1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright(c) 2019-2020 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31
32 uint32_t sfc_logtype_driver;
33
34 static struct sfc_dp_list sfc_dp_head =
35 TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36
37
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39
40
41 static int
sfc_fw_version_get(struct rte_eth_dev * dev,char * fw_version,size_t fw_size)42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 efx_nic_fw_info_t enfi;
46 int ret;
47 int rc;
48
49 /*
50 * Return value of the callback is likely supposed to be
51 * equal to or greater than 0, nevertheless, if an error
52 * occurs, it will be desirable to pass it to the caller
53 */
54 if ((fw_version == NULL) || (fw_size == 0))
55 return -EINVAL;
56
57 rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 if (rc != 0)
59 return -rc;
60
61 ret = snprintf(fw_version, fw_size,
62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 if (ret < 0)
66 return ret;
67
68 if (enfi.enfi_dpcpu_fw_ids_valid) {
69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 int ret_extra;
71
72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 fw_size - dpcpu_fw_ids_offset,
74 " rx%" PRIx16 " tx%" PRIx16,
75 enfi.enfi_rx_dpcpu_fw_id,
76 enfi.enfi_tx_dpcpu_fw_id);
77 if (ret_extra < 0)
78 return ret_extra;
79
80 ret += ret_extra;
81 }
82
83 if (fw_size < (size_t)(++ret))
84 return ret;
85 else
86 return 0;
87 }
88
89 static int
sfc_dev_infos_get(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 struct sfc_rss *rss = &sas->rss;
96 struct sfc_mae *mae = &sa->mae;
97 uint64_t txq_offloads_def = 0;
98
99 sfc_log_init(sa, "entry");
100
101 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
102 dev_info->max_mtu = EFX_MAC_SDU_MAX;
103
104 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
105
106 dev_info->max_vfs = sa->sriov.num_vfs;
107
108 /* Autonegotiation may be disabled */
109 dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
111 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
113 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
114 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
115 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
116 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
117 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
118 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
119 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
120 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
121 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
122
123 dev_info->max_rx_queues = sa->rxq_max;
124 dev_info->max_tx_queues = sa->txq_max;
125
126 /* By default packets are dropped if no descriptors are available */
127 dev_info->default_rxconf.rx_drop_en = 1;
128
129 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
130
131 /*
132 * rx_offload_capa includes both device and queue offloads since
133 * the latter may be requested on a per device basis which makes
134 * sense when some offloads are needed to be set on all queues.
135 */
136 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
137 dev_info->rx_queue_offload_capa;
138
139 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
140
141 /*
142 * tx_offload_capa includes both device and queue offloads since
143 * the latter may be requested on a per device basis which makes
144 * sense when some offloads are needed to be set on all queues.
145 */
146 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
147 dev_info->tx_queue_offload_capa;
148
149 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
150 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
151
152 dev_info->default_txconf.offloads |= txq_offloads_def;
153
154 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
155 uint64_t rte_hf = 0;
156 unsigned int i;
157
158 for (i = 0; i < rss->hf_map_nb_entries; ++i)
159 rte_hf |= rss->hf_map[i].rte;
160
161 dev_info->reta_size = EFX_RSS_TBL_SIZE;
162 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
163 dev_info->flow_type_rss_offloads = rte_hf;
164 }
165
166 /* Initialize to hardware limits */
167 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
168 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
169 /* The RXQ hardware requires that the descriptor count is a power
170 * of 2, but rx_desc_lim cannot properly describe that constraint.
171 */
172 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
173
174 /* Initialize to hardware limits */
175 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
176 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
177 /*
178 * The TXQ hardware requires that the descriptor count is a power
179 * of 2, but tx_desc_lim cannot properly describe that constraint
180 */
181 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
182
183 if (sap->dp_rx->get_dev_info != NULL)
184 sap->dp_rx->get_dev_info(dev_info);
185 if (sap->dp_tx->get_dev_info != NULL)
186 sap->dp_tx->get_dev_info(dev_info);
187
188 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
189 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
190
191 if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
192 dev_info->switch_info.name = dev->device->driver->name;
193 dev_info->switch_info.domain_id = mae->switch_domain_id;
194 dev_info->switch_info.port_id = mae->switch_port_id;
195 }
196
197 return 0;
198 }
199
200 static const uint32_t *
sfc_dev_supported_ptypes_get(struct rte_eth_dev * dev)201 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
202 {
203 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
204
205 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
206 }
207
208 static int
sfc_dev_configure(struct rte_eth_dev * dev)209 sfc_dev_configure(struct rte_eth_dev *dev)
210 {
211 struct rte_eth_dev_data *dev_data = dev->data;
212 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
213 int rc;
214
215 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
216 dev_data->nb_rx_queues, dev_data->nb_tx_queues);
217
218 sfc_adapter_lock(sa);
219 switch (sa->state) {
220 case SFC_ADAPTER_CONFIGURED:
221 /* FALLTHROUGH */
222 case SFC_ADAPTER_INITIALIZED:
223 rc = sfc_configure(sa);
224 break;
225 default:
226 sfc_err(sa, "unexpected adapter state %u to configure",
227 sa->state);
228 rc = EINVAL;
229 break;
230 }
231 sfc_adapter_unlock(sa);
232
233 sfc_log_init(sa, "done %d", rc);
234 SFC_ASSERT(rc >= 0);
235 return -rc;
236 }
237
238 static int
sfc_dev_start(struct rte_eth_dev * dev)239 sfc_dev_start(struct rte_eth_dev *dev)
240 {
241 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
242 int rc;
243
244 sfc_log_init(sa, "entry");
245
246 sfc_adapter_lock(sa);
247 rc = sfc_start(sa);
248 sfc_adapter_unlock(sa);
249
250 sfc_log_init(sa, "done %d", rc);
251 SFC_ASSERT(rc >= 0);
252 return -rc;
253 }
254
255 static int
sfc_dev_link_update(struct rte_eth_dev * dev,int wait_to_complete)256 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
257 {
258 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
259 struct rte_eth_link current_link;
260 int ret;
261
262 sfc_log_init(sa, "entry");
263
264 if (sa->state != SFC_ADAPTER_STARTED) {
265 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link);
266 } else if (wait_to_complete) {
267 efx_link_mode_t link_mode;
268
269 if (efx_port_poll(sa->nic, &link_mode) != 0)
270 link_mode = EFX_LINK_UNKNOWN;
271 sfc_port_link_mode_to_info(link_mode, ¤t_link);
272
273 } else {
274 sfc_ev_mgmt_qpoll(sa);
275 rte_eth_linkstatus_get(dev, ¤t_link);
276 }
277
278 ret = rte_eth_linkstatus_set(dev, ¤t_link);
279 if (ret == 0)
280 sfc_notice(sa, "Link status is %s",
281 current_link.link_status ? "UP" : "DOWN");
282
283 return ret;
284 }
285
286 static int
sfc_dev_stop(struct rte_eth_dev * dev)287 sfc_dev_stop(struct rte_eth_dev *dev)
288 {
289 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
290
291 sfc_log_init(sa, "entry");
292
293 sfc_adapter_lock(sa);
294 sfc_stop(sa);
295 sfc_adapter_unlock(sa);
296
297 sfc_log_init(sa, "done");
298
299 return 0;
300 }
301
302 static int
sfc_dev_set_link_up(struct rte_eth_dev * dev)303 sfc_dev_set_link_up(struct rte_eth_dev *dev)
304 {
305 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
306 int rc;
307
308 sfc_log_init(sa, "entry");
309
310 sfc_adapter_lock(sa);
311 rc = sfc_start(sa);
312 sfc_adapter_unlock(sa);
313
314 SFC_ASSERT(rc >= 0);
315 return -rc;
316 }
317
318 static int
sfc_dev_set_link_down(struct rte_eth_dev * dev)319 sfc_dev_set_link_down(struct rte_eth_dev *dev)
320 {
321 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
322
323 sfc_log_init(sa, "entry");
324
325 sfc_adapter_lock(sa);
326 sfc_stop(sa);
327 sfc_adapter_unlock(sa);
328
329 return 0;
330 }
331
332 static void
sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev * dev)333 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
334 {
335 free(dev->process_private);
336 rte_eth_dev_release_port(dev);
337 }
338
339 static int
sfc_dev_close(struct rte_eth_dev * dev)340 sfc_dev_close(struct rte_eth_dev *dev)
341 {
342 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
343
344 sfc_log_init(sa, "entry");
345
346 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
347 sfc_eth_dev_secondary_clear_ops(dev);
348 return 0;
349 }
350
351 sfc_adapter_lock(sa);
352 switch (sa->state) {
353 case SFC_ADAPTER_STARTED:
354 sfc_stop(sa);
355 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
356 /* FALLTHROUGH */
357 case SFC_ADAPTER_CONFIGURED:
358 sfc_close(sa);
359 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
360 /* FALLTHROUGH */
361 case SFC_ADAPTER_INITIALIZED:
362 break;
363 default:
364 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
365 break;
366 }
367
368 /*
369 * Cleanup all resources.
