1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes implement wrappers around llvm::Value in order to
11 // fully represent the range of values for C L- and R- values.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
16 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
17
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Type.h"
20 #include "llvm/IR/Value.h"
21 #include "llvm/IR/Type.h"
22 #include "Address.h"
23 #include "CodeGenTBAA.h"
24
25 namespace llvm {
26 class Constant;
27 class MDNode;
28 }
29
30 namespace clang {
31 namespace CodeGen {
32 class AggValueSlot;
33 struct CGBitFieldInfo;
34
35 /// RValue - This trivial value class is used to represent the result of an
36 /// expression that is evaluated. It can be one of three things: either a
37 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
38 /// address of an aggregate value in memory.
39 class RValue {
40 enum Flavor { Scalar, Complex, Aggregate };
41
42 // The shift to make to an aggregate's alignment to make it look
43 // like a pointer.
44 enum { AggAlignShift = 4 };
45
46 // Stores first value and flavor.
47 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
48 // Stores second value and volatility.
49 llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
50
51 public:
isScalar()52 bool isScalar() const { return V1.getInt() == Scalar; }
isComplex()53 bool isComplex() const { return V1.getInt() == Complex; }
isAggregate()54 bool isAggregate() const { return V1.getInt() == Aggregate; }
55
isVolatileQualified()56 bool isVolatileQualified() const { return V2.getInt(); }
57
58 /// getScalarVal() - Return the Value* of this scalar value.
getScalarVal()59 llvm::Value *getScalarVal() const {
60 assert(isScalar() && "Not a scalar!");
61 return V1.getPointer();
62 }
63
64 /// getComplexVal - Return the real/imag components of this complex value.
65 ///
getComplexVal()66 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
67 return std::make_pair(V1.getPointer(), V2.getPointer());
68 }
69
70 /// getAggregateAddr() - Return the Value* of the address of the aggregate.
getAggregateAddress()71 Address getAggregateAddress() const {
72 assert(isAggregate() && "Not an aggregate!");
73 auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
74 return Address(V1.getPointer(), CharUnits::fromQuantity(align));
75 }
getAggregatePointer()76 llvm::Value *getAggregatePointer() const {
77 assert(isAggregate() && "Not an aggregate!");
78 return V1.getPointer();
79 }
80
getIgnored()81 static RValue getIgnored() {
82 // FIXME: should we make this a more explicit state?
83 return get(nullptr);
84 }
85
get(llvm::Value * V)86 static RValue get(llvm::Value *V) {
87 RValue ER;
88 ER.V1.setPointer(V);
89 ER.V1.setInt(Scalar);
90 ER.V2.setInt(false);
91 return ER;
92 }
getComplex(llvm::Value * V1,llvm::Value * V2)93 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
94 RValue ER;
95 ER.V1.setPointer(V1);
96 ER.V2.setPointer(V2);
97 ER.V1.setInt(Complex);
98 ER.V2.setInt(false);
99 return ER;
100 }
getComplex(const std::pair<llvm::Value *,llvm::Value * > & C)101 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
102 return getComplex(C.first, C.second);
103 }
104 // FIXME: Aggregate rvalues need to retain information about whether they are
105 // volatile or not. Remove default to find all places that probably get this
106 // wrong.
107 static RValue getAggregate(Address addr, bool isVolatile = false) {
108 RValue ER;
109 ER.V1.setPointer(addr.getPointer());
110 ER.V1.setInt(Aggregate);
111
112 auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
113 ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
114 ER.V2.setInt(isVolatile);
115 return ER;
116 }
117 };
118
119 /// Does an ARC strong l-value have precise lifetime?
120 enum ARCPreciseLifetime_t {
121 ARCImpreciseLifetime, ARCPreciseLifetime
122 };
123
124 /// The source of the alignment of an l-value; an expression of
125 /// confidence in the alignment actually matching the estimate.
126 enum class AlignmentSource {
127 /// The l-value was an access to a declared entity or something
128 /// equivalently strong, like the address of an array allocated by a
129 /// language runtime.
130 Decl,
131
132 /// The l-value was considered opaque, so the alignment was
133 /// determined from a type, but that type was an explicitly-aligned
134 /// typedef.
135 AttributedType,
136
137 /// The l-value was considered opaque, so the alignment was
138 /// determined from a type.
139 Type
140 };
141
142 /// Given that the base address has the given alignment source, what's
143 /// our confidence in the alignment of the field?
getFieldAlignmentSource(AlignmentSource Source)144 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
145 // For now, we don't distinguish fields of opaque pointers from
146 // top-level declarations, but maybe we should.
