spa_config_lock_destroy(spa);
818
819 for (int t = 0; t < TXG_SIZE; t++)
820 bplist_destroy(&spa->spa_free_bplist[t]);
821
822 zio_checksum_templates_free(spa);
823
824 cv_destroy(&spa->spa_async_cv);
825 cv_destroy(&spa->spa_evicting_os_cv);
826 cv_destroy(&spa->spa_proc_cv);
827 cv_destroy(&spa->spa_scrub_io_cv);
828 cv_destroy(&spa->spa_suspend_cv);
829 cv_destroy(&spa->spa_activities_cv);
830 cv_destroy(&spa->spa_waiters_cv);
831
832 mutex_destroy(&spa->spa_flushed_ms_lock);
833 mutex_destroy(&spa->spa_async_lock);
834 mutex_destroy(&spa->spa_errlist_lock);
835 mutex_destroy(&spa->spa_errlog_lock);
836 mutex_destroy(&spa->spa_evicting_os_lock);
837 mutex_destroy(&spa->spa_history_lock);
838 mutex_destroy(&spa->spa_proc_lock);
839 mutex_destroy(&spa->spa_props_lock);
840 mutex_destroy(&spa->spa_cksum_tmpls_lock);
841 mutex_destroy(&spa->spa_scrub_lock);
842 mutex_destroy(&spa->spa_suspend_lock);
843 mutex_destroy(&spa->spa_vdev_top_lock);
844 mutex_destroy(&spa->spa_feat_stats_lock);
845 mutex_destroy(&spa->spa_activities_lock);
846
847 kmem_free(spa, sizeof (spa_t));
848 }
849
850 /*
851 * Given a pool, return the next pool in the namespace, or NULL if there is
852 * none. If 'prev' is NULL, return the first pool.
853 */
854 spa_t *
spa_next(spa_t * prev)855 spa_next(spa_t *prev)
856 {
857 ASSERT(MUTEX_HELD(&spa_namespace_lock));
858
859 if (prev)
860 return (AVL_NEXT(&spa_namespace_avl, prev));
861 else
862 return (avl_first(&spa_namespace_avl));
863 }
864
865 /*
866 * ==========================================================================
867 * SPA refcount functions
868 * ==========================================================================
869 */
870
871 /*
872 * Add a reference to the given spa_t. Must have at least one reference, or
873 * have the namespace lock held.
874 */
875 void
spa_open_ref(spa_t * spa,void * tag)876 spa_open_ref(spa_t *spa, void *tag)
877 {
878 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
879 MUTEX_HELD(&spa_namespace_lock));
880 (void) zfs_refcount_add(&spa->spa_refcount, tag);
881 }
882
883 /*
884 * Remove a reference to the given spa_t. Must have at least one reference, or
885 * have the namespace lock held.
886 */
887 void
spa_close(spa_t * spa,void * tag)888 spa_close(spa_t *spa, void *tag)
889 {
890 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
891 MUTEX_HELD(&spa_namespace_lock));
892 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
893 }
894
895 /*
896 * Remove a reference to the given spa_t held by a dsl dir that is
897 * being asynchronously released. Async releases occur from a taskq
898 * performing eviction of dsl datasets and dirs. The namespace lock
899 * isn't held and the hold by the object being evicted may contribute to
900 * spa_minref (e.g. dataset or directory released during pool export),
901 * so the asserts in spa_close() do not apply.
902 */
903 void
spa_async_close(spa_t * spa,void * tag)904 spa_async_close(spa_t *spa, void *tag)
905 {
906 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
907 }
908
909 /*
910 * Check to see if the spa refcount is zero. Must be called with
911 * spa_namespace_lock held. We really compare against spa_minref, which is the
912 * number of references acquired when opening a pool
913 */
914 boolean_t
spa_refcount_zero(spa_t * spa)915 spa_refcount_zero(spa_t *spa)
916 {
917 ASSERT(MUTEX_HELD(&spa_namespace_lock));
918
919 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
920 }
921
922 /*
923 * ==========================================================================
924 * SPA spare and l2cache tracking
925 * ==========================================================================
926 */
927
928 /*
929 * Hot spares and cache devices are tracked using the same code below,
930 * for 'auxiliary' devices.
931 */
932
933 typedef struct spa_aux {
934 uint64_t aux_guid;
935 uint64_t aux_pool;
936 avl_node_t aux_avl;
937 int aux_count;
938 } spa_aux_t;
939
940 static inline int
spa_aux_compare(const void * a,const void * b)941 spa_aux_compare(const void *a, const void *b)
942 {
943 const spa_aux_t *sa = (const spa_aux_t *)a;
944 const spa_aux_t *sb = (const spa_aux_t *)b;
945
946 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
947 }
948
949 static void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)950 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
951 {
952 avl_index_t where;
953 spa_aux_t search;
954 spa_aux_t *aux;
955
956 search.aux_guid = vd->vdev_guid;
957 if ((aux = avl_find(avl, &search, &where)) != NULL) {
958 aux->aux_count++;
959 } else {
960 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
961 aux->aux_guid = vd->vdev_guid;
962 aux->aux_count = 1;
963 avl_insert(avl, aux, where);
964 }
965 }
966
967 static void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)968 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
969 {
970 spa_aux_t search;
971 spa_aux_t *aux;
972 avl_index_t where;
973
974 search.aux_guid = vd->vdev_guid;
975 aux = avl_find(avl, &search, &where);
976
977 ASSERT(aux != NULL);
978
979 if (--aux->aux_count == 0) {
980 avl_remove(avl, aux);
981 kmem_free(aux, sizeof (spa_aux_t));
982 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
983 aux->aux_pool = 0ULL;
984 }
985 }
986
987 static boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)988 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
989 {
990 spa_aux_t search, *found;
991
992 search.aux_guid = guid;
993 found = avl_find(avl, &search, NULL);
994
995 if (pool) {
996 if (found)
997 *pool = found->aux_pool;
998 else
999 *pool = 0ULL;
1000 }
1001
1002 if (refcnt) {
1003 if (found)
1004 *refcnt = found->aux_count;
1005 else
1006 *refcnt = 0;
1007 }
1008
1009 return (found != NULL);
1010 }
1011
1012 static void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1013 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1014 {
1015 spa_aux_t search, *found;
1016 avl_index_t where;
1017
1018 search.aux_guid = vd->vdev_guid;
1019 found = avl_find(avl, &search, &where);
1020 ASSERT(found != NULL);
1021 ASSERT(found->aux_pool == 0ULL);
1022
1023 found->aux_pool = spa_guid(vd->vdev_spa);
1024 }
1025
1026 /*
1027 * Spares are tracked globally due to the following constraints:
1028 *
1029 * - A spare may be part of multiple pools.
1030 * - A spare may be added to a pool even if it's actively in use within
1031 * another pool.
1032 * - A spare in use in any pool can only be the source of a replacement if
1033 * the target is a spare in the same pool.
1034 *
1035 * We keep track of all spares on the system through the use of a reference
1036 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1037 * spare, then we bump the reference count in the AVL tree. In addition, we set
1038 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1039 * inactive). When a spare is made active (used to replace a device in the
1040 * pool), we also keep track of which pool its been made a part of.
1041 *
1042 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1043 * called under the spa_namespace lock as part of vdev reconfiguration. The
1044 * separate spare lock exists for the status query path, which does not need to
1045 * be completely consistent with respect to other vdev configuration changes.
1046 */
1047
1048 static int
spa_spare_compare(const void * a,const void * b)1049 spa_spare_compare(const void *a, const void *b)
1050 {
1051 return (spa_aux_compare(a, b));
1052 }
1053
1054 void
spa_spare_add(vdev_t * vd)1055 spa_spare_add(vdev_t *vd)
1056 {
1057 mutex_enter(&spa_spare_lock);
1058 ASSERT(!vd->vdev_isspare);
1059 spa_aux_add(vd, &spa_spare_avl);
1060 vd->vdev_isspare = B_TRUE;
1061 mutex_exit(&spa_spare_lock);
1062 }
1063
1064 void
spa_spare_remove(vdev_t * vd)1065 spa_spare_remove(vdev_t *vd)
1066 {
1067 mutex_enter(&spa_spare_lock);
1068 ASSERT(vd->vdev_isspare);
1069 spa_aux_remove(vd, &spa_spare_avl);
1070 vd->vdev_isspare = B_FALSE;
1071 mutex_exit(&spa_spare_lock);
1072 }
1073
1074 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1075 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1076 {
1077 boolean_t found;
1078
1079 mutex_enter(&spa_spare_lock);
1080 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1081 mutex_exit(&spa_spare_lock);
1082
1083 return (found);
1084 }
1085
1086 void
spa_spare_activate(vdev_t * vd)1087 spa_spare_activate(vdev_t *vd)
1088 {
1089 mutex_enter(&spa_spare_lock);
1090 ASSERT(vd->vdev_isspare);
1091 spa_aux_activate(vd, &spa_spare_avl);
1092 mutex_exit(&spa_spare_lock);
1093 }
1094
1095 /*
1096 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1097 * Cache devices currently only support one pool per cache device, and so
1098 * for these devices the aux reference count is currently unused beyond 1.
