1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56
57 /*
58 * Function pointer set by the AIO routines so that the socket buffer code
59 * can call back into the AIO module if it is loaded.
60 */
61 void (*aio_swake)(struct socket *, struct sockbuf *);
62
63 /*
64 * Primitive routines for operating on socket buffers
65 */
66
67 u_long sb_max = SB_MAX;
68 u_long sb_max_adj =
69 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70
71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
72
73 #ifdef KERN_TLS
74 static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75 struct mbuf *n);
76 #endif
77 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
78 static void sbflush_internal(struct sockbuf *sb);
79
80 /*
81 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82 */
83 static void
sbm_clrprotoflags(struct mbuf * m,int flags)84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 int mask;
87
88 mask = ~M_PROTOFLAGS;
89 if (flags & PRUS_NOTREADY)
90 mask |= M_NOTREADY;
91 while (m) {
92 m->m_flags &= mask;
93 m = m->m_next;
94 }
95 }
96
97 /*
98 * Compress M_NOTREADY mbufs after they have been readied by sbready().
99 *
100 * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101 * be copied at the time of sbcompress(). This function combines small
102 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
103 * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104 * ready.
105 */
106 static void
sbready_compress(struct sockbuf * sb,struct mbuf * m0,struct mbuf * end)107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 struct mbuf *m, *n;
110 int ext_size;
111
112 SOCKBUF_LOCK_ASSERT(sb);
113
114 if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 return;
116
117 for (m = m0; m != end; m = m->m_next) {
118 MPASS((m->m_flags & M_NOTREADY) == 0);
119 /*
120 * NB: In sbcompress(), 'n' is the last mbuf in the
121 * socket buffer and 'm' is the new mbuf being copied
122 * into the trailing space of 'n'. Here, the roles
123 * are reversed and 'n' is the next mbuf after 'm'
124 * that is being copied into the trailing space of
125 * 'm'.
126 */
127 n = m->m_next;
128 #ifdef KERN_TLS
129 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 (m->m_flags & M_EXTPG) &&
132 (n->m_flags & M_EXTPG) &&
133 !mbuf_has_tls_session(m) &&
134 !mbuf_has_tls_session(n)) {
135 int hdr_len, trail_len;
136
137 hdr_len = n->m_epg_hdrlen;
138 trail_len = m->m_epg_trllen;
139 if (trail_len != 0 && hdr_len != 0 &&
140 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 /* copy n's header to m's trailer */
142 memcpy(&m->m_epg_trail[trail_len],
143 n->m_epg_hdr, hdr_len);
144 m->m_epg_trllen += hdr_len;
145 m->m_len += hdr_len;
146 n->m_epg_hdrlen = 0;
147 n->m_len -= hdr_len;
148 }
149 }
150 #endif
151
152 /* Compress small unmapped mbufs into plain mbufs. */
153 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 !mbuf_has_tls_session(m)) {
155 ext_size = m->m_ext.ext_size;
156 if (mb_unmapped_compress(m) == 0) {
157 sb->sb_mbcnt -= ext_size;
158 sb->sb_ccnt -= 1;
159 }
160 }
161
162 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 M_WRITABLE(m) &&
164 (m->m_flags & M_EXTPG) == 0 &&
165 !mbuf_has_tls_session(n) &&
166 !mbuf_has_tls_session(m) &&
167 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 n->m_len <= M_TRAILINGSPACE(m) &&
169 m->m_type == n->m_type) {
170 KASSERT(sb->sb_lastrecord != n,
171 ("%s: merging start of record (%p) into previous mbuf (%p)",
172 __func__, n, m));
173 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 m->m_len += n->m_len;
175 m->m_next = n->m_next;
176 m->m_flags |= n->m_flags & M_EOR;
177 if (sb->sb_mbtail == n)
178 sb->sb_mbtail = m;
179
180 sb->sb_mbcnt -= MSIZE;
181 sb->sb_mcnt -= 1;
182 if (n->m_flags & M_EXT) {
183 sb->sb_mbcnt -= n->m_ext.ext_size;
184 sb->sb_ccnt -= 1;
185 }
186 m_free(n);
187 n = m->m_next;
188 }
189 }
190 SBLASTRECORDCHK(sb);
191 SBLASTMBUFCHK(sb);
192 }
193
194 /*
195 * Mark ready "count" units of I/O starting with "m". Most mbufs
196 * count as a single unit of I/O except for M_EXTPG mbufs which
197 * are backed by multiple pages.
198 */
199 int
sbready(struct sockbuf * sb,struct mbuf * m0,int count)200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201 {
202 struct mbuf *m;
203 u_int blocker;
204
205 SOCKBUF_LOCK_ASSERT(sb);
206 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208
209 m = m0;
210 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211
212 while (count > 0) {
213 KASSERT(m->m_flags & M_NOTREADY,
214 ("%s: m %p !M_NOTREADY", __func__, m));
215 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
216 if (count < m->m_epg_nrdy) {
217 m->m_epg_nrdy -= count;
218 count = 0;
219 break;
220 }
221 count -= m->m_epg_nrdy;
222 m->m_epg_nrdy = 0;
223 } else
224 count--;
225
226 m->m_flags &= ~(M_NOTREADY | blocker);
227 if (blocker)
228 sb->sb_acc += m->m_len;
229 m = m->m_next;
230 }
231
232 /*
233 * If the first mbuf is still not fully ready because only
234 * some of its backing pages were readied, no further progress
235 * can be made.
236 */
237 if (m0 == m) {
238 MPASS(m->m_flags & M_NOTREADY);
239 return (EINPROGRESS);
240 }
241
242 if (!blocker) {
243 sbready_compress(sb, m0, m);
244 return (EINPROGRESS);
245 }
246
247 /* This one was blocking all the queue. */
248 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
249 KASSERT(m->m_flags & M_BLOCKED,
250 ("%s: m %p !M_BLOCKED", __func__, m));
251 m->m_flags &= ~M_BLOCKED;
252 sb->sb_acc += m->m_len;
253 }
254
255 sb->sb_fnrdy = m;
256 sbready_compress(sb, m0, m);
257
258 return (0);
259 }
260
261 /*
262 * Adjust sockbuf state reflecting allocation of m.
263 */
264 void
sballoc(struct sockbuf * sb,struct mbuf * m)265 sballoc(struct sockbuf *sb, struct mbuf *m)
266 {
267
268 SOCKBUF_LOCK_ASSERT(sb);
269
270 sb->sb_ccc += m->m_len;
271
272 if (sb->sb_fnrdy == NULL) {
273 if (m->m_flags & M_NOTREADY)
274 sb->sb_fnrdy = m;
275 else
276 sb->sb_acc += m->m_len;
277 } else
278 m->m_flags |= M_BLOCKED;
279
280 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
281 sb->sb_ctl += m->m_len;
282
283 sb->sb_mbcnt += MSIZE;
284 sb->sb_mcnt += 1;
285
286 if (m->m_flags & M_EXT) {
287 sb->sb_mbcnt += m->m_ext.ext_size;
288 sb->sb_ccnt += 1;
289 }
290 }
291
292 /*
293 * Adjust sockbuf state reflecting freeing of m.
