1 
2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
3 #include "sqlite3session.h"
4 #include <assert.h>
5 #include <string.h>
6 
7 #ifndef SQLITE_AMALGAMATION
8 # include "sqliteInt.h"
9 # include "vdbeInt.h"
10 #endif
11 
12 typedef struct SessionTable SessionTable;
13 typedef struct SessionChange SessionChange;
14 typedef struct SessionBuffer SessionBuffer;
15 typedef struct SessionInput SessionInput;
16 
17 /*
18 ** Minimum chunk size used by streaming versions of functions.
19 */
20 #ifndef SESSIONS_STRM_CHUNK_SIZE
21 # ifdef SQLITE_TEST
22 #   define SESSIONS_STRM_CHUNK_SIZE 64
23 # else
24 #   define SESSIONS_STRM_CHUNK_SIZE 1024
25 # endif
26 #endif
27 
28 static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE;
29 
30 typedef struct SessionHook SessionHook;
31 struct SessionHook {
32   void *pCtx;
33   int (*xOld)(void*,int,sqlite3_value**);
34   int (*xNew)(void*,int,sqlite3_value**);
35   int (*xCount)(void*);
36   int (*xDepth)(void*);
37 };
38 
39 /*
40 ** Session handle structure.
41 */
42 struct sqlite3_session {
43   sqlite3 *db;                    /* Database handle session is attached to */
44   char *zDb;                      /* Name of database session is attached to */
45   int bEnableSize;                /* True if changeset_size() enabled */
46   int bEnable;                    /* True if currently recording */
47   int bIndirect;                  /* True if all changes are indirect */
48   int bAutoAttach;                /* True to auto-attach tables */
49   int rc;                         /* Non-zero if an error has occurred */
50   void *pFilterCtx;               /* First argument to pass to xTableFilter */
51   int (*xTableFilter)(void *pCtx, const char *zTab);
52   i64 nMalloc;                    /* Number of bytes of data allocated */
53   i64 nMaxChangesetSize;
54   sqlite3_value *pZeroBlob;       /* Value containing X'' */
55   sqlite3_session *pNext;         /* Next session object on same db. */
56   SessionTable *pTable;           /* List of attached tables */
57   SessionHook hook;               /* APIs to grab new and old data with */
58 };
59 
60 /*
61 ** Instances of this structure are used to build strings or binary records.
62 */
63 struct SessionBuffer {
64   u8 *aBuf;                       /* Pointer to changeset buffer */
65   int nBuf;                       /* Size of buffer aBuf */
66   int nAlloc;                     /* Size of allocation containing aBuf */
67 };
68 
69 /*
70 ** An object of this type is used internally as an abstraction for
71 ** input data. Input data may be supplied either as a single large buffer
72 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g.
73 **  sqlite3changeset_start_strm()).
74 */
75 struct SessionInput {
76   int bNoDiscard;                 /* If true, do not discard in InputBuffer() */
77   int iCurrent;                   /* Offset in aData[] of current change */
78   int iNext;                      /* Offset in aData[] of next change */
79   u8 *aData;                      /* Pointer to buffer containing changeset */
80   int nData;                      /* Number of bytes in aData */
81 
82   SessionBuffer buf;              /* Current read buffer */
83   int (*xInput)(void*, void*, int*);        /* Input stream call (or NULL) */
84   void *pIn;                                /* First argument to xInput */
85   int bEof;                       /* Set to true after xInput finished */
86 };
87 
88 /*
89 ** Structure for changeset iterators.
90 */
91 struct sqlite3_changeset_iter {
92   SessionInput in;                /* Input buffer or stream */
93   SessionBuffer tblhdr;           /* Buffer to hold apValue/zTab/abPK/ */
94   int bPatchset;                  /* True if this is a patchset */
95   int bInvert;                    /* True to invert changeset */
96   int bSkipEmpty;                 /* Skip noop UPDATE changes */
97   int rc;                         /* Iterator error code */
98   sqlite3_stmt *pConflict;        /* Points to conflicting row, if any */
99   char *zTab;                     /* Current table */
100   int nCol;                       /* Number of columns in zTab */
101   int op;                         /* Current operation */
102   int bIndirect;                  /* True if current change was indirect */
103   u8 *abPK;                       /* Primary key array */
104   sqlite3_value **apValue;        /* old.* and new.* values */
105 };
106 
107 /*
108 ** Each session object maintains a set of the following structures, one
109 ** for each table the session object is monitoring. The structures are
110 ** stored in a linked list starting at sqlite3_session.pTable.
111 **
112 ** The keys of the SessionTable.aChange[] hash table are all rows that have
113 ** been modified in any way since the session object was attached to the
114 ** table.
115 **
116 ** The data associated with each hash-table entry is a structure containing
117 ** a subset of the initial values that the modified row contained at the
118 ** start of the session. Or no initial values if the row was inserted.
119 */
120 struct SessionTable {
121   SessionTable *pNext;
122   char *zName;                    /* Local name of table */
123   int nCol;                       /* Number of columns in table zName */
124   int bStat1;                     /* True if this is sqlite_stat1 */
125   const char **azCol;             /* Column names */
126   u8 *abPK;                       /* Array of primary key flags */
127   int nEntry;                     /* Total number of entries in hash table */
128   int nChange;                    /* Size of apChange[] array */
129   SessionChange **apChange;       /* Hash table buckets */
130 };
131 
132 /*
133 ** RECORD FORMAT:
134 **
135 ** The following record format is similar to (but not compatible with) that
136 ** used in SQLite database files. This format is used as part of the
137 ** change-set binary format, and so must be architecture independent.
138 **
139 ** Unlike the SQLite database record format, each field is self-contained -
140 ** there is no separation of header and data. Each field begins with a
141 ** single byte describing its type, as follows:
142 **
143 **       0x00: Undefined value.
144 **       0x01: Integer value.
145 **       0x02: Real value.
146 **       0x03: Text value.
147 **       0x04: Blob value.
148 **       0x05: SQL NULL value.
149 **
150 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT
151 ** and so on in sqlite3.h. For undefined and NULL values, the field consists
152 ** only of the single type byte. For other types of values, the type byte
153 ** is followed by:
154 **
155 **   Text values:
156 **     A varint containing the number of bytes in the value (encoded using
157 **     UTF-8). Followed by a buffer containing the UTF-8 representation
158 **     of the text value. There is no nul terminator.
159 **
160 **   Blob values:
161 **     A varint containing the number of bytes in the value, followed by
162 **     a buffer containing the value itself.
163 **
164 **   Integer values:
165 **     An 8-byte big-endian integer value.
166 **
167 **   Real values:
168 **     An 8-byte big-endian IEEE 754-2008 real value.
169 **
170 ** Varint values are encoded in the same way as varints in the SQLite
171 ** record format.
172 **
173 ** CHANGESET FORMAT:
174 **
175 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on
176 ** one or more tables. Operations on a single table are grouped together,
177 ** but may occur in any order (i.e. deletes, updates and inserts are all
178 ** mixed together).
179 **
180 ** Each group of changes begins with a table header:
181 **
182 **   1 byte: Constant 0x54 (capital 'T')
183 **   Varint: Number of columns in the table.
184 **   nCol bytes: 0x01 for PK columns, 0x00 otherwise.
185 **   N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
186 **
187 ** Followed by one or more changes to the table.
188 **
189 **   1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
190 **   1 byte: The "indirect-change" flag.
191 **   old.* record: (delete and update only)
192 **   new.* record: (insert and update only)
193 **
194 ** The "old.*" and "new.*" records, if present, are N field records in the
195 ** format described above under "RECORD FORMAT", where N is the number of
196 ** columns in the table. The i'th field of each record is associated with
197 ** the i'th column of the table, counting from left to right in the order
198 ** in which columns were declared in the CREATE TABLE statement.
199 **
200 ** The new.* record that is part of each INSERT change contains the values
201 ** that make up the new row. Similarly, the old.* record that is part of each
202 ** DELETE change contains the values that made up the row that was deleted
203 ** from the database. In the changeset format, the records that are part
204 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00)
205 ** fields.
206 **
207 ** Within the old.* record associated with an UPDATE change, all fields
208 ** associated with table columns that are not PRIMARY KEY columns and are
209 ** not modified by the UPDATE change are set to "undefined". Other fields
210 ** are set to the values that made up the row before the UPDATE that the
211 ** change records took place. Within the new.* record, fields associated
212 ** with table columns modified by the UPDATE change contain the new
213 ** values. Fields associated with table columns that are not modified
214 ** are set to "undefined".
215 **
216 ** PATCHSET FORMAT:
217 **
218 ** A patchset is also a collection of changes. It is similar to a changeset,
219 ** but leaves undefined those fields that are not useful if no conflict
220 ** resolution is required when applying the changeset.
221 **
222 ** Each group of changes begins with a table header:
223 **
224 **   1 byte: Constant 0x50 (capital 'P')
225 **   Varint: Number of columns in the table.
226 **   nCol bytes: 0x01 for PK columns, 0x00 otherwise.
227 **   N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
228 **
229 ** Followed by one or more changes to the table.
230 **
231 **   1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
232 **   1 byte: The "indirect-change" flag.
233 **   single record: (PK fields for DELETE, PK and modified fields for UPDATE,
234 **                   full record for INSERT).
235 **
236 ** As in the changeset format, each field of the single record that is part
237 ** of a patchset change is associated with the correspondingly positioned
238 ** table column, counting from left to right within the CREATE TABLE
239 ** statement.
240 **
241 ** For a DELETE change, all fields within the record except those associated
242 ** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the
243 ** values identifying the row to delete.
244 **
245 ** For an UPDATE change, all fields except those associated with PRIMARY KEY
246 ** columns and columns that are modified by the UPDATE are set to "undefined".
247 ** PRIMARY KEY fields contain the values identifying the table row to update,
248 ** and fields associated with modified columns contain the new column values.
249 **
250 ** The records associated with INSERT changes are in the same format as for
251 ** changesets. It is not possible for a record associated with an INSERT
252 ** change to contain a field set to "undefined".
253 **
254 ** REBASE BLOB FORMAT:
255 **
256 ** A rebase blob may be output by sqlite3changeset_apply_v2() and its
257 ** streaming equivalent for use with the sqlite3_rebaser APIs to rebase
258 ** existing changesets. A rebase blob contains one entry for each conflict
259 ** resolved using either the OMIT or REPLACE strategies within the apply_v2()
260 ** call.
261 **
262 ** The format used for a rebase blob is very similar to that used for
263 ** changesets. All entries related to a single table are grouped together.
264 **
265 ** Each group of entries begins with a table header in changeset format:
266 **
267 **   1 byte: Constant 0x54 (capital 'T')
268 **   Varint: Number of columns in the table.
269 **   nCol bytes: 0x01 for PK columns, 0x00 otherwise.
270 **   N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
271 **
272 ** Followed by one or more entries associated with the table.
273 **
274 **   1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09).
275 **   1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT.
276 **   record: (in the record format defined above).
277 **
278 ** In a rebase blob, the first field is set to SQLITE_INSERT if the change
279 ** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if
280 ** it was a DELETE. The second field is set to 0x01 if the conflict
281 ** resolution strategy was REPLACE, or 0x00 if it was OMIT.
282 **
283 ** If the change that caused the conflict was a DELETE, then the single
284 ** record is a copy of the old.* record from the original changeset. If it
285 ** was an INSERT, then the single record is a copy of the new.* record. If
286 ** the conflicting change was an UPDATE, then the single record is a copy
287 ** of the new.* record with the PK fields filled in based on the original
288 ** old.* record.
289 */
290 
291 /*
292 ** For each row modified during a session, there exists a single instance of
293 ** this structure stored in a SessionTable.aChange[] hash table.
294 */
295 struct SessionChange {
296   u8 op;                          /* One of UPDATE, DELETE, INSERT */
297   u8 bIndirect;                   /* True if this change is "indirect" */
298   int nMaxSize;                   /* Max size of eventual changeset record */
299   int nRecord;                    /* Number of bytes in buffer aRecord[] */
300   u8 *aRecord;                    /* Buffer containing old.* record */
301   SessionChange *pNext;           /* For hash-table collisions */
302 };
303 
304 /*
305 ** Write a varint with value iVal into the buffer at aBuf. Return the
306 ** number of bytes written.
307 */
sessionVarintPut(u8 * aBuf,int iVal)308 static int sessionVarintPut(u8 *aBuf, int iVal){
309   return putVarint32(aBuf, iVal);
310 }
311 
312 /*
313 ** Return the number of bytes required to store value iVal as a varint.
314 */
sessionVarintLen(int iVal)315 static int sessionVarintLen(int iVal){
316   return sqlite3VarintLen(iVal);
317 }
318 
319 /*
320 ** Read a varint value from aBuf[] into *piVal. Return the number of
321 ** bytes read.
322 */
sessionVarintGet(u8 * aBuf,int * piVal)323 static int sessionVarintGet(u8 *aBuf, int *piVal){
324   return getVarint32(aBuf, *piVal);
325 }
326 
327 /* Load an unaligned and unsigned 32-bit integer */
328 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
329 
330 /*
331 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return
332 ** the value read.
333 */
sessionGetI64(u8 * aRec)334 static sqlite3_int64 sessionGetI64(u8 *aRec){
335   u64 x = SESSION_UINT32(aRec);
336   u32 y = SESSION_UINT32(aRec+4);
337   x = (x<<32) + y;
338   return (sqlite3_int64)x;
339 }
340 
341 /*
342 ** Write a 64-bit big-endian integer value to the buffer aBuf[].
343 */
sessionPutI64(u8 * aBuf,sqlite3_int64 i)344 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){
345   aBuf[0] = (i>>56) & 0xFF;
346   aBuf[1] = (i>>48) & 0xFF;
347   aBuf[2] = (i>>40) & 0xFF;
348   aBuf[3] = (i>>32) & 0xFF;
349   aBuf[4] = (i>>24) & 0xFF;
350   aBuf[5] = (i>>16) & 0xFF;
351   aBuf[6] = (i>> 8) & 0xFF;
352   aBuf[7] = (i>> 0) & 0xFF;
353 }
354 
355 /*
356 ** This function is used to serialize the contents of value pValue (see
357 ** comment titled "RECORD FORMAT" above).
358 **
359 ** If it is non-NULL, the serialized form of the value is written to
360 ** buffer aBuf. *pnWrite is set to the number of bytes written before
361 ** returning. Or, if aBuf is NULL, the only thing this function does is
362 ** set *pnWrite.
363 **
364 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs
365 ** within a call to sqlite3_value_text() (may fail if the db is utf-16))
366 ** SQLITE_NOMEM is returned.
367 */
sessionSerializeValue(u8 * aBuf,sqlite3_value * pValue,sqlite3_int64 * pnWrite)368 static int sessionSerializeValue(
369   u8 *aBuf,                       /* If non-NULL, write serialized value here */
370   sqlite3_value *pValue,          /* Value to serialize */
371   sqlite3_int64 *pnWrite          /* IN/OUT: Increment by bytes written */
372 ){
373   int nByte;                      /* Size of serialized value in bytes */
374 
375   if( pValue ){
376     int eType;                    /* Value type (SQLITE_NULL, TEXT etc.) */
377 
378     eType = sqlite3_value_type(pValue);
379     if( aBuf ) aBuf[0] = eType;
380 
381     switch( eType ){
382       case SQLITE_NULL:
383         nByte = 1;
384         break;
385 
386       case SQLITE_INTEGER:
387       case SQLITE_FLOAT:
388         if( aBuf ){
389           /* TODO: SQLite does something special to deal with mixed-endian
390           ** floating point values (e.g. ARM7). This code probably should
391           ** too.  */
392           u64 i;
393           if( eType==SQLITE_INTEGER ){
394             i = (u64)sqlite3_value_int64(pValue);
395           }else{
396             double r;
397             assert( sizeof(double)==8 && sizeof(u64)==8 );
398             r = sqlite3_value_double(pValue);
399             memcpy(&i, &r, 8);
400           }
401           sessionPutI64(&aBuf[1], i);
402         }
403         nByte = 9;
404         break;
405 
406       default: {
407         u8 *z;
408         int n;
409         int nVarint;
410 
411         assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
412         if( eType==SQLITE_TEXT ){
413           z = (u8 *)sqlite3_value_text(pValue);
414         }else{
415           z = (u8 *)sqlite3_value_blob(pValue);
416         }
417         n = sqlite3_value_bytes(pValue);
418         if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
419         nVarint = sessionVarintLen(n);
420 
421         if( aBuf ){
422           sessionVarintPut(&aBuf[1], n);
423           if( n>0 ) memcpy(&aBuf[nVarint + 1], z, n);
424         }
425 
426         nByte = 1 + nVarint + n;
427         break;
428       }
429     }
430   }else{
431     nByte = 1;
432     if( aBuf ) aBuf[0] = '\0';
433   }
434 
435   if( pnWrite ) *pnWrite += nByte;
436   return SQLITE_OK;
437 }
438 
439 /*
440 ** Allocate and return a pointer to a buffer nByte bytes in size. If
441 ** pSession is not NULL, increase the sqlite3_session.nMalloc variable
442 ** by the number of bytes allocated.
443 */
sessionMalloc64(sqlite3_session * pSession,i64 nByte)444 static void *sessionMalloc64(sqlite3_session *pSession, i64 nByte){
445   void *pRet = sqlite3_malloc64(nByte);
446   if( pSession ) pSession->nMalloc += sqlite3_msize(pRet);
447   return pRet;
448 }
449 
450 /*
451 ** Free buffer pFree, which must have been allocated by an earlier
452 ** call to sessionMalloc64(). If pSession is not NULL, decrease the
453 ** sqlite3_session.nMalloc counter by the number of bytes freed.
454 */
sessionFree(sqlite3_session * pSession,void * pFree)455 static void sessionFree(sqlite3_session *pSession, void *pFree){
456   if( pSession ) pSession->nMalloc -= sqlite3_msize(pFree);
457   sqlite3_free(pFree);
458 }
459 
460 /*
461 ** This macro is used to calculate hash key values for data structures. In
462 ** order to use this macro, the entire data structure must be represented
463 ** as a series of unsigned integers. In order to calculate a hash-key value
464 ** for a data structure represented as three such integers, the macro may
465 ** then be used as follows:
466 **
467 **    int hash_key_value;
468 **    hash_key_value = HASH_APPEND(0, <value 1>);
469 **    hash_key_value = HASH_APPEND(hash_key_value, <value 2>);
470 **    hash_key_value = HASH_APPEND(hash_key_value, <value 3>);
471 **
472 ** In practice, the data structures this macro is used for are the primary
473 ** key values of modified rows.
474 */
475 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add)
476 
477 /*
478 ** Append the hash of the 64-bit integer passed as the second argument to the
479 ** hash-key value passed as the first. Return the new hash-key value.
480 */
sessionHashAppendI64(unsigned int h,i64 i)481 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){
482   h = HASH_APPEND(h, i & 0xFFFFFFFF);
483   return HASH_APPEND(h, (i>>32)&0xFFFFFFFF);
484 }
485 
486 /*
487 ** Append the hash of the blob passed via the second and third arguments to
488 ** the hash-key value passed as the first. Return the new hash-key value.
489 */
sessionHashAppendBlob(unsigned int h,int n,const u8 * z)490 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){
491   int i;
492   for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]);
493   return h;
494 }
495 
496 /*
497 ** Append the hash of the data type passed as the second argument to the
498 ** hash-key value passed as the first. Return the new hash-key value.
499 */
sessionHashAppendType(unsigned int h,int eType)500 static unsigned int sessionHashAppendType(unsigned int h, int eType){
501   return HASH_APPEND(h, eType);
502 }
503 
504 /*
505 ** This function may only be called from within a pre-update callback.
506 ** It calculates a hash based on the primary key values of the old.* or
507 ** new.* row currently available and, assuming no error occurs, writes it to
508 ** *piHash before returning. If the primary key contains one or more NULL
509 ** values, *pbNullPK is set to true before returning.
510 **
511 ** If an error occurs, an SQLite error code is returned and the final values
512 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned
513 ** and the output variables are set as described above.
514 */
sessionPreupdateHash(sqlite3_session * pSession,SessionTable * pTab,int bNew,int * piHash,int * pbNullPK)515 static int sessionPreupdateHash(
516   sqlite3_session *pSession,      /* Session object that owns pTab */
517   SessionTable *pTab,             /* Session table handle */
518   int bNew,                       /* True to hash the new.* PK */
519   int *piHash,                    /* OUT: Hash value */
520   int *pbNullPK                   /* OUT: True if there are NULL values in PK */
521 ){
522   unsigned int h = 0;             /* Hash value to return */
523   int i;                          /* Used to iterate through columns */
524 
525   assert( *pbNullPK==0 );
526   assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) );
527   for(i=0; i<pTab->nCol; i++){
528     if( pTab->abPK[i] ){
529       int rc;
530       int eType;
531       sqlite3_value *pVal;
532 
533       if( bNew ){
534         rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal);
535       }else{
536         rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal);
537       }
538       if( rc!=SQLITE_OK ) return rc;
539 
540       eType = sqlite3_value_type(pVal);
541       h = sessionHashAppendType(h, eType);
542       if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
543         i64 iVal;
544         if( eType==SQLITE_INTEGER ){
545           iVal = sqlite3_value_int64(pVal);
546         }else{
547           double rVal = sqlite3_value_double(pVal);
548           assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
549           memcpy(&iVal, &rVal, 8);
550         }
551         h = sessionHashAppendI64(h, iVal);
552       }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
553         const u8 *z;
554         int n;
555         if( eType==SQLITE_TEXT ){
556           z = (const u8 *)sqlite3_value_text(pVal);
557         }else{
558           z = (const u8 *)sqlite3_value_blob(pVal);
559         }
560         n = sqlite3_value_bytes(pVal);
561         if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
562         h = sessionHashAppendBlob(h, n, z);
563       }else{
564         assert( eType==SQLITE_NULL );
565         assert( pTab->bStat1==0 || i!=1 );
566         *pbNullPK = 1;
567       }
568     }
569   }
570 
571   *piHash = (h % pTab->nChange);
572   return SQLITE_OK;
573 }
574 
575 /*
576 ** The buffer that the argument points to contains a serialized SQL value.
577 ** Return the number of bytes of space occupied by the value (including
578 ** the type byte).
579 */
sessionSerialLen(u8 * a)580 static int sessionSerialLen(u8 *a){
581   int e = *a;
582   int n;
583   if( e==0 || e==0xFF ) return 1;
584   if( e==SQLITE_NULL ) return 1;
585   if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9;
586   return sessionVarintGet(&a[1], &n) + 1 + n;
587 }
588 
589 /*
590 ** Based on the primary key values stored in change aRecord, calculate a
591 ** hash key. Assume the has table has nBucket buckets. The hash keys
592 ** calculated by this function are compatible with those calculated by
593 ** sessionPreupdateHash().
594 **
595 ** The bPkOnly argument is non-zero if the record at aRecord[] is from
596 ** a patchset DELETE. In this case the non-PK fields are omitted entirely.
597 */
sessionChangeHash(SessionTable * pTab,int bPkOnly,u8 * aRecord,int nBucket)598 static unsigned int sessionChangeHash(
599   SessionTable *pTab,             /* Table handle */
600   int bPkOnly,                    /* Record consists of PK fields only */
601   u8 *aRecord,                    /* Change record */
602   int nBucket                     /* Assume this many buckets in hash table */
603 ){
604   unsigned int h = 0;             /* Value to return */
605   int i;                          /* Used to iterate through columns */
606   u8 *a = aRecord;                /* Used to iterate through change record */
607 
608   for(i=0; i<pTab->nCol; i++){
609     int eType = *a;
610     int isPK = pTab->abPK[i];
611     if( bPkOnly && isPK==0 ) continue;
612 
613     /* It is not possible for eType to be SQLITE_NULL here. The session
614     ** module does not record changes for rows with NULL values stored in
615     ** primary key columns. */
616     assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
617          || eType==SQLITE_TEXT || eType==SQLITE_BLOB
618          || eType==SQLITE_NULL || eType==0
619     );
620     assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) );
621 
622     if( isPK ){
623       a++;
624       h = sessionHashAppendType(h, eType);
625       if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
626         h = sessionHashAppendI64(h, sessionGetI64(a));
627         a += 8;
628       }else{
629         int n;
630         a += sessionVarintGet(a, &n);
631         h = sessionHashAppendBlob(h, n, a);
632         a += n;
633       }
634     }else{
635       a += sessionSerialLen(a);
636     }
637   }
638   return (h % nBucket);
639 }
640 
641 /*
642 ** Arguments aLeft and aRight are pointers to change records for table pTab.
643 ** This function returns true if the two records apply to the same row (i.e.
644 ** have the same values stored in the primary key columns), or false
645 ** otherwise.
646 */
sessionChangeEqual(SessionTable * pTab,int bLeftPkOnly,u8 * aLeft,int bRightPkOnly,u8 * aRight)647 static int sessionChangeEqual(
648   SessionTable *pTab,             /* Table used for PK definition */
649   int bLeftPkOnly,                /* True if aLeft[] contains PK fields only */
650   u8 *aLeft,                      /* Change record */
651   int bRightPkOnly,               /* True if aRight[] contains PK fields only */
652   u8 *aRight                      /* Change record */
653 ){
654   u8 *a1 = aLeft;                 /* Cursor to iterate through aLeft */
655   u8 *a2 = aRight;                /* Cursor to iterate through aRight */
656   int iCol;                       /* Used to iterate through table columns */
657 
658   for(iCol=0; iCol<pTab->nCol; iCol++){
659     if( pTab->abPK[iCol] ){
660       int n1 = sessionSerialLen(a1);
661       int n2 = sessionSerialLen(a2);
662 
663       if( n1!=n2 || memcmp(a1, a2, n1) ){
664         return 0;
665       }
666       a1 += n1;
667       a2 += n2;
668     }else{
669       if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1);
670       if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2);
671     }
672   }
673 
674   return 1;
675 }
676 
677 /*
678 ** Arguments aLeft and aRight both point to buffers containing change
679 ** records with nCol columns. This function "merges" the two records into
680 ** a single records which is written to the buffer at *paOut. *paOut is
681 ** then set to point to one byte after the last byte written before
682 ** returning.
683 **
684 ** The merging of records is done as follows: For each column, if the
685 ** aRight record contains a value for the column, copy the value from
686 ** their. Otherwise, if aLeft contains a value, copy it. If neither
687 ** record contains a value for a given column, then neither does the
688 ** output record.
689 */
sessionMergeRecord(u8 ** paOut,int nCol,u8 * aLeft,u8 * aRight)690 static void sessionMergeRecord(
691   u8 **paOut,
692   int nCol,
693   u8 *aLeft,
694   u8 *aRight
695 ){
696   u8 *a1 = aLeft;                 /* Cursor used to iterate through aLeft */
697   u8 *a2 = aRight;                /* Cursor used to iterate through aRight */
698   u8 *aOut = *paOut;              /* Output cursor */
699   int iCol;                       /* Used to iterate from 0 to nCol */
700 
701   for(iCol=0; iCol<nCol; iCol++){
702     int n1 = sessionSerialLen(a1);
703     int n2 = sessionSerialLen(a2);
704     if( *a2 ){
705       memcpy(aOut, a2, n2);
706       aOut += n2;
707     }else{
708       memcpy(aOut, a1, n1);
709       aOut += n1;
710     }
711     a1 += n1;
712     a2 += n2;
713   }
714 
715   *paOut = aOut;
716 }
717 
718 /*
719 ** This is a helper function used by sessionMergeUpdate().
720 **
721 ** When this function is called, both *paOne and *paTwo point to a value
722 ** within a change record. Before it returns, both have been advanced so
723 ** as to point to the next value in the record.
724 **
725 ** If, when this function is called, *paTwo points to a valid value (i.e.
