xref: /xnu-11215/osfmk/kern/priority.c (revision 94d3b452)
1 /*
2  * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3  *
4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. The rights granted to you under the License
10  * may not be used to create, or enable the creation or redistribution of,
11  * unlawful or unlicensed copies of an Apple operating system, or to
12  * circumvent, violate, or enable the circumvention or violation of, any
13  * terms of an Apple operating system software license agreement.
14  *
15  * Please obtain a copy of the License at
16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
17  *
18  * The Original Code and all software distributed under the License are
19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23  * Please see the License for the specific language governing rights and
24  * limitations under the License.
25  *
26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27  */
28 /*
29  * @OSF_COPYRIGHT@
30  */
31 /*
32  * Mach Operating System
33  * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34  * All Rights Reserved.
35  *
36  * Permission to use, copy, modify and distribute this software and its
37  * documentation is hereby granted, provided that both the copyright
38  * notice and this permission notice appear in all copies of the
39  * software, derivative works or modified versions, and any portions
40  * thereof, and that both notices appear in supporting documentation.
41  *
42  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45  *
46  * Carnegie Mellon requests users of this software to return to
47  *
48  *  Software Distribution Coordinator  or  [email protected]
49  *  School of Computer Science
50  *  Carnegie Mellon University
51  *  Pittsburgh PA 15213-3890
52  *
53  * any improvements or extensions that they make and grant Carnegie Mellon
54  * the rights to redistribute these changes.
55  */
56 /*
57  */
58 /*
59  *	File:	priority.c
60  *	Author:	Avadis Tevanian, Jr.
61  *	Date:	1986
62  *
63  *	Priority related scheduler bits.
64  */
65 
66 #include <mach/boolean.h>
67 #include <mach/kern_return.h>
68 #include <mach/machine.h>
69 #include <kern/host.h>
70 #include <kern/mach_param.h>
71 #include <kern/sched.h>
72 #include <sys/kdebug.h>
73 #include <kern/spl.h>
74 #include <kern/thread.h>
75 #include <kern/processor.h>
76 #include <kern/ledger.h>
77 #include <kern/monotonic.h>
78 #include <machine/machparam.h>
79 #include <kern/machine.h>
80 #include <kern/policy_internal.h>
81 #include <kern/sched_clutch.h>
82 
83 #ifdef CONFIG_MACH_APPROXIMATE_TIME
84 #include <machine/commpage.h>  /* for commpage_update_mach_approximate_time */
85 #endif
86 
87 /*
88  *	thread_quantum_expire:
89  *
90  *	Recalculate the quantum and priority for a thread.
91  *
92  *	Called at splsched.
93  */
94 
95 void
thread_quantum_expire(timer_call_param_t p0,timer_call_param_t p1)96 thread_quantum_expire(
97 	timer_call_param_t      p0,
98 	timer_call_param_t      p1)
99 {
100 	processor_t                     processor = p0;
101 	thread_t                        thread = p1;
102 	ast_t                           preempt;
103 	uint64_t                        ctime;
104 
105 	assert(processor == current_processor());
106 	assert(thread == current_thread());
107 
108 	KDBG_RELEASE(MACHDBG_CODE(
109 		    DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_START);
110 
111 	SCHED_STATS_INC(quantum_timer_expirations);
112 
113 	/*
114 	 * We bill CPU time to both the individual thread and its task.
115 	 *
116 	 * Because this balance adjustment could potentially attempt to wake this
117 	 * very thread, we must credit the ledger before taking the thread lock.
118 	 * The ledger pointers are only manipulated by the thread itself at the ast
119 	 * boundary.
120 	 *
121 	 * TODO: This fails to account for the time between when the timer was
122 	 * armed and when it fired.  It should be based on the system_timer and
123 	 * running a timer_update operation here.
124 	 */
125 	ledger_credit(thread->t_ledger, task_ledgers.cpu_time, thread->quantum_remaining);
126 	ledger_credit(thread->t_threadledger, thread_ledgers.cpu_time, thread->quantum_remaining);
127 	if (thread->t_bankledger) {
128 		ledger_credit(thread->t_bankledger, bank_ledgers.cpu_time,
129 		    (thread->quantum_remaining - thread->t_deduct_bank_ledger_time));
130 	}
131 	thread->t_deduct_bank_ledger_time = 0;
132 
133 	struct recount_snap snap = { 0 };
134 	recount_snapshot(&snap);
135 	ctime = snap.rsn_time_mach;
136 	check_monotonic_time(ctime);
137 #ifdef CONFIG_MACH_APPROXIMATE_TIME
138 	commpage_update_mach_approximate_time(ctime);
139 #endif /* CONFIG_MACH_APPROXIMATE_TIME */
140 
141 	sched_update_pset_avg_execution_time(processor->processor_set, thread->quantum_remaining, ctime, thread->th_sched_bucket);
142 
143 	recount_switch_thread(&snap, thread, get_threadtask(thread));
144 	recount_log_switch_thread(&snap);
145 
146 	thread_lock(thread);
147 
148 	/*
149 	 * We've run up until our quantum expiration, and will (potentially)
150 	 * continue without re-entering the scheduler, so update this now.
151 	 */
152 	processor->last_dispatch = ctime;
153 	thread->last_run_time = ctime;
154 
155 	/*
156 	 *	Check for fail-safe trip.
157 	 */
158 	if ((thread->sched_mode == TH_MODE_REALTIME || thread->sched_mode == TH_MODE_FIXED) &&
159 	    !(thread->sched_flags & TH_SFLAG_PROMOTED) &&
160 	    !(thread->kern_promotion_schedpri != 0) &&
161 	    !(thread->sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) &&
162 	    !(thread->options & TH_OPT_SYSTEM_CRITICAL)) {
163 		uint64_t new_computation;
164 
165 		new_computation = ctime - thread->computation_epoch;
166 		new_computation += thread->computation_metered;
167 		/*
168 		 * Remove any time spent handling interrupts outside of the thread's
169 		 * control.