147 return AlignmentSource::Decl;
148 }
149
150 class LValueBaseInfo {
151 AlignmentSource AlignSource;
152
153 public:
154 explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
AlignSource(Source)155 : AlignSource(Source) {}
getAlignmentSource()156 AlignmentSource getAlignmentSource() const { return AlignSource; }
setAlignmentSource(AlignmentSource Source)157 void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
158
mergeForCast(const LValueBaseInfo & Info)159 void mergeForCast(const LValueBaseInfo &Info) {
160 setAlignmentSource(Info.getAlignmentSource());
161 }
162 };
163
164 /// LValue - This represents an lvalue references. Because C/C++ allow
165 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
166 /// bitrange.
167 class LValue {
168 enum {
169 Simple, // This is a normal l-value, use getAddress().
170 VectorElt, // This is a vector element l-value (V[i]), use getVector*
171 BitField, // This is a bitfield l-value, use getBitfield*.
172 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
173 GlobalReg // This is a register l-value, use getGlobalReg()
174 } LVType;
175
176 llvm::Value *V;
177
178 union {
179 // Index into a vector subscript: V[i]
180 llvm::Value *VectorIdx;
181
182 // ExtVector element subset: V.xyx
183 llvm::Constant *VectorElts;
184
185 // BitField start bit and size
186 const CGBitFieldInfo *BitFieldInfo;
187 };
188
189 QualType Type;
190
191 // 'const' is unused here
192 Qualifiers Quals;
193
194 // The alignment to use when accessing this lvalue. (For vector elements,
195 // this is the alignment of the whole vector.)
196 unsigned Alignment;
197
198 // objective-c's ivar
199 bool Ivar:1;
200
201 // objective-c's ivar is an array
202 bool ObjIsArray:1;
203
204 // LValue is non-gc'able for any reason, including being a parameter or local
205 // variable.
206 bool NonGC: 1;
207
208 // Lvalue is a global reference of an objective-c object
209 bool GlobalObjCRef : 1;
210
211 // Lvalue is a thread local reference
212 bool ThreadLocalRef : 1;
213
214 // Lvalue has ARC imprecise lifetime. We store this inverted to try
215 // to make the default bitfield pattern all-zeroes.
216 bool ImpreciseLifetime : 1;
217
218 // This flag shows if a nontemporal load/stores should be used when accessing
219 // this lvalue.
220 bool Nontemporal : 1;
221
222 LValueBaseInfo BaseInfo;
223 TBAAAccessInfo TBAAInfo;
224
225 Expr *BaseIvarExp;
226
227 private:
Initialize(QualType Type,Qualifiers Quals,CharUnits Alignment,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo)228 void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
229 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
230 assert((!Alignment.isZero() || Type->isIncompleteType()) &&
231 "initializing l-value with zero alignment!");
232 this->Type = Type;
233 this->Quals = Quals;
234 const unsigned MaxAlign = 1U << 31;
235 this->Alignment = Alignment.getQuantity() <= MaxAlign
236 ? Alignment.getQuantity()
237 : MaxAlign;
238 assert(this->Alignment == Alignment.getQuantity() &&
239 "Alignment exceeds allowed max!");
240 this->BaseInfo = BaseInfo;
241 this->TBAAInfo = TBAAInfo;
242
243 // Initialize Objective-C flags.