294 */
295 void
sbfree(struct sockbuf * sb,struct mbuf * m)296 sbfree(struct sockbuf *sb, struct mbuf *m)
297 {
298
299 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
300 SOCKBUF_LOCK_ASSERT(sb);
301 #endif
302
303 sb->sb_ccc -= m->m_len;
304
305 if (!(m->m_flags & M_NOTAVAIL))
306 sb->sb_acc -= m->m_len;
307
308 if (m == sb->sb_fnrdy) {
309 struct mbuf *n;
310
311 KASSERT(m->m_flags & M_NOTREADY,
312 ("%s: m %p !M_NOTREADY", __func__, m));
313
314 n = m->m_next;
315 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
316 n->m_flags &= ~M_BLOCKED;
317 sb->sb_acc += n->m_len;
318 n = n->m_next;
319 }
320 sb->sb_fnrdy = n;
321 }
322
323 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
324 sb->sb_ctl -= m->m_len;
325
326 sb->sb_mbcnt -= MSIZE;
327 sb->sb_mcnt -= 1;
328 if (m->m_flags & M_EXT) {
329 sb->sb_mbcnt -= m->m_ext.ext_size;
330 sb->sb_ccnt -= 1;
331 }
332
333 if (sb->sb_sndptr == m) {
334 sb->sb_sndptr = NULL;
335 sb->sb_sndptroff = 0;
336 }
337 if (sb->sb_sndptroff != 0)
338 sb->sb_sndptroff -= m->m_len;
339 }
340
341 #ifdef KERN_TLS
342 /*
343 * Similar to sballoc/sbfree but does not adjust state associated with
344 * the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
345 * are not ready.
346 */
347 void
sballoc_ktls_rx(struct sockbuf * sb,struct mbuf * m)348 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
349 {
350
351 SOCKBUF_LOCK_ASSERT(sb);
352
353 sb->sb_ccc += m->m_len;
354 sb->sb_tlscc += m->m_len;
355
356 sb->sb_mbcnt += MSIZE;
357 sb->sb_mcnt += 1;
358
359 if (m->m_flags & M_EXT) {
360 sb->sb_mbcnt += m->m_ext.ext_size;
361 sb->sb_ccnt += 1;
362 }
363 }
364
365 void
sbfree_ktls_rx(struct sockbuf * sb,struct mbuf * m)366 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
367 {
368
369 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
370 SOCKBUF_LOCK_ASSERT(sb);
371 #endif
372
373 sb->sb_ccc -= m->m_len;
374 sb->sb_tlscc -= m->m_len;
375
376 sb->sb_mbcnt -= MSIZE;
377 sb->sb_mcnt -= 1;
378
379 if (m->m_flags & M_EXT) {
380 sb->sb_mbcnt -= m->m_ext.ext_size;
381 sb->sb_ccnt -= 1;
382 }
383 }
384 #endif
385
386 /*
387 * Socantsendmore indicates that no more data will be sent on the socket; it
388 * would normally be applied to a socket when the user informs the system
389 * that no more data is to be sent, by the protocol code (in case
390 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
391 * received, and will normally be applied to the socket by a protocol when it
392 * detects that the peer will send no more data. Data queued for reading in
393 * the socket may yet be read.
394 */
395 void
socantsendmore_locked(struct socket * so)396 socantsendmore_locked(struct socket *so)
397 {
398
399 SOCKBUF_LOCK_ASSERT(&so->so_snd);
400
401 so->so_snd.sb_state |= SBS_CANTSENDMORE;
402 sowwakeup_locked(so);
403 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
404 }
405
406 void
socantsendmore(struct socket * so)407 socantsendmore(struct socket *so)
408 {
409
410 SOCKBUF_LOCK(&so->so_snd);
411 socantsendmore_locked(so);
412 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
413 }
414
415 void
socantrcvmore_locked(struct socket * so)416 socantrcvmore_locked(struct socket *so)
417 {
418
419 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
420
421 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
422 #ifdef KERN_TLS
423 if (so->so_rcv.sb_flags & SB_TLS_RX)
424 ktls_check_rx(&so->so_rcv);
425 #endif
426 sorwakeup_locked(so);
427 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
428 }
429
430 void
socantrcvmore(struct socket * so)431 socantrcvmore(struct socket *so)
432 {
433
434 SOCKBUF_LOCK(&so->so_rcv);
435 socantrcvmore_locked(so);
436 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
437 }
438
439 /*
440 * Wait for data to arrive at/drain from a socket buffer.
441 */
442 int
sbwait(struct sockbuf * sb)443 sbwait(struct sockbuf *sb)
444 {
445
446 SOCKBUF_LOCK_ASSERT(sb);
447
448 sb->sb_flags |= SB_WAIT;
449 return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
450 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
451 sb->sb_timeo, 0, 0));
452 }
453
454 int
sblock(struct sockbuf * sb,int flags)455 sblock(struct sockbuf *sb, int flags)
456 {
457
458 KASSERT((flags & SBL_VALID) == flags,
459 ("sblock: flags invalid (0x%x)", flags));
460
461 if (flags & SBL_WAIT) {
462 if ((sb->sb_flags & SB_NOINTR) ||
463 (flags & SBL_NOINTR)) {
464 sx_xlock(&sb->sb_sx);
465 return (0);
466 }
467 return (sx_xlock_sig(&sb->sb_sx));
468 } else {
469 if (sx_try_xlock(&sb->sb_sx) == 0)
470 return (EWOULDBLOCK);
471 return (0);
472 }
473 }
474
475 void
sbunlock(struct sockbuf * sb)476 sbunlock(struct sockbuf *sb)
477 {
478
479 sx_xunlock(&sb->sb_sx);
480 }
481
482 /*
483 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
484 * via SIGIO if the socket has the SS_ASYNC flag set.
485 *
486 * Called with the socket buffer lock held; will release the lock by the end
487 * of the function. This allows the caller to acquire the socket buffer lock
488 * while testing for the need for various sorts of wakeup and hold it through
489 * to the point where it's no longer required. We currently hold the lock
490 * through calls out to other subsystems (with the exception of kqueue), and
491 * then release it to avoid lock order issues. It's not clear that's
492 * correct.
493 */
494 void
sowakeup(struct socket * so,struct sockbuf * sb)495 sowakeup(struct socket *so, struct sockbuf *sb)
496 {
497 int ret;
498
499 SOCKBUF_LOCK_ASSERT(sb);
500
501 selwakeuppri(sb->sb_sel, PSOCK);
502 if (!SEL_WAITING(sb->sb_sel))
503 sb->sb_flags &= ~SB_SEL;
504 if (sb->sb_flags & SB_WAIT) {
505 sb->sb_flags &= ~SB_WAIT;
506 wakeup(&sb->sb_acc);
507 }
508 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
509 if (sb->sb_upcall != NULL) {
510 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
511 if (ret == SU_ISCONNECTED) {
512 KASSERT(sb == &so->so_rcv,
513 ("SO_SND upcall returned SU_ISCONNECTED"));
514 soupcall_clear(so, SO_RCV);
515 }
516 } else
517 ret = SU_OK;
518 #ifndef FSTACK
519 if (sb->sb_flags & SB_AIO)
520 sowakeup_aio(so, sb);
521 #endif
522 SOCKBUF_UNLOCK(sb);
523 if (ret == SU_ISCONNECTED)
524 soisconnected(so);
525 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
526 pgsigio(&so->so_sigio, SIGIO, 0);
527 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
528 }
529
530 /*
531 * Socket buffer (struct sockbuf) utility routines.
