1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
4 */
5
6 #ifndef _RTE_MEMPOOL_H_
7 #define _RTE_MEMPOOL_H_
8
9 /**
10 * @file
11 * RTE Mempool.
12 *
13 * A memory pool is an allocator of fixed-size object. It is
14 * identified by its name, and uses a ring to store free objects. It
15 * provides some other optional services, like a per-core object
16 * cache, and an alignment helper to ensure that objects are padded
17 * to spread them equally on all RAM channels, ranks, and so on.
18 *
19 * Objects owned by a mempool should never be added in another
20 * mempool. When an object is freed using rte_mempool_put() or
21 * equivalent, the object data is not modified; the user can save some
22 * meta-data in the object data and retrieve them when allocating a
23 * new object.
24 *
25 * Note: the mempool implementation is not preemptible. An lcore must not be
26 * interrupted by another task that uses the same mempool (because it uses a
27 * ring which is not preemptible). Also, usual mempool functions like
28 * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
29 * thread due to the internal per-lcore cache. Due to the lack of caching,
30 * rte_mempool_get() or rte_mempool_put() performance will suffer when called
31 * by unregistered non-EAL threads. Instead, unregistered non-EAL threads
32 * should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
33 * user cache created with rte_mempool_cache_create().
34 */
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <stdint.h>
39 #include <errno.h>
40 #include <inttypes.h>
41 #include <sys/queue.h>
42
43 #include <rte_config.h>
44 #include <rte_spinlock.h>
45 #include <rte_log.h>
46 #include <rte_debug.h>
47 #include <rte_lcore.h>
48 #include <rte_memory.h>
49 #include <rte_branch_prediction.h>
50 #include <rte_ring.h>
51 #include <rte_memcpy.h>
52 #include <rte_common.h>
53
54 #include "rte_mempool_trace_fp.h"
55
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59
60 #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
61 #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
62 #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
63
64 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
65 /**
66 * A structure that stores the mempool statistics (per-lcore).
67 */
68 struct rte_mempool_debug_stats {
69 uint64_t put_bulk; /**< Number of puts. */
70 uint64_t put_objs; /**< Number of objects successfully put. */
71 uint64_t get_success_bulk; /**< Successful allocation number. */
72 uint64_t get_success_objs; /**< Objects successfully allocated. */
73 uint64_t get_fail_bulk; /**< Failed allocation number. */
74 uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
75 /** Successful allocation number of contiguous blocks. */
76 uint64_t get_success_blks;
77 /** Failed allocation number of contiguous blocks. */
78 uint64_t get_fail_blks;
79 } __rte_cache_aligned;
80 #endif
81
82 /**
83 * A structure that stores a per-core object cache.
84 */
85 struct rte_mempool_cache {
86 uint32_t size; /**< Size of the cache */
87 uint32_t flushthresh; /**< Threshold before we flush excess elements */
88 uint32_t len; /**< Current cache count */
89 /*
90 * Cache is allocated to this size to allow it to overflow in certain
91 * cases to avoid needless emptying of cache.
92 */
93 void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
94 } __rte_cache_aligned;
95
96 /**
97 * A structure that stores the size of mempool elements.
98 */
99 struct rte_mempool_objsz {
100 uint32_t elt_size; /**< Size of an element. */
101 uint32_t header_size; /**< Size of header (before elt). */
102 uint32_t trailer_size; /**< Size of trailer (after elt). */
103 uint32_t total_size;
104 /**< Total size of an object (header + elt + trailer). */
105 };
106
107 /**< Maximum length of a memory pool's name. */
108 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
109 sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
110 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
111
112 /* "MP_<name>" */
113 #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
114
115 #define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1)
116
117 /** Mempool over one chunk of physically continuous memory */
118 #define MEMPOOL_PG_NUM_DEFAULT 1
119
120 #ifndef RTE_MEMPOOL_ALIGN
121 /**
122 * Alignment of elements inside mempool.
123 */
124 #define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
125 #endif
126
127 #define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
128
129 /**
130 * Mempool object header structure
131 *
132 * Each object stored in mempools are prefixed by this header structure,
133 * it allows to retrieve the mempool pointer from the object and to
134 * iterate on all objects attached to a mempool. When debug is enabled,
135 * a cookie is also added in this structure preventing corruptions and
136 * double-frees.
137 */
138 struct rte_mempool_objhdr {
139 STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
140 struct rte_mempool *mp; /**< The mempool owning the object. */
141 rte_iova_t iova; /**< IO address of the object. */
142 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
143 uint64_t cookie; /**< Debug cookie. */
144 #endif
145 };
146
147 /**
148 * A list of object headers type
149 */
150 STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
151
152 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
153
154 /**
155 * Mempool object trailer structure
156 *
157 * In debug mode, each object stored in mempools are suffixed by this
158 * trailer structure containing a cookie preventing memory corruptions.
159 */
160 struct rte_mempool_objtlr {
161 uint64_t cookie; /**< Debug cookie. */
162 };
163
164 #endif
165
166 /**
167 * A list of memory where objects are stored
168 */
169 STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
170
171 /**
172 * Callback used to free a memory chunk
173 */
174 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
175 void *opaque);
176
177 /**
178 * Mempool objects memory header structure
179 *
180 * The memory chunks where objects are stored. Each chunk is virtually
181 * and physically contiguous.
182 */
183 struct rte_mempool_memhdr {
184 STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
185 struct rte_mempool *mp; /**< The mempool owning the chunk */
186 void *addr; /**< Virtual address of the chunk */
187 rte_iova_t iova; /**< IO address of the chunk */
188 size_t len; /**< length of the chunk */
189 rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
190 void *opaque; /**< Argument passed to the free callback */
191 };
192
193 /**
194 * Additional information about the mempool
195 *
196 * The structure is cache-line aligned to avoid ABI breakages in
197 * a number of cases when something small is added.
198 */
199 struct rte_mempool_info {
200 /** Number of objects in the contiguous block */
201 unsigned int contig_block_size;
202 } __rte_cache_aligned;
203
204 /**
205 * The RTE mempool structure.
206 */
207 struct rte_mempool {
208 /*
209 * Note: this field kept the RTE_MEMZONE_NAMESIZE size due to ABI
210 * compatibility requirements, it could be changed to
211 * RTE_MEMPOOL_NAMESIZE next time the ABI changes
212 */
213 char name[RTE_MEMZONE_NAMESIZE]; /**< Name of mempool. */
214 RTE_STD_C11
215 union {
216 void *pool_data; /**< Ring or pool to store objects. */
217 uint64_t pool_id; /**< External mempool identifier. */
218 };
219 void *pool_config; /**< optional args for ops alloc. */
220 const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */
221 unsigned int flags; /**< Flags of the mempool. */
222 int socket_id; /**< Socket id passed at create. */
223 uint32_t size; /**< Max size of the mempool. */
224 uint32_t cache_size;
225 /**< Size of per-lcore default local cache. */
226
227 uint32_t elt_size; /**< Size of an element. */
228 uint32_t header_size; /**< Size of header (before elt). */
229 uint32_t trailer_size; /**< Size of trailer (after elt). */
230
231 unsigned private_data_size; /**< Size of private data. */
232 /**
233 * Index into rte_mempool_ops_table array of mempool ops
234 * structs, which contain callback function pointers.