1099 */
1100
1101 static int
spa_l2cache_compare(const void * a,const void * b)1102 spa_l2cache_compare(const void *a, const void *b)
1103 {
1104 return (spa_aux_compare(a, b));
1105 }
1106
1107 void
spa_l2cache_add(vdev_t * vd)1108 spa_l2cache_add(vdev_t *vd)
1109 {
1110 mutex_enter(&spa_l2cache_lock);
1111 ASSERT(!vd->vdev_isl2cache);
1112 spa_aux_add(vd, &spa_l2cache_avl);
1113 vd->vdev_isl2cache = B_TRUE;
1114 mutex_exit(&spa_l2cache_lock);
1115 }
1116
1117 void
spa_l2cache_remove(vdev_t * vd)1118 spa_l2cache_remove(vdev_t *vd)
1119 {
1120 mutex_enter(&spa_l2cache_lock);
1121 ASSERT(vd->vdev_isl2cache);
1122 spa_aux_remove(vd, &spa_l2cache_avl);
1123 vd->vdev_isl2cache = B_FALSE;
1124 mutex_exit(&spa_l2cache_lock);
1125 }
1126
1127 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1128 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1129 {
1130 boolean_t found;
1131
1132 mutex_enter(&spa_l2cache_lock);
1133 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1134 mutex_exit(&spa_l2cache_lock);
1135
1136 return (found);
1137 }
1138
1139 void
spa_l2cache_activate(vdev_t * vd)1140 spa_l2cache_activate(vdev_t *vd)
1141 {
1142 mutex_enter(&spa_l2cache_lock);
1143 ASSERT(vd->vdev_isl2cache);
1144 spa_aux_activate(vd, &spa_l2cache_avl);
1145 mutex_exit(&spa_l2cache_lock);
1146 }
1147
1148 /*
1149 * ==========================================================================
1150 * SPA vdev locking
1151 * ==========================================================================
1152 */
1153
1154 /*
1155 * Lock the given spa_t for the purpose of adding or removing a vdev.
1156 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1157 * It returns the next transaction group for the spa_t.
1158 */
1159 uint64_t
spa_vdev_enter(spa_t * spa)1160 spa_vdev_enter(spa_t *spa)
1161 {
1162 mutex_enter(&spa->spa_vdev_top_lock);
1163 mutex_enter(&spa_namespace_lock);
1164
1165 vdev_autotrim_stop_all(spa);
1166
1167 return (spa_vdev_config_enter(spa));
1168 }
1169
1170 /*
1171 * The same as spa_vdev_enter() above but additionally takes the guid of
1172 * the vdev being detached. When there is a rebuild in process it will be
1173 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1174 * The rebuild is canceled if only a single child remains after the detach.
1175 */
1176 uint64_t
spa_vdev_detach_enter(spa_t * spa,uint64_t guid)1177 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1178 {
1179 mutex_enter(&spa->spa_vdev_top_lock);
1180 mutex_enter(&spa_namespace_lock);
1181
1182 vdev_autotrim_stop_all(spa);
1183
1184 if (guid != 0) {
1185 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1186 if (vd) {
1187 vdev_rebuild_stop_wait(vd->vdev_top);
1188 }
1189 }
1190
1191 return (spa_vdev_config_enter(spa));
1192 }
1193
1194 /*
1195 * Internal implementation for spa_vdev_enter(). Used when a vdev
1196 * operation requires multiple syncs (i.e. removing a device) while
1197 * keeping the spa_namespace_lock held.
1198 */
1199 uint64_t
spa_vdev_config_enter(spa_t * spa)1200 spa_vdev_config_enter(spa_t *spa)
1201 {
1202 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1203
1204 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1205
1206 return (spa_last_synced_txg(spa) + 1);
1207 }
1208
1209 /*
1210 * Used in combination with spa_vdev_config_enter() to allow the syncing
1211 * of multiple transactions without releasing the spa_namespace_lock.
1212 */
1213 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,char * tag)1214 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1215 {
1216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1217
1218 int config_changed = B_FALSE;
1219
1220 ASSERT(txg > spa_last_synced_txg(spa));
1221
1222 spa->spa_pending_vdev = NULL;
1223
1224 /*
1225 * Reassess the DTLs.
1226 */
1227 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1228
1229 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1230 config_changed = B_TRUE;
1231 spa->spa_config_generation++;
1232 }
1233
1234 /*
1235 * Verify the metaslab classes.
1236 */
1237 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1238 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1239 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1240 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1241
1242 spa_config_exit(spa, SCL_ALL, spa);
1243
1244 /*
1245 * Panic the system if the specified tag requires it. This
1246 * is useful for ensuring that configurations are updated
1247 * transactionally.
1248 */
1249 if (zio_injection_enabled)
1250 zio_handle_panic_injection(spa, tag, 0);
1251
1252 /*
1253 * Note: this txg_wait_synced() is important because it ensures
1254 * that there won't be more than one config change per txg.
1255 * This allows us to use the txg as the generation number.
1256 */
1257 if (error == 0)
1258 txg_wait_synced(spa->spa_dsl_pool, txg);
1259
1260 if (vd != NULL) {
1261 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1262 if (vd->vdev_ops->vdev_op_leaf) {
1263 mutex_enter(&vd->vdev_initialize_lock);
1264 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1265 NULL);
1266 mutex_exit(&vd->vdev_initialize_lock);
1267
1268 mutex_enter(&vd->vdev_trim_lock);
1269 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1270 mutex_exit(&vd->vdev_trim_lock);
1271 }
1272
1273 /*
1274 * The vdev may be both a leaf and top-level device.
1275 */
1276 vdev_autotrim_stop_wait(vd);
1277
1278 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1279 vdev_free(vd);
1280 spa_config_exit(spa, SCL_STATE_ALL, spa);
1281 }
1282
1283 /*
1284 * If the config changed, update the config cache.
1285 */
1286 if (config_changed)
1287 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1288 }
1289
1290 /*
1291 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1292 * locking of spa_vdev_enter(), we also want make sure the transactions have
1293 * synced to disk, and then update the global configuration cache with the new
1294 * information.
1295 */
1296 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1297 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1298 {
1299 vdev_autotrim_restart(spa);
1300 vdev_rebuild_restart(spa);
1301
1302 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1303 mutex_exit(&spa_namespace_lock);
1304 mutex_exit(&spa->spa_vdev_top_lock);
1305
1306 return (error);
1307 }
1308
1309 /*
1310 * Lock the given spa_t for the purpose of changing vdev state.
1311 */
1312 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1313 spa_vdev_state_enter(spa_t *spa, int oplocks)
1314 {
1315 int locks = SCL_STATE_ALL | oplocks;
1316
1317 /*
1318 * Root pools may need to read of the underlying devfs filesystem
1319 * when opening up a vdev. Unfortunately if we're holding the
1320 * SCL_ZIO lock it will result in a deadlock when we try to issue
1321 * the read from the root filesystem. Instead we "prefetch"
1322 * the associated vnodes that we need prior to opening the
1323 * underlying devices and cache them so that we can prevent
1324 * any I/O when we are doing the actual open.