170 		 */
171 		new_computation -= recount_current_thread_interrupt_time_mach() - thread->computation_interrupt_epoch;
172 
173 		bool demote = false;
174 		switch (thread->sched_mode) {
175 		case TH_MODE_REALTIME:
176 			if (new_computation > max_unsafe_rt_computation) {
177 				thread->safe_release = ctime + sched_safe_rt_duration;
178 				demote = true;
179 			}
180 			break;
181 		case TH_MODE_FIXED:
182 			if (new_computation > max_unsafe_fixed_computation) {
183 				thread->safe_release = ctime + sched_safe_fixed_duration;
184 				demote = true;
185 			}
186 			break;
187 		default:
188 			panic("unexpected mode: %d", thread->sched_mode);
189 		}
190 
191 		if (demote) {
192 			KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FAILSAFE) | DBG_FUNC_NONE,
193 			    (uintptr_t)thread->sched_pri, (uintptr_t)thread->sched_mode, 0, 0, 0);
194 			sched_thread_mode_demote(thread, TH_SFLAG_FAILSAFE);
195 		}
196 	}
197 
198 	/*
199 	 *	Recompute scheduled priority if appropriate.
200 	 */
201 	if (SCHED(can_update_priority)(thread)) {
202 		SCHED(update_priority)(thread);
203 	} else {
204 		SCHED(lightweight_update_priority)(thread);
205 	}
206 
207 	if (thread->sched_mode != TH_MODE_REALTIME) {
208 		SCHED(quantum_expire)(thread);
209 	}
210 
211 	/*
212 	 *	This quantum is up, give this thread another.
213 	 */
214 	processor->first_timeslice = FALSE;
215 
216 	thread_quantum_init(thread, ctime);
217 
218 	timer_update(&thread->runnable_timer, ctime);
219 
220 	processor->quantum_end = ctime + thread->quantum_remaining;
221 
222 	/*
223 	 * Context switch check
224 	 *
225 	 * non-urgent flags don't affect kernel threads, so upgrade to urgent
226 	 * to ensure that rebalancing and non-recommendation kick in quickly.
227 	 */
228 
229 	ast_t check_reason = AST_QUANTUM;
230 	if (get_threadtask(thread) == kernel_task) {
231 		check_reason |= AST_URGENT;
232 	}
233 
234 	if ((preempt = csw_check(thread, processor, check_reason)) != AST_NONE) {
235 		ast_on(preempt);
236 	}
237 
238 	/*
239 	 * AST_KEVENT does not send an IPI when setting the AST,
240 	 * to avoid waiting for the next context switch to propagate the AST,
241 	 * the AST is propagated here at quantum expiration.
242 	 */
243 	ast_propagate(thread);
244 
245 	thread_unlock(thread);
246 
247 	/* Now that the processor->thread_timer has been updated, evaluate to see if
248 	 * the workqueue quantum expired and set AST_KEVENT if it has */
249 	if (thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) {
250 		thread_evaluate_workqueue_quantum_expiry(thread);
251 	}
252 
253 	running_timer_enter(processor, RUNNING_TIMER_QUANTUM, thread,
254 	    processor->quantum_end, ctime);
255 
256 	/* Tell platform layer that we are still running this thread */
257 	thread_urgency_t urgency = thread_get_urgency(thread, NULL, NULL);
258 	machine_thread_going_on_core(thread, urgency, 0, 0, ctime);
259 	machine_switch_perfcontrol_state_update(QUANTUM_EXPIRY, ctime,
260 	    0, thread);
261 
262 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
263 	sched_timeshare_consider_maintenance(ctime, false);
264 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
265 
266 #if __arm64__
267 	if (thread->sched_mode == TH_MODE_REALTIME) {
268 		sched_consider_recommended_cores(ctime, thread);
269 	}
270 #endif /* __arm64__ */
271 
272 	KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_END, preempt, 0, 0, 0, 0);
273 }
274 
275 /*
276  *	sched_set_thread_base_priority:
277  *
278  *	Set the base priority of the thread
279  *	and reset its scheduled priority.
280  *
281  *	This is the only path to change base_pri.
282  *
283  *	Called with the thread locked.
284  */
285 void
sched_set_thread_base_priority(thread_t thread,int priority)286 sched_set_thread_base_priority(thread_t thread, int priority)
287 {
288 	assert(priority >= MINPRI);
289 	uint64_t ctime = 0;
290 
291 	if (thread->sched_mode == TH_MODE_REALTIME) {
292 		assert((priority >= BASEPRI_RTQUEUES) && (priority <= MAXPRI));
293 	} else {
294 		assert(priority < BASEPRI_RTQUEUES);
295 	}
296 
297 	int old_base_pri = thread->base_pri;
298 	thread->req_base_pri = (int16_t)priority;
299 	if (thread->sched_flags & TH_SFLAG_BASE_PRI_FROZEN) {
300 		priority = MAX(priority, old_base_pri);
301 	}
302 	thread->base_pri = (int16_t)priority;
303 
304 	if ((thread->state & TH_RUN) == TH_RUN) {
305 		assert(thread->last_made_runnable_time != THREAD_NOT_RUNNABLE);
306 		ctime = mach_approximate_time();
307 		thread->last_basepri_change_time = ctime;
308 	} else {
309 		assert(thread->last_basepri_change_time == THREAD_NOT_RUNNABLE);
310 		assert(thread->last_made_runnable_time == THREAD_NOT_RUNNABLE);
311 	}
312 
313 	/*
314 	 * Currently the perfcontrol_attr depends on the base pri of the
315 	 * thread. Therefore, we use this function as the hook for the
316 	 * perfcontrol callout.