370 * Rollback primary process sfc_eth_dev_init() below.
371 */
372
373 sfc_eth_dev_clear_ops(dev);
374
375 sfc_detach(sa);
376 sfc_unprobe(sa);
377
378 sfc_kvargs_cleanup(sa);
379
380 sfc_adapter_unlock(sa);
381 sfc_adapter_lock_fini(sa);
382
383 sfc_log_init(sa, "done");
384
385 /* Required for logging, so cleanup last */
386 sa->eth_dev = NULL;
387
388 free(sa);
389
390 return 0;
391 }
392
393 static int
sfc_dev_filter_set(struct rte_eth_dev * dev,enum sfc_dev_filter_mode mode,boolean_t enabled)394 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
395 boolean_t enabled)
396 {
397 struct sfc_port *port;
398 boolean_t *toggle;
399 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
400 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
401 const char *desc = (allmulti) ? "all-multi" : "promiscuous";
402 int rc = 0;
403
404 sfc_adapter_lock(sa);
405
406 port = &sa->port;
407 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
408
409 if (*toggle != enabled) {
410 *toggle = enabled;
411
412 if (sfc_sa2shared(sa)->isolated) {
413 sfc_warn(sa, "isolated mode is active on the port");
414 sfc_warn(sa, "the change is to be applied on the next "
415 "start provided that isolated mode is "
416 "disabled prior the next start");
417 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
418 ((rc = sfc_set_rx_mode(sa)) != 0)) {
419 *toggle = !(enabled);
420 sfc_warn(sa, "Failed to %s %s mode, rc = %d",
421 ((enabled) ? "enable" : "disable"), desc, rc);
422
423 /*
424 * For promiscuous and all-multicast filters a
425 * permission failure should be reported as an
426 * unsupported filter.
427 */
428 if (rc == EPERM)
429 rc = ENOTSUP;
430 }
431 }
432
433 sfc_adapter_unlock(sa);
434 return rc;
435 }
436
437 static int
sfc_dev_promisc_enable(struct rte_eth_dev * dev)438 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
439 {
440 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
441
442 SFC_ASSERT(rc >= 0);
443 return -rc;
444 }
445
446 static int
sfc_dev_promisc_disable(struct rte_eth_dev * dev)447 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
448 {
449 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
450
451 SFC_ASSERT(rc >= 0);
452 return -rc;
453 }
454
455 static int
sfc_dev_allmulti_enable(struct rte_eth_dev * dev)456 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
457 {
458 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
459
460 SFC_ASSERT(rc >= 0);
461 return -rc;
462 }
463
464 static int
sfc_dev_allmulti_disable(struct rte_eth_dev * dev)465 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
466 {
467 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
468
469 SFC_ASSERT(rc >= 0);
470 return -rc;
471 }
472
473 static int
sfc_rx_queue_setup(struct rte_eth_dev * dev,uint16_t rx_queue_id,uint16_t nb_rx_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mb_pool)474 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
475 uint16_t nb_rx_desc, unsigned int socket_id,
476 const struct rte_eth_rxconf *rx_conf,
477 struct rte_mempool *mb_pool)
478 {
479 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
480 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
481 int rc;
482
483 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
484 rx_queue_id, nb_rx_desc, socket_id);
485
486 sfc_adapter_lock(sa);
487
488 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
489 rx_conf, mb_pool);
490 if (rc != 0)
491 goto fail_rx_qinit;
492
493 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
494
495 sfc_adapter_unlock(sa);
496
497 return 0;
498
499 fail_rx_qinit:
500 sfc_adapter_unlock(sa);
501 SFC_ASSERT(rc > 0);
502 return -rc;
503 }
504
505 static void
sfc_rx_queue_release(void * queue)506 sfc_rx_queue_release(void *queue)
507 {
508 struct sfc_dp_rxq *dp_rxq = queue;
509 struct sfc_rxq *rxq;
510 struct sfc_adapter *sa;
511 unsigned int sw_index;
512
513 if (dp_rxq == NULL)
514 return;
515
516 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
517 sa = rxq->evq->sa;
518 sfc_adapter_lock(sa);
519
520 sw_index = dp_rxq->dpq.queue_id;
521
522 sfc_log_init(sa, "RxQ=%u", sw_index);
523
524 sfc_rx_qfini(sa, sw_index);
525
526 sfc_adapter_unlock(sa);
527 }
528
529 static int
sfc_tx_queue_setup(struct rte_eth_dev * dev,uint16_t tx_queue_id,uint16_t nb_tx_desc,unsigned int socket_id,const struct rte_eth_txconf * tx_conf)530 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
531 uint16_t nb_tx_desc, unsigned int socket_id,
532 const struct rte_eth_txconf *tx_conf)
533 {
534 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
535 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
536 int rc;
537
538 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
539 tx_queue_id, nb_tx_desc, socket_id);
540
541 sfc_adapter_lock(sa);
542
543 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
544 if (rc != 0)
545 goto fail_tx_qinit;
546
547 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
548
549 sfc_adapter_unlock(sa);
550 return 0;
551
552 fail_tx_qinit:
553 sfc_adapter_unlock(sa);
554 SFC_ASSERT(rc > 0);
555 return -rc;
556 }
557
558 static void
sfc_tx_queue_release(void * queue)559 sfc_tx_queue_release(void *queue)
560 {
561 struct sfc_dp_txq *dp_txq = queue;
562 struct sfc_txq *txq;
563 unsigned int sw_index;
564 struct sfc_adapter *sa;
565
566 if (dp_txq == NULL)
567 return;
568
569 txq = sfc_txq_by_dp_txq(dp_txq);
570 sw_index = dp_txq->dpq.queue_id;
571
572 SFC_ASSERT(txq->evq != NULL);
573 sa = txq->evq->sa;
574
575 sfc_log_init(sa, "TxQ = %u", sw_index);
576
577 sfc_adapter_lock(sa);
578
579 sfc_tx_qfini(sa, sw_index);
580
581 sfc_adapter_unlock(sa);
582 }
583
584 /*
585 * Some statistics are computed as A - B where A and B each increase
586 * monotonically with some hardware counter(s) and the counters are read
587 * asynchronously.
588 *
589 * If packet X is counted in A, but not counted in B yet, computed value is
590 * greater than real.
591 *
592 * If packet X is not counted in A at the moment of reading the counter,
593 * but counted in B at the moment of reading the counter, computed value
594 * is less than real.
595 *
596 * However, counter which grows backward is worse evil than slightly wrong
597 * value. So, let's try to guarantee that it never happens except may be
598 * the case when the MAC stats are zeroed as a result of a NIC reset.
599 */
600 static void
sfc_update_diff_stat(uint64_t * stat,uint64_t newval)601 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
602 {
603 if ((int64_t)(newval - *stat) > 0 || newval == 0)
604 *stat = newval;
605 }
606
607 static int
sfc_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * stats)608 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
609 {
610 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
611 struct sfc_port *port = &sa->port;
612 uint64_t *mac_stats;
613 int ret;
614
615 rte_spinlock_lock(&port->mac_stats_lock);
616
617 ret = sfc_port_update_mac_stats(sa);
618 if (ret != 0)
619 goto unlock;
620
621 mac_stats = port->mac_stats_buf;
622
623 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
624 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
625 stats->ipackets =
626 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
627 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
628 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
629 stats->opackets =
630 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
631 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
632 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
633 stats->ibytes =
634 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
635 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
636 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
637 stats->obytes =
638 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
639 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
640 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
641 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
642 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
643 } else {
644 stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
645 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
646 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
647 /*
648 * Take into account stats which are whenever supported
649 * on EF10. If some stat is not supported by current
650 * firmware variant or HW revision, it is guaranteed
651 * to be zero in mac_stats.