726 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo
727 ** pointer is returned and *pnVal is set to the number of bytes in the
728 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal
729 ** set to the number of bytes in the value at *paOne. If *paOne points
730 ** to the "no value" placeholder, *pnVal is set to 1. In other words:
731 **
732 **   if( *paTwo is valid ) return *paTwo;
733 **   return *paOne;
734 **
735 */
sessionMergeValue(u8 ** paOne,u8 ** paTwo,int * pnVal)736 static u8 *sessionMergeValue(
737   u8 **paOne,                     /* IN/OUT: Left-hand buffer pointer */
738   u8 **paTwo,                     /* IN/OUT: Right-hand buffer pointer */
739   int *pnVal                      /* OUT: Bytes in returned value */
740 ){
741   u8 *a1 = *paOne;
742   u8 *a2 = *paTwo;
743   u8 *pRet = 0;
744   int n1;
745 
746   assert( a1 );
747   if( a2 ){
748     int n2 = sessionSerialLen(a2);
749     if( *a2 ){
750       *pnVal = n2;
751       pRet = a2;
752     }
753     *paTwo = &a2[n2];
754   }
755 
756   n1 = sessionSerialLen(a1);
757   if( pRet==0 ){
758     *pnVal = n1;
759     pRet = a1;
760   }
761   *paOne = &a1[n1];
762 
763   return pRet;
764 }
765 
766 /*
767 ** This function is used by changeset_concat() to merge two UPDATE changes
768 ** on the same row.
769 */
sessionMergeUpdate(u8 ** paOut,SessionTable * pTab,int bPatchset,u8 * aOldRecord1,u8 * aOldRecord2,u8 * aNewRecord1,u8 * aNewRecord2)770 static int sessionMergeUpdate(
771   u8 **paOut,                     /* IN/OUT: Pointer to output buffer */
772   SessionTable *pTab,             /* Table change pertains to */
773   int bPatchset,                  /* True if records are patchset records */
774   u8 *aOldRecord1,                /* old.* record for first change */
775   u8 *aOldRecord2,                /* old.* record for second change */
776   u8 *aNewRecord1,                /* new.* record for first change */
777   u8 *aNewRecord2                 /* new.* record for second change */
778 ){
779   u8 *aOld1 = aOldRecord1;
780   u8 *aOld2 = aOldRecord2;
781   u8 *aNew1 = aNewRecord1;
782   u8 *aNew2 = aNewRecord2;
783 
784   u8 *aOut = *paOut;
785   int i;
786 
787   if( bPatchset==0 ){
788     int bRequired = 0;
789 
790     assert( aOldRecord1 && aNewRecord1 );
791 
792     /* Write the old.* vector first. */
793     for(i=0; i<pTab->nCol; i++){
794       int nOld;
795       u8 *aOld;
796       int nNew;
797       u8 *aNew;
798 
799       aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
800       aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
801       if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){
802         if( pTab->abPK[i]==0 ) bRequired = 1;
803         memcpy(aOut, aOld, nOld);
804         aOut += nOld;
805       }else{
806         *(aOut++) = '\0';
807       }
808     }
809 
810     if( !bRequired ) return 0;
811   }
812 
813   /* Write the new.* vector */
814   aOld1 = aOldRecord1;
815   aOld2 = aOldRecord2;
816   aNew1 = aNewRecord1;
817   aNew2 = aNewRecord2;
818   for(i=0; i<pTab->nCol; i++){
819     int nOld;
820     u8 *aOld;
821     int nNew;
822     u8 *aNew;
823 
824     aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
825     aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
826     if( bPatchset==0
827      && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew)))
828     ){
829       *(aOut++) = '\0';
830     }else{
831       memcpy(aOut, aNew, nNew);
832       aOut += nNew;
833     }
834   }
835 
836   *paOut = aOut;
837   return 1;
838 }
839 
840 /*
841 ** This function is only called from within a pre-update-hook callback.
842 ** It determines if the current pre-update-hook change affects the same row
843 ** as the change stored in argument pChange. If so, it returns true. Otherwise
844 ** if the pre-update-hook does not affect the same row as pChange, it returns
845 ** false.
846 */
sessionPreupdateEqual(sqlite3_session * pSession,SessionTable * pTab,SessionChange * pChange,int op)847 static int sessionPreupdateEqual(
848   sqlite3_session *pSession,      /* Session object that owns SessionTable */
849   SessionTable *pTab,             /* Table associated with change */
850   SessionChange *pChange,         /* Change to compare to */
851   int op                          /* Current pre-update operation */
852 ){
853   int iCol;                       /* Used to iterate through columns */
854   u8 *a = pChange->aRecord;       /* Cursor used to scan change record */
855 
856   assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
857   for(iCol=0; iCol<pTab->nCol; iCol++){
858     if( !pTab->abPK[iCol] ){
859       a += sessionSerialLen(a);
860     }else{
861       sqlite3_value *pVal;        /* Value returned by preupdate_new/old */
862       int rc;                     /* Error code from preupdate_new/old */
863       int eType = *a++;           /* Type of value from change record */
864 
865       /* The following calls to preupdate_new() and preupdate_old() can not
866       ** fail. This is because they cache their return values, and by the
867       ** time control flows to here they have already been called once from
868       ** within sessionPreupdateHash(). The first two asserts below verify
869       ** this (that the method has already been called). */
870       if( op==SQLITE_INSERT ){
871         /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
872         rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
873       }else{
874         /* assert( db->pPreUpdate->pUnpacked ); */
875         rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
876       }
877       assert( rc==SQLITE_OK );
878       if( sqlite3_value_type(pVal)!=eType ) return 0;
879 
880       /* A SessionChange object never has a NULL value in a PK column */
881       assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
882            || eType==SQLITE_BLOB    || eType==SQLITE_TEXT
883       );
884 
885       if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
886         i64 iVal = sessionGetI64(a);
887         a += 8;
888         if( eType==SQLITE_INTEGER ){
889           if( sqlite3_value_int64(pVal)!=iVal ) return 0;
890         }else{
891           double rVal;
892           assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
893           memcpy(&rVal, &iVal, 8);
894           if( sqlite3_value_double(pVal)!=rVal ) return 0;
895         }
896       }else{
897         int n;
898         const u8 *z;
899         a += sessionVarintGet(a, &n);
900         if( sqlite3_value_bytes(pVal)!=n ) return 0;
901         if( eType==SQLITE_TEXT ){
902           z = sqlite3_value_text(pVal);
903         }else{
904           z = sqlite3_value_blob(pVal);
905         }
906         if( n>0 && memcmp(a, z, n) ) return 0;
907         a += n;
908       }
909     }
910   }
911 
912   return 1;
913 }
914 
915 /*
916 ** If required, grow the hash table used to store changes on table pTab
917 ** (part of the session pSession). If a fatal OOM error occurs, set the
918 ** session object to failed and return SQLITE_ERROR. Otherwise, return
919 ** SQLITE_OK.
920 **
921 ** It is possible that a non-fatal OOM error occurs in this function. In
922 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway.
923 ** Growing the hash table in this case is a performance optimization only,
924 ** it is not required for correct operation.
925 */
sessionGrowHash(sqlite3_session * pSession,int bPatchset,SessionTable * pTab)926 static int sessionGrowHash(
927   sqlite3_session *pSession,      /* For memory accounting. May be NULL */
928   int bPatchset,
929   SessionTable *pTab
930 ){
931   if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
932     int i;
933     SessionChange **apNew;
934     sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128);
935 
936     apNew = (SessionChange**)sessionMalloc64(
937         pSession, sizeof(SessionChange*) * nNew
938     );
939     if( apNew==0 ){
940       if( pTab->nChange==0 ){
941         return SQLITE_ERROR;
942       }
943       return SQLITE_OK;
944     }
945     memset(apNew, 0, sizeof(SessionChange *) * nNew);
946 
947     for(i=0; i<pTab->nChange; i++){
948       SessionChange *p;
949       SessionChange *pNext;
950       for(p=pTab->apChange[i]; p; p=pNext){
951         int bPkOnly = (p->op==SQLITE_DELETE && bPatchset);
952         int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew);
953         pNext = p->pNext;
954         p->pNext = apNew[iHash];
955         apNew[iHash] = p;
956       }
957     }
958 
959     sessionFree(pSession, pTab->apChange);
960     pTab->nChange = nNew;
961     pTab->apChange = apNew;
962   }
963 
964   return SQLITE_OK;
965 }
966 
967 /*
968 ** This function queries the database for the names of the columns of table
969 ** zThis, in schema zDb.
970 **
971 ** Otherwise, if they are not NULL, variable *pnCol is set to the number
972 ** of columns in the database table and variable *pzTab is set to point to a
973 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to
974 ** point to an array of pointers to column names. And *pabPK (again, if not
975 ** NULL) is set to point to an array of booleans - true if the corresponding
976 ** column is part of the primary key.
977 **
978 ** For example, if the table is declared as:
979 **
980 **     CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z));
981 **
982 ** Then the four output variables are populated as follows:
983 **
984 **     *pnCol  = 4
985 **     *pzTab  = "tbl1"
986 **     *pazCol = {"w", "x", "y", "z"}
987 **     *pabPK  = {1, 0, 0, 1}
988 **
989 ** All returned buffers are part of the same single allocation, which must
990 ** be freed using sqlite3_free() by the caller
991 */
sessionTableInfo(sqlite3_session * pSession,sqlite3 * db,const char * zDb,const char * zThis,int * pnCol,const char ** pzTab,const char *** pazCol,u8 ** pabPK)992 static int sessionTableInfo(
993   sqlite3_session *pSession,      /* For memory accounting. May be NULL */
994   sqlite3 *db,                    /* Database connection */
995   const char *zDb,                /* Name of attached database (e.g. "main") */
996   const char *zThis,              /* Table name */
997   int *pnCol,                     /* OUT: number of columns */
998   const char **pzTab,             /* OUT: Copy of zThis */
999   const char ***pazCol,           /* OUT: Array of column names for table */
1000   u8 **pabPK                      /* OUT: Array of booleans - true for PK col */
1001 ){
1002   char *zPragma;
1003   sqlite3_stmt *pStmt;
1004   int rc;
1005   sqlite3_int64 nByte;
1006   int nDbCol = 0;
1007   int nThis;
1008   int i;
1009   u8 *pAlloc = 0;
1010   char **azCol = 0;
1011   u8 *abPK = 0;
1012 
1013   assert( pazCol && pabPK );
1014 
1015   nThis = sqlite3Strlen30(zThis);
1016   if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){
1017     rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0);
1018     if( rc==SQLITE_OK ){
1019       /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */
1020       zPragma = sqlite3_mprintf(
1021           "SELECT 0, 'tbl',  '', 0, '', 1     UNION ALL "
1022           "SELECT 1, 'idx',  '', 0, '', 2     UNION ALL "
1023           "SELECT 2, 'stat', '', 0, '', 0"
1024       );
1025     }else if( rc==SQLITE_ERROR ){
1026       zPragma = sqlite3_mprintf("");
1027     }else{
1028       *pazCol = 0;
1029       *pabPK = 0;
1030       *pnCol = 0;
1031       if( pzTab ) *pzTab = 0;
1032       return rc;
1033     }
1034   }else{
1035     zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis);
1036   }
1037   if( !zPragma ){
1038     *pazCol = 0;
1039     *pabPK = 0;
1040     *pnCol = 0;
1041     if( pzTab ) *pzTab = 0;
1042     return SQLITE_NOMEM;
1043   }
1044 
1045   rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0);
1046   sqlite3_free(zPragma);
1047   if( rc!=SQLITE_OK ){
1048     *pazCol = 0;
1049     *pabPK = 0;
1050     *pnCol = 0;
1051     if( pzTab ) *pzTab = 0;
1052     return rc;
1053   }
1054 
1055   nByte = nThis + 1;
1056   while( SQLITE_ROW==sqlite3_step(pStmt) ){
1057     nByte += sqlite3_column_bytes(pStmt, 1);
1058     nDbCol++;
1059   }
1060   rc = sqlite3_reset(pStmt);
1061 
1062   if( rc==SQLITE_OK ){
1063     nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1);
1064     pAlloc = sessionMalloc64(pSession, nByte);
1065     if( pAlloc==0 ){
1066       rc = SQLITE_NOMEM;
1067     }
1068   }
1069   if( rc==SQLITE_OK ){
1070     azCol = (char **)pAlloc;
1071     pAlloc = (u8 *)&azCol[nDbCol];
1072     abPK = (u8 *)pAlloc;
1073     pAlloc = &abPK[nDbCol];
1074     if( pzTab ){
1075       memcpy(pAlloc, zThis, nThis+1);
1076       *pzTab = (char *)pAlloc;
1077       pAlloc += nThis+1;
1078     }
1079 
1080     i = 0;
1081     while( SQLITE_ROW==sqlite3_step(pStmt) ){
1082       int nName = sqlite3_column_bytes(pStmt, 1);
1083       const unsigned char *zName = sqlite3_column_text(pStmt, 1);
1084       if( zName==0 ) break;
1085       memcpy(pAlloc, zName, nName+1);
1086       azCol[i] = (char *)pAlloc;
1087       pAlloc += nName+1;
1088       abPK[i] = sqlite3_column_int(pStmt, 5);
1089       i++;
1090     }
1091     rc = sqlite3_reset(pStmt);
1092 
1093   }
1094 
1095   /* If successful, populate the output variables. Otherwise, zero them and
1096   ** free any allocation made. An error code will be returned in this case.
1097   */
1098   if( rc==SQLITE_OK ){
1099     *pazCol = (const char **)azCol;
1100     *pabPK = abPK;
1101     *pnCol = nDbCol;
1102   }else{
1103     *pazCol = 0;
1104     *pabPK = 0;
1105     *pnCol = 0;
1106     if( pzTab ) *pzTab = 0;
1107     sessionFree(pSession, azCol);
1108   }
1109   sqlite3_finalize(pStmt);
1110   return rc;
1111 }
1112 
1113 /*
1114 ** This function is only called from within a pre-update handler for a
1115 ** write to table pTab, part of session pSession. If this is the first
1116 ** write to this table, initalize the SessionTable.nCol, azCol[] and
1117 ** abPK[] arrays accordingly.
1118 **
1119 ** If an error occurs, an error code is stored in sqlite3_session.rc and
1120 ** non-zero returned. Or, if no error occurs but the table has no primary
1121 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to
1122 ** indicate that updates on this table should be ignored. SessionTable.abPK
1123 ** is set to NULL in this case.
1124 */
sessionInitTable(sqlite3_session * pSession,SessionTable * pTab)1125 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){
1126   if( pTab->nCol==0 ){
1127     u8 *abPK;
1128     assert( pTab->azCol==0 || pTab->abPK==0 );
1129     pSession->rc = sessionTableInfo(pSession, pSession->db, pSession->zDb,
1130         pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK
1131     );
1132     if( pSession->rc==SQLITE_OK ){
1133       int i;
1134       for(i=0; i<pTab->nCol; i++){
1135         if( abPK[i] ){
1136           pTab->abPK = abPK;
1137           break;
1138         }
1139       }
1140       if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){
1141         pTab->bStat1 = 1;
1142       }
1143 
1144       if( pSession->bEnableSize ){
1145         pSession->nMaxChangesetSize += (
1146           1 + sessionVarintLen(pTab->nCol) + pTab->nCol + strlen(pTab->zName)+1
1147         );
1148       }
1149     }
1150   }
1151   return (pSession->rc || pTab->abPK==0);
1152 }
1153 
1154 /*
1155 ** Versions of the four methods in object SessionHook for use with the
1156 ** sqlite_stat1 table. The purpose of this is to substitute a zero-length
1157 ** blob each time a NULL value is read from the "idx" column of the
1158 ** sqlite_stat1 table.
1159 */
1160 typedef struct SessionStat1Ctx SessionStat1Ctx;
1161 struct SessionStat1Ctx {
1162   SessionHook hook;
1163   sqlite3_session *pSession;
1164 };
sessionStat1Old(void * pCtx,int iCol,sqlite3_value ** ppVal)1165 static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){
1166   SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
1167   sqlite3_value *pVal = 0;
1168   int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal);
1169   if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
1170     pVal = p->pSession->pZeroBlob;
1171   }
1172   *ppVal = pVal;
1173   return rc;
1174 }
sessionStat1New(void * pCtx,int iCol,sqlite3_value ** ppVal)1175 static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){
1176   SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
1177   sqlite3_value *pVal = 0;
1178   int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal);
1179   if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
1180     pVal = p->pSession->pZeroBlob;
1181   }
1182   *ppVal = pVal;
1183   return rc;
1184 }
sessionStat1Count(void * pCtx)1185 static int sessionStat1Count(void *pCtx){
1186   SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
1187   return p->hook.xCount(p->hook.pCtx);
1188 }
sessionStat1Depth(void * pCtx)1189 static int sessionStat1Depth(void *pCtx){
1190   SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
1191   return p->hook.xDepth(p->hook.pCtx);
1192 }
1193 
sessionUpdateMaxSize(int op,sqlite3_session * pSession,SessionTable * pTab,SessionChange * pC)1194 static int sessionUpdateMaxSize(
1195   int op,
1196   sqlite3_session *pSession,      /* Session object pTab is attached to */
1197   SessionTable *pTab,             /* Table that change applies to */
1198   SessionChange *pC               /* Update pC->nMaxSize */
1199 ){
1200   i64 nNew = 2;
1201   if( pC->op==SQLITE_INSERT ){
1202     if( op!=SQLITE_DELETE ){
1203       int ii;
1204       for(ii=0; ii<pTab->nCol; ii++){
1205         sqlite3_value *p = 0;
1206         pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
1207         sessionSerializeValue(0, p, &nNew);
1208       }
1209     }
1210   }else if( op==SQLITE_DELETE ){
1211     nNew += pC->nRecord;
1212     if( sqlite3_preupdate_blobwrite(pSession->db)>=0 ){
1213       nNew += pC->nRecord;
1214     }
1215   }else{
1216     int ii;
1217     u8 *pCsr = pC->aRecord;
1218     for(ii=0; ii<pTab->nCol; ii++){
1219       int bChanged = 1;
1220       int nOld = 0;
1221       int eType;
1222       sqlite3_value *p = 0;
1223       pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
1224       if( p==0 ){
1225         return SQLITE_NOMEM;
1226       }
1227 
1228       eType = *pCsr++;
1229       switch( eType ){
1230         case SQLITE_NULL:
1231           bChanged = sqlite3_value_type(p)!=SQLITE_NULL;
1232           break;
1233 
1234         case SQLITE_FLOAT:
1235         case SQLITE_INTEGER: {
1236           if( eType==sqlite3_value_type(p) ){
1237             sqlite3_int64 iVal = sessionGetI64(pCsr);
1238             if( eType==SQLITE_INTEGER ){
1239               bChanged = (iVal!=sqlite3_value_int64(p));
1240             }else{
1241               double dVal;
1242               memcpy(&dVal, &iVal, 8);
1243               bChanged = (dVal!=sqlite3_value_double(p));
1244             }
1245           }
1246           nOld = 8;
1247           pCsr += 8;
1248           break;
1249         }
1250 
1251         default: {
1252           int nByte;
1253           nOld = sessionVarintGet(pCsr, &nByte);
1254           pCsr += nOld;
1255           nOld += nByte;
1256           assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
1257           if( eType==sqlite3_value_type(p)
1258            && nByte==sqlite3_value_bytes(p)
1259            && (nByte==0 || 0==memcmp(pCsr, sqlite3_value_blob(p), nByte))
1260           ){
1261             bChanged = 0;
1262           }
1263           pCsr += nByte;
1264           break;
1265         }
1266       }
1267 
1268       if( bChanged && pTab->abPK[ii] ){
1269         nNew = pC->nRecord + 2;
1270         break;
1271       }
1272 
1273       if( bChanged ){
1274         nNew += 1 + nOld;
1275         sessionSerializeValue(0, p, &nNew);
1276       }else if( pTab->abPK[ii] ){
1277         nNew += 2 + nOld;
1278       }else{
1279         nNew += 2;
1280       }
1281     }
1282   }
1283 
1284   if( nNew>pC->nMaxSize ){
1285     int nIncr = nNew - pC->nMaxSize;
1286     pC->nMaxSize = nNew;
1287     pSession->nMaxChangesetSize += nIncr;
1288   }
1289   return SQLITE_OK;
1290 }
1291 
1292 /*
1293 ** This function is only called from with a pre-update-hook reporting a
1294 ** change on table pTab (attached to session pSession). The type of change
1295 ** (UPDATE, INSERT, DELETE) is specified by the first argument.
1296 **
1297 ** Unless one is already present or an error occurs, an entry is added
1298 ** to the changed-rows hash table associated with table pTab.
1299 */
sessionPreupdateOneChange(int op,sqlite3_session * pSession,SessionTable * pTab)1300 static void sessionPreupdateOneChange(
1301   int op,                         /* One of SQLITE_UPDATE, INSERT, DELETE */
1302   sqlite3_session *pSession,      /* Session object pTab is attached to */
1303   SessionTable *pTab              /* Table that change applies to */
1304 ){
1305   int iHash;
1306   int bNull = 0;
1307   int rc = SQLITE_OK;
1308   SessionStat1Ctx stat1 = {{0,0,0,0,0},0};
1309 
1310   if( pSession->rc ) return;
1311 
1312   /* Load table details if required */
1313   if( sessionInitTable(pSession, pTab) ) return;
1314 
1315   /* Check the number of columns in this xPreUpdate call matches the
1316   ** number of columns in the table.  */
1317   if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){
1318     pSession->rc = SQLITE_SCHEMA;
1319     return;
1320   }
1321 
1322   /* Grow the hash table if required */
1323   if( sessionGrowHash(pSession, 0, pTab) ){
1324     pSession->rc = SQLITE_NOMEM;
1325     return;
1326   }
1327 
1328   if( pTab->bStat1 ){
1329     stat1.hook = pSession->hook;
1330     stat1.pSession = pSession;
1331     pSession->hook.pCtx = (void*)&stat1;
1332     pSession->hook.xNew = sessionStat1New;
1333     pSession->hook.xOld = sessionStat1Old;
1334     pSession->hook.xCount = sessionStat1Count;
1335     pSession->hook.xDepth = sessionStat1Depth;
1336     if( pSession->pZeroBlob==0 ){
1337       sqlite3_value *p = sqlite3ValueNew(0);
1338       if( p==0 ){
1339         rc = SQLITE_NOMEM;
1340         goto error_out;
1341       }
1342       sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC);
1343       pSession->pZeroBlob = p;
1344     }
1345   }
1346 
1347   /* Calculate the hash-key for this change. If the primary key of the row
1348   ** includes a NULL value, exit early. Such changes are ignored by the
1349   ** session module. */
1350   rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull);
1351   if( rc!=SQLITE_OK ) goto error_out;
1352 
1353   if( bNull==0 ){
1354     /* Search the hash table for an existing record for this row. */
1355     SessionChange *pC;
1356     for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){
1357       if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break;
1358     }
1359 
1360     if( pC==0 ){
1361       /* Create a new change object containing all the old values (if
1362       ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK
1363       ** values (if this is an INSERT). */
1364       sqlite3_int64 nByte;    /* Number of bytes to allocate */
1365       int i;                  /* Used to iterate through columns */
1366 
1367       assert( rc==SQLITE_OK );
1368       pTab->nEntry++;
1369 
1370       /* Figure out how large an allocation is required */
1371       nByte = sizeof(SessionChange);
1372       for(i=0; i<pTab->nCol; i++){
1373         sqlite3_value *p = 0;
1374         if( op!=SQLITE_INSERT ){
1375           TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p);
1376           assert( trc==SQLITE_OK );
1377         }else if( pTab->abPK[i] ){
1378           TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p);
1379           assert( trc==SQLITE_OK );
1380         }
1381 
1382         /* This may fail if SQLite value p contains a utf-16 string that must
1383         ** be converted to utf-8 and an OOM error occurs while doing so. */
1384         rc = sessionSerializeValue(0, p, &nByte);
1385         if( rc!=SQLITE_OK ) goto error_out;
1386       }
1387 
1388       /* Allocate the change object */
1389       pC = (SessionChange *)sessionMalloc64(pSession, nByte);
1390       if( !pC ){
1391         rc = SQLITE_NOMEM;
1392         goto error_out;
1393       }else{
1394         memset(pC, 0, sizeof(SessionChange));
1395         pC->aRecord = (u8 *)&pC[1];
1396       }
1397 
1398       /* Populate the change object. None of the preupdate_old(),
1399       ** preupdate_new() or SerializeValue() calls below may fail as all
1400       ** required values and encodings have already been cached in memory.
1401       ** It is not possible for an OOM to occur in this block. */
1402       nByte = 0;
1403       for(i=0; i<pTab->nCol; i++){
1404         sqlite3_value *p = 0;
1405         if( op!=SQLITE_INSERT ){
1406           pSession->hook.xOld(pSession->hook.pCtx, i, &p);
1407         }else if( pTab->abPK[i] ){
1408           pSession->hook.xNew(pSession->hook.pCtx, i, &p);
1409         }
1410         sessionSerializeValue(&pC->aRecord[nByte], p, &nByte);
1411       }
1412 
1413       /* Add the change to the hash-table */
1414       if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){
1415         pC->bIndirect = 1;
1416       }
1417       pC->nRecord = nByte;
1418       pC->op = op;
1419       pC->pNext = pTab->apChange[iHash];
1420       pTab->apChange[iHash] = pC;
1421 
1422     }else if( pC->bIndirect ){
1423       /* If the existing change is considered "indirect", but this current
1424       ** change is "direct", mark the change object as direct. */
1425       if( pSession->hook.xDepth(pSession->hook.pCtx)==0
1426        && pSession->bIndirect==0
1427       ){
1428         pC->bIndirect = 0;
1429       }
1430     }
1431 
1432     assert( rc==SQLITE_OK );
1433     if( pSession->bEnableSize ){
1434       rc = sessionUpdateMaxSize(op, pSession, pTab, pC);
1435     }
1436   }
1437 
1438 
1439   /* If an error has occurred, mark the session object as failed. */
1440  error_out:
1441   if( pTab->bStat1 ){
1442     pSession->hook = stat1.hook;
1443   }
1444   if( rc!=SQLITE_OK ){
1445     pSession->rc = rc;
1446   }
1447 }
1448 
sessionFindTable(sqlite3_session * pSession,const char * zName,SessionTable ** ppTab)1449 static int sessionFindTable(
1450   sqlite3_session *pSession,
1451   const char *zName,
1452   SessionTable **ppTab
1453 ){
1454   int rc = SQLITE_OK;
1455   int nName = sqlite3Strlen30(zName);
1456   SessionTable *pRet;
1457 
1458   /* Search for an existing table */
1459   for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){
1460     if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break;
1461   }
1462 
1463   if( pRet==0 && pSession->bAutoAttach ){
1464     /* If there is a table-filter configured, invoke it. If it returns 0,
1465     ** do not automatically add the new table. */
1466     if( pSession->xTableFilter==0
1467      || pSession->xTableFilter(pSession->pFilterCtx, zName)
1468     ){
1469       rc = sqlite3session_attach(pSession, zName);
1470       if( rc==SQLITE_OK ){
1471         pRet = pSession->pTable;
1472         while( ALWAYS(pRet) && pRet->pNext ){
1473           pRet = pRet->pNext;
1474         }
1475         assert( pRet!=0 );
1476         assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) );
1477       }
1478     }
1479   }
1480 
1481   assert( rc==SQLITE_OK || pRet==0 );
1482   *ppTab = pRet;
1483   return rc;
1484 }
1485 
1486 /*
1487 ** The 'pre-update' hook registered by this module with SQLite databases.