317 	 */
318 	if (thread == current_thread() && old_base_pri != priority) {
319 		if (!ctime) {
320 			ctime = mach_approximate_time();
321 		}
322 		machine_switch_perfcontrol_state_update(PERFCONTROL_ATTR_UPDATE,
323 		    ctime, PERFCONTROL_CALLOUT_WAKE_UNSAFE, thread);
324 	}
325 #if !CONFIG_SCHED_CLUTCH
326 	/* For the clutch scheduler, this operation is done in set_sched_pri() */
327 	SCHED(update_thread_bucket)(thread);
328 #endif /* !CONFIG_SCHED_CLUTCH */
329 
330 	thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
331 }
332 
333 /*
334  *	sched_set_kernel_thread_priority:
335  *
336  *	Set the absolute base priority of the thread
337  *	and reset its scheduled priority.
338  *
339  *	Called with the thread unlocked.
340  */
341 void
sched_set_kernel_thread_priority(thread_t thread,int new_priority)342 sched_set_kernel_thread_priority(thread_t thread, int new_priority)
343 {
344 	spl_t s = splsched();
345 
346 	thread_lock(thread);
347 
348 	assert(thread->sched_mode != TH_MODE_REALTIME);
349 	assert(thread->effective_policy.thep_qos == THREAD_QOS_UNSPECIFIED);
350 
351 	if (new_priority > thread->max_priority) {
352 		new_priority = thread->max_priority;
353 	}
354 #if !defined(XNU_TARGET_OS_OSX)
355 	if (new_priority < MAXPRI_THROTTLE) {
356 		new_priority = MAXPRI_THROTTLE;
357 	}
358 #endif /* !defined(XNU_TARGET_OS_OSX) */
359 
360 	thread->importance = new_priority - thread->task_priority;
361 
362 	sched_set_thread_base_priority(thread, new_priority);
363 
364 	thread_unlock(thread);
365 	splx(s);
366 }
367 
368 /*
369  *	thread_recompute_sched_pri:
370  *
371  *	Reset the scheduled priority of the thread
372  *	according to its base priority if the
373  *	thread has not been promoted or depressed.
374  *
375  *	This is the only way to push base_pri changes into sched_pri,
376  *	or to recalculate the appropriate sched_pri after changing
377  *	a promotion or depression.
378  *
379  *	Called at splsched with the thread locked.
380  *
381  *	TODO: Add an 'update urgency' flag to avoid urgency callouts on every rwlock operation
382  */
383 void
thread_recompute_sched_pri(thread_t thread,set_sched_pri_options_t options)384 thread_recompute_sched_pri(thread_t thread, set_sched_pri_options_t options)
385 {
386 	uint32_t     sched_flags = thread->sched_flags;
387 	sched_mode_t sched_mode  = thread->sched_mode;
388 
389 	int16_t priority = thread->base_pri;
390 
391 	if (sched_mode == TH_MODE_TIMESHARE) {
392 		priority = (int16_t)SCHED(compute_timeshare_priority)(thread);
393 	}
394 
395 	if (sched_flags & TH_SFLAG_DEPRESS) {
396 		/* thread_yield_internal overrides kernel mutex promotion */
397 		priority = DEPRESSPRI;
398 	} else {
399 		/* poll-depress is overridden by mutex promotion and promote-reasons */
400 		if ((sched_flags & TH_SFLAG_POLLDEPRESS)) {
401 			priority = DEPRESSPRI;
402 		}
403 
404 		if (thread->kern_promotion_schedpri > 0) {
405 			priority = MAX(priority, thread->kern_promotion_schedpri);
406 
407 			if (sched_mode != TH_MODE_REALTIME) {
408 				priority = MIN(priority, MAXPRI_PROMOTE);
409 			}
410 		}
411 
412 		if (sched_flags & TH_SFLAG_PROMOTED) {
413 			priority = MAX(priority, thread->promotion_priority);
414 
415 			if (sched_mode != TH_MODE_REALTIME) {
416 				priority = MIN(priority, MAXPRI_PROMOTE);
417 			}
418 		}
419 
420 		if (sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) {
421 			if (sched_flags & TH_SFLAG_RW_PROMOTED) {
422 				priority = MAX(priority, MINPRI_RWLOCK);
423 			}
424 
425 			if (sched_flags & TH_SFLAG_WAITQ_PROMOTED) {
426 				priority = MAX(priority, MINPRI_WAITQ);
427 			}
428 
429 			if (sched_flags & TH_SFLAG_EXEC_PROMOTED) {
430 				priority = MAX(priority, MINPRI_EXEC);
431 			}
432 
433 			if (sched_flags & TH_SFLAG_FLOOR_PROMOTED) {
434 				priority = MAX(priority, MINPRI_FLOOR);
435 			}
436 		}
437 	}
438 
439 	set_sched_pri(thread, priority, options);
440 }
441 
442 void
sched_default_quantum_expire(thread_t thread __unused)443 sched_default_quantum_expire(thread_t thread __unused)
444 {
445 	/*
446 	 * No special behavior when a timeshare, fixed, or realtime thread
447 	 * uses up its entire quantum
448 	 */
449 }
450 
451 int smt_timeshare_enabled = 1;
452 int smt_sched_bonus_16ths = 8;
453 
454 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
455 
456 /*
457  *	lightweight_update_priority:
458  *
459  *	Update the scheduled priority for
460  *	a timesharing thread.