244 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
245 this->ImpreciseLifetime = false;
246 this->Nontemporal = false;
247 this->ThreadLocalRef = false;
248 this->BaseIvarExp = nullptr;
249 }
250
251 public:
isSimple()252 bool isSimple() const { return LVType == Simple; }
isVectorElt()253 bool isVectorElt() const { return LVType == VectorElt; }
isBitField()254 bool isBitField() const { return LVType == BitField; }
isExtVectorElt()255 bool isExtVectorElt() const { return LVType == ExtVectorElt; }
isGlobalReg()256 bool isGlobalReg() const { return LVType == GlobalReg; }
257
isVolatileQualified()258 bool isVolatileQualified() const { return Quals.hasVolatile(); }
isRestrictQualified()259 bool isRestrictQualified() const { return Quals.hasRestrict(); }
getVRQualifiers()260 unsigned getVRQualifiers() const {
261 return Quals.getCVRQualifiers() & ~Qualifiers::Const;
262 }
263
getType()264 QualType getType() const { return Type; }
265
getObjCLifetime()266 Qualifiers::ObjCLifetime getObjCLifetime() const {
267 return Quals.getObjCLifetime();
268 }
269
isObjCIvar()270 bool isObjCIvar() const { return Ivar; }
setObjCIvar(bool Value)271 void setObjCIvar(bool Value) { Ivar = Value; }
272
isObjCArray()273 bool isObjCArray() const { return ObjIsArray; }
setObjCArray(bool Value)274 void setObjCArray(bool Value) { ObjIsArray = Value; }
275
isNonGC()276 bool isNonGC () const { return NonGC; }
setNonGC(bool Value)277 void setNonGC(bool Value) { NonGC = Value; }
278
isGlobalObjCRef()279 bool isGlobalObjCRef() const { return GlobalObjCRef; }
setGlobalObjCRef(bool Value)280 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
281
isThreadLocalRef()282 bool isThreadLocalRef() const { return ThreadLocalRef; }
setThreadLocalRef(bool Value)283 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
284
isARCPreciseLifetime()285 ARCPreciseLifetime_t isARCPreciseLifetime() const {
286 return ARCPreciseLifetime_t(!ImpreciseLifetime);
287 }
setARCPreciseLifetime(ARCPreciseLifetime_t value)288 void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
289 ImpreciseLifetime = (value == ARCImpreciseLifetime);
290 }
isNontemporal()291 bool isNontemporal() const { return Nontemporal; }
setNontemporal(bool Value)292 void setNontemporal(bool Value) { Nontemporal = Value; }
293
isObjCWeak()294 bool isObjCWeak() const {
295 return Quals.getObjCGCAttr() == Qualifiers::Weak;
296 }
isObjCStrong()297 bool isObjCStrong() const {
298 return Quals.getObjCGCAttr() == Qualifiers::Strong;
299 }
300
isVolatile()301 bool isVolatile() const {
302 return Quals.hasVolatile();
303 }
304
getBaseIvarExp()305 Expr *getBaseIvarExp() const { return BaseIvarExp; }
setBaseIvarExp(Expr * V)306 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
307
getTBAAInfo()308 TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
setTBAAInfo(TBAAAccessInfo Info)309 void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
310
getQuals()311 const Qualifiers &getQuals() const { return Quals; }
getQuals()312 Qualifiers &getQuals() { return Quals; }
313
getAddressSpace()314 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
315
getAlignment()316 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
setAlignment(CharUnits A)317 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
318
getBaseInfo()319 LValueBaseInfo getBaseInfo() const { return BaseInfo; }
setBaseInfo(LValueBaseInfo Info)320 void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
321
322 // simple lvalue
getPointer()323 llvm::Value *getPointer() const {
324 assert(isSimple());
325 return V;
326 }
getAddress()327 Address getAddress() const { return Address(getPointer(), getAlignment()); }
setAddress(Address address)328 void setAddress(Address address) {
329 assert(isSimple());
330 V = address.getPointer();
331 Alignment = address.getAlignment().getQuantity();
332 }
333
334 // vector elt lvalue
getVectorAddress()335 Address getVectorAddress() const {
336 return Address(getVectorPointer(), getAlignment());
337 }
getVectorPointer()338 llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
getVectorIdx()339 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
340
341 // extended vector elements.
getExtVectorAddress()342 Address getExtVectorAddress() const {
343 return Address(getExtVectorPointer(), getAlignment());
344 }
getExtVectorPointer()345 llvm::Value *getExtVectorPointer() const {
346 assert(isExtVectorElt());
347 return V;
348 }
getExtVectorElts()349 llvm::Constant *getExtVectorElts() const {
350 assert(isExtVectorElt());
351 return VectorElts;
352 }
353
354 // bitfield lvalue
getBitFieldAddress()355 Address getBitFieldAddress() const {
356 return Address(getBitFieldPointer(), getAlignment());
357 }
getBitFieldPointer()358 llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
getBitFieldInfo()359 const CGBitFieldInfo &getBitFieldInfo() const {
360 assert(isBitField());
361 return *BitFieldInfo;
362 }
363
364 // global register lvalue
getGlobalReg()365 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
366
MakeAddr(Address address,QualType type,ASTContext & Context,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo)367 static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
368 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
369 Qualifiers qs = type.getQualifiers();
370 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
371
372 LValue R;
373 R.LVType = Simple;
374 assert(address.getPointer()->getType()->isPointerTy());
375 R.V = address.getPointer();
376 R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
377 return R;
378 }
379
MakeVectorElt(Address vecAddress,llvm::Value * Idx,QualType type,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo)380 static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
381 QualType type, LValueBaseInfo BaseInfo,
382 TBAAAccessInfo TBAAInfo) {
383 LValue R;
384 R.LVType = VectorElt;
385 R.V = vecAddress.getPointer();
386 R.VectorIdx = Idx;
387 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
388 BaseInfo, TBAAInfo);
389 return R;
390 }
391
MakeExtVectorElt(Address vecAddress,llvm::Constant * Elts,QualType type,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo)392 static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
393 QualType type, LValueBaseInfo BaseInfo,
394 TBAAAccessInfo TBAAInfo) {
395 LValue R;
396 R.LVType = ExtVectorElt;
397 R.V = vecAddress.getPointer();
398 R.VectorElts = Elts;
399 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
400 BaseInfo, TBAAInfo);
401 return R;
402 }
403
404 /// Create a new object to represent a bit-field access.