235 * We're using an index here rather than pointers to the callbacks
236 * to facilitate any secondary processes that may want to use
237 * this mempool.
238 */
239 int32_t ops_index;
240
241 struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
242
243 uint32_t populated_size; /**< Number of populated objects. */
244 struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
245 uint32_t nb_mem_chunks; /**< Number of memory chunks */
246 struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
247
248 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
249 /** Per-lcore statistics. */
250 struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
251 #endif
252 } __rte_cache_aligned;
253
254 #define MEMPOOL_F_NO_SPREAD 0x0001
255 /**< Spreading among memory channels not required. */
256 #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/
257 #define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/
258 #define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/
259 #define MEMPOOL_F_POOL_CREATED 0x0010 /**< Internal: pool is created. */
260 #define MEMPOOL_F_NO_IOVA_CONTIG 0x0020 /**< Don't need IOVA contiguous objs. */
261
262 /**
263 * @internal When debug is enabled, store some statistics.
264 *
265 * @param mp
266 * Pointer to the memory pool.
267 * @param name
268 * Name of the statistics field to increment in the memory pool.
269 * @param n
270 * Number to add to the object-oriented statistics.
271 */
272 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
273 #define __MEMPOOL_STAT_ADD(mp, name, n) do { \
274 unsigned __lcore_id = rte_lcore_id(); \
275 if (__lcore_id < RTE_MAX_LCORE) { \
276 mp->stats[__lcore_id].name##_objs += n; \
277 mp->stats[__lcore_id].name##_bulk += 1; \
278 } \
279 } while(0)
280 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do { \
281 unsigned int __lcore_id = rte_lcore_id(); \
282 if (__lcore_id < RTE_MAX_LCORE) { \
283 mp->stats[__lcore_id].name##_blks += n; \
284 mp->stats[__lcore_id].name##_bulk += 1; \
285 } \
286 } while (0)
287 #else
288 #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0)
289 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do {} while (0)
290 #endif
291
292 /**
293 * Calculate the size of the mempool header.
294 *
295 * @param mp
296 * Pointer to the memory pool.
297 * @param cs
298 * Size of the per-lcore cache.
299 */
300 #define MEMPOOL_HEADER_SIZE(mp, cs) \
301 (sizeof(*(mp)) + (((cs) == 0) ? 0 : \
302 (sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
303
304 /* return the header of a mempool object (internal) */
__mempool_get_header(void * obj)305 static inline struct rte_mempool_objhdr *__mempool_get_header(void *obj)
306 {
307 return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
308 sizeof(struct rte_mempool_objhdr));
309 }
310
311 /**
312 * Return a pointer to the mempool owning this object.
313 *
314 * @param obj
315 * An object that is owned by a pool. If this is not the case,
316 * the behavior is undefined.
317 * @return
318 * A pointer to the mempool structure.
319 */
rte_mempool_from_obj(void * obj)320 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
321 {
322 struct rte_mempool_objhdr *hdr = __mempool_get_header(obj);
323 return hdr->mp;
324 }
325
326 /* return the trailer of a mempool object (internal) */
__mempool_get_trailer(void * obj)327 static inline struct rte_mempool_objtlr *__mempool_get_trailer(void *obj)
328 {
329 struct rte_mempool *mp = rte_mempool_from_obj(obj);
330 return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
331 }
332
333 /**
334 * @internal Check and update cookies or panic.
335 *
336 * @param mp
337 * Pointer to the memory pool.
338 * @param obj_table_const
339 * Pointer to a table of void * pointers (objects).
340 * @param n
341 * Index of object in object table.
342 * @param free
343 * - 0: object is supposed to be allocated, mark it as free
344 * - 1: object is supposed to be free, mark it as allocated
345 * - 2: just check that cookie is valid (free or allocated)
346 */
347 void rte_mempool_check_cookies(const struct rte_mempool *mp,
348 void * const *obj_table_const, unsigned n, int free);
349
350 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
351 #define __mempool_check_cookies(mp, obj_table_const, n, free) \
352 rte_mempool_check_cookies(mp, obj_table_const, n, free)
353 #else
354 #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0)
355 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
356
357 /**
358 * @internal Check contiguous object blocks and update cookies or panic.
359 *
360 * @param mp
361 * Pointer to the memory pool.
362 * @param first_obj_table_const
363 * Pointer to a table of void * pointers (first object of the contiguous
364 * object blocks).
365 * @param n
366 * Number of contiguous object blocks.
367 * @param free
368 * - 0: object is supposed to be allocated, mark it as free
369 * - 1: object is supposed to be free, mark it as allocated
370 * - 2: just check that cookie is valid (free or allocated)
371 */
372 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
373 void * const *first_obj_table_const, unsigned int n, int free);
374
375 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
376 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
377 free) \
378 rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
379 free)
380 #else
381 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
382 free) \
383 do {} while (0)
384 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
385
386 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
387
388 /**
389 * Prototype for implementation specific data provisioning function.
390 *
391 * The function should provide the implementation specific memory for
392 * use by the other mempool ops functions in a given mempool ops struct.
393 * E.g. the default ops provides an instance of the rte_ring for this purpose.
394 * it will most likely point to a different type of data structure, and
395 * will be transparent to the application programmer.
396 * This function should set mp->pool_data.
397 */
398 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
399
400 /**
401 * Free the opaque private data pointed to by mp->pool_data pointer.
402 */
403 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
404
405 /**
406 * Enqueue an object into the external pool.
407 */
408 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
409 void * const *obj_table, unsigned int n);
410
411 /**
412 * Dequeue an object from the external pool.
413 */
414 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
415 void **obj_table, unsigned int n);
416
417 /**
418 * Dequeue a number of contiguous object blocks from the external pool.
419 */
420 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
421 void **first_obj_table, unsigned int n);
422
423 /**
424 * Return the number of available objects in the external pool.
425 */
426 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
427
428 /**
429 * Calculate memory size required to store given number of objects.
430 *
431 * If mempool objects are not required to be IOVA-contiguous
432 * (the flag MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
433 * virtually contiguous chunk size. Otherwise, if mempool objects must
434 * be IOVA-contiguous (the flag MEMPOOL_F_NO_IOVA_CONTIG is clear),
435 * min_chunk_size defines IOVA-contiguous chunk size.
436 *
437 * @param[in] mp
438 * Pointer to the memory pool.
439 * @param[in] obj_num
440 * Number of objects.
441 * @param[in] pg_shift
442 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
443 * @param[out] min_chunk_size
444 * Location for minimum size of the memory chunk which may be used to
445 * store memory pool objects.
446 * @param[out] align
447 * Location for required memory chunk alignment.
448 * @return
449 * Required memory size.