532 *
533 * Each socket contains two socket buffers: one for sending data and one for
534 * receiving data. Each buffer contains a queue of mbufs, information about
535 * the number of mbufs and amount of data in the queue, and other fields
536 * allowing select() statements and notification on data availability to be
537 * implemented.
538 *
539 * Data stored in a socket buffer is maintained as a list of records. Each
540 * record is a list of mbufs chained together with the m_next field. Records
541 * are chained together with the m_nextpkt field. The upper level routine
542 * soreceive() expects the following conventions to be observed when placing
543 * information in the receive buffer:
544 *
545 * 1. If the protocol requires each message be preceded by the sender's name,
546 * then a record containing that name must be present before any
547 * associated data (mbuf's must be of type MT_SONAME).
548 * 2. If the protocol supports the exchange of ``access rights'' (really just
549 * additional data associated with the message), and there are ``rights''
550 * to be received, then a record containing this data should be present
551 * (mbuf's must be of type MT_RIGHTS).
552 * 3. If a name or rights record exists, then it must be followed by a data
553 * record, perhaps of zero length.
554 *
555 * Before using a new socket structure it is first necessary to reserve
556 * buffer space to the socket, by calling sbreserve(). This should commit
557 * some of the available buffer space in the system buffer pool for the
558 * socket (currently, it does nothing but enforce limits). The space should
559 * be released by calling sbrelease() when the socket is destroyed.
560 */
561 int
soreserve(struct socket * so,u_long sndcc,u_long rcvcc)562 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
563 {
564 struct thread *td = curthread;
565
566 SOCKBUF_LOCK(&so->so_snd);
567 SOCKBUF_LOCK(&so->so_rcv);
568 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
569 goto bad;
570 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
571 goto bad2;
572 if (so->so_rcv.sb_lowat == 0)
573 so->so_rcv.sb_lowat = 1;
574 if (so->so_snd.sb_lowat == 0)
575 so->so_snd.sb_lowat = MCLBYTES;
576 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
577 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
578 SOCKBUF_UNLOCK(&so->so_rcv);
579 SOCKBUF_UNLOCK(&so->so_snd);
580 return (0);
581 bad2:
582 sbrelease_locked(&so->so_snd, so);
583 bad:
584 SOCKBUF_UNLOCK(&so->so_rcv);
585 SOCKBUF_UNLOCK(&so->so_snd);
586 return (ENOBUFS);
587 }
588
589 static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)590 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
591 {
592 int error = 0;
593 u_long tmp_sb_max = sb_max;
594
595 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
596 if (error || !req->newptr)
597 return (error);
598 if (tmp_sb_max < MSIZE + MCLBYTES)
599 return (EINVAL);
600 sb_max = tmp_sb_max;
601 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
602 return (0);
603 }
604
605 /*
606 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
607 * become limiting if buffering efficiency is near the normal case.
608 */
609 int
sbreserve_locked(struct sockbuf * sb,u_long cc,struct socket * so,struct thread * td)610 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
611 struct thread *td)
612 {
613 rlim_t sbsize_limit;
614
615 SOCKBUF_LOCK_ASSERT(sb);
616
617 /*
618 * When a thread is passed, we take into account the thread's socket
619 * buffer size limit. The caller will generally pass curthread, but
620 * in the TCP input path, NULL will be passed to indicate that no
621 * appropriate thread resource limits are available. In that case,
622 * we don't apply a process limit.
623 */
624 if (cc > sb_max_adj)
625 return (0);
626 /*
627 * No need for rlimits in fstack.
628 */
629 #ifndef FSTACK
630 if (td != NULL) {
631 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
632 } else
633 #endif
634 sbsize_limit = RLIM_INFINITY;
635 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
636 sbsize_limit))
637 return (0);
638 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
639 if (sb->sb_lowat > sb->sb_hiwat)
640 sb->sb_lowat = sb->sb_hiwat;
641 return (1);
642 }
643
644 int
sbsetopt(struct socket * so,int cmd,u_long cc)645 sbsetopt(struct socket *so, int cmd, u_long cc)
646 {
647 struct sockbuf *sb;
648 short *flags;
649 u_int *hiwat, *lowat;
650 int error;
651
652 sb = NULL;
653 SOCK_LOCK(so);
654 if (SOLISTENING(so)) {
655 switch (cmd) {
656 case SO_SNDLOWAT:
657 case SO_SNDBUF:
658 lowat = &so->sol_sbsnd_lowat;
659 hiwat = &so->sol_sbsnd_hiwat;
660 flags = &so->sol_sbsnd_flags;
661 break;
662 case SO_RCVLOWAT:
663 case SO_RCVBUF:
664 lowat = &so->sol_sbrcv_lowat;
665 hiwat = &so->sol_sbrcv_hiwat;
666 flags = &so->sol_sbrcv_flags;
667 break;
668 }
669 } else {
670 switch (cmd) {
671 case SO_SNDLOWAT:
672 case SO_SNDBUF:
673 sb = &so->so_snd;
674 break;
675 case SO_RCVLOWAT:
676 case SO_RCVBUF:
677 sb = &so->so_rcv;
678 break;
679 }
680 flags = &sb->sb_flags;
681 hiwat = &sb->sb_hiwat;
682 lowat = &sb->sb_lowat;
683 SOCKBUF_LOCK(sb);
684 }
685
686 error = 0;
687 switch (cmd) {
688 case SO_SNDBUF:
689 case SO_RCVBUF:
690 if (SOLISTENING(so)) {
691 if (cc > sb_max_adj) {
692 error = ENOBUFS;
693 break;
694 }
695 *hiwat = cc;
696 if (*lowat > *hiwat)
697 *lowat = *hiwat;
698 } else {
699 if (!sbreserve_locked(sb, cc, so, curthread))
700 error = ENOBUFS;
701 }
702 if (error == 0)
703 *flags &= ~SB_AUTOSIZE;
704 break;
705 case SO_SNDLOWAT:
706 case SO_RCVLOWAT:
707 /*
708 * Make sure the low-water is never greater than the
709 * high-water.
710 */
711 *lowat = (cc > *hiwat) ? *hiwat : cc;
712 break;
713 }
714
715 if (!SOLISTENING(so))
716 SOCKBUF_UNLOCK(sb);
717 SOCK_UNLOCK(so);
718 return (error);
719 }
720
721 /*
722 * Free mbufs held by a socket, and reserved mbuf space.