1488 */
xPreUpdate(void * pCtx,sqlite3 * db,int op,char const * zDb,char const * zName,sqlite3_int64 iKey1,sqlite3_int64 iKey2)1489 static void xPreUpdate(
1490   void *pCtx,                     /* Copy of third arg to preupdate_hook() */
1491   sqlite3 *db,                    /* Database handle */
1492   int op,                         /* SQLITE_UPDATE, DELETE or INSERT */
1493   char const *zDb,                /* Database name */
1494   char const *zName,              /* Table name */
1495   sqlite3_int64 iKey1,            /* Rowid of row about to be deleted/updated */
1496   sqlite3_int64 iKey2             /* New rowid value (for a rowid UPDATE) */
1497 ){
1498   sqlite3_session *pSession;
1499   int nDb = sqlite3Strlen30(zDb);
1500 
1501   assert( sqlite3_mutex_held(db->mutex) );
1502 
1503   for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){
1504     SessionTable *pTab;
1505 
1506     /* If this session is attached to a different database ("main", "temp"
1507     ** etc.), or if it is not currently enabled, there is nothing to do. Skip
1508     ** to the next session object attached to this database. */
1509     if( pSession->bEnable==0 ) continue;
1510     if( pSession->rc ) continue;
1511     if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue;
1512 
1513     pSession->rc = sessionFindTable(pSession, zName, &pTab);
1514     if( pTab ){
1515       assert( pSession->rc==SQLITE_OK );
1516       sessionPreupdateOneChange(op, pSession, pTab);
1517       if( op==SQLITE_UPDATE ){
1518         sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab);
1519       }
1520     }
1521   }
1522 }
1523 
1524 /*
1525 ** The pre-update hook implementations.
1526 */
sessionPreupdateOld(void * pCtx,int iVal,sqlite3_value ** ppVal)1527 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){
1528   return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal);
1529 }
sessionPreupdateNew(void * pCtx,int iVal,sqlite3_value ** ppVal)1530 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){
1531   return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal);
1532 }
sessionPreupdateCount(void * pCtx)1533 static int sessionPreupdateCount(void *pCtx){
1534   return sqlite3_preupdate_count((sqlite3*)pCtx);
1535 }
sessionPreupdateDepth(void * pCtx)1536 static int sessionPreupdateDepth(void *pCtx){
1537   return sqlite3_preupdate_depth((sqlite3*)pCtx);
1538 }
1539 
1540 /*
1541 ** Install the pre-update hooks on the session object passed as the only
1542 ** argument.
1543 */
sessionPreupdateHooks(sqlite3_session * pSession)1544 static void sessionPreupdateHooks(
1545   sqlite3_session *pSession
1546 ){
1547   pSession->hook.pCtx = (void*)pSession->db;
1548   pSession->hook.xOld = sessionPreupdateOld;
1549   pSession->hook.xNew = sessionPreupdateNew;
1550   pSession->hook.xCount = sessionPreupdateCount;
1551   pSession->hook.xDepth = sessionPreupdateDepth;
1552 }
1553 
1554 typedef struct SessionDiffCtx SessionDiffCtx;
1555 struct SessionDiffCtx {
1556   sqlite3_stmt *pStmt;
1557   int nOldOff;
1558 };
1559 
1560 /*
1561 ** The diff hook implementations.
1562 */
sessionDiffOld(void * pCtx,int iVal,sqlite3_value ** ppVal)1563 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){
1564   SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
1565   *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff);
1566   return SQLITE_OK;
1567 }
sessionDiffNew(void * pCtx,int iVal,sqlite3_value ** ppVal)1568 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){
1569   SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
1570   *ppVal = sqlite3_column_value(p->pStmt, iVal);
1571    return SQLITE_OK;
1572 }
sessionDiffCount(void * pCtx)1573 static int sessionDiffCount(void *pCtx){
1574   SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
1575   return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt);
1576 }
sessionDiffDepth(void * pCtx)1577 static int sessionDiffDepth(void *pCtx){
1578   return 0;
1579 }
1580 
1581 /*
1582 ** Install the diff hooks on the session object passed as the only
1583 ** argument.
1584 */
sessionDiffHooks(sqlite3_session * pSession,SessionDiffCtx * pDiffCtx)1585 static void sessionDiffHooks(
1586   sqlite3_session *pSession,
1587   SessionDiffCtx *pDiffCtx
1588 ){
1589   pSession->hook.pCtx = (void*)pDiffCtx;
1590   pSession->hook.xOld = sessionDiffOld;
1591   pSession->hook.xNew = sessionDiffNew;
1592   pSession->hook.xCount = sessionDiffCount;
1593   pSession->hook.xDepth = sessionDiffDepth;
1594 }
1595 
sessionExprComparePK(int nCol,const char * zDb1,const char * zDb2,const char * zTab,const char ** azCol,u8 * abPK)1596 static char *sessionExprComparePK(
1597   int nCol,
1598   const char *zDb1, const char *zDb2,
1599   const char *zTab,
1600   const char **azCol, u8 *abPK
1601 ){
1602   int i;
1603   const char *zSep = "";
1604   char *zRet = 0;
1605 
1606   for(i=0; i<nCol; i++){
1607     if( abPK[i] ){
1608       zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"",
1609           zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
1610       );
1611       zSep = " AND ";
1612       if( zRet==0 ) break;
1613     }
1614   }
1615 
1616   return zRet;
1617 }
1618 
sessionExprCompareOther(int nCol,const char * zDb1,const char * zDb2,const char * zTab,const char ** azCol,u8 * abPK)1619 static char *sessionExprCompareOther(
1620   int nCol,
1621   const char *zDb1, const char *zDb2,
1622   const char *zTab,
1623   const char **azCol, u8 *abPK
1624 ){
1625   int i;
1626   const char *zSep = "";
1627   char *zRet = 0;
1628   int bHave = 0;
1629 
1630   for(i=0; i<nCol; i++){
1631     if( abPK[i]==0 ){
1632       bHave = 1;
1633       zRet = sqlite3_mprintf(
1634           "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"",
1635           zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
1636       );
1637       zSep = " OR ";
1638       if( zRet==0 ) break;
1639     }
1640   }
1641 
1642   if( bHave==0 ){
1643     assert( zRet==0 );
1644     zRet = sqlite3_mprintf("0");
1645   }
1646 
1647   return zRet;
1648 }
1649 
sessionSelectFindNew(int nCol,const char * zDb1,const char * zDb2,const char * zTbl,const char * zExpr)1650 static char *sessionSelectFindNew(
1651   int nCol,
1652   const char *zDb1,      /* Pick rows in this db only */
1653   const char *zDb2,      /* But not in this one */
1654   const char *zTbl,      /* Table name */
1655   const char *zExpr
1656 ){
1657   char *zRet = sqlite3_mprintf(
1658       "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS ("
1659       "  SELECT 1 FROM \"%w\".\"%w\" WHERE %s"
1660       ")",
1661       zDb1, zTbl, zDb2, zTbl, zExpr
1662   );
1663   return zRet;
1664 }
1665 
sessionDiffFindNew(int op,sqlite3_session * pSession,SessionTable * pTab,const char * zDb1,const char * zDb2,char * zExpr)1666 static int sessionDiffFindNew(
1667   int op,
1668   sqlite3_session *pSession,
1669   SessionTable *pTab,
1670   const char *zDb1,
1671   const char *zDb2,
1672   char *zExpr
1673 ){
1674   int rc = SQLITE_OK;
1675   char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr);
1676 
1677   if( zStmt==0 ){
1678     rc = SQLITE_NOMEM;
1679   }else{
1680     sqlite3_stmt *pStmt;
1681     rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
1682     if( rc==SQLITE_OK ){
1683       SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
1684       pDiffCtx->pStmt = pStmt;
1685       pDiffCtx->nOldOff = 0;
1686       while( SQLITE_ROW==sqlite3_step(pStmt) ){
1687         sessionPreupdateOneChange(op, pSession, pTab);
1688       }
1689       rc = sqlite3_finalize(pStmt);
1690     }
1691     sqlite3_free(zStmt);
1692   }
1693 
1694   return rc;
1695 }
1696 
sessionDiffFindModified(sqlite3_session * pSession,SessionTable * pTab,const char * zFrom,const char * zExpr)1697 static int sessionDiffFindModified(
1698   sqlite3_session *pSession,
1699   SessionTable *pTab,
1700   const char *zFrom,
1701   const char *zExpr
1702 ){
1703   int rc = SQLITE_OK;
1704 
1705   char *zExpr2 = sessionExprCompareOther(pTab->nCol,
1706       pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK
1707   );
1708   if( zExpr2==0 ){
1709     rc = SQLITE_NOMEM;
1710   }else{
1711     char *zStmt = sqlite3_mprintf(
1712         "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)",
1713         pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2
1714     );
1715     if( zStmt==0 ){
1716       rc = SQLITE_NOMEM;
1717     }else{
1718       sqlite3_stmt *pStmt;
1719       rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
1720 
1721       if( rc==SQLITE_OK ){
1722         SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
1723         pDiffCtx->pStmt = pStmt;
1724         pDiffCtx->nOldOff = pTab->nCol;
1725         while( SQLITE_ROW==sqlite3_step(pStmt) ){
1726           sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab);
1727         }
1728         rc = sqlite3_finalize(pStmt);
1729       }
1730       sqlite3_free(zStmt);
1731     }
1732   }
1733 
1734   return rc;
1735 }
1736 
sqlite3session_diff(sqlite3_session * pSession,const char * zFrom,const char * zTbl,char ** pzErrMsg)1737 int sqlite3session_diff(
1738   sqlite3_session *pSession,
1739   const char *zFrom,
1740   const char *zTbl,
1741   char **pzErrMsg
1742 ){
1743   const char *zDb = pSession->zDb;
1744   int rc = pSession->rc;
1745   SessionDiffCtx d;
1746 
1747   memset(&d, 0, sizeof(d));
1748   sessionDiffHooks(pSession, &d);
1749 
1750   sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
1751   if( pzErrMsg ) *pzErrMsg = 0;
1752   if( rc==SQLITE_OK ){
1753     char *zExpr = 0;
1754     sqlite3 *db = pSession->db;
1755     SessionTable *pTo;            /* Table zTbl */
1756 
1757     /* Locate and if necessary initialize the target table object */
1758     rc = sessionFindTable(pSession, zTbl, &pTo);
1759     if( pTo==0 ) goto diff_out;
1760     if( sessionInitTable(pSession, pTo) ){
1761       rc = pSession->rc;
1762       goto diff_out;
1763     }
1764 
1765     /* Check the table schemas match */
1766     if( rc==SQLITE_OK ){
1767       int bHasPk = 0;
1768       int bMismatch = 0;
1769       int nCol;                   /* Columns in zFrom.zTbl */
1770       u8 *abPK;
1771       const char **azCol = 0;
1772       rc = sessionTableInfo(0, db, zFrom, zTbl, &nCol, 0, &azCol, &abPK);
1773       if( rc==SQLITE_OK ){
1774         if( pTo->nCol!=nCol ){
1775           bMismatch = 1;
1776         }else{
1777           int i;
1778           for(i=0; i<nCol; i++){
1779             if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1;
1780             if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1;
1781             if( abPK[i] ) bHasPk = 1;
1782           }
1783         }
1784       }
1785       sqlite3_free((char*)azCol);
1786       if( bMismatch ){
1787         if( pzErrMsg ){
1788           *pzErrMsg = sqlite3_mprintf("table schemas do not match");
1789         }
1790         rc = SQLITE_SCHEMA;
1791       }
1792       if( bHasPk==0 ){
1793         /* Ignore tables with no primary keys */
1794         goto diff_out;
1795       }
1796     }
1797 
1798     if( rc==SQLITE_OK ){
1799       zExpr = sessionExprComparePK(pTo->nCol,
1800           zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK
1801       );
1802     }
1803 
1804     /* Find new rows */
1805     if( rc==SQLITE_OK ){
1806       rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr);
1807     }
1808 
1809     /* Find old rows */
1810     if( rc==SQLITE_OK ){
1811       rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr);
1812     }
1813 
1814     /* Find modified rows */
1815     if( rc==SQLITE_OK ){
1816       rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr);
1817     }
1818 
1819     sqlite3_free(zExpr);
1820   }
1821 
1822  diff_out:
1823   sessionPreupdateHooks(pSession);
1824   sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
1825   return rc;
1826 }
1827 
1828 /*
1829 ** Create a session object. This session object will record changes to
1830 ** database zDb attached to connection db.
1831 */
sqlite3session_create(sqlite3 * db,const char * zDb,sqlite3_session ** ppSession)1832 int sqlite3session_create(
1833   sqlite3 *db,                    /* Database handle */
1834   const char *zDb,                /* Name of db (e.g. "main") */
1835   sqlite3_session **ppSession     /* OUT: New session object */
1836 ){
1837   sqlite3_session *pNew;          /* Newly allocated session object */
1838   sqlite3_session *pOld;          /* Session object already attached to db */
1839   int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */
1840 
1841   /* Zero the output value in case an error occurs. */
1842   *ppSession = 0;
1843 
1844   /* Allocate and populate the new session object. */
1845   pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1);
1846   if( !pNew ) return SQLITE_NOMEM;
1847   memset(pNew, 0, sizeof(sqlite3_session));
1848   pNew->db = db;
1849   pNew->zDb = (char *)&pNew[1];
1850   pNew->bEnable = 1;
1851   memcpy(pNew->zDb, zDb, nDb+1);
1852   sessionPreupdateHooks(pNew);
1853 
1854   /* Add the new session object to the linked list of session objects
1855   ** attached to database handle $db. Do this under the cover of the db
1856   ** handle mutex.  */
1857   sqlite3_mutex_enter(sqlite3_db_mutex(db));
1858   pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew);
1859   pNew->pNext = pOld;
1860   sqlite3_mutex_leave(sqlite3_db_mutex(db));
1861 
1862   *ppSession = pNew;
1863   return SQLITE_OK;
1864 }
1865 
1866 /*
1867 ** Free the list of table objects passed as the first argument. The contents
1868 ** of the changed-rows hash tables are also deleted.
1869 */
sessionDeleteTable(sqlite3_session * pSession,SessionTable * pList)1870 static void sessionDeleteTable(sqlite3_session *pSession, SessionTable *pList){
1871   SessionTable *pNext;
1872   SessionTable *pTab;
1873 
1874   for(pTab=pList; pTab; pTab=pNext){
1875     int i;
1876     pNext = pTab->pNext;
1877     for(i=0; i<pTab->nChange; i++){
1878       SessionChange *p;
1879       SessionChange *pNextChange;
1880       for(p=pTab->apChange[i]; p; p=pNextChange){
1881         pNextChange = p->pNext;
1882         sessionFree(pSession, p);
1883       }
1884     }
1885     sessionFree(pSession, (char*)pTab->azCol);  /* cast works around VC++ bug */
1886     sessionFree(pSession, pTab->apChange);
1887     sessionFree(pSession, pTab);
1888   }
1889 }
1890 
1891 /*
1892 ** Delete a session object previously allocated using sqlite3session_create().
1893 */
sqlite3session_delete(sqlite3_session * pSession)1894 void sqlite3session_delete(sqlite3_session *pSession){
1895   sqlite3 *db = pSession->db;
1896   sqlite3_session *pHead;
1897   sqlite3_session **pp;
1898 
1899   /* Unlink the session from the linked list of sessions attached to the
1900   ** database handle. Hold the db mutex while doing so.  */
1901   sqlite3_mutex_enter(sqlite3_db_mutex(db));
1902   pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0);
1903   for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){
1904     if( (*pp)==pSession ){
1905       *pp = (*pp)->pNext;
1906       if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead);
1907       break;
1908     }
1909   }
1910   sqlite3_mutex_leave(sqlite3_db_mutex(db));
1911   sqlite3ValueFree(pSession->pZeroBlob);
1912 
1913   /* Delete all attached table objects. And the contents of their
1914   ** associated hash-tables. */
1915   sessionDeleteTable(pSession, pSession->pTable);
1916 
1917   /* Assert that all allocations have been freed and then free the
1918   ** session object itself. */
1919   assert( pSession->nMalloc==0 );
1920   sqlite3_free(pSession);
1921 }
1922 
1923 /*
1924 ** Set a table filter on a Session Object.
1925 */
sqlite3session_table_filter(sqlite3_session * pSession,int (* xFilter)(void *,const char *),void * pCtx)1926 void sqlite3session_table_filter(
1927   sqlite3_session *pSession,
1928   int(*xFilter)(void*, const char*),
1929   void *pCtx                      /* First argument passed to xFilter */
1930 ){
1931   pSession->bAutoAttach = 1;
1932   pSession->pFilterCtx = pCtx;
1933   pSession->xTableFilter = xFilter;
1934 }
1935 
1936 /*
1937 ** Attach a table to a session. All subsequent changes made to the table
1938 ** while the session object is enabled will be recorded.
1939 **
1940 ** Only tables that have a PRIMARY KEY defined may be attached. It does
1941 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias)
1942 ** or not.
1943 */
sqlite3session_attach(sqlite3_session * pSession,const char * zName)1944 int sqlite3session_attach(
1945   sqlite3_session *pSession,      /* Session object */
1946   const char *zName               /* Table name */
1947 ){
1948   int rc = SQLITE_OK;
1949   sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
1950 
1951   if( !zName ){
1952     pSession->bAutoAttach = 1;
1953   }else{
1954     SessionTable *pTab;           /* New table object (if required) */
1955     int nName;                    /* Number of bytes in string zName */
1956 
1957     /* First search for an existing entry. If one is found, this call is
1958     ** a no-op. Return early. */
1959     nName = sqlite3Strlen30(zName);
1960     for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){
1961       if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break;
1962     }
1963 
1964     if( !pTab ){
1965       /* Allocate new SessionTable object. */
1966       int nByte = sizeof(SessionTable) + nName + 1;
1967       pTab = (SessionTable*)sessionMalloc64(pSession, nByte);
1968       if( !pTab ){
1969         rc = SQLITE_NOMEM;
1970       }else{
1971         /* Populate the new SessionTable object and link it into the list.
1972         ** The new object must be linked onto the end of the list, not
1973         ** simply added to the start of it in order to ensure that tables
1974         ** appear in the correct order when a changeset or patchset is
1975         ** eventually generated. */
1976         SessionTable **ppTab;
1977         memset(pTab, 0, sizeof(SessionTable));
1978         pTab->zName = (char *)&pTab[1];
1979         memcpy(pTab->zName, zName, nName+1);
1980         for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext);
1981         *ppTab = pTab;
1982       }
1983     }
1984   }
1985 
1986   sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
1987   return rc;
1988 }
1989 
1990 /*
1991 ** Ensure that there is room in the buffer to append nByte bytes of data.
1992 ** If not, use sqlite3_realloc() to grow the buffer so that there is.
1993 **
1994 ** If successful, return zero. Otherwise, if an OOM condition is encountered,
1995 ** set *pRc to SQLITE_NOMEM and return non-zero.
1996 */
sessionBufferGrow(SessionBuffer * p,i64 nByte,int * pRc)1997 static int sessionBufferGrow(SessionBuffer *p, i64 nByte, int *pRc){
1998 #define SESSION_MAX_BUFFER_SZ (0x7FFFFF00 - 1)
1999   i64 nReq = p->nBuf + nByte;
2000   if( *pRc==SQLITE_OK && nReq>p->nAlloc ){
2001     u8 *aNew;
2002     i64 nNew = p->nAlloc ? p->nAlloc : 128;
2003 
2004     do {
2005       nNew = nNew*2;
2006     }while( nNew<nReq );
2007 
2008     /* The value of SESSION_MAX_BUFFER_SZ is copied from the implementation
2009     ** of sqlite3_realloc64(). Allocations greater than this size in bytes
2010     ** always fail. It is used here to ensure that this routine can always
2011     ** allocate up to this limit - instead of up to the largest power of
2012     ** two smaller than the limit.  */
2013     if( nNew>SESSION_MAX_BUFFER_SZ ){
2014       nNew = SESSION_MAX_BUFFER_SZ;
2015       if( nNew<nReq ){
2016         *pRc = SQLITE_NOMEM;
2017         return 1;
2018       }
2019     }
2020 
2021     aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew);
2022     if( 0==aNew ){
2023       *pRc = SQLITE_NOMEM;
2024     }else{
2025       p->aBuf = aNew;
2026       p->nAlloc = nNew;
2027     }
2028   }
2029   return (*pRc!=SQLITE_OK);
2030 }
2031 
2032 /*
2033 ** Append the value passed as the second argument to the buffer passed
2034 ** as the first.
2035 **
2036 ** This function is a no-op if *pRc is non-zero when it is called.
2037 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code
2038 ** before returning.
2039 */
sessionAppendValue(SessionBuffer * p,sqlite3_value * pVal,int * pRc)2040 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){
2041   int rc = *pRc;
2042   if( rc==SQLITE_OK ){
2043     sqlite3_int64 nByte = 0;
2044     rc = sessionSerializeValue(0, pVal, &nByte);
2045     sessionBufferGrow(p, nByte, &rc);
2046     if( rc==SQLITE_OK ){
2047       rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0);
2048       p->nBuf += nByte;
2049     }else{
2050       *pRc = rc;
2051     }
2052   }
2053 }
2054 
2055 /*
2056 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2057 ** called. Otherwise, append a single byte to the buffer.
2058 **
2059 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2060 ** returning.
2061 */
sessionAppendByte(SessionBuffer * p,u8 v,int * pRc)2062 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){
2063   if( 0==sessionBufferGrow(p, 1, pRc) ){
2064     p->aBuf[p->nBuf++] = v;
2065   }
2066 }
2067 
2068 /*
2069 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2070 ** called. Otherwise, append a single varint to the buffer.
2071 **
2072 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2073 ** returning.
2074 */
sessionAppendVarint(SessionBuffer * p,int v,int * pRc)2075 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){
2076   if( 0==sessionBufferGrow(p, 9, pRc) ){
2077     p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v);
2078   }
2079 }
2080 
2081 /*
2082 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2083 ** called. Otherwise, append a blob of data to the buffer.
2084 **
2085 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2086 ** returning.
2087 */
sessionAppendBlob(SessionBuffer * p,const u8 * aBlob,int nBlob,int * pRc)2088 static void sessionAppendBlob(
2089   SessionBuffer *p,
2090   const u8 *aBlob,
2091   int nBlob,
2092   int *pRc
2093 ){
2094   if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){
2095     memcpy(&p->aBuf[p->nBuf], aBlob, nBlob);
2096     p->nBuf += nBlob;
2097   }
2098 }
2099 
2100 /*
2101 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2102 ** called. Otherwise, append a string to the buffer. All bytes in the string
2103 ** up to (but not including) the nul-terminator are written to the buffer.
2104 **
2105 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2106 ** returning.
2107 */
sessionAppendStr(SessionBuffer * p,const char * zStr,int * pRc)2108 static void sessionAppendStr(
2109   SessionBuffer *p,
2110   const char *zStr,
2111   int *pRc
2112 ){
2113   int nStr = sqlite3Strlen30(zStr);
2114   if( 0==sessionBufferGrow(p, nStr, pRc) ){
2115     memcpy(&p->aBuf[p->nBuf], zStr, nStr);
2116     p->nBuf += nStr;
2117   }
2118 }
2119 
2120 /*
2121 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2122 ** called. Otherwise, append the string representation of integer iVal
2123 ** to the buffer. No nul-terminator is written.
2124 **
2125 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2126 ** returning.
2127 */
sessionAppendInteger(SessionBuffer * p,int iVal,int * pRc)2128 static void sessionAppendInteger(
2129   SessionBuffer *p,               /* Buffer to append to */
2130   int iVal,                       /* Value to write the string rep. of */
2131   int *pRc                        /* IN/OUT: Error code */
2132 ){
2133   char aBuf[24];
2134   sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal);
2135   sessionAppendStr(p, aBuf, pRc);
2136 }
2137 
2138 /*
2139 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2140 ** called. Otherwise, append the string zStr enclosed in quotes (") and
2141 ** with any embedded quote characters escaped to the buffer. No
2142 ** nul-terminator byte is written.
2143 **
2144 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
2145 ** returning.
2146 */
sessionAppendIdent(SessionBuffer * p,const char * zStr,int * pRc)2147 static void sessionAppendIdent(
2148   SessionBuffer *p,               /* Buffer to a append to */
2149   const char *zStr,               /* String to quote, escape and append */
2150   int *pRc                        /* IN/OUT: Error code */
2151 ){
2152   int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1;
2153   if( 0==sessionBufferGrow(p, nStr, pRc) ){
2154     char *zOut = (char *)&p->aBuf[p->nBuf];
2155     const char *zIn = zStr;
2156     *zOut++ = '"';
2157     while( *zIn ){
2158       if( *zIn=='"' ) *zOut++ = '"';
2159       *zOut++ = *(zIn++);
2160     }
2161     *zOut++ = '"';
2162     p->nBuf = (int)((u8 *)zOut - p->aBuf);
2163   }
2164 }
2165 
2166 /*
2167 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
2168 ** called. Otherwse, it appends the serialized version of the value stored
2169 ** in column iCol of the row that SQL statement pStmt currently points
2170 ** to to the buffer.
2171 */
sessionAppendCol(SessionBuffer * p,sqlite3_stmt * pStmt,int iCol,int * pRc)2172 static void sessionAppendCol(
2173   SessionBuffer *p,               /* Buffer to append to */
2174   sqlite3_stmt *pStmt,            /* Handle pointing to row containing value */
2175   int iCol,                       /* Column to read value from */
2176   int *pRc                        /* IN/OUT: Error code */
2177 ){
2178   if( *pRc==SQLITE_OK ){
2179     int eType = sqlite3_column_type(pStmt, iCol);
2180     sessionAppendByte(p, (u8)eType, pRc);
2181     if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2182       sqlite3_int64 i;
2183       u8 aBuf[8];
2184       if( eType==SQLITE_INTEGER ){
2185         i = sqlite3_column_int64(pStmt, iCol);
2186       }else{
2187         double r = sqlite3_column_double(pStmt, iCol);
2188         memcpy(&i, &r, 8);
2189       }
2190       sessionPutI64(aBuf, i);
2191       sessionAppendBlob(p, aBuf, 8, pRc);
2192     }
2193     if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){
2194       u8 *z;
2195       int nByte;
2196       if( eType==SQLITE_BLOB ){
2197         z = (u8 *)sqlite3_column_blob(pStmt, iCol);
2198       }else{
2199         z = (u8 *)sqlite3_column_text(pStmt, iCol);
2200       }
2201       nByte = sqlite3_column_bytes(pStmt, iCol);
2202       if( z || (eType==SQLITE_BLOB && nByte==0) ){
2203         sessionAppendVarint(p, nByte, pRc);
2204         sessionAppendBlob(p, z, nByte, pRc);
2205       }else{
2206         *pRc = SQLITE_NOMEM;
2207       }
2208     }
2209   }
2210 }
2211 
2212 /*
2213 **
2214 ** This function appends an update change to the buffer (see the comments
2215 ** under "CHANGESET FORMAT" at the top of the file). An update change
2216 ** consists of:
2217 **
2218 **   1 byte:  SQLITE_UPDATE (0x17)
2219 **   n bytes: old.* record (see RECORD FORMAT)
2220 **   m bytes: new.* record (see RECORD FORMAT)
2221 **
2222 ** The SessionChange object passed as the third argument contains the
2223 ** values that were stored in the row when the session began (the old.*
2224 ** values). The statement handle passed as the second argument points
2225 ** at the current version of the row (the new.* values).
2226 **
2227 ** If all of the old.* values are equal to their corresponding new.* value
2228 ** (i.e. nothing has changed), then no data at all is appended to the buffer.