450 */
451 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
452 uint32_t obj_num, uint32_t pg_shift,
453 size_t *min_chunk_size, size_t *align);
454
455 /**
456 * @internal Helper to calculate memory size required to store given
457 * number of objects.
458 *
459 * This function is internal to mempool library and mempool drivers.
460 *
461 * If page boundaries may be ignored, it is just a product of total
462 * object size including header and trailer and number of objects.
463 * Otherwise, it is a number of pages required to store given number of
464 * objects without crossing page boundary.
465 *
466 * Note that if object size is bigger than page size, then it assumes
467 * that pages are grouped in subsets of physically continuous pages big
468 * enough to store at least one object.
469 *
470 * Minimum size of memory chunk is the total element size.
471 * Required memory chunk alignment is the cache line size.
472 *
473 * @param[in] mp
474 * A pointer to the mempool structure.
475 * @param[in] obj_num
476 * Number of objects to be added in mempool.
477 * @param[in] pg_shift
478 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
479 * @param[in] chunk_reserve
480 * Amount of memory that must be reserved at the beginning of each page,
481 * or at the beginning of the memory area if pg_shift is 0.
482 * @param[out] min_chunk_size
483 * Location for minimum size of the memory chunk which may be used to
484 * store memory pool objects.
485 * @param[out] align
486 * Location for required memory chunk alignment.
487 * @return
488 * Required memory size.
489 */
490 ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
491 uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
492 size_t *min_chunk_size, size_t *align);
493
494 /**
495 * Default way to calculate memory size required to store given number of
496 * objects.
497 *
498 * Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
499 * 0, min_chunk_size, align).
500 */
501 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
502 uint32_t obj_num, uint32_t pg_shift,
503 size_t *min_chunk_size, size_t *align);
504
505 /**
506 * Function to be called for each populated object.
507 *
508 * @param[in] mp
509 * A pointer to the mempool structure.
510 * @param[in] opaque
511 * An opaque pointer passed to iterator.
512 * @param[in] vaddr
513 * Object virtual address.
514 * @param[in] iova
515 * Input/output virtual address of the object or RTE_BAD_IOVA.
516 */
517 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
518 void *opaque, void *vaddr, rte_iova_t iova);
519
520 /**
521 * Populate memory pool objects using provided memory chunk.
522 *
523 * Populated objects should be enqueued to the pool, e.g. using
524 * rte_mempool_ops_enqueue_bulk().
525 *
526 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
527 * the chunk doesn't need to be physically contiguous (only virtually),
528 * and allocated objects may span two pages.
529 *
530 * @param[in] mp
531 * A pointer to the mempool structure.
532 * @param[in] max_objs
533 * Maximum number of objects to be populated.
534 * @param[in] vaddr
535 * The virtual address of memory that should be used to store objects.
536 * @param[in] iova
537 * The IO address
538 * @param[in] len
539 * The length of memory in bytes.
540 * @param[in] obj_cb
541 * Callback function to be executed for each populated object.
542 * @param[in] obj_cb_arg
543 * An opaque pointer passed to the callback function.
544 * @return
545 * The number of objects added on success.
546 * On error, no objects are populated and a negative errno is returned.
547 */
548 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
549 unsigned int max_objs,
550 void *vaddr, rte_iova_t iova, size_t len,
551 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
552
553 /**
554 * Align objects on addresses multiple of total_elt_sz.
555 */
556 #define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
557
558 /**
559 * @internal Helper to populate memory pool object using provided memory
560 * chunk: just slice objects one by one, taking care of not
561 * crossing page boundaries.
562 *
563 * If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
564 * of object headers will be aligned on a multiple of total_elt_sz.
565 * This feature is used by octeontx hardware.
566 *
567 * This function is internal to mempool library and mempool drivers.
568 *
569 * @param[in] mp
570 * A pointer to the mempool structure.
571 * @param[in] flags
572 * Logical OR of following flags:
573 * - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
574 * multiple of total_elt_sz.
575 * @param[in] max_objs
576 * Maximum number of objects to be added in mempool.
577 * @param[in] vaddr
578 * The virtual address of memory that should be used to store objects.
579 * @param[in] iova
580 * The IO address corresponding to vaddr, or RTE_BAD_IOVA.
581 * @param[in] len
582 * The length of memory in bytes.
583 * @param[in] obj_cb
584 * Callback function to be executed for each populated object.
585 * @param[in] obj_cb_arg
586 * An opaque pointer passed to the callback function.
587 * @return
588 * The number of objects added in mempool.
589 */
590 int rte_mempool_op_populate_helper(struct rte_mempool *mp,
591 unsigned int flags, unsigned int max_objs,
592 void *vaddr, rte_iova_t iova, size_t len,
593 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
594
595 /**
596 * Default way to populate memory pool object using provided memory chunk.
597 *
598 * Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
599 * len, obj_cb, obj_cb_arg).
600 */
601 int rte_mempool_op_populate_default(struct rte_mempool *mp,
602 unsigned int max_objs,
603 void *vaddr, rte_iova_t iova, size_t len,
604 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
605
606 /**
607 * Get some additional information about a mempool.
608 */
609 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
610 struct rte_mempool_info *info);
611
612
613 /** Structure defining mempool operations structure */
614 struct rte_mempool_ops {
615 char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
616 rte_mempool_alloc_t alloc; /**< Allocate private data. */
617 rte_mempool_free_t free; /**< Free the external pool. */
618 rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */
619 rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */
620 rte_mempool_get_count get_count; /**< Get qty of available objs. */
621 /**
622 * Optional callback to calculate memory size required to
623 * store specified number of objects.
624 */
625 rte_mempool_calc_mem_size_t calc_mem_size;
626 /**
627 * Optional callback to populate mempool objects using
628 * provided memory chunk.
629 */
630 rte_mempool_populate_t populate;
631 /**
632 * Get mempool info
633 */
634 rte_mempool_get_info_t get_info;
635 /**
636 * Dequeue a number of contiguous object blocks.
637 */
638 rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
639 } __rte_cache_aligned;
640
641 #define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */
642
643 /**
644 * Structure storing the table of registered ops structs, each of which contain
645 * the function pointers for the mempool ops functions.
646 * Each process has its own storage for this ops struct array so that
647 * the mempools can be shared across primary and secondary processes.
648 * The indices used to access the array are valid across processes, whereas
649 * any function pointers stored directly in the mempool struct would not be.
650 * This results in us simply having "ops_index" in the mempool struct.
651 */
652 struct rte_mempool_ops_table {
653 rte_spinlock_t sl; /**< Spinlock for add/delete. */
654 uint32_t num_ops; /**< Number of used ops structs in the table. */
655 /**
656 * Storage for all possible ops structs.
657 */
658 struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
659 } __rte_cache_aligned;
660
661 /** Array of registered ops structs. */
662 extern struct rte_mempool_ops_table rte_mempool_ops_table;
663
664 /**
665 * @internal Get the mempool ops struct from its index.
666 *
667 * @param ops_index
668 * The index of the ops struct in the ops struct table. It must be a valid
669 * index: (0 <= idx < num_ops).