723 */
724 void
sbrelease_internal(struct sockbuf * sb,struct socket * so)725 sbrelease_internal(struct sockbuf *sb, struct socket *so)
726 {
727
728 sbflush_internal(sb);
729 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
730 RLIM_INFINITY);
731 sb->sb_mbmax = 0;
732 }
733
734 void
sbrelease_locked(struct sockbuf * sb,struct socket * so)735 sbrelease_locked(struct sockbuf *sb, struct socket *so)
736 {
737
738 SOCKBUF_LOCK_ASSERT(sb);
739
740 sbrelease_internal(sb, so);
741 }
742
743 void
sbrelease(struct sockbuf * sb,struct socket * so)744 sbrelease(struct sockbuf *sb, struct socket *so)
745 {
746
747 SOCKBUF_LOCK(sb);
748 sbrelease_locked(sb, so);
749 SOCKBUF_UNLOCK(sb);
750 }
751
752 void
sbdestroy(struct sockbuf * sb,struct socket * so)753 sbdestroy(struct sockbuf *sb, struct socket *so)
754 {
755
756 sbrelease_internal(sb, so);
757 #ifdef KERN_TLS
758 if (sb->sb_tls_info != NULL)
759 ktls_free(sb->sb_tls_info);
760 sb->sb_tls_info = NULL;
761 #endif
762 }
763
764 /*
765 * Routines to add and remove data from an mbuf queue.
766 *
767 * The routines sbappend() or sbappendrecord() are normally called to append
768 * new mbufs to a socket buffer, after checking that adequate space is
769 * available, comparing the function sbspace() with the amount of data to be
770 * added. sbappendrecord() differs from sbappend() in that data supplied is
771 * treated as the beginning of a new record. To place a sender's address,
772 * optional access rights, and data in a socket receive buffer,
773 * sbappendaddr() should be used. To place access rights and data in a
774 * socket receive buffer, sbappendrights() should be used. In either case,
775 * the new data begins a new record. Note that unlike sbappend() and
776 * sbappendrecord(), these routines check for the caller that there will be
777 * enough space to store the data. Each fails if there is not enough space,
778 * or if it cannot find mbufs to store additional information in.
779 *
780 * Reliable protocols may use the socket send buffer to hold data awaiting
781 * acknowledgement. Data is normally copied from a socket send buffer in a
782 * protocol with m_copy for output to a peer, and then removing the data from
783 * the socket buffer with sbdrop() or sbdroprecord() when the data is
784 * acknowledged by the peer.
785 */
786 #ifdef SOCKBUF_DEBUG
787 void
sblastrecordchk(struct sockbuf * sb,const char * file,int line)788 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
789 {
790 struct mbuf *m = sb->sb_mb;
791
792 SOCKBUF_LOCK_ASSERT(sb);
793
794 while (m && m->m_nextpkt)
795 m = m->m_nextpkt;
796
797 if (m != sb->sb_lastrecord) {
798 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
799 __func__, sb->sb_mb, sb->sb_lastrecord, m);
800 printf("packet chain:\n");
801 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
802 printf("\t%p\n", m);
803 panic("%s from %s:%u", __func__, file, line);
804 }
805 }
806
807 void
sblastmbufchk(struct sockbuf * sb,const char * file,int line)808 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
809 {
810 struct mbuf *m = sb->sb_mb;
811 struct mbuf *n;
812
813 SOCKBUF_LOCK_ASSERT(sb);
814
815 while (m && m->m_nextpkt)
816 m = m->m_nextpkt;
817
818 while (m && m->m_next)
819 m = m->m_next;
820
821 if (m != sb->sb_mbtail) {
822 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
823 __func__, sb->sb_mb, sb->sb_mbtail, m);
824 printf("packet tree:\n");
825 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
826 printf("\t");
827 for (n = m; n != NULL; n = n->m_next)
828 printf("%p ", n);
829 printf("\n");
830 }
831 panic("%s from %s:%u", __func__, file, line);
832 }
833
834 #ifdef KERN_TLS
835 m = sb->sb_mtls;
836 while (m && m->m_next)
837 m = m->m_next;
838
839 if (m != sb->sb_mtlstail) {
840 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
841 __func__, sb->sb_mtls, sb->sb_mtlstail, m);
842 printf("TLS packet tree:\n");
843 printf("\t");
844 for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
845 printf("%p ", m);
846 }
847 printf("\n");
848 panic("%s from %s:%u", __func__, file, line);
849 }
850 #endif
851 }
852 #endif /* SOCKBUF_DEBUG */
853
854 #define SBLINKRECORD(sb, m0) do { \
855 SOCKBUF_LOCK_ASSERT(sb); \
856 if ((sb)->sb_lastrecord != NULL) \
857 (sb)->sb_lastrecord->m_nextpkt = (m0); \
858 else \
859 (sb)->sb_mb = (m0); \
860 (sb)->sb_lastrecord = (m0); \
861 } while (/*CONSTCOND*/0)
862
863 /*
864 * Append mbuf chain m to the last record in the socket buffer sb. The
865 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
866 * are discarded and mbufs are compacted where possible.
867 */
868 void
sbappend_locked(struct sockbuf * sb,struct mbuf * m,int flags)869 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
870 {
871 struct mbuf *n;
872
873 SOCKBUF_LOCK_ASSERT(sb);
874
875 if (m == NULL)
876 return;
877 sbm_clrprotoflags(m, flags);
878 SBLASTRECORDCHK(sb);
879 n = sb->sb_mb;
880 if (n) {
881 while (n->m_nextpkt)
882 n = n->m_nextpkt;
883 do {
884 if (n->m_flags & M_EOR) {
885 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
886 return;
887 }
888 } while (n->m_next && (n = n->m_next));
889 } else {
890 /*
891 * XXX Would like to simply use sb_mbtail here, but
892 * XXX I need to verify that I won't miss an EOR that
893 * XXX way.
894 */
895 if ((n = sb->sb_lastrecord) != NULL) {
896 do {
897 if (n->m_flags & M_EOR) {
898 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
899 return;
900 }
901 } while (n->m_next && (n = n->m_next));
902 } else {
903 /*
904 * If this is the first record in the socket buffer,
905 * it's also the last record.
906 */
907 sb->sb_lastrecord = m;
908 }
909 }
910 sbcompress(sb, m, n);
911 SBLASTRECORDCHK(sb);
912 }
913
914 /*
915 * Append mbuf chain m to the last record in the socket buffer sb. The
916 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
917 * are discarded and mbufs are compacted where possible.
918 */
919 void
sbappend(struct sockbuf * sb,struct mbuf * m,int flags)920 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
921 {
922
923 SOCKBUF_LOCK(sb);
924 sbappend_locked(sb, m, flags);
925 SOCKBUF_UNLOCK(sb);
926 }
927
928 #ifdef KERN_TLS
929 /*
930 * Append an mbuf containing encrypted TLS data. The data
931 * is marked M_NOTREADY until it has been decrypted and
932 * stored as a TLS record.