652 */
653 stats->imissed =
654 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
655 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
656 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
657 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
658 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
659 mac_stats[EFX_MAC_PM_TRUNC_QBB] +
660 mac_stats[EFX_MAC_PM_DISCARD_QBB] +
661 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
662 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
663 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
664 stats->ierrors =
665 mac_stats[EFX_MAC_RX_FCS_ERRORS] +
666 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
667 mac_stats[EFX_MAC_RX_JABBER_PKTS];
668 /* no oerrors counters supported on EF10 */
669
670 /* Exclude missed, errors and pauses from Rx packets */
671 sfc_update_diff_stat(&port->ipackets,
672 mac_stats[EFX_MAC_RX_PKTS] -
673 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
674 stats->imissed - stats->ierrors);
675 stats->ipackets = port->ipackets;
676 }
677
678 unlock:
679 rte_spinlock_unlock(&port->mac_stats_lock);
680 SFC_ASSERT(ret >= 0);
681 return -ret;
682 }
683
684 static int
sfc_stats_reset(struct rte_eth_dev * dev)685 sfc_stats_reset(struct rte_eth_dev *dev)
686 {
687 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
688 struct sfc_port *port = &sa->port;
689 int rc;
690
691 if (sa->state != SFC_ADAPTER_STARTED) {
692 /*
693 * The operation cannot be done if port is not started; it
694 * will be scheduled to be done during the next port start
695 */
696 port->mac_stats_reset_pending = B_TRUE;
697 return 0;
698 }
699
700 rc = sfc_port_reset_mac_stats(sa);
701 if (rc != 0)
702 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
703
704 SFC_ASSERT(rc >= 0);
705 return -rc;
706 }
707
708 static int
sfc_xstats_get(struct rte_eth_dev * dev,struct rte_eth_xstat * xstats,unsigned int xstats_count)709 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
710 unsigned int xstats_count)
711 {
712 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
713 struct sfc_port *port = &sa->port;
714 uint64_t *mac_stats;
715 int rc;
716 unsigned int i;
717 int nstats = 0;
718
719 rte_spinlock_lock(&port->mac_stats_lock);
720
721 rc = sfc_port_update_mac_stats(sa);
722 if (rc != 0) {
723 SFC_ASSERT(rc > 0);
724 nstats = -rc;
725 goto unlock;
726 }
727
728 mac_stats = port->mac_stats_buf;
729
730 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
731 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
732 if (xstats != NULL && nstats < (int)xstats_count) {
733 xstats[nstats].id = nstats;
734 xstats[nstats].value = mac_stats[i];
735 }
736 nstats++;
737 }
738 }
739
740 unlock:
741 rte_spinlock_unlock(&port->mac_stats_lock);
742
743 return nstats;
744 }
745
746 static int
sfc_xstats_get_names(struct rte_eth_dev * dev,struct rte_eth_xstat_name * xstats_names,unsigned int xstats_count)747 sfc_xstats_get_names(struct rte_eth_dev *dev,
748 struct rte_eth_xstat_name *xstats_names,
749 unsigned int xstats_count)
750 {
751 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
752 struct sfc_port *port = &sa->port;
753 unsigned int i;
754 unsigned int nstats = 0;
755
756 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
757 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
758 if (xstats_names != NULL && nstats < xstats_count)
759 strlcpy(xstats_names[nstats].name,
760 efx_mac_stat_name(sa->nic, i),
761 sizeof(xstats_names[0].name));
762 nstats++;
763 }
764 }
765
766 return nstats;
767 }
768
769 static int
sfc_xstats_get_by_id(struct rte_eth_dev * dev,const uint64_t * ids,uint64_t * values,unsigned int n)770 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
771 uint64_t *values, unsigned int n)
772 {
773 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
774 struct sfc_port *port = &sa->port;
775 uint64_t *mac_stats;
776 unsigned int nb_supported = 0;
777 unsigned int nb_written = 0;
778 unsigned int i;
779 int ret;
780 int rc;
781
782 if (unlikely(values == NULL) ||
783 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
784 return port->mac_stats_nb_supported;
785
786 rte_spinlock_lock(&port->mac_stats_lock);
787
788 rc = sfc_port_update_mac_stats(sa);
789 if (rc != 0) {
790 SFC_ASSERT(rc > 0);
791 ret = -rc;
792 goto unlock;
793 }
794
795 mac_stats = port->mac_stats_buf;
796
797 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
798 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
799 continue;
800
801 if ((ids == NULL) || (ids[nb_written] == nb_supported))
802 values[nb_written++] = mac_stats[i];
803
804 ++nb_supported;
805 }
806
807 ret = nb_written;
808
809 unlock:
810 rte_spinlock_unlock(&port->mac_stats_lock);
811
812 return ret;
813 }
814
815 static int
sfc_xstats_get_names_by_id(struct rte_eth_dev * dev,struct rte_eth_xstat_name * xstats_names,const uint64_t * ids,unsigned int size)816 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
817 struct rte_eth_xstat_name *xstats_names,
818 const uint64_t *ids, unsigned int size)
819 {
820 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
821 struct sfc_port *port = &sa->port;
822 unsigned int nb_supported = 0;
823 unsigned int nb_written = 0;
824 unsigned int i;
825
826 if (unlikely(xstats_names == NULL) ||
827 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
828 return port->mac_stats_nb_supported;
829
830 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
831 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
832 continue;
833
834 if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
835 char *name = xstats_names[nb_written++].name;
836
837 strlcpy(name, efx_mac_stat_name(sa->nic, i),
838 sizeof(xstats_names[0].name));
839 }
840
841 ++nb_supported;
842 }
843
844 return nb_written;
845 }
846
847 static int
sfc_flow_ctrl_get(struct rte_eth_dev * dev,struct rte_eth_fc_conf * fc_conf)848 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
849 {
850 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
851 unsigned int wanted_fc, link_fc;
852
853 memset(fc_conf, 0, sizeof(*fc_conf));
854
855 sfc_adapter_lock(sa);
856
857 if (sa->state == SFC_ADAPTER_STARTED)
858 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
859 else
860 link_fc = sa->port.flow_ctrl;
861
862 switch (link_fc) {
863 case 0:
864 fc_conf->mode = RTE_FC_NONE;
865 break;
866 case EFX_FCNTL_RESPOND:
867 fc_conf->mode = RTE_FC_RX_PAUSE;
868 break;
869 case EFX_FCNTL_GENERATE:
870 fc_conf->mode = RTE_FC_TX_PAUSE;
871 break;
872 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
873 fc_conf->mode = RTE_FC_FULL;
874 break;
875 default:
876 sfc_err(sa, "%s: unexpected flow control value %#x",
877 __func__, link_fc);
878 }
879
880 fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
881
882 sfc_adapter_unlock(sa);
883
884 return 0;
885 }
886
887 static int
sfc_flow_ctrl_set(struct rte_eth_dev * dev,struct rte_eth_fc_conf * fc_conf)888 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
889 {
890 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
891 struct sfc_port *port = &sa->port;
892 unsigned int fcntl;
893 int rc;
894
895 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
896 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
897 fc_conf->mac_ctrl_frame_fwd != 0) {
898 sfc_err(sa, "unsupported flow control settings specified");
899 rc = EINVAL;
900 goto fail_inval;
901 }
902
903 switch (fc_conf->mode) {
904 case RTE_FC_NONE:
905 fcntl = 0;
906 break;
907 case RTE_FC_RX_PAUSE:
908 fcntl = EFX_FCNTL_RESPOND;
909 break;
910 case RTE_FC_TX_PAUSE:
911 fcntl = EFX_FCNTL_GENERATE;
912 break;
913 case RTE_FC_FULL:
914 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
915 break;
916 default:
917 rc = EINVAL;
918 goto fail_inval;
919 }
920
921 sfc_adapter_lock(sa);
922
923 if (sa->state == SFC_ADAPTER_STARTED) {
924 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
925 if (rc != 0)
926 goto fail_mac_fcntl_set;
927 }
928
929 port->flow_ctrl = fcntl;
930 port->flow_ctrl_autoneg = fc_conf->autoneg;
931
932 sfc_adapter_unlock(sa);
933
934 return 0;
935
936 fail_mac_fcntl_set:
937 sfc_adapter_unlock(sa);
938 fail_inval:
939 SFC_ASSERT(rc > 0);
940 return -rc;
941 }
942
943 static int
sfc_check_scatter_on_all_rx_queues(struct sfc_adapter * sa,size_t pdu)944 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
945 {
946 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
947 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
948 boolean_t scatter_enabled;
949 const char *error;
950 unsigned int i;
951
952 for (i = 0; i < sas->rxq_count; i++) {
953 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
954 continue;
955
956 scatter_enabled = (sas->rxq_info[i].type_flags &
957 EFX_RXQ_FLAG_SCATTER);
958
959 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
960 encp->enc_rx_prefix_size,
961 scatter_enabled,
962 encp->enc_rx_scatter_max, &error)) {
963 sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
964 error);
965 return EINVAL;
966 }
967 }
968
969 return 0;
970 }
971
972 static int
sfc_dev_set_mtu(struct rte_eth_dev * dev,uint16_t mtu)973 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
974 {
975 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
976 size_t pdu = EFX_MAC_PDU(mtu);
977 size_t old_pdu;
978 int rc;
979
980 sfc_log_init(sa, "mtu=%u", mtu);
981
982 rc = EINVAL;
983 if (pdu < EFX_MAC_PDU_MIN) {
984 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
985 (unsigned int)mtu, (unsigned int)pdu,
986 EFX_MAC_PDU_MIN);
987 goto fail_inval;
988 }
989 if (pdu > EFX_MAC_PDU_MAX) {
990 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
991 (unsigned int)mtu, (unsigned int)pdu,
992 (unsigned int)EFX_MAC_PDU_MAX);
993 goto fail_inval;
994 }
995
996 sfc_adapter_lock(sa);
997
998 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
999 if (rc != 0)
1000 goto fail_check_scatter;
1001
1002 if (pdu != sa->port.pdu) {
1003 if (sa->state == SFC_ADAPTER_STARTED) {
1004 sfc_stop(sa);
1005
1006 old_pdu = sa->port.pdu;
1007 sa->port.pdu = pdu;
1008 rc = sfc_start(sa);
1009 if (rc != 0)
1010 goto fail_start;
1011 } else {
1012 sa->port.pdu = pdu;
1013 }
1014 }
1015
1016 /*
1017 * The driver does not use it, but other PMDs update jumbo frame
1018 * flag and max_rx_pkt_len when MTU is set.