670 * @return
671 * The pointer to the ops struct in the table.
672 */
673 static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)674 rte_mempool_get_ops(int ops_index)
675 {
676 RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
677
678 return &rte_mempool_ops_table.ops[ops_index];
679 }
680
681 /**
682 * @internal Wrapper for mempool_ops alloc callback.
683 *
684 * @param mp
685 * Pointer to the memory pool.
686 * @return
687 * - 0: Success; successfully allocated mempool pool_data.
688 * - <0: Error; code of alloc function.
689 */
690 int
691 rte_mempool_ops_alloc(struct rte_mempool *mp);
692
693 /**
694 * @internal Wrapper for mempool_ops dequeue callback.
695 *
696 * @param mp
697 * Pointer to the memory pool.
698 * @param obj_table
699 * Pointer to a table of void * pointers (objects).
700 * @param n
701 * Number of objects to get.
702 * @return
703 * - 0: Success; got n objects.
704 * - <0: Error; code of dequeue function.
705 */
706 static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool * mp,void ** obj_table,unsigned n)707 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
708 void **obj_table, unsigned n)
709 {
710 struct rte_mempool_ops *ops;
711
712 rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
713 ops = rte_mempool_get_ops(mp->ops_index);
714 return ops->dequeue(mp, obj_table, n);
715 }
716
717 /**
718 * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
719 *
720 * @param[in] mp
721 * Pointer to the memory pool.
722 * @param[out] first_obj_table
723 * Pointer to a table of void * pointers (first objects).
724 * @param[in] n
725 * Number of blocks to get.
726 * @return
727 * - 0: Success; got n objects.
728 * - <0: Error; code of dequeue function.
729 */
730 static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)731 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
732 void **first_obj_table, unsigned int n)
733 {
734 struct rte_mempool_ops *ops;
735
736 ops = rte_mempool_get_ops(mp->ops_index);
737 RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
738 rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
739 return ops->dequeue_contig_blocks(mp, first_obj_table, n);
740 }
741
742 /**
743 * @internal wrapper for mempool_ops enqueue callback.
744 *
745 * @param mp
746 * Pointer to the memory pool.
747 * @param obj_table
748 * Pointer to a table of void * pointers (objects).
749 * @param n
750 * Number of objects to put.
751 * @return
752 * - 0: Success; n objects supplied.
753 * - <0: Error; code of enqueue function.
754 */
755 static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned n)756 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
757 unsigned n)
758 {
759 struct rte_mempool_ops *ops;
760
761 rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
762 ops = rte_mempool_get_ops(mp->ops_index);
763 return ops->enqueue(mp, obj_table, n);
764 }
765
766 /**
767 * @internal wrapper for mempool_ops get_count callback.
768 *
769 * @param mp
770 * Pointer to the memory pool.
771 * @return
772 * The number of available objects in the external pool.
773 */
774 unsigned
775 rte_mempool_ops_get_count(const struct rte_mempool *mp);
776
777 /**
778 * @internal wrapper for mempool_ops calc_mem_size callback.
779 * API to calculate size of memory required to store specified number of
780 * object.
781 *
782 * @param[in] mp
783 * Pointer to the memory pool.
784 * @param[in] obj_num
785 * Number of objects.
786 * @param[in] pg_shift
787 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
788 * @param[out] min_chunk_size
789 * Location for minimum size of the memory chunk which may be used to
790 * store memory pool objects.
791 * @param[out] align
792 * Location for required memory chunk alignment.
793 * @return
794 * Required memory size aligned at page boundary.
795 */
796 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
797 uint32_t obj_num, uint32_t pg_shift,
798 size_t *min_chunk_size, size_t *align);
799
800 /**
801 * @internal wrapper for mempool_ops populate callback.
802 *
803 * Populate memory pool objects using provided memory chunk.
804 *
805 * @param[in] mp
806 * A pointer to the mempool structure.
807 * @param[in] max_objs
808 * Maximum number of objects to be populated.
809 * @param[in] vaddr
810 * The virtual address of memory that should be used to store objects.
811 * @param[in] iova
812 * The IO address
813 * @param[in] len
814 * The length of memory in bytes.
815 * @param[in] obj_cb
816 * Callback function to be executed for each populated object.
817 * @param[in] obj_cb_arg
818 * An opaque pointer passed to the callback function.
819 * @return
820 * The number of objects added on success.
821 * On error, no objects are populated and a negative errno is returned.
822 */
823 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
824 void *vaddr, rte_iova_t iova, size_t len,
825 rte_mempool_populate_obj_cb_t *obj_cb,
826 void *obj_cb_arg);
827
828 /**
829 * Wrapper for mempool_ops get_info callback.
830 *
831 * @param[in] mp
832 * Pointer to the memory pool.
833 * @param[out] info
834 * Pointer to the rte_mempool_info structure
835 * @return
836 * - 0: Success; The mempool driver supports retrieving supplementary
837 * mempool information
838 * - -ENOTSUP - doesn't support get_info ops (valid case).
839 */
840 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
841 struct rte_mempool_info *info);
842
843 /**
844 * @internal wrapper for mempool_ops free callback.
845 *
846 * @param mp
847 * Pointer to the memory pool.
848 */
849 void
850 rte_mempool_ops_free(struct rte_mempool *mp);
851
852 /**
853 * Set the ops of a mempool.
854 *
855 * This can only be done on a mempool that is not populated, i.e. just after
856 * a call to rte_mempool_create_empty().
857 *
858 * @param mp
859 * Pointer to the memory pool.
860 * @param name
861 * Name of the ops structure to use for this mempool.
862 * @param pool_config
863 * Opaque data that can be passed by the application to the ops functions.
864 * @return
865 * - 0: Success; the mempool is now using the requested ops functions.
866 * - -EINVAL - Invalid ops struct name provided.
867 * - -EEXIST - mempool already has an ops struct assigned.
868 */
869 int
870 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
871 void *pool_config);
872
873 /**
874 * Register mempool operations.
875 *
876 * @param ops
877 * Pointer to an ops structure to register.
878 * @return
879 * - >=0: Success; return the index of the ops struct in the table.
880 * - -EINVAL - some missing callbacks while registering ops struct.
881 * - -ENOSPC - the maximum number of ops structs has been reached.
882 */
883 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
884
885 /**
886 * Macro to statically register the ops of a mempool handler.
887 * Note that the rte_mempool_register_ops fails silently here when
888 * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
889 */
890 #define MEMPOOL_REGISTER_OPS(ops) \
891 RTE_INIT(mp_hdlr_init_##ops) \
892 { \
893 rte_mempool_register_ops(&ops); \
894 }
895
896 /**
897 * An object callback function for mempool.
898 *
899 * Used by rte_mempool_create() and rte_mempool_obj_iter().
900 */
901 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
902 void *opaque, void *obj, unsigned obj_idx);
903 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
904
905 /**
906 * A memory callback function for mempool.
907 *
908 * Used by rte_mempool_mem_iter().