2229 **
2230 ** Otherwise, the old.* record contains all primary key values and the
2231 ** original values of any fields that have been modified. The new.* record
2232 ** contains the new values of only those fields that have been modified.
2233 */
sessionAppendUpdate(SessionBuffer * pBuf,int bPatchset,sqlite3_stmt * pStmt,SessionChange * p,u8 * abPK)2234 static int sessionAppendUpdate(
2235   SessionBuffer *pBuf,            /* Buffer to append to */
2236   int bPatchset,                  /* True for "patchset", 0 for "changeset" */
2237   sqlite3_stmt *pStmt,            /* Statement handle pointing at new row */
2238   SessionChange *p,               /* Object containing old values */
2239   u8 *abPK                        /* Boolean array - true for PK columns */
2240 ){
2241   int rc = SQLITE_OK;
2242   SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */
2243   int bNoop = 1;                /* Set to zero if any values are modified */
2244   int nRewind = pBuf->nBuf;     /* Set to zero if any values are modified */
2245   int i;                        /* Used to iterate through columns */
2246   u8 *pCsr = p->aRecord;        /* Used to iterate through old.* values */
2247 
2248   assert( abPK!=0 );
2249   sessionAppendByte(pBuf, SQLITE_UPDATE, &rc);
2250   sessionAppendByte(pBuf, p->bIndirect, &rc);
2251   for(i=0; i<sqlite3_column_count(pStmt); i++){
2252     int bChanged = 0;
2253     int nAdvance;
2254     int eType = *pCsr;
2255     switch( eType ){
2256       case SQLITE_NULL:
2257         nAdvance = 1;
2258         if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
2259           bChanged = 1;
2260         }
2261         break;
2262 
2263       case SQLITE_FLOAT:
2264       case SQLITE_INTEGER: {
2265         nAdvance = 9;
2266         if( eType==sqlite3_column_type(pStmt, i) ){
2267           sqlite3_int64 iVal = sessionGetI64(&pCsr[1]);
2268           if( eType==SQLITE_INTEGER ){
2269             if( iVal==sqlite3_column_int64(pStmt, i) ) break;
2270           }else{
2271             double dVal;
2272             memcpy(&dVal, &iVal, 8);
2273             if( dVal==sqlite3_column_double(pStmt, i) ) break;
2274           }
2275         }
2276         bChanged = 1;
2277         break;
2278       }
2279 
2280       default: {
2281         int n;
2282         int nHdr = 1 + sessionVarintGet(&pCsr[1], &n);
2283         assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2284         nAdvance = nHdr + n;
2285         if( eType==sqlite3_column_type(pStmt, i)
2286          && n==sqlite3_column_bytes(pStmt, i)
2287          && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n))
2288         ){
2289           break;
2290         }
2291         bChanged = 1;
2292       }
2293     }
2294 
2295     /* If at least one field has been modified, this is not a no-op. */
2296     if( bChanged ) bNoop = 0;
2297 
2298     /* Add a field to the old.* record. This is omitted if this modules is
2299     ** currently generating a patchset. */
2300     if( bPatchset==0 ){
2301       if( bChanged || abPK[i] ){
2302         sessionAppendBlob(pBuf, pCsr, nAdvance, &rc);
2303       }else{
2304         sessionAppendByte(pBuf, 0, &rc);
2305       }
2306     }
2307 
2308     /* Add a field to the new.* record. Or the only record if currently
2309     ** generating a patchset.  */
2310     if( bChanged || (bPatchset && abPK[i]) ){
2311       sessionAppendCol(&buf2, pStmt, i, &rc);
2312     }else{
2313       sessionAppendByte(&buf2, 0, &rc);
2314     }
2315 
2316     pCsr += nAdvance;
2317   }
2318 
2319   if( bNoop ){
2320     pBuf->nBuf = nRewind;
2321   }else{
2322     sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc);
2323   }
2324   sqlite3_free(buf2.aBuf);
2325 
2326   return rc;
2327 }
2328 
2329 /*
2330 ** Append a DELETE change to the buffer passed as the first argument. Use
2331 ** the changeset format if argument bPatchset is zero, or the patchset
2332 ** format otherwise.
2333 */
sessionAppendDelete(SessionBuffer * pBuf,int bPatchset,SessionChange * p,int nCol,u8 * abPK)2334 static int sessionAppendDelete(
2335   SessionBuffer *pBuf,            /* Buffer to append to */
2336   int bPatchset,                  /* True for "patchset", 0 for "changeset" */
2337   SessionChange *p,               /* Object containing old values */
2338   int nCol,                       /* Number of columns in table */
2339   u8 *abPK                        /* Boolean array - true for PK columns */
2340 ){
2341   int rc = SQLITE_OK;
2342 
2343   sessionAppendByte(pBuf, SQLITE_DELETE, &rc);
2344   sessionAppendByte(pBuf, p->bIndirect, &rc);
2345 
2346   if( bPatchset==0 ){
2347     sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc);
2348   }else{
2349     int i;
2350     u8 *a = p->aRecord;
2351     for(i=0; i<nCol; i++){
2352       u8 *pStart = a;
2353       int eType = *a++;
2354 
2355       switch( eType ){
2356         case 0:
2357         case SQLITE_NULL:
2358           assert( abPK[i]==0 );
2359           break;
2360 
2361         case SQLITE_FLOAT:
2362         case SQLITE_INTEGER:
2363           a += 8;
2364           break;
2365 
2366         default: {
2367           int n;
2368           a += sessionVarintGet(a, &n);
2369           a += n;
2370           break;
2371         }
2372       }
2373       if( abPK[i] ){
2374         sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc);
2375       }
2376     }
2377     assert( (a - p->aRecord)==p->nRecord );
2378   }
2379 
2380   return rc;
2381 }
2382 
2383 /*
2384 ** Formulate and prepare a SELECT statement to retrieve a row from table
2385 ** zTab in database zDb based on its primary key. i.e.
2386 **
2387 **   SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ...
2388 */
sessionSelectStmt(sqlite3 * db,const char * zDb,const char * zTab,int nCol,const char ** azCol,u8 * abPK,sqlite3_stmt ** ppStmt)2389 static int sessionSelectStmt(
2390   sqlite3 *db,                    /* Database handle */
2391   const char *zDb,                /* Database name */
2392   const char *zTab,               /* Table name */
2393   int nCol,                       /* Number of columns in table */
2394   const char **azCol,             /* Names of table columns */
2395   u8 *abPK,                       /* PRIMARY KEY  array */
2396   sqlite3_stmt **ppStmt           /* OUT: Prepared SELECT statement */
2397 ){
2398   int rc = SQLITE_OK;
2399   char *zSql = 0;
2400   int nSql = -1;
2401 
2402   if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
2403     zSql = sqlite3_mprintf(
2404         "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND "
2405         "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb
2406     );
2407     if( zSql==0 ) rc = SQLITE_NOMEM;
2408   }else{
2409     int i;
2410     const char *zSep = "";
2411     SessionBuffer buf = {0, 0, 0};
2412 
2413     sessionAppendStr(&buf, "SELECT * FROM ", &rc);
2414     sessionAppendIdent(&buf, zDb, &rc);
2415     sessionAppendStr(&buf, ".", &rc);
2416     sessionAppendIdent(&buf, zTab, &rc);
2417     sessionAppendStr(&buf, " WHERE ", &rc);
2418     for(i=0; i<nCol; i++){
2419       if( abPK[i] ){
2420         sessionAppendStr(&buf, zSep, &rc);
2421         sessionAppendIdent(&buf, azCol[i], &rc);
2422         sessionAppendStr(&buf, " IS ?", &rc);
2423         sessionAppendInteger(&buf, i+1, &rc);
2424         zSep = " AND ";
2425       }
2426     }
2427     zSql = (char*)buf.aBuf;
2428     nSql = buf.nBuf;
2429   }
2430 
2431   if( rc==SQLITE_OK ){
2432     rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0);
2433   }
2434   sqlite3_free(zSql);
2435   return rc;
2436 }
2437 
2438 /*
2439 ** Bind the PRIMARY KEY values from the change passed in argument pChange
2440 ** to the SELECT statement passed as the first argument. The SELECT statement
2441 ** is as prepared by function sessionSelectStmt().
2442 **
2443 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite
2444 ** error code (e.g. SQLITE_NOMEM) otherwise.
2445 */
sessionSelectBind(sqlite3_stmt * pSelect,int nCol,u8 * abPK,SessionChange * pChange)2446 static int sessionSelectBind(
2447   sqlite3_stmt *pSelect,          /* SELECT from sessionSelectStmt() */
2448   int nCol,                       /* Number of columns in table */
2449   u8 *abPK,                       /* PRIMARY KEY array */
2450   SessionChange *pChange          /* Change structure */
2451 ){
2452   int i;
2453   int rc = SQLITE_OK;
2454   u8 *a = pChange->aRecord;
2455 
2456   for(i=0; i<nCol && rc==SQLITE_OK; i++){
2457     int eType = *a++;
2458 
2459     switch( eType ){
2460       case 0:
2461       case SQLITE_NULL:
2462         assert( abPK[i]==0 );
2463         break;
2464 
2465       case SQLITE_INTEGER: {
2466         if( abPK[i] ){
2467           i64 iVal = sessionGetI64(a);
2468           rc = sqlite3_bind_int64(pSelect, i+1, iVal);
2469         }
2470         a += 8;
2471         break;
2472       }
2473 
2474       case SQLITE_FLOAT: {
2475         if( abPK[i] ){
2476           double rVal;
2477           i64 iVal = sessionGetI64(a);
2478           memcpy(&rVal, &iVal, 8);
2479           rc = sqlite3_bind_double(pSelect, i+1, rVal);
2480         }
2481         a += 8;
2482         break;
2483       }
2484 
2485       case SQLITE_TEXT: {
2486         int n;
2487         a += sessionVarintGet(a, &n);
2488         if( abPK[i] ){
2489           rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT);
2490         }
2491         a += n;
2492         break;
2493       }
2494 
2495       default: {
2496         int n;
2497         assert( eType==SQLITE_BLOB );
2498         a += sessionVarintGet(a, &n);
2499         if( abPK[i] ){
2500           rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT);
2501         }
2502         a += n;
2503         break;
2504       }
2505     }
2506   }
2507 
2508   return rc;
2509 }
2510 
2511 /*
2512 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it
2513 ** is called. Otherwise, append a serialized table header (part of the binary
2514 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an
2515 ** SQLite error code before returning.
2516 */
sessionAppendTableHdr(SessionBuffer * pBuf,int bPatchset,SessionTable * pTab,int * pRc)2517 static void sessionAppendTableHdr(
2518   SessionBuffer *pBuf,            /* Append header to this buffer */
2519   int bPatchset,                  /* Use the patchset format if true */
2520   SessionTable *pTab,             /* Table object to append header for */
2521   int *pRc                        /* IN/OUT: Error code */
2522 ){
2523   /* Write a table header */
2524   sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc);
2525   sessionAppendVarint(pBuf, pTab->nCol, pRc);
2526   sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc);
2527   sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc);
2528 }
2529 
2530 /*
2531 ** Generate either a changeset (if argument bPatchset is zero) or a patchset
2532 ** (if it is non-zero) based on the current contents of the session object
2533 ** passed as the first argument.
2534 **
2535 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset
2536 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error
2537 ** occurs, an SQLite error code is returned and both output variables set
2538 ** to 0.
2539 */
sessionGenerateChangeset(sqlite3_session * pSession,int bPatchset,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut,int * pnChangeset,void ** ppChangeset)2540 static int sessionGenerateChangeset(
2541   sqlite3_session *pSession,      /* Session object */
2542   int bPatchset,                  /* True for patchset, false for changeset */
2543   int (*xOutput)(void *pOut, const void *pData, int nData),
2544   void *pOut,                     /* First argument for xOutput */
2545   int *pnChangeset,               /* OUT: Size of buffer at *ppChangeset */
2546   void **ppChangeset              /* OUT: Buffer containing changeset */
2547 ){
2548   sqlite3 *db = pSession->db;     /* Source database handle */
2549   SessionTable *pTab;             /* Used to iterate through attached tables */
2550   SessionBuffer buf = {0,0,0};    /* Buffer in which to accumlate changeset */
2551   int rc;                         /* Return code */
2552 
2553   assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0) );
2554   assert( xOutput!=0 || (pnChangeset!=0 && ppChangeset!=0) );
2555 
2556   /* Zero the output variables in case an error occurs. If this session
2557   ** object is already in the error state (sqlite3_session.rc != SQLITE_OK),
2558   ** this call will be a no-op.  */
2559   if( xOutput==0 ){
2560     assert( pnChangeset!=0  && ppChangeset!=0 );
2561     *pnChangeset = 0;
2562     *ppChangeset = 0;
2563   }
2564 
2565   if( pSession->rc ) return pSession->rc;
2566   rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0);
2567   if( rc!=SQLITE_OK ) return rc;
2568 
2569   sqlite3_mutex_enter(sqlite3_db_mutex(db));
2570 
2571   for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
2572     if( pTab->nEntry ){
2573       const char *zName = pTab->zName;
2574       int nCol = 0;               /* Number of columns in table */
2575       u8 *abPK = 0;               /* Primary key array */
2576       const char **azCol = 0;     /* Table columns */
2577       int i;                      /* Used to iterate through hash buckets */
2578       sqlite3_stmt *pSel = 0;     /* SELECT statement to query table pTab */
2579       int nRewind = buf.nBuf;     /* Initial size of write buffer */
2580       int nNoop;                  /* Size of buffer after writing tbl header */
2581 
2582       /* Check the table schema is still Ok. */
2583       rc = sessionTableInfo(0, db, pSession->zDb, zName, &nCol, 0,&azCol,&abPK);
2584       if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){
2585         rc = SQLITE_SCHEMA;
2586       }
2587 
2588       /* Write a table header */
2589       sessionAppendTableHdr(&buf, bPatchset, pTab, &rc);
2590 
2591       /* Build and compile a statement to execute: */
2592       if( rc==SQLITE_OK ){
2593         rc = sessionSelectStmt(
2594             db, pSession->zDb, zName, nCol, azCol, abPK, &pSel);
2595       }
2596 
2597       nNoop = buf.nBuf;
2598       for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){
2599         SessionChange *p;         /* Used to iterate through changes */
2600 
2601         for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){
2602           rc = sessionSelectBind(pSel, nCol, abPK, p);
2603           if( rc!=SQLITE_OK ) continue;
2604           if( sqlite3_step(pSel)==SQLITE_ROW ){
2605             if( p->op==SQLITE_INSERT ){
2606               int iCol;
2607               sessionAppendByte(&buf, SQLITE_INSERT, &rc);
2608               sessionAppendByte(&buf, p->bIndirect, &rc);
2609               for(iCol=0; iCol<nCol; iCol++){
2610                 sessionAppendCol(&buf, pSel, iCol, &rc);
2611               }
2612             }else{
2613               assert( abPK!=0 );  /* Because sessionSelectStmt() returned ok */
2614               rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK);
2615             }
2616           }else if( p->op!=SQLITE_INSERT ){
2617             rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK);
2618           }
2619           if( rc==SQLITE_OK ){
2620             rc = sqlite3_reset(pSel);
2621           }
2622 
2623           /* If the buffer is now larger than sessions_strm_chunk_size, pass
2624           ** its contents to the xOutput() callback. */
2625           if( xOutput
2626            && rc==SQLITE_OK
2627            && buf.nBuf>nNoop
2628            && buf.nBuf>sessions_strm_chunk_size
2629           ){
2630             rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
2631             nNoop = -1;
2632             buf.nBuf = 0;
2633           }
2634 
2635         }
2636       }
2637 
2638       sqlite3_finalize(pSel);
2639       if( buf.nBuf==nNoop ){
2640         buf.nBuf = nRewind;
2641       }
2642       sqlite3_free((char*)azCol);  /* cast works around VC++ bug */
2643     }
2644   }
2645 
2646   if( rc==SQLITE_OK ){
2647     if( xOutput==0 ){
2648       *pnChangeset = buf.nBuf;
2649       *ppChangeset = buf.aBuf;
2650       buf.aBuf = 0;
2651     }else if( buf.nBuf>0 ){
2652       rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
2653     }
2654   }
2655 
2656   sqlite3_free(buf.aBuf);
2657   sqlite3_exec(db, "RELEASE changeset", 0, 0, 0);
2658   sqlite3_mutex_leave(sqlite3_db_mutex(db));
2659   return rc;
2660 }
2661 
2662 /*
2663 ** Obtain a changeset object containing all changes recorded by the
2664 ** session object passed as the first argument.
2665 **
2666 ** It is the responsibility of the caller to eventually free the buffer
2667 ** using sqlite3_free().
2668 */
sqlite3session_changeset(sqlite3_session * pSession,int * pnChangeset,void ** ppChangeset)2669 int sqlite3session_changeset(
2670   sqlite3_session *pSession,      /* Session object */
2671   int *pnChangeset,               /* OUT: Size of buffer at *ppChangeset */
2672   void **ppChangeset              /* OUT: Buffer containing changeset */
2673 ){
2674   int rc;
2675 
2676   if( pnChangeset==0 || ppChangeset==0 ) return SQLITE_MISUSE;
2677   rc = sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset,ppChangeset);
2678   assert( rc || pnChangeset==0
2679        || pSession->bEnableSize==0 || *pnChangeset<=pSession->nMaxChangesetSize
2680   );
2681   return rc;
2682 }
2683 
2684 /*
2685 ** Streaming version of sqlite3session_changeset().
2686 */
sqlite3session_changeset_strm(sqlite3_session * pSession,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)2687 int sqlite3session_changeset_strm(
2688   sqlite3_session *pSession,
2689   int (*xOutput)(void *pOut, const void *pData, int nData),
2690   void *pOut
2691 ){
2692   if( xOutput==0 ) return SQLITE_MISUSE;
2693   return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0);
2694 }
2695 
2696 /*
2697 ** Streaming version of sqlite3session_patchset().
2698 */
sqlite3session_patchset_strm(sqlite3_session * pSession,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)2699 int sqlite3session_patchset_strm(
2700   sqlite3_session *pSession,
2701   int (*xOutput)(void *pOut, const void *pData, int nData),
2702   void *pOut
2703 ){
2704   if( xOutput==0 ) return SQLITE_MISUSE;
2705   return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0);
2706 }
2707 
2708 /*
2709 ** Obtain a patchset object containing all changes recorded by the
2710 ** session object passed as the first argument.
2711 **
2712 ** It is the responsibility of the caller to eventually free the buffer
2713 ** using sqlite3_free().
2714 */
sqlite3session_patchset(sqlite3_session * pSession,int * pnPatchset,void ** ppPatchset)2715 int sqlite3session_patchset(
2716   sqlite3_session *pSession,      /* Session object */
2717   int *pnPatchset,                /* OUT: Size of buffer at *ppChangeset */
2718   void **ppPatchset               /* OUT: Buffer containing changeset */
2719 ){
2720   if( pnPatchset==0 || ppPatchset==0 ) return SQLITE_MISUSE;
2721   return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset);
2722 }
2723 
2724 /*
2725 ** Enable or disable the session object passed as the first argument.
2726 */
sqlite3session_enable(sqlite3_session * pSession,int bEnable)2727 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){
2728   int ret;
2729   sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
2730   if( bEnable>=0 ){
2731     pSession->bEnable = bEnable;
2732   }
2733   ret = pSession->bEnable;
2734   sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
2735   return ret;
2736 }
2737 
2738 /*
2739 ** Enable or disable the session object passed as the first argument.
2740 */
sqlite3session_indirect(sqlite3_session * pSession,int bIndirect)2741 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){
2742   int ret;
2743   sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
2744   if( bIndirect>=0 ){
2745     pSession->bIndirect = bIndirect;
2746   }
2747   ret = pSession->bIndirect;
2748   sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
2749   return ret;
2750 }
2751 
2752 /*
2753 ** Return true if there have been no changes to monitored tables recorded
2754 ** by the session object passed as the only argument.
2755 */
sqlite3session_isempty(sqlite3_session * pSession)2756 int sqlite3session_isempty(sqlite3_session *pSession){
2757   int ret = 0;
2758   SessionTable *pTab;
2759 
2760   sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
2761   for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){
2762     ret = (pTab->nEntry>0);
2763   }
2764   sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
2765 
2766   return (ret==0);
2767 }
2768 
2769 /*
2770 ** Return the amount of heap memory in use.
2771 */
sqlite3session_memory_used(sqlite3_session * pSession)2772 sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession){
2773   return pSession->nMalloc;
2774 }
2775 
2776 /*
2777 ** Configure the session object passed as the first argument.
2778 */
sqlite3session_object_config(sqlite3_session * pSession,int op,void * pArg)2779 int sqlite3session_object_config(sqlite3_session *pSession, int op, void *pArg){
2780   int rc = SQLITE_OK;
2781   switch( op ){
2782     case SQLITE_SESSION_OBJCONFIG_SIZE: {
2783       int iArg = *(int*)pArg;
2784       if( iArg>=0 ){
2785         if( pSession->pTable ){
2786           rc = SQLITE_MISUSE;
2787         }else{
2788           pSession->bEnableSize = (iArg!=0);
2789         }
2790       }
2791       *(int*)pArg = pSession->bEnableSize;
2792       break;
2793     }
2794 
2795     default:
2796       rc = SQLITE_MISUSE;
2797   }
2798 
2799   return rc;
2800 }
2801 
2802 /*
2803 ** Return the maximum size of sqlite3session_changeset() output.
2804 */
sqlite3session_changeset_size(sqlite3_session * pSession)2805 sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession){
2806   return pSession->nMaxChangesetSize;
2807 }
2808 
2809 /*
2810 ** Do the work for either sqlite3changeset_start() or start_strm().
2811 */
sessionChangesetStart(sqlite3_changeset_iter ** pp,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int nChangeset,void * pChangeset,int bInvert,int bSkipEmpty)2812 static int sessionChangesetStart(
2813   sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
2814   int (*xInput)(void *pIn, void *pData, int *pnData),
2815   void *pIn,
2816   int nChangeset,                 /* Size of buffer pChangeset in bytes */
2817   void *pChangeset,               /* Pointer to buffer containing changeset */
2818   int bInvert,                    /* True to invert changeset */
2819   int bSkipEmpty                  /* True to skip empty UPDATE changes */
2820 ){
2821   sqlite3_changeset_iter *pRet;   /* Iterator to return */
2822   int nByte;                      /* Number of bytes to allocate for iterator */
2823 
2824   assert( xInput==0 || (pChangeset==0 && nChangeset==0) );
2825 
2826   /* Zero the output variable in case an error occurs. */
2827   *pp = 0;
2828 
2829   /* Allocate and initialize the iterator structure. */
2830   nByte = sizeof(sqlite3_changeset_iter);
2831   pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
2832   if( !pRet ) return SQLITE_NOMEM;
2833   memset(pRet, 0, sizeof(sqlite3_changeset_iter));
2834   pRet->in.aData = (u8 *)pChangeset;
2835   pRet->in.nData = nChangeset;
2836   pRet->in.xInput = xInput;
2837   pRet->in.pIn = pIn;
2838   pRet->in.bEof = (xInput ? 0 : 1);
2839   pRet->bInvert = bInvert;
2840   pRet->bSkipEmpty = bSkipEmpty;
2841 
2842   /* Populate the output variable and return success. */
2843   *pp = pRet;
2844   return SQLITE_OK;
2845 }
2846 
2847 /*
2848 ** Create an iterator used to iterate through the contents of a changeset.
2849 */
sqlite3changeset_start(sqlite3_changeset_iter ** pp,int nChangeset,void * pChangeset)2850 int sqlite3changeset_start(
2851   sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
2852   int nChangeset,                 /* Size of buffer pChangeset in bytes */
2853   void *pChangeset                /* Pointer to buffer containing changeset */
2854 ){
2855   return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0, 0);
2856 }
sqlite3changeset_start_v2(sqlite3_changeset_iter ** pp,int nChangeset,void * pChangeset,int flags)2857 int sqlite3changeset_start_v2(
2858   sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
2859   int nChangeset,                 /* Size of buffer pChangeset in bytes */
2860   void *pChangeset,               /* Pointer to buffer containing changeset */
2861   int flags
2862 ){
2863   int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
2864   return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert, 0);
2865 }
2866 
2867 /*
2868 ** Streaming version of sqlite3changeset_start().
2869 */
sqlite3changeset_start_strm(sqlite3_changeset_iter ** pp,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn)2870 int sqlite3changeset_start_strm(
2871   sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
2872   int (*xInput)(void *pIn, void *pData, int *pnData),
2873   void *pIn
2874 ){
2875   return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0, 0);
2876 }
sqlite3changeset_start_v2_strm(sqlite3_changeset_iter ** pp,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int flags)2877 int sqlite3changeset_start_v2_strm(
2878   sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
2879   int (*xInput)(void *pIn, void *pData, int *pnData),
2880   void *pIn,
2881   int flags
2882 ){
2883   int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
2884   return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert, 0);
2885 }
2886 
2887 /*
2888 ** If the SessionInput object passed as the only argument is a streaming
2889 ** object and the buffer is full, discard some data to free up space.
2890 */
sessionDiscardData(SessionInput * pIn)2891 static void sessionDiscardData(SessionInput *pIn){
2892   if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){
2893     int nMove = pIn->buf.nBuf - pIn->iNext;
2894     assert( nMove>=0 );
2895     if( nMove>0 ){
2896       memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
2897     }
2898     pIn->buf.nBuf -= pIn->iNext;
2899     pIn->iNext = 0;
2900     pIn->nData = pIn->buf.nBuf;
2901   }
2902 }
2903 
2904 /*
2905 ** Ensure that there are at least nByte bytes available in the buffer. Or,
2906 ** if there are not nByte bytes remaining in the input, that all available
2907 ** data is in the buffer.
2908 **
2909 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
2910 */
sessionInputBuffer(SessionInput * pIn,int nByte)2911 static int sessionInputBuffer(SessionInput *pIn, int nByte){
2912   int rc = SQLITE_OK;
2913   if( pIn->xInput ){
2914     while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
2915       int nNew = sessions_strm_chunk_size;
2916 
2917       if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
2918       if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
2919         rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
2920         if( nNew==0 ){
2921           pIn->bEof = 1;
2922         }else{
2923           pIn->buf.nBuf += nNew;
2924         }
2925       }
2926 
2927       pIn->aData = pIn->buf.aBuf;
2928       pIn->nData = pIn->buf.nBuf;
2929     }
2930   }
2931   return rc;
2932 }
2933 
2934 /*
2935 ** When this function is called, *ppRec points to the start of a record
2936 ** that contains nCol values. This function advances the pointer *ppRec
2937 ** until it points to the byte immediately following that record.
2938 */
sessionSkipRecord(u8 ** ppRec,int nCol)2939 static void sessionSkipRecord(
2940   u8 **ppRec,                     /* IN/OUT: Record pointer */
2941   int nCol                        /* Number of values in record */
2942 ){
2943   u8 *aRec = *ppRec;
2944   int i;
2945   for(i=0; i<nCol; i++){
2946     int eType = *aRec++;
2947     if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
2948       int nByte;
2949       aRec += sessionVarintGet((u8*)aRec, &nByte);
2950       aRec += nByte;
2951     }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2952       aRec += 8;
2953     }
2954   }
2955 
2956   *ppRec = aRec;
2957 }
2958 
2959 /*
2960 ** This function sets the value of the sqlite3_value object passed as the
2961 ** first argument to a copy of the string or blob held in the aData[]
2962 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM
2963 ** error occurs.