461  *
462  *	Only for use on the current thread.
463  *
464  *	Called with the thread locked.
465  */
466 void
lightweight_update_priority(thread_t thread)467 lightweight_update_priority(thread_t thread)
468 {
469 	thread_assert_runq_null(thread);
470 	assert(thread == current_thread());
471 
472 	if (thread->sched_mode == TH_MODE_TIMESHARE) {
473 		int priority;
474 		uint32_t delta;
475 
476 		sched_tick_delta(thread, delta);
477 
478 		/*
479 		 *	Accumulate timesharing usage only
480 		 *	during contention for processor
481 		 *	resources.
482 		 */
483 		if (thread->pri_shift < INT8_MAX) {
484 			if (thread_no_smt(thread) && smt_timeshare_enabled) {
485 				thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4));
486 			} else {
487 				thread->sched_usage += delta;
488 			}
489 		}
490 
491 		thread->cpu_delta += delta;
492 
493 #if CONFIG_SCHED_CLUTCH
494 		/*
495 		 * Update the CPU usage for the thread group to which the thread belongs.
496 		 * The implementation assumes that the thread ran for the entire delta
497 		 * as part of the same thread group.
498 		 */
499 		sched_clutch_cpu_usage_update(thread, delta);
500 #endif /* CONFIG_SCHED_CLUTCH */
501 
502 		priority = sched_compute_timeshare_priority(thread);
503 
504 		if (priority != thread->sched_pri) {
505 			thread_recompute_sched_pri(thread, SETPRI_LAZY);
506 		}
507 	}
508 }
509 
510 /*
511  *	Define shifts for simulating (5/8) ** n
512  *
513  *	Shift structures for holding update shifts.  Actual computation
514  *	is  usage = (usage >> shift1) +/- (usage >> abs(shift2))  where the
515  *	+/- is determined by the sign of shift 2.
516  */
517 
518 const struct shift_data        sched_decay_shifts[SCHED_DECAY_TICKS] = {
519 	{ .shift1 = 1, .shift2 = 1 },
520 	{ .shift1 = 1, .shift2 = 3 },
521 	{ .shift1 = 1, .shift2 = -3 },
522 	{ .shift1 = 2, .shift2 = -7 },
523 	{ .shift1 = 3, .shift2 = 5 },
524 	{ .shift1 = 3, .shift2 = -5 },
525 	{ .shift1 = 4, .shift2 = -8 },
526 	{ .shift1 = 5, .shift2 = 7 },
527 	{ .shift1 = 5, .shift2 = -7 },
528 	{ .shift1 = 6, .shift2 = -10 },
529 	{ .shift1 = 7, .shift2 = 10 },
530 	{ .shift1 = 7, .shift2 = -9 },
531 	{ .shift1 = 8, .shift2 = -11 },
532 	{ .shift1 = 9, .shift2 = 12 },
533 	{ .shift1 = 9, .shift2 = -11 },
534 	{ .shift1 = 10, .shift2 = -13 },
535 	{ .shift1 = 11, .shift2 = 14 },
536 	{ .shift1 = 11, .shift2 = -13 },
537 	{ .shift1 = 12, .shift2 = -15 },
538 	{ .shift1 = 13, .shift2 = 17 },
539 	{ .shift1 = 13, .shift2 = -15 },
540 	{ .shift1 = 14, .shift2 = -17 },
541 	{ .shift1 = 15, .shift2 = 19 },
542 	{ .shift1 = 16, .shift2 = 18 },
543 	{ .shift1 = 16, .shift2 = -19 },
544 	{ .shift1 = 17, .shift2 = 22 },
545 	{ .shift1 = 18, .shift2 = 20 },
546 	{ .shift1 = 18, .shift2 = -20 },
547 	{ .shift1 = 19, .shift2 = 26 },
548 	{ .shift1 = 20, .shift2 = 22 },
549 	{ .shift1 = 20, .shift2 = -22 },
550 	{ .shift1 = 21, .shift2 = -27 }
551 };
552 
553 /*
554  *	sched_compute_timeshare_priority:
555  *
556  *	Calculate the timesharing priority based upon usage and load.
557  */
558 extern int sched_pri_decay_band_limit;
559 
560 
561 /* Only use the decay floor logic on non-macOS and non-clutch schedulers */
562 #if !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH
563 
564 int
sched_compute_timeshare_priority(thread_t thread)565 sched_compute_timeshare_priority(thread_t thread)
566 {
567 	int decay_amount;
568 	int decay_limit = sched_pri_decay_band_limit;
569 
570 	if (thread->base_pri > BASEPRI_FOREGROUND) {
571 		decay_limit += (thread->base_pri - BASEPRI_FOREGROUND);
572 	}
573 
574 	if (thread->pri_shift == INT8_MAX) {
575 		decay_amount = 0;
576 	} else {
577 		decay_amount = (thread->sched_usage >> thread->pri_shift);
578 	}
579 
580 	if (decay_amount > decay_limit) {
581 		decay_amount = decay_limit;
582 	}
583 
584 	/* start with base priority */
585 	int priority = thread->base_pri - decay_amount;
586 
587 	if (priority < MAXPRI_THROTTLE) {
588 		if (get_threadtask(thread)->max_priority > MAXPRI_THROTTLE) {
589 			priority = MAXPRI_THROTTLE;
590 		} else if (priority < MINPRI_USER) {
591 			priority = MINPRI_USER;
592 		}
593 	} else if (priority > MAXPRI_KERNEL) {
594 		priority = MAXPRI_KERNEL;
595 	}
596 
597 	return priority;
598 }
599 
600 #else /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */
601 
602 int
sched_compute_timeshare_priority(thread_t thread)603 sched_compute_timeshare_priority(thread_t thread)
604 {
605 	/* start with base priority */
606 	int priority = thread->base_pri;
607 
608 	if (thread->pri_shift != INT8_MAX) {
609 		priority -= (thread->sched_usage >> thread->pri_shift);
610 	}
611 
612 	if (priority < MINPRI_USER) {
613 		priority = MINPRI_USER;
614 	} else if (priority > MAXPRI_KERNEL) {
615 		priority = MAXPRI_KERNEL;
616 	}
617 
618 	return priority;
619 }
620 
621 #endif /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */
622 
623 /*
624  *	can_update_priority
625  *
626  *	Make sure we don't do re-dispatches more frequently than a scheduler tick.