1325 */
1326 if (spa_is_root(spa)) {
1327 int low = locks & ~(SCL_ZIO - 1);
1328 int high = locks & ~low;
1329
1330 spa_config_enter(spa, high, spa, RW_WRITER);
1331 vdev_hold(spa->spa_root_vdev);
1332 spa_config_enter(spa, low, spa, RW_WRITER);
1333 } else {
1334 spa_config_enter(spa, locks, spa, RW_WRITER);
1335 }
1336 spa->spa_vdev_locks = locks;
1337 }
1338
1339 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1340 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1341 {
1342 boolean_t config_changed = B_FALSE;
1343 vdev_t *vdev_top;
1344
1345 if (vd == NULL || vd == spa->spa_root_vdev) {
1346 vdev_top = spa->spa_root_vdev;
1347 } else {
1348 vdev_top = vd->vdev_top;
1349 }
1350
1351 if (vd != NULL || error == 0)
1352 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1353
1354 if (vd != NULL) {
1355 if (vd != spa->spa_root_vdev)
1356 vdev_state_dirty(vdev_top);
1357
1358 config_changed = B_TRUE;
1359 spa->spa_config_generation++;
1360 }
1361
1362 if (spa_is_root(spa))
1363 vdev_rele(spa->spa_root_vdev);
1364
1365 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1366 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1367
1368 /*
1369 * If anything changed, wait for it to sync. This ensures that,
1370 * from the system administrator's perspective, zpool(8) commands
1371 * are synchronous. This is important for things like zpool offline:
1372 * when the command completes, you expect no further I/O from ZFS.
1373 */
1374 if (vd != NULL)
1375 txg_wait_synced(spa->spa_dsl_pool, 0);
1376
1377 /*
1378 * If the config changed, update the config cache.
1379 */
1380 if (config_changed) {
1381 mutex_enter(&spa_namespace_lock);
1382 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1383 mutex_exit(&spa_namespace_lock);
1384 }
1385
1386 return (error);
1387 }
1388
1389 /*
1390 * ==========================================================================
1391 * Miscellaneous functions
1392 * ==========================================================================
1393 */
1394
1395 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1396 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1397 {
1398 if (!nvlist_exists(spa->spa_label_features, feature)) {
1399 fnvlist_add_boolean(spa->spa_label_features, feature);
1400 /*
1401 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1402 * dirty the vdev config because lock SCL_CONFIG is not held.
1403 * Thankfully, in this case we don't need to dirty the config
1404 * because it will be written out anyway when we finish
1405 * creating the pool.
1406 */
1407 if (tx->tx_txg != TXG_INITIAL)
1408 vdev_config_dirty(spa->spa_root_vdev);
1409 }
1410 }
1411
1412 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1413 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1414 {
1415 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1416 vdev_config_dirty(spa->spa_root_vdev);
1417 }
1418
1419 /*
1420 * Return the spa_t associated with given pool_guid, if it exists. If
1421 * device_guid is non-zero, determine whether the pool exists *and* contains
1422 * a device with the specified device_guid.
1423 */
1424 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1425 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1426 {
1427 spa_t *spa;
1428 avl_tree_t *t = &spa_namespace_avl;
1429
1430 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1431
1432 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1433 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1434 continue;
1435 if (spa->spa_root_vdev == NULL)
1436 continue;
1437 if (spa_guid(spa) == pool_guid) {
1438 if (device_guid == 0)
1439 break;
1440
1441 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1442 device_guid) != NULL)
1443 break;
1444
1445 /*
1446 * Check any devices we may be in the process of adding.
1447 */
1448 if (spa->spa_pending_vdev) {
1449 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1450 device_guid) != NULL)
1451 break;
1452 }
1453 }
1454 }
1455
1456 return (spa);
1457 }
1458
1459 /*
1460 * Determine whether a pool with the given pool_guid exists.
1461 */
1462 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1463 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1464 {
1465 return (spa_by_guid(pool_guid, device_guid) != NULL);
1466 }
1467
1468 char *
spa_strdup(const char * s)1469 spa_strdup(const char *s)
1470 {
1471 size_t len;
1472 char *new;
1473
1474 len = strlen(s);
1475 new = kmem_alloc(len + 1, KM_SLEEP);
1476 bcopy(s, new, len);
1477 new[len] = '\0';
1478
1479 return (new);
1480 }
1481
1482 void
spa_strfree(char * s)1483 spa_strfree(char *s)
1484 {
1485 kmem_free(s, strlen(s) + 1);
1486 }
1487
1488 uint64_t
spa_get_random(uint64_t range)1489 spa_get_random(uint64_t range)
1490 {
1491 uint64_t r;
1492
1493 ASSERT(range != 0);
1494
1495 if (range == 1)
1496 return (0);
1497
1498 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1499
1500 return (r % range);
1501 }
1502
1503 uint64_t
spa_generate_guid(spa_t * spa)1504 spa_generate_guid(spa_t *spa)
1505 {
1506 uint64_t guid = spa_get_random(-1ULL);
1507
1508 if (spa != NULL) {
1509 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1510 guid = spa_get_random(-1ULL);
1511 } else {
1512 while (guid == 0 || spa_guid_exists(guid, 0))
1513 guid = spa_get_random(-1ULL);
1514 }
1515
1516 return (guid);
1517 }
1518
1519 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1520 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1521 {
1522 char type[256];
1523 char *checksum = NULL;
1524 char *compress = NULL;
1525
1526 if (bp != NULL) {
1527 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1528 dmu_object_byteswap_t bswap =
1529 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1530 (void) snprintf(type, sizeof (type), "bswap %s %s",
1531 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1532 "metadata" : "data",
1533 dmu_ot_byteswap[bswap].ob_name);
1534 } else {
1535 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1536 sizeof (type));
1537 }
1538 if (!BP_IS_EMBEDDED(bp)) {
1539 checksum =
1540 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1541 }
1542 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1543 }
1544
1545 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1546 compress);
1547 }
1548
1549 void
spa_freeze(spa_t * spa)1550 spa_freeze(spa_t *spa)
1551 {
1552 uint64_t freeze_txg = 0;
1553
1554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1555 if (spa->spa_freeze_txg == UINT64_MAX) {
1556 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1557 spa->spa_freeze_txg = freeze_txg;
1558 }
1559 spa_config_exit(spa, SCL_ALL, FTAG);
1560 if (freeze_txg != 0)
1561 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1562 }
1563
1564 void
zfs_panic_recover(const char * fmt,...)1565 zfs_panic_recover(const char *fmt, ...)
1566 {
1567 va_list adx;
1568
1569 va_start(adx, fmt);
1570 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1571 va_end(adx);
1572 }
1573
1574 /*
1575 * This is a stripped-down version of strtoull, suitable only for converting
1576 * lowercase hexadecimal numbers that don't overflow.
1577 */
1578 uint64_t
zfs_strtonum(const char * str,char ** nptr)1579 zfs_strtonum(const char *str, char **nptr)
1580 {
1581 uint64_t val = 0;
1582 char c;
1583 int digit;
1584
1585 while ((c = *str) != '\0') {
1586 if (c >= '0' && c <= '9')
1587 digit = c - '0';
1588 else if (c >= 'a' && c <= 'f')
1589 digit = 10 + c - 'a';
1590 else
1591 break;
1592
1593 val *= 16;
1594 val += digit;
1595
1596 str++;
1597 }
1598
1599 if (nptr)
1600 *nptr = (char *)str;
1601
1602 return (val);
1603 }
1604
1605 void
spa_activate_allocation_classes(spa_t * spa,dmu_tx_t * tx)1606 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1607 {
1608 /*
1609 * We bump the feature refcount for each special vdev added to the pool
1610 */
1611 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1612 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1613 }
1614
1615 /*
1616 * ==========================================================================
1617 * Accessor functions
1618 * ==========================================================================
1619 */
1620
1621 boolean_t
spa_shutting_down(spa_t * spa)1622 spa_shutting_down(spa_t *spa)
1623 {
1624 return (spa->spa_async_suspended);
1625 }
1626
1627 dsl_pool_t *
spa_get_dsl(spa_t * spa)1628 spa_get_dsl(spa_t *spa)
1629 {
1630 return (spa->spa_dsl_pool);
1631 }
1632
1633 boolean_t
spa_is_initializing(spa_t * spa)1634 spa_is_initializing(spa_t *spa)
1635 {
1636 return (spa->spa_is_initializing);
1637 }
1638
1639 boolean_t
spa_indirect_vdevs_loaded(spa_t * spa)1640 spa_indirect_vdevs_loaded(spa_t *spa)
1641 {
1642 return (spa->spa_indirect_vdevs_loaded);
1643 }
1644
1645 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1646 spa_get_rootblkptr(spa_t *spa)
1647 {
1648 return (&spa->spa_ubsync.ub_rootbp);
1649 }
1650
1651 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1652 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1653 {
1654 spa->spa_uberblock.ub_rootbp = *bp;
1655 }
1656
1657 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1658 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1659 {
1660 if (spa->spa_root == NULL)
1661 buf[0] = '\0';
1662 else
1663 (void) strncpy(buf, spa->spa_root, buflen);
1664 }
1665
1666 int
spa_sync_pass(spa_t * spa)1667 spa_sync_pass(spa_t *spa)
1668 {
1669 return (spa->spa_sync_pass);
1670 }
1671
1672 char *
spa_name(spa_t * spa)1673 spa_name(spa_t *spa)
1674 {
1675 return (spa->spa_name);
1676 }
1677
1678 uint64_t
spa_guid(spa_t * spa)1679 spa_guid(spa_t *spa)
1680 {
1681 dsl_pool_t *dp = spa_get_dsl(spa);
1682 uint64_t guid;
1683
1684 /*
1685 * If we fail to parse the config during spa_load(), we can go through
1686 * the error path (which posts an ereport) and end up here with no root
1687 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1688 * this case.