933 */
934 static void
sbappend_ktls_rx(struct sockbuf * sb,struct mbuf * m)935 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
936 {
937 struct mbuf *n;
938
939 SBLASTMBUFCHK(sb);
940
941 /* Remove all packet headers and mbuf tags to get a pure data chain. */
942 m_demote(m, 1, 0);
943
944 for (n = m; n != NULL; n = n->m_next)
945 n->m_flags |= M_NOTREADY;
946 sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
947 ktls_check_rx(sb);
948 }
949 #endif
950
951 /*
952 * This version of sbappend() should only be used when the caller absolutely
953 * knows that there will never be more than one record in the socket buffer,
954 * that is, a stream protocol (such as TCP).
955 */
956 void
sbappendstream_locked(struct sockbuf * sb,struct mbuf * m,int flags)957 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
958 {
959 SOCKBUF_LOCK_ASSERT(sb);
960
961 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
962
963 #ifdef KERN_TLS
964 /*
965 * Decrypted TLS records are appended as records via
966 * sbappendrecord(). TCP passes encrypted TLS records to this
967 * function which must be scheduled for decryption.
968 */
969 if (sb->sb_flags & SB_TLS_RX) {
970 sbappend_ktls_rx(sb, m);
971 return;
972 }
973 #endif
974
975 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
976
977 SBLASTMBUFCHK(sb);
978
979 #ifdef KERN_TLS
980 if (sb->sb_tls_info != NULL)
981 ktls_seq(sb, m);
982 #endif
983
984 /* Remove all packet headers and mbuf tags to get a pure data chain. */
985 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
986
987 sbcompress(sb, m, sb->sb_mbtail);
988
989 sb->sb_lastrecord = sb->sb_mb;
990 SBLASTRECORDCHK(sb);
991 }
992
993 /*
994 * This version of sbappend() should only be used when the caller absolutely
995 * knows that there will never be more than one record in the socket buffer,
996 * that is, a stream protocol (such as TCP).
997 */
998 void
sbappendstream(struct sockbuf * sb,struct mbuf * m,int flags)999 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1000 {
1001
1002 SOCKBUF_LOCK(sb);
1003 sbappendstream_locked(sb, m, flags);
1004 SOCKBUF_UNLOCK(sb);
1005 }
1006
1007 #ifdef SOCKBUF_DEBUG
1008 void
sbcheck(struct sockbuf * sb,const char * file,int line)1009 sbcheck(struct sockbuf *sb, const char *file, int line)
1010 {
1011 struct mbuf *m, *n, *fnrdy;
1012 u_long acc, ccc, mbcnt;
1013 #ifdef KERN_TLS
1014 u_long tlscc;
1015 #endif
1016
1017 SOCKBUF_LOCK_ASSERT(sb);
1018
1019 acc = ccc = mbcnt = 0;
1020 fnrdy = NULL;
1021
1022 for (m = sb->sb_mb; m; m = n) {
1023 n = m->m_nextpkt;
1024 for (; m; m = m->m_next) {
1025 if (m->m_len == 0) {
1026 printf("sb %p empty mbuf %p\n", sb, m);
1027 goto fail;
1028 }
1029 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1030 if (m != sb->sb_fnrdy) {
1031 printf("sb %p: fnrdy %p != m %p\n",
1032 sb, sb->sb_fnrdy, m);
1033 goto fail;
1034 }
1035 fnrdy = m;
1036 }
1037 if (fnrdy) {
1038 if (!(m->m_flags & M_NOTAVAIL)) {
1039 printf("sb %p: fnrdy %p, m %p is avail\n",
1040 sb, sb->sb_fnrdy, m);
1041 goto fail;
1042 }
1043 } else
1044 acc += m->m_len;
1045 ccc += m->m_len;
1046 mbcnt += MSIZE;
1047 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1048 mbcnt += m->m_ext.ext_size;
1049 }
1050 }
1051 #ifdef KERN_TLS
1052 /*
1053 * Account for mbufs "detached" by ktls_detach_record() while
1054 * they are decrypted by ktls_decrypt(). tlsdcc gives a count
1055 * of the detached bytes that are included in ccc. The mbufs
1056 * and clusters are not included in the socket buffer
1057 * accounting.
1058 */
1059 ccc += sb->sb_tlsdcc;
1060
1061 tlscc = 0;
1062 for (m = sb->sb_mtls; m; m = m->m_next) {
1063 if (m->m_nextpkt != NULL) {
1064 printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1065 goto fail;
1066 }
1067 if ((m->m_flags & M_NOTREADY) == 0) {
1068 printf("sb %p TLS mbuf %p ready\n", sb, m);
1069 goto fail;
1070 }
1071 tlscc += m->m_len;
1072 ccc += m->m_len;
1073 mbcnt += MSIZE;
1074 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1075 mbcnt += m->m_ext.ext_size;
1076 }
1077
1078 if (sb->sb_tlscc != tlscc) {
1079 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1080 sb->sb_tlsdcc);
1081 goto fail;
1082 }
1083 #endif
1084 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1085 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1086 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1087 #ifdef KERN_TLS
1088 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1089 sb->sb_tlsdcc);
1090 #endif
1091 goto fail;
1092 }
1093 return;
1094 fail:
1095 panic("%s from %s:%u", __func__, file, line);
1096 }
1097 #endif
1098
1099 /*
1100 * As above, except the mbuf chain begins a new record.
1101 */
1102 void
sbappendrecord_locked(struct sockbuf * sb,struct mbuf * m0)1103 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1104 {
1105 struct mbuf *m;
1106
1107 SOCKBUF_LOCK_ASSERT(sb);
1108
1109 if (m0 == NULL)
1110 return;
1111 m_clrprotoflags(m0);
1112 /*
1113 * Put the first mbuf on the queue. Note this permits zero length
1114 * records.
1115 */
1116 sballoc(sb, m0);
1117 SBLASTRECORDCHK(sb);
1118 SBLINKRECORD(sb, m0);
1119 sb->sb_mbtail = m0;
1120 m = m0->m_next;
1121 m0->m_next = 0;
1122 if (m && (m0->m_flags & M_EOR)) {
1123 m0->m_flags &= ~M_EOR;
1124 m->m_flags |= M_EOR;
1125 }
1126 /* always call sbcompress() so it can do SBLASTMBUFCHK() */
1127 sbcompress(sb, m, m0);
1128 }
1129
1130 /*
1131 * As above, except the mbuf chain begins a new record.
1132 */
1133 void
sbappendrecord(struct sockbuf * sb,struct mbuf * m0)1134 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1135 {
1136
1137 SOCKBUF_LOCK(sb);
1138 sbappendrecord_locked(sb, m0);
1139 SOCKBUF_UNLOCK(sb);
1140 }
1141
1142 /* Helper routine that appends data, control, and address to a sockbuf. */
1143 static int
sbappendaddr_locked_internal(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control,struct mbuf * ctrl_last)1144 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1145 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1146 {
1147 struct mbuf *m, *n, *nlast;
1148 #if MSIZE <= 256
1149 if (asa->sa_len > MLEN)
1150 return (0);
1151 #endif
1152 m = m_get(M_NOWAIT, MT_SONAME);
1153 if (m == NULL)
1154 return (0);
1155 m->m_len = asa->sa_len;
1156 bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1157 if (m0) {
1158 m_clrprotoflags(m0);
1159 m_tag_delete_chain(m0, NULL);
1160 /*
1161 * Clear some persistent info from pkthdr.