1019 */
1020 if (mtu > RTE_ETHER_MAX_LEN) {
1021 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1022 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1023 }
1024
1025 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1026
1027 sfc_adapter_unlock(sa);
1028
1029 sfc_log_init(sa, "done");
1030 return 0;
1031
1032 fail_start:
1033 sa->port.pdu = old_pdu;
1034 if (sfc_start(sa) != 0)
1035 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1036 "PDU max size - port is stopped",
1037 (unsigned int)pdu, (unsigned int)old_pdu);
1038
1039 fail_check_scatter:
1040 sfc_adapter_unlock(sa);
1041
1042 fail_inval:
1043 sfc_log_init(sa, "failed %d", rc);
1044 SFC_ASSERT(rc > 0);
1045 return -rc;
1046 }
1047 static int
sfc_mac_addr_set(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)1048 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1049 {
1050 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1051 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1052 struct sfc_port *port = &sa->port;
1053 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1054 int rc = 0;
1055
1056 sfc_adapter_lock(sa);
1057
1058 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1059 goto unlock;
1060
1061 /*
1062 * Copy the address to the device private data so that
1063 * it could be recalled in the case of adapter restart.
1064 */
1065 rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1066
1067 /*
1068 * Neither of the two following checks can return
1069 * an error. The new MAC address is preserved in
1070 * the device private data and can be activated
1071 * on the next port start if the user prevents
1072 * isolated mode from being enabled.
1073 */
1074 if (sfc_sa2shared(sa)->isolated) {
1075 sfc_warn(sa, "isolated mode is active on the port");
1076 sfc_warn(sa, "will not set MAC address");
1077 goto unlock;
1078 }
1079
1080 if (sa->state != SFC_ADAPTER_STARTED) {
1081 sfc_notice(sa, "the port is not started");
1082 sfc_notice(sa, "the new MAC address will be set on port start");
1083
1084 goto unlock;
1085 }
1086
1087 if (encp->enc_allow_set_mac_with_installed_filters) {
1088 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1089 if (rc != 0) {
1090 sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1091 goto unlock;
1092 }
1093
1094 /*
1095 * Changing the MAC address by means of MCDI request
1096 * has no effect on received traffic, therefore
1097 * we also need to update unicast filters
1098 */
1099 rc = sfc_set_rx_mode_unchecked(sa);
1100 if (rc != 0) {
1101 sfc_err(sa, "cannot set filter (rc = %u)", rc);
1102 /* Rollback the old address */
1103 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1104 (void)sfc_set_rx_mode_unchecked(sa);
1105 }
1106 } else {
1107 sfc_warn(sa, "cannot set MAC address with filters installed");
1108 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1109 sfc_warn(sa, "(some traffic may be dropped)");
1110
1111 /*
1112 * Since setting MAC address with filters installed is not
1113 * allowed on the adapter, the new MAC address will be set
1114 * by means of adapter restart. sfc_start() shall retrieve
1115 * the new address from the device private data and set it.
1116 */
1117 sfc_stop(sa);
1118 rc = sfc_start(sa);
1119 if (rc != 0)
1120 sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1121 }
1122
1123 unlock:
1124 if (rc != 0)
1125 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1126
1127 sfc_adapter_unlock(sa);
1128
1129 SFC_ASSERT(rc >= 0);
1130 return -rc;
1131 }
1132
1133
1134 static int
sfc_set_mc_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)1135 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1136 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1137 {
1138 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1139 struct sfc_port *port = &sa->port;
1140 uint8_t *mc_addrs = port->mcast_addrs;
1141 int rc;
1142 unsigned int i;
1143
1144 if (sfc_sa2shared(sa)->isolated) {
1145 sfc_err(sa, "isolated mode is active on the port");
1146 sfc_err(sa, "will not set multicast address list");
1147 return -ENOTSUP;
1148 }
1149
1150 if (mc_addrs == NULL)
1151 return -ENOBUFS;
1152
1153 if (nb_mc_addr > port->max_mcast_addrs) {
1154 sfc_err(sa, "too many multicast addresses: %u > %u",
1155 nb_mc_addr, port->max_mcast_addrs);
1156 return -EINVAL;
1157 }
1158
1159 for (i = 0; i < nb_mc_addr; ++i) {
1160 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1161 EFX_MAC_ADDR_LEN);
1162 mc_addrs += EFX_MAC_ADDR_LEN;
1163 }
1164
1165 port->nb_mcast_addrs = nb_mc_addr;
1166
1167 if (sa->state != SFC_ADAPTER_STARTED)
1168 return 0;
1169
1170 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1171 port->nb_mcast_addrs);
1172 if (rc != 0)
1173 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1174
1175 SFC_ASSERT(rc >= 0);
1176 return -rc;
1177 }
1178
1179 /*
1180 * The function is used by the secondary process as well. It must not
1181 * use any process-local pointers from the adapter data.
1182 */
1183 static void
sfc_rx_queue_info_get(struct rte_eth_dev * dev,uint16_t rx_queue_id,struct rte_eth_rxq_info * qinfo)1184 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1185 struct rte_eth_rxq_info *qinfo)
1186 {
1187 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1188 struct sfc_rxq_info *rxq_info;
1189
1190 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1191
1192 rxq_info = &sas->rxq_info[rx_queue_id];
1193
1194 qinfo->mp = rxq_info->refill_mb_pool;
1195 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1196 qinfo->conf.rx_drop_en = 1;
1197 qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1198 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1199 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1200 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1201 qinfo->scattered_rx = 1;
1202 }
1203 qinfo->nb_desc = rxq_info->entries;
1204 }
1205
1206 /*
1207 * The function is used by the secondary process as well. It must not
1208 * use any process-local pointers from the adapter data.
1209 */
1210 static void
sfc_tx_queue_info_get(struct rte_eth_dev * dev,uint16_t tx_queue_id,struct rte_eth_txq_info * qinfo)1211 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1212 struct rte_eth_txq_info *qinfo)
1213 {
1214 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1215 struct sfc_txq_info *txq_info;
1216
1217 SFC_ASSERT(tx_queue_id < sas->txq_count);
1218
1219 txq_info = &sas->txq_info[tx_queue_id];
1220
1221 memset(qinfo, 0, sizeof(*qinfo));
1222
1223 qinfo->conf.offloads = txq_info->offloads;
1224 qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1225 qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1226 qinfo->nb_desc = txq_info->entries;
1227 }
1228
1229 /*
1230 * The function is used by the secondary process as well. It must not
1231 * use any process-local pointers from the adapter data.