909 */
910 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
911 void *opaque, struct rte_mempool_memhdr *memhdr,
912 unsigned mem_idx);
913
914 /**
915 * A mempool constructor callback function.
916 *
917 * Arguments are the mempool and the opaque pointer given by the user in
918 * rte_mempool_create().
919 */
920 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
921
922 /**
923 * Create a new mempool named *name* in memory.
924 *
925 * This function uses ``rte_memzone_reserve()`` to allocate memory. The
926 * pool contains n elements of elt_size. Its size is set to n.
927 *
928 * @param name
929 * The name of the mempool.
930 * @param n
931 * The number of elements in the mempool. The optimum size (in terms of
932 * memory usage) for a mempool is when n is a power of two minus one:
933 * n = (2^q - 1).
934 * @param elt_size
935 * The size of each element.
936 * @param cache_size
937 * If cache_size is non-zero, the rte_mempool library will try to
938 * limit the accesses to the common lockless pool, by maintaining a
939 * per-lcore object cache. This argument must be lower or equal to
940 * RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
941 * cache_size to have "n modulo cache_size == 0": if this is
942 * not the case, some elements will always stay in the pool and will
943 * never be used. The access to the per-lcore table is of course
944 * faster than the multi-producer/consumer pool. The cache can be
945 * disabled if the cache_size argument is set to 0; it can be useful to
946 * avoid losing objects in cache.
947 * @param private_data_size
948 * The size of the private data appended after the mempool
949 * structure. This is useful for storing some private data after the
950 * mempool structure, as is done for rte_mbuf_pool for example.
951 * @param mp_init
952 * A function pointer that is called for initialization of the pool,
953 * before object initialization. The user can initialize the private
954 * data in this function if needed. This parameter can be NULL if
955 * not needed.
956 * @param mp_init_arg
957 * An opaque pointer to data that can be used in the mempool
958 * constructor function.
959 * @param obj_init
960 * A function pointer that is called for each object at
961 * initialization of the pool. The user can set some meta data in
962 * objects if needed. This parameter can be NULL if not needed.
963 * The obj_init() function takes the mempool pointer, the init_arg,
964 * the object pointer and the object number as parameters.
965 * @param obj_init_arg
966 * An opaque pointer to data that can be used as an argument for
967 * each call to the object constructor function.
968 * @param socket_id
969 * The *socket_id* argument is the socket identifier in the case of
970 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
971 * constraint for the reserved zone.
972 * @param flags
973 * The *flags* arguments is an OR of following flags:
974 * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
975 * between channels in RAM: the pool allocator will add padding
976 * between objects depending on the hardware configuration. See
977 * Memory alignment constraints for details. If this flag is set,
978 * the allocator will just align them to a cache line.
979 * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
980 * cache-aligned. This flag removes this constraint, and no
981 * padding will be present between objects. This flag implies
982 * MEMPOOL_F_NO_SPREAD.
983 * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
984 * when using rte_mempool_put() or rte_mempool_put_bulk() is
985 * "single-producer". Otherwise, it is "multi-producers".
986 * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
987 * when using rte_mempool_get() or rte_mempool_get_bulk() is
988 * "single-consumer". Otherwise, it is "multi-consumers".
989 * - MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
990 * necessarily be contiguous in IO memory.
991 * @return
992 * The pointer to the new allocated mempool, on success. NULL on error
993 * with rte_errno set appropriately. Possible rte_errno values include:
994 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
995 * - E_RTE_SECONDARY - function was called from a secondary process instance
996 * - EINVAL - cache size provided is too large
997 * - ENOSPC - the maximum number of memzones has already been allocated
998 * - EEXIST - a memzone with the same name already exists
999 * - ENOMEM - no appropriate memory area found in which to create memzone
1000 */
1001 struct rte_mempool *
1002 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
1003 unsigned cache_size, unsigned private_data_size,
1004 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
1005 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
1006 int socket_id, unsigned flags);
1007
1008 /**
1009 * Create an empty mempool
1010 *
1011 * The mempool is allocated and initialized, but it is not populated: no
1012 * memory is allocated for the mempool elements. The user has to call
1013 * rte_mempool_populate_*() to add memory chunks to the pool. Once
1014 * populated, the user may also want to initialize each object with
1015 * rte_mempool_obj_iter().
1016 *
1017 * @param name
1018 * The name of the mempool.
1019 * @param n
1020 * The maximum number of elements that can be added in the mempool.
1021 * The optimum size (in terms of memory usage) for a mempool is when n
1022 * is a power of two minus one: n = (2^q - 1).
1023 * @param elt_size
1024 * The size of each element.
1025 * @param cache_size
1026 * Size of the cache. See rte_mempool_create() for details.
1027 * @param private_data_size
1028 * The size of the private data appended after the mempool
1029 * structure. This is useful for storing some private data after the
1030 * mempool structure, as is done for rte_mbuf_pool for example.
1031 * @param socket_id
1032 * The *socket_id* argument is the socket identifier in the case of
1033 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1034 * constraint for the reserved zone.
1035 * @param flags
1036 * Flags controlling the behavior of the mempool. See
1037 * rte_mempool_create() for details.
1038 * @return
1039 * The pointer to the new allocated mempool, on success. NULL on error
1040 * with rte_errno set appropriately. See rte_mempool_create() for details.
1041 */
1042 struct rte_mempool *
1043 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
1044 unsigned cache_size, unsigned private_data_size,
1045 int socket_id, unsigned flags);
1046 /**
1047 * Free a mempool
1048 *
1049 * Unlink the mempool from global list, free the memory chunks, and all
1050 * memory referenced by the mempool. The objects must not be used by
1051 * other cores as they will be freed.
1052 *
1053 * @param mp
1054 * A pointer to the mempool structure.
1055 */
1056 void
1057 rte_mempool_free(struct rte_mempool *mp);
1058
1059 /**
1060 * Add physically contiguous memory for objects in the pool at init
1061 *
1062 * Add a virtually and physically contiguous memory chunk in the pool
1063 * where objects can be instantiated.
1064 *
1065 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1066 * the chunk doesn't need to be physically contiguous (only virtually),
1067 * and allocated objects may span two pages.
1068 *
1069 * @param mp
1070 * A pointer to the mempool structure.
1071 * @param vaddr
1072 * The virtual address of memory that should be used to store objects.
1073 * @param iova
1074 * The IO address
1075 * @param len
1076 * The length of memory in bytes.
1077 * @param free_cb
1078 * The callback used to free this chunk when destroying the mempool.
1079 * @param opaque
1080 * An opaque argument passed to free_cb.
1081 * @return
1082 * The number of objects added on success (strictly positive).
1083 * On error, the chunk is not added in the memory list of the
1084 * mempool the following code is returned:
1085 * (0): not enough room in chunk for one object.
1086 * (-ENOSPC): mempool is already populated.
1087 * (-ENOMEM): allocation failure.
1088 */
1089 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1090 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1091 void *opaque);
1092
1093 /**
1094 * Add virtually contiguous memory for objects in the pool at init
1095 *
1096 * Add a virtually contiguous memory chunk in the pool where objects can
1097 * be instantiated.