1689 */
1690 if (spa->spa_root_vdev == NULL)
1691 return (spa->spa_config_guid);
1692
1693 guid = spa->spa_last_synced_guid != 0 ?
1694 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1695
1696 /*
1697 * Return the most recently synced out guid unless we're
1698 * in syncing context.
1699 */
1700 if (dp && dsl_pool_sync_context(dp))
1701 return (spa->spa_root_vdev->vdev_guid);
1702 else
1703 return (guid);
1704 }
1705
1706 uint64_t
spa_load_guid(spa_t * spa)1707 spa_load_guid(spa_t *spa)
1708 {
1709 /*
1710 * This is a GUID that exists solely as a reference for the
1711 * purposes of the arc. It is generated at load time, and
1712 * is never written to persistent storage.
1713 */
1714 return (spa->spa_load_guid);
1715 }
1716
1717 uint64_t
spa_last_synced_txg(spa_t * spa)1718 spa_last_synced_txg(spa_t *spa)
1719 {
1720 return (spa->spa_ubsync.ub_txg);
1721 }
1722
1723 uint64_t
spa_first_txg(spa_t * spa)1724 spa_first_txg(spa_t *spa)
1725 {
1726 return (spa->spa_first_txg);
1727 }
1728
1729 uint64_t
spa_syncing_txg(spa_t * spa)1730 spa_syncing_txg(spa_t *spa)
1731 {
1732 return (spa->spa_syncing_txg);
1733 }
1734
1735 /*
1736 * Return the last txg where data can be dirtied. The final txgs
1737 * will be used to just clear out any deferred frees that remain.
1738 */
1739 uint64_t
spa_final_dirty_txg(spa_t * spa)1740 spa_final_dirty_txg(spa_t *spa)
1741 {
1742 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1743 }
1744
1745 pool_state_t
spa_state(spa_t * spa)1746 spa_state(spa_t *spa)
1747 {
1748 return (spa->spa_state);
1749 }
1750
1751 spa_load_state_t
spa_load_state(spa_t * spa)1752 spa_load_state(spa_t *spa)
1753 {
1754 return (spa->spa_load_state);
1755 }
1756
1757 uint64_t
spa_freeze_txg(spa_t * spa)1758 spa_freeze_txg(spa_t *spa)
1759 {
1760 return (spa->spa_freeze_txg);
1761 }
1762
1763 /*
1764 * Return the inflated asize for a logical write in bytes. This is used by the
1765 * DMU to calculate the space a logical write will require on disk.
1766 * If lsize is smaller than the largest physical block size allocatable on this
1767 * pool we use its value instead, since the write will end up using the whole
1768 * block anyway.
1769 */
1770 uint64_t
spa_get_worst_case_asize(spa_t * spa,uint64_t lsize)1771 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1772 {
1773 if (lsize == 0)
1774 return (0); /* No inflation needed */
1775 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1776 }
1777
1778 /*
1779 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1780 * or at least 128MB, unless that would cause it to be more than half the
1781 * pool size.
1782 *
1783 * See the comment above spa_slop_shift for details.
1784 */
1785 uint64_t
spa_get_slop_space(spa_t * spa)1786 spa_get_slop_space(spa_t *spa)
1787 {
1788 uint64_t space = spa_get_dspace(spa);
1789 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1790 }
1791
1792 uint64_t
spa_get_dspace(spa_t * spa)1793 spa_get_dspace(spa_t *spa)
1794 {
1795 return (spa->spa_dspace);
1796 }
1797
1798 uint64_t
spa_get_checkpoint_space(spa_t * spa)1799 spa_get_checkpoint_space(spa_t *spa)
1800 {
1801 return (spa->spa_checkpoint_info.sci_dspace);
1802 }
1803
1804 void
spa_update_dspace(spa_t * spa)1805 spa_update_dspace(spa_t *spa)
1806 {
1807 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1808 ddt_get_dedup_dspace(spa);
1809 if (spa->spa_vdev_removal != NULL) {
1810 /*
1811 * We can't allocate from the removing device, so subtract
1812 * its size if it was included in dspace (i.e. if this is a
1813 * normal-class vdev, not special/dedup). This prevents the
1814 * DMU/DSL from filling up the (now smaller) pool while we
1815 * are in the middle of removing the device.
1816 *
1817 * Note that the DMU/DSL doesn't actually know or care
1818 * how much space is allocated (it does its own tracking
1819 * of how much space has been logically used). So it
1820 * doesn't matter that the data we are moving may be
1821 * allocated twice (on the old device and the new
1822 * device).
1823 */
1824 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1825 vdev_t *vd =
1826 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1827 if (vd->vdev_mg->mg_class == spa_normal_class(spa)) {
1828 spa->spa_dspace -= spa_deflate(spa) ?
1829 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1830 }
1831 spa_config_exit(spa, SCL_VDEV, FTAG);
1832 }
1833 }
1834
1835 /*
1836 * Return the failure mode that has been set to this pool. The default
1837 * behavior will be to block all I/Os when a complete failure occurs.