627  *
628  *	Called with the thread locked.
629  */
630 boolean_t
can_update_priority(thread_t thread)631 can_update_priority(
632 	thread_t        thread)
633 {
634 	if (sched_tick == thread->sched_stamp) {
635 		return FALSE;
636 	} else {
637 		return TRUE;
638 	}
639 }
640 
641 /*
642  *	update_priority
643  *
644  *	Perform housekeeping operations driven by scheduler tick.
645  *
646  *	Called with the thread locked.
647  */
648 void
update_priority(thread_t thread)649 update_priority(
650 	thread_t        thread)
651 {
652 	uint32_t ticks, delta;
653 
654 	ticks = sched_tick - thread->sched_stamp;
655 	assert(ticks != 0);
656 
657 	thread->sched_stamp += ticks;
658 
659 	/* If requested, accelerate aging of sched_usage */
660 	if (sched_decay_usage_age_factor > 1) {
661 		ticks *= sched_decay_usage_age_factor;
662 	}
663 
664 	/*
665 	 *	Gather cpu usage data.
666 	 */
667 	sched_tick_delta(thread, delta);
668 	if (ticks < SCHED_DECAY_TICKS) {
669 		/*
670 		 *	Accumulate timesharing usage only during contention for processor
671 		 *	resources. Use the pri_shift from the previous tick window to
672 		 *	determine if the system was in a contended state.
673 		 */
674 		if (thread->pri_shift < INT8_MAX) {
675 			if (thread_no_smt(thread) && smt_timeshare_enabled) {
676 				thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4));
677 			} else {
678 				thread->sched_usage += delta;
679 			}
680 		}
681 
682 		thread->cpu_usage += delta + thread->cpu_delta;
683 		thread->cpu_delta = 0;
684 
685 #if CONFIG_SCHED_CLUTCH
686 		/*
687 		 * Update the CPU usage for the thread group to which the thread belongs.
688 		 * The implementation assumes that the thread ran for the entire delta
689 		 * as part of the same thread group.
690 		 */
691 		sched_clutch_cpu_usage_update(thread, delta);
692 #endif /* CONFIG_SCHED_CLUTCH */
693 
694 		const struct shift_data *shiftp = &sched_decay_shifts[ticks];
695 
696 		if (shiftp->shift2 > 0) {
697 			thread->cpu_usage =   (thread->cpu_usage >> shiftp->shift1) +
698 			    (thread->cpu_usage >> shiftp->shift2);
699 			thread->sched_usage = (thread->sched_usage >> shiftp->shift1) +
700 			    (thread->sched_usage >> shiftp->shift2);
701 		} else {
702 			thread->cpu_usage =   (thread->cpu_usage >>   shiftp->shift1) -
703 			    (thread->cpu_usage >> -(shiftp->shift2));
704 			thread->sched_usage = (thread->sched_usage >>   shiftp->shift1) -
705 			    (thread->sched_usage >> -(shiftp->shift2));
706 		}
707 	} else {
708 		thread->cpu_usage = thread->cpu_delta = 0;
709 		thread->sched_usage = 0;
710 	}
711 
712 	/*
713 	 *	Check for fail-safe release.
714 	 */
715 	if ((thread->sched_flags & TH_SFLAG_FAILSAFE) &&
716 	    mach_absolute_time() >= thread->safe_release) {
717 		sched_thread_mode_undemote(thread, TH_SFLAG_FAILSAFE);
718 	}
719 
720 	/*
721 	 * Now that the thread's CPU usage has been accumulated and aged
722 	 * based on contention of the previous tick window, update the
723 	 * pri_shift of the thread to match the current global load/shift
724 	 * values. The updated pri_shift would be used to calculate the
725 	 * new priority of the thread.
726 	 */
727 #if CONFIG_SCHED_CLUTCH
728 	thread->pri_shift = sched_clutch_thread_pri_shift(thread, thread->th_sched_bucket);
729 #else /* CONFIG_SCHED_CLUTCH */
730 	thread->pri_shift = sched_pri_shifts[thread->th_sched_bucket];
731 #endif /* CONFIG_SCHED_CLUTCH */
732 
733 	/* Recompute scheduled priority if appropriate. */
734 	if (thread->sched_mode == TH_MODE_TIMESHARE) {
735 		thread_recompute_sched_pri(thread, SETPRI_LAZY);
736 	}
737 }
738 
739 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
740 
741 
742 /*
743  * TH_BUCKET_RUN is a count of *all* runnable non-idle threads.
744  * Each other bucket is a count of the runnable non-idle threads
745  * with that property. All updates to these counts should be
746  * performed with os_atomic_* operations.
747  *
748  * For the clutch scheduler, this global bucket is used only for
749  * keeping the total global run count.