2964 */
sessionValueSetStr(sqlite3_value * pVal,u8 * aData,int nData,u8 enc)2965 static int sessionValueSetStr(
2966   sqlite3_value *pVal,            /* Set the value of this object */
2967   u8 *aData,                      /* Buffer containing string or blob data */
2968   int nData,                      /* Size of buffer aData[] in bytes */
2969   u8 enc                          /* String encoding (0 for blobs) */
2970 ){
2971   /* In theory this code could just pass SQLITE_TRANSIENT as the final
2972   ** argument to sqlite3ValueSetStr() and have the copy created
2973   ** automatically. But doing so makes it difficult to detect any OOM
2974   ** error. Hence the code to create the copy externally. */
2975   u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1);
2976   if( aCopy==0 ) return SQLITE_NOMEM;
2977   memcpy(aCopy, aData, nData);
2978   sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free);
2979   return SQLITE_OK;
2980 }
2981 
2982 /*
2983 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT"
2984 ** for details.
2985 **
2986 ** When this function is called, *paChange points to the start of the record
2987 ** to deserialize. Assuming no error occurs, *paChange is set to point to
2988 ** one byte after the end of the same record before this function returns.
2989 ** If the argument abPK is NULL, then the record contains nCol values. Or,
2990 ** if abPK is other than NULL, then the record contains only the PK fields
2991 ** (in other words, it is a patchset DELETE record).
2992 **
2993 ** If successful, each element of the apOut[] array (allocated by the caller)
2994 ** is set to point to an sqlite3_value object containing the value read
2995 ** from the corresponding position in the record. If that value is not
2996 ** included in the record (i.e. because the record is part of an UPDATE change
2997 ** and the field was not modified), the corresponding element of apOut[] is
2998 ** set to NULL.
2999 **
3000 ** It is the responsibility of the caller to free all sqlite_value structures
3001 ** using sqlite3_free().
3002 **
3003 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
3004 ** The apOut[] array may have been partially populated in this case.
3005 */
sessionReadRecord(SessionInput * pIn,int nCol,u8 * abPK,sqlite3_value ** apOut,int * pbEmpty)3006 static int sessionReadRecord(
3007   SessionInput *pIn,              /* Input data */
3008   int nCol,                       /* Number of values in record */
3009   u8 *abPK,                       /* Array of primary key flags, or NULL */
3010   sqlite3_value **apOut,          /* Write values to this array */
3011   int *pbEmpty
3012 ){
3013   int i;                          /* Used to iterate through columns */
3014   int rc = SQLITE_OK;
3015 
3016   assert( pbEmpty==0 || *pbEmpty==0 );
3017   if( pbEmpty ) *pbEmpty = 1;
3018   for(i=0; i<nCol && rc==SQLITE_OK; i++){
3019     int eType = 0;                /* Type of value (SQLITE_NULL, TEXT etc.) */
3020     if( abPK && abPK[i]==0 ) continue;
3021     rc = sessionInputBuffer(pIn, 9);
3022     if( rc==SQLITE_OK ){
3023       if( pIn->iNext>=pIn->nData ){
3024         rc = SQLITE_CORRUPT_BKPT;
3025       }else{
3026         eType = pIn->aData[pIn->iNext++];
3027         assert( apOut[i]==0 );
3028         if( eType ){
3029           if( pbEmpty ) *pbEmpty = 0;
3030           apOut[i] = sqlite3ValueNew(0);
3031           if( !apOut[i] ) rc = SQLITE_NOMEM;
3032         }
3033       }
3034     }
3035 
3036     if( rc==SQLITE_OK ){
3037       u8 *aVal = &pIn->aData[pIn->iNext];
3038       if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
3039         int nByte;
3040         pIn->iNext += sessionVarintGet(aVal, &nByte);
3041         rc = sessionInputBuffer(pIn, nByte);
3042         if( rc==SQLITE_OK ){
3043           if( nByte<0 || nByte>pIn->nData-pIn->iNext ){
3044             rc = SQLITE_CORRUPT_BKPT;
3045           }else{
3046             u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0);
3047             rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc);
3048             pIn->iNext += nByte;
3049           }
3050         }
3051       }
3052       if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
3053         sqlite3_int64 v = sessionGetI64(aVal);
3054         if( eType==SQLITE_INTEGER ){
3055           sqlite3VdbeMemSetInt64(apOut[i], v);
3056         }else{
3057           double d;
3058           memcpy(&d, &v, 8);
3059           sqlite3VdbeMemSetDouble(apOut[i], d);
3060         }
3061         pIn->iNext += 8;
3062       }
3063     }
3064   }
3065 
3066   return rc;
3067 }
3068 
3069 /*
3070 ** The input pointer currently points to the second byte of a table-header.
3071 ** Specifically, to the following:
3072 **
3073 **   + number of columns in table (varint)
3074 **   + array of PK flags (1 byte per column),
3075 **   + table name (nul terminated).
3076 **
3077 ** This function ensures that all of the above is present in the input
3078 ** buffer (i.e. that it can be accessed without any calls to xInput()).
3079 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
3080 ** The input pointer is not moved.
3081 */
sessionChangesetBufferTblhdr(SessionInput * pIn,int * pnByte)3082 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){
3083   int rc = SQLITE_OK;
3084   int nCol = 0;
3085   int nRead = 0;
3086 
3087   rc = sessionInputBuffer(pIn, 9);
3088   if( rc==SQLITE_OK ){
3089     nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol);
3090     /* The hard upper limit for the number of columns in an SQLite
3091     ** database table is, according to sqliteLimit.h, 32676. So
3092     ** consider any table-header that purports to have more than 65536
3093     ** columns to be corrupt. This is convenient because otherwise,
3094     ** if the (nCol>65536) condition below were omitted, a sufficiently
3095     ** large value for nCol may cause nRead to wrap around and become
3096     ** negative. Leading to a crash. */
3097     if( nCol<0 || nCol>65536 ){
3098       rc = SQLITE_CORRUPT_BKPT;
3099     }else{
3100       rc = sessionInputBuffer(pIn, nRead+nCol+100);
3101       nRead += nCol;
3102     }
3103   }
3104 
3105   while( rc==SQLITE_OK ){
3106     while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){
3107       nRead++;
3108     }
3109     if( (pIn->iNext + nRead)<pIn->nData ) break;
3110     rc = sessionInputBuffer(pIn, nRead + 100);
3111   }
3112   *pnByte = nRead+1;
3113   return rc;
3114 }
3115 
3116 /*
3117 ** The input pointer currently points to the first byte of the first field
3118 ** of a record consisting of nCol columns. This function ensures the entire
3119 ** record is buffered. It does not move the input pointer.
3120 **
3121 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of
3122 ** the record in bytes. Otherwise, an SQLite error code is returned. The
3123 ** final value of *pnByte is undefined in this case.
3124 */
sessionChangesetBufferRecord(SessionInput * pIn,int nCol,int * pnByte)3125 static int sessionChangesetBufferRecord(
3126   SessionInput *pIn,              /* Input data */
3127   int nCol,                       /* Number of columns in record */
3128   int *pnByte                     /* OUT: Size of record in bytes */
3129 ){
3130   int rc = SQLITE_OK;
3131   int nByte = 0;
3132   int i;
3133   for(i=0; rc==SQLITE_OK && i<nCol; i++){
3134     int eType;
3135     rc = sessionInputBuffer(pIn, nByte + 10);
3136     if( rc==SQLITE_OK ){
3137       eType = pIn->aData[pIn->iNext + nByte++];
3138       if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
3139         int n;
3140         nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n);
3141         nByte += n;
3142         rc = sessionInputBuffer(pIn, nByte);
3143       }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
3144         nByte += 8;
3145       }
3146     }
3147   }
3148   *pnByte = nByte;
3149   return rc;
3150 }
3151 
3152 /*
3153 ** The input pointer currently points to the second byte of a table-header.
3154 ** Specifically, to the following:
3155 **
3156 **   + number of columns in table (varint)
3157 **   + array of PK flags (1 byte per column),
3158 **   + table name (nul terminated).
3159 **
3160 ** This function decodes the table-header and populates the p->nCol,
3161 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is
3162 ** also allocated or resized according to the new value of p->nCol. The
3163 ** input pointer is left pointing to the byte following the table header.
3164 **
3165 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code
3166 ** is returned and the final values of the various fields enumerated above
3167 ** are undefined.
3168 */
sessionChangesetReadTblhdr(sqlite3_changeset_iter * p)3169 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){
3170   int rc;
3171   int nCopy;
3172   assert( p->rc==SQLITE_OK );
3173 
3174   rc = sessionChangesetBufferTblhdr(&p->in, &nCopy);
3175   if( rc==SQLITE_OK ){
3176     int nByte;
3177     int nVarint;
3178     nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol);
3179     if( p->nCol>0 ){
3180       nCopy -= nVarint;
3181       p->in.iNext += nVarint;
3182       nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy;
3183       p->tblhdr.nBuf = 0;
3184       sessionBufferGrow(&p->tblhdr, nByte, &rc);
3185     }else{
3186       rc = SQLITE_CORRUPT_BKPT;
3187     }
3188   }
3189 
3190   if( rc==SQLITE_OK ){
3191     size_t iPK = sizeof(sqlite3_value*)*p->nCol*2;
3192     memset(p->tblhdr.aBuf, 0, iPK);
3193     memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
3194     p->in.iNext += nCopy;
3195   }
3196 
3197   p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
3198   if( p->apValue==0 ){
3199     p->abPK = 0;
3200     p->zTab = 0;
3201   }else{
3202     p->abPK = (u8*)&p->apValue[p->nCol*2];
3203     p->zTab = p->abPK ? (char*)&p->abPK[p->nCol] : 0;
3204   }
3205   return (p->rc = rc);
3206 }
3207 
3208 /*
3209 ** Advance the changeset iterator to the next change. The differences between
3210 ** this function and sessionChangesetNext() are that
3211 **
3212 **   * If pbEmpty is not NULL and the change is a no-op UPDATE (an UPDATE
3213 **     that modifies no columns), this function sets (*pbEmpty) to 1.
3214 **
3215 **   * If the iterator is configured to skip no-op UPDATEs,
3216 **     sessionChangesetNext() does that. This function does not.
3217 */
sessionChangesetNextOne(sqlite3_changeset_iter * p,u8 ** paRec,int * pnRec,int * pbNew,int * pbEmpty)3218 static int sessionChangesetNextOne(
3219   sqlite3_changeset_iter *p,      /* Changeset iterator */
3220   u8 **paRec,                     /* If non-NULL, store record pointer here */
3221   int *pnRec,                     /* If non-NULL, store size of record here */
3222   int *pbNew,                     /* If non-NULL, true if new table */
3223   int *pbEmpty
3224 ){
3225   int i;
3226   u8 op;
3227 
3228   assert( (paRec==0 && pnRec==0) || (paRec && pnRec) );
3229   assert( pbEmpty==0 || *pbEmpty==0 );
3230 
3231   /* If the iterator is in the error-state, return immediately. */
3232   if( p->rc!=SQLITE_OK ) return p->rc;
3233 
3234   /* Free the current contents of p->apValue[], if any. */
3235   if( p->apValue ){
3236     for(i=0; i<p->nCol*2; i++){
3237       sqlite3ValueFree(p->apValue[i]);
3238     }
3239     memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
3240   }
3241 
3242   /* Make sure the buffer contains at least 10 bytes of input data, or all
3243   ** remaining data if there are less than 10 bytes available. This is
3244   ** sufficient either for the 'T' or 'P' byte and the varint that follows
3245   ** it, or for the two single byte values otherwise. */
3246   p->rc = sessionInputBuffer(&p->in, 2);
3247   if( p->rc!=SQLITE_OK ) return p->rc;
3248 
3249   /* If the iterator is already at the end of the changeset, return DONE. */
3250   if( p->in.iNext>=p->in.nData ){
3251     return SQLITE_DONE;
3252   }
3253 
3254   sessionDiscardData(&p->in);
3255   p->in.iCurrent = p->in.iNext;
3256 
3257   op = p->in.aData[p->in.iNext++];
3258   while( op=='T' || op=='P' ){
3259     if( pbNew ) *pbNew = 1;
3260     p->bPatchset = (op=='P');
3261     if( sessionChangesetReadTblhdr(p) ) return p->rc;
3262     if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
3263     p->in.iCurrent = p->in.iNext;
3264     if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
3265     op = p->in.aData[p->in.iNext++];
3266   }
3267 
3268   if( p->zTab==0 || (p->bPatchset && p->bInvert) ){
3269     /* The first record in the changeset is not a table header. Must be a
3270     ** corrupt changeset. */
3271     assert( p->in.iNext==1 || p->zTab );
3272     return (p->rc = SQLITE_CORRUPT_BKPT);
3273   }
3274 
3275   p->op = op;
3276   p->bIndirect = p->in.aData[p->in.iNext++];
3277   if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
3278     return (p->rc = SQLITE_CORRUPT_BKPT);
3279   }
3280 
3281   if( paRec ){
3282     int nVal;                     /* Number of values to buffer */
3283     if( p->bPatchset==0 && op==SQLITE_UPDATE ){
3284       nVal = p->nCol * 2;
3285     }else if( p->bPatchset && op==SQLITE_DELETE ){
3286       nVal = 0;
3287       for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++;
3288     }else{
3289       nVal = p->nCol;
3290     }
3291     p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
3292     if( p->rc!=SQLITE_OK ) return p->rc;
3293     *paRec = &p->in.aData[p->in.iNext];
3294     p->in.iNext += *pnRec;
3295   }else{
3296     sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue);
3297     sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]);
3298 
3299     /* If this is an UPDATE or DELETE, read the old.* record. */
3300     if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
3301       u8 *abPK = p->bPatchset ? p->abPK : 0;
3302       p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld, 0);
3303       if( p->rc!=SQLITE_OK ) return p->rc;
3304     }
3305 
3306     /* If this is an INSERT or UPDATE, read the new.* record. */
3307     if( p->op!=SQLITE_DELETE ){
3308       p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew, pbEmpty);
3309       if( p->rc!=SQLITE_OK ) return p->rc;
3310     }
3311 
3312     if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){
3313       /* If this is an UPDATE that is part of a patchset, then all PK and
3314       ** modified fields are present in the new.* record. The old.* record
3315       ** is currently completely empty. This block shifts the PK fields from
3316       ** new.* to old.*, to accommodate the code that reads these arrays.  */
3317       for(i=0; i<p->nCol; i++){
3318         assert( p->bPatchset==0 || p->apValue[i]==0 );
3319         if( p->abPK[i] ){
3320           assert( p->apValue[i]==0 );
3321           p->apValue[i] = p->apValue[i+p->nCol];
3322           if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
3323           p->apValue[i+p->nCol] = 0;
3324         }
3325       }
3326     }else if( p->bInvert ){
3327       if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE;
3328       else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT;
3329     }
3330   }
3331 
3332   return SQLITE_ROW;
3333 }
3334 
3335 /*
3336 ** Advance the changeset iterator to the next change.
3337 **
3338 ** If both paRec and pnRec are NULL, then this function works like the public
3339 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the
3340 ** sqlite3changeset_new() and old() APIs may be used to query for values.
3341 **
3342 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change
3343 ** record is written to *paRec before returning and the number of bytes in
3344 ** the record to *pnRec.
3345 **
3346 ** Either way, this function returns SQLITE_ROW if the iterator is
3347 ** successfully advanced to the next change in the changeset, an SQLite
3348 ** error code if an error occurs, or SQLITE_DONE if there are no further
3349 ** changes in the changeset.
3350 */
sessionChangesetNext(sqlite3_changeset_iter * p,u8 ** paRec,int * pnRec,int * pbNew)3351 static int sessionChangesetNext(
3352   sqlite3_changeset_iter *p,      /* Changeset iterator */
3353   u8 **paRec,                     /* If non-NULL, store record pointer here */
3354   int *pnRec,                     /* If non-NULL, store size of record here */
3355   int *pbNew                      /* If non-NULL, true if new table */
3356 ){
3357   int bEmpty;
3358   int rc;
3359   do {
3360     bEmpty = 0;
3361     rc = sessionChangesetNextOne(p, paRec, pnRec, pbNew, &bEmpty);
3362   }while( rc==SQLITE_ROW && p->bSkipEmpty && bEmpty);
3363   return rc;
3364 }
3365 
3366 /*
3367 ** Advance an iterator created by sqlite3changeset_start() to the next
3368 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE
3369 ** or SQLITE_CORRUPT.
3370 **
3371 ** This function may not be called on iterators passed to a conflict handler
3372 ** callback by changeset_apply().
3373 */
sqlite3changeset_next(sqlite3_changeset_iter * p)3374 int sqlite3changeset_next(sqlite3_changeset_iter *p){
3375   return sessionChangesetNext(p, 0, 0, 0);
3376 }
3377 
3378 /*
3379 ** The following function extracts information on the current change
3380 ** from a changeset iterator. It may only be called after changeset_next()
3381 ** has returned SQLITE_ROW.
3382 */
sqlite3changeset_op(sqlite3_changeset_iter * pIter,const char ** pzTab,int * pnCol,int * pOp,int * pbIndirect)3383 int sqlite3changeset_op(
3384   sqlite3_changeset_iter *pIter,  /* Iterator handle */
3385   const char **pzTab,             /* OUT: Pointer to table name */
3386   int *pnCol,                     /* OUT: Number of columns in table */
3387   int *pOp,                       /* OUT: SQLITE_INSERT, DELETE or UPDATE */
3388   int *pbIndirect                 /* OUT: True if change is indirect */
3389 ){
3390   *pOp = pIter->op;
3391   *pnCol = pIter->nCol;
3392   *pzTab = pIter->zTab;
3393   if( pbIndirect ) *pbIndirect = pIter->bIndirect;
3394   return SQLITE_OK;
3395 }
3396 
3397 /*
3398 ** Return information regarding the PRIMARY KEY and number of columns in
3399 ** the database table affected by the change that pIter currently points
3400 ** to. This function may only be called after changeset_next() returns
3401 ** SQLITE_ROW.
3402 */
sqlite3changeset_pk(sqlite3_changeset_iter * pIter,unsigned char ** pabPK,int * pnCol)3403 int sqlite3changeset_pk(
3404   sqlite3_changeset_iter *pIter,  /* Iterator object */
3405   unsigned char **pabPK,          /* OUT: Array of boolean - true for PK cols */
3406   int *pnCol                      /* OUT: Number of entries in output array */
3407 ){
3408   *pabPK = pIter->abPK;
3409   if( pnCol ) *pnCol = pIter->nCol;
3410   return SQLITE_OK;
3411 }
3412 
3413 /*
3414 ** This function may only be called while the iterator is pointing to an
3415 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()).
3416 ** Otherwise, SQLITE_MISUSE is returned.
3417 **
3418 ** It sets *ppValue to point to an sqlite3_value structure containing the
3419 ** iVal'th value in the old.* record. Or, if that particular value is not
3420 ** included in the record (because the change is an UPDATE and the field
3421 ** was not modified and is not a PK column), set *ppValue to NULL.
3422 **
3423 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
3424 ** not modified. Otherwise, SQLITE_OK.
3425 */
sqlite3changeset_old(sqlite3_changeset_iter * pIter,int iVal,sqlite3_value ** ppValue)3426 int sqlite3changeset_old(
3427   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
3428   int iVal,                       /* Index of old.* value to retrieve */
3429   sqlite3_value **ppValue         /* OUT: Old value (or NULL pointer) */
3430 ){
3431   if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){
3432     return SQLITE_MISUSE;
3433   }
3434   if( iVal<0 || iVal>=pIter->nCol ){
3435     return SQLITE_RANGE;
3436   }
3437   *ppValue = pIter->apValue[iVal];
3438   return SQLITE_OK;
3439 }
3440 
3441 /*
3442 ** This function may only be called while the iterator is pointing to an
3443 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()).
3444 ** Otherwise, SQLITE_MISUSE is returned.
3445 **
3446 ** It sets *ppValue to point to an sqlite3_value structure containing the
3447 ** iVal'th value in the new.* record. Or, if that particular value is not
3448 ** included in the record (because the change is an UPDATE and the field
3449 ** was not modified), set *ppValue to NULL.
3450 **
3451 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
3452 ** not modified. Otherwise, SQLITE_OK.
3453 */
sqlite3changeset_new(sqlite3_changeset_iter * pIter,int iVal,sqlite3_value ** ppValue)3454 int sqlite3changeset_new(
3455   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
3456   int iVal,                       /* Index of new.* value to retrieve */
3457   sqlite3_value **ppValue         /* OUT: New value (or NULL pointer) */
3458 ){
3459   if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){
3460     return SQLITE_MISUSE;
3461   }
3462   if( iVal<0 || iVal>=pIter->nCol ){
3463     return SQLITE_RANGE;
3464   }
3465   *ppValue = pIter->apValue[pIter->nCol+iVal];
3466   return SQLITE_OK;
3467 }
3468 
3469 /*
3470 ** The following two macros are used internally. They are similar to the
3471 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that
3472 ** they omit all error checking and return a pointer to the requested value.
3473 */
3474 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)]
3475 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)]
3476 
3477 /*
3478 ** This function may only be called with a changeset iterator that has been
3479 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT
3480 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned.
3481 **
3482 ** If successful, *ppValue is set to point to an sqlite3_value structure
3483 ** containing the iVal'th value of the conflicting record.
3484 **
3485 ** If value iVal is out-of-range or some other error occurs, an SQLite error
3486 ** code is returned. Otherwise, SQLITE_OK.
3487 */
sqlite3changeset_conflict(sqlite3_changeset_iter * pIter,int iVal,sqlite3_value ** ppValue)3488 int sqlite3changeset_conflict(
3489   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
3490   int iVal,                       /* Index of conflict record value to fetch */
3491   sqlite3_value **ppValue         /* OUT: Value from conflicting row */
3492 ){
3493   if( !pIter->pConflict ){
3494     return SQLITE_MISUSE;
3495   }
3496   if( iVal<0 || iVal>=pIter->nCol ){
3497     return SQLITE_RANGE;
3498   }
3499   *ppValue = sqlite3_column_value(pIter->pConflict, iVal);
3500   return SQLITE_OK;
3501 }
3502 
3503 /*
3504 ** This function may only be called with an iterator passed to an
3505 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
3506 ** it sets the output variable to the total number of known foreign key
3507 ** violations in the destination database and returns SQLITE_OK.
3508 **
3509 ** In all other cases this function returns SQLITE_MISUSE.
3510 */
sqlite3changeset_fk_conflicts(sqlite3_changeset_iter * pIter,int * pnOut)3511 int sqlite3changeset_fk_conflicts(
3512   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
3513   int *pnOut                      /* OUT: Number of FK violations */
3514 ){
3515   if( pIter->pConflict || pIter->apValue ){
3516     return SQLITE_MISUSE;
3517   }
3518   *pnOut = pIter->nCol;
3519   return SQLITE_OK;
3520 }
3521 
3522 
3523 /*
3524 ** Finalize an iterator allocated with sqlite3changeset_start().
3525 **
3526 ** This function may not be called on iterators passed to a conflict handler
3527 ** callback by changeset_apply().
3528 */
sqlite3changeset_finalize(sqlite3_changeset_iter * p)3529 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){
3530   int rc = SQLITE_OK;
3531   if( p ){
3532     int i;                        /* Used to iterate through p->apValue[] */
3533     rc = p->rc;
3534     if( p->apValue ){
3535       for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]);
3536     }
3537     sqlite3_free(p->tblhdr.aBuf);
3538     sqlite3_free(p->in.buf.aBuf);
3539     sqlite3_free(p);
3540   }
3541   return rc;
3542 }
3543 
sessionChangesetInvert(SessionInput * pInput,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut,int * pnInverted,void ** ppInverted)3544 static int sessionChangesetInvert(
3545   SessionInput *pInput,           /* Input changeset */
3546   int (*xOutput)(void *pOut, const void *pData, int nData),
3547   void *pOut,
3548   int *pnInverted,                /* OUT: Number of bytes in output changeset */
3549   void **ppInverted               /* OUT: Inverse of pChangeset */
3550 ){
3551   int rc = SQLITE_OK;             /* Return value */
3552   SessionBuffer sOut;             /* Output buffer */
3553   int nCol = 0;                   /* Number of cols in current table */
3554   u8 *abPK = 0;                   /* PK array for current table */
3555   sqlite3_value **apVal = 0;      /* Space for values for UPDATE inversion */
3556   SessionBuffer sPK = {0, 0, 0};  /* PK array for current table */
3557 
3558   /* Initialize the output buffer */
3559   memset(&sOut, 0, sizeof(SessionBuffer));
3560 
3561   /* Zero the output variables in case an error occurs. */
3562   if( ppInverted ){
3563     *ppInverted = 0;
3564     *pnInverted = 0;
3565   }
3566 
3567   while( 1 ){
3568     u8 eType;
3569 
3570     /* Test for EOF. */
3571     if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert;
3572     if( pInput->iNext>=pInput->nData ) break;
3573     eType = pInput->aData[pInput->iNext];
3574 
3575     switch( eType ){
3576       case 'T': {
3577         /* A 'table' record consists of:
3578         **
3579         **   * A constant 'T' character,
3580         **   * Number of columns in said table (a varint),
3581         **   * An array of nCol bytes (sPK),
3582         **   * A nul-terminated table name.
3583         */
3584         int nByte;
3585         int nVar;
3586         pInput->iNext++;
3587         if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){
3588           goto finished_invert;
3589         }
3590         nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol);
3591         sPK.nBuf = 0;
3592         sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc);
3593         sessionAppendByte(&sOut, eType, &rc);
3594         sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
3595         if( rc ) goto finished_invert;
3596 
3597         pInput->iNext += nByte;
3598         sqlite3_free(apVal);
3599         apVal = 0;
3600         abPK = sPK.aBuf;
3601         break;
3602       }
3603 
3604       case SQLITE_INSERT:
3605       case SQLITE_DELETE: {
3606         int nByte;
3607         int bIndirect = pInput->aData[pInput->iNext+1];
3608         int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE);
3609         pInput->iNext += 2;
3610         assert( rc==SQLITE_OK );
3611         rc = sessionChangesetBufferRecord(pInput, nCol, &nByte);
3612         sessionAppendByte(&sOut, eType2, &rc);
3613         sessionAppendByte(&sOut, bIndirect, &rc);
3614         sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
3615         pInput->iNext += nByte;
3616         if( rc ) goto finished_invert;
3617         break;
3618       }
3619 
3620       case SQLITE_UPDATE: {
3621         int iCol;
3622 
3623         if( 0==apVal ){
3624           apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2);
3625           if( 0==apVal ){
3626             rc = SQLITE_NOMEM;
3627             goto finished_invert;
3628           }
3629           memset(apVal, 0, sizeof(apVal[0])*nCol*2);
3630         }
3631 
3632         /* Write the header for the new UPDATE change. Same as the original. */
3633         sessionAppendByte(&sOut, eType, &rc);
3634         sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc);
3635 
3636         /* Read the old.* and new.* records for the update change. */
3637         pInput->iNext += 2;
3638         rc = sessionReadRecord(pInput, nCol, 0, &apVal[0], 0);
3639         if( rc==SQLITE_OK ){
3640           rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol], 0);
3641         }
3642 
3643         /* Write the new old.* record. Consists of the PK columns from the
3644         ** original old.* record, and the other values from the original
3645         ** new.* record. */
3646         for(iCol=0; iCol<nCol; iCol++){
3647           sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)];
3648           sessionAppendValue(&sOut, pVal, &rc);
3649         }
3650 
3651         /* Write the new new.* record. Consists of a copy of all values
3652         ** from the original old.* record, except for the PK columns, which
3653         ** are set to "undefined". */
3654         for(iCol=0; iCol<nCol; iCol++){
3655           sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]);
3656           sessionAppendValue(&sOut, pVal, &rc);
3657         }
3658 
3659         for(iCol=0; iCol<nCol*2; iCol++){
3660           sqlite3ValueFree(apVal[iCol]);
3661         }
3662         memset(apVal, 0, sizeof(apVal[0])*nCol*2);
3663         if( rc!=SQLITE_OK ){
3664           goto finished_invert;
3665         }
3666 
3667         break;
3668       }
3669 
3670       default:
3671         rc = SQLITE_CORRUPT_BKPT;
3672         goto finished_invert;
3673     }
3674 
3675     assert( rc==SQLITE_OK );
3676     if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){
3677       rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
3678       sOut.nBuf = 0;
3679       if( rc!=SQLITE_OK ) goto finished_invert;
3680     }
3681   }
3682 
3683   assert( rc==SQLITE_OK );
3684   if( pnInverted && ALWAYS(ppInverted) ){
3685     *pnInverted = sOut.nBuf;
3686     *ppInverted = sOut.aBuf;
3687     sOut.aBuf = 0;
3688   }else if( sOut.nBuf>0 && ALWAYS(xOutput!=0) ){
3689     rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
3690   }
3691 
3692  finished_invert:
3693   sqlite3_free(sOut.aBuf);
3694   sqlite3_free(apVal);
3695   sqlite3_free(sPK.aBuf);
3696   return rc;
3697 }
3698 
3699 
3700 /*
3701 ** Invert a changeset object.