405 ///
406 /// \param Addr - The base address of the bit-field sequence this
407 /// bit-field refers to.
408 /// \param Info - The information describing how to perform the bit-field
409 /// access.
MakeBitfield(Address Addr,const CGBitFieldInfo & Info,QualType type,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo)410 static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
411 QualType type, LValueBaseInfo BaseInfo,
412 TBAAAccessInfo TBAAInfo) {
413 LValue R;
414 R.LVType = BitField;
415 R.V = Addr.getPointer();
416 R.BitFieldInfo = &Info;
417 R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
418 TBAAInfo);
419 return R;
420 }
421
MakeGlobalReg(Address Reg,QualType type)422 static LValue MakeGlobalReg(Address Reg, QualType type) {
423 LValue R;
424 R.LVType = GlobalReg;
425 R.V = Reg.getPointer();
426 R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
427 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
428 return R;
429 }
430
asAggregateRValue()431 RValue asAggregateRValue() const {
432 return RValue::getAggregate(getAddress(), isVolatileQualified());
433 }
434 };
435
436 /// An aggregate value slot.
437 class AggValueSlot {
438 /// The address.
439 llvm::Value *Addr;
440
441 // Qualifiers
442 Qualifiers Quals;
443
444 unsigned Alignment;
445
446 /// DestructedFlag - This is set to true if some external code is
447 /// responsible for setting up a destructor for the slot. Otherwise
448 /// the code which constructs it should push the appropriate cleanup.
449 bool DestructedFlag : 1;
450
451 /// ObjCGCFlag - This is set to true if writing to the memory in the
452 /// slot might require calling an appropriate Objective-C GC
453 /// barrier. The exact interaction here is unnecessarily mysterious.
454 bool ObjCGCFlag : 1;
455
456 /// ZeroedFlag - This is set to true if the memory in the slot is
457 /// known to be zero before the assignment into it. This means that
458 /// zero fields don't need to be set.
459 bool ZeroedFlag : 1;
460
461 /// AliasedFlag - This is set to true if the slot might be aliased
462 /// and it's not undefined behavior to access it through such an
463 /// alias. Note that it's always undefined behavior to access a C++
464 /// object that's under construction through an alias derived from
465 /// outside the construction process.
466 ///
467 /// This flag controls whether calls that produce the aggregate
468 /// value may be evaluated directly into the slot, or whether they
469 /// must be evaluated into an unaliased temporary and then memcpy'ed
470 /// over. Since it's invalid in general to memcpy a non-POD C++
471 /// object, it's important that this flag never be set when
472 /// evaluating an expression which constructs such an object.
473 bool AliasedFlag : 1;
474
475 /// This is set to true if the tail padding of this slot might overlap
476 /// another object that may have already been initialized (and whose
477 /// value must be preserved by this initialization). If so, we may only
478 /// store up to the dsize of the type. Otherwise we can widen stores to
479 /// the size of the type.
480 bool OverlapFlag : 1;
481
482 /// If is set to true, sanitizer checks are already generated for this address
483 /// or not required. For instance, if this address represents an object
484 /// created in 'new' expression, sanitizer checks for memory is made as a part
485 /// of 'operator new' emission and object constructor should not generate
486 /// them.
487 bool SanitizerCheckedFlag : 1;
488
489 public:
490 enum IsAliased_t { IsNotAliased, IsAliased };
491 enum IsDestructed_t { IsNotDestructed, IsDestructed };
492 enum IsZeroed_t { IsNotZeroed, IsZeroed };
493 enum Overlap_t { DoesNotOverlap, MayOverlap };
494 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
495 enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
496
497 /// ignored - Returns an aggregate value slot indicating that the
498 /// aggregate value is being ignored.
ignored()499 static AggValueSlot ignored() {
500 return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
501 DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
502 }
503
504 /// forAddr - Make a slot for an aggregate value.