1162 * We don't use m_demote(), because some netgraph consumers
1163 * expect M_PKTHDR presence.
1164 */
1165 m0->m_pkthdr.rcvif = NULL;
1166 m0->m_pkthdr.flowid = 0;
1167 m0->m_pkthdr.csum_flags = 0;
1168 m0->m_pkthdr.fibnum = 0;
1169 m0->m_pkthdr.rsstype = 0;
1170 }
1171 if (ctrl_last)
1172 ctrl_last->m_next = m0; /* concatenate data to control */
1173 else
1174 control = m0;
1175 m->m_next = control;
1176 for (n = m; n->m_next != NULL; n = n->m_next)
1177 sballoc(sb, n);
1178 sballoc(sb, n);
1179 nlast = n;
1180 SBLINKRECORD(sb, m);
1181
1182 sb->sb_mbtail = nlast;
1183 SBLASTMBUFCHK(sb);
1184
1185 SBLASTRECORDCHK(sb);
1186 return (1);
1187 }
1188
1189 /*
1190 * Append address and data, and optionally, control (ancillary) data to the
1191 * receive queue of a socket. If present, m0 must include a packet header
1192 * with total length. Returns 0 if no space in sockbuf or insufficient
1193 * mbufs.
1194 */
1195 int
sbappendaddr_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1196 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1197 struct mbuf *m0, struct mbuf *control)
1198 {
1199 struct mbuf *ctrl_last;
1200 int space = asa->sa_len;
1201
1202 SOCKBUF_LOCK_ASSERT(sb);
1203
1204 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1205 panic("sbappendaddr_locked");
1206 if (m0)
1207 space += m0->m_pkthdr.len;
1208 space += m_length(control, &ctrl_last);
1209
1210 if (space > sbspace(sb))
1211 return (0);
1212 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1213 }
1214
1215 /*
1216 * Append address and data, and optionally, control (ancillary) data to the
1217 * receive queue of a socket. If present, m0 must include a packet header
1218 * with total length. Returns 0 if insufficient mbufs. Does not validate space
1219 * on the receiving sockbuf.
1220 */
1221 int
sbappendaddr_nospacecheck_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1222 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1223 struct mbuf *m0, struct mbuf *control)
1224 {
1225 struct mbuf *ctrl_last;
1226
1227 SOCKBUF_LOCK_ASSERT(sb);
1228
1229 ctrl_last = (control == NULL) ? NULL : m_last(control);
1230 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1231 }
1232
1233 /*
1234 * Append address and data, and optionally, control (ancillary) data to the
1235 * receive queue of a socket. If present, m0 must include a packet header
1236 * with total length. Returns 0 if no space in sockbuf or insufficient
1237 * mbufs.
1238 */
1239 int
sbappendaddr(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1240 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1241 struct mbuf *m0, struct mbuf *control)
1242 {
1243 int retval;
1244
1245 SOCKBUF_LOCK(sb);
1246 retval = sbappendaddr_locked(sb, asa, m0, control);
1247 SOCKBUF_UNLOCK(sb);
1248 return (retval);
1249 }
1250
1251 void
sbappendcontrol_locked(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1252 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1253 struct mbuf *control, int flags)
1254 {
1255 struct mbuf *m, *mlast;
1256
1257 sbm_clrprotoflags(m0, flags);
1258 m_last(control)->m_next = m0;
1259
1260 SBLASTRECORDCHK(sb);
1261
1262 for (m = control; m->m_next; m = m->m_next)
1263 sballoc(sb, m);
1264 sballoc(sb, m);
1265 mlast = m;
1266 SBLINKRECORD(sb, control);
1267
1268 sb->sb_mbtail = mlast;
1269 SBLASTMBUFCHK(sb);
1270
1271 SBLASTRECORDCHK(sb);
1272 }
1273
1274 void
sbappendcontrol(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1275 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1276 int flags)
1277 {
1278
1279 SOCKBUF_LOCK(sb);
1280 sbappendcontrol_locked(sb, m0, control, flags);
1281 SOCKBUF_UNLOCK(sb);
1282 }
1283
1284 /*
1285 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1286 * (n). If (n) is NULL, the buffer is presumed empty.
1287 *
1288 * When the data is compressed, mbufs in the chain may be handled in one of
1289 * three ways:
1290 *
1291 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1292 * record boundary, and no change in data type).
1293 *
1294 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1295 * an mbuf already in the socket buffer. This can occur if an
1296 * appropriate mbuf exists, there is room, both mbufs are not marked as
1297 * not ready, and no merging of data types will occur.
1298 *
1299 * (3) The mbuf may be appended to the end of the existing mbuf chain.
1300 *
1301 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1302 * end-of-record.
1303 */
1304 void
sbcompress(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1305 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1306 {
1307 int eor = 0;
1308 struct mbuf *o;
1309
1310 SOCKBUF_LOCK_ASSERT(sb);
1311
1312 while (m) {
1313 eor |= m->m_flags & M_EOR;
1314 if (m->m_len == 0 &&
1315 (eor == 0 ||
1316 (((o = m->m_next) || (o = n)) &&
1317 o->m_type == m->m_type))) {
1318 if (sb->sb_lastrecord == m)
1319 sb->sb_lastrecord = m->m_next;
1320 m = m_free(m);
1321 continue;
1322 }
1323 if (n && (n->m_flags & M_EOR) == 0 &&
1324 M_WRITABLE(n) &&
1325 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1326 !(m->m_flags & M_NOTREADY) &&
1327 !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1328 !mbuf_has_tls_session(m) &&
1329 !mbuf_has_tls_session(n) &&
1330 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1331 m->m_len <= M_TRAILINGSPACE(n) &&
1332 n->m_type == m->m_type) {
1333 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1334 n->m_len += m->m_len;
1335 sb->sb_ccc += m->m_len;
1336 if (sb->sb_fnrdy == NULL)
1337 sb->sb_acc += m->m_len;
1338 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1339 /* XXX: Probably don't need.*/
1340 sb->sb_ctl += m->m_len;
1341 m = m_free(m);
1342 continue;
1343 }
1344 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1345 (m->m_flags & M_NOTREADY) == 0 &&
1346 !mbuf_has_tls_session(m))
1347 (void)mb_unmapped_compress(m);
1348 if (n)
1349 n->m_next = m;
1350 else
1351 sb->sb_mb = m;
1352 sb->sb_mbtail = m;
1353 sballoc(sb, m);
1354 n = m;
1355 m->m_flags &= ~M_EOR;
1356 m = m->m_next;
1357 n->m_next = 0;
1358 }
1359 if (eor) {
1360 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1361 n->m_flags |= eor;
1362 }
1363 SBLASTMBUFCHK(sb);
1364 }
1365
1366 #ifdef KERN_TLS
1367 /*
1368 * A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
1369 * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1370 * a bit simpler (no EOR markers, always MT_DATA, etc.).