750  */
751 uint32_t       sched_run_buckets[TH_BUCKET_MAX];
752 
753 static void
sched_incr_bucket(sched_bucket_t bucket)754 sched_incr_bucket(sched_bucket_t bucket)
755 {
756 	assert(bucket >= TH_BUCKET_FIXPRI &&
757 	    bucket <= TH_BUCKET_SHARE_BG);
758 
759 	os_atomic_inc(&sched_run_buckets[bucket], relaxed);
760 }
761 
762 static void
sched_decr_bucket(sched_bucket_t bucket)763 sched_decr_bucket(sched_bucket_t bucket)
764 {
765 	assert(bucket >= TH_BUCKET_FIXPRI &&
766 	    bucket <= TH_BUCKET_SHARE_BG);
767 
768 	assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0);
769 
770 	os_atomic_dec(&sched_run_buckets[bucket], relaxed);
771 }
772 
773 static void
sched_add_bucket(sched_bucket_t bucket,uint8_t run_weight)774 sched_add_bucket(sched_bucket_t bucket, uint8_t run_weight)
775 {
776 	assert(bucket >= TH_BUCKET_FIXPRI &&
777 	    bucket <= TH_BUCKET_SHARE_BG);
778 
779 	os_atomic_add(&sched_run_buckets[bucket], run_weight, relaxed);
780 }
781 
782 static void
sched_sub_bucket(sched_bucket_t bucket,uint8_t run_weight)783 sched_sub_bucket(sched_bucket_t bucket, uint8_t run_weight)
784 {
785 	assert(bucket >= TH_BUCKET_FIXPRI &&
786 	    bucket <= TH_BUCKET_SHARE_BG);
787 
788 	assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0);
789 
790 	os_atomic_sub(&sched_run_buckets[bucket], run_weight, relaxed);
791 }
792 
793 uint32_t
sched_run_incr(thread_t thread)794 sched_run_incr(thread_t thread)
795 {
796 	assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN);
797 
798 	uint32_t new_count = os_atomic_inc(&sched_run_buckets[TH_BUCKET_RUN], relaxed);
799 
800 	sched_incr_bucket(thread->th_sched_bucket);
801 
802 	return new_count;
803 }
804 
805 uint32_t
sched_run_decr(thread_t thread)806 sched_run_decr(thread_t thread)
807 {
808 	assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN);
809 
810 	sched_decr_bucket(thread->th_sched_bucket);
811 
812 	uint32_t new_count = os_atomic_dec(&sched_run_buckets[TH_BUCKET_RUN], relaxed);
813 
814 	return new_count;
815 }
816 
817 uint32_t
sched_smt_run_incr(thread_t thread)818 sched_smt_run_incr(thread_t thread)
819 {
820 	assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN);
821 
822 	uint8_t run_weight = (thread_no_smt(thread) && smt_timeshare_enabled) ? 2 : 1;
823 	thread->sched_saved_run_weight = run_weight;
824 
825 	uint32_t new_count = os_atomic_add(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed);
826 
827 	sched_add_bucket(thread->th_sched_bucket, run_weight);
828 
829 	return new_count;
830 }
831 
832 uint32_t
sched_smt_run_decr(thread_t thread)833 sched_smt_run_decr(thread_t thread)
834 {
835 	assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN);
836 
837 	uint8_t run_weight = thread->sched_saved_run_weight;
838 
839 	sched_sub_bucket(thread->th_sched_bucket, run_weight);
840 
841 	uint32_t new_count = os_atomic_sub(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed);
842 
843 	return new_count;
844 }
845 
846 void
sched_update_thread_bucket(thread_t thread)847 sched_update_thread_bucket(thread_t thread)
848 {
849 	sched_bucket_t old_bucket = thread->th_sched_bucket;
850 	sched_bucket_t new_bucket = TH_BUCKET_RUN;
851 
852 	switch (thread->sched_mode) {
853 	case TH_MODE_FIXED:
854 	case TH_MODE_REALTIME:
855 		new_bucket = TH_BUCKET_FIXPRI;
856 		break;
857 
858 	case TH_MODE_TIMESHARE:
859 		if (thread->base_pri > BASEPRI_DEFAULT) {
860 			new_bucket = TH_BUCKET_SHARE_FG;
861 		} else if (thread->base_pri > BASEPRI_UTILITY) {
862 			new_bucket = TH_BUCKET_SHARE_DF;
863 		} else if (thread->base_pri > MAXPRI_THROTTLE) {
864 			new_bucket = TH_BUCKET_SHARE_UT;
865 		} else {
866 			new_bucket = TH_BUCKET_SHARE_BG;
867 		}
868 		break;
869 
870 	default:
871 		panic("unexpected mode: %d", thread->sched_mode);
872 		break;
873 	}
874 
875 	if (old_bucket != new_bucket) {
876 		thread->th_sched_bucket = new_bucket;
877 		thread->pri_shift = sched_pri_shifts[new_bucket];
878 
879 		if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) {
880 			sched_decr_bucket(old_bucket);
881 			sched_incr_bucket(new_bucket);
882 		}
883 	}
884 }
885 
886 void
sched_smt_update_thread_bucket(thread_t thread)887 sched_smt_update_thread_bucket(thread_t thread)
888 {
889 	sched_bucket_t old_bucket = thread->th_sched_bucket;
890 	sched_bucket_t new_bucket = TH_BUCKET_RUN;
891 
892 	switch (thread->sched_mode) {
893 	case TH_MODE_FIXED:
894 	case TH_MODE_REALTIME:
895 		new_bucket = TH_BUCKET_FIXPRI;
896 		break;
897 
898 	case TH_MODE_TIMESHARE:
899 		if (thread->base_pri > BASEPRI_DEFAULT) {
900 			new_bucket = TH_BUCKET_SHARE_FG;
901 		} else if (thread->base_pri > BASEPRI_UTILITY) {
902 			new_bucket = TH_BUCKET_SHARE_DF;
903 		} else if (thread->base_pri > MAXPRI_THROTTLE) {
904 			new_bucket = TH_BUCKET_SHARE_UT;
905 		} else {
906 			new_bucket = TH_BUCKET_SHARE_BG;
907 		}
908 		break;
909 
910 	default:
911 		panic("unexpected mode: %d", thread->sched_mode);
912 		break;
913 	}
914 
915 	if (old_bucket != new_bucket) {
916 		thread->th_sched_bucket = new_bucket;
917 		thread->pri_shift = sched_pri_shifts[new_bucket];
918 
919 		if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) {
920 			sched_sub_bucket(old_bucket, thread->sched_saved_run_weight);
921 			sched_add_bucket(new_bucket, thread->sched_saved_run_weight);
922 		}
923 	}
924 }
925 
926 static inline void
sched_validate_mode(sched_mode_t mode)927 sched_validate_mode(sched_mode_t mode)
928 {
929 	switch (mode) {
930 	case TH_MODE_FIXED:
931 	case TH_MODE_REALTIME:
932 	case TH_MODE_TIMESHARE:
933 		break;
934 
935 	default:
936 		panic("unexpected mode: %d", mode);
937 		break;
938 	}
939 }
940 
941 /*
942  * Set the thread's true scheduling mode
943  * Called with thread mutex and thread locked
944  * The thread has already been removed from the runqueue.