1232 */
1233 static uint32_t
sfc_rx_queue_count(struct rte_eth_dev * dev,uint16_t rx_queue_id)1234 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1235 {
1236 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1237 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1238 struct sfc_rxq_info *rxq_info;
1239
1240 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1241 rxq_info = &sas->rxq_info[rx_queue_id];
1242
1243 if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1244 return 0;
1245
1246 return sap->dp_rx->qdesc_npending(rxq_info->dp);
1247 }
1248
1249 /*
1250 * The function is used by the secondary process as well. It must not
1251 * use any process-local pointers from the adapter data.
1252 */
1253 static int
sfc_rx_descriptor_done(void * queue,uint16_t offset)1254 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1255 {
1256 struct sfc_dp_rxq *dp_rxq = queue;
1257 const struct sfc_dp_rx *dp_rx;
1258
1259 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1260
1261 return offset < dp_rx->qdesc_npending(dp_rxq);
1262 }
1263
1264 /*
1265 * The function is used by the secondary process as well. It must not
1266 * use any process-local pointers from the adapter data.
1267 */
1268 static int
sfc_rx_descriptor_status(void * queue,uint16_t offset)1269 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1270 {
1271 struct sfc_dp_rxq *dp_rxq = queue;
1272 const struct sfc_dp_rx *dp_rx;
1273
1274 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1275
1276 return dp_rx->qdesc_status(dp_rxq, offset);
1277 }
1278
1279 /*
1280 * The function is used by the secondary process as well. It must not
1281 * use any process-local pointers from the adapter data.
1282 */
1283 static int
sfc_tx_descriptor_status(void * queue,uint16_t offset)1284 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1285 {
1286 struct sfc_dp_txq *dp_txq = queue;
1287 const struct sfc_dp_tx *dp_tx;
1288
1289 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1290
1291 return dp_tx->qdesc_status(dp_txq, offset);
1292 }
1293
1294 static int
sfc_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)1295 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1296 {
1297 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1298 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1299 int rc;
1300
1301 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1302
1303 sfc_adapter_lock(sa);
1304
1305 rc = EINVAL;
1306 if (sa->state != SFC_ADAPTER_STARTED)
1307 goto fail_not_started;
1308
1309 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1310 goto fail_not_setup;
1311
1312 rc = sfc_rx_qstart(sa, rx_queue_id);
1313 if (rc != 0)
1314 goto fail_rx_qstart;
1315
1316 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1317
1318 sfc_adapter_unlock(sa);
1319
1320 return 0;
1321
1322 fail_rx_qstart:
1323 fail_not_setup:
1324 fail_not_started:
1325 sfc_adapter_unlock(sa);
1326 SFC_ASSERT(rc > 0);
1327 return -rc;
1328 }
1329
1330 static int
sfc_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)1331 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1332 {
1333 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1334 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1335
1336 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1337
1338 sfc_adapter_lock(sa);
1339 sfc_rx_qstop(sa, rx_queue_id);
1340
1341 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1342
1343 sfc_adapter_unlock(sa);
1344
1345 return 0;
1346 }
1347
1348 static int
sfc_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)1349 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1350 {
1351 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1352 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1353 int rc;
1354
1355 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1356
1357 sfc_adapter_lock(sa);
1358
1359 rc = EINVAL;
1360 if (sa->state != SFC_ADAPTER_STARTED)
1361 goto fail_not_started;
1362
1363 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1364 goto fail_not_setup;
1365
1366 rc = sfc_tx_qstart(sa, tx_queue_id);
1367 if (rc != 0)
1368 goto fail_tx_qstart;
1369
1370 sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1371
1372 sfc_adapter_unlock(sa);
1373 return 0;
1374
1375 fail_tx_qstart:
1376
1377 fail_not_setup:
1378 fail_not_started:
1379 sfc_adapter_unlock(sa);
1380 SFC_ASSERT(rc > 0);
1381 return -rc;
1382 }
1383
1384 static int
sfc_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)1385 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1386 {
1387 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1388 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1389
1390 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1391
1392 sfc_adapter_lock(sa);
1393
1394 sfc_tx_qstop(sa, tx_queue_id);
1395
1396 sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1397
1398 sfc_adapter_unlock(sa);
1399 return 0;
1400 }
1401
1402 static efx_tunnel_protocol_t
sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)1403 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1404 {
1405 switch (rte_type) {
1406 case RTE_TUNNEL_TYPE_VXLAN:
1407 return EFX_TUNNEL_PROTOCOL_VXLAN;
1408 case RTE_TUNNEL_TYPE_GENEVE:
1409 return EFX_TUNNEL_PROTOCOL_GENEVE;
1410 default:
1411 return EFX_TUNNEL_NPROTOS;
1412 }
1413 }
1414
1415 enum sfc_udp_tunnel_op_e {
1416 SFC_UDP_TUNNEL_ADD_PORT,
1417 SFC_UDP_TUNNEL_DEL_PORT,
1418 };
1419
1420 static int
sfc_dev_udp_tunnel_op(struct rte_eth_dev * dev,struct rte_eth_udp_tunnel * tunnel_udp,enum sfc_udp_tunnel_op_e op)1421 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1422 struct rte_eth_udp_tunnel *tunnel_udp,
1423 enum sfc_udp_tunnel_op_e op)
1424 {
1425 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1426 efx_tunnel_protocol_t tunnel_proto;
1427 int rc;
1428
1429 sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1430 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1431 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1432 tunnel_udp->udp_port, tunnel_udp->prot_type);
1433
1434 tunnel_proto =
1435 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1436 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1437 rc = ENOTSUP;
1438 goto fail_bad_proto;
1439 }
1440
1441 sfc_adapter_lock(sa);
1442
1443 switch (op) {
1444 case SFC_UDP_TUNNEL_ADD_PORT:
1445 rc = efx_tunnel_config_udp_add(sa->nic,
1446 tunnel_udp->udp_port,
1447 tunnel_proto);
1448 break;
1449 case SFC_UDP_TUNNEL_DEL_PORT:
1450 rc = efx_tunnel_config_udp_remove(sa->nic,
1451 tunnel_udp->udp_port,
1452 tunnel_proto);
1453 break;
1454 default:
1455 rc = EINVAL;
1456 goto fail_bad_op;
1457 }
1458
1459 if (rc != 0)
1460 goto fail_op;
1461
1462 if (sa->state == SFC_ADAPTER_STARTED) {
1463 rc = efx_tunnel_reconfigure(sa->nic);
1464 if (rc == EAGAIN) {
1465 /*
1466 * Configuration is accepted by FW and MC reboot
1467 * is initiated to apply the changes. MC reboot
1468 * will be handled in a usual way (MC reboot
1469 * event on management event queue and adapter
1470 * restart).
1471 */
1472 rc = 0;
1473 } else if (rc != 0) {
1474 goto fail_reconfigure;
1475 }
1476 }
1477
1478 sfc_adapter_unlock(sa);
1479 return 0;
1480
1481 fail_reconfigure:
1482 /* Remove/restore entry since the change makes the trouble */
1483 switch (op) {
1484 case SFC_UDP_TUNNEL_ADD_PORT:
1485 (void)efx_tunnel_config_udp_remove(sa->nic,
1486 tunnel_udp->udp_port,
1487 tunnel_proto);
1488 break;
1489 case SFC_UDP_TUNNEL_DEL_PORT:
1490 (void)efx_tunnel_config_udp_add(sa->nic,
1491 tunnel_udp->udp_port,
1492 tunnel_proto);
1493 break;
1494 }
1495
1496 fail_op:
1497 fail_bad_op:
1498 sfc_adapter_unlock(sa);
1499
1500 fail_bad_proto:
1501 SFC_ASSERT(rc > 0);
1502 return -rc;
1503 }
1504
1505 static int
sfc_dev_udp_tunnel_port_add(struct rte_eth_dev * dev,struct rte_eth_udp_tunnel * tunnel_udp)1506 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1507 struct rte_eth_udp_tunnel *tunnel_udp)
1508 {
1509 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1510 }
1511
1512 static int
sfc_dev_udp_tunnel_port_del(struct rte_eth_dev * dev,struct rte_eth_udp_tunnel * tunnel_udp)1513 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1514 struct rte_eth_udp_tunnel *tunnel_udp)
1515 {
1516 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1517 }
1518
1519 /*
1520 * The function is used by the secondary process as well. It must not
1521 * use any process-local pointers from the adapter data.