1098 *
1099 * @param mp
1100 * A pointer to the mempool structure.
1101 * @param addr
1102 * The virtual address of memory that should be used to store objects.
1103 * @param len
1104 * The length of memory in bytes.
1105 * @param pg_sz
1106 * The size of memory pages in this virtual area.
1107 * @param free_cb
1108 * The callback used to free this chunk when destroying the mempool.
1109 * @param opaque
1110 * An opaque argument passed to free_cb.
1111 * @return
1112 * The number of objects added on success (strictly positive).
1113 * On error, the chunk is not added in the memory list of the
1114 * mempool the following code is returned:
1115 * (0): not enough room in chunk for one object.
1116 * (-ENOSPC): mempool is already populated.
1117 * (-ENOMEM): allocation failure.
1118 */
1119 int
1120 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1121 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1122 void *opaque);
1123
1124 /**
1125 * Add memory for objects in the pool at init
1126 *
1127 * This is the default function used by rte_mempool_create() to populate
1128 * the mempool. It adds memory allocated using rte_memzone_reserve().
1129 *
1130 * @param mp
1131 * A pointer to the mempool structure.
1132 * @return
1133 * The number of objects added on success.
1134 * On error, the chunk is not added in the memory list of the
1135 * mempool and a negative errno is returned.
1136 */
1137 int rte_mempool_populate_default(struct rte_mempool *mp);
1138
1139 /**
1140 * Add memory from anonymous mapping for objects in the pool at init
1141 *
1142 * This function mmap an anonymous memory zone that is locked in
1143 * memory to store the objects of the mempool.
1144 *
1145 * @param mp
1146 * A pointer to the mempool structure.
1147 * @return
1148 * The number of objects added on success.
1149 * On error, 0 is returned, rte_errno is set, and the chunk is not added in
1150 * the memory list of the mempool.
1151 */
1152 int rte_mempool_populate_anon(struct rte_mempool *mp);
1153
1154 /**
1155 * Call a function for each mempool element
1156 *
1157 * Iterate across all objects attached to a rte_mempool and call the
1158 * callback function on it.
1159 *
1160 * @param mp
1161 * A pointer to an initialized mempool.
1162 * @param obj_cb
1163 * A function pointer that is called for each object.
1164 * @param obj_cb_arg
1165 * An opaque pointer passed to the callback function.
1166 * @return
1167 * Number of objects iterated.
1168 */
1169 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1170 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1171
1172 /**
1173 * Call a function for each mempool memory chunk
1174 *
1175 * Iterate across all memory chunks attached to a rte_mempool and call
1176 * the callback function on it.
1177 *
1178 * @param mp
1179 * A pointer to an initialized mempool.
1180 * @param mem_cb
1181 * A function pointer that is called for each memory chunk.
1182 * @param mem_cb_arg
1183 * An opaque pointer passed to the callback function.
1184 * @return
1185 * Number of memory chunks iterated.
1186 */
1187 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1188 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1189
1190 /**
1191 * Dump the status of the mempool to a file.
1192 *
1193 * @param f
1194 * A pointer to a file for output
1195 * @param mp
1196 * A pointer to the mempool structure.
1197 */
1198 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1199
1200 /**
1201 * Create a user-owned mempool cache.
1202 *
1203 * This can be used by unregistered non-EAL threads to enable caching when they
1204 * interact with a mempool.
1205 *
1206 * @param size
1207 * The size of the mempool cache. See rte_mempool_create()'s cache_size
1208 * parameter description for more information. The same limits and
1209 * considerations apply here too.
1210 * @param socket_id
1211 * The socket identifier in the case of NUMA. The value can be
1212 * SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1213 */
1214 struct rte_mempool_cache *
1215 rte_mempool_cache_create(uint32_t size, int socket_id);
1216
1217 /**
1218 * Free a user-owned mempool cache.
1219 *
1220 * @param cache
1221 * A pointer to the mempool cache.
1222 */
1223 void
1224 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1225
1226 /**
1227 * Get a pointer to the per-lcore default mempool cache.
1228 *
1229 * @param mp
1230 * A pointer to the mempool structure.
1231 * @param lcore_id
1232 * The logical core id.
1233 * @return
1234 * A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
1235 * thread.
1236 */
1237 static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool * mp,unsigned lcore_id)1238 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1239 {
1240 if (mp->cache_size == 0)
1241 return NULL;
1242
1243 if (lcore_id >= RTE_MAX_LCORE)
1244 return NULL;
1245
1246 rte_mempool_trace_default_cache(mp, lcore_id,
1247 &mp->local_cache[lcore_id]);
1248 return &mp->local_cache[lcore_id];
1249 }
1250
1251 /**
1252 * Flush a user-owned mempool cache to the specified mempool.
1253 *
1254 * @param cache
1255 * A pointer to the mempool cache.
1256 * @param mp
1257 * A pointer to the mempool.
1258 */
1259 static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache * cache,struct rte_mempool * mp)1260 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1261 struct rte_mempool *mp)
1262 {
1263 if (cache == NULL)
1264 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1265 if (cache == NULL || cache->len == 0)
1266 return;
1267 rte_mempool_trace_cache_flush(cache, mp);
1268 rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1269 cache->len = 0;
1270 }
1271
1272 /**
1273 * @internal Put several objects back in the mempool; used internally.
1274 * @param mp
1275 * A pointer to the mempool structure.
1276 * @param obj_table
1277 * A pointer to a table of void * pointers (objects).
1278 * @param n
1279 * The number of objects to store back in the mempool, must be strictly
1280 * positive.
1281 * @param cache
1282 * A pointer to a mempool cache structure. May be NULL if not needed.
1283 */
1284 static __rte_always_inline void
__mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1285 __mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1286 unsigned int n, struct rte_mempool_cache *cache)
1287 {
1288 void **cache_objs;
1289
1290 /* increment stat now, adding in mempool always success */
1291 __MEMPOOL_STAT_ADD(mp, put, n);
1292
1293 /* No cache provided or if put would overflow mem allocated for cache */
1294 if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE))
1295 goto ring_enqueue;
1296
1297 cache_objs = &cache->objs[cache->len];
1298
1299 /*
1300 * The cache follows the following algorithm
1301 * 1. Add the objects to the cache
1302 * 2. Anything greater than the cache min value (if it crosses the
1303 * cache flush threshold) is flushed to the ring.
1304 */
1305
1306 /* Add elements back into the cache */
1307 rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n);
1308
1309 cache->len += n;
1310
1311 if (cache->len >= cache->flushthresh) {
1312 rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size],
1313 cache->len - cache->size);
1314 cache->len = cache->size;
1315 }
1316
1317 return;
1318
1319 ring_enqueue:
1320
1321 /* push remaining objects in ring */
1322 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1323 if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0)
1324 rte_panic("cannot put objects in mempool\n");
1325 #else
1326 rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1327 #endif
1328 }
1329
1330
1331 /**
1332 * Put several objects back in the mempool.