1838 */
1839 uint64_t
spa_get_failmode(spa_t * spa)1840 spa_get_failmode(spa_t *spa)
1841 {
1842 return (spa->spa_failmode);
1843 }
1844
1845 boolean_t
spa_suspended(spa_t * spa)1846 spa_suspended(spa_t *spa)
1847 {
1848 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1849 }
1850
1851 uint64_t
spa_version(spa_t * spa)1852 spa_version(spa_t *spa)
1853 {
1854 return (spa->spa_ubsync.ub_version);
1855 }
1856
1857 boolean_t
spa_deflate(spa_t * spa)1858 spa_deflate(spa_t *spa)
1859 {
1860 return (spa->spa_deflate);
1861 }
1862
1863 metaslab_class_t *
spa_normal_class(spa_t * spa)1864 spa_normal_class(spa_t *spa)
1865 {
1866 return (spa->spa_normal_class);
1867 }
1868
1869 metaslab_class_t *
spa_log_class(spa_t * spa)1870 spa_log_class(spa_t *spa)
1871 {
1872 return (spa->spa_log_class);
1873 }
1874
1875 metaslab_class_t *
spa_special_class(spa_t * spa)1876 spa_special_class(spa_t *spa)
1877 {
1878 return (spa->spa_special_class);
1879 }
1880
1881 metaslab_class_t *
spa_dedup_class(spa_t * spa)1882 spa_dedup_class(spa_t *spa)
1883 {
1884 return (spa->spa_dedup_class);
1885 }
1886
1887 /*
1888 * Locate an appropriate allocation class
1889 */
1890 metaslab_class_t *
spa_preferred_class(spa_t * spa,uint64_t size,dmu_object_type_t objtype,uint_t level,uint_t special_smallblk)1891 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1892 uint_t level, uint_t special_smallblk)
1893 {
1894 if (DMU_OT_IS_ZIL(objtype)) {
1895 if (spa->spa_log_class->mc_groups != 0)
1896 return (spa_log_class(spa));
1897 else
1898 return (spa_normal_class(spa));
1899 }
1900
1901 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1902
1903 if (DMU_OT_IS_DDT(objtype)) {
1904 if (spa->spa_dedup_class->mc_groups != 0)
1905 return (spa_dedup_class(spa));
1906 else if (has_special_class && zfs_ddt_data_is_special)
1907 return (spa_special_class(spa));
1908 else
1909 return (spa_normal_class(spa));
1910 }
1911
1912 /* Indirect blocks for user data can land in special if allowed */
1913 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1914 if (has_special_class && zfs_user_indirect_is_special)
1915 return (spa_special_class(spa));
1916 else
1917 return (spa_normal_class(spa));
1918 }
1919
1920 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1921 if (has_special_class)
1922 return (spa_special_class(spa));
1923 else
1924 return (spa_normal_class(spa));
1925 }
1926
1927 /*
1928 * Allow small file blocks in special class in some cases (like
1929 * for the dRAID vdev feature). But always leave a reserve of
1930 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1931 */
1932 if (DMU_OT_IS_FILE(objtype) &&
1933 has_special_class && size <= special_smallblk) {
1934 metaslab_class_t *special = spa_special_class(spa);
1935 uint64_t alloc = metaslab_class_get_alloc(special);
1936 uint64_t space = metaslab_class_get_space(special);
1937 uint64_t limit =
1938 (space * (100 - zfs_special_class_metadata_reserve_pct))
1939 / 100;
1940
1941 if (alloc < limit)
1942 return (special);
1943 }
1944
1945 return (spa_normal_class(spa));
1946 }
1947
1948 void
spa_evicting_os_register(spa_t * spa,objset_t * os)1949 spa_evicting_os_register(spa_t *spa, objset_t *os)
1950 {
1951 mutex_enter(&spa->spa_evicting_os_lock);
1952 list_insert_head(&spa->spa_evicting_os_list, os);
1953 mutex_exit(&spa->spa_evicting_os_lock);
1954 }
1955
1956 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)1957 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1958 {
1959 mutex_enter(&spa->spa_evicting_os_lock);
1960 list_remove(&spa->spa_evicting_os_list, os);
1961 cv_broadcast(&spa->spa_evicting_os_cv);
1962 mutex_exit(&spa->spa_evicting_os_lock);
1963 }
1964
1965 void
spa_evicting_os_wait(spa_t * spa)1966 spa_evicting_os_wait(spa_t *spa)
1967 {
1968 mutex_enter(&spa->spa_evicting_os_lock);
1969 while (!list_is_empty(&spa->spa_evicting_os_list))
1970 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1971 mutex_exit(&spa->spa_evicting_os_lock);
1972
1973 dmu_buf_user_evict_wait();
1974 }
1975
1976 int
spa_max_replication(spa_t * spa)1977 spa_max_replication(spa_t *spa)
1978 {
1979 /*
1980 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1981 * handle BPs with more than one DVA allocated. Set our max
1982 * replication level accordingly.
1983 */
1984 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1985 return (1);
1986 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1987 }
1988
1989 int
spa_prev_software_version(spa_t * spa)1990 spa_prev_software_version(spa_t *spa)
1991 {
1992 return (spa->spa_prev_software_version);
1993 }
1994
1995 uint64_t
spa_deadman_synctime(spa_t * spa)1996 spa_deadman_synctime(spa_t *spa)
1997 {
1998 return (spa->spa_deadman_synctime);
1999 }
2000
2001 spa_autotrim_t
spa_get_autotrim(spa_t * spa)2002 spa_get_autotrim(spa_t *spa)
2003 {
2004 return (spa->spa_autotrim);
2005 }
2006
2007 uint64_t
spa_deadman_ziotime(spa_t * spa)2008 spa_deadman_ziotime(spa_t *spa)
2009 {
2010 return (spa->spa_deadman_ziotime);
2011 }
2012
2013 uint64_t
spa_get_deadman_failmode(spa_t * spa)2014 spa_get_deadman_failmode(spa_t *spa)
2015 {
2016 return (spa->spa_deadman_failmode);
2017 }
2018
2019 void
spa_set_deadman_failmode(spa_t * spa,const char * failmode)2020 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2021 {
2022 if (strcmp(failmode, "wait") == 0)
2023 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2024 else if (strcmp(failmode, "continue") == 0)
2025 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2026 else if (strcmp(failmode, "panic") == 0)
2027 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2028 else
2029 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2030 }
2031
2032 void
spa_set_deadman_ziotime(hrtime_t ns)2033 spa_set_deadman_ziotime(hrtime_t ns)
2034 {
2035 spa_t *spa = NULL;
2036
2037 if (spa_mode_global != SPA_MODE_UNINIT) {
2038 mutex_enter(&spa_namespace_lock);
2039 while ((spa = spa_next(spa)) != NULL)
2040 spa->spa_deadman_ziotime = ns;
2041 mutex_exit(&spa_namespace_lock);
2042 }
2043 }
2044
2045 void
spa_set_deadman_synctime(hrtime_t ns)2046 spa_set_deadman_synctime(hrtime_t ns)
2047 {
2048 spa_t *spa = NULL;
2049
2050 if (spa_mode_global != SPA_MODE_UNINIT) {
2051 mutex_enter(&spa_namespace_lock);
2052 while ((spa = spa_next(spa)) != NULL)
2053 spa->spa_deadman_synctime = ns;
2054 mutex_exit(&spa_namespace_lock);
2055 }
2056 }
2057
2058 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)2059 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2060 {
2061 uint64_t asize = DVA_GET_ASIZE(dva);
2062 uint64_t dsize = asize;
2063
2064 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2065
2066 if (asize != 0 && spa->spa_deflate) {
2067 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2068 if (vd != NULL)
2069 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2070 vd->vdev_deflate_ratio;
2071 }
2072
2073 return (dsize);
2074 }
2075
2076 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)2077 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2078 {
2079 uint64_t dsize = 0;
2080
2081 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2082 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2083
2084 return (dsize);
2085 }
2086
2087 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)2088 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2089 {
2090 uint64_t dsize = 0;
2091
2092 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2093
2094 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2095 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2096
2097 spa_config_exit(spa, SCL_VDEV, FTAG);
2098
2099 return (dsize);
2100 }
2101
2102 uint64_t
spa_dirty_data(spa_t * spa)2103 spa_dirty_data(spa_t *spa)
2104 {
2105 return (spa->spa_dsl_pool->dp_dirty_total);
2106 }
2107
2108 /*
2109 * ==========================================================================
2110 * SPA Import Progress Routines
2111 * ==========================================================================
2112 */
2113
2114 typedef struct spa_import_progress {
2115 uint64_t pool_guid; /* unique id for updates */
2116 char *pool_name;
2117 spa_load_state_t spa_load_state;
2118 uint64_t mmp_sec_remaining; /* MMP activity check */
2119 uint64_t spa_load_max_txg; /* rewind txg */
2120 procfs_list_node_t smh_node;
2121 } spa_import_progress_t;
2122
2123 spa_history_list_t *spa_import_progress_list = NULL;
2124
2125 static int
spa_import_progress_show_header(struct seq_file * f)2126 spa_import_progress_show_header(struct seq_file *f)
2127 {
2128 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2129 "load_state", "multihost_secs", "max_txg",