1522 */
1523 static int
sfc_dev_rss_hash_conf_get(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1524 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1525 struct rte_eth_rss_conf *rss_conf)
1526 {
1527 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1528 struct sfc_rss *rss = &sas->rss;
1529
1530 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1531 return -ENOTSUP;
1532
1533 /*
1534 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1535 * hence, conversion is done here to derive a correct set of ETH_RSS
1536 * flags which corresponds to the active EFX configuration stored
1537 * locally in 'sfc_adapter' and kept up-to-date
1538 */
1539 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1540 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1541 if (rss_conf->rss_key != NULL)
1542 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1543
1544 return 0;
1545 }
1546
1547 static int
sfc_dev_rss_hash_update(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1548 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1549 struct rte_eth_rss_conf *rss_conf)
1550 {
1551 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1552 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1553 unsigned int efx_hash_types;
1554 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1555 unsigned int n_contexts;
1556 unsigned int mode_i = 0;
1557 unsigned int key_i = 0;
1558 unsigned int i = 0;
1559 int rc = 0;
1560
1561 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1562
1563 if (sfc_sa2shared(sa)->isolated)
1564 return -ENOTSUP;
1565
1566 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1567 sfc_err(sa, "RSS is not available");
1568 return -ENOTSUP;
1569 }
1570
1571 if (rss->channels == 0) {
1572 sfc_err(sa, "RSS is not configured");
1573 return -EINVAL;
1574 }
1575
1576 if ((rss_conf->rss_key != NULL) &&
1577 (rss_conf->rss_key_len != sizeof(rss->key))) {
1578 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1579 sizeof(rss->key));
1580 return -EINVAL;
1581 }
1582
1583 sfc_adapter_lock(sa);
1584
1585 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1586 if (rc != 0)
1587 goto fail_rx_hf_rte_to_efx;
1588
1589 for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1590 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1591 rss->hash_alg, efx_hash_types,
1592 B_TRUE);
1593 if (rc != 0)
1594 goto fail_scale_mode_set;
1595 }
1596
1597 if (rss_conf->rss_key != NULL) {
1598 if (sa->state == SFC_ADAPTER_STARTED) {
1599 for (key_i = 0; key_i < n_contexts; key_i++) {
1600 rc = efx_rx_scale_key_set(sa->nic,
1601 contexts[key_i],
1602 rss_conf->rss_key,
1603 sizeof(rss->key));
1604 if (rc != 0)
1605 goto fail_scale_key_set;
1606 }
1607 }
1608
1609 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1610 }
1611
1612 rss->hash_types = efx_hash_types;
1613
1614 sfc_adapter_unlock(sa);
1615
1616 return 0;
1617
1618 fail_scale_key_set:
1619 for (i = 0; i < key_i; i++) {
1620 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1621 sizeof(rss->key)) != 0)
1622 sfc_err(sa, "failed to restore RSS key");
1623 }
1624
1625 fail_scale_mode_set:
1626 for (i = 0; i < mode_i; i++) {
1627 if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1628 EFX_RX_HASHALG_TOEPLITZ,
1629 rss->hash_types, B_TRUE) != 0)
1630 sfc_err(sa, "failed to restore RSS mode");
1631 }
1632
1633 fail_rx_hf_rte_to_efx:
1634 sfc_adapter_unlock(sa);
1635 return -rc;
1636 }
1637
1638 /*
1639 * The function is used by the secondary process as well. It must not
1640 * use any process-local pointers from the adapter data.
1641 */
1642 static int
sfc_dev_rss_reta_query(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1643 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1644 struct rte_eth_rss_reta_entry64 *reta_conf,
1645 uint16_t reta_size)
1646 {
1647 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1648 struct sfc_rss *rss = &sas->rss;
1649 int entry;
1650
1651 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1652 return -ENOTSUP;
1653
1654 if (rss->channels == 0)
1655 return -EINVAL;
1656
1657 if (reta_size != EFX_RSS_TBL_SIZE)
1658 return -EINVAL;
1659
1660 for (entry = 0; entry < reta_size; entry++) {
1661 int grp = entry / RTE_RETA_GROUP_SIZE;
1662 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1663
1664 if ((reta_conf[grp].mask >> grp_idx) & 1)
1665 reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1666 }
1667
1668 return 0;
1669 }
1670
1671 static int
sfc_dev_rss_reta_update(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1672 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1673 struct rte_eth_rss_reta_entry64 *reta_conf,
1674 uint16_t reta_size)
1675 {
1676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1677 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1678 unsigned int *rss_tbl_new;
1679 uint16_t entry;
1680 int rc = 0;
1681
1682
1683 if (sfc_sa2shared(sa)->isolated)
1684 return -ENOTSUP;
1685
1686 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1687 sfc_err(sa, "RSS is not available");
1688 return -ENOTSUP;
1689 }
1690
1691 if (rss->channels == 0) {
1692 sfc_err(sa, "RSS is not configured");
1693 return -EINVAL;
1694 }
1695
1696 if (reta_size != EFX_RSS_TBL_SIZE) {
1697 sfc_err(sa, "RETA size is wrong (should be %u)",
1698 EFX_RSS_TBL_SIZE);
1699 return -EINVAL;
1700 }
1701
1702 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1703 if (rss_tbl_new == NULL)
1704 return -ENOMEM;
1705
1706 sfc_adapter_lock(sa);
1707
1708 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1709
1710 for (entry = 0; entry < reta_size; entry++) {
1711 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1712 struct rte_eth_rss_reta_entry64 *grp;
1713
1714 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1715
1716 if (grp->mask & (1ull << grp_idx)) {
1717 if (grp->reta[grp_idx] >= rss->channels) {
1718 rc = EINVAL;
1719 goto bad_reta_entry;
1720 }
1721 rss_tbl_new[entry] = grp->reta[grp_idx];
1722 }
1723 }
1724
1725 if (sa->state == SFC_ADAPTER_STARTED) {
1726 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1727 rss_tbl_new, EFX_RSS_TBL_SIZE);
1728 if (rc != 0)
1729 goto fail_scale_tbl_set;
1730 }
1731
1732 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1733
1734 fail_scale_tbl_set:
1735 bad_reta_entry:
1736 sfc_adapter_unlock(sa);
1737
1738 rte_free(rss_tbl_new);
1739
1740 SFC_ASSERT(rc >= 0);
1741 return -rc;
1742 }
1743
1744 static int
sfc_dev_filter_ctrl(struct rte_eth_dev * dev,enum rte_filter_type filter_type,enum rte_filter_op filter_op,void * arg)1745 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1746 enum rte_filter_op filter_op,
1747 void *arg)
1748 {
1749 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1750 int rc = ENOTSUP;
1751
1752 sfc_log_init(sa, "entry");
1753
1754 switch (filter_type) {
1755 case RTE_ETH_FILTER_GENERIC:
1756 if (filter_op != RTE_ETH_FILTER_GET) {
1757 rc = EINVAL;
1758 } else {
1759 *(const void **)arg = &sfc_flow_ops;
1760 rc = 0;
1761 }
1762 break;
1763 default:
1764 sfc_err(sa, "Unknown filter type %u", filter_type);
1765 break;
1766 }
1767
1768 sfc_log_init(sa, "exit: %d", -rc);
1769 SFC_ASSERT(rc >= 0);
1770 return -rc;
1771 }
1772
1773 static int
sfc_pool_ops_supported(struct rte_eth_dev * dev,const char * pool)1774 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1775 {
1776 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1777
1778 /*
1779 * If Rx datapath does not provide callback to check mempool,
1780 * all pools are supported.