3702 */
sqlite3changeset_invert(int nChangeset,const void * pChangeset,int * pnInverted,void ** ppInverted)3703 int sqlite3changeset_invert(
3704   int nChangeset,                 /* Number of bytes in input */
3705   const void *pChangeset,         /* Input changeset */
3706   int *pnInverted,                /* OUT: Number of bytes in output changeset */
3707   void **ppInverted               /* OUT: Inverse of pChangeset */
3708 ){
3709   SessionInput sInput;
3710 
3711   /* Set up the input stream */
3712   memset(&sInput, 0, sizeof(SessionInput));
3713   sInput.nData = nChangeset;
3714   sInput.aData = (u8*)pChangeset;
3715 
3716   return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted);
3717 }
3718 
3719 /*
3720 ** Streaming version of sqlite3changeset_invert().
3721 */
sqlite3changeset_invert_strm(int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)3722 int sqlite3changeset_invert_strm(
3723   int (*xInput)(void *pIn, void *pData, int *pnData),
3724   void *pIn,
3725   int (*xOutput)(void *pOut, const void *pData, int nData),
3726   void *pOut
3727 ){
3728   SessionInput sInput;
3729   int rc;
3730 
3731   /* Set up the input stream */
3732   memset(&sInput, 0, sizeof(SessionInput));
3733   sInput.xInput = xInput;
3734   sInput.pIn = pIn;
3735 
3736   rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0);
3737   sqlite3_free(sInput.buf.aBuf);
3738   return rc;
3739 }
3740 
3741 
3742 typedef struct SessionUpdate SessionUpdate;
3743 struct SessionUpdate {
3744   sqlite3_stmt *pStmt;
3745   u32 *aMask;
3746   SessionUpdate *pNext;
3747 };
3748 
3749 typedef struct SessionApplyCtx SessionApplyCtx;
3750 struct SessionApplyCtx {
3751   sqlite3 *db;
3752   sqlite3_stmt *pDelete;          /* DELETE statement */
3753   sqlite3_stmt *pInsert;          /* INSERT statement */
3754   sqlite3_stmt *pSelect;          /* SELECT statement */
3755   int nCol;                       /* Size of azCol[] and abPK[] arrays */
3756   const char **azCol;             /* Array of column names */
3757   u8 *abPK;                       /* Boolean array - true if column is in PK */
3758   u32 *aUpdateMask;               /* Used by sessionUpdateFind */
3759   SessionUpdate *pUp;
3760   int bStat1;                     /* True if table is sqlite_stat1 */
3761   int bDeferConstraints;          /* True to defer constraints */
3762   int bInvertConstraints;         /* Invert when iterating constraints buffer */
3763   SessionBuffer constraints;      /* Deferred constraints are stored here */
3764   SessionBuffer rebase;           /* Rebase information (if any) here */
3765   u8 bRebaseStarted;              /* If table header is already in rebase */
3766   u8 bRebase;                     /* True to collect rebase information */
3767 };
3768 
3769 /* Number of prepared UPDATE statements to cache. */
3770 #define SESSION_UPDATE_CACHE_SZ 12
3771 
3772 /*
3773 ** Find a prepared UPDATE statement suitable for the UPDATE step currently
3774 ** being visited by the iterator. The UPDATE is of the form:
3775 **
3776 **   UPDATE tbl SET col = ?, col2 = ? WHERE pk1 IS ? AND pk2 IS ?
3777 */
sessionUpdateFind(sqlite3_changeset_iter * pIter,SessionApplyCtx * p,int bPatchset,sqlite3_stmt ** ppStmt)3778 static int sessionUpdateFind(
3779   sqlite3_changeset_iter *pIter,
3780   SessionApplyCtx *p,
3781   int bPatchset,
3782   sqlite3_stmt **ppStmt
3783 ){
3784   int rc = SQLITE_OK;
3785   SessionUpdate *pUp = 0;
3786   int nCol = pIter->nCol;
3787   int nU32 = (pIter->nCol+33)/32;
3788   int ii;
3789 
3790   if( p->aUpdateMask==0 ){
3791     p->aUpdateMask = sqlite3_malloc(nU32*sizeof(u32));
3792     if( p->aUpdateMask==0 ){
3793       rc = SQLITE_NOMEM;
3794     }
3795   }
3796 
3797   if( rc==SQLITE_OK ){
3798     memset(p->aUpdateMask, 0, nU32*sizeof(u32));
3799     rc = SQLITE_CORRUPT;
3800     for(ii=0; ii<pIter->nCol; ii++){
3801       if( sessionChangesetNew(pIter, ii) ){
3802         p->aUpdateMask[ii/32] |= (1<<(ii%32));
3803         rc = SQLITE_OK;
3804       }
3805     }
3806   }
3807 
3808   if( rc==SQLITE_OK ){
3809     if( bPatchset ) p->aUpdateMask[nCol/32] |= (1<<(nCol%32));
3810 
3811     if( p->pUp ){
3812       int nUp = 0;
3813       SessionUpdate **pp = &p->pUp;
3814       while( 1 ){
3815         nUp++;
3816         if( 0==memcmp(p->aUpdateMask, (*pp)->aMask, nU32*sizeof(u32)) ){
3817           pUp = *pp;
3818           *pp = pUp->pNext;
3819           pUp->pNext = p->pUp;
3820           p->pUp = pUp;
3821           break;
3822         }
3823 
3824         if( (*pp)->pNext ){
3825           pp = &(*pp)->pNext;
3826         }else{
3827           if( nUp>=SESSION_UPDATE_CACHE_SZ ){
3828             sqlite3_finalize((*pp)->pStmt);
3829             sqlite3_free(*pp);
3830             *pp = 0;
3831           }
3832           break;
3833         }
3834       }
3835     }
3836 
3837     if( pUp==0 ){
3838       int nByte = sizeof(SessionUpdate) * nU32*sizeof(u32);
3839       int bStat1 = (sqlite3_stricmp(pIter->zTab, "sqlite_stat1")==0);
3840       pUp = (SessionUpdate*)sqlite3_malloc(nByte);
3841       if( pUp==0 ){
3842         rc = SQLITE_NOMEM;
3843       }else{
3844         const char *zSep = "";
3845         SessionBuffer buf;
3846 
3847         memset(&buf, 0, sizeof(buf));
3848         pUp->aMask = (u32*)&pUp[1];
3849         memcpy(pUp->aMask, p->aUpdateMask, nU32*sizeof(u32));
3850 
3851         sessionAppendStr(&buf, "UPDATE main.", &rc);
3852         sessionAppendIdent(&buf, pIter->zTab, &rc);
3853         sessionAppendStr(&buf, " SET ", &rc);
3854 
3855         /* Create the assignments part of the UPDATE */
3856         for(ii=0; ii<pIter->nCol; ii++){
3857           if( p->abPK[ii]==0 && sessionChangesetNew(pIter, ii) ){
3858             sessionAppendStr(&buf, zSep, &rc);
3859             sessionAppendIdent(&buf, p->azCol[ii], &rc);
3860             sessionAppendStr(&buf, " = ?", &rc);
3861             sessionAppendInteger(&buf, ii*2+1, &rc);
3862             zSep = ", ";
3863           }
3864         }
3865 
3866         /* Create the WHERE clause part of the UPDATE */
3867         zSep = "";
3868         sessionAppendStr(&buf, " WHERE ", &rc);
3869         for(ii=0; ii<pIter->nCol; ii++){
3870           if( p->abPK[ii] || (bPatchset==0 && sessionChangesetOld(pIter, ii)) ){
3871             sessionAppendStr(&buf, zSep, &rc);
3872             if( bStat1 && ii==1 ){
3873               assert( sqlite3_stricmp(p->azCol[ii], "idx")==0 );
3874               sessionAppendStr(&buf,
3875                   "idx IS CASE "
3876                   "WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL "
3877                   "ELSE ?4 END ", &rc
3878               );
3879             }else{
3880               sessionAppendIdent(&buf, p->azCol[ii], &rc);
3881               sessionAppendStr(&buf, " IS ?", &rc);
3882               sessionAppendInteger(&buf, ii*2+2, &rc);
3883             }
3884             zSep = " AND ";
3885           }
3886         }
3887 
3888         if( rc==SQLITE_OK ){
3889           char *zSql = (char*)buf.aBuf;
3890           rc = sqlite3_prepare_v2(p->db, zSql, buf.nBuf, &pUp->pStmt, 0);
3891         }
3892 
3893         if( rc!=SQLITE_OK ){
3894           sqlite3_free(pUp);
3895           pUp = 0;
3896         }else{
3897           pUp->pNext = p->pUp;
3898           p->pUp = pUp;
3899         }
3900         sqlite3_free(buf.aBuf);
3901       }
3902     }
3903   }
3904 
3905   assert( (rc==SQLITE_OK)==(pUp!=0) );
3906   if( pUp ){
3907     *ppStmt = pUp->pStmt;
3908   }else{
3909     *ppStmt = 0;
3910   }
3911   return rc;
3912 }
3913 
3914 /*
3915 ** Free all cached UPDATE statements.
3916 */
sessionUpdateFree(SessionApplyCtx * p)3917 static void sessionUpdateFree(SessionApplyCtx *p){
3918   SessionUpdate *pUp;
3919   SessionUpdate *pNext;
3920   for(pUp=p->pUp; pUp; pUp=pNext){
3921     pNext = pUp->pNext;
3922     sqlite3_finalize(pUp->pStmt);
3923     sqlite3_free(pUp);
3924   }
3925   p->pUp = 0;
3926   sqlite3_free(p->aUpdateMask);
3927   p->aUpdateMask = 0;
3928 }
3929 
3930 /*
3931 ** Formulate a statement to DELETE a row from database db. Assuming a table
3932 ** structure like this:
3933 **
3934 **     CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
3935 **
3936 ** The DELETE statement looks like this:
3937 **
3938 **     DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4)
3939 **
3940 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require
3941 ** matching b and d values, or 1 otherwise. The second case comes up if the
3942 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE.
3943 **
3944 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left
3945 ** pointing to the prepared version of the SQL statement.
3946 */
sessionDeleteRow(sqlite3 * db,const char * zTab,SessionApplyCtx * p)3947 static int sessionDeleteRow(
3948   sqlite3 *db,                    /* Database handle */
3949   const char *zTab,               /* Table name */
3950   SessionApplyCtx *p              /* Session changeset-apply context */
3951 ){
3952   int i;
3953   const char *zSep = "";
3954   int rc = SQLITE_OK;
3955   SessionBuffer buf = {0, 0, 0};
3956   int nPk = 0;
3957 
3958   sessionAppendStr(&buf, "DELETE FROM main.", &rc);
3959   sessionAppendIdent(&buf, zTab, &rc);
3960   sessionAppendStr(&buf, " WHERE ", &rc);
3961 
3962   for(i=0; i<p->nCol; i++){
3963     if( p->abPK[i] ){
3964       nPk++;
3965       sessionAppendStr(&buf, zSep, &rc);
3966       sessionAppendIdent(&buf, p->azCol[i], &rc);
3967       sessionAppendStr(&buf, " = ?", &rc);
3968       sessionAppendInteger(&buf, i+1, &rc);
3969       zSep = " AND ";
3970     }
3971   }
3972 
3973   if( nPk<p->nCol ){
3974     sessionAppendStr(&buf, " AND (?", &rc);
3975     sessionAppendInteger(&buf, p->nCol+1, &rc);
3976     sessionAppendStr(&buf, " OR ", &rc);
3977 
3978     zSep = "";
3979     for(i=0; i<p->nCol; i++){
3980       if( !p->abPK[i] ){
3981         sessionAppendStr(&buf, zSep, &rc);
3982         sessionAppendIdent(&buf, p->azCol[i], &rc);
3983         sessionAppendStr(&buf, " IS ?", &rc);
3984         sessionAppendInteger(&buf, i+1, &rc);
3985         zSep = "AND ";
3986       }
3987     }
3988     sessionAppendStr(&buf, ")", &rc);
3989   }
3990 
3991   if( rc==SQLITE_OK ){
3992     rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0);
3993   }
3994   sqlite3_free(buf.aBuf);
3995 
3996   return rc;
3997 }
3998 
3999 /*
4000 ** Formulate and prepare an SQL statement to query table zTab by primary
4001 ** key. Assuming the following table structure:
4002 **
4003 **     CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
4004 **
4005 ** The SELECT statement looks like this:
4006 **
4007 **     SELECT * FROM x WHERE a = ?1 AND c = ?3
4008 **
4009 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left
4010 ** pointing to the prepared version of the SQL statement.
4011 */
sessionSelectRow(sqlite3 * db,const char * zTab,SessionApplyCtx * p)4012 static int sessionSelectRow(
4013   sqlite3 *db,                    /* Database handle */
4014   const char *zTab,               /* Table name */
4015   SessionApplyCtx *p              /* Session changeset-apply context */
4016 ){
4017   return sessionSelectStmt(
4018       db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect);
4019 }
4020 
4021 /*
4022 ** Formulate and prepare an INSERT statement to add a record to table zTab.
4023 ** For example:
4024 **
4025 **     INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...);
4026 **
4027 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left
4028 ** pointing to the prepared version of the SQL statement.
4029 */
sessionInsertRow(sqlite3 * db,const char * zTab,SessionApplyCtx * p)4030 static int sessionInsertRow(
4031   sqlite3 *db,                    /* Database handle */
4032   const char *zTab,               /* Table name */
4033   SessionApplyCtx *p              /* Session changeset-apply context */
4034 ){
4035   int rc = SQLITE_OK;
4036   int i;
4037   SessionBuffer buf = {0, 0, 0};
4038 
4039   sessionAppendStr(&buf, "INSERT INTO main.", &rc);
4040   sessionAppendIdent(&buf, zTab, &rc);
4041   sessionAppendStr(&buf, "(", &rc);
4042   for(i=0; i<p->nCol; i++){
4043     if( i!=0 ) sessionAppendStr(&buf, ", ", &rc);
4044     sessionAppendIdent(&buf, p->azCol[i], &rc);
4045   }
4046 
4047   sessionAppendStr(&buf, ") VALUES(?", &rc);
4048   for(i=1; i<p->nCol; i++){
4049     sessionAppendStr(&buf, ", ?", &rc);
4050   }
4051   sessionAppendStr(&buf, ")", &rc);
4052 
4053   if( rc==SQLITE_OK ){
4054     rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
4055   }
4056   sqlite3_free(buf.aBuf);
4057   return rc;
4058 }
4059 
sessionPrepare(sqlite3 * db,sqlite3_stmt ** pp,const char * zSql)4060 static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){
4061   return sqlite3_prepare_v2(db, zSql, -1, pp, 0);
4062 }
4063 
4064 /*
4065 ** Prepare statements for applying changes to the sqlite_stat1 table.
4066 ** These are similar to those created by sessionSelectRow(),
4067 ** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for
4068 ** other tables.
4069 */
sessionStat1Sql(sqlite3 * db,SessionApplyCtx * p)4070 static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){
4071   int rc = sessionSelectRow(db, "sqlite_stat1", p);
4072   if( rc==SQLITE_OK ){
4073     rc = sessionPrepare(db, &p->pInsert,
4074         "INSERT INTO main.sqlite_stat1 VALUES(?1, "
4075         "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, "
4076         "?3)"
4077     );
4078   }
4079   if( rc==SQLITE_OK ){
4080     rc = sessionPrepare(db, &p->pDelete,
4081         "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS "
4082         "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END "
4083         "AND (?4 OR stat IS ?3)"
4084     );
4085   }
4086   return rc;
4087 }
4088 
4089 /*
4090 ** A wrapper around sqlite3_bind_value() that detects an extra problem.
4091 ** See comments in the body of this function for details.
4092 */
sessionBindValue(sqlite3_stmt * pStmt,int i,sqlite3_value * pVal)4093 static int sessionBindValue(
4094   sqlite3_stmt *pStmt,            /* Statement to bind value to */
4095   int i,                          /* Parameter number to bind to */
4096   sqlite3_value *pVal             /* Value to bind */
4097 ){
4098   int eType = sqlite3_value_type(pVal);
4099   /* COVERAGE: The (pVal->z==0) branch is never true using current versions
4100   ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either
4101   ** the (pVal->z) variable remains as it was or the type of the value is
4102   ** set to SQLITE_NULL.  */
4103   if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){
4104     /* This condition occurs when an earlier OOM in a call to
4105     ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within
4106     ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */
4107     return SQLITE_NOMEM;
4108   }
4109   return sqlite3_bind_value(pStmt, i, pVal);
4110 }
4111 
4112 /*
4113 ** Iterator pIter must point to an SQLITE_INSERT entry. This function
4114 ** transfers new.* values from the current iterator entry to statement
4115 ** pStmt. The table being inserted into has nCol columns.
4116 **
4117 ** New.* value $i from the iterator is bound to variable ($i+1) of
4118 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1)
4119 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points
4120 ** to an array nCol elements in size. In this case only those values for
4121 ** which abPK[$i] is true are read from the iterator and bound to the
4122 ** statement.
4123 **
4124 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
4125 */
sessionBindRow(sqlite3_changeset_iter * pIter,int (* xValue)(sqlite3_changeset_iter *,int,sqlite3_value **),int nCol,u8 * abPK,sqlite3_stmt * pStmt)4126 static int sessionBindRow(
4127   sqlite3_changeset_iter *pIter,  /* Iterator to read values from */
4128   int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **),
4129   int nCol,                       /* Number of columns */
4130   u8 *abPK,                       /* If not NULL, bind only if true */
4131   sqlite3_stmt *pStmt             /* Bind values to this statement */
4132 ){
4133   int i;
4134   int rc = SQLITE_OK;
4135 
4136   /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the
4137   ** argument iterator points to a suitable entry. Make sure that xValue
4138   ** is one of these to guarantee that it is safe to ignore the return
4139   ** in the code below. */
4140   assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new );
4141 
4142   for(i=0; rc==SQLITE_OK && i<nCol; i++){
4143     if( !abPK || abPK[i] ){
4144       sqlite3_value *pVal = 0;
4145       (void)xValue(pIter, i, &pVal);
4146       if( pVal==0 ){
4147         /* The value in the changeset was "undefined". This indicates a
4148         ** corrupt changeset blob.  */
4149         rc = SQLITE_CORRUPT_BKPT;
4150       }else{
4151         rc = sessionBindValue(pStmt, i+1, pVal);
4152       }
4153     }
4154   }
4155   return rc;
4156 }
4157 
4158 /*
4159 ** SQL statement pSelect is as generated by the sessionSelectRow() function.
4160 ** This function binds the primary key values from the change that changeset
4161 ** iterator pIter points to to the SELECT and attempts to seek to the table
4162 ** entry. If a row is found, the SELECT statement left pointing at the row
4163 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error
4164 ** has occured, the statement is reset and SQLITE_OK is returned. If an
4165 ** error occurs, the statement is reset and an SQLite error code is returned.
4166 **
4167 ** If this function returns SQLITE_ROW, the caller must eventually reset()
4168 ** statement pSelect. If any other value is returned, the statement does
4169 ** not require a reset().
4170 **
4171 ** If the iterator currently points to an INSERT record, bind values from the
4172 ** new.* record to the SELECT statement. Or, if it points to a DELETE or
4173 ** UPDATE, bind values from the old.* record.
4174 */
sessionSeekToRow(sqlite3 * db,sqlite3_changeset_iter * pIter,u8 * abPK,sqlite3_stmt * pSelect)4175 static int sessionSeekToRow(
4176   sqlite3 *db,                    /* Database handle */
4177   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
4178   u8 *abPK,                       /* Primary key flags array */
4179   sqlite3_stmt *pSelect           /* SELECT statement from sessionSelectRow() */
4180 ){
4181   int rc;                         /* Return code */
4182   int nCol;                       /* Number of columns in table */
4183   int op;                         /* Changset operation (SQLITE_UPDATE etc.) */
4184   const char *zDummy;             /* Unused */
4185 
4186   sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
4187   rc = sessionBindRow(pIter,
4188       op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old,
4189       nCol, abPK, pSelect
4190   );
4191 
4192   if( rc==SQLITE_OK ){
4193     rc = sqlite3_step(pSelect);
4194     if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect);
4195   }
4196 
4197   return rc;
4198 }
4199 
4200 /*
4201 ** This function is called from within sqlite3changeset_apply_v2() when
4202 ** a conflict is encountered and resolved using conflict resolution
4203 ** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE)..
4204 ** It adds a conflict resolution record to the buffer in
4205 ** SessionApplyCtx.rebase, which will eventually be returned to the caller
4206 ** of apply_v2() as the "rebase" buffer.
4207 **
4208 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
4209 */
sessionRebaseAdd(SessionApplyCtx * p,int eType,sqlite3_changeset_iter * pIter)4210 static int sessionRebaseAdd(
4211   SessionApplyCtx *p,             /* Apply context */
4212   int eType,                      /* Conflict resolution (OMIT or REPLACE) */
4213   sqlite3_changeset_iter *pIter   /* Iterator pointing at current change */
4214 ){
4215   int rc = SQLITE_OK;
4216   if( p->bRebase ){
4217     int i;
4218     int eOp = pIter->op;
4219     if( p->bRebaseStarted==0 ){
4220       /* Append a table-header to the rebase buffer */
4221       const char *zTab = pIter->zTab;
4222       sessionAppendByte(&p->rebase, 'T', &rc);
4223       sessionAppendVarint(&p->rebase, p->nCol, &rc);
4224       sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
4225       sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
4226       p->bRebaseStarted = 1;
4227     }
4228 
4229     assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
4230     assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );
4231 
4232     sessionAppendByte(&p->rebase,
4233         (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
4234         );
4235     sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
4236     for(i=0; i<p->nCol; i++){
4237       sqlite3_value *pVal = 0;
4238       if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
4239         sqlite3changeset_old(pIter, i, &pVal);
4240       }else{
4241         sqlite3changeset_new(pIter, i, &pVal);
4242       }
4243       sessionAppendValue(&p->rebase, pVal, &rc);
4244     }
4245   }
4246   return rc;
4247 }
4248 
4249 /*
4250 ** Invoke the conflict handler for the change that the changeset iterator
4251 ** currently points to.
4252 **
4253 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT.
4254 ** If argument pbReplace is NULL, then the type of conflict handler invoked
4255 ** depends solely on eType, as follows:
4256 **
4257 **    eType value                 Value passed to xConflict
4258 **    -------------------------------------------------
4259 **    CHANGESET_DATA              CHANGESET_NOTFOUND
4260 **    CHANGESET_CONFLICT          CHANGESET_CONSTRAINT
4261 **
4262 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing
4263 ** record with the same primary key as the record about to be deleted, updated
4264 ** or inserted. If such a record can be found, it is available to the conflict
4265 ** handler as the "conflicting" record. In this case the type of conflict
4266 ** handler invoked is as follows:
4267 **
4268 **    eType value         PK Record found?   Value passed to xConflict
4269 **    ----------------------------------------------------------------
4270 **    CHANGESET_DATA      Yes                CHANGESET_DATA
4271 **    CHANGESET_DATA      No                 CHANGESET_NOTFOUND
4272 **    CHANGESET_CONFLICT  Yes                CHANGESET_CONFLICT
4273 **    CHANGESET_CONFLICT  No                 CHANGESET_CONSTRAINT
4274 **
4275 ** If pbReplace is not NULL, and a record with a matching PK is found, and
4276 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace
4277 ** is set to non-zero before returning SQLITE_OK.
4278 **
4279 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is
4280 ** returned. Or, if the conflict handler returns an invalid value,
4281 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT,
4282 ** this function returns SQLITE_OK.
4283 */
sessionConflictHandler(int eType,SessionApplyCtx * p,sqlite3_changeset_iter * pIter,int (* xConflict)(void *,int,sqlite3_changeset_iter *),void * pCtx,int * pbReplace)4284 static int sessionConflictHandler(
4285   int eType,                      /* Either CHANGESET_DATA or CONFLICT */
4286   SessionApplyCtx *p,             /* changeset_apply() context */
4287   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
4288   int(*xConflict)(void *, int, sqlite3_changeset_iter*),
4289   void *pCtx,                     /* First argument for conflict handler */
4290   int *pbReplace                  /* OUT: Set to true if PK row is found */
4291 ){
4292   int res = 0;                    /* Value returned by conflict handler */
4293   int rc;
4294   int nCol;
4295   int op;
4296   const char *zDummy;
4297 
4298   sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
4299 
4300   assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA );
4301   assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT );
4302   assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND );
4303 
4304   /* Bind the new.* PRIMARY KEY values to the SELECT statement. */
4305   if( pbReplace ){
4306     rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect);
4307   }else{
4308     rc = SQLITE_OK;
4309   }
4310 
4311   if( rc==SQLITE_ROW ){
4312     /* There exists another row with the new.* primary key. */
4313     pIter->pConflict = p->pSelect;
4314     res = xConflict(pCtx, eType, pIter);
4315     pIter->pConflict = 0;
4316     rc = sqlite3_reset(p->pSelect);
4317   }else if( rc==SQLITE_OK ){
4318     if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){
4319       /* Instead of invoking the conflict handler, append the change blob
4320       ** to the SessionApplyCtx.constraints buffer. */
4321       u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent];
4322       int nBlob = pIter->in.iNext - pIter->in.iCurrent;
4323       sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc);
4324       return SQLITE_OK;
4325     }else{
4326       /* No other row with the new.* primary key. */
4327       res = xConflict(pCtx, eType+1, pIter);
4328       if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE;
4329     }
4330   }
4331 
4332   if( rc==SQLITE_OK ){
4333     switch( res ){
4334       case SQLITE_CHANGESET_REPLACE:
4335         assert( pbReplace );
4336         *pbReplace = 1;
4337         break;
4338 
4339       case SQLITE_CHANGESET_OMIT:
4340         break;
4341 
4342       case SQLITE_CHANGESET_ABORT:
4343         rc = SQLITE_ABORT;
4344         break;
4345 
4346       default:
4347         rc = SQLITE_MISUSE;
4348         break;
4349     }
4350     if( rc==SQLITE_OK ){
4351       rc = sessionRebaseAdd(p, res, pIter);
4352     }
4353   }
4354 
4355   return rc;
4356 }
4357 
4358 /*
4359 ** Attempt to apply the change that the iterator passed as the first argument
4360 ** currently points to to the database. If a conflict is encountered, invoke
4361 ** the conflict handler callback.
4362 **
4363 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If
4364 ** one is encountered, update or delete the row with the matching primary key
4365 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs,
4366 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry
4367 ** to true before returning. In this case the caller will invoke this function
4368 ** again, this time with pbRetry set to NULL.