945  *
946  * (saved_mode is handled before this point)
947  */
948 void
sched_set_thread_mode(thread_t thread,sched_mode_t new_mode)949 sched_set_thread_mode(thread_t thread, sched_mode_t new_mode)
950 {
951 	thread_assert_runq_null(thread);
952 
953 	sched_validate_mode(new_mode);
954 
955 #if CONFIG_SCHED_AUTO_JOIN
956 	/*
957 	 * Realtime threads might have auto-joined a work interval based on
958 	 * make runnable relationships. If such an RT thread is now being demoted
959 	 * to non-RT, unjoin the thread from the work interval.
960 	 */
961 	if ((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) && (new_mode != TH_MODE_REALTIME)) {
962 		assert((thread->sched_mode == TH_MODE_REALTIME) || (thread->th_work_interval_flags & TH_WORK_INTERVAL_FLAGS_AUTO_JOIN_LEAK));
963 		work_interval_auto_join_demote(thread);
964 	}
965 #endif /* CONFIG_SCHED_AUTO_JOIN */
966 
967 	thread->sched_mode = new_mode;
968 
969 	SCHED(update_thread_bucket)(thread);
970 }
971 
972 /*
973  * TODO: Instead of having saved mode, have 'user mode' and 'true mode'.
974  * That way there's zero confusion over which the user wants
975  * and which the kernel wants.
976  */
977 void
sched_set_thread_mode_user(thread_t thread,sched_mode_t new_mode)978 sched_set_thread_mode_user(thread_t thread, sched_mode_t new_mode)
979 {
980 	thread_assert_runq_null(thread);
981 
982 	sched_validate_mode(new_mode);
983 
984 	/* If demoted, only modify the saved mode. */
985 	if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
986 		thread->saved_mode = new_mode;
987 	} else {
988 		sched_set_thread_mode(thread, new_mode);
989 	}
990 }
991 
992 sched_mode_t
sched_get_thread_mode_user(thread_t thread)993 sched_get_thread_mode_user(thread_t thread)
994 {
995 	if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
996 		return thread->saved_mode;
997 	} else {
998 		return thread->sched_mode;
999 	}
1000 }
1001 
1002 /*
1003  * Demote the true scheduler mode to timeshare (called with the thread locked)
1004  */
1005 void
sched_thread_mode_demote(thread_t thread,uint32_t reason)1006 sched_thread_mode_demote(thread_t thread, uint32_t reason)
1007 {
1008 	assert(reason & TH_SFLAG_DEMOTED_MASK);
1009 	assert((thread->sched_flags & reason) != reason);
1010 
1011 	if (thread->policy_reset) {
1012 		return;
1013 	}
1014 
1015 	switch (reason) {
1016 	case TH_SFLAG_THROTTLED:
1017 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_THROTTLED),
1018 		    thread_tid(thread), thread->sched_flags);
1019 		break;
1020 	case TH_SFLAG_FAILSAFE:
1021 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_FAILSAFE),
1022 		    thread_tid(thread), thread->sched_flags);
1023 		break;
1024 	case TH_SFLAG_RT_DISALLOWED:
1025 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_RT_DISALLOWED),
1026 		    thread_tid(thread), thread->sched_flags);
1027 		break;
1028 	}
1029 
1030 	if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
1031 		/* Another demotion reason is already active */
1032 		thread->sched_flags |= reason;
1033 		return;
1034 	}
1035 
1036 	assert(thread->saved_mode == TH_MODE_NONE);
1037 
1038 	boolean_t removed = thread_run_queue_remove(thread);
1039 
1040 	thread->sched_flags |= reason;
1041 
1042 	thread->saved_mode = thread->sched_mode;
1043 
1044 	sched_set_thread_mode(thread, TH_MODE_TIMESHARE);
1045 
1046 	thread_recompute_priority(thread);
1047 
1048 	if (removed) {
1049 		thread_run_queue_reinsert(thread, SCHED_TAILQ);
1050 	}
1051 }
1052 
1053 /*
1054  * Return true if the thread is demoted for the specified reason
1055  */
1056 bool
sched_thread_mode_has_demotion(thread_t thread,uint32_t reason)1057 sched_thread_mode_has_demotion(thread_t thread, uint32_t reason)
1058 {
1059 	assert(reason & TH_SFLAG_DEMOTED_MASK);
1060 	return (thread->sched_flags & reason) != 0;
1061 }
1062 
1063 /*
1064  * Un-demote the true scheduler mode back to the saved mode (called with the thread locked)
1065  */
1066 void
sched_thread_mode_undemote(thread_t thread,uint32_t reason)1067 sched_thread_mode_undemote(thread_t thread, uint32_t reason)
1068 {
1069 	assert(reason & TH_SFLAG_DEMOTED_MASK);
1070 	assert((thread->sched_flags & reason) == reason);
1071 	assert(thread->saved_mode != TH_MODE_NONE);
1072 	assert(thread->sched_mode == TH_MODE_TIMESHARE);
1073 	assert(thread->policy_reset == 0);
1074 