1781 */
1782 if (sap->dp_rx->pool_ops_supported == NULL)
1783 return 1;
1784
1785 return sap->dp_rx->pool_ops_supported(pool);
1786 }
1787
1788 static int
sfc_rx_queue_intr_enable(struct rte_eth_dev * dev,uint16_t queue_id)1789 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1790 {
1791 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1792 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1793 struct sfc_rxq_info *rxq_info;
1794
1795 SFC_ASSERT(queue_id < sas->rxq_count);
1796 rxq_info = &sas->rxq_info[queue_id];
1797
1798 return sap->dp_rx->intr_enable(rxq_info->dp);
1799 }
1800
1801 static int
sfc_rx_queue_intr_disable(struct rte_eth_dev * dev,uint16_t queue_id)1802 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1803 {
1804 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1805 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1806 struct sfc_rxq_info *rxq_info;
1807
1808 SFC_ASSERT(queue_id < sas->rxq_count);
1809 rxq_info = &sas->rxq_info[queue_id];
1810
1811 return sap->dp_rx->intr_disable(rxq_info->dp);
1812 }
1813
1814 static const struct eth_dev_ops sfc_eth_dev_ops = {
1815 .dev_configure = sfc_dev_configure,
1816 .dev_start = sfc_dev_start,
1817 .dev_stop = sfc_dev_stop,
1818 .dev_set_link_up = sfc_dev_set_link_up,
1819 .dev_set_link_down = sfc_dev_set_link_down,
1820 .dev_close = sfc_dev_close,
1821 .promiscuous_enable = sfc_dev_promisc_enable,
1822 .promiscuous_disable = sfc_dev_promisc_disable,
1823 .allmulticast_enable = sfc_dev_allmulti_enable,
1824 .allmulticast_disable = sfc_dev_allmulti_disable,
1825 .link_update = sfc_dev_link_update,
1826 .stats_get = sfc_stats_get,
1827 .stats_reset = sfc_stats_reset,
1828 .xstats_get = sfc_xstats_get,
1829 .xstats_reset = sfc_stats_reset,
1830 .xstats_get_names = sfc_xstats_get_names,
1831 .dev_infos_get = sfc_dev_infos_get,
1832 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
1833 .mtu_set = sfc_dev_set_mtu,
1834 .rx_queue_start = sfc_rx_queue_start,
1835 .rx_queue_stop = sfc_rx_queue_stop,
1836 .tx_queue_start = sfc_tx_queue_start,
1837 .tx_queue_stop = sfc_tx_queue_stop,
1838 .rx_queue_setup = sfc_rx_queue_setup,
1839 .rx_queue_release = sfc_rx_queue_release,
1840 .rx_queue_intr_enable = sfc_rx_queue_intr_enable,
1841 .rx_queue_intr_disable = sfc_rx_queue_intr_disable,
1842 .tx_queue_setup = sfc_tx_queue_setup,
1843 .tx_queue_release = sfc_tx_queue_release,
1844 .flow_ctrl_get = sfc_flow_ctrl_get,
1845 .flow_ctrl_set = sfc_flow_ctrl_set,
1846 .mac_addr_set = sfc_mac_addr_set,
1847 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
1848 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
1849 .reta_update = sfc_dev_rss_reta_update,
1850 .reta_query = sfc_dev_rss_reta_query,
1851 .rss_hash_update = sfc_dev_rss_hash_update,
1852 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
1853 .filter_ctrl = sfc_dev_filter_ctrl,
1854 .set_mc_addr_list = sfc_set_mc_addr_list,
1855 .rxq_info_get = sfc_rx_queue_info_get,
1856 .txq_info_get = sfc_tx_queue_info_get,
1857 .fw_version_get = sfc_fw_version_get,
1858 .xstats_get_by_id = sfc_xstats_get_by_id,
1859 .xstats_get_names_by_id = sfc_xstats_get_names_by_id,
1860 .pool_ops_supported = sfc_pool_ops_supported,
1861 };
1862
1863 /**
1864 * Duplicate a string in potentially shared memory required for
1865 * multi-process support.
1866 *
1867 * strdup() allocates from process-local heap/memory.
1868 */
1869 static char *
sfc_strdup(const char * str)1870 sfc_strdup(const char *str)
1871 {
1872 size_t size;
1873 char *copy;
1874
1875 if (str == NULL)
1876 return NULL;
1877
1878 size = strlen(str) + 1;
1879 copy = rte_malloc(__func__, size, 0);
1880 if (copy != NULL)
1881 rte_memcpy(copy, str, size);
1882
1883 return copy;
1884 }
1885
1886 static int
sfc_eth_dev_set_ops(struct rte_eth_dev * dev)1887 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1888 {
1889 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1890 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1891 const struct sfc_dp_rx *dp_rx;
1892 const struct sfc_dp_tx *dp_tx;
1893 const efx_nic_cfg_t *encp;
1894 unsigned int avail_caps = 0;
1895 const char *rx_name = NULL;
1896 const char *tx_name = NULL;
1897 int rc;
1898
1899 switch (sa->family) {
1900 case EFX_FAMILY_HUNTINGTON:
1901 case EFX_FAMILY_MEDFORD:
1902 case EFX_FAMILY_MEDFORD2:
1903 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1904 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1905 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1906 break;
1907 case EFX_FAMILY_RIVERHEAD:
1908 avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1909 break;
1910 default:
1911 break;
1912 }
1913
1914 encp = efx_nic_cfg_get(sa->nic);
1915 if (encp->enc_rx_es_super_buffer_supported)
1916 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1917
1918 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1919 sfc_kvarg_string_handler, &rx_name);
1920 if (rc != 0)
1921 goto fail_kvarg_rx_datapath;
1922
1923 if (rx_name != NULL) {
1924 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1925 if (dp_rx == NULL) {
1926 sfc_err(sa, "Rx datapath %s not found", rx_name);
1927 rc = ENOENT;
1928 goto fail_dp_rx;
1929 }
1930 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1931 sfc_err(sa,
1932 "Insufficient Hw/FW capabilities to use Rx datapath %s",
1933 rx_name);
1934 rc = EINVAL;
1935 goto fail_dp_rx_caps;
1936 }
1937 } else {
1938 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1939 if (dp_rx == NULL) {
1940 sfc_err(sa, "Rx datapath by caps %#x not found",
1941 avail_caps);
1942 rc = ENOENT;
1943 goto fail_dp_rx;
1944 }
1945 }
1946
1947 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1948 if (sas->dp_rx_name == NULL) {
1949 rc = ENOMEM;
1950 goto fail_dp_rx_name;
1951 }
1952
1953 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1954
1955 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1956 sfc_kvarg_string_handler, &tx_name);
1957 if (rc != 0)
1958 goto fail_kvarg_tx_datapath;
1959
1960 if (tx_name != NULL) {
1961 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1962 if (dp_tx == NULL) {
1963 sfc_err(sa, "Tx datapath %s not found", tx_name);
1964 rc = ENOENT;
1965 goto fail_dp_tx;
1966 }
1967 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1968 sfc_err(sa,
1969 "Insufficient Hw/FW capabilities to use Tx datapath %s",
1970 tx_name);
1971 rc = EINVAL;
1972 goto fail_dp_tx_caps;
1973 }
1974 } else {
1975 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1976 if (dp_tx == NULL) {
1977 sfc_err(sa, "Tx datapath by caps %#x not found",
1978 avail_caps);
1979 rc = ENOENT;
1980 goto fail_dp_tx;
1981 }
1982 }
1983
1984 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1985 if (sas->dp_tx_name == NULL) {
1986 rc = ENOMEM;
1987 goto fail_dp_tx_name;
1988 }
1989
1990 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1991
1992 sa->priv.dp_rx = dp_rx;
1993 sa->priv.dp_tx = dp_tx;
1994
1995 dev->rx_pkt_burst = dp_rx->pkt_burst;
1996 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1997 dev->tx_pkt_burst = dp_tx->pkt_burst;
1998
1999 dev->rx_queue_count = sfc_rx_queue_count;
2000 dev->rx_descriptor_done = sfc_rx_descriptor_done;
2001 dev->rx_descriptor_status = sfc_rx_descriptor_status;
2002 dev->tx_descriptor_status = sfc_tx_descriptor_status;
2003 dev->dev_ops = &sfc_eth_dev_ops;
2004
2005 return 0;
2006
2007 fail_dp_tx_name:
2008 fail_dp_tx_caps:
2009 fail_dp_tx:
2010 fail_kvarg_tx_datapath:
2011 rte_free(sas->dp_rx_name);
2012 sas->dp_rx_name = NULL;
2013
2014 fail_dp_rx_name:
2015 fail_dp_rx_caps:
2016 fail_dp_rx:
2017 fail_kvarg_rx_datapath:
2018 return rc;
2019 }
2020
2021 static void
sfc_eth_dev_clear_ops(struct rte_eth_dev * dev)2022 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2023 {
2024 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2025 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2026
2027 dev->dev_ops = NULL;
2028 dev->tx_pkt_prepare = NULL;
2029 dev->rx_pkt_burst = NULL;
2030 dev->tx_pkt_burst = NULL;
2031
2032 rte_free(sas->dp_tx_name);
2033 sas->dp_tx_name = NULL;
2034 sa->priv.dp_tx = NULL;
2035
2036 rte_free(sas->dp_rx_name);
2037 sas->dp_rx_name = NULL;
2038 sa->priv.dp_rx = NULL;
2039 }
2040
2041 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2042 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
2043 .reta_query = sfc_dev_rss_reta_query,
2044 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
2045 .rxq_info_get = sfc_rx_queue_info_get,
2046 .txq_info_get = sfc_tx_queue_info_get,
2047 };
2048
2049 static int
sfc_eth_dev_secondary_init(struct rte_eth_dev * dev,uint32_t logtype_main)2050 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2051 {
2052 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2053 struct sfc_adapter_priv *sap;
2054 const struct sfc_dp_rx *dp_rx;
2055 const struct sfc_dp_tx *dp_tx;
2056 int rc;
2057
2058 /*
2059 * Allocate process private data from heap, since it should not
2060 * be located in shared memory allocated using rte_malloc() API.