4369 **
4370 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is
4371 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead.
4372 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such
4373 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true
4374 ** before retrying. In this case the caller attempts to remove the conflicting
4375 ** row before invoking this function again, this time with pbReplace set
4376 ** to NULL.
4377 **
4378 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function
4379 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is
4380 ** returned.
4381 */
sessionApplyOneOp(sqlite3_changeset_iter * pIter,SessionApplyCtx * p,int (* xConflict)(void *,int,sqlite3_changeset_iter *),void * pCtx,int * pbReplace,int * pbRetry)4382 static int sessionApplyOneOp(
4383   sqlite3_changeset_iter *pIter,  /* Changeset iterator */
4384   SessionApplyCtx *p,             /* changeset_apply() context */
4385   int(*xConflict)(void *, int, sqlite3_changeset_iter *),
4386   void *pCtx,                     /* First argument for the conflict handler */
4387   int *pbReplace,                 /* OUT: True to remove PK row and retry */
4388   int *pbRetry                    /* OUT: True to retry. */
4389 ){
4390   const char *zDummy;
4391   int op;
4392   int nCol;
4393   int rc = SQLITE_OK;
4394 
4395   assert( p->pDelete && p->pInsert && p->pSelect );
4396   assert( p->azCol && p->abPK );
4397   assert( !pbReplace || *pbReplace==0 );
4398 
4399   sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
4400 
4401   if( op==SQLITE_DELETE ){
4402 
4403     /* Bind values to the DELETE statement. If conflict handling is required,
4404     ** bind values for all columns and set bound variable (nCol+1) to true.
4405     ** Or, if conflict handling is not required, bind just the PK column
4406     ** values and, if it exists, set (nCol+1) to false. Conflict handling
4407     ** is not required if:
4408     **
4409     **   * this is a patchset, or
4410     **   * (pbRetry==0), or
4411     **   * all columns of the table are PK columns (in this case there is
4412     **     no (nCol+1) variable to bind to).
4413     */
4414     u8 *abPK = (pIter->bPatchset ? p->abPK : 0);
4415     rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete);
4416     if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){
4417       rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK));
4418     }
4419     if( rc!=SQLITE_OK ) return rc;
4420 
4421     sqlite3_step(p->pDelete);
4422     rc = sqlite3_reset(p->pDelete);
4423     if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
4424       rc = sessionConflictHandler(
4425           SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
4426       );
4427     }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
4428       rc = sessionConflictHandler(
4429           SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
4430       );
4431     }
4432 
4433   }else if( op==SQLITE_UPDATE ){
4434     int i;
4435     sqlite3_stmt *pUp = 0;
4436     int bPatchset = (pbRetry==0 || pIter->bPatchset);
4437 
4438     rc = sessionUpdateFind(pIter, p, bPatchset, &pUp);
4439 
4440     /* Bind values to the UPDATE statement. */
4441     for(i=0; rc==SQLITE_OK && i<nCol; i++){
4442       sqlite3_value *pOld = sessionChangesetOld(pIter, i);
4443       sqlite3_value *pNew = sessionChangesetNew(pIter, i);
4444       if( p->abPK[i] || (bPatchset==0 && pOld) ){
4445         rc = sessionBindValue(pUp, i*2+2, pOld);
4446       }
4447       if( rc==SQLITE_OK && pNew ){
4448         rc = sessionBindValue(pUp, i*2+1, pNew);
4449       }
4450     }
4451     if( rc!=SQLITE_OK ) return rc;
4452 
4453     /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict,
4454     ** the result will be SQLITE_OK with 0 rows modified. */
4455     sqlite3_step(pUp);
4456     rc = sqlite3_reset(pUp);
4457 
4458     if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
4459       /* A NOTFOUND or DATA error. Search the table to see if it contains
4460       ** a row with a matching primary key. If so, this is a DATA conflict.
4461       ** Otherwise, if there is no primary key match, it is a NOTFOUND. */
4462 
4463       rc = sessionConflictHandler(
4464           SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
4465       );
4466 
4467     }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
4468       /* This is always a CONSTRAINT conflict. */
4469       rc = sessionConflictHandler(
4470           SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
4471       );
4472     }
4473 
4474   }else{
4475     assert( op==SQLITE_INSERT );
4476     if( p->bStat1 ){
4477       /* Check if there is a conflicting row. For sqlite_stat1, this needs
4478       ** to be done using a SELECT, as there is no PRIMARY KEY in the
4479       ** database schema to throw an exception if a duplicate is inserted.  */
4480       rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect);
4481       if( rc==SQLITE_ROW ){
4482         rc = SQLITE_CONSTRAINT;
4483         sqlite3_reset(p->pSelect);
4484       }
4485     }
4486 
4487     if( rc==SQLITE_OK ){
4488       rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert);
4489       if( rc!=SQLITE_OK ) return rc;
4490 
4491       sqlite3_step(p->pInsert);
4492       rc = sqlite3_reset(p->pInsert);
4493     }
4494 
4495     if( (rc&0xff)==SQLITE_CONSTRAINT ){
4496       rc = sessionConflictHandler(
4497           SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace
4498       );
4499     }
4500   }
4501 
4502   return rc;
4503 }
4504 
4505 /*
4506 ** Attempt to apply the change that the iterator passed as the first argument
4507 ** currently points to to the database. If a conflict is encountered, invoke
4508 ** the conflict handler callback.
4509 **
4510 ** The difference between this function and sessionApplyOne() is that this
4511 ** function handles the case where the conflict-handler is invoked and
4512 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be
4513 ** retried in some manner.
4514 */
sessionApplyOneWithRetry(sqlite3 * db,sqlite3_changeset_iter * pIter,SessionApplyCtx * pApply,int (* xConflict)(void *,int,sqlite3_changeset_iter *),void * pCtx)4515 static int sessionApplyOneWithRetry(
4516   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4517   sqlite3_changeset_iter *pIter,  /* Changeset iterator to read change from */
4518   SessionApplyCtx *pApply,        /* Apply context */
4519   int(*xConflict)(void*, int, sqlite3_changeset_iter*),
4520   void *pCtx                      /* First argument passed to xConflict */
4521 ){
4522   int bReplace = 0;
4523   int bRetry = 0;
4524   int rc;
4525 
4526   rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry);
4527   if( rc==SQLITE_OK ){
4528     /* If the bRetry flag is set, the change has not been applied due to an
4529     ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and
4530     ** a row with the correct PK is present in the db, but one or more other
4531     ** fields do not contain the expected values) and the conflict handler
4532     ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation,
4533     ** but pass NULL as the final argument so that sessionApplyOneOp() ignores
4534     ** the SQLITE_CHANGESET_DATA problem.  */
4535     if( bRetry ){
4536       assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE );
4537       rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
4538     }
4539 
4540     /* If the bReplace flag is set, the change is an INSERT that has not
4541     ** been performed because the database already contains a row with the
4542     ** specified primary key and the conflict handler returned
4543     ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row
4544     ** before reattempting the INSERT.  */
4545     else if( bReplace ){
4546       assert( pIter->op==SQLITE_INSERT );
4547       rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0);
4548       if( rc==SQLITE_OK ){
4549         rc = sessionBindRow(pIter,
4550             sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete);
4551         sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1);
4552       }
4553       if( rc==SQLITE_OK ){
4554         sqlite3_step(pApply->pDelete);
4555         rc = sqlite3_reset(pApply->pDelete);
4556       }
4557       if( rc==SQLITE_OK ){
4558         rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
4559       }
4560       if( rc==SQLITE_OK ){
4561         rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0);
4562       }
4563     }
4564   }
4565 
4566   return rc;
4567 }
4568 
4569 /*
4570 ** Retry the changes accumulated in the pApply->constraints buffer.
4571 */
sessionRetryConstraints(sqlite3 * db,int bPatchset,const char * zTab,SessionApplyCtx * pApply,int (* xConflict)(void *,int,sqlite3_changeset_iter *),void * pCtx)4572 static int sessionRetryConstraints(
4573   sqlite3 *db,
4574   int bPatchset,
4575   const char *zTab,
4576   SessionApplyCtx *pApply,
4577   int(*xConflict)(void*, int, sqlite3_changeset_iter*),
4578   void *pCtx                      /* First argument passed to xConflict */
4579 ){
4580   int rc = SQLITE_OK;
4581 
4582   while( pApply->constraints.nBuf ){
4583     sqlite3_changeset_iter *pIter2 = 0;
4584     SessionBuffer cons = pApply->constraints;
4585     memset(&pApply->constraints, 0, sizeof(SessionBuffer));
4586 
4587     rc = sessionChangesetStart(
4588         &pIter2, 0, 0, cons.nBuf, cons.aBuf, pApply->bInvertConstraints, 1
4589     );
4590     if( rc==SQLITE_OK ){
4591       size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
4592       int rc2;
4593       pIter2->bPatchset = bPatchset;
4594       pIter2->zTab = (char*)zTab;
4595       pIter2->nCol = pApply->nCol;
4596       pIter2->abPK = pApply->abPK;
4597       sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
4598       pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;
4599       if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte);
4600 
4601       while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){
4602         rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx);
4603       }
4604 
4605       rc2 = sqlite3changeset_finalize(pIter2);
4606       if( rc==SQLITE_OK ) rc = rc2;
4607     }
4608     assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 );
4609 
4610     sqlite3_free(cons.aBuf);
4611     if( rc!=SQLITE_OK ) break;
4612     if( pApply->constraints.nBuf>=cons.nBuf ){
4613       /* No progress was made on the last round. */
4614       pApply->bDeferConstraints = 0;
4615     }
4616   }
4617 
4618   return rc;
4619 }
4620 
4621 /*
4622 ** Argument pIter is a changeset iterator that has been initialized, but
4623 ** not yet passed to sqlite3changeset_next(). This function applies the
4624 ** changeset to the main database attached to handle "db". The supplied
4625 ** conflict handler callback is invoked to resolve any conflicts encountered
4626 ** while applying the change.
4627 */
sessionChangesetApply(sqlite3 * db,sqlite3_changeset_iter * pIter,int (* xFilter)(void * pCtx,const char * zTab),int (* xConflict)(void * pCtx,int eConflict,sqlite3_changeset_iter * p),void * pCtx,void ** ppRebase,int * pnRebase,int flags)4628 static int sessionChangesetApply(
4629   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4630   sqlite3_changeset_iter *pIter,  /* Changeset to apply */
4631   int(*xFilter)(
4632     void *pCtx,                   /* Copy of sixth arg to _apply() */
4633     const char *zTab              /* Table name */
4634   ),
4635   int(*xConflict)(
4636     void *pCtx,                   /* Copy of fifth arg to _apply() */
4637     int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
4638     sqlite3_changeset_iter *p     /* Handle describing change and conflict */
4639   ),
4640   void *pCtx,                     /* First argument passed to xConflict */
4641   void **ppRebase, int *pnRebase, /* OUT: Rebase information */
4642   int flags                       /* SESSION_APPLY_XXX flags */
4643 ){
4644   int schemaMismatch = 0;
4645   int rc = SQLITE_OK;             /* Return code */
4646   const char *zTab = 0;           /* Name of current table */
4647   int nTab = 0;                   /* Result of sqlite3Strlen30(zTab) */
4648   SessionApplyCtx sApply;         /* changeset_apply() context object */
4649   int bPatchset;
4650 
4651   assert( xConflict!=0 );
4652 
4653   pIter->in.bNoDiscard = 1;
4654   memset(&sApply, 0, sizeof(sApply));
4655   sApply.bRebase = (ppRebase && pnRebase);
4656   sApply.bInvertConstraints = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
4657   sqlite3_mutex_enter(sqlite3_db_mutex(db));
4658   if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
4659     rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
4660   }
4661   if( rc==SQLITE_OK ){
4662     rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
4663   }
4664   while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){
4665     int nCol;
4666     int op;
4667     const char *zNew;
4668 
4669     sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0);
4670 
4671     if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){
4672       u8 *abPK;
4673 
4674       rc = sessionRetryConstraints(
4675           db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx
4676       );
4677       if( rc!=SQLITE_OK ) break;
4678 
4679       sessionUpdateFree(&sApply);
4680       sqlite3_free((char*)sApply.azCol);  /* cast works around VC++ bug */
4681       sqlite3_finalize(sApply.pDelete);
4682       sqlite3_finalize(sApply.pInsert);
4683       sqlite3_finalize(sApply.pSelect);
4684       sApply.db = db;
4685       sApply.pDelete = 0;
4686       sApply.pInsert = 0;
4687       sApply.pSelect = 0;
4688       sApply.nCol = 0;
4689       sApply.azCol = 0;
4690       sApply.abPK = 0;
4691       sApply.bStat1 = 0;
4692       sApply.bDeferConstraints = 1;
4693       sApply.bRebaseStarted = 0;
4694       memset(&sApply.constraints, 0, sizeof(SessionBuffer));
4695 
4696       /* If an xFilter() callback was specified, invoke it now. If the
4697       ** xFilter callback returns zero, skip this table. If it returns
4698       ** non-zero, proceed. */
4699       schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew)));
4700       if( schemaMismatch ){
4701         zTab = sqlite3_mprintf("%s", zNew);
4702         if( zTab==0 ){
4703           rc = SQLITE_NOMEM;
4704           break;
4705         }
4706         nTab = (int)strlen(zTab);
4707         sApply.azCol = (const char **)zTab;
4708       }else{
4709         int nMinCol = 0;
4710         int i;
4711 
4712         sqlite3changeset_pk(pIter, &abPK, 0);
4713         rc = sessionTableInfo(0,
4714             db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK
4715         );
4716         if( rc!=SQLITE_OK ) break;
4717         for(i=0; i<sApply.nCol; i++){
4718           if( sApply.abPK[i] ) nMinCol = i+1;
4719         }
4720 
4721         if( sApply.nCol==0 ){
4722           schemaMismatch = 1;
4723           sqlite3_log(SQLITE_SCHEMA,
4724               "sqlite3changeset_apply(): no such table: %s", zTab
4725           );
4726         }
4727         else if( sApply.nCol<nCol ){
4728           schemaMismatch = 1;
4729           sqlite3_log(SQLITE_SCHEMA,
4730               "sqlite3changeset_apply(): table %s has %d columns, "
4731               "expected %d or more",
4732               zTab, sApply.nCol, nCol
4733           );
4734         }
4735         else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){
4736           schemaMismatch = 1;
4737           sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
4738               "primary key mismatch for table %s", zTab
4739           );
4740         }
4741         else{
4742           sApply.nCol = nCol;
4743           if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){
4744             if( (rc = sessionStat1Sql(db, &sApply) ) ){
4745               break;
4746             }
4747             sApply.bStat1 = 1;
4748           }else{
4749             if( (rc = sessionSelectRow(db, zTab, &sApply))
4750              || (rc = sessionDeleteRow(db, zTab, &sApply))
4751              || (rc = sessionInsertRow(db, zTab, &sApply))
4752             ){
4753               break;
4754             }
4755             sApply.bStat1 = 0;
4756           }
4757         }
4758         nTab = sqlite3Strlen30(zTab);
4759       }
4760     }
4761 
4762     /* If there is a schema mismatch on the current table, proceed to the
4763     ** next change. A log message has already been issued. */
4764     if( schemaMismatch ) continue;
4765 
4766     rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx);
4767   }
4768 
4769   bPatchset = pIter->bPatchset;
4770   if( rc==SQLITE_OK ){
4771     rc = sqlite3changeset_finalize(pIter);
4772   }else{
4773     sqlite3changeset_finalize(pIter);
4774   }
4775 
4776   if( rc==SQLITE_OK ){
4777     rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx);
4778   }
4779 
4780   if( rc==SQLITE_OK ){
4781     int nFk, notUsed;
4782     sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, &notUsed, 0);
4783     if( nFk!=0 ){
4784       int res = SQLITE_CHANGESET_ABORT;
4785       sqlite3_changeset_iter sIter;
4786       memset(&sIter, 0, sizeof(sIter));
4787       sIter.nCol = nFk;
4788       res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter);
4789       if( res!=SQLITE_CHANGESET_OMIT ){
4790         rc = SQLITE_CONSTRAINT;
4791       }
4792     }
4793   }
4794   sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0);
4795 
4796   if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
4797     if( rc==SQLITE_OK ){
4798       rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
4799     }else{
4800       sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
4801       sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
4802     }
4803   }
4804 
4805   assert( sApply.bRebase || sApply.rebase.nBuf==0 );
4806   if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){
4807     *ppRebase = (void*)sApply.rebase.aBuf;
4808     *pnRebase = sApply.rebase.nBuf;
4809     sApply.rebase.aBuf = 0;
4810   }
4811   sessionUpdateFree(&sApply);
4812   sqlite3_finalize(sApply.pInsert);
4813   sqlite3_finalize(sApply.pDelete);
4814   sqlite3_finalize(sApply.pSelect);
4815   sqlite3_free((char*)sApply.azCol);  /* cast works around VC++ bug */
4816   sqlite3_free((char*)sApply.constraints.aBuf);
4817   sqlite3_free((char*)sApply.rebase.aBuf);
4818   sqlite3_mutex_leave(sqlite3_db_mutex(db));
4819   return rc;
4820 }
4821 
4822 /*
4823 ** Apply the changeset passed via pChangeset/nChangeset to the main
4824 ** database attached to handle "db".
4825 */
sqlite3changeset_apply_v2(sqlite3 * db,int nChangeset,void * pChangeset,int (* xFilter)(void * pCtx,const char * zTab),int (* xConflict)(void * pCtx,int eConflict,sqlite3_changeset_iter * p),void * pCtx,void ** ppRebase,int * pnRebase,int flags)4826 int sqlite3changeset_apply_v2(
4827   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4828   int nChangeset,                 /* Size of changeset in bytes */
4829   void *pChangeset,               /* Changeset blob */
4830   int(*xFilter)(
4831     void *pCtx,                   /* Copy of sixth arg to _apply() */
4832     const char *zTab              /* Table name */
4833   ),
4834   int(*xConflict)(
4835     void *pCtx,                   /* Copy of sixth arg to _apply() */
4836     int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
4837     sqlite3_changeset_iter *p     /* Handle describing change and conflict */
4838   ),
4839   void *pCtx,                     /* First argument passed to xConflict */
4840   void **ppRebase, int *pnRebase,
4841   int flags
4842 ){
4843   sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */
4844   int bInv = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
4845   int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset, bInv, 1);
4846   if( rc==SQLITE_OK ){
4847     rc = sessionChangesetApply(
4848         db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
4849     );
4850   }
4851   return rc;
4852 }
4853 
4854 /*
4855 ** Apply the changeset passed via pChangeset/nChangeset to the main database
4856 ** attached to handle "db". Invoke the supplied conflict handler callback
4857 ** to resolve any conflicts encountered while applying the change.
4858 */
sqlite3changeset_apply(sqlite3 * db,int nChangeset,void * pChangeset,int (* xFilter)(void * pCtx,const char * zTab),int (* xConflict)(void * pCtx,int eConflict,sqlite3_changeset_iter * p),void * pCtx)4859 int sqlite3changeset_apply(
4860   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4861   int nChangeset,                 /* Size of changeset in bytes */
4862   void *pChangeset,               /* Changeset blob */
4863   int(*xFilter)(
4864     void *pCtx,                   /* Copy of sixth arg to _apply() */
4865     const char *zTab              /* Table name */
4866   ),
4867   int(*xConflict)(
4868     void *pCtx,                   /* Copy of fifth arg to _apply() */
4869     int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
4870     sqlite3_changeset_iter *p     /* Handle describing change and conflict */
4871   ),
4872   void *pCtx                      /* First argument passed to xConflict */
4873 ){
4874   return sqlite3changeset_apply_v2(
4875       db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0
4876   );
4877 }
4878 
4879 /*
4880 ** Apply the changeset passed via xInput/pIn to the main database
4881 ** attached to handle "db". Invoke the supplied conflict handler callback
4882 ** to resolve any conflicts encountered while applying the change.
4883 */
sqlite3changeset_apply_v2_strm(sqlite3 * db,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int (* xFilter)(void * pCtx,const char * zTab),int (* xConflict)(void * pCtx,int eConflict,sqlite3_changeset_iter * p),void * pCtx,void ** ppRebase,int * pnRebase,int flags)4884 int sqlite3changeset_apply_v2_strm(
4885   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4886   int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
4887   void *pIn,                                          /* First arg for xInput */
4888   int(*xFilter)(
4889     void *pCtx,                   /* Copy of sixth arg to _apply() */
4890     const char *zTab              /* Table name */
4891   ),
4892   int(*xConflict)(
4893     void *pCtx,                   /* Copy of sixth arg to _apply() */
4894     int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
4895     sqlite3_changeset_iter *p     /* Handle describing change and conflict */
4896   ),
4897   void *pCtx,                     /* First argument passed to xConflict */
4898   void **ppRebase, int *pnRebase,
4899   int flags
4900 ){
4901   sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */
4902   int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
4903   int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse, 1);
4904   if( rc==SQLITE_OK ){
4905     rc = sessionChangesetApply(
4906         db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
4907     );
4908   }
4909   return rc;
4910 }
sqlite3changeset_apply_strm(sqlite3 * db,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int (* xFilter)(void * pCtx,const char * zTab),int (* xConflict)(void * pCtx,int eConflict,sqlite3_changeset_iter * p),void * pCtx)4911 int sqlite3changeset_apply_strm(
4912   sqlite3 *db,                    /* Apply change to "main" db of this handle */
4913   int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
4914   void *pIn,                                          /* First arg for xInput */
4915   int(*xFilter)(
4916     void *pCtx,                   /* Copy of sixth arg to _apply() */
4917     const char *zTab              /* Table name */
4918   ),
4919   int(*xConflict)(
4920     void *pCtx,                   /* Copy of sixth arg to _apply() */
4921     int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
4922     sqlite3_changeset_iter *p     /* Handle describing change and conflict */
4923   ),
4924   void *pCtx                      /* First argument passed to xConflict */
4925 ){
4926   return sqlite3changeset_apply_v2_strm(
4927       db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0
4928   );
4929 }
4930 
4931 /*
4932 ** sqlite3_changegroup handle.
4933 */
4934 struct sqlite3_changegroup {
4935   int rc;                         /* Error code */
4936   int bPatch;                     /* True to accumulate patchsets */
4937   SessionTable *pList;            /* List of tables in current patch */
4938 };
4939 
4940 /*
4941 ** This function is called to merge two changes to the same row together as
4942 ** part of an sqlite3changeset_concat() operation. A new change object is
4943 ** allocated and a pointer to it stored in *ppNew.
4944 */
sessionChangeMerge(SessionTable * pTab,int bRebase,int bPatchset,SessionChange * pExist,int op2,int bIndirect,u8 * aRec,int nRec,SessionChange ** ppNew)4945 static int sessionChangeMerge(
4946   SessionTable *pTab,             /* Table structure */
4947   int bRebase,                    /* True for a rebase hash-table */
4948   int bPatchset,                  /* True for patchsets */
4949   SessionChange *pExist,          /* Existing change */
4950   int op2,                        /* Second change operation */
4951   int bIndirect,                  /* True if second change is indirect */
4952   u8 *aRec,                       /* Second change record */
4953   int nRec,                       /* Number of bytes in aRec */
4954   SessionChange **ppNew           /* OUT: Merged change */
4955 ){
4956   SessionChange *pNew = 0;
4957   int rc = SQLITE_OK;
4958 
4959   if( !pExist ){
4960     pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec);
4961     if( !pNew ){
4962       return SQLITE_NOMEM;
4963     }
4964     memset(pNew, 0, sizeof(SessionChange));
4965     pNew->op = op2;
4966     pNew->bIndirect = bIndirect;
4967     pNew->aRecord = (u8*)&pNew[1];
4968     if( bIndirect==0 || bRebase==0 ){
4969       pNew->nRecord = nRec;
4970       memcpy(pNew->aRecord, aRec, nRec);
4971     }else{
4972       int i;
4973       u8 *pIn = aRec;
4974       u8 *pOut = pNew->aRecord;
4975       for(i=0; i<pTab->nCol; i++){
4976         int nIn = sessionSerialLen(pIn);
4977         if( *pIn==0 ){
4978           *pOut++ = 0;
4979         }else if( pTab->abPK[i]==0 ){
4980           *pOut++ = 0xFF;
4981         }else{
4982           memcpy(pOut, pIn, nIn);
4983           pOut += nIn;
4984         }
4985         pIn += nIn;
4986       }
4987       pNew->nRecord = pOut - pNew->aRecord;
4988     }
4989   }else if( bRebase ){
4990     if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){
4991       *ppNew = pExist;
4992     }else{
4993       sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange);
4994       pNew = (SessionChange*)sqlite3_malloc64(nByte);
4995       if( pNew==0 ){
4996         rc = SQLITE_NOMEM;
4997       }else{
4998         int i;
4999         u8 *a1 = pExist->aRecord;
5000         u8 *a2 = aRec;
5001         u8 *pOut;
5002 
5003         memset(pNew, 0, nByte);
5004         pNew->bIndirect = bIndirect || pExist->bIndirect;
5005         pNew->op = op2;
5006         pOut = pNew->aRecord = (u8*)&pNew[1];
5007 
5008         for(i=0; i<pTab->nCol; i++){
5009           int n1 = sessionSerialLen(a1);
5010           int n2 = sessionSerialLen(a2);
5011           if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){
5012             *pOut++ = 0xFF;
5013           }else if( *a2==0 ){
5014             memcpy(pOut, a1, n1);
5015             pOut += n1;
5016           }else{
5017             memcpy(pOut, a2, n2);
5018             pOut += n2;
5019           }
5020           a1 += n1;
5021           a2 += n2;
5022         }
5023         pNew->nRecord = pOut - pNew->aRecord;
5024       }
5025       sqlite3_free(pExist);
5026     }
5027   }else{
5028     int op1 = pExist->op;
5029 
5030     /*
5031     **   op1=INSERT, op2=INSERT      ->      Unsupported. Discard op2.
5032     **   op1=INSERT, op2=UPDATE      ->      INSERT.
5033     **   op1=INSERT, op2=DELETE      ->      (none)
5034     **
5035     **   op1=UPDATE, op2=INSERT      ->      Unsupported. Discard op2.
5036     **   op1=UPDATE, op2=UPDATE      ->      UPDATE.
5037     **   op1=UPDATE, op2=DELETE      ->      DELETE.
5038     **
5039     **   op1=DELETE, op2=INSERT      ->      UPDATE.
5040     **   op1=DELETE, op2=UPDATE      ->      Unsupported. Discard op2.
5041     **   op1=DELETE, op2=DELETE      ->      Unsupported. Discard op2.