1333 *
1334 * @param mp
1335 * A pointer to the mempool structure.
1336 * @param obj_table
1337 * A pointer to a table of void * pointers (objects).
1338 * @param n
1339 * The number of objects to add in the mempool from the obj_table.
1340 * @param cache
1341 * A pointer to a mempool cache structure. May be NULL if not needed.
1342 */
1343 static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1344 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1345 unsigned int n, struct rte_mempool_cache *cache)
1346 {
1347 rte_mempool_trace_generic_put(mp, obj_table, n, cache);
1348 __mempool_check_cookies(mp, obj_table, n, 0);
1349 __mempool_generic_put(mp, obj_table, n, cache);
1350 }
1351
1352 /**
1353 * Put several objects back in the mempool.
1354 *
1355 * This function calls the multi-producer or the single-producer
1356 * version depending on the default behavior that was specified at
1357 * mempool creation time (see flags).
1358 *
1359 * @param mp
1360 * A pointer to the mempool structure.
1361 * @param obj_table
1362 * A pointer to a table of void * pointers (objects).
1363 * @param n
1364 * The number of objects to add in the mempool from obj_table.
1365 */
1366 static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned int n)1367 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1368 unsigned int n)
1369 {
1370 struct rte_mempool_cache *cache;
1371 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1372 rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
1373 rte_mempool_generic_put(mp, obj_table, n, cache);
1374 }
1375
1376 /**
1377 * Put one object back in the mempool.
1378 *
1379 * This function calls the multi-producer or the single-producer
1380 * version depending on the default behavior that was specified at
1381 * mempool creation time (see flags).
1382 *
1383 * @param mp
1384 * A pointer to the mempool structure.
1385 * @param obj
1386 * A pointer to the object to be added.
1387 */
1388 static __rte_always_inline void
rte_mempool_put(struct rte_mempool * mp,void * obj)1389 rte_mempool_put(struct rte_mempool *mp, void *obj)
1390 {
1391 rte_mempool_put_bulk(mp, &obj, 1);
1392 }
1393
1394 /**
1395 * @internal Get several objects from the mempool; used internally.
1396 * @param mp
1397 * A pointer to the mempool structure.
1398 * @param obj_table
1399 * A pointer to a table of void * pointers (objects).
1400 * @param n
1401 * The number of objects to get, must be strictly positive.
1402 * @param cache
1403 * A pointer to a mempool cache structure. May be NULL if not needed.
1404 * @return
1405 * - >=0: Success; number of objects supplied.
1406 * - <0: Error; code of ring dequeue function.
1407 */
1408 static __rte_always_inline int
__mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1409 __mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1410 unsigned int n, struct rte_mempool_cache *cache)
1411 {
1412 int ret;
1413 uint32_t index, len;
1414 void **cache_objs;
1415
1416 /* No cache provided or cannot be satisfied from cache */
1417 if (unlikely(cache == NULL || n >= cache->size))
1418 goto ring_dequeue;
1419
1420 cache_objs = cache->objs;
1421
1422 /* Can this be satisfied from the cache? */
1423 if (cache->len < n) {
1424 /* No. Backfill the cache first, and then fill from it */
1425 uint32_t req = n + (cache->size - cache->len);
1426
1427 /* How many do we require i.e. number to fill the cache + the request */
1428 ret = rte_mempool_ops_dequeue_bulk(mp,
1429 &cache->objs[cache->len], req);
1430 if (unlikely(ret < 0)) {
1431 /*
1432 * In the off chance that we are buffer constrained,
1433 * where we are not able to allocate cache + n, go to
1434 * the ring directly. If that fails, we are truly out of
1435 * buffers.
1436 */
1437 goto ring_dequeue;
1438 }
1439
1440 cache->len += req;
1441 }
1442
1443 /* Now fill in the response ... */
1444 for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
1445 *obj_table = cache_objs[len];
1446
1447 cache->len -= n;
1448
1449 __MEMPOOL_STAT_ADD(mp, get_success, n);
1450
1451 return 0;
1452
1453 ring_dequeue:
1454
1455 /* get remaining objects from ring */
1456 ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n);
1457
1458 if (ret < 0)
1459 __MEMPOOL_STAT_ADD(mp, get_fail, n);
1460 else
1461 __MEMPOOL_STAT_ADD(mp, get_success, n);
1462
1463 return ret;
1464 }
1465
1466 /**
1467 * Get several objects from the mempool.
1468 *
1469 * If cache is enabled, objects will be retrieved first from cache,
1470 * subsequently from the common pool. Note that it can return -ENOENT when
1471 * the local cache and common pool are empty, even if cache from other
1472 * lcores are full.
1473 *
1474 * @param mp
1475 * A pointer to the mempool structure.
1476 * @param obj_table
1477 * A pointer to a table of void * pointers (objects) that will be filled.
1478 * @param n
1479 * The number of objects to get from mempool to obj_table.
1480 * @param cache
1481 * A pointer to a mempool cache structure. May be NULL if not needed.
1482 * @return
1483 * - 0: Success; objects taken.
1484 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1485 */
1486 static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1487 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1488 unsigned int n, struct rte_mempool_cache *cache)
1489 {
1490 int ret;
1491 ret = __mempool_generic_get(mp, obj_table, n, cache);
1492 if (ret == 0)
1493 __mempool_check_cookies(mp, obj_table, n, 1);
1494 rte_mempool_trace_generic_get(mp, obj_table, n, cache);
1495 return ret;
1496 }
1497
1498 /**
1499 * Get several objects from the mempool.
1500 *
1501 * This function calls the multi-consumers or the single-consumer
1502 * version, depending on the default behaviour that was specified at
1503 * mempool creation time (see flags).
1504 *
1505 * If cache is enabled, objects will be retrieved first from cache,
1506 * subsequently from the common pool. Note that it can return -ENOENT when
1507 * the local cache and common pool are empty, even if cache from other
1508 * lcores are full.
1509 *
1510 * @param mp
1511 * A pointer to the mempool structure.
1512 * @param obj_table
1513 * A pointer to a table of void * pointers (objects) that will be filled.
1514 * @param n
1515 * The number of objects to get from the mempool to obj_table.
1516 * @return
1517 * - 0: Success; objects taken
1518 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1519 */
1520 static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool * mp,void ** obj_table,unsigned int n)1521 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1522 {
1523 struct rte_mempool_cache *cache;
1524 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1525 rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
1526 return rte_mempool_generic_get(mp, obj_table, n, cache);
1527 }
1528
1529 /**
1530 * Get one object from the mempool.
1531 *
1532 * This function calls the multi-consumers or the single-consumer
1533 * version, depending on the default behavior that was specified at
1534 * mempool creation (see flags).
1535 *
1536 * If cache is enabled, objects will be retrieved first from cache,
1537 * subsequently from the common pool. Note that it can return -ENOENT when
1538 * the local cache and common pool are empty, even if cache from other
1539 * lcores are full.
1540 *
1541 * @param mp
1542 * A pointer to the mempool structure.