2061 */
2062 sap = calloc(1, sizeof(*sap));
2063 if (sap == NULL) {
2064 rc = ENOMEM;
2065 goto fail_alloc_priv;
2066 }
2067
2068 sap->logtype_main = logtype_main;
2069
2070 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2071 if (dp_rx == NULL) {
2072 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2073 "cannot find %s Rx datapath", sas->dp_rx_name);
2074 rc = ENOENT;
2075 goto fail_dp_rx;
2076 }
2077 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2078 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2079 "%s Rx datapath does not support multi-process",
2080 sas->dp_rx_name);
2081 rc = EINVAL;
2082 goto fail_dp_rx_multi_process;
2083 }
2084
2085 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2086 if (dp_tx == NULL) {
2087 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2088 "cannot find %s Tx datapath", sas->dp_tx_name);
2089 rc = ENOENT;
2090 goto fail_dp_tx;
2091 }
2092 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2093 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2094 "%s Tx datapath does not support multi-process",
2095 sas->dp_tx_name);
2096 rc = EINVAL;
2097 goto fail_dp_tx_multi_process;
2098 }
2099
2100 sap->dp_rx = dp_rx;
2101 sap->dp_tx = dp_tx;
2102
2103 dev->process_private = sap;
2104 dev->rx_pkt_burst = dp_rx->pkt_burst;
2105 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2106 dev->tx_pkt_burst = dp_tx->pkt_burst;
2107 dev->rx_queue_count = sfc_rx_queue_count;
2108 dev->rx_descriptor_done = sfc_rx_descriptor_done;
2109 dev->rx_descriptor_status = sfc_rx_descriptor_status;
2110 dev->tx_descriptor_status = sfc_tx_descriptor_status;
2111 dev->dev_ops = &sfc_eth_dev_secondary_ops;
2112
2113 return 0;
2114
2115 fail_dp_tx_multi_process:
2116 fail_dp_tx:
2117 fail_dp_rx_multi_process:
2118 fail_dp_rx:
2119 free(sap);
2120
2121 fail_alloc_priv:
2122 return rc;
2123 }
2124
2125 static void
sfc_register_dp(void)2126 sfc_register_dp(void)
2127 {
2128 /* Register once */
2129 if (TAILQ_EMPTY(&sfc_dp_head)) {
2130 /* Prefer EF10 datapath */
2131 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2132 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2133 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2134 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2135
2136 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2137 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2138 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2139 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2140 }
2141 }
2142
2143 static int
sfc_eth_dev_init(struct rte_eth_dev * dev)2144 sfc_eth_dev_init(struct rte_eth_dev *dev)
2145 {
2146 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2147 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2148 uint32_t logtype_main;
2149 struct sfc_adapter *sa;
2150 int rc;
2151 const efx_nic_cfg_t *encp;
2152 const struct rte_ether_addr *from;
2153 int ret;
2154
2155 sfc_register_dp();
2156
2157 logtype_main = sfc_register_logtype(&pci_dev->addr,
2158 SFC_LOGTYPE_MAIN_STR,
2159 RTE_LOG_NOTICE);
2160
2161 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2162 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2163
2164 /* Required for logging */
2165 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2166 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2167 pci_dev->addr.domain, pci_dev->addr.bus,
2168 pci_dev->addr.devid, pci_dev->addr.function,
2169 dev->data->port_id);
2170 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2171 SFC_GENERIC_LOG(ERR,
2172 "reserved log prefix is too short for " PCI_PRI_FMT,
2173 pci_dev->addr.domain, pci_dev->addr.bus,
2174 pci_dev->addr.devid, pci_dev->addr.function);
2175 return -EINVAL;
2176 }
2177 sas->pci_addr = pci_dev->addr;
2178 sas->port_id = dev->data->port_id;
2179
2180 /*
2181 * Allocate process private data from heap, since it should not
2182 * be located in shared memory allocated using rte_malloc() API.
2183 */
2184 sa = calloc(1, sizeof(*sa));
2185 if (sa == NULL) {
2186 rc = ENOMEM;
2187 goto fail_alloc_sa;
2188 }
2189
2190 dev->process_private = sa;
2191
2192 /* Required for logging */
2193 sa->priv.shared = sas;
2194 sa->priv.logtype_main = logtype_main;
2195
2196 sa->eth_dev = dev;
2197
2198 /* Copy PCI device info to the dev->data */
2199 rte_eth_copy_pci_info(dev, pci_dev);
2200 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2201 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2202
2203 rc = sfc_kvargs_parse(sa);
2204 if (rc != 0)
2205 goto fail_kvargs_parse;
2206
2207 sfc_log_init(sa, "entry");
2208
2209 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2210 if (dev->data->mac_addrs == NULL) {
2211 rc = ENOMEM;
2212 goto fail_mac_addrs;
2213 }
2214
2215 sfc_adapter_lock_init(sa);
2216 sfc_adapter_lock(sa);
2217
2218 sfc_log_init(sa, "probing");
2219 rc = sfc_probe(sa);
2220 if (rc != 0)
2221 goto fail_probe;
2222
2223 sfc_log_init(sa, "set device ops");
2224 rc = sfc_eth_dev_set_ops(dev);
2225 if (rc != 0)
2226 goto fail_set_ops;
2227
2228 sfc_log_init(sa, "attaching");
2229 rc = sfc_attach(sa);
2230 if (rc != 0)
2231 goto fail_attach;
2232
2233 encp = efx_nic_cfg_get(sa->nic);
2234
2235 /*
2236 * The arguments are really reverse order in comparison to
2237 * Linux kernel. Copy from NIC config to Ethernet device data.
2238 */
2239 from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2240 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2241
2242 sfc_adapter_unlock(sa);
2243
2244 sfc_log_init(sa, "done");
2245 return 0;
2246
2247 fail_attach:
2248 sfc_eth_dev_clear_ops(dev);
2249
2250 fail_set_ops:
2251 sfc_unprobe(sa);
2252
2253 fail_probe:
2254 sfc_adapter_unlock(sa);
2255 sfc_adapter_lock_fini(sa);
2256 rte_free(dev->data->mac_addrs);
2257 dev->data->mac_addrs = NULL;
2258
2259 fail_mac_addrs:
2260 sfc_kvargs_cleanup(sa);
2261
2262 fail_kvargs_parse:
2263 sfc_log_init(sa, "failed %d", rc);
2264 dev->process_private = NULL;
2265 free(sa);
2266
2267 fail_alloc_sa:
2268 SFC_ASSERT(rc > 0);
2269 return -rc;
2270 }
2271
2272 static int
sfc_eth_dev_uninit(struct rte_eth_dev * dev)2273 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2274 {
2275 sfc_dev_close(dev);
2276
2277 return 0;
2278 }
2279
2280 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2281 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2282 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2283 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2284 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2285 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2286 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2287 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2288 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2289 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2290 { .vendor_id = 0 /* sentinel */ }
2291 };
2292
sfc_eth_dev_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)2293 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2294 struct rte_pci_device *pci_dev)
2295 {
2296 return rte_eth_dev_pci_generic_probe(pci_dev,
2297 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2298 }
2299
sfc_eth_dev_pci_remove(struct rte_pci_device * pci_dev)2300 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2301 {
2302 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2303 }
2304
2305 static struct rte_pci_driver sfc_efx_pmd = {
2306 .id_table = pci_id_sfc_efx_map,
2307 .drv_flags =
2308 RTE_PCI_DRV_INTR_LSC |
2309 RTE_PCI_DRV_NEED_MAPPING,
2310 .probe = sfc_eth_dev_pci_probe,
2311 .remove = sfc_eth_dev_pci_remove,
2312 };
2313
2314 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2315 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2316 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2317 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2318 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2319 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2320 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2321 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2322 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2323 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2324
RTE_INIT(sfc_driver_register_logtype)2325 RTE_INIT(sfc_driver_register_logtype)
2326 {
2327 int ret;
2328
2329 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2330 RTE_LOG_NOTICE);
2331 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2332 }
2333