505 ///
506 /// \param quals - The qualifiers that dictate how the slot should
507 /// be initialied. Only 'volatile' and the Objective-C lifetime
508 /// qualifiers matter.
509 ///
510 /// \param isDestructed - true if something else is responsible
511 /// for calling destructors on this object
512 /// \param needsGC - true if the slot is potentially located
513 /// somewhere that ObjC GC calls should be emitted for
514 static AggValueSlot forAddr(Address addr,
515 Qualifiers quals,
516 IsDestructed_t isDestructed,
517 NeedsGCBarriers_t needsGC,
518 IsAliased_t isAliased,
519 Overlap_t mayOverlap,
520 IsZeroed_t isZeroed = IsNotZeroed,
521 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
522 AggValueSlot AV;
523 if (addr.isValid()) {
524 AV.Addr = addr.getPointer();
525 AV.Alignment = addr.getAlignment().getQuantity();
526 } else {
527 AV.Addr = nullptr;
528 AV.Alignment = 0;
529 }
530 AV.Quals = quals;
531 AV.DestructedFlag = isDestructed;
532 AV.ObjCGCFlag = needsGC;
533 AV.ZeroedFlag = isZeroed;
534 AV.AliasedFlag = isAliased;
535 AV.OverlapFlag = mayOverlap;
536 AV.SanitizerCheckedFlag = isChecked;
537 return AV;
538 }
539
540 static AggValueSlot forLValue(const LValue &LV,
541 IsDestructed_t isDestructed,
542 NeedsGCBarriers_t needsGC,
543 IsAliased_t isAliased,
544 Overlap_t mayOverlap,
545 IsZeroed_t isZeroed = IsNotZeroed,
546 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
547 return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC,
548 isAliased, mayOverlap, isZeroed, isChecked);
549 }
550
isExternallyDestructed()551 IsDestructed_t isExternallyDestructed() const {
552 return IsDestructed_t(DestructedFlag);
553 }
554 void setExternallyDestructed(bool destructed = true) {
555 DestructedFlag = destructed;
556 }
557
getQualifiers()558 Qualifiers getQualifiers() const { return Quals; }
559
isVolatile()560 bool isVolatile() const {
561 return Quals.hasVolatile();
562 }
563
setVolatile(bool flag)564 void setVolatile(bool flag) {
565 if (flag)
566 Quals.addVolatile();
567 else
568 Quals.removeVolatile();
569 }
570
getObjCLifetime()571 Qualifiers::ObjCLifetime getObjCLifetime() const {
572 return Quals.getObjCLifetime();
573 }
574
requiresGCollection()575 NeedsGCBarriers_t requiresGCollection() const {
576 return NeedsGCBarriers_t(ObjCGCFlag);
577 }
578
getPointer()579 llvm::Value *getPointer() const {
580 return Addr;
581 }
582
getAddress()583 Address getAddress() const {
584 return Address(Addr, getAlignment());
585 }
586
isIgnored()587 bool isIgnored() const {
588 return Addr == nullptr;
589 }
590
getAlignment()591 CharUnits getAlignment() const {
592 return CharUnits::fromQuantity(Alignment);
593 }
594
isPotentiallyAliased()595 IsAliased_t isPotentiallyAliased() const {
596 return IsAliased_t(AliasedFlag);
597 }
598
mayOverlap()599 Overlap_t mayOverlap() const {
600 return Overlap_t(OverlapFlag);
601 }
602
isSanitizerChecked()603 bool isSanitizerChecked() const {
604 return SanitizerCheckedFlag;
605 }
606
asRValue()607 RValue asRValue() const {
608 if (isIgnored()) {
609 return RValue::getIgnored();
610 } else {
611 return RValue::getAggregate(getAddress(), isVolatile());
612 }
613 }
614
615 void setZeroed(bool V = true) { ZeroedFlag = V; }
isZeroed()616 IsZeroed_t isZeroed() const {
617 return IsZeroed_t(ZeroedFlag);
618 }
619
620 /// Get the preferred size to use when storing a value to this slot. This
621 /// is the type size unless that might overlap another object, in which
622 /// case it's the dsize.
getPreferredSize(ASTContext & Ctx,QualType Type)623 CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
624 return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
625 : Ctx.getTypeSizeInChars(Type);
626 }
627 };
628
629 } // end namespace CodeGen
630 } // end namespace clang
631
632 #endif
633