2130 "pool_name");
2131 return (0);
2132 }
2133
2134 static int
spa_import_progress_show(struct seq_file * f,void * data)2135 spa_import_progress_show(struct seq_file *f, void *data)
2136 {
2137 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2138
2139 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2140 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2141 (u_longlong_t)sip->mmp_sec_remaining,
2142 (u_longlong_t)sip->spa_load_max_txg,
2143 (sip->pool_name ? sip->pool_name : "-"));
2144
2145 return (0);
2146 }
2147
2148 /* Remove oldest elements from list until there are no more than 'size' left */
2149 static void
spa_import_progress_truncate(spa_history_list_t * shl,unsigned int size)2150 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2151 {
2152 spa_import_progress_t *sip;
2153 while (shl->size > size) {
2154 sip = list_remove_head(&shl->procfs_list.pl_list);
2155 if (sip->pool_name)
2156 spa_strfree(sip->pool_name);
2157 kmem_free(sip, sizeof (spa_import_progress_t));
2158 shl->size--;
2159 }
2160
2161 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2162 }
2163
2164 static void
spa_import_progress_init(void)2165 spa_import_progress_init(void)
2166 {
2167 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2168 KM_SLEEP);
2169
2170 spa_import_progress_list->size = 0;
2171
2172 spa_import_progress_list->procfs_list.pl_private =
2173 spa_import_progress_list;
2174
2175 procfs_list_install("zfs",
2176 NULL,
2177 "import_progress",
2178 0644,
2179 &spa_import_progress_list->procfs_list,
2180 spa_import_progress_show,
2181 spa_import_progress_show_header,
2182 NULL,
2183 offsetof(spa_import_progress_t, smh_node));
2184 }
2185
2186 static void
spa_import_progress_destroy(void)2187 spa_import_progress_destroy(void)
2188 {
2189 spa_history_list_t *shl = spa_import_progress_list;
2190 procfs_list_uninstall(&shl->procfs_list);
2191 spa_import_progress_truncate(shl, 0);
2192 procfs_list_destroy(&shl->procfs_list);
2193 kmem_free(shl, sizeof (spa_history_list_t));
2194 }
2195
2196 int
spa_import_progress_set_state(uint64_t pool_guid,spa_load_state_t load_state)2197 spa_import_progress_set_state(uint64_t pool_guid,
2198 spa_load_state_t load_state)
2199 {
2200 spa_history_list_t *shl = spa_import_progress_list;
2201 spa_import_progress_t *sip;
2202 int error = ENOENT;
2203
2204 if (shl->size == 0)
2205 return (0);
2206
2207 mutex_enter(&shl->procfs_list.pl_lock);
2208 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2209 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2210 if (sip->pool_guid == pool_guid) {
2211 sip->spa_load_state = load_state;
2212 error = 0;
2213 break;
2214 }
2215 }
2216 mutex_exit(&shl->procfs_list.pl_lock);
2217
2218 return (error);
2219 }
2220
2221 int
spa_import_progress_set_max_txg(uint64_t pool_guid,uint64_t load_max_txg)2222 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2223 {
2224 spa_history_list_t *shl = spa_import_progress_list;
2225 spa_import_progress_t *sip;
2226 int error = ENOENT;
2227
2228 if (shl->size == 0)
2229 return (0);
2230
2231 mutex_enter(&shl->procfs_list.pl_lock);
2232 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2233 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2234 if (sip->pool_guid == pool_guid) {
2235 sip->spa_load_max_txg = load_max_txg;
2236 error = 0;
2237 break;
2238 }
2239 }
2240 mutex_exit(&shl->procfs_list.pl_lock);
2241
2242 return (error);
2243 }
2244
2245 int
spa_import_progress_set_mmp_check(uint64_t pool_guid,uint64_t mmp_sec_remaining)2246 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2247 uint64_t mmp_sec_remaining)
2248 {
2249 spa_history_list_t *shl = spa_import_progress_list;
2250 spa_import_progress_t *sip;
2251 int error = ENOENT;
2252
2253 if (shl->size == 0)
2254 return (0);
2255
2256 mutex_enter(&shl->procfs_list.pl_lock);
2257 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2258 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2259 if (sip->pool_guid == pool_guid) {
2260 sip->mmp_sec_remaining = mmp_sec_remaining;
2261 error = 0;
2262 break;
2263 }
2264 }
2265 mutex_exit(&shl->procfs_list.pl_lock);
2266
2267 return (error);
2268 }
2269
2270 /*
2271 * A new import is in progress, add an entry.
2272 */
2273 void
spa_import_progress_add(spa_t * spa)2274 spa_import_progress_add(spa_t *spa)
2275 {
2276 spa_history_list_t *shl = spa_import_progress_list;
2277 spa_import_progress_t *sip;
2278 char *poolname = NULL;
2279
2280 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2281 sip->pool_guid = spa_guid(spa);
2282
2283 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2284 &poolname);
2285 if (poolname == NULL)
2286 poolname = spa_name(spa);
2287 sip->pool_name = spa_strdup(poolname);
2288 sip->spa_load_state = spa_load_state(spa);
2289
2290 mutex_enter(&shl->procfs_list.pl_lock);
2291 procfs_list_add(&shl->procfs_list, sip);
2292 shl->size++;
2293 mutex_exit(&shl->procfs_list.pl_lock);
2294 }
2295
2296 void
spa_import_progress_remove(uint64_t pool_guid)2297 spa_import_progress_remove(uint64_t pool_guid)
2298 {
2299 spa_history_list_t *shl = spa_import_progress_list;
2300 spa_import_progress_t *sip;
2301
2302 mutex_enter(&shl->procfs_list.pl_lock);
2303 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2304 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2305 if (sip->pool_guid == pool_guid) {
2306 if (sip->pool_name)
2307 spa_strfree(sip->pool_name);
2308 list_remove(&shl->procfs_list.pl_list, sip);
2309 shl->size--;
2310 kmem_free(sip, sizeof (spa_import_progress_t));
2311 break;
2312 }
2313 }
2314 mutex_exit(&shl->procfs_list.pl_lock);
2315 }
2316
2317 /*
2318 * ==========================================================================
2319 * Initialization and Termination
2320 * ==========================================================================
2321 */
2322
2323 static int
spa_name_compare(const void * a1,const void * a2)2324 spa_name_compare(const void *a1, const void *a2)
2325 {
2326 const spa_t *s1 = a1;
2327 const spa_t *s2 = a2;
2328 int s;
2329
2330 s = strcmp(s1->spa_name, s2->spa_name);
2331
2332 return (TREE_ISIGN(s));
2333 }
2334
2335 void
spa_boot_init(void)2336 spa_boot_init(void)
2337 {
2338 spa_config_load();
2339 }
2340
2341 void
spa_init(spa_mode_t mode)2342 spa_init(spa_mode_t mode)
2343 {
2344 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2345 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2346 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2347 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2348
2349 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2350 offsetof(spa_t, spa_avl));
2351
2352 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2353 offsetof(spa_aux_t, aux_avl));
2354
2355 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2356 offsetof(spa_aux_t, aux_avl));
2357
2358 spa_mode_global = mode;
2359
2360 #ifndef _KERNEL
2361 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2362 struct sigaction sa;
2363
2364 sa.sa_flags = SA_SIGINFO;
2365 sigemptyset(&sa.sa_mask);
2366 sa.sa_sigaction = arc_buf_sigsegv;
2367
2368 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2369 perror("could not enable watchpoints: "
2370 "sigaction(SIGSEGV, ...) = ");
2371 } else {
2372 arc_watch = B_TRUE;
2373 }
2374 }
2375 #endif
2376
2377 fm_init();
2378 zfs_refcount_init();
2379 unique_init();
2380 zfs_btree_init();
2381 metaslab_stat_init();
2382 ddt_init();
2383 zio_init();
2384 dmu_init();
2385 zil_init();
2386 vdev_cache_stat_init();
2387 vdev_mirror_stat_init();
2388 vdev_raidz_math_init();
2389 vdev_file_init();
2390 zfs_prop_init();
2391 zpool_prop_init();
2392 zpool_feature_init();
2393 spa_config_load();
2394 l2arc_start();
2395 scan_init();
2396 qat_init();
2397 spa_import_progress_init();
2398 }
2399
2400 void
spa_fini(void)2401 spa_fini(void)
2402 {
2403 l2arc_stop();
2404
2405 spa_evict_all();
2406
2407 vdev_file_fini();
2408 vdev_cache_stat_fini();
2409 vdev_mirror_stat_fini();
2410 vdev_raidz_math_fini();
2411 zil_fini();
2412 dmu_fini();
2413 zio_fini();
2414 ddt_fini();
2415 metaslab_stat_fini();
2416 zfs_btree_fini();
2417 unique_fini();
2418 zfs_refcount_fini();
2419 fm_fini();
2420 scan_fini();
2421 qat_fini();
2422 spa_import_progress_destroy();
2423
2424 avl_destroy(&spa_namespace_avl);
2425 avl_destroy(&spa_spare_avl);
2426 avl_destroy(&spa_l2cache_avl);
2427
2428 cv_destroy(&spa_namespace_cv);
2429 mutex_destroy(&spa_namespace_lock);
2430 mutex_destroy(&spa_spare_lock);
2431 mutex_destroy(&spa_l2cache_lock);
2432 }
2433
2434 /*
2435 * Return whether this pool has slogs. No locking needed.