5042     */
5043     if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT)
5044      || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT)
5045      || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE)
5046      || (op1==SQLITE_DELETE && op2==SQLITE_DELETE)
5047     ){
5048       pNew = pExist;
5049     }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){
5050       sqlite3_free(pExist);
5051       assert( pNew==0 );
5052     }else{
5053       u8 *aExist = pExist->aRecord;
5054       sqlite3_int64 nByte;
5055       u8 *aCsr;
5056 
5057       /* Allocate a new SessionChange object. Ensure that the aRecord[]
5058       ** buffer of the new object is large enough to hold any record that
5059       ** may be generated by combining the input records.  */
5060       nByte = sizeof(SessionChange) + pExist->nRecord + nRec;
5061       pNew = (SessionChange *)sqlite3_malloc64(nByte);
5062       if( !pNew ){
5063         sqlite3_free(pExist);
5064         return SQLITE_NOMEM;
5065       }
5066       memset(pNew, 0, sizeof(SessionChange));
5067       pNew->bIndirect = (bIndirect && pExist->bIndirect);
5068       aCsr = pNew->aRecord = (u8 *)&pNew[1];
5069 
5070       if( op1==SQLITE_INSERT ){             /* INSERT + UPDATE */
5071         u8 *a1 = aRec;
5072         assert( op2==SQLITE_UPDATE );
5073         pNew->op = SQLITE_INSERT;
5074         if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol);
5075         sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1);
5076       }else if( op1==SQLITE_DELETE ){       /* DELETE + INSERT */
5077         assert( op2==SQLITE_INSERT );
5078         pNew->op = SQLITE_UPDATE;
5079         if( bPatchset ){
5080           memcpy(aCsr, aRec, nRec);
5081           aCsr += nRec;
5082         }else{
5083           if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){
5084             sqlite3_free(pNew);
5085             pNew = 0;
5086           }
5087         }
5088       }else if( op2==SQLITE_UPDATE ){       /* UPDATE + UPDATE */
5089         u8 *a1 = aExist;
5090         u8 *a2 = aRec;
5091         assert( op1==SQLITE_UPDATE );
5092         if( bPatchset==0 ){
5093           sessionSkipRecord(&a1, pTab->nCol);
5094           sessionSkipRecord(&a2, pTab->nCol);
5095         }
5096         pNew->op = SQLITE_UPDATE;
5097         if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){
5098           sqlite3_free(pNew);
5099           pNew = 0;
5100         }
5101       }else{                                /* UPDATE + DELETE */
5102         assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE );
5103         pNew->op = SQLITE_DELETE;
5104         if( bPatchset ){
5105           memcpy(aCsr, aRec, nRec);
5106           aCsr += nRec;
5107         }else{
5108           sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist);
5109         }
5110       }
5111 
5112       if( pNew ){
5113         pNew->nRecord = (int)(aCsr - pNew->aRecord);
5114       }
5115       sqlite3_free(pExist);
5116     }
5117   }
5118 
5119   *ppNew = pNew;
5120   return rc;
5121 }
5122 
5123 /*
5124 ** Add all changes in the changeset traversed by the iterator passed as
5125 ** the first argument to the changegroup hash tables.
5126 */
sessionChangesetToHash(sqlite3_changeset_iter * pIter,sqlite3_changegroup * pGrp,int bRebase)5127 static int sessionChangesetToHash(
5128   sqlite3_changeset_iter *pIter,   /* Iterator to read from */
5129   sqlite3_changegroup *pGrp,       /* Changegroup object to add changeset to */
5130   int bRebase                      /* True if hash table is for rebasing */
5131 ){
5132   u8 *aRec;
5133   int nRec;
5134   int rc = SQLITE_OK;
5135   SessionTable *pTab = 0;
5136 
5137   while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){
5138     const char *zNew;
5139     int nCol;
5140     int op;
5141     int iHash;
5142     int bIndirect;
5143     SessionChange *pChange;
5144     SessionChange *pExist = 0;
5145     SessionChange **pp;
5146 
5147     if( pGrp->pList==0 ){
5148       pGrp->bPatch = pIter->bPatchset;
5149     }else if( pIter->bPatchset!=pGrp->bPatch ){
5150       rc = SQLITE_ERROR;
5151       break;
5152     }
5153 
5154     sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect);
5155     if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){
5156       /* Search the list for a matching table */
5157       int nNew = (int)strlen(zNew);
5158       u8 *abPK;
5159 
5160       sqlite3changeset_pk(pIter, &abPK, 0);
5161       for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){
5162         if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break;
5163       }
5164       if( !pTab ){
5165         SessionTable **ppTab;
5166 
5167         pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1);
5168         if( !pTab ){
5169           rc = SQLITE_NOMEM;
5170           break;
5171         }
5172         memset(pTab, 0, sizeof(SessionTable));
5173         pTab->nCol = nCol;
5174         pTab->abPK = (u8*)&pTab[1];
5175         memcpy(pTab->abPK, abPK, nCol);
5176         pTab->zName = (char*)&pTab->abPK[nCol];
5177         memcpy(pTab->zName, zNew, nNew+1);
5178 
5179         /* The new object must be linked on to the end of the list, not
5180         ** simply added to the start of it. This is to ensure that the
5181         ** tables within the output of sqlite3changegroup_output() are in
5182         ** the right order.  */
5183         for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext);
5184         *ppTab = pTab;
5185       }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){
5186         rc = SQLITE_SCHEMA;
5187         break;
5188       }
5189     }
5190 
5191     if( sessionGrowHash(0, pIter->bPatchset, pTab) ){
5192       rc = SQLITE_NOMEM;
5193       break;
5194     }
5195     iHash = sessionChangeHash(
5196         pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange
5197     );
5198 
5199     /* Search for existing entry. If found, remove it from the hash table.
5200     ** Code below may link it back in.
5201     */
5202     for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){
5203       int bPkOnly1 = 0;
5204       int bPkOnly2 = 0;
5205       if( pIter->bPatchset ){
5206         bPkOnly1 = (*pp)->op==SQLITE_DELETE;
5207         bPkOnly2 = op==SQLITE_DELETE;
5208       }
5209       if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){
5210         pExist = *pp;
5211         *pp = (*pp)->pNext;
5212         pTab->nEntry--;
5213         break;
5214       }
5215     }
5216 
5217     rc = sessionChangeMerge(pTab, bRebase,
5218         pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange
5219     );
5220     if( rc ) break;
5221     if( pChange ){
5222       pChange->pNext = pTab->apChange[iHash];
5223       pTab->apChange[iHash] = pChange;
5224       pTab->nEntry++;
5225     }
5226   }
5227 
5228   if( rc==SQLITE_OK ) rc = pIter->rc;
5229   return rc;
5230 }
5231 
5232 /*
5233 ** Serialize a changeset (or patchset) based on all changesets (or patchsets)
5234 ** added to the changegroup object passed as the first argument.
5235 **
5236 ** If xOutput is not NULL, then the changeset/patchset is returned to the
5237 ** user via one or more calls to xOutput, as with the other streaming
5238 ** interfaces.
5239 **
5240 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a
5241 ** buffer containing the output changeset before this function returns. In
5242 ** this case (*pnOut) is set to the size of the output buffer in bytes. It
5243 ** is the responsibility of the caller to free the output buffer using
5244 ** sqlite3_free() when it is no longer required.
5245 **
5246 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite
5247 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut)
5248 ** are both set to 0 before returning.
5249 */
sessionChangegroupOutput(sqlite3_changegroup * pGrp,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut,int * pnOut,void ** ppOut)5250 static int sessionChangegroupOutput(
5251   sqlite3_changegroup *pGrp,
5252   int (*xOutput)(void *pOut, const void *pData, int nData),
5253   void *pOut,
5254   int *pnOut,
5255   void **ppOut
5256 ){
5257   int rc = SQLITE_OK;
5258   SessionBuffer buf = {0, 0, 0};
5259   SessionTable *pTab;
5260   assert( xOutput==0 || (ppOut==0 && pnOut==0) );
5261 
5262   /* Create the serialized output changeset based on the contents of the
5263   ** hash tables attached to the SessionTable objects in list p->pList.
5264   */
5265   for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
5266     int i;
5267     if( pTab->nEntry==0 ) continue;
5268 
5269     sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
5270     for(i=0; i<pTab->nChange; i++){
5271       SessionChange *p;
5272       for(p=pTab->apChange[i]; p; p=p->pNext){
5273         sessionAppendByte(&buf, p->op, &rc);
5274         sessionAppendByte(&buf, p->bIndirect, &rc);
5275         sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
5276         if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){
5277           rc = xOutput(pOut, buf.aBuf, buf.nBuf);
5278           buf.nBuf = 0;
5279         }
5280       }
5281     }
5282   }
5283 
5284   if( rc==SQLITE_OK ){
5285     if( xOutput ){
5286       if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
5287     }else if( ppOut ){
5288       *ppOut = buf.aBuf;
5289       if( pnOut ) *pnOut = buf.nBuf;
5290       buf.aBuf = 0;
5291     }
5292   }
5293   sqlite3_free(buf.aBuf);
5294 
5295   return rc;
5296 }
5297 
5298 /*
5299 ** Allocate a new, empty, sqlite3_changegroup.
5300 */
sqlite3changegroup_new(sqlite3_changegroup ** pp)5301 int sqlite3changegroup_new(sqlite3_changegroup **pp){
5302   int rc = SQLITE_OK;             /* Return code */
5303   sqlite3_changegroup *p;         /* New object */
5304   p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup));
5305   if( p==0 ){
5306     rc = SQLITE_NOMEM;
5307   }else{
5308     memset(p, 0, sizeof(sqlite3_changegroup));
5309   }
5310   *pp = p;
5311   return rc;
5312 }
5313 
5314 /*
5315 ** Add the changeset currently stored in buffer pData, size nData bytes,
5316 ** to changeset-group p.
5317 */
sqlite3changegroup_add(sqlite3_changegroup * pGrp,int nData,void * pData)5318 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){
5319   sqlite3_changeset_iter *pIter;  /* Iterator opened on pData/nData */
5320   int rc;                         /* Return code */
5321 
5322   rc = sqlite3changeset_start(&pIter, nData, pData);
5323   if( rc==SQLITE_OK ){
5324     rc = sessionChangesetToHash(pIter, pGrp, 0);
5325   }
5326   sqlite3changeset_finalize(pIter);
5327   return rc;
5328 }
5329 
5330 /*
5331 ** Obtain a buffer containing a changeset representing the concatenation
5332 ** of all changesets added to the group so far.
5333 */
sqlite3changegroup_output(sqlite3_changegroup * pGrp,int * pnData,void ** ppData)5334 int sqlite3changegroup_output(
5335     sqlite3_changegroup *pGrp,
5336     int *pnData,
5337     void **ppData
5338 ){
5339   return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData);
5340 }
5341 
5342 /*
5343 ** Streaming versions of changegroup_add().
5344 */
sqlite3changegroup_add_strm(sqlite3_changegroup * pGrp,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn)5345 int sqlite3changegroup_add_strm(
5346   sqlite3_changegroup *pGrp,
5347   int (*xInput)(void *pIn, void *pData, int *pnData),
5348   void *pIn
5349 ){
5350   sqlite3_changeset_iter *pIter;  /* Iterator opened on pData/nData */
5351   int rc;                         /* Return code */
5352 
5353   rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
5354   if( rc==SQLITE_OK ){
5355     rc = sessionChangesetToHash(pIter, pGrp, 0);
5356   }
5357   sqlite3changeset_finalize(pIter);
5358   return rc;
5359 }
5360 
5361 /*
5362 ** Streaming versions of changegroup_output().
5363 */
sqlite3changegroup_output_strm(sqlite3_changegroup * pGrp,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)5364 int sqlite3changegroup_output_strm(
5365   sqlite3_changegroup *pGrp,
5366   int (*xOutput)(void *pOut, const void *pData, int nData),
5367   void *pOut
5368 ){
5369   return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0);
5370 }
5371 
5372 /*
5373 ** Delete a changegroup object.
5374 */
sqlite3changegroup_delete(sqlite3_changegroup * pGrp)5375 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){
5376   if( pGrp ){
5377     sessionDeleteTable(0, pGrp->pList);
5378     sqlite3_free(pGrp);
5379   }
5380 }
5381 
5382 /*
5383 ** Combine two changesets together.
5384 */
sqlite3changeset_concat(int nLeft,void * pLeft,int nRight,void * pRight,int * pnOut,void ** ppOut)5385 int sqlite3changeset_concat(
5386   int nLeft,                      /* Number of bytes in lhs input */
5387   void *pLeft,                    /* Lhs input changeset */
5388   int nRight                      /* Number of bytes in rhs input */,
5389   void *pRight,                   /* Rhs input changeset */
5390   int *pnOut,                     /* OUT: Number of bytes in output changeset */
5391   void **ppOut                    /* OUT: changeset (left <concat> right) */
5392 ){
5393   sqlite3_changegroup *pGrp;
5394   int rc;
5395 
5396   rc = sqlite3changegroup_new(&pGrp);
5397   if( rc==SQLITE_OK ){
5398     rc = sqlite3changegroup_add(pGrp, nLeft, pLeft);
5399   }
5400   if( rc==SQLITE_OK ){
5401     rc = sqlite3changegroup_add(pGrp, nRight, pRight);
5402   }
5403   if( rc==SQLITE_OK ){
5404     rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
5405   }
5406   sqlite3changegroup_delete(pGrp);
5407 
5408   return rc;
5409 }
5410 
5411 /*
5412 ** Streaming version of sqlite3changeset_concat().
5413 */
sqlite3changeset_concat_strm(int (* xInputA)(void * pIn,void * pData,int * pnData),void * pInA,int (* xInputB)(void * pIn,void * pData,int * pnData),void * pInB,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)5414 int sqlite3changeset_concat_strm(
5415   int (*xInputA)(void *pIn, void *pData, int *pnData),
5416   void *pInA,
5417   int (*xInputB)(void *pIn, void *pData, int *pnData),
5418   void *pInB,
5419   int (*xOutput)(void *pOut, const void *pData, int nData),
5420   void *pOut
5421 ){
5422   sqlite3_changegroup *pGrp;
5423   int rc;
5424 
5425   rc = sqlite3changegroup_new(&pGrp);
5426   if( rc==SQLITE_OK ){
5427     rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA);
5428   }
5429   if( rc==SQLITE_OK ){
5430     rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB);
5431   }
5432   if( rc==SQLITE_OK ){
5433     rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut);
5434   }
5435   sqlite3changegroup_delete(pGrp);
5436 
5437   return rc;
5438 }
5439 
5440 /*
5441 ** Changeset rebaser handle.
5442 */
5443 struct sqlite3_rebaser {
5444   sqlite3_changegroup grp;        /* Hash table */
5445 };
5446 
5447 /*
5448 ** Buffers a1 and a2 must both contain a sessions module record nCol
5449 ** fields in size. This function appends an nCol sessions module
5450 ** record to buffer pBuf that is a copy of a1, except that for
5451 ** each field that is undefined in a1[], swap in the field from a2[].
5452 */
sessionAppendRecordMerge(SessionBuffer * pBuf,int nCol,u8 * a1,int n1,u8 * a2,int n2,int * pRc)5453 static void sessionAppendRecordMerge(
5454   SessionBuffer *pBuf,            /* Buffer to append to */
5455   int nCol,                       /* Number of columns in each record */
5456   u8 *a1, int n1,                 /* Record 1 */
5457   u8 *a2, int n2,                 /* Record 2 */
5458   int *pRc                        /* IN/OUT: error code */
5459 ){
5460   sessionBufferGrow(pBuf, n1+n2, pRc);
5461   if( *pRc==SQLITE_OK ){
5462     int i;
5463     u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
5464     for(i=0; i<nCol; i++){
5465       int nn1 = sessionSerialLen(a1);
5466       int nn2 = sessionSerialLen(a2);
5467       if( *a1==0 || *a1==0xFF ){
5468         memcpy(pOut, a2, nn2);
5469         pOut += nn2;
5470       }else{
5471         memcpy(pOut, a1, nn1);
5472         pOut += nn1;
5473       }
5474       a1 += nn1;
5475       a2 += nn2;
5476     }
5477 
5478     pBuf->nBuf = pOut-pBuf->aBuf;
5479     assert( pBuf->nBuf<=pBuf->nAlloc );
5480   }
5481 }
5482 
5483 /*
5484 ** This function is called when rebasing a local UPDATE change against one
5485 ** or more remote UPDATE changes. The aRec/nRec buffer contains the current
5486 ** old.* and new.* records for the change. The rebase buffer (a single
5487 ** record) is in aChange/nChange. The rebased change is appended to buffer
5488 ** pBuf.
5489 **
5490 ** Rebasing the UPDATE involves:
5491 **
5492 **   * Removing any changes to fields for which the corresponding field
5493 **     in the rebase buffer is set to "replaced" (type 0xFF). If this
5494 **     means the UPDATE change updates no fields, nothing is appended
5495 **     to the output buffer.
5496 **
5497 **   * For each field modified by the local change for which the
5498 **     corresponding field in the rebase buffer is not "undefined" (0x00)
5499 **     or "replaced" (0xFF), the old.* value is replaced by the value
5500 **     in the rebase buffer.
5501 */
sessionAppendPartialUpdate(SessionBuffer * pBuf,sqlite3_changeset_iter * pIter,u8 * aRec,int nRec,u8 * aChange,int nChange,int * pRc)5502 static void sessionAppendPartialUpdate(
5503   SessionBuffer *pBuf,            /* Append record here */
5504   sqlite3_changeset_iter *pIter,  /* Iterator pointed at local change */
5505   u8 *aRec, int nRec,             /* Local change */
5506   u8 *aChange, int nChange,       /* Record to rebase against */
5507   int *pRc                        /* IN/OUT: Return Code */
5508 ){
5509   sessionBufferGrow(pBuf, 2+nRec+nChange, pRc);
5510   if( *pRc==SQLITE_OK ){
5511     int bData = 0;
5512     u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
5513     int i;
5514     u8 *a1 = aRec;
5515     u8 *a2 = aChange;
5516 
5517     *pOut++ = SQLITE_UPDATE;
5518     *pOut++ = pIter->bIndirect;
5519     for(i=0; i<pIter->nCol; i++){
5520       int n1 = sessionSerialLen(a1);
5521       int n2 = sessionSerialLen(a2);
5522       if( pIter->abPK[i] || a2[0]==0 ){
5523         if( !pIter->abPK[i] && a1[0] ) bData = 1;
5524         memcpy(pOut, a1, n1);
5525         pOut += n1;
5526       }else if( a2[0]!=0xFF ){
5527         bData = 1;
5528         memcpy(pOut, a2, n2);
5529         pOut += n2;
5530       }else{
5531         *pOut++ = '\0';
5532       }
5533       a1 += n1;
5534       a2 += n2;
5535     }
5536     if( bData ){
5537       a2 = aChange;
5538       for(i=0; i<pIter->nCol; i++){
5539         int n1 = sessionSerialLen(a1);
5540         int n2 = sessionSerialLen(a2);
5541         if( pIter->abPK[i] || a2[0]!=0xFF ){
5542           memcpy(pOut, a1, n1);
5543           pOut += n1;
5544         }else{
5545           *pOut++ = '\0';
5546         }
5547         a1 += n1;
5548         a2 += n2;
5549       }
5550       pBuf->nBuf = (pOut - pBuf->aBuf);
5551     }
5552   }
5553 }
5554 
5555 /*
5556 ** pIter is configured to iterate through a changeset. This function rebases
5557 ** that changeset according to the current configuration of the rebaser
5558 ** object passed as the first argument. If no error occurs and argument xOutput
5559 ** is not NULL, then the changeset is returned to the caller by invoking
5560 ** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL,
5561 ** then (*ppOut) is set to point to a buffer containing the rebased changeset
5562 ** before this function returns. In this case (*pnOut) is set to the size of
5563 ** the buffer in bytes.  It is the responsibility of the caller to eventually
5564 ** free the (*ppOut) buffer using sqlite3_free().
5565 **
5566 ** If an error occurs, an SQLite error code is returned. If ppOut and
5567 ** pnOut are not NULL, then the two output parameters are set to 0 before
5568 ** returning.
5569 */
sessionRebase(sqlite3_rebaser * p,sqlite3_changeset_iter * pIter,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut,int * pnOut,void ** ppOut)5570 static int sessionRebase(
5571   sqlite3_rebaser *p,             /* Rebaser hash table */
5572   sqlite3_changeset_iter *pIter,  /* Input data */
5573   int (*xOutput)(void *pOut, const void *pData, int nData),
5574   void *pOut,                     /* Context for xOutput callback */
5575   int *pnOut,                     /* OUT: Number of bytes in output changeset */
5576   void **ppOut                    /* OUT: Inverse of pChangeset */
5577 ){
5578   int rc = SQLITE_OK;
5579   u8 *aRec = 0;
5580   int nRec = 0;
5581   int bNew = 0;
5582   SessionTable *pTab = 0;
5583   SessionBuffer sOut = {0,0,0};
5584 
5585   while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){
5586     SessionChange *pChange = 0;
5587     int bDone = 0;
5588 
5589     if( bNew ){
5590       const char *zTab = pIter->zTab;
5591       for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){
5592         if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break;
5593       }
5594       bNew = 0;
5595 
5596       /* A patchset may not be rebased */
5597       if( pIter->bPatchset ){
5598         rc = SQLITE_ERROR;
5599       }
5600 
5601       /* Append a table header to the output for this new table */
5602       sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc);
5603       sessionAppendVarint(&sOut, pIter->nCol, &rc);
5604       sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc);
5605       sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc);
5606     }
5607 
5608     if( pTab && rc==SQLITE_OK ){
5609       int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange);
5610 
5611       for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){
5612         if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){
5613           break;
5614         }
5615       }
5616     }
5617 
5618     if( pChange ){
5619       assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT );
5620       switch( pIter->op ){
5621         case SQLITE_INSERT:
5622           if( pChange->op==SQLITE_INSERT ){
5623             bDone = 1;
5624             if( pChange->bIndirect==0 ){
5625               sessionAppendByte(&sOut, SQLITE_UPDATE, &rc);
5626               sessionAppendByte(&sOut, pIter->bIndirect, &rc);
5627               sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc);
5628               sessionAppendBlob(&sOut, aRec, nRec, &rc);
5629             }
5630           }
5631           break;
5632 
5633         case SQLITE_UPDATE:
5634           bDone = 1;
5635           if( pChange->op==SQLITE_DELETE ){
5636             if( pChange->bIndirect==0 ){
5637               u8 *pCsr = aRec;
5638               sessionSkipRecord(&pCsr, pIter->nCol);
5639               sessionAppendByte(&sOut, SQLITE_INSERT, &rc);
5640               sessionAppendByte(&sOut, pIter->bIndirect, &rc);
5641               sessionAppendRecordMerge(&sOut, pIter->nCol,
5642                   pCsr, nRec-(pCsr-aRec),
5643                   pChange->aRecord, pChange->nRecord, &rc
5644               );
5645             }
5646           }else{
5647             sessionAppendPartialUpdate(&sOut, pIter,
5648                 aRec, nRec, pChange->aRecord, pChange->nRecord, &rc
5649             );
5650           }
5651           break;
5652 
5653         default:
5654           assert( pIter->op==SQLITE_DELETE );
5655           bDone = 1;
5656           if( pChange->op==SQLITE_INSERT ){
5657             sessionAppendByte(&sOut, SQLITE_DELETE, &rc);
5658             sessionAppendByte(&sOut, pIter->bIndirect, &rc);
5659             sessionAppendRecordMerge(&sOut, pIter->nCol,
5660                 pChange->aRecord, pChange->nRecord, aRec, nRec, &rc
5661             );
5662           }
5663           break;
5664       }
5665     }
5666 
5667     if( bDone==0 ){
5668       sessionAppendByte(&sOut, pIter->op, &rc);
5669       sessionAppendByte(&sOut, pIter->bIndirect, &rc);
5670       sessionAppendBlob(&sOut, aRec, nRec, &rc);
5671     }
5672     if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){
5673       rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
5674       sOut.nBuf = 0;
5675     }
5676     if( rc ) break;
5677   }
5678 
5679   if( rc!=SQLITE_OK ){
5680     sqlite3_free(sOut.aBuf);
5681     memset(&sOut, 0, sizeof(sOut));
5682   }
5683 
5684   if( rc==SQLITE_OK ){
5685     if( xOutput ){
5686       if( sOut.nBuf>0 ){
5687         rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
5688       }
5689     }else if( ppOut ){
5690       *ppOut = (void*)sOut.aBuf;
5691       *pnOut = sOut.nBuf;
5692       sOut.aBuf = 0;
5693     }
5694   }
5695   sqlite3_free(sOut.aBuf);
5696   return rc;
5697 }
5698 
5699 /*
5700 ** Create a new rebaser object.
5701 */
sqlite3rebaser_create(sqlite3_rebaser ** ppNew)5702 int sqlite3rebaser_create(sqlite3_rebaser **ppNew){
5703   int rc = SQLITE_OK;
5704   sqlite3_rebaser *pNew;
5705 
5706   pNew = sqlite3_malloc(sizeof(sqlite3_rebaser));
5707   if( pNew==0 ){
5708     rc = SQLITE_NOMEM;
5709   }else{
5710     memset(pNew, 0, sizeof(sqlite3_rebaser));
5711   }
5712   *ppNew = pNew;
5713   return rc;
5714 }
5715 
5716 /*
5717 ** Call this one or more times to configure a rebaser.
5718 */
sqlite3rebaser_configure(sqlite3_rebaser * p,int nRebase,const void * pRebase)5719 int sqlite3rebaser_configure(
5720   sqlite3_rebaser *p,
5721   int nRebase, const void *pRebase
5722 ){
5723   sqlite3_changeset_iter *pIter = 0;   /* Iterator opened on pData/nData */
5724   int rc;                              /* Return code */
5725   rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase);
5726   if( rc==SQLITE_OK ){
5727     rc = sessionChangesetToHash(pIter, &p->grp, 1);
5728   }
5729   sqlite3changeset_finalize(pIter);
5730   return rc;
5731 }
5732 
5733 /*
5734 ** Rebase a changeset according to current rebaser configuration
5735 */
sqlite3rebaser_rebase(sqlite3_rebaser * p,int nIn,const void * pIn,int * pnOut,void ** ppOut)5736 int sqlite3rebaser_rebase(
5737   sqlite3_rebaser *p,
5738   int nIn, const void *pIn,
5739   int *pnOut, void **ppOut
5740 ){
5741   sqlite3_changeset_iter *pIter = 0;   /* Iterator to skip through input */
5742   int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn);
5743 
5744   if( rc==SQLITE_OK ){
5745     rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut);
5746     sqlite3changeset_finalize(pIter);
5747   }
5748 
5749   return rc;
5750 }
5751 
5752 /*
5753 ** Rebase a changeset according to current rebaser configuration
5754 */
sqlite3rebaser_rebase_strm(sqlite3_rebaser * p,int (* xInput)(void * pIn,void * pData,int * pnData),void * pIn,int (* xOutput)(void * pOut,const void * pData,int nData),void * pOut)5755 int sqlite3rebaser_rebase_strm(
5756   sqlite3_rebaser *p,
5757   int (*xInput)(void *pIn, void *pData, int *pnData),
5758   void *pIn,
5759   int (*xOutput)(void *pOut, const void *pData, int nData),
5760   void *pOut
5761 ){
5762   sqlite3_changeset_iter *pIter = 0;   /* Iterator to skip through input */
5763   int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
5764 
5765   if( rc==SQLITE_OK ){
5766     rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0);
5767     sqlite3changeset_finalize(pIter);
5768   }
5769 
5770   return rc;
5771 }
5772 
5773 /*
5774 ** Destroy a rebaser object
5775 */
sqlite3rebaser_delete(sqlite3_rebaser * p)5776 void sqlite3rebaser_delete(sqlite3_rebaser *p){
5777   if( p ){
5778     sessionDeleteTable(0, p->grp.pList);
5779     sqlite3_free(p);
5780   }
5781 }
5782 
5783 /*
5784 ** Global configuration
5785 */
sqlite3session_config(int op,void * pArg)5786 int sqlite3session_config(int op, void *pArg){
5787   int rc = SQLITE_OK;
5788   switch( op ){
5789     case SQLITE_SESSION_CONFIG_STRMSIZE: {
5790       int *pInt = (int*)pArg;
5791       if( *pInt>0 ){
5792         sessions_strm_chunk_size = *pInt;
5793       }
5794       *pInt = sessions_strm_chunk_size;
5795       break;
5796     }
5797     default:
5798       rc = SQLITE_MISUSE;
5799       break;
5800   }
5801   return rc;
5802 }
5803 
5804 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */
5805