1371 */
1372 static void
sbcompress_ktls_rx(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1373 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1374 {
1375
1376 SOCKBUF_LOCK_ASSERT(sb);
1377
1378 while (m) {
1379 KASSERT((m->m_flags & M_EOR) == 0,
1380 ("TLS RX mbuf %p with EOR", m));
1381 KASSERT(m->m_type == MT_DATA,
1382 ("TLS RX mbuf %p is not MT_DATA", m));
1383 KASSERT((m->m_flags & M_NOTREADY) != 0,
1384 ("TLS RX mbuf %p ready", m));
1385 KASSERT((m->m_flags & M_EXTPG) == 0,
1386 ("TLS RX mbuf %p unmapped", m));
1387
1388 if (m->m_len == 0) {
1389 m = m_free(m);
1390 continue;
1391 }
1392
1393 /*
1394 * Even though both 'n' and 'm' are NOTREADY, it's ok
1395 * to coalesce the data.
1396 */
1397 if (n &&
1398 M_WRITABLE(n) &&
1399 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1400 !(n->m_flags & (M_EXTPG)) &&
1401 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1402 m->m_len <= M_TRAILINGSPACE(n)) {
1403 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1404 n->m_len += m->m_len;
1405 sb->sb_ccc += m->m_len;
1406 sb->sb_tlscc += m->m_len;
1407 m = m_free(m);
1408 continue;
1409 }
1410 if (n)
1411 n->m_next = m;
1412 else
1413 sb->sb_mtls = m;
1414 sb->sb_mtlstail = m;
1415 sballoc_ktls_rx(sb, m);
1416 n = m;
1417 m = m->m_next;
1418 n->m_next = NULL;
1419 }
1420 SBLASTMBUFCHK(sb);
1421 }
1422 #endif
1423
1424 /*
1425 * Free all mbufs in a sockbuf. Check that all resources are reclaimed.
1426 */
1427 static void
sbflush_internal(struct sockbuf * sb)1428 sbflush_internal(struct sockbuf *sb)
1429 {
1430
1431 while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1432 /*
1433 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1434 * we would loop forever. Panic instead.
1435 */
1436 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1437 break;
1438 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1439 }
1440 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1441 ("%s: ccc %u mb %p mbcnt %u", __func__,
1442 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1443 }
1444
1445 void
sbflush_locked(struct sockbuf * sb)1446 sbflush_locked(struct sockbuf *sb)
1447 {
1448
1449 SOCKBUF_LOCK_ASSERT(sb);
1450 sbflush_internal(sb);
1451 }
1452
1453 void
sbflush(struct sockbuf * sb)1454 sbflush(struct sockbuf *sb)
1455 {
1456
1457 SOCKBUF_LOCK(sb);
1458 sbflush_locked(sb);
1459 SOCKBUF_UNLOCK(sb);
1460 }
1461
1462 /*
1463 * Cut data from (the front of) a sockbuf.
1464 */
1465 static struct mbuf *
sbcut_internal(struct sockbuf * sb,int len)1466 sbcut_internal(struct sockbuf *sb, int len)
1467 {
1468 struct mbuf *m, *next, *mfree;
1469 bool is_tls;
1470
1471 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1472 __func__, len));
1473 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1474 __func__, len, sb->sb_ccc));
1475
1476 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1477 is_tls = false;
1478 mfree = NULL;
1479
1480 while (len > 0) {
1481 if (m == NULL) {
1482 #ifdef KERN_TLS
1483 if (next == NULL && !is_tls) {
1484 if (sb->sb_tlsdcc != 0) {
1485 MPASS(len >= sb->sb_tlsdcc);
1486 len -= sb->sb_tlsdcc;
1487 sb->sb_ccc -= sb->sb_tlsdcc;
1488 sb->sb_tlsdcc = 0;
1489 if (len == 0)
1490 break;
1491 }
1492 next = sb->sb_mtls;
1493 is_tls = true;
1494 }
1495 #endif
1496 KASSERT(next, ("%s: no next, len %d", __func__, len));
1497 m = next;
1498 next = m->m_nextpkt;
1499 }
1500 if (m->m_len > len) {
1501 KASSERT(!(m->m_flags & M_NOTAVAIL),
1502 ("%s: m %p M_NOTAVAIL", __func__, m));
1503 m->m_len -= len;
1504 m->m_data += len;
1505 sb->sb_ccc -= len;
1506 sb->sb_acc -= len;
1507 if (sb->sb_sndptroff != 0)
1508 sb->sb_sndptroff -= len;
1509 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1510 sb->sb_ctl -= len;
1511 break;
1512 }
1513 len -= m->m_len;
1514 #ifdef KERN_TLS
1515 if (is_tls)
1516 sbfree_ktls_rx(sb, m);
1517 else
1518 #endif
1519 sbfree(sb, m);
1520 /*
1521 * Do not put M_NOTREADY buffers to the free list, they
1522 * are referenced from outside.
1523 */
1524 if (m->m_flags & M_NOTREADY && !is_tls)
1525 m = m->m_next;
1526 else {
1527 struct mbuf *n;
1528
1529 n = m->m_next;
1530 m->m_next = mfree;
1531 mfree = m;
1532 m = n;
1533 }
1534 }
1535 /*
1536 * Free any zero-length mbufs from the buffer.
1537 * For SOCK_DGRAM sockets such mbufs represent empty records.
1538 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1539 * when sosend_generic() needs to send only control data.
1540 */
1541 while (m && m->m_len == 0) {
1542 struct mbuf *n;
1543
1544 sbfree(sb, m);
1545 n = m->m_next;
1546 m->m_next = mfree;
1547 mfree = m;
1548 m = n;
1549 }
1550 #ifdef KERN_TLS
1551 if (is_tls) {
1552 sb->sb_mb = NULL;
1553 sb->sb_mtls = m;
1554 if (m == NULL)
1555 sb->sb_mtlstail = NULL;
1556 } else
1557 #endif
1558 if (m) {
1559 sb->sb_mb = m;
1560 m->m_nextpkt = next;
1561 } else
1562 sb->sb_mb = next;
1563 /*
1564 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
1565 * sb_lastrecord is up-to-date if we dropped part of the last record.
1566 */
1567 m = sb->sb_mb;
1568 if (m == NULL) {
1569 sb->sb_mbtail = NULL;
1570 sb->sb_lastrecord = NULL;
1571 } else if (m->m_nextpkt == NULL) {
1572 sb->sb_lastrecord = m;
1573 }
1574
1575 return (mfree);
1576 }
1577
1578 /*
1579 * Drop data from (the front of) a sockbuf.
1580 */
1581 void
sbdrop_locked(struct sockbuf * sb,int len)1582 sbdrop_locked(struct sockbuf *sb, int len)
1583 {
1584
1585 SOCKBUF_LOCK_ASSERT(sb);
1586 m_freem(sbcut_internal(sb, len));
1587 }
1588
1589 /*
1590 * Drop data from (the front of) a sockbuf,
1591 * and return it to caller.