1075 	switch (reason) {
1076 	case TH_SFLAG_THROTTLED:
1077 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_THROTTLED),
1078 		    thread_tid(thread), thread->sched_flags);
1079 		break;
1080 	case TH_SFLAG_FAILSAFE:
1081 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_FAILSAFE),
1082 		    thread_tid(thread), thread->sched_flags);
1083 		break;
1084 	case TH_SFLAG_RT_DISALLOWED:
1085 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_RT_DISALLOWED),
1086 		    thread_tid(thread), thread->sched_flags);
1087 		break;
1088 	}
1089 
1090 	thread->sched_flags &= ~reason;
1091 
1092 	if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) {
1093 		/* Another demotion reason is still active */
1094 		return;
1095 	}
1096 
1097 	boolean_t removed = thread_run_queue_remove(thread);
1098 
1099 	sched_set_thread_mode(thread, thread->saved_mode);
1100 
1101 	thread->saved_mode = TH_MODE_NONE;
1102 
1103 	thread_recompute_priority(thread);
1104 
1105 	if (removed) {
1106 		thread_run_queue_reinsert(thread, SCHED_TAILQ);
1107 	}
1108 }
1109 
1110 /*
1111  * Promote thread to have a sched pri floor for a specific reason
1112  *
1113  * Promotion must not last past syscall boundary
1114  * Clients must always pair promote and demote 1:1,
1115  * Handling nesting of the same promote reason is the client's responsibility
1116  *
1117  * Called at splsched with thread locked
1118  */
1119 void
sched_thread_promote_reason(thread_t thread,uint32_t reason,__kdebug_only uintptr_t trace_obj)1120 sched_thread_promote_reason(thread_t    thread,
1121     uint32_t    reason,
1122     __kdebug_only uintptr_t   trace_obj /* already unslid */)
1123 {
1124 	assert(reason & TH_SFLAG_PROMOTE_REASON_MASK);
1125 	assert((thread->sched_flags & reason) != reason);
1126 
1127 	switch (reason) {
1128 	case TH_SFLAG_RW_PROMOTED:
1129 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_PROMOTE),
1130 		    thread_tid(thread), thread->sched_pri,
1131 		    thread->base_pri, trace_obj);
1132 		break;
1133 	case TH_SFLAG_WAITQ_PROMOTED:
1134 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_PROMOTE),
1135 		    thread_tid(thread), thread->sched_pri,
1136 		    thread->base_pri, trace_obj);
1137 		break;
1138 	case TH_SFLAG_EXEC_PROMOTED:
1139 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_PROMOTE),
1140 		    thread_tid(thread), thread->sched_pri,
1141 		    thread->base_pri, trace_obj);
1142 		break;
1143 	case TH_SFLAG_FLOOR_PROMOTED:
1144 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FLOOR_PROMOTE),
1145 		    thread_tid(thread), thread->sched_pri,
1146 		    thread->base_pri, trace_obj);
1147 		break;
1148 	}
1149 
1150 	thread->sched_flags |= reason;
1151 	thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
1152 }
1153 
1154 /*
1155  * End a specific promotion reason
1156  * Demotes a thread back to its expected priority without the promotion in place
1157  *
1158  * Called at splsched with thread locked
1159  */
1160 void
sched_thread_unpromote_reason(thread_t thread,uint32_t reason,__kdebug_only uintptr_t trace_obj)1161 sched_thread_unpromote_reason(thread_t  thread,
1162     uint32_t  reason,
1163     __kdebug_only uintptr_t trace_obj /* already unslid */)
1164 {
1165 	assert(reason & TH_SFLAG_PROMOTE_REASON_MASK);
1166 	assert((thread->sched_flags & reason) == reason);
1167 
1168 	switch (reason) {
1169 	case TH_SFLAG_RW_PROMOTED:
1170 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_DEMOTE),
1171 		    thread_tid(thread), thread->sched_pri,
1172 		    thread->base_pri, trace_obj);
1173 		break;
1174 	case TH_SFLAG_WAITQ_PROMOTED:
1175 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_DEMOTE),
1176 		    thread_tid(thread), thread->sched_pri,
1177 		    thread->base_pri, trace_obj);
1178 		break;
1179 	case TH_SFLAG_EXEC_PROMOTED:
1180 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_DEMOTE),
1181 		    thread_tid(thread), thread->sched_pri,
1182 		    thread->base_pri, trace_obj);
1183 		break;
1184 	case TH_SFLAG_FLOOR_PROMOTED:
1185 		KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FLOOR_DEMOTE),
1186 		    thread_tid(thread), thread->sched_pri,
1187 		    thread->base_pri, trace_obj);
1188 		break;
1189 	}
1190 
1191 	thread->sched_flags &= ~reason;
1192 
1193 	thread_recompute_sched_pri(thread, SETPRI_DEFAULT);
1194 }
1195