1543 * @param obj_p
1544 * A pointer to a void * pointer (object) that will be filled.
1545 * @return
1546 * - 0: Success; objects taken.
1547 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1548 */
1549 static __rte_always_inline int
rte_mempool_get(struct rte_mempool * mp,void ** obj_p)1550 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1551 {
1552 return rte_mempool_get_bulk(mp, obj_p, 1);
1553 }
1554
1555 /**
1556 * Get a contiguous blocks of objects from the mempool.
1557 *
1558 * If cache is enabled, consider to flush it first, to reuse objects
1559 * as soon as possible.
1560 *
1561 * The application should check that the driver supports the operation
1562 * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1563 * is not zero.
1564 *
1565 * @param mp
1566 * A pointer to the mempool structure.
1567 * @param first_obj_table
1568 * A pointer to a pointer to the first object in each block.
1569 * @param n
1570 * The number of blocks to get from mempool.
1571 * @return
1572 * - 0: Success; blocks taken.
1573 * - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1574 * - -EOPNOTSUPP: The mempool driver does not support block dequeue
1575 */
1576 static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)1577 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1578 void **first_obj_table, unsigned int n)
1579 {
1580 int ret;
1581
1582 ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1583 if (ret == 0) {
1584 __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_success, n);
1585 __mempool_contig_blocks_check_cookies(mp, first_obj_table, n,
1586 1);
1587 } else {
1588 __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_fail, n);
1589 }
1590
1591 rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
1592 return ret;
1593 }
1594
1595 /**
1596 * Return the number of entries in the mempool.
1597 *
1598 * When cache is enabled, this function has to browse the length of
1599 * all lcores, so it should not be used in a data path, but only for
1600 * debug purposes. User-owned mempool caches are not accounted for.
1601 *
1602 * @param mp
1603 * A pointer to the mempool structure.
1604 * @return
1605 * The number of entries in the mempool.
1606 */
1607 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1608
1609 /**
1610 * Return the number of elements which have been allocated from the mempool
1611 *
1612 * When cache is enabled, this function has to browse the length of
1613 * all lcores, so it should not be used in a data path, but only for
1614 * debug purposes.
1615 *
1616 * @param mp
1617 * A pointer to the mempool structure.
1618 * @return
1619 * The number of free entries in the mempool.
1620 */
1621 unsigned int
1622 rte_mempool_in_use_count(const struct rte_mempool *mp);
1623
1624 /**
1625 * Test if the mempool is full.
1626 *
1627 * When cache is enabled, this function has to browse the length of all
1628 * lcores, so it should not be used in a data path, but only for debug
1629 * purposes. User-owned mempool caches are not accounted for.
1630 *
1631 * @param mp
1632 * A pointer to the mempool structure.
1633 * @return
1634 * - 1: The mempool is full.
1635 * - 0: The mempool is not full.
1636 */
1637 static inline int
rte_mempool_full(const struct rte_mempool * mp)1638 rte_mempool_full(const struct rte_mempool *mp)
1639 {
1640 return rte_mempool_avail_count(mp) == mp->size;
1641 }
1642
1643 /**
1644 * Test if the mempool is empty.
1645 *
1646 * When cache is enabled, this function has to browse the length of all
1647 * lcores, so it should not be used in a data path, but only for debug
1648 * purposes. User-owned mempool caches are not accounted for.
1649 *
1650 * @param mp
1651 * A pointer to the mempool structure.
1652 * @return
1653 * - 1: The mempool is empty.
1654 * - 0: The mempool is not empty.
1655 */
1656 static inline int
rte_mempool_empty(const struct rte_mempool * mp)1657 rte_mempool_empty(const struct rte_mempool *mp)
1658 {
1659 return rte_mempool_avail_count(mp) == 0;
1660 }
1661
1662 /**
1663 * Return the IO address of elt, which is an element of the pool mp.
1664 *
1665 * @param elt
1666 * A pointer (virtual address) to the element of the pool.
1667 * @return
1668 * The IO address of the elt element.
1669 * If the mempool was created with MEMPOOL_F_NO_IOVA_CONTIG, the
1670 * returned value is RTE_BAD_IOVA.
1671 */
1672 static inline rte_iova_t
rte_mempool_virt2iova(const void * elt)1673 rte_mempool_virt2iova(const void *elt)
1674 {
1675 const struct rte_mempool_objhdr *hdr;
1676 hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1677 sizeof(*hdr));
1678 return hdr->iova;
1679 }
1680
1681 /**
1682 * Check the consistency of mempool objects.
1683 *
1684 * Verify the coherency of fields in the mempool structure. Also check
1685 * that the cookies of mempool objects (even the ones that are not
1686 * present in pool) have a correct value. If not, a panic will occur.
1687 *
1688 * @param mp
1689 * A pointer to the mempool structure.
1690 */
1691 void rte_mempool_audit(struct rte_mempool *mp);
1692
1693 /**
1694 * Return a pointer to the private data in an mempool structure.
1695 *
1696 * @param mp
1697 * A pointer to the mempool structure.
1698 * @return
1699 * A pointer to the private data.
1700 */
rte_mempool_get_priv(struct rte_mempool * mp)1701 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1702 {
1703 return (char *)mp +
1704 MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1705 }
1706
1707 /**
1708 * Dump the status of all mempools on the console
1709 *
1710 * @param f
1711 * A pointer to a file for output
1712 */
1713 void rte_mempool_list_dump(FILE *f);
1714
1715 /**
1716 * Search a mempool from its name
1717 *
1718 * @param name
1719 * The name of the mempool.
1720 * @return
1721 * The pointer to the mempool matching the name, or NULL if not found.
1722 * NULL on error
1723 * with rte_errno set appropriately. Possible rte_errno values include:
1724 * - ENOENT - required entry not available to return.
1725 *
1726 */
1727 struct rte_mempool *rte_mempool_lookup(const char *name);
1728
1729 /**
1730 * Get the header, trailer and total size of a mempool element.
1731 *
1732 * Given a desired size of the mempool element and mempool flags,
1733 * calculates header, trailer, body and total sizes of the mempool object.
1734 *
1735 * @param elt_size
1736 * The size of each element, without header and trailer.
1737 * @param flags
1738 * The flags used for the mempool creation.
1739 * Consult rte_mempool_create() for more information about possible values.
1740 * The size of each element.
1741 * @param sz
1742 * The calculated detailed size the mempool object. May be NULL.
1743 * @return
1744 * Total size of the mempool object.
1745 */
1746 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1747 struct rte_mempool_objsz *sz);
1748
1749 /**
1750 * Walk list of all memory pools
1751 *
1752 * @param func
1753 * Iterator function
1754 * @param arg
1755 * Argument passed to iterator
1756 */
1757 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1758 void *arg);
1759
1760 /**
1761 * @internal Get page size used for mempool object allocation.
1762 * This function is internal to mempool library and mempool drivers.
1763 */
1764 int
1765 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
1766
1767 #ifdef __cplusplus
1768 }
1769 #endif
1770
1771 #endif /* _RTE_MEMPOOL_H_ */
1772