2436 * It's not a problem if the wrong answer is returned as it's only for
2437 * performance and not correctness
2438 */
2439 boolean_t
spa_has_slogs(spa_t * spa)2440 spa_has_slogs(spa_t *spa)
2441 {
2442 return (spa->spa_log_class->mc_groups != 0);
2443 }
2444
2445 spa_log_state_t
spa_get_log_state(spa_t * spa)2446 spa_get_log_state(spa_t *spa)
2447 {
2448 return (spa->spa_log_state);
2449 }
2450
2451 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2452 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2453 {
2454 spa->spa_log_state = state;
2455 }
2456
2457 boolean_t
spa_is_root(spa_t * spa)2458 spa_is_root(spa_t *spa)
2459 {
2460 return (spa->spa_is_root);
2461 }
2462
2463 boolean_t
spa_writeable(spa_t * spa)2464 spa_writeable(spa_t *spa)
2465 {
2466 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2467 }
2468
2469 /*
2470 * Returns true if there is a pending sync task in any of the current
2471 * syncing txg, the current quiescing txg, or the current open txg.
2472 */
2473 boolean_t
spa_has_pending_synctask(spa_t * spa)2474 spa_has_pending_synctask(spa_t *spa)
2475 {
2476 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2477 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2478 }
2479
2480 spa_mode_t
spa_mode(spa_t * spa)2481 spa_mode(spa_t *spa)
2482 {
2483 return (spa->spa_mode);
2484 }
2485
2486 uint64_t
spa_bootfs(spa_t * spa)2487 spa_bootfs(spa_t *spa)
2488 {
2489 return (spa->spa_bootfs);
2490 }
2491
2492 uint64_t
spa_delegation(spa_t * spa)2493 spa_delegation(spa_t *spa)
2494 {
2495 return (spa->spa_delegation);
2496 }
2497
2498 objset_t *
spa_meta_objset(spa_t * spa)2499 spa_meta_objset(spa_t *spa)
2500 {
2501 return (spa->spa_meta_objset);
2502 }
2503
2504 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2505 spa_dedup_checksum(spa_t *spa)
2506 {
2507 return (spa->spa_dedup_checksum);
2508 }
2509
2510 /*
2511 * Reset pool scan stat per scan pass (or reboot).
2512 */
2513 void
spa_scan_stat_init(spa_t * spa)2514 spa_scan_stat_init(spa_t *spa)
2515 {
2516 /* data not stored on disk */
2517 spa->spa_scan_pass_start = gethrestime_sec();
2518 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2519 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2520 else
2521 spa->spa_scan_pass_scrub_pause = 0;
2522 spa->spa_scan_pass_scrub_spent_paused = 0;
2523 spa->spa_scan_pass_exam = 0;
2524 spa->spa_scan_pass_issued = 0;
2525 vdev_scan_stat_init(spa->spa_root_vdev);
2526 }
2527
2528 /*
2529 * Get scan stats for zpool status reports
2530 */
2531 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2532 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2533 {
2534 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2535
2536 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2537 return (SET_ERROR(ENOENT));
2538 bzero(ps, sizeof (pool_scan_stat_t));
2539
2540 /* data stored on disk */
2541 ps->pss_func = scn->scn_phys.scn_func;
2542 ps->pss_state = scn->scn_phys.scn_state;
2543 ps->pss_start_time = scn->scn_phys.scn_start_time;
2544 ps->pss_end_time = scn->scn_phys.scn_end_time;
2545 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2546 ps->pss_examined = scn->scn_phys.scn_examined;
2547 ps->pss_to_process = scn->scn_phys.scn_to_process;
2548 ps->pss_processed = scn->scn_phys.scn_processed;
2549 ps->pss_errors = scn->scn_phys.scn_errors;
2550
2551 /* data not stored on disk */
2552 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2553 ps->pss_pass_start = spa->spa_scan_pass_start;
2554 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2555 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2556 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2557 ps->pss_issued =
2558 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2559
2560 return (0);
2561 }
2562
2563 int
spa_maxblocksize(spa_t * spa)2564 spa_maxblocksize(spa_t *spa)
2565 {
2566 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2567 return (SPA_MAXBLOCKSIZE);
2568 else
2569 return (SPA_OLD_MAXBLOCKSIZE);
2570 }
2571
2572
2573 /*
2574 * Returns the txg that the last device removal completed. No indirect mappings
2575 * have been added since this txg.
2576 */
2577 uint64_t
spa_get_last_removal_txg(spa_t * spa)2578 spa_get_last_removal_txg(spa_t *spa)
2579 {
2580 uint64_t vdevid;
2581 uint64_t ret = -1ULL;
2582
2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2584 /*
2585 * sr_prev_indirect_vdev is only modified while holding all the
2586 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2587 * examining it.
2588 */
2589 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2590
2591 while (vdevid != -1ULL) {
2592 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2593 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2594
2595 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2596
2597 /*
2598 * If the removal did not remap any data, we don't care.
2599 */
2600 if (vdev_indirect_births_count(vib) != 0) {
2601 ret = vdev_indirect_births_last_entry_txg(vib);
2602 break;
2603 }
2604
2605 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2606 }
2607 spa_config_exit(spa, SCL_VDEV, FTAG);
2608
2609 IMPLY(ret != -1ULL,
2610 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2611
2612 return (ret);
2613 }
2614
2615 int
spa_maxdnodesize(spa_t * spa)2616 spa_maxdnodesize(spa_t *spa)
2617 {
2618 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2619 return (DNODE_MAX_SIZE);
2620 else
2621 return (DNODE_MIN_SIZE);
2622 }
2623
2624 boolean_t
spa_multihost(spa_t * spa)2625 spa_multihost(spa_t *spa)
2626 {
2627 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2628 }
2629
2630 uint32_t
spa_get_hostid(spa_t * spa)2631 spa_get_hostid(spa_t *spa)
2632 {
2633 return (spa->spa_hostid);
2634 }
2635
2636 boolean_t
spa_trust_config(spa_t * spa)2637 spa_trust_config(spa_t *spa)
2638 {
2639 return (spa->spa_trust_config);
2640 }
2641
2642 uint64_t
spa_missing_tvds_allowed(spa_t * spa)2643 spa_missing_tvds_allowed(spa_t *spa)
2644 {
2645 return (spa->spa_missing_tvds_allowed);
2646 }
2647
2648 space_map_t *
spa_syncing_log_sm(spa_t * spa)2649 spa_syncing_log_sm(spa_t *spa)
2650 {
2651 return (spa->spa_syncing_log_sm);
2652 }
2653
2654 void
spa_set_missing_tvds(spa_t * spa,uint64_t missing)2655 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2656 {
2657 spa->spa_missing_tvds = missing;
2658 }
2659
2660 /*
2661 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2662 */
2663 const char *
spa_state_to_name(spa_t * spa)2664 spa_state_to_name(spa_t *spa)
2665 {
2666 ASSERT3P(spa, !=, NULL);
2667
2668 /*
2669 * it is possible for the spa to exist, without root vdev
2670 * as the spa transitions during import/export
2671 */
2672 vdev_t *rvd = spa->spa_root_vdev;
2673 if (rvd == NULL) {
2674 return ("TRANSITIONING");
2675 }
2676 vdev_state_t state = rvd->vdev_state;
2677 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2678
2679 if (spa_suspended(spa) &&
2680 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2681 return ("SUSPENDED");
2682
2683 switch (state) {
2684 case VDEV_STATE_CLOSED:
2685 case VDEV_STATE_OFFLINE:
2686 return ("OFFLINE");
2687 case VDEV_STATE_REMOVED:
2688 return ("REMOVED");
2689 case VDEV_STATE_CANT_OPEN:
2690 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2691 return ("FAULTED");
2692 else if (aux == VDEV_AUX_SPLIT_POOL)
2693 return ("SPLIT");
2694 else
2695 return ("UNAVAIL");
2696 case VDEV_STATE_FAULTED:
2697 return ("FAULTED");
2698 case VDEV_STATE_DEGRADED:
2699 return ("DEGRADED");
2700 case VDEV_STATE_HEALTHY:
2701 return ("ONLINE");
2702 default:
2703 break;
2704 }
2705
2706 return ("UNKNOWN");
2707 }
2708
2709 boolean_t
spa_top_vdevs_spacemap_addressable(spa_t * spa)2710 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2711 {
2712 vdev_t *rvd = spa->spa_root_vdev;
2713 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2714 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2715 return (B_FALSE);
2716 }
2717 return (B_TRUE);
2718 }
2719
2720 boolean_t
spa_has_checkpoint(spa_t * spa)2721 spa_has_checkpoint(spa_t *spa)
2722 {
2723 return (spa->spa_checkpoint_txg != 0);
2724 }
2725
2726 boolean_t
spa_importing_readonly_checkpoint(spa_t * spa)2727 spa_importing_readonly_checkpoint(spa_t *spa)
2728 {
2729 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2730 spa->spa_mode == SPA_MODE_READ);
2731 }
2732
2733 uint64_t
spa_min_claim_txg(spa_t * spa)2734 spa_min_claim_txg(spa_t *spa)
2735 {
2736 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2737
2738 if (checkpoint_txg != 0)
2739 return (checkpoint_txg + 1);
2740
2741 return (spa->spa_first_txg);
2742 }
2743
2744 /*
2745 * If there is a checkpoint, async destroys may consume more space from
2746 * the pool instead of freeing it. In an attempt to save the pool from
2747 * getting suspended when it is about to run out of space, we stop
2748 * processing async destroys.