1592 */
1593 struct mbuf *
sbcut_locked(struct sockbuf * sb,int len)1594 sbcut_locked(struct sockbuf *sb, int len)
1595 {
1596
1597 SOCKBUF_LOCK_ASSERT(sb);
1598 return (sbcut_internal(sb, len));
1599 }
1600
1601 void
sbdrop(struct sockbuf * sb,int len)1602 sbdrop(struct sockbuf *sb, int len)
1603 {
1604 struct mbuf *mfree;
1605
1606 SOCKBUF_LOCK(sb);
1607 mfree = sbcut_internal(sb, len);
1608 SOCKBUF_UNLOCK(sb);
1609
1610 m_freem(mfree);
1611 }
1612
1613 struct mbuf *
sbsndptr_noadv(struct sockbuf * sb,uint32_t off,uint32_t * moff)1614 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1615 {
1616 struct mbuf *m;
1617
1618 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1619 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1620 *moff = off;
1621 if (sb->sb_sndptr == NULL) {
1622 sb->sb_sndptr = sb->sb_mb;
1623 sb->sb_sndptroff = 0;
1624 }
1625 return (sb->sb_mb);
1626 } else {
1627 m = sb->sb_sndptr;
1628 off -= sb->sb_sndptroff;
1629 }
1630 *moff = off;
1631 return (m);
1632 }
1633
1634 void
sbsndptr_adv(struct sockbuf * sb,struct mbuf * mb,uint32_t len)1635 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1636 {
1637 /*
1638 * A small copy was done, advance forward the sb_sbsndptr to cover
1639 * it.
1640 */
1641 struct mbuf *m;
1642
1643 if (mb != sb->sb_sndptr) {
1644 /* Did not copyout at the same mbuf */
1645 return;
1646 }
1647 m = mb;
1648 while (m && (len > 0)) {
1649 if (len >= m->m_len) {
1650 len -= m->m_len;
1651 if (m->m_next) {
1652 sb->sb_sndptroff += m->m_len;
1653 sb->sb_sndptr = m->m_next;
1654 }
1655 m = m->m_next;
1656 } else {
1657 len = 0;
1658 }
1659 }
1660 }
1661
1662 /*
1663 * Return the first mbuf and the mbuf data offset for the provided
1664 * send offset without changing the "sb_sndptroff" field.
1665 */
1666 struct mbuf *
sbsndmbuf(struct sockbuf * sb,u_int off,u_int * moff)1667 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1668 {
1669 struct mbuf *m;
1670
1671 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1672
1673 /*
1674 * If the "off" is below the stored offset, which happens on
1675 * retransmits, just use "sb_mb":
1676 */
1677 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1678 m = sb->sb_mb;
1679 } else {
1680 m = sb->sb_sndptr;
1681 off -= sb->sb_sndptroff;
1682 }
1683 while (off > 0 && m != NULL) {
1684 if (off < m->m_len)
1685 break;
1686 off -= m->m_len;
1687 m = m->m_next;
1688 }
1689 *moff = off;
1690 return (m);
1691 }
1692
1693 /*
1694 * Drop a record off the front of a sockbuf and move the next record to the
1695 * front.
1696 */
1697 void
sbdroprecord_locked(struct sockbuf * sb)1698 sbdroprecord_locked(struct sockbuf *sb)
1699 {
1700 struct mbuf *m;
1701
1702 SOCKBUF_LOCK_ASSERT(sb);
1703
1704 m = sb->sb_mb;
1705 if (m) {
1706 sb->sb_mb = m->m_nextpkt;
1707 do {
1708 sbfree(sb, m);
1709 m = m_free(m);
1710 } while (m);
1711 }
1712 SB_EMPTY_FIXUP(sb);
1713 }
1714
1715 /*
1716 * Drop a record off the front of a sockbuf and move the next record to the
1717 * front.
1718 */
1719 void
sbdroprecord(struct sockbuf * sb)1720 sbdroprecord(struct sockbuf *sb)
1721 {
1722
1723 SOCKBUF_LOCK(sb);
1724 sbdroprecord_locked(sb);
1725 SOCKBUF_UNLOCK(sb);
1726 }
1727
1728 /*
1729 * Create a "control" mbuf containing the specified data with the specified
1730 * type for presentation on a socket buffer.
1731 */
1732 struct mbuf *
sbcreatecontrol_how(void * p,int size,int type,int level,int wait)1733 sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
1734 {
1735 struct cmsghdr *cp;
1736 struct mbuf *m;
1737
1738 MBUF_CHECKSLEEP(wait);
1739 if (CMSG_SPACE((u_int)size) > MCLBYTES)
1740 return ((struct mbuf *) NULL);
1741 if (CMSG_SPACE((u_int)size) > MLEN)
1742 m = m_getcl(wait, MT_CONTROL, 0);
1743 else
1744 m = m_get(wait, MT_CONTROL);
1745 if (m == NULL)
1746 return ((struct mbuf *) NULL);
1747 cp = mtod(m, struct cmsghdr *);
1748 m->m_len = 0;
1749 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1750 ("sbcreatecontrol: short mbuf"));
1751 /*
1752 * Don't leave the padding between the msg header and the
1753 * cmsg data and the padding after the cmsg data un-initialized.
1754 */
1755 bzero(cp, CMSG_SPACE((u_int)size));
1756 if (p != NULL)
1757 (void)memcpy(CMSG_DATA(cp), p, size);
1758 m->m_len = CMSG_SPACE(size);
1759 cp->cmsg_len = CMSG_LEN(size);
1760 cp->cmsg_level = level;
1761 cp->cmsg_type = type;
1762 return (m);
1763 }
1764
1765 struct mbuf *
sbcreatecontrol(caddr_t p,int size,int type,int level)1766 sbcreatecontrol(caddr_t p, int size, int type, int level)
1767 {
1768
1769 return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
1770 }
1771
1772 /*
1773 * This does the same for socket buffers that sotoxsocket does for sockets:
1774 * generate an user-format data structure describing the socket buffer. Note
1775 * that the xsockbuf structure, since it is always embedded in a socket, does
1776 * not include a self pointer nor a length. We make this entry point public
1777 * in case some other mechanism needs it.
1778 */
1779 void
sbtoxsockbuf(struct sockbuf * sb,struct xsockbuf * xsb)1780 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1781 {
1782
1783 xsb->sb_cc = sb->sb_ccc;
1784 xsb->sb_hiwat = sb->sb_hiwat;
1785 xsb->sb_mbcnt = sb->sb_mbcnt;
1786 xsb->sb_mcnt = sb->sb_mcnt;
1787 xsb->sb_ccnt = sb->sb_ccnt;
1788 xsb->sb_mbmax = sb->sb_mbmax;
1789 xsb->sb_lowat = sb->sb_lowat;
1790 xsb->sb_flags = sb->sb_flags;
1791 xsb->sb_timeo = sb->sb_timeo;
1792 }
1793
1794 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1795 static int dummy;
1796 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1797 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1798 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sb_max, 0,
1799 sysctl_handle_sb_max, "LU",
1800 "Maximum socket buffer size");
1801 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1802 &sb_efficiency, 0, "Socket buffer size waste factor");
1803