2749 */
2750 boolean_t
spa_suspend_async_destroy(spa_t * spa)2751 spa_suspend_async_destroy(spa_t *spa)
2752 {
2753 dsl_pool_t *dp = spa_get_dsl(spa);
2754
2755 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2756 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2757 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2758 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2759
2760 if (spa_has_checkpoint(spa) && avail == 0)
2761 return (B_TRUE);
2762
2763 return (B_FALSE);
2764 }
2765
2766 #if defined(_KERNEL)
2767
2768 int
param_set_deadman_failmode_common(const char * val)2769 param_set_deadman_failmode_common(const char *val)
2770 {
2771 spa_t *spa = NULL;
2772 char *p;
2773
2774 if (val == NULL)
2775 return (SET_ERROR(EINVAL));
2776
2777 if ((p = strchr(val, '\n')) != NULL)
2778 *p = '\0';
2779
2780 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2781 strcmp(val, "panic"))
2782 return (SET_ERROR(EINVAL));
2783
2784 if (spa_mode_global != SPA_MODE_UNINIT) {
2785 mutex_enter(&spa_namespace_lock);
2786 while ((spa = spa_next(spa)) != NULL)
2787 spa_set_deadman_failmode(spa, val);
2788 mutex_exit(&spa_namespace_lock);
2789 }
2790
2791 return (0);
2792 }
2793 #endif
2794
2795 /* Namespace manipulation */
2796 EXPORT_SYMBOL(spa_lookup);
2797 EXPORT_SYMBOL(spa_add);
2798 EXPORT_SYMBOL(spa_remove);
2799 EXPORT_SYMBOL(spa_next);
2800
2801 /* Refcount functions */
2802 EXPORT_SYMBOL(spa_open_ref);
2803 EXPORT_SYMBOL(spa_close);
2804 EXPORT_SYMBOL(spa_refcount_zero);
2805
2806 /* Pool configuration lock */
2807 EXPORT_SYMBOL(spa_config_tryenter);
2808 EXPORT_SYMBOL(spa_config_enter);
2809 EXPORT_SYMBOL(spa_config_exit);
2810 EXPORT_SYMBOL(spa_config_held);
2811
2812 /* Pool vdev add/remove lock */
2813 EXPORT_SYMBOL(spa_vdev_enter);
2814 EXPORT_SYMBOL(spa_vdev_exit);
2815
2816 /* Pool vdev state change lock */
2817 EXPORT_SYMBOL(spa_vdev_state_enter);
2818 EXPORT_SYMBOL(spa_vdev_state_exit);
2819
2820 /* Accessor functions */
2821 EXPORT_SYMBOL(spa_shutting_down);
2822 EXPORT_SYMBOL(spa_get_dsl);
2823 EXPORT_SYMBOL(spa_get_rootblkptr);
2824 EXPORT_SYMBOL(spa_set_rootblkptr);
2825 EXPORT_SYMBOL(spa_altroot);
2826 EXPORT_SYMBOL(spa_sync_pass);
2827 EXPORT_SYMBOL(spa_name);
2828 EXPORT_SYMBOL(spa_guid);
2829 EXPORT_SYMBOL(spa_last_synced_txg);
2830 EXPORT_SYMBOL(spa_first_txg);
2831 EXPORT_SYMBOL(spa_syncing_txg);
2832 EXPORT_SYMBOL(spa_version);
2833 EXPORT_SYMBOL(spa_state);
2834 EXPORT_SYMBOL(spa_load_state);
2835 EXPORT_SYMBOL(spa_freeze_txg);
2836 EXPORT_SYMBOL(spa_get_dspace);
2837 EXPORT_SYMBOL(spa_update_dspace);
2838 EXPORT_SYMBOL(spa_deflate);
2839 EXPORT_SYMBOL(spa_normal_class);
2840 EXPORT_SYMBOL(spa_log_class);
2841 EXPORT_SYMBOL(spa_special_class);
2842 EXPORT_SYMBOL(spa_preferred_class);
2843 EXPORT_SYMBOL(spa_max_replication);
2844 EXPORT_SYMBOL(spa_prev_software_version);
2845 EXPORT_SYMBOL(spa_get_failmode);
2846 EXPORT_SYMBOL(spa_suspended);
2847 EXPORT_SYMBOL(spa_bootfs);
2848 EXPORT_SYMBOL(spa_delegation);
2849 EXPORT_SYMBOL(spa_meta_objset);
2850 EXPORT_SYMBOL(spa_maxblocksize);
2851 EXPORT_SYMBOL(spa_maxdnodesize);
2852
2853 /* Miscellaneous support routines */
2854 EXPORT_SYMBOL(spa_guid_exists);
2855 EXPORT_SYMBOL(spa_strdup);
2856 EXPORT_SYMBOL(spa_strfree);
2857 EXPORT_SYMBOL(spa_get_random);
2858 EXPORT_SYMBOL(spa_generate_guid);
2859 EXPORT_SYMBOL(snprintf_blkptr);
2860 EXPORT_SYMBOL(spa_freeze);
2861 EXPORT_SYMBOL(spa_upgrade);
2862 EXPORT_SYMBOL(spa_evict_all);
2863 EXPORT_SYMBOL(spa_lookup_by_guid);
2864 EXPORT_SYMBOL(spa_has_spare);
2865 EXPORT_SYMBOL(dva_get_dsize_sync);
2866 EXPORT_SYMBOL(bp_get_dsize_sync);
2867 EXPORT_SYMBOL(bp_get_dsize);
2868 EXPORT_SYMBOL(spa_has_slogs);
2869 EXPORT_SYMBOL(spa_is_root);
2870 EXPORT_SYMBOL(spa_writeable);
2871 EXPORT_SYMBOL(spa_mode);
2872 EXPORT_SYMBOL(spa_namespace_lock);
2873 EXPORT_SYMBOL(spa_trust_config);
2874 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2875 EXPORT_SYMBOL(spa_set_missing_tvds);
2876 EXPORT_SYMBOL(spa_state_to_name);
2877 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2878 EXPORT_SYMBOL(spa_min_claim_txg);
2879 EXPORT_SYMBOL(spa_suspend_async_destroy);
2880 EXPORT_SYMBOL(spa_has_checkpoint);
2881 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2882
2883 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2884 "Set additional debugging flags");
2885
2886 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2887 "Set to attempt to recover from fatal errors");
2888
2889 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2890 "Set to ignore IO errors during free and permanently leak the space");
2891
2892 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2893 "Dead I/O check interval in milliseconds");
2894
2895 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2896 "Enable deadman timer");
2897
2898 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2899 "SPA size estimate multiplication factor");
2900
2901 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2902 "Place DDT data into the special class");
2903
2904 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2905 "Place user data indirect blocks into the special class");
2906
2907 /* BEGIN CSTYLED */
2908 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2909 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2910 "Failmode for deadman timer");
2911
2912 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2913 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2914 "Pool sync expiration time in milliseconds");
2915
2916 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2917 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2918 "IO expiration time in milliseconds");
2919
2920 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2921 "Small file blocks in special vdevs depends on this much "
2922 "free space available");
2923 /* END CSTYLED */
2924
2925 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2926 param_get_int, ZMOD_RW, "Reserved free space in